Optimal single-port matching impedance for capacity maximization in compact MIMO arrays

Fei, Yuanyuan; Fan, Yijia; Lau, Buon Kiong; Thompson, John S.

Published in:
IEEE Transactions on Antennas and Propagation

DOI:
10.1109/TAP.2008.2005463

Published: 2008-01-01

Citation for published version (APA):
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Optimal Single-Port Matching Impedance for Capacity Maximization in Compact MIMO Arrays

Yuanyuan Fei, Student Member, IEEE, Yijia Fan, Member, IEEE, Buon Kiong Lau, Senior Member, IEEE, and John S. Thompson, Senior Member, IEEE

Abstract—A complete multiple-input multiple-output (MIMO) system model with compact arrays at both link ends containing arbitrary matching networks is presented based on a Z-parameter approach. The complete channel matrix including the coupling effect is also presented. Utilizing this system model, the optimum single-port matching impedance for capacity maximization is derived for a 2×2 MIMO system with coupling at the receivers only. A closed-form result for the optimum matching impedance in high signal-to-noise ratio scenarios is given and proved to be equal to the input impedance of the receive end. Simulation of ideal dipoles verifies our analytical results and demonstrates the superiority of the optimum matching to other matching conditions in improving MIMO system performance. Experimental data for monopoles is also presented to further confirm our numerical findings and validate the accuracy of our derivation.

Index Terms—Antenna array, antenna measurements, impedance matching, multiple-input multiple-output (MIMO) systems, mutual coupling.

I. INTRODUCTION

A. Background

The comprehensively studied multiple-input multiple-output (MIMO) systems promise significant gains in spectrum efficiency and link reliability by deploying multiple antennas at both ends of a wireless link [1]–[3]. An $N \times N$ MIMO system can achieve N times capacity benefit over the single-input single-output (SISO) if operating in an independent and identically-distributed (i.i.d.) channel [4]. However, the i.i.d. channel may not be achieved in practice due to insufficient antenna separation or non-uniformly distributed scatterers in the non-line-of-sight (NLOS) environment. In particular, the integration of multiple antennas into the subscriber end is affected by the limited design volume, which results in significant system performance degradation [2], [5], [6].

In narrowband MIMO systems, it is widely agreed that mutual coupling (MC) which becomes significant for small antenna spacing can reduce the signal correlation by distorting the radiation patterns of each element [7]–[9]. However, it will also induce a mismatch between the characteristic impedance of the circuit and the antenna input, which is detrimental to the capacity performance [10]. This conflicting outcome of the MC effect is one important factor which contributes to different conclusions of its impact on MIMO capacity performance [8], [11]–[19].

Two methods in n-port theory are usually used to study compact MIMO systems. One is S-parameter analysis [9], [16], [17] which reflects the wave transmission in an n-port electrical network; the other is Z-parameter analysis [10]–[12], [20] which expresses the voltage and current relations among all ports. Various matching networks can be introduced [16] to improve the MIMO capacity performance, while more varieties of matching networks are examined in [21]. It is proved in [9], [16] that the so-called multiport-conjugate match (MCM) can realize zero output correlation, lossless power transfer from the antennas to the loads for any antenna spacing, and offer significant capacity improvement for very small antenna spacings. Nevertheless, the optimum MCM can only be achieved for a small bandwidth [22] in wideband systems. Apart from that, the MCM is not easy to implement as it involves multiple circuit components interconnected across the antenna ports [23]. Instead, the single-port match (SPM) [10], [20]–[22] is a practical, if suboptimal solution, as it provides capacity improvement compared to the non-matched case and has a broader bandwidth than the MCM.

B. Contributions of the Paper

We develop a complete framework study for $N \times N$ MIMO systems including the MC effect at both link ends using Z-parameters, which is suitable for any kind of single-mode antennas at the link ends with any matching networks. The framework is applicable to any propagation channels. Then we simplify the model and show that the MIMO system studied in [10], [20] is a special case of our model.

We state the derivation of the optimum SPM for capacity maximization of a 2×2 MIMO system using an upper bound of the MIMO ergodic capacity. The deviation holds for all single-mode antennas. Furthermore, the closed-form result of the optimum SPM for capacity maximization in high signal-to-noise ratio (SNR) scenarios is also delivered and proved to be the input impedance of the receive antennas.

We illustrate the above derivation using ideal dipole antennas. A perfect match is shown between analytical and simulation results. Moreover, we present the advantage of using the optimum SPM compared to other SPM cases for MIMO system.
performance. To demonstrate the practical value of our analytical study, an experimental monopole array is designed for MIMO capacity evaluation, which further confirms our findings in previous contributions.

C. Relation Between Previous and Current Work

Received power maximization or zero output correlation can be achieved by selecting proper SPM [24] for very close antenna spacing ($d = 0.05\lambda$), which has been confirmed by the experimental implementation in [25]. However, it is observed in [20] that the optimum SPM to maximize the capacity is different from the solutions that either maximize the received power or achieve zero correlation. The analytical derivation of the optimum SPM for the capacity maximization is delivered in this work.

The Z-parameter network presented in this paper is an improvement of the previous work [10]–[12], [20]. In [11], the system model is approximated for multiple antennas of a fixed length at the receiver and ignores the effect of matching networks. Although compact MIMO receivers with various matching impedances are examined in [10], [20], no complete Z-parameter framework analysis and analytical result for the optimal SPM are given. The author in [12] did present a Z-parameter MIMO system but with an inappropriate channel matrix expression, which will be further discussed in Section II, and no matching network was included in the study.

Practical amplifier noise models have recently been used to study the impact of matching networks on diversity [26] and MIMO capacity [27], [28] performance. The minimum noise figure match is claimed to be an optimal solution which can outperform the MCM. However, similar to the MCM, multiport matching networks are needed to achieve the minimum noise figure performance. In this paper, we limit our study of SPM to the simple ‘receiver noise model’ provided in [16].

The remainder of this paper is organized as follows. Section II presents the analysis framework of the MIMO system model using Z-parameters. Section III provides the numerical deviation of the optimum SPM for a 2×2 MIMO system, and gives closed-form results in high SNR regime. Section IV applies the analytical results in Section III to ideal dipole antennas, and compares with the simulation results. The superiority of the optimum SPM for compact MIMO arrays to other matching conditions is also discussed. Results for experimental monopole antennas are provided in Section V to support our analytical studies. Conclusions are given in Section VI.

In this paper, the superscripts T, \ast, and H represent matrix transpose, complex conjugate, and conjugate transpose operators, respectively. I_N denotes the $N \times N$ identity matrix. The notations $\text{Tr}(A)$, $E\{A\}$, $\text{det}(A)$ and $(A)_{ij}$ denote the trace, expectation, determinant and the (i,j)-element of the matrix A, respectively. The notation $\text{Re}\{\cdot\}$ is used to denote the real part of a complex number/matrix and $\text{vec}(\cdot)$ is the columnwise vectorization operation of a matrix.

II. MIMO SYSTEM ANALYSIS BASED ON Z-PARAMETERS

A narrowband $N \times N$ MIMO system is considered. For simplicity we assume that the channel is frequency-flat, rich scattering, and without a line-of-sight (LOS) propagation component. Also it is assumed that the transmitter and receiver arrays are linear, the array elements are of identical polarization, the dimension of the arrays is negligible compared to the link distance, and initially the array elements of both ends are separated by over half-a-wavelength. According to the n-port theory, the channel transfer function between the transmit and the receive arrays in Fig. 1 can be represented as [12]

$$
\begin{bmatrix}
V_T \\
V_R
\end{bmatrix} =
\begin{bmatrix}
Z_{TT} & Z_{TR} \\
Z_{RT} & Z_{RR}
\end{bmatrix}
\begin{bmatrix}
i_T \\
i_R
\end{bmatrix}
$$

(1)

where $V_T = [V_{T1}, V_{T2}, \ldots, V_{TN}]^T$, $i_T = [I_{T1}, I_{T2}, \ldots, I_{TN}]^T$ are the voltage and current vectors at the transmitter, respectively. Similarly, $V_R = [V_{R1}, V_{R2}, \ldots, V_{RN}]^T$, $i_R = [I_{R1}, I_{R2}, \ldots, I_{RN}]^T$ denote the voltages and currents at the receiver. The $N \times N$ matrices Z_{TT} and Z_{RR} are antenna impedance matrices containing the self and mutual impedances of the transmitter and receiver, respectively. The matrix Z_{RT} can be translated as the trans-impedance matrix [16] due to the impact of transmit end currents on the receive end voltages. We define $Z_{TR} = 0$ to indicate that the transmitters are blind to the conditions (or currents) at the receivers.

The transmit antennas are usually assumed to be spaced sufficiently far apart, but even then mismatches between antennas and corresponding sources still exist. As future wireless communication may involve peer-to-peer transmission between compact MIMO terminals (e.g., mobile cooperation [29]), MC will be an issue for both link ends. Thus, a source impedance network Z_S is inserted between the sources and transmit antennas in Fig. 1 to ensure an efficient power transmission. The relation between the source voltage v_S and transmit voltage v_T is

$$
v_T = Z_{TT}i_T = Z_{TT}(Z_{TT} + Z_S)^{-1}v_S
$$

(2)

where $v_S = [V_{S1}, V_{S2}, \ldots, V_{SN}]^T$. Also the total average transmitted power is

$$
P_T = E\{\text{Tr}(\text{Re}\{Z_{TT}i_T^H\})\}
= E\{\text{Tr}(R_T^{1/2}Z_{TT}Z_{TT}^{-1}Z_{TT}^{-1/2}v_Sv_S^HZ_{TT}^{-1/2}R_T^{1/2}(H))\}
$$

(3)

where $R_T = \text{Re}\{Z_{TT}\}$ and $Z_{TT} + Z_S = Z_{TT} + Z_S$.

In the compact receive subsystem of Fig. 1, an impedance matching network Z_L is added after the receive antennas to compensate for the MC induced power reduction. Utilizing circuit theory at the receive subsystem it is easy to obtain

$$
v_R = -Z_Li_R.
$$

(4)

Substituting (4) into (1) we find the receive voltage v_R as a function of the transmit voltage v_T

$$
v_R = (I_N + Z_{RR}Z_L^{-1})^{-1}Z_{RT}Z_{TT}^{-1}v_T
= Z_L(Z_L + Z_{RR})^{-1}Z_{RT}(Z_{TT} + Z_S)^{-1}v_S
$$

(5)

where $Z_{L+R} = Z_L + Z_{RR}$ and H_V is the channel/voltage transfer matrix [12]. However, because only the voltage across the resistance can be exploited by the receiver, H_V has to be modified to fulfill the power transfer requirement. We substitute
\(i_R \) as defined in (5), then the total average received power of the MIMO system can be represented as

\[
P_R = E \left\{ \text{Tr} \left(\text{Re} \{ Z_L i_R H_H^R \} \right) \right\} = E \left\{ \text{Tr} \left(R_L^{1/2} Z_{L+R}^{-1} Z_{RT} Z_T^{-1} S V_S V_S^H \right. \r
antennas are sufficiently separated, rich scattering, i.e., $Ψ_R = I_N$, and self-conjugate matched. For a 2×2 MIMO system (11) can be simplified as

$$\mathbf{H}_{\text{inc}} = 2\sqrt{r_{11}} r_{L} \mathbf{Z}^{-1}_{L+R} \psi^{1/2}_{R} \mathbf{H}_{\text{id},dL},$$ \hspace{1cm} (13)$$

where $r_L = \text{Re}\{z_L\}$. Equation (13) is identical to the 2×2 channel matrix used in [10], [20], which is a special case of the MIMO channel matrix in (11).

III. DERIVATION OF OPTIMAL SINGLE-PORT MATCHING IMPEDANCE

The optimal single-port matching impedance $z_{\text{opt}} = r_{\text{opt}} + jx_{\text{opt}}$, which maximizes the mean capacity $E\{C_{\text{inc}}\}$ of a 2×2 MIMO system is derived in this section. As a random channel matrix, we use (12), Jensen’s inequality and the concavity of $\log_2 \det$ [31] are used to achieve the upper bound C_{up} [32] for any fixed antenna spacing d as

$$E\{C_{\text{inc}}\} \leq C_{\text{up}} = \log_2 \det \left(I_N + \frac{4\rho_r r_{11} r_{L}}{N} \mathbf{Z}^{-H}_{L+R} \mathbf{Z}^{-1}_{L+R} \psi_{R} \right),$$ \hspace{1cm} (14)$$

We define the antenna self-impedance $z_{11} = r_{11} + jx_{11}$, mutual-impedance $z_{12} = r_{12} + jx_{12}$, load impedance $z_{L} = r_{L} + jx_{L}$, where the resistance components $r_{11}, r_{12}, r_{L} \in \mathbb{R}^+$ and the reactance components $x_{11}, x_{12}, x_{L} \in \mathbb{R}$. For identical antenna elements, we have $(\mathbf{Z}_{RR})_{kk} = (\mathbf{Z}_{RR})_{ii}$ based on the reciprocity theorem [33]. Given a particular d and ρ_r, (14) becomes a function of (r_{L}, x_{L}). Then the matrix product $\mathbf{Z}^{-H}_{L+R} \mathbf{Z}^{-1}_{L+R}$ in (14) can be simplified as (15) shown at the bottom of the page. Expanding (15) we have

$$
\begin{align*}
\mathbf{Z}_1 &= \begin{bmatrix}
\frac{r_{11}^2 + x_{11}^2}{r_{11} + x_{11}} & 0 \\
0 & \frac{r_{11}^2 + x_{11}^2}{r_{11} + x_{11}}
\end{bmatrix}, \\
\mathbf{Z}_2 &= \begin{bmatrix}
\frac{r_{L}}{x_{L}} & \frac{r_{11}}{r_{L} + x_{11}} + x_{L} & x_{11} & x_{12}
\frac{r_{11}}{r_{L} + x_{11}} & \frac{r_{12}}{r_{L} + x_{12}} & \frac{r_{11}}{r_{L} + x_{11}} & \frac{r_{12}}{r_{L} + x_{12}}
\end{bmatrix}, \\
\mathbf{Z}_3 &= \begin{bmatrix}
\frac{\frac{r_{11}^2 + x_{11}^2}{r_{11} + x_{11}} + \frac{r_{12}^2 + x_{12}^2}{r_{12} + x_{12}}}{2} & \frac{2r_{L}}{r_{11}r_{12} + x_{11}x_{12}} & \frac{2r_{11}}{r_{11} + x_{11}} & \frac{2r_{12}}{r_{12} + x_{12}}
\frac{2r_{L}}{r_{11}r_{12} + x_{11}x_{12}} & \frac{2r_{11}}{r_{11} + x_{11}} & \frac{2r_{12}}{r_{12} + x_{12}} & \frac{2r_{L}}{r_{11}r_{12} + x_{11}x_{12}}
\end{bmatrix}.
\end{align*}

$$

We note that the reciprocity theorem is independent of the assumptions about the transmission environment. The FP pattern of the array does change in different scenarios, i.e., the variations of the mean AOAs and angular spread (AS). This effect is reflected in the correlation matrix $Ψ_R$.

Lemma 1: For any real symmetric Toeplitz matrix A, the singular value decomposition (SVD) of A can be written as $A = U D U^T = U D$, where

$$
\begin{align*}
A &= \begin{bmatrix} a_1 & a_2 \\
\bar{a}_2 & a_1 \end{bmatrix}, \\
U &= \begin{bmatrix} 1 & 1 \\
1 & -1 \end{bmatrix}, \\
D &= \begin{bmatrix} a_1 & 0 \\
0 & a_2 \end{bmatrix}.
\end{align*}
$$

Proof: A is a 2×2 circulant matrix. Following [34], the eigenvalue solution of A is $λ_k = a_1 + a_2 r_k$, $k = 1, 2$, and r_k is the kth complex root of $r^2 = 1$. The corresponding eigenvector $u_k = 2^{-1/2}[1, r_k^2]$. Then $U = [u_1, u_2]$, and U is unitary.

Using Lemma 1, the singular value decomposition (SVD) of (15) is given as (17), shown at the bottom of the page, where $\mathbf{R}_1 = r_{11} + r_{12}$, $\mathbf{x}_1 = x_{11} + x_{12}$, $\mathbf{R}_2 = r_{11} - r_{12}$, $\mathbf{x}_2 = x_{11} - x_{12}$. Using the property $\det(I + AB) = \det(I + BA)$ [3], (14) can be rewritten as

$$
\begin{align*}
C_{\text{up}} &= \log_2 \det \left(I_N + \kappa r_{L} \cdot U A^{-1} U \psi \right) \\
&= \log_2 \det \left(I_N + \kappa U \psi U r_{L} A^{-1} \right) \\
&= \log_2 \det (Y)
\end{align*}
$$

where $\kappa = ρ_r \cdot 4 r_{11}/N$. According to the monotonically increasing characteristic of $\log_2(\cdot)$, the maximum point of $\det(\cdot)$ is the maximum point of $\log_2 \det(\cdot)$. To derive the maximum point $(r_{\text{opt}}, x_{\text{opt}})$ of $\det(Y)$, we evaluate the following derivatives shown as (19a) and (19b) at the bottom of the next page where, see (20) at the bottom of the next page, and $α = (\psi_{R})_{12} = (\psi_{R})_{21}$. In (20) it can be shown that $\forall \mathbf{x}_{1,2} > 0$. As the maximum point $(r_{\text{opt}}, x_{\text{opt}})$ makes (19) equal to zero, then from (19b) we can deduce

$$
x_{\text{opt}} \in \left[\min(-x_1, -x_2), \max(-x_1, -x_2)\right].$$

Substituting (21) into (19a) we have (22) shown at the bottom of the next page. Solving (19a) and (19b) the simple relation between r_{L} and x_{L} can be obtained

$$
r_{L}^{-2} + (x_{L} + σ)^2 = Γ.$$ \hspace{1cm} (23)$$

Geometrically, $(r_{\text{opt}}, x_{\text{opt}})$ is a point on the circumference of a circle with the center at $(0, -σ)$ and radius $\sqrt{Γ}$, where $σ = \ldots$
\[x_{11} + r_{11} r_{12} / x_{12}, \Gamma = r_{11}^2 + r_{12}^2 + x_{12}^2 + r_{11} r_{12}^2 / x_{12}^2, \] Combined with (21) and (22), \((r_{\text{opt}}, x_{\text{opt}})\) can be restricted to be located in an arc of the circle.

Substituting (23) into (19b), we can deduce a polynomial in \(x_L\)

\[
\sum_{m=0}^{8} p_m x_L^m = \sum_{m=0}^{8} f_m(\mathfrak{R}_1, x_1, \mathfrak{R}_2, x_2, \sigma, \Gamma, \kappa) x_L^m
\]

\[
= \sum_{m=0}^{8} g_m(r_{11}, x_{11}, r_{12}, x_{12}, \rho_r) x_L^m
\]

\[= 0 \quad (24) \]

where the coefficients \(p_m\) are determined by the high order polynomials \(f_m(\mathfrak{R}_1, x_1, \mathfrak{R}_2, x_2, \sigma, \Gamma, \kappa) = g_m(r_{11}, x_{11}, r_{12}, x_{12}, \rho_r)\). We summarize the derivation of \(z_{\text{opt}}\) in the following steps:

- **Step 1.** Solving (24) to find all the roots of \(x_L\);
- **Step 2.** Filtering the results of Step 1 by (21);
- **Step 3.** Substituting the results of Step 2 into (23) to get the corresponding roots of \(r_L\);
- **Step 4.** Filtering the results of Step 3 by (22).

In high SNR regime, (18) can be simplified as

\[
C_{\text{up}} = \log_2 \det(\kappa \mathbf{U} \Psi \mathbf{U}^H \mathbf{A}^{-1}) = \log_2 \det(\mathbf{Y}) \quad (25)
\]

where \(\det(\mathbf{Y}) = (1 - \alpha^2) / \det(\mathbf{A})\). The derivatives in (19) are modified by simplifying (20) as

\[
\Sigma_i = (r_L + \mathfrak{R}_i)^2 + (x_L + x_i)^2, \quad i = 1, 2. \quad (26)
\]

Solving the equations we derive the closed-form of \(z_{\text{opt}} = r_{\text{opt}} + jx_{\text{opt}}\), where

\[
r_{\text{opt}} = \sqrt{\mathfrak{R}_1 \mathfrak{R}_2 \left(1 + \frac{(x_1 - x_2)^2}{(\mathfrak{R}_1 + \mathfrak{R}_2)^2} \right)}
\]

\[
x_{\text{opt}} = -\frac{\mathfrak{R}_1 x_2 + \mathfrak{R}_2 x_1}{\mathfrak{R}_1 + \mathfrak{R}_2} = \frac{r_{12} x_{12} - x_{11}}{r_{11}}. \quad (27a)
\]

This solution of \(z_{\text{opt}}\) is exactly the input impedance \((z_{\text{in}})\) match in (22). It is shown that in a high SNR scenario, \(z_{\text{opt}}\) can be simplified from the array impedances and independent from the open-circuit (OC) correlation \(\alpha\) which provides the possibility of practical implementation. The finding of \(z_{\text{in}} = z_{\text{opt}}\) in high SNR case is under prediction because from circuit theory considerations it includes the MC effect into the matching network [35], which realizes the maximum power transfer between the corresponding source and receiver within the SPM range. Moreover, it gives low correlation for any antenna separation [22].

IV. SIMULATION AND ANALYSIS

A 2 x 2 MIMO system using ideal half-wavelength (\(\lambda/2\)) dipoles\(^2\) equipped at both ends is deployed to demonstrate the analytical results in Section III. The optimal single-port impedances \(z_{\text{opt}}\) generated by Monte Carlo simulations of the same

\[^{2}\text{Ideal half-wavelength dipoles are adopted because their self and mutual impedances are easily computed numerically. The impedance matrices of other kinds of antennas obtained either analytically or experimentally can be applied as well.}\]

\[
\partial \det(\mathbf{Y}) / \partial r_L = \kappa \cdot \left(\frac{(\mathfrak{R}_1 - r_L^2 + (x_L + x_1)^2) \cdot \Sigma_2 + (\mathfrak{R}_2 - r_L^2 + (x_L + x_2)^2) \cdot \Sigma_1}{((r_L + \mathfrak{R}_1)^2 + (x_L + x_1)^2) ((r_L + \mathfrak{R}_2)^2 + (x_L + x_2)^2)} \right)^2 \quad (19a)
\]

\[
\partial \det(\mathbf{Y}) / \partial x_L = -2 n r_L \cdot \left(\frac{(x_L + x_1) \cdot \Sigma_2 + (x_L + x_2) \cdot \Sigma_1}{((r_L + \mathfrak{R}_1)^2 + (x_L + x_1)^2) ((r_L + \mathfrak{R}_2)^2 + (x_L + x_2)^2)} \right)^2 \quad (19b)
\]

\[
\Sigma_1 = ((r_L + \mathfrak{R}_1)^2 + (x_L + x_1)^2) \cdot ((1 - \text{Re} (\alpha)) (r_L + \mathfrak{R}_1)^2 + (x_L + x_1)^2) + (1 - |\alpha|^2) n r_L
\]

\[
\Sigma_2 = ((r_L + \mathfrak{R}_2)^2 + (x_L + x_2)^2) \cdot ((1 + \text{Re} (\alpha)) (r_L + \mathfrak{R}_2)^2 + (x_L + x_2)^2) + (1 - |\alpha|^2) n r_L
\]

\[
r_{\text{opt}} \in \left[\min(\mathfrak{R}_1, \mathfrak{R}_2), \max \left(\sqrt{\mathfrak{R}_1^2 + (x_1 - x_2)^2}, \sqrt{\mathfrak{R}_2^2 + (x_1 - x_2)^2} \right) \right]. \quad (22)
\]
MIMO system model for both ergodic capacity C_{TR} are compared to the results simulated using the upper bound C_{up} as well as the numerical results of Section III. The superiority of using z_{opt} to other matching networks in the MIMO system is also discussed.

The self and mutual impedances z_{11}, z_{12} of the ideal $\lambda/2$ dipoles are calculated numerically using the modified EMF method3. Choosing a reference SNR ρ_r and substituting the values of z_{11}, z_{12} into polynomials g_{m} in (24), we can get multiple solutions of x_{L} for each antenna spacing d. After the values of x_{L} are filtered by the range (21) [see Fig. 2(a)], the corresponding results of r_{L} can be computed by (23). Fig. 3 depicts the arc of possible locations for $(r_{\text{opt}}, x_{\text{opt}})$ utilizing (23) at $d = 0.05\lambda$. The abscissa of Fig. 3 is determined by $r_{L\text{min}} = \min(\Re_{\mathcal{R}})$ and $r_{L\text{max}} = \max(\sqrt{\Re_{\mathcal{R}}^2 + (X_1 - X_3)^2})$ according to Fig. 2(b). In Fig. 3 it is obvious that

$$\begin{align*}
x_{L\text{min}} = -X_2 = -17.9 \, \Omega, \quad \text{therefor } x_{L} \text{ can not reach zero as in Fig. 2(a), and the lower bound of } x_{L} \text{ in Fig. 3 is modified to } x_{L\text{min}} = \min(-X_1, -X_2) \quad \text{for } X_2 \leq -17.9.
\end{align*}$$

Finally, the desirable solution $(r_{\text{opt}}, x_{\text{opt}})$ can be obtained using (22) [see Fig. 2(b)]. When d is fixed, the unique solution is a point on the arc, and the position of $(r_{\text{opt}}, x_{\text{opt}})$ depends on the value of ρ_r.

Monte Carlo simulations for the ergodic capacity C_{TR} in (12) and the upper bound C_{up} in (14) are used to verify the derivation in Section III. If uniform distributed power azimuth spectrum (PAS) is assumed at the receiver, the correlation $\rho = J_0(2\pi d/\lambda)$ [37], where $J_0(\cdot)$ is the zeroth order Bessel function of the first kind. As the numerical z_{opt} is the maximum point of C_{up} rather than C_{TR}, the simulation results of z_{opt} for both cases are plotted in Fig. 4. The range of $\{z_{2L} = r_{L} + jx_{L}: r_{L} \in [0, 150] \Omega, x_{L} \in [-100, 50]\Omega\}$ is chosen to get the z_{opt} of each C_{up}. The C_{TR} is simulated over 10000 random channel realizations for every z_{2L} point at each d, thereby the range of z_{2L} is shrunk to a few ohms around the z_{opt} of C_{up} to save computing time. In Fig. 4 it is apparent that the numerically derived z_{opt} agrees well with the corresponding simulation results of C_{up} and C_{MC}. Moreover, the z_{opt} approaches the input impedance

3Infinite thin dipoles are assumed for the EMF calculations as the dipole diameter is usually far less than its length. Similar self and mutual impedance results of practical dipole cases can be found in [16], [36]. As our focus is on the relative ratio of the self and mutual impedances, ideal dipoles are selected for simplicity.
TABLE I
COMPARISON OF THE NUMERICAL AND SIMULATION RESISTANCE AND REACTANCE COMPONENTS OF THE OPTIMAL SINGLE-PORT IMPEDANCES WITH VARIOUS ANTENNA SPACINGS AND REFERENCE SNRs

<table>
<thead>
<tr>
<th>d/λ</th>
<th>(r_{\text{opt}}(\Omega))</th>
<th>(r_{\text{in}}(\Omega))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\rho_r = 5,\text{dB})</td>
<td>(\rho_r = 10,\text{dB})</td>
</tr>
<tr>
<td></td>
<td>num*</td>
<td>sim(_{\text{up}})</td>
</tr>
<tr>
<td>0.05</td>
<td>1.53</td>
<td>1.81</td>
</tr>
<tr>
<td>0.10</td>
<td>23.23</td>
<td>23.22</td>
</tr>
<tr>
<td>0.20</td>
<td>51.78</td>
<td>51.76</td>
</tr>
<tr>
<td>0.30</td>
<td>72.77</td>
<td>72.77</td>
</tr>
<tr>
<td>0.40</td>
<td>81.44</td>
<td>81.44</td>
</tr>
<tr>
<td>0.50</td>
<td>78.26</td>
<td>78.26</td>
</tr>
<tr>
<td>0.10</td>
<td>-35.35</td>
<td>-35.35</td>
</tr>
<tr>
<td>0.20</td>
<td>-56.46</td>
<td>-56.46</td>
</tr>
<tr>
<td>0.30</td>
<td>-77.44</td>
<td>-77.44</td>
</tr>
<tr>
<td>0.40</td>
<td>-97.21</td>
<td>-97.21</td>
</tr>
<tr>
<td>0.50</td>
<td>-108.54</td>
<td>-108.55</td>
</tr>
</tbody>
</table>

*numerical results, \(\text{sim} \) simulation based on \(C_{\text{up}} \), \(\text{sim} \) simulation results based on \(C_{\text{mc}} \)

\(z_{\text{in}} \) as \(\rho_r \) increases, which is perfectly consistent with the derivation in Section III. Another observation is that the \(x_{\text{opt}} \) is hardly affected by \(\rho_r \) and the impact of \(\rho_r \) on the \(r_{\text{opt}} \) diminishes when \(d > 0.2\lambda \).

Because the numerical values of \(z_{\text{opt}} \) match very well to the simulation results of both \(C_{\text{up}} \) and \(C_{\text{mc}} \) cases, the precise data of \(z_{\text{opt}} \) is presented in Table I. For the resistive component \(r_{\text{opt}} \), the numerical and simulation results differ from each other for \(d \leq 0.2\lambda \) with a maximum error of less than 1 \(\Omega \). The errors decrease while \(\rho_r \) increases. When \(d \geq 0.3\lambda \), the numerical and simulation \(r_{\text{opt}} \) of \(C_{\text{up}} \) are equal with no error. Meanwhile, the numerical \(r_{\text{opt}} \) experiences an maximum error of 0.4 \(\Omega \) compared to the simulation \(r_{\text{opt}} \) of \(C_{\text{mc}} \) for any value of \(\rho_r \). For the reactive component \(x_{\text{opt}} \), the numerical \(x_{\text{opt}} \) is equal to the simulation \(x_{\text{opt}} \) of \(C_{\text{up}} \) with no error for all values of \(\rho_r \). The \(x_{\text{opt}} \) of \(C_{\text{mc}} \) has an maximum error of 0.4 \(\Omega \) compared to the other two cases due to the limited number of realizations of the Monte Carlo simulation. Both Fig. 4 and Table I confirm that the analytical study in Section III can predict \(z_{\text{opt}} \) of the \(C_{\text{mc}} \) correctly, as well as yield \(z_{\text{opt}} \) of the \(C_{\text{up}} \) accurately and more efficiently than the Monte Carlo \(C_{\text{mc}} \). Values of the \(z_{\text{in}} \) are in Table I agree well with the corresponding values of \(z_{\text{opt}} \) at \(\rho = 20 \,\text{dB} \), which proves the analytical finding of the high SNR case in Section III.

To illustrate the MIMO system benefit from the \(z_{\text{opt}} \) match, the \(C_{\text{mc}} \) and \(C_{\text{up}} \) with the characteristic impedance match of both no coupling (\(z_{\text{hnc}} \)) and MC (\(z_0 \)) cases, \(z_{11}^* \), \(z_{12}^* \), and \(z_{\text{opt}} \) matches are depicted with different values of \(\rho_r \). In Fig. 5, Fig. 5 illustrates using a matching network to optimize \(C_{\text{up}} \) also optimizes \(C_{\text{mc}} \). When \(\rho_r = 5 \,\text{dB} \) [see Fig. 5(a)], the performance of the receivers without MC is always better than that with MC. However, for \(\rho_r = 20 \,\text{dB} \) case [Fig. 5(b)], the compact receiver with any matching network outperforms that without MC at \(d < 0.2\lambda \). Meanwhile, the \(z_{\text{opt}} \) match surpasses other matching schemes when \(d < 0.25\lambda \) and overlaps with the \(z_{\text{opt}} \) match and \(z_{\text{in}} \) match at \(d \geq 0.25\lambda \) in both low and high SNR scenarios. The performance of the \(z_{\text{opt}} \) match outperforms that of the \(z_{\text{in}} \) match only at \(d < 0.1\lambda \) in Fig. 5(a). With increasing SNR in Fig. 5(b), the performance of \(z_{\text{opt}} \) and \(z_{\text{in}} \) overlap with each other at all antenna spacings, which again verifies the analysis in Section III. It is obvious that \(r_{\text{opt}} \) is the dominant factor which determines the value of \(C_{\text{up}} \) in Fig. 5 because \(C_{\text{up}} \) follows the monotonically increasing property of \(r_{\text{opt}} \) in Fig. 4 with all spacings. This
can be explained because r_{opt} is the part of z_{opt} receiving the power which contains the mutual information.

V. EXPERIMENTAL VALIDATION

We further present measured antenna impedances z_{11}, z_{12} and OC correlation results α to validate the analytical results in Section III. The experimental setup of a compact receive array is shown in Fig. 6. Two quarter-wavelength monopoles with $d = 0.05\lambda$, 0.1λ, 0.15λ and a center frequency of 900 MHz are mounted on a 330 mm \times 250 mm ground plane. Both brass antennas of identical dimensions (diameter of 2 mm) are soldered onto 50 Ω matching network boards with the output ports of SMA connectors soldered onto the opposite end. The z_{11} of a single monopole and the z_{11}, z_{12} of the monopole array are measured by a network analyzer. To calculate α addressed in Section II, the two-dimensional (2D) FF patterns of the monopole array with OC terminations are measured in an anechoic chamber at Perlos AB, Sweden. An identical receive system model is simulated in SEMCAD using finite-difference time-domain (FDTD) analysis. There are no analytical equations for the z_{11} and z_{12} of monopoles on a finite ground plane. Fig. 7 displays the results of z_{11} and z_{12} of the monopole array from both simulation and measurement. The simulation results are derived from the open and short-circuit impedances [6], while the experimental results are transferred from the S-parameter data observed at the network analyzer. Because in practice the monopoles cannot be exactly identical, the average values of the measured z_{11} and z_{12} are shown in Fig. 7 as well. The close match of the measured results of both monopoles ensures the validity of further experiment. The simulation and the average of the measured results also show great consistency in Fig. 7. Meanwhile, with increasing d, the difference between the simulation and the average of the measured results decreases. In the following part, we focus on the antenna spacing of $d = 0.05\lambda$, where the self and mutual impedances of the monopoles are $z_{11} = 47.5 + j10.09\Omega$, $z_{12} = 46.77 - j0.57\Omega$ in simulation, and $z_{11} = 46.72 + j9.39\Omega$, $z_{12} = 45.31 - j2.57\Omega$ on average in measurement. The corresponding values of α are 0.9796 in SEMCAD and 0.959 in measurement calculated from the FF patterns.

Table II lists the ergodic capacity C_{m} generated using antenna parameters from simulation and measurement with different matching networks. The loads z_A and z_B are selected from the area of optimum impedances for received power maximization, while z_C and z_D are picked from the approximately zero correlation circle [25]. The z_0 of 50Ω is also chosen. For the z_{11}, z_{12} and the z_{opt} matches, there are two sets of impedances shown based on the corresponding z_{11}, z_{12} and α obtained in simulation and measurement, respectively. The notation z_{opt} in Table II represents the numerical z_{opt} results of Section III. We note that the same number of channel realizations and 20dB reference SNR P_r are used in generating C_{m}. The values of z_{11} of a single monopole listed in Table II are used for power normalization of the corresponding cases, because the z_{11} of an isolated antenna differs from that in the array [16], [36].

Generally, the C_{m} generated using the measured results are about 0.5 bits/s/Hz higher than the corresponding simulation results of each load point. Apparently, none of the impedances either maximizing the received power or achieving zero output correlation maximize the capacity, which confirms the finding.
in [10], [20]. Among these impedances, $z_{p\phi}$ offers the best performance as it is chosen to be the load with the highest received power along the zero correlation circle, and also because it is close to z_{opt}. Also, the commonly used z_{q} and z_{FF_1} give inferior performance to the corresponding z_{in} match of 0.5 bits/Hz. Furthermore, the numerical z_{opt} agree well with the corresponding simulation results, which again confirms the analytical study in Section III. The error between the corresponding numerical and simulation results of z_{opt} is within 1Ω, which is caused by the deviation between z_{FF_1} of the single antenna and z_{FF_1} used in the array. When a high SNR ($\rho_0 = 20$ dB) is assumed, both numerical and simulation results of z_{opt} agree well with the corresponding z_{FF_n}, especially in the measurement. As shown in Table I, the errors between the numerical and simulation results of z_{opt} as well as z_{FF_n} decrease when d increases, we are confident of the validity of our derivation with larger antenna separations.

VI. CONCLUSION

This paper derives the optimal single-port matching impedance (z_{opt}) for capacity maximization of a 2×2 MIMO system with coupled receiver using Z-parameters. Closed-form solutions of z_{opt} for the high SNR scenario is deduced and confirmed to be the input matching impedance of the receive antenna. We have shown that the analytical and simulation results agree well with each other through the example of ideal dipoles. By introducing z_{opt} into a MIMO system with two coupled dipoles, the ergodic capacity has an advantage of around 1 bit/s/Hz for antenna spacings less than 0.25λ compared to the commonly used characteristic match when the SNR is 20dB. An experimental setup of a monopole array is also introduced to verify the analytical study. It is shown that a capacity benefit of 0.5 bits/s/Hz can be achieved over the commonly used self-conjugate match for an antenna element spacing 0.05λ at 20dB SNR.

We conclude that the MIMO system performance can be significantly improved by integrating z_{opt} into compact arrays at close antenna separations. More research can be done for compact receivers with larger sizes and different configurations to explore the existence of z_{opt}. The MIMO channel matrix using Z-parameters and the method of finding z_{opt} presented in this paper offers a good chance to solve these problems. In later work, the same methodology used in this paper may be applied to find optimal noise-figure loading for more realistic amplifiers [27]. A measurement campaign involving direct MIMO channel measurements (including the effects of the matching network) and measured capacity evaluation is also an interesting aspect for future work.

ACKNOWLEDGMENT

The authors would like to thank Prof. A. Molisch of the Department of Electrical and Information Technology, Lund University, Sweden, for reviewing the paper and giving valuable feedback. Many thanks to Mr. J. Ding of the Institute for Digital Communications, University of Edinburgh, U.K., for useful discussions. They also thank Dr. A. Sunesson of Perlos AB, Lund, Sweden, for providing the facility and expertise to measure the antenna FF patterns, and Mr. L. Hedenstjärna of the Department of Electrical and Information Technology, Lund University, for technical advice and construction of the experimental hardware.

REFERENCES

