Fibromodulin and Dystrophin in Atherosclerosis: Novel roles for extracellular matrix in plaque development

Shami, Annelie

2014

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Figure S1. Immunofluorescence staining of PCNA and CD68 positive macrophages in injured carotid arteries. Sections of carotid lesions from wild-type (A, B, C) and mdx (D, E, F) mice were stained for PCNA (A and D) and CD68 (B and E). Images from these staining were merged in C and F showing that PCNA-positive cells were located in the neointima where few CD68-positive cells were found. Bar = 50 µm. The elastic laminae are shown by autofluorescence in the green channel.
Figure S2. Immunohistochemical staining of β-sarcoglycan in uninjured and injured carotid arteries. Carotid arteries of uninjured wild-type (A, E) and mdx (B, F) mice and of injured wild-type (C, G) and mdx (D, H) were stained with a primary antibody against β-sarcoglycan (A–D) or without (E–H, control for anti-mouse IgG) (in red). Autofluorescence, in particular of the elastin layers of the media, is presented in green. Note the background staining of the secondary anti-mouse IgGs in the control of the injured, but not uninjured media. Bar = 100 µm.