The Human Pancreatic Islet Methylome and Its Role in Type 2 Diabetes

Dayeh, Tasnim

2016

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA1c levels in human pancreatic islets

B. T. Yang · T. A. Dayeh · C. L. Kirkpatrick · J. Taneera · R. Kumar · L. Groop · C. B. Wollheim · M. D. Nitert · C. Ling

Received: 29 September 2010 / Accepted: 11 October 2010 / Published online: 23 November 2010 © The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract
Aims/hypothesis Although recent studies propose that epigenetic factors influence insulin expression, the regulation of the insulin gene in type 2 diabetic islets is still not fully understood. Here, we examined DNA methylation of the insulin gene promoter in pancreatic islets from patients with type 2 diabetes and non-diabetic human donors and related it to insulin expression, HbA1c levels, BMI and age.

Methods DNA methylation was analysed in 25 CpG sites of the insulin promoter and insulin mRNA expression was analysed using quantitative RT-PCR in pancreatic islets from nine donors with type 2 diabetes and 48 non-diabetic donors. Results Insulin mRNA expression ($p=0.002$), insulin content ($p=0.004$) and glucose-stimulated insulin secretion ($p=0.04$) were reduced in pancreatic islets from patients with type 2 diabetes compared with non-diabetic donors. Moreover, four CpG sites located 234 bp, 180 and 102 bp upstream and 63 bp downstream of the transcription start site (CpG −234, −180, −102 and +63, respectively), showed increased DNA methylation in type 2 diabetic compared with non-diabetic islets (7.8%, $p=0.03$; 7.1%, $p=0.02$; 4.4%, $p=0.03$ and 9.3%, $p=0.03$, respectively). While insulin mRNA expression correlated negatively ($p<1 \times 10^{-5}$), the level of HbA1c correlated positively ($p<0.01$) with the degree of DNA methylation for CpG −234, −180 and +63. Furthermore, DNA methylation for nine additional CpG sites correlated negatively with insulin mRNA expression ($p<0.01$). Also, exposure to hyperglycaemia for 72 h increased insulin promoter DNA methylation in clonal rat beta cells ($p=0.005$).

Conclusions/interpretations This study demonstrates that DNA methylation of the insulin promoter is increased in patients with type 2 diabetes and correlates negatively with insulin gene expression in human pancreatic islets.

Keywords Alpha cells · Beta cells · DNA methylation · Epigenetic · Gene expression · Human · Hyperglycaemia · Insulin · Pancreatic islets · Type 2 diabetes

Abbreviations
ATF2 Activating transcription factor 2
CREB2 cAMP responsive element binding protein 2
PGC-1α Peroxisome proliferator-activated receptor gamma coactivator 1-α
SNP Single-nucleotide polymorphism
TFBS Transcription factor binding site
TSS Transcription start site

Introduction

Type 2 diabetes is a multifactorial disease characterised by chronic hyperglycaemia as a result of defects in insulin
secretion from the pancreatic beta cells and insulin action in target tissues including skeletal muscle, adipose tissue and liver. It is well established that genetic and non-genetic factors influence susceptibility to type 2 diabetes. Recent studies suggest that epigenetic factors, including DNA methylation and histone modifications, may influence the pathogenesis of type 2 diabetes [1–4]. Indeed, we have recently shown that DNA methylation of the PPARGCA (encoding peroxisome proliferator-activated receptor γ, coactivator 1 α [PGC-1α]) promoter is increased in pancreatic islets from patients with type 2 diabetes compared with non-diabetic individuals [5]. Moreover, the type 2 diabetic islets showed reduced PGC-1α mRNA levels in parallel with decreased glucose-stimulated insulin secretion. PGC-1α is a transcriptional co-activator that stimulates mitochondrial oxidative metabolism and thereby ATP production. Our study suggests that DNA methylation can regulate gene expression in pancreatic islets from patients with type 2 diabetes and subsequently contribute to impaired insulin secretion [5].

Although previous studies have found the insulin gene to be regulated by epigenetic mechanisms, it is not clear whether epigenetic alterations of the insulin gene are involved in the pathogenesis of impaired insulin secretion in type 2 diabetes [6–8]. A recent study proposed that insulin gene expression is regulated by DNA methylation [9]. Kuroda and co-workers showed that while the degree of DNA methylation is low in the insulin promoter of beta cells, the same promoter is highly methylated in other cell types. By using the insulin promoter in a luciferase expression assay, they further proposed that a high degree of DNA methylation is associated with low gene expression. However, it is not known whether DNA methylation of the insulin promoter differs between pancreatic islets from patients with type 2 diabetes and those from non-diabetic individuals. The aim of the present study was to examine DNA methylation of the insulin promoter in pancreatic islets from 48 non-diabetic and nine type 2 diabetic human donors and to relate the degree of DNA methylation to insulin gene expression, HbA1c levels, BMI and age. We separately analysed insulin promoter DNA methylation in beta and alpha cells isolated from human pancreatic islets as well as in clonal rat beta cells exposed to hyperglycaemia.

Methods

Pancreatic islets Pancreatic islets from 48 non-diabetic and nine type 2 diabetic deceased donors were obtained from the Human Tissue Laboratory at Lund University Diabetes Centre (Table 1). Islets were prepared by collagenase digestion and density gradient purification. After isolation, islets were cultured free floating in CMRL 1066 culture medium (ICN Biomedicals, Costa Mesa, CA, USA) supplemented with 10 mmol/l HEPES, 2 mmol/l γ-glutamime, 50 µg/ml gentamicin, 0.25 µg/ml Fungizone (GIBCO BRL, Gaithersburg, MD, USA), 20 µg/ml ciprofloxacin (Bayer Healthcare, Leverkusen, Germany), and 10 mmol/l nicotinamide at 37°C (5% CO2) prior to RNA and DNA preparation. The islet purity was similar for type 2 diabetic (68±19%) and non-diabetic (58.7±19%, p=0.16) donors. Insulin content in homogenised human islets was assessed by ELISA (Merodia, Uppsala, Sweden) and values were normalised to the total DNA in each sample as determined by a fluorometric assay (Quant-iT Picogreen, Invitrogen Molecular Probes, Stockholm, Sweden). Glucose-stimulated insulin secretion from the human islets was measured in vitro in static incubations as previously described by Rosengren et al. [10]. The donor before death or her/his relatives had, on admission to the intensive care unit, given their consent to donate organs. The local ethics committees approved the protocols.

Beta cell purification Beta and alpha cells were purified from pancreatic islets of three human donors (aged 54, 55 and 74 years, with BMI 21.5–23.1 kg/m2), different from the donors described in Table 1, using a method previously described by Parnaud et al. [11]. Dissociation of islet cell was achieved by incubation with constant agitation for 3 min at 37°C in 0.05% (wt/vol.) trypsin-EDTA (Invitrogen) supplemented with 3 mg/ml DNAse I (Roche, Basel, Switzerland) followed by vigorous pipetting. Labelling and FACS sorting of the beta and alpha cell fractions was performed as previously described by Parnaud et al. [11]. Sorted alpha and beta cells were applied to microscope slides and co-immunostained for insulin and glucagon in order to detect the amount of alpha cells in the beta cell fraction, and vice versa. Using this method, a beta cell purity of 89±9% (mean±SD) was achieved [12].

Cell culture Clonal rat insulinoma-derived INS 832/13 beta cells were cultured in RPMI medium with 11.1 mmol/l glucose, which is the basal glucose concentration for these cells, supplemented with 10% fetal calf serum, 1 mmol/l sodium pyruvate, 10 mmol/l HEPES, 50 µmol/l β-mercaptoethanol, 100 U/ml penicillin and 100 µg/ml streptomycin at 37°C in a humidified atmosphere containing 95% air and 5% CO2. The cells were plated out in six well plates and allowed to attach overnight. The medium was then replaced with fresh medium containing either 11.1 or 16.7 mmol/l glucose. The cells were further cultured for 72 h, with the medium exchanged after 48 h. DNA was isolated with the All Prep kit (Qiagen, Hilden, Germany) and kept at −20°C until analysis.
Genetic expression analysis Total RNA was extracted from human islets using All Prep DNA/RNA kit and cDNA was synthesised using QuantiTect Reverse Transcription kit (Qiagen, Hilding, Germany). Insulin mRNA levels were analysed using TaqMan Real-Time PCR with an ABI Prism 7900 HT system and gene-specific probes and primer pairs (Assays-on-demand, Hs02741908_m1; Applied Biosystems, Foster City, CA, USA). The insulin transcript level was normalised to the mRNA level of cyclophilin A (4326316E, Applied Biosystems) and quantified using the ΔΔCt method.

DNA methylation analysis Sequenom’s MassARRAY EpiTYPER protocol was applied to measure DNA methylation (Sequenom, San Diego, CA, USA). Five different EpiTYPER assays were designed (EpiDesigner), covering 26 CpG sites of the human insulin promoter (successful data were generated for 25 CpG sites, see below). Also, two assays covering ten CpG sites of the rat insulin promoter were designed (successful data were generated for five CpG sites, see below). The primer sequence and the location of each CpG unit are shown in Table 1. Genomic DNA was first extracted from the human islets and the clonal rat beta cells using the All Prep DNA/RNA kit (Qiagen) as well as from whole blood cells using the Gentra Puregene Blood Kit (Qiagen). Genomic DNA, 500 ng, was bisulfite treated with the EZ DNA Methylation kit (Zymo Research, Orange, CA, USA). Duplicate PCR reactions were performed with bisulfite-specific PCR primers containing a T7-promotor tag and a 10mer tag on the reverse and forward primer, respectively. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse primer. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse primer. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse primer. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse primer. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse primer. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse primer. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse primer. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse primer. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse primer. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse primer. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse primer. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse primer. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse primer. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse primer. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse primer. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse primer. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse primer. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse primer. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse primer. In vitro transcription and RNase cleavage reaction were conducted using the MassCleave (hMC) kit according to the manufacturer’s recommendations. The cleavage reaction was dispensed onto a 384 well plate containing a T7-promotor tag and a 10mer tag on the reverse.
with type 2 diabetes compared with non-diabetic donors (7.8%, \(p = 0.03 \); 7.1%, \(p = 0.02 \); 4.4%, \(p = 0.03 \) and 9.3%, \(p = 0.03 \), respectively, Fig. 3a–d). We next examined whether the degree of methylation of CpG \(-234\), \(-180\), \(-102\) and +63 correlated with insulin gene expression and HbA1c levels in all studied individuals. While insulin mRNA expression correlated negatively, the level of HbA1c correlated positively, including CpG +63, negatively with insulin mRNA expression for a number of analysed, the percentage of DNA methylation correlated with non-diabetic control donors. Results are expressed as mean \(\pm \)SEM. *\(p < 0.05 \) vs control islets. Control, non-diabetic donors; GSIS, glucose-stimulated insulin secretion; T2D, donors with type 2 diabetes.

In order to examine if hyperglycaemia affects insulin promoter DNA methylation specifically in beta cells, we cultured clonal rat insulinoma-derived INS 832/13 beta cells in the presence of either basal (11.1 mmol/l) or high (16.7 mmol/l) levels of glucose for 72 h and measured DNA methylation for five CpG sites of the rat insulin promoter. Hyperglycaemia increased DNA methylation significantly for two specific CpG sites located 1,057 bp upstream of the transcription start site (TSS) (CpG \(-1,057\), 12.7% increase, \(p = 0.005 \)) and 58 bp downstream of the TSS (CpG +58, 5.0% increase, \(p = 0.03 \)) in the clonal rat beta cells (Fig. 5e). Furthermore, the average DNA methylation of the studied insulin promoter region increased in rat clonal beta cells exposed to hyperglycaemia (8.3% increase, \(p = 0.047 \), Fig. 5e).

We proceeded to compare the overall DNA methylation patterns in human pancreatic islets and blood cells. In human pancreatic islets, the methylation level of the analysed CpG sites varied according to the distance from the TSS. In general, CpG sites located closer to the TSS showed lower levels of DNA methylation compared with CpG sites located further upstream (5′) (Fig. 2b). Indeed, the average methylation level for CpG sites +63 to –234 was significantly lower than the average methylation level for CpG sites –982 to –2,266 (34.3±11.5% vs 73.9±12.4%, \(p < 0.0001 \)). In contrast, in blood cells DNA methylation was high throughout the analysed insulin promoter and for the majority of CpG sites the methylation level was higher in blood than in human islets (Fig. 2b). Moreover, when comparing insulin promoter DNA methylation in beta and alpha cells isolated from human pancreatic islets, five out of eight analysed CpG sites showed lower methylation in beta than in alpha cells (\(p < 0.05 \)) (Fig. 2c).

Finally, as it has been proposed that CpG sites close to each other show a similar degree of methylation within a tissue and individual, we also tested if the percentage of insulin promoter methylation of the analysed CpG sites correlated in the pancreatic islets. Indeed, the degree of methylation correlated for the majority of analysed CpG sites, i.e. all the first eight CpG sites analysed correlated positively, including CpG +63, –19, –69, –102, –135, –180, –206, –234 (\(p = 0.66–0.91, p < 1 \times 10^{-6} \)).

Discussion

This study proposes that DNA methylation affects insulin mRNA expression levels in human pancreatic islets. Four CpG sites, located 234, 180, 102 upstream (5′) and 63 bp downstream (3′) of the transcription start site of the insulin gene (CpG \(-234\), \(-180\), \(-102\) and +63), had a higher degree of DNA methylation in islets from type 2 diabetes...
patients than in islets from non-diabetic controls. Higher DNA methylation of the insulin promoter inversely correlated with lower insulin mRNA levels. Moreover, both insulin mRNA expression and insulin content as well as glucose-stimulated insulin secretion were decreased in islets from type 2 diabetic donors.

Previous studies together with the present study show that differences in DNA methylation between type 2 diabetic patients and non-diabetic controls are less than 10% [4, 5]. Type 2 diabetes is a polygenic disease and it is possible that the effects of DNA methylation on type 2 diabetes are similar to those seen in genetic studies, where multiple loci with small effect sizes together contribute to an increased risk for disease [13–16]. One limit with our study is the small number of diabetic islets, and replication studies in other cohorts are needed to confirm our results. Future genome-wide methylation studies with larger number of patients are further required to dissect the role of
DNA methylation in islets from individuals with type 2 diabetes. Interestingly, elevated HbA1c levels were associated with increased DNA methylation of the human insulin promoter. Recent studies have demonstrated that hyperglycaemia may induce epigenetic changes and thereby increase expression of pro-inflammatory genes in vascular cells, which subsequently may increase the risk for diabetic complications [17–20]. It is possible that hyperglycaemia also induces epigenetic changes, e.g., increases DNA methylation, in the insulin promoter of human beta cells, resulting in reduced insulin expression. Indeed, our data support such a hypothesis; we found that hyperglycaemia for 72 h increased insulin promoter DNA methylation in clonal rat beta cells. Although we cannot rule out that the changes we
find in insulin promoter DNA methylation in type 2 diabetic islets are due to altered cell composition in islets from type 2 diabetic donors, our data from the clonal rat beta cells demonstrate that hyperglycaemia specifically increases insulin promoter DNA methylation in beta cells.

Age and obesity are important risk factors for type 2 diabetes. Although our previous studies have shown that ageing is associated with increased DNA methylation and reduced gene expression of type 2 diabetes candidate genes in human skeletal muscle, we did not find any correlation between age and DNA methylation of the insulin promoter in pancreatic islets [1, 3]. Nevertheless, a lack of correlation between age and DNA methylation could reflect the small number of young donors included in this study, as only three donors were younger than 40 years. However, increased BMI was associated with reduced insulin expression and increased DNA methylation, suggesting that obesity may increase methylation of the insulin promoter.

Two studies have recently analysed histone modifications and DNA methylation of the insulin gene in human pancreatic islets and in isolated pancreatic beta cells [8, 9]. They investigated islets from a small number of donors, and no islets from type 2 diabetic patients were included. In agreement with our data, they found lower levels of DNA methylation in pancreatic islets compared with other cell types. Interestingly, when we analysed DNA methylation in isolated human beta cells we found, on average, 19% DNA methylation, demonstrating that the insulin promoter of isolated beta cells is not completely unmethylated. Moreover, when Kuroda and co-workers performed chromatin immunoprecipitation (ChIP) experiments in cells transfected with either methylated or unmethylated insulin promoter sequences, they found that methylation inhibited binding of ATF2 to the insulin promoter and it increased binding of a methyl-binding protein, methyl CpG binding protein 2 (MeCP2), which is associated with reduced transcription [9]. Together, these studies suggest that DNA methylation can regulate insulin expression in beta cells. However, factors additional to our observed changes in DNA methylation in type 2 diabetic islets could contribute to the changes found in insulin gene expression. It has been proposed that DNA methylation of CpG sites close to each other show a similar degree of methylation. Although our study supports this theory, the mechanisms behind this phenomenon are unknown.

In conclusion, four CpG sites within the insulin promoter show increased DNA methylation in pancreatic islets from patients with type 2 diabetes compared with non-diabetic donors. Moreover, hyperglycaemia may increase insulin promoter DNA methylation in beta cells. Our study further suggests that DNA methylation can influence insulin gene expression in human pancreatic islets.

Acknowledgements This investigation was supported by grants from the Swedish Research Council (522-2006-6480), Region Skåne, Malmö University Hospital, Knut and Alice Wallenberg Foundation, Novo Nordisk, Söderberg, Diabetes fonden, Kungliga fysiografiska sällskapet i Lund, Pålshsson, Tore Nilsson, Linné grant (B31 5631/2006), the Swiss National Science foundation and EuroDia 6th framework programme. Human pancreatic islets were provided by the Nordic Network for Clinical Islet Transplantation, courtesy of O. Korsgren at Uppsala University. We are grateful to P. Marchetti of the University of Pisa and D. Bosco of Geneva University Hospital for the provision of human islets for the beta and alpha cell sorting. We also want to acknowledge M. Svärdf for expert technical support.

Duality of interest The authors declare that there is no duality of interest associated with this manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References