
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Understanding Software Development in an Open Source Context:Network Analysis of
Source Code Repositories

Orucevic-Alagic, Alma

2016

Link to publication

Citation for published version (APA):
Orucevic-Alagic, A. (2016). Understanding Software Development in an Open Source Context:Network Analysis
of Source Code Repositories. [Doctoral Thesis (compilation), Department of Computer Science]. LTH Tryckeriet
E-huset.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/001d705d-46eb-4a08-b51e-2eb026c59960

Understanding Software Development
in an Open Source Context: Network

Analysis of Source Code Repositories

Alma Oručević-Alagić

Doctoral Dissertation, 2016

Department of Computer Science
Lund University

ii

Dissertation 50, 2016
LU-CS-DISS: 2016-2

ISBN 978-91-7623-719-9 (printed version)
ISBN 978-91-7623-720-5 (electronic version)
ISSN 1404-1219

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: Alma.Orucevic-Alagic@cs.lth.se
Web Page: http://cs.lth.se/alma_orucevic-alagic

Typeset using LATEX
Printed in Sweden by Tryckeriet i E-huset, Lund, 2016

c© 2016 Alma Oručević-Alagić

ABSTRACT

Open Source Software (OSS) created a paradigm shift within the software engi-
neering field prompting further research to understand how mature, industry grade,
software can be produced in an online milieu with distributed and lightly managed
developers contributing source code in their free time. The OSS has become also
a major revenue generator for many commercial organizations, and has found its
place in closed source products, putting many proprietary software producers in
the middle of an OSS community.

The goal of the thesis is two-fold. Firstly, the research focuses on the assess-
ment of the scope of impact the OSS has had on commercial software develop-
ment. Secondly, the research studies some of the scoped aspects in more depth,
such as the applicability of the OSS development practices within the closed soft-
ware development environment, also known as inner source, as well as the analysis
and benchmarking of developers’ collaboration networks.

A systematic review of literature was conducted to scope OSS usage within the
commercial context, while a case study with focus of understanding applicability
of inner source development practices was conducted within a large company. The
conducted research has in large part focused on the analysis of source code for
over 400 Open Source Software projects, such as Android Open Stack, Apache
Software Foundation, Ingres dbms, and a proprietary source code produced by a
large branch within Ericsson.

The results of the conducted research show that Open Source Software has
impacted the way companies develop software by including OSS components into
their proprietary products, implementing OSS business models, participating in
OSS communities, and implementing OSS development practices. The research
provides guidelines on how to implement inner source, as well as a network theory
based approach for assessment and monitoring of software development process
along with associated network metrics benchmarks.

CONTENTS

ABSTRACT iii

PREFACE ix

ACKNOWLEDGEMENTS xi

Popular Science Summary xiii

I INTRODUCTION 1
1 Background and Related Work 3
2 Research Overview . 10
3 Research Methodology . 13
4 Results . 17
5 Synthesis . 22
6 Threats to Validity . 25
7 Conclusion and Future Work . 27
References . 29

Included Papers 37

I A Systematic Review of Research on Open Source Software in Com-
mercial Software Product Development 39
1 Introduction . 40
2 Background and related work . 41
3 Review Method . 42
4 Results . 47
5 Discussion . 55
6 Conclusions . 56

vi CONTENTS

References . 57

II Usage of Open Source in Commercial Software Product Development 63
1 Introduction . 63
2 Methodology . 64
3 Results from focus group meeting 68
4 Conclusions . 71
References . 72

III A Case Study on the Transformation From Proprietary to Open Source
Software 75
1 Introduction . 76
2 Background and related work . 77
3 Research approach . 78
4 Results . 84
5 Discussion . 88
6 Conclusions . 89
References . 89

IV A Prolonged Two Phase Case Study on Implementation of Open Source
Development Practices within a Large Company Setting 93
1 Introduction . 94
2 Background . 95
3 Research approach . 98
4 Results . 101
5 Discussion . 104
6 Conclusions . 105
References . 106

V Network Analysis of a Large Scale Open Source Project 109
1 Introduction . 110
2 Background . 111
3 Research approach . 113
4 Results . 121
5 Discussion . 130
6 Conclusions . 130
References . 131

VI Development Process Monitoring Through Application of Network Anal-
ysis on Source Code Repository Data 133
1 Introduction . 134
2 Background and related work . 135
3 Research approach . 137
4 Results . 146

CONTENTS vii

5 Discussion . 148
6 Conclusions . 150
References . 150

VIIBenchmarking Apache Software Foundation Projects: Network Anal-
ysis of the Contributors’ Collaboration Networks 153
1 Introduction . 154
2 Background and related work . 156
3 Research approach . 157
4 Results . 165
5 Discussion . 172
6 Conclusions . 174
References . 175

PREFACE

List of Included Publications
The following publications are included in this doctoral thesis:

I A Systematic Review of Research on Open Source Software in Com-
mercial Software Product Development
Martin Höst, Alma Oručević-Alagić
Journal of Information & Software Technology, 53:6, pp. 616-624, 2011

II Usage of Open Source in Commercial Software Product Development -
Findings from a Focus Group Meeting
Martin Höst, Alma Oručević-Alagić, and Per Runeson
International Conference on Product Focused Software Development and
Process Improvement (PROFES) 2011, pp. 143-155, 2011

III A Case Study on the Transformation from Proprietary to Open Source
Software
Alma Oručević-Alagić, Martin Höst,
Extended version of 6th International IFIP WG 2.13 Conference on Open
Source Systems (OSS 2010), Notre Dame, IN, USA, May 30 - June 2, 2010,
Proceedings, pp. 367-372, 2010

IV A Prolonged Two Phase Case Study on Implementation of Open Source
Development Practices within a Large Company Setting
Alma Oručević-Alagić, Martin Höst
Submitted.

V Network Analysis of a Large Scale Open Source Project
Alma Oručević-Alagić, Martin Höst
Extended version of 40th EUROMICRO Conference on Software Engineer-
ing and Advanced Applications, Verona, Italy, August 27-29, 2014

x PREFACE

VI Development Process Monitoring Through Application of Network Anal-
ysis on Source Code Repository Data
Alma Oručević-Alagić, Martin Höst
Submitted.

VII Benchmarking Apache Software Foundation Projects: Network Analy-
sis of the Contributors’ Collaboration Networks
Alma Oručević-Alagić, Nicklas Johansson, Christian Tenggren, Martin Höst
Submitted.

Contribution statement
The author of this doctoral thesis, Alma Oručević-Alagić, is main contributor of
publications III-VII. For these papers, she was the main designer, and responsible
for most of the writing and the running of the research process. For the Paper II, the
author participated in the design and implementation of the focus-group meeting.
The author was involved in the implementation of the research presented in Paper I,
the systematic literature review, in particular the articles’ selection and assessment
process, as well as in the writing of parts of the paper, such as summarizing two
subject areas.

List of Related Publications
Related publications that are not included in this doctoral thesis:

I A Case Study of Open Source Development Practices within a Large
Company Setting
Alma Oručević-Alagić and Martin Höst
ICSET 2014 International Conference on Software Engineering and Tech-
nology, Istanbul, Turkey, Sep 29-30, 2014

II Inner Source Project Management
Martin Höst, Klaas-Jan Stol, and Alma Oručević-Alagić
Software Project Management in a Changing World, Gunther Ruhe and
Claes Wohlin
Springer Berlin Heidelberg, ISBN:978-3-642-55034-8, pages 343-369, 2014

III Development of Safety-Critical Software Systems Using Open Source
Software - A Systematic Map
Sardar Muhammad Sulaman, Alma Oručević-Alagić, Markus Borg, Krzysztof
Wnuk, Martin Höst, and Jose Luis de la Vara
40th EUROMICRO Conference on Software Engineering and Advanced
Applications, EUROMICRO-SEAA 2014, Verona, Italy, August 27-29, 2014

ACKNOWLEDGEMENTS

This work was funded by the Industrial Excellence Center EASE - Embedded Ap-
plication Software Engineering.

“Only when we see ourselves in our true human context, as members of a race
which is intended to be one organism and one body, will we begin to understand
the positive importance not only of the successes but of the failures and accidents
in our lives. My successes are not my own. The way to them was prepared by
others. The fruit of my labors is not my own: for I am preparing the way for
the achievements of another. Nor are my failures my own. They may spring from
failure of another, but they are also compensated for by another’s achievement.
Therefore the meaning of my life is not to be looked for merely in the sum total of
my own achievements. It is seen only in the complete integration of my achieve-
ments and failures with the achievements and failures of my own generation, and
society, and time.” Thomas Merton, No Man is an Island

“We are the best gift to each other .” Hafiz Sulejman Bugari

There are many individuals, family, friends, teachers, colleagues, co-authors,
who have helped me in pursuing my professional path, without whose guidance
this work would not be possible. Back in 1992, as a high school student in Sara-
jevo, Republic of Bosnia and Herzegovina, I would had never dreamed that war
would break out in my homeland, and send me, an average teenager in love with
sports, music, arts, and mathematics, into a world unknown. On this journey, not
only have I crossed paths with many truly inspiring souls, I have also acquired
three new close families (Bajić Anita & Darinka & Vjeko, Sattler Sue & Elmer,
and McNall Natalie & Dan) and was blessed for having had an opportunity to
study and work in three other countries; Croatia, USA, and Sweden.

I would especially like to express my utmost gratitude, to all the people, and
the organizations that have provided funds for full scholarship and board during
the war times, such as the Jerrahi Order of America, Fellowship for Reconcili-

xii ACKNOWLEDGEMENTS

ation Minnesota (FOR), World University Service Austria (WUS), St.Catherine
University, and Faith United Methodist Church (St.Anthony, MN) . To name all
those who helped me journey, would be impossible, so I will name just those who
were directly involved in supervision of the thesis. Thank you Prof. Dr. Martin
Höst, for your invaluable guidance, insight, and patience during my journey of
knowledge acquirement. It has helped me look at the field of research from a dif-
ferent perspective and increased my awareness on the importance of objective and
structured research approach. My thanks also go to Prof. Dr. Per Runeson, whose
guidance and leadership by example is an inspiration for everyone who has had
an opportunity to work with him. I would also like to thank all my colleagues at
the department of computer science at Lund University, especially members of the
SERG for the inspiring discussions and helpful advises. I am very grateful for hav-
ing the opportunity to work with such a wonderful group of people.I would also
like to thank the members from the companies supporting EASE project, without
whose help much of the research would not be possible.

Special thanks go to my parents, Ramiz and Sabira, and my girls, Aiša, Emina,
and Selma, whose sunshine and love are inexhaustible source of inspiration.

Finally, all praises, goodness, and thanks, are due to God alone, the Creator
and the Sustainer of this reality that we call life.

POPULAR SCIENCE
SUMMARY

Understanding Open Source Software in Industry
Context and Knowledge Transfer

Alma	 Orucevic-‐Alagic,	 	
Department	 of	 Computer	 Science,	 Lund	 University

Ever since it has found its way into
offices, homes, hospitals, transportation,
and other industries, software has
profoundly impacted and reshaped the
way of living. Looking for information
on the internet, socializing, watching
movies, shopping, and other activities
that have become a part of daily lives,
would have been impossible without
software running on internet servers,
mobile devices, personal computers, etc.

For the end users, with no formal
experience in software development, the
intricate world of software development
is unfamiliar along with its many
problems and solutions, which have been
invented during the past decades. Project
budget overruns, software that does not
fulfill user requirements, poor or
malfunctioning software, are just a few
problems that the software industry has
been trying to solve for decades.

Traditionally, software has been
developed in-house, and all code was
much guarded and secured, so the secret
software bits do not leak out, as in this
case, the software would become free
and would hold no commercial value for
the company. Guarded, closed source
software development means also that it
cannot be studied openly, on a larger
scale which could help improve software
development process.

This closed and set world was shaken to
its foundation with the emergence of
open source software communities. The
communities were originally composed
of software hobbyists, developing
software at free time in an online milieu.
While the open source software
movement has existed for as long as the
software has been developed, it has
never gained broad industry acceptance
until it produced software that could
compete with software produced by
industry.

Many mark the emergence of Linux
operating system as a product that
created positive industry disposition
towards open source. After all, using a
free operating system, a very complex
software product, and building
commercial products and services
around it was more financially sound
than building the whole product in
house.

Not only did the industry start using
open source products, but it also started
participating in OSS development
communities. Today, open source
software is everywhere, from mobile
devices with Android, to personal
computers running Linux, even Apple’s
IOS being based on open BSD software,
to over 60% of internet servers running
Appache Web server.

The emergence of high quality open
source software, distributed under
permissive licenses, built by transparent
online communities everyone can join,
and freely available source code that
anyone can access, brought several
questions. Firstly, how can self-managed
communities organize and produce
complex, industry quality software,
secondly how open source software
affects commercial organizations, and
thirdly what open source development
practices could be applied within closed
development context in order to improve
software development. These are also
some of the most important questions
studied in our research.

We identify different industry roles with
respect to an open source community,
showing that when industry decides to

use an open source product, this creates
a long lasting relationship with the
community. We also show how and why
open sourcing a proprietary software
product can help the product regain
market share and generate economic
benefit for the company. We also zoom
into open source code repositories, and
examine source code contributions by
applying network analysis. The
application of this method on the
Android source code repository has
gained interest in local industry. We
have applied the same method on
hundreds of different mature open
source project and proposed a set of
metrics that can be used to assess any
development effort. Hence, the method
proposed in the research helps
companies understand the major
contributors and influencers on the
project, which can aid them in creating
business strategies. The same method
was also applied to assess commercial
closed source development effort and to
monitor organization and process
changes. We also define a framework of
open source development practices that
can be used by a company to examine
and align its development practices in
order to make their development effort
more efficient.

While the software industry has went
through a paradigm shift ever since the
open source software became
mainstream, the field is very dynamic,
requiring greater research focus to scope
and assess existing and emerging
consequences. In the meantime, an
average user can enjoy a plethora of high
quality software, hoping that this joint
development effort called open source
movement will create even more value
for everyone in the future.

INTRODUCTION

Open source software (OSS), distributed under various permissive licenses, nowa-
days can be found in a plethora of hardware devices, ranging from personal com-
puters and mobile devices, to the ones used by different industries, such as telecom-
munication, medical, aviation, etc. While the OSS has become de-facto, main-
stream, standard of software industry today, its history has been marked by con-
flicts between proponents of closed source software and different groups within
the open source software movement. According to Larry Augustine [Lin16], a
pioneer of the OSS movement [OSI13a], five distinct periods of the OSS can be
identified: games 70s (Adventure, Rouge), tools 80s (GCC [Fre16b], compilers,
linkers), operating systems 90s (BSD Unix [McK99], Linux [Fou15c]), database
middleware (MySQL[Ora16], JBOSS[Red16a]), and wide industry grade applica-
tions, e.g. customer relationship management (CRM), enterprise resource plan-
ning (ERP), business intelligence BI, etc. Over the past several decades, the OSS
movement and business models have matured moving from software produced by
unpaid computer enthusiasts for their own needs, e.g compilers, linkers, games, to
software produced by both enthusiasts and industry members, e.g. complete soft-
ware stacks, such as Open Source Linux Stack, as viable alternatives to proprietary
Microsoft and IBM stacks [Aug16].

The emergence and wide spread usage of large scale Open Source Software
products, e.g. Linux [Fou15c], made available for the public under permissive
licenses has profoundly changed and challenged the traditional way of software
development, valuation, and marketing, as explained by Raymond [Ray01a] in
1999. Hence, OSS created a paradigm shift within the software engineering field
prompting research for several reasons. Firstly, to understand how large, industry
grade software is developed in an online milieu with lightly managed, geographi-
cally distributed developers participating mostly on volunteer bases. Secondly, to
assess if there exist OSS development practices that can be beneficial in a closed
source development environment. Thirdly, what motivates industry participants to
use OSS components and participate in OSS process, and, finally, what kind of
impact does industry involvement with OSS have on the OSS communities’ and

2 INTRODUCTION

general trends in software production.
Based on the fore mentioned questions, the initial research focus of the thesis

was divided into the following three areas:

1. Assess the usage, development, and business models of commercial organi-
zations with respect to OSS.

2. Identify a framework of the most important OSS development process char-
acteristics and assess its applicability within a closed development setting.

3. Explore applicability of network theory analysis in studying a structure and
an evolution of OSS development communities.

As the first step in assessment of usage, development, and business models
by commercial organizations, we conducted a systematic review [KC07] on usage
of OSS in commercial software development to understand the landscape of the
prior research done in the area. The landscape shows four distinct areas that are
tightly intertwined. Availability of OSS components that can be included and used
in commercial software development motivate creation of OSS business models
that can benefit from reusable OSS components which primarily replace the need
to build the software in-house or purchase it as an off the shell component. The
connection formed between a company and an OSS community through the usage
tends to grow, prompting companies to take an active role in the community to
ensure that the component is properly maintained, and that the changes the com-
pany might had made to the component, are included in the future releases. As
the companies gain experience through their participation in the OSS process, an
increased understanding is gained into the OSS development model. Through a
focus group meeting carried out with representatives from large software inten-
sive companies, we identified and discussed the criteria applied by the companies
when selecting OSS component for inclusion in their software products. In addi-
tion, the motivation for contributing the source code changes the companies have
made back to OSS community were discussed and assessed. The role of com-
mercial organizations with respect to OSS was further examined in a case study
of Ingres database management system which was developed and sold as closed
source before being open sourced by Computer Associates (CA) Inc., one of the
world’s largest software producers. Here we show how business model for com-
moditized software is motivated, as well as how the OSS community is set up and
run. We also show how community development affects the product in terms of
changes in standardized source code quality metrics by applying statistics tools to
measure significance of the metrics’ changes.

Based on the gained insight on inner workings of OSS communities, the next
step in research was to assess how aligned the development practices of a large
software intensive company, that bases its products on an OSS product, are with the
OSS development practices. For this purpose, a framework defining OSS develop-
ment practices based on the conducted research by Fogel [Fog05] was proposed,

1 Background and Related Work 3

and the companies practices were assessed. Here we offer insights into which OSS
practices companies decides to adopt and the reasoning behind the decision. We
also offer insight into potential benefits that could result in the implementation of
the OSS development practices. In order to further the research on the inner work-
ings of development communities, network analysis of development communities
was performed. Through three distinct research efforts, development communi-
ties of Android, Apache, and Ericsson were studied. The research relies on well
established theory from the network analysis theory, and proposes construction of
developers networks as weighted and directed graphs. We show that such con-
struction of developers’ networks provides a more realistic picture of development
communities in terms of developers’ or companies’ influence within the commu-
nity than previously proposed ones as, e.g. López-Fernández et al. [LF+06] . In
addition, we also show how measuring changes in metrics of developers networks
can be used to monitor effects of organization or development process changes on
developers’ interactions. Based on the research done, the concrete contributions
of the thesis are:

• A network theory based approach for studying software development net-
works which can be used in closed source and OSS environment to assess
and monitor software development structures, influencers, and general met-
rics’ trends.

• An in depth case study on motivation, setup, and outcomes of commercially
led effort to open source a commoditized software product.

• An OSS development framework describing characteristics of a mature OSS
development milieu.

• An in depth case studies tracking alignment of in-house software develop-
ment practices .

1 Background and Related Work
In this section major aspects of OSS evolvement and proliferation into industry are
discussed. The presented aspects are related to current research in the field as well
as the research done in this thesis.

1.1 Open Source Software: Historical Overview
In the early days of software development, during the 1960’s, building large and
expensive computing machines required more effort and resources than creation of
software that would execute on the machines. This led to the software being shared
freely among the scientist. With technology advancement and production of more
complex and diversified computing machines, the field of computer programming

4 INTRODUCTION

yielded new guidelines for creation of more complex software products. Among
the first pioneers of the field were Edsger Dijkstra proposing layered architectures
in 1968 [Dij83] and David L. Parnas who in 1972 [Par72] introduced concepts of
system modularization. Thus, instead of building new solutions from the scratch,
which was a common practice in 1970s, programmers started building and using
reusable, tested and verified families/architectures, enabling them to create unique
software products by introducing variance and specific implementations at appro-
priate levels. Hence, the ability to share software architectures increases software
reuse and, as a result, it improves productivity and reduces cost of software devel-
opment.

Sharing of the code became especially popular in academic environments. As
described by Raymond [Ray01a], the Berkeley Software Distribution license also
known as BSD, is a result of years long collaboration on the development of the
Unix operating system by the University of California, Berkeley and AT&T labs.
In the beginning of the 1980s, especially during the time when the personal com-
puters gained popularity, the decades old concept of software source code sharing,
was replaced with proprietary, closed source software products. As a response to
the new situation, open source proponents led by the effort of Richard Stallman
founded the Free Software Foundation (FSF) [Fre16a]. However, the efforts were
not met with a broader public acceptance, especially among the industry partic-
ipants [Web04b]. According to Raymond [Ray01a], the emergence of the Linux
operating system served as catalyzer for the open source movement proliferation
especially with industry, as it has demonstrated that a large open source commu-
nity can produce complex and sophisticated software and that business models can
be built around open source software. In 1998 Eric Raymond became one of the
founders of the Open Source Initiative (OSI) [OSI13a], a non profit organization
with aim to advocate and educate about the benefits of open source. The OSI also
issues Open Source Initiative Licence trademark, which according to the organiza-
tion’s mission statement, has a purpose of building trust around all constituencies
of an open source community carrying the trademark [OSI13b].

While the need to share source code at the very beginnings of software de-
velopment was motivated by high cost of computing machines, an interesting
question for current times characterized by low cost, high performance comput-
ing machines, is what motivates individuals to take part in development of OSS.
The question has been answered in the studies at Kiel University [Her+03] and by
Boston Consulting group [LW05]. The study at Kiel University examined moti-
vations of Linux kernel project participants from 28 countries. The two leading
motivating factors identified in the study are participants’ desire to increase their
own commercial/market value and personal satisfaction. A study by Boston Con-
sulting Group, done on 525 Source Forge community members, showed results in
line with the Kiel University study, with the highest motivating factors as personal
belief in OSS, hope of increasing ones commercial value, and an opportunity to
enhance skills.

1 Background and Related Work 5

1.2 Industry Perspective: Software as Commodity

A wide industry acceptance of OSS products such as the Linux and the Apache,
and the emergence of OSS business models has created a need for systematic study
of the OSS phenomenon from commercial perspective. The research study by
West [Wes07] discusses aspect of software commoditization. He argues that while
there exist some unique and new technology inventions coming from the OSS
world, such as the Apache web server, the majority of broadly adopted OSS solu-
tions are counterparts of existing proprietary solutions, such as Linux and MySQL.
This finding is in line with the study by Linden et al. [Lin+09a] who also argue that
over time software goes through an amortization process where its value decreases
to the point where it does not hold any significant differentiating value needed for
competitive advantage. According to Perens[Per05] some 90% of software used
in the industry is a type of infrastructure software that offers no competitive ad-
vantage. Research by Bradley and Porter [BP00] shows that companies can at the
same time cooperate and compete, just as in the case of HP and IBM Strategic
Group Alliance [Hew16]. Hence, the strategic closed group alliances have been
made in the past between many industry competitors, as discussed in the study by
Gomes-Caseres [GC94]. The study also explains that as the products grow in com-
plexity and under the pressure to compete globally, the companies are motivated
to share the costs of commoditized parts of the products which then enables them
to focus development efforts on differentiating parts of the product. In addition,
the study offers some guidelines on factors to consider on how to form, lead, and
manage strategic alliances.

In this thesis we study the development community of the Android OSS op-
erating system for mobile devices using a network theory based approach. The
Android OSS community, led by Google Inc, receives input from the Android
Handset Alliance which includes companies from the entire mobile eco-system.
Android is an example of an enterprise grade OSS operating system for mobile de-
vices which in the 2010 replaced Symbian, the proprietary operating system devel-
oped and used at the time by major market leaders, e.g. Samsung, Sony Ericsson,
Nokia. Again, the same motivation lies behind the sharing of development costs
for the undifferentiating part of the product. The cost motivated approach to reuse
OSS components in favor of developing in-house software products has shown to
have a wide impact on both, hardware and software industry, further reaching than
in the case of closed strategic alliances. Not only did Google through Android
commoditize a complex and large software product. It has also achieved this by
building Android on a plethora of preexisting OSS components, among which the
most notable is the Linux kernel. Since then, the Symbian operating system has
been replaced by Android as market leader, resulting in lower entry costs into the
market of mobile devices [Con10]. Thus, while reducing costs of software devel-
opment, the new circumstances brought a more competitive environment for the
associated businesses. Unlike the strategic partnership, a typical OSS commu-

6 INTRODUCTION

nity is open to anyone who wishes to participate and its product are developed in
transparent fashion. Therefore, understanding an underlying fabric of community,
the major contributors and dynamics of development in an OSS milieu is of high
importance for the participating companies.

Besides using an OSS component as a third party component, companies can
also choose to open source a software product which has lost its differentiating
value. For example, Computer Associates, a company ranked as one of the five
largest software vendors [Tim13], Raymond [Ray01a], open sourced the Ingres
database management system. The software is used in some of the company’s
products, but over the time it has become a non-differentiating technology, and
lost its leading edge over other commercial and OSS solutions, e.g., Oracle and
MySQL [OAH10]. Hence, the motivation for the Ingres open sourcing is not only
sharing of development burden with the community, but also regaining some of
the lost market share. The Netscape web browser is an example where a com-
pany has lost a large part of its market share due to entrance of another software
product, in this case the Internet Explorer web browser distributed by Microsoft
corporation. To remedy the situation, Netscape decided to become OSS in 1998
and successfully regained the lost market share[Ray01a].

The Eclipse OSS project develops and maintains Eclipse, leading software de-
velopment platform, and it is governed by the Eclipse Foundation whose members
are largely comprised of leading industry software companies. By participating
in the Eclipse OSS community, companies can ensure that necessary functionality
for building software products with their proprietary or open source solutions is
included in the Eclipse OSS. Hence, by contributing resources to an OSS project,
company can also proliferate usage of its own products. This was also the main
motivation for IBM to open source Eclipse in 2001, which based on development
effort was valued at 40 million dollars at the time [Wes07].

1.3 Fabric and Dynamics of OSS development

Many studies have been conducted to understand the underlying fabric of OSS
communities. Some of the first large scale studies of OSS development commu-
nities tried to understand the structure of developers in terms of their source code
contributions, how the communities are organized and managed, as well as the
underlining characteristics of the OSS source code. The nature of the OSS online
milieu is such that it provides communication and source code archives which land
themselves for data mining and analysis.

Orbitan Software Survey [AGVP00] studied the make up of participants that
participate in OSS projects, such as RedHat Linux v 6.1, Linux Kernel sources
v 2.2.14, Munitions Cryptography, and some 50% of projects available through
Freshmeat, has shown unequal distribution of developers’ contributions in 2000.
The results of the survey show that 10% of developers, or 1276 of them, contribute
to 72% of the code base comprised in a total of 25 million lines of code and 3149

1 Background and Related Work 7

distinct projects. In another study by Crowston and Howison [CH05], the way the
participants communicate in projects hosted under Source Forge was analyzed.
Even though Source Forge at the time of the study hosted over 50,000 distinct
OSS projects, by eliminating projects that have less than 7 developers and less
than 100 bug reports, they discovered that only 124 projects or just 0,002% of all
hosted projects fit the criteria. The outcome of such selection criteria can point
at the importance of understanding the studied OSS communities at an individual
level, as there seem to exist many projects hosted by various OSS portals that are
not active. The results, based on studying communication channels for 61,068 bug
reports, show that the majority of the projects have highly centralized decision
and communication structures. Further more, the study found that there exists a
predictable relationship between the structure of the code and the organizational
structure of the development team.

Some conducted studies, e.g. by Robles et al. [Rob+05] and Godfrey et al.
[GT00a], have shown that OSS evolution goes against the fourth law of software
evolution as defined by Lehman [LR01] which states that the growth of software
is constant and independent of the amount of resources devoted to its develop-
ment. The research has shown that in some project, e.g. Linux kernel, the growth
was super linear, i.e. greater than linear or constant, in contrast to the Lehman’s
fourth law, but also that this super linear growth was made possible by inclusion
of external code that did not require maintenance.

Through the years, an increased industry awareness and participation in the
OSS development process has shifted OSS perception from a d̈evelopment play-
groundp̈rimarily reserved for software hobbyists to an industry stirred and strate-
gically planned software development endeavor. Various OSS business models
described by Raymond [Ray01a] have been further explored through introduction
of new OSS distribution licenses [Fit06a]. Hence, the industry involvement served
as another motivating factor to find appropriate tools to analyze OSS development
effort to understand the underlying development network topologies, identify the
most influential contributors, and observe the corresponding changes over the time.

Social networks analysis presented by Wasserman [WF94a] is a part of the
field of network theory, as described by Newman [New13], which provides meth-
ods for studying social interactions. The initial formal studies in the field of social
network analysis, called sociometry in 1934 by Moreno [Mor34], laid a founda-
tion to todays studies of social network analysis. The networks are composed of
actors and links between them, usually referred to as nodes and edges. In OSS
context the edges represent associations such as communication between a com-
munity’s participants, or affiliations such as developers who made changes to same
source file. A significant amount of research is done by applying network analysis
study by Luis et al. [LF+06] which offers relevant guidelines on how to use so-
cial network analysis within the context of developers and module networks. Luis
et al. propose usage of weighted networks where the edges between developers
are given weight of sum of all changes developers have done together on a source

8 INTRODUCTION

code module. Research presented in this thesis [OAH14b] builds on the research
by Luis et al. [LF+06], and proposes construction of weighted and directed de-
velopers’ networks. The proposed method builds on earlier research by Davis et
al.[Dav+41], also referred to as “Southern Women Study”, which in the software
development context implies that two developers are connected through an event
defined as modifying the same source file. In this case the weight or strength of
relationship is measured relative to the size of the event, i.e. respective to changes
performed on the file by all developers. This approach was applied in this thesis
and tested on the Android OSS stack to understand who are the most significant
contributors on the project, a relevant investigation as the software stack contains
OSS components used by many competing industry members. The same method-
ology was later applied to study internal development networks at Ericsson as well
as to understand if there exist any common trends in the network metrics for over
255 projects managed by the Apache Software Foundation. Some of the results
of the studies are in line with similar studies, e.g. by Mohammad et al. [AL13]
showing that more experienced developers have tendency to collaborate with new
developers, an indicative feature of an emerging and complex network [New13].

1.4 OSS Development to Closed Source Development:
Knowledge Transfer

Understanding the development and communication structures of OSS develop-
ment can provide insights into how online, self-managed communities organize
and work to produce software, which according to Raymond [Ray01a], is of higher
quality and reusability, and easier to maintain than traditionally produced software.
High quality disposition of OSS software that has been argued by now a famous
Linus’s Law “with enough eyeballs all bugs are shallow” [Ray01a] can be analo-
gously viewed in the context of academic research where the peer review process
forms the bases for establishment of quality and merit in research. A study by Fa-
gan [Fag86] shows that the OSS development process assumes peer review of new
source code features and fixes, which can be viewed as another way to perform
traditional code inspection.

A natural question that arises is if some parts of the OSS development process
can be applied within a closed development setting, especially in large software
organizations that have distributed development sites. Work by Fogel [Fog05] pro-
vides insights on how to run a successful OSS project, while work by Dinkelacker
[Din+02] proposes and implements so called progressive open source or POS in
a closed source setting. The POS distinguishes between three types of source
code development, each residing in its own circle with circumference of the circle
corresponding to firewall boundaries as depicted in in Figure 1. The most restric-
tive firewall encircles software projects developed under inner source process, an
OSS development process for source code repository accessible only to developers
residing behind the company’s firewall. The second circle is bounded by a less re-

1 Background and Related Work 9

Figure 1: Role Based Source Code Access Enforced by Firewall Restrictions

strictive firewall that guards code which, besides the company’s developers, other
technology partners can access and maintain. The final circle contains source code
accessible to everyone, i.e. this is the source code the company has decided to de-
velop under the OSS process. This approach has shown to have many benefits like
standardized development environment and process, increased rapid team rede-
ployment, higher quality of shared components, shared community debugging as
well as a milieu for partner technology companies to provide immediate feedback
and propose and implement bug fixes [H+̈14].

Some of the challenges of the inner source process come from the fact that un-
like an OSS environment, strategic planning, budget and time limitations include
several stakeholders and project owners whose work needs to be highly coordi-
nated and planned. The planned projects have limited development resources of
varying skills, unlike the OSS environment where developers contribute code on
voluntary bases. Closed source code may also need to restrict access to the com-
pany’s developers motivated by a need to preserve highly valued bits of the code
to those directly involved in its development. A number of studies have been con-
ducted to understand the applicability of the OSS development practices within a
closed, commercial environment. The studies conducted in HP [MM08], Lucent
[Gur+06], and Nokia [Lin+08b] analyzed development of software products within
the company setting. In this thesis we present a two phase study on how aligned
company’s software development practices are with OSS development practices as
presented in Paper IV. A part of this study was also presented in a book chapter on
Inner Source [H+̈14].

10 INTRODUCTION

2 Research Overview

An overview of work done in this doctoral thesis is presented in the Figure 2. The
results of the systematic review presented in Paper I and summarized in Figure 3
are a starting point for the research. While the researched area is rather broad, its
assessment was necessary to understand the breadth and depth of the prior research
on the usage of OSS components in commercial software development. As dis-
cussed in Section 1.2, the primary motivation for the industry to use OSS software
components is to reduce development costs for products that do not hold commer-
cial value, which at the same time frees resources to work on value-adding product
features. The effect of the motivation is an emergence of different OSS based busi-
ness models. Thus, besides the initial sharing development burden model, there is,
e.g., the augmenting services model where a company actively participates in an
OSS community to add services needed to the OSS product so the product can be
sold under a more restrictive license. The Android operating system is an example
of an OSS based eco system that can lead and change large industry segment.

A company that decides to implement any of the OSS business models [Ray01a],
is also driven to be involved with the OSS community for several reasons. For
example, in case a company decides to include an OSS component in its prod-
uct, it needs to keep the product updated for the new releases to ensure that the
component still functions properly. Any changes that the company makes to the
component, the company should send back to the community in order to ensure
that the future releases, especially the ones including fixes to security, also con-
tain any new features the company has added. Thus, implementation of the OSS
based business models normally leads to increased industry participation in OSS
community process. Working with an OSS community assumes following its de-
velopment model and adhering to the corresponding governance rules. Through
the involvement, the companies gain experience in the OSS way of development,
and, as a consequence, might decide to implement internally some of the processes
they deem value adding. The OSS industry cycle presented in Figure 3 highlights
a need for industry involvement with the OSS community which was a motivation
to carry out the studies that could provide an increased understanding of the OSS
community process.

The overall research goal of the thesis is to leverage knowledge gained through
the study of commercial involvement with OSS development processes and archived
OSS data to support large scale commercial software development.

RQ1: What interactions exist between different industry roles with respect to
OSS?

RQ2: What are the major characteristics of an OSS development framework?
RQ3: What are the perceived benefits and drawbacks of OSS development

process implementation within a closed development environment?
RQ4: How can the proposed network analysis based approach be used to un-

derstand and monitor development structures and associated development metrics?

2 Research Overview 11

Figure 2: Overview of Contributions of Thesis

The research can be dividid into three phases as presented in Figure 2: the
scoping, the assessment, and the solution phase. The scoping phase, besides Pa-
per I, includes Paper II where work was focused on collecting empirical evidence
from representatives of large companies which use OSS components through a
structured focus group meeting. Paper II further clarifies the criteria industry uses
when selecting an OSS component for inclusion in their products as well as the
motivation to give back to the community any modifications of the OSS compo-
nent.

The assessment phase includes two case studies presented in Paper III and Pa-
per IV. Paper III follows a transition of a proprietary database management system,
Ingres, from a closed source environment to an open source one. Software qual-
ity metrics were calculated and analyzed through application of standard statistics
tools and methods for the two versions of code; the most recent closed source
version and the latest open source version. The goal was to understand how the

12 INTRODUCTION

Figure 3: Industry Involvement with OSS Cycle

software quality metrics have changed between the two versions, i.e. how the soft-
ware metrics were affected under the community development process. The paper
also provides a background on why the company has decided to open source In-
gres as well as the steps taken to establish and run the Ingres OSS community. The
prolonged, two phase, case study presented in Paper IV was carried out in a large,
global software company with the goal of understanding how aligned its develop-
ment practices were with OSS development practices. For this purpose, an OSS
development framework was proposed based on the study of Apache Software
Foundation [Fou16] and Fogel [Fog05]. The company practices were studied and
analyzed, through work at the company as well as through a set of structured inter-
views and then compared against the framework. Two years upon the completion
of the first phase of the study, a focus group meeting was held with the intervie-
wees from the first phase to understand and assess any changes in the alignment.
The company was a relevant and interesting subject to study as its core software
products are based on OSS components and the company worked closely with the
corresponding OSS communities.

Finally the third, or the solution proposal, phase focused on designing appro-
priate tools to assess and quantify development structures with the aim to create a
tool that can provide valuable information on the underlying development commu-
nities. The work presented in Paper V proposes a method to construct developers’

3 Research Methodology 13

networks which was not previously applied in the OSS research. While study
by Luis [LF+06] establishes guidelines for the application of network analysis to
study developers’ and module networks as weighted networks, the weights of the
edges are determined by the total sum of changes to same module done by two de-
velopers. When this method was applied in the work for Paper V to study the the
Android OSS stack, it yielded networks that did not represent the underlying struc-
tures and influences well. Instead, the network analysis method applied in Paper V
builds on theory from the earlier study by Davis [Dav+41] and shows that calculat-
ing edge weights relative to the number of changes done on the module results in
more realistic representation of the networks. Development networks constructed
in this way can be useful when trying to understand the major community influ-
encers and development structures, which is import information when a company
plans to join an OSS project. In Paper VI the same network analysis based ap-
proach was applied in a large branch of Ericsson to understand how development
structures and corresponding metrics changed after the company underwent major
development structure and process changes. The results were validated through a
focus group meeting which has indicated that the approach can be useful to mon-
itor development process. Finally, in study presented in the Paper VII the same
network analysis was applied on over 250 OSS projects governed by the Apache
Software Foundation (ASF). Since the ASF hosts mature and industry used OSS
projects, the goal of the study was to uncover patterns in network metrics which
could be indicative of a well structured development process. Such metrics can be
possibly used to benchmark closed and OSS development structures.

3 Research Methodology
The research carried out in this thesis applies standard research methodology es-
tablished in the field of software engineering as discussed by Wohlin et al.in
[Woh+12, p. 5–8]. A simplistic classification of research methodology according
to Glass et al. [Gla+02] was presented earlier in Glass [Gla95], identifying the
following research methods:

• Scientific - Implies building a model based on the real-world observations.

• Engineering - Studies existing solutions, proposes modifications and evalu-
ates them.

• Empirical - Builds and evaluates models based on empirical studies.

• Analytical - Proposes a formal theory which is then evaluated against the
empirical observations.

According to Wohlin et al. [Woh+12, p. 5–8] some of the empirical strategies
include formal experiments, case studies of real industry projects, and surveys, e.g.

14 INTRODUCTION

formal and structured interviews. A study by Easterbrook [Eas07] identifies and
compares five classes of research methodologies that are applicable in software
engineering research:

• Controlled Experiments (including Quasi-Experiments)

• Case Studies (both exploratory and confirmatory)

• Ethnographies

• Survey Research

• Action Research

Research carried out in the form of controlled experiment is concerned with
finding a cause-effect relationship between independent and dependent variables
which are clearly defined and stated in form of testable hypothesis. The attribute
controlled implies that all necessary measures need to be taken to ensure that the
dependent variables are only affected by the independent ones. In case this is
not possible, e.g. data analyzed in time-series way for events that have already
occurred in discrete time periods, term quasi experiment is used instead of con-
trolled experiment. Easterbrook [Eas07] advises that in this case a more careful
interpretation is required.

Runeson and Höst [RH09a] present guidelines for conducting and reporting
case studies which is defined as an empirical study applied when investigating
contemporary phenomenon in natural context. They also argue that ethnographic
studies [Eas07] are a special case of case study with focus on cultural practices. In
addition, [RH09a] argues the case study methodology can be applied for all of the
following purposes as defined by Robson [Rob02]:

• Exploratory - Trying to scope nature of investigated phenomenon.

• Descriptive - Portraying an investigated phenomenon.

• Explanatory - Seeking explanation of a phenomenon.

• Improving - Improving some aspects of a phenomenon.

According to Easterbrook [Eas07] the survey methodology is applied when
characteristics of a broad population of individuals need to be identified. The
survey data needs to be collected from a representative sample of a well defined
population and can be carried out as unstructured, semi-structured, or structured
interviews [Rob02]. Some of the challenges associated with survey methodology
are ensuring that the questions are well formulated, i.e. they do not lead to ambigu-
ous interpretations, as well as that the sampling bias is minimized so the results
can be generalized.

3 Research Methodology 15

An action research methodology is used when trying to solve a real world
problem while at the same time studying the experience of solving the problem
[Dav+04]. Thus, it can be argued that action research is closely related to case
study research with the main difference being that action research also aims to
propose a solution related to an investigated phenomenon. Easterbrook [Eas07]
points out action research challenges arguing that it is an immature empirical re-
search methodology supported by vague and subjective evaluation framework pro-
posed by Lau [Lau99].

A study by Wieringa and Morali [WM12] proposes technical action research
in which three distinct roles are defined: artifact designer, artifact developer, client
helper with the overall goal of enhancing research rigor and relevance by bridging
gap between ideal conditions of an artifact design and concrete conditions that
occur in real-world problems.

3.1 Classification of Included Papers

The research presented in this thesis, shown in Figure 4 , is based on the empirical
research method, which according to Easterbrook [Eas07] implies that the research
questions are related to the class of knowledge questions, i.e., the questions focused
on the observable and measurable state of the world.

Paper I through Paper V are of exploratory nature, which according to Eeast-
erbrook, is typical for the early stages of the research, when an attempt is made
to understand the studied phenomena. According to Kitchenham et al. [Kit+02],
the exploratory studies are an important instrument for formulation of hypoth-
esis questions and an aid in the planning of the future research activities. The
exploratory research conducted in this paper is of qualitative and quantitative na-
ture. Since software engineering involves a human factor, according to Seaman
[Sea99], qualitative studies are necessary to study complex phenomena such as
the ones that involve human behavior. Seaman also recommends to complement
qualitative methods with quantitative methods. Qualitative and quantitative empir-
ical software engineering can be conducted in the form of systematic reviews, a
surveys, action research, experiments, or case studies.

According to Kitchenham et al.[Bre+07], systematic reviews can be used, among
others, to provide a framework to appropriately position new research. A system-
atic review is divided into three stages; the planning, the execution, and review
phase during which review protocol is created and validated, appropriate relevant
research is identified, assessed for quality, and synthesized. Paper I is conducted
as a systematic literature review to provide background on the current state of re-
search with respect to industry roles within the OSS world.

The research presented in Paper II was conducted in the form of a focus-group
meeting, which according to Kontio [Kon+04], is an effective method to obtain
qualitative insights and practitioner feedback. However, as the data obtained in
such way is limited in time and scope, it is suggested that this type of research be

16 INTRODUCTION

Figure 4: Research methodology and nature

complemented by another more rigorous methodology. The results of the Paper
II, have been shown to complement the result obtained from the systematic review
presented in Paper I.

The research in Paper III is conducted as a case study with a quasi-experiment
component, which according to Eeasterbrook [Eas07], is a variant of an experi-
ment performed when the conditions for a true experiment are not feasible. Since
the event of open-sourcing the Ingres solution was performed in the past, and the
event could not be recreated, this quasi-experiment methodology was deemed as
appropriate to use. Paper IV, is conducted as a case study with survey elements.
According to Runeson and Höst [RH09a], case study is appropriate methodology
to use when observing a phenomenon within its natural context, and it can be
combined with a survey.

The work presented in the Papers V, VI, VII is conducted as case study and
action research, which according to Wieringa [Wie12], consists of developing new
techniques for software engineering and evaluating them for the purpose of con-
tinues improvement. In paper V we propose a new approach to the application of
social network analysis for the purpose of assessing committers networks. Hence,
the action research is done with respect to finding appropriate approach to con-
struct the committers’ networks and then testing the approach with Android. In

4 Results 17

Paper VI, the same network analysis method is applied within a large division in
Ericsson in order to understand if it can be used to monitor organization and de-
velopment process changes the division underwent in a one year period. In Paper
VII the same network analysis method is used to construct and study development
networks for over 250 projects hosted under the Apache Software Foundation with
aim of finding patterns in network metrics for all of the studied projects. The pur-
pose of Papers V,VI, and VII is improving with overall goal to help software prac-
titioners in properly assessing underlying development structures and monitoring
software development effort.

Table1 provides a summary of research methodology type and research method
used. Figure 4 provides an overview of the thesis focus with respect to the research
methodology used. More specifically, it shows links between results of earlier
studies in context of them being used as research topics in later studies. Hence,
e.g., the results of the study presented in Paper I, were used as research topics in
Paper II, Paper III, and Paper IV. Further more, findings presented in Paper III and
Paper IV motivated research topics of studies presented in Papers V,VI, and VII.

Table 1: Research Type and Method Used in the Papers
Work Research Type Research Method
Paper I Exploratory Systematic Literature Review
Paper II Exploratory Focus-group Meeting
Paper III Exploratory Case Study and Quasi-Experiment
Paper IV Exploratory Case Study and Survey
Paper V Improving Case Study and Action Research
Paper VI Improving Case Study and Action Research
Paper VII Improving Case Study and Action Research

4 Results

This sections presents the results of the conducted research from each of the in-
cluded papers.

4.1 Paper I: A Systematic Review of Research on Open
Source Software in Commercial Software Product De-
velopment

The aim of this study was to conduct a comprehensive systematic review of re-
search on usage of OSS components and OSS development practices (OSDP)
within the commercial context as well as the industry participation in the OSS
communities. We have identified and reviewed a total of 495 articles, 357 of

18 INTRODUCTION

which were found through an automated search of INSPECT and COMPENDEX
databases which include articles from major conferences, journals, and publishers
(e.g. IEEE, ACM, Springer, IEE). The remaining 138 reviewed publications were
identified through a manual search and include all, at the time available, articles
from the Conference on Open Source Systems. By applying rigorous methodol-
ogy, we have identified the 23 most relevant publications that can be divided into
four categories: OSS as a part of component based software engineering, busi-
ness models based on OSS, company participation in open source communities,
and usage of OSDP within a company setting. The research methodologies used
in the identified articles are equally divided between case study and survey. The
results of the research by Lundell et al. [Lun+06] show that 75% the companies
that use the OSS components for development purposes, also participate in the
OSS communities. Another research shows that 6-8% of the Linux Debian GNU
code base is contributed by companies [Rob+07]. The conducted research also
shows that more research is needed on how OSS communities function [Bon+07].
While there is evidence of successful business models built around OSS, especially
for hybrid models [Wes03], there exist many challenges in sustaining development
communities. According to Koening [Koe09], open source is conducive to creating
competitive advantage by shifting from traditional revenue model based around a
program’s functionality, and focusing on service oriented revenue models. The re-
sults of the systematic review show that companies engage in an informal process
when it comes to selecting an OSS component to use internally [Li+09]. Finally,
studies conducted on using OSDP within a company setting can facilitate innova-
tion Gurbani et al. [Gur+05], Lindman et al.[Lin+08b].

4.2 Paper II: Usage of Open Source in Commercial Soft-
ware Product Development - Findings from a Focus
Group Meeting

The objective of this study was to get relevant industry views on prerequisites for
using OSS components within a commercial setting. For this purpose, a focus
group meeting was held with industry representatives, and the meeting’s discus-
sion was based around predefined questions. The questions had two primary con-
cerns: to understand the selection process of OSS components, and to understand
how modifications of OSS components were handled. The discussion input was
collected in form of notes, that were later classified and summarized, and thus
results of the research were presented. The main identified topics include:

1. Concerns related to the discovery process of candidate OSS components’.

2. Management of the decision making process pertaining to the selection of
best fit OSS candidate with respect to legal, technical, and community sup-
port aspects.

4 Results 19

3. Practices and issues with respect to management of OSS component modi-
fications.

4. Advantages of participating in the OSS community.

The findings of the research are in line with the findings from the literature
review in Paper I. The results also confirm that when a company decides to use
an OSS component, it is important to establish ties with the respective OSS com-
munity in order to acquire skills needed to maintain the component. In order to
ensure compatibility with future releases of the OSS component, it is important
for a company to give back changes made to the OSS component to the OSS com-
munity.

4.3 Paper III: A Case Study on the Transformation from
Proprietary to Open Source Software

Paper III presents a case study on the transition process of the Ingres database
management system from proprietary to open source. The research provides an
insight into business motivation to open source the proprietary solution, concerns
and issues that need to be taken into account during the open-sourcing process, as
well as an outcome of a well planned transition process. The focal point of this
research is measuring change in software quality metrics, e.g., effective lines of
code, cyclomatic complexity, and file function count between the proprietary and
the open source community modified version of the product. The software met-
ric changes were tracked for separate groups of the Ingres source code modules
grouped by their functionality into the backend, front end, common, and utilities
components. The research shows that the majority of the new code added and
changed by the Ingres open source community was located in the front end mod-
ule, while the smallest number of changes were made to the backend module. The
software quality metrics such as cyclomatic complexity, effective lines of code
were improved after the transition to open source. The open sourcing process re-
sulted also in a 100% increase in customer base, and 32% increase in revenues.
While the investigated software presents just one case of the proprietary software
product open-sourcing process, and thus can not be freely generalized, it offers a
valuable insight into open-sourcing concerns, business motivation, and the effect
of community on the company sponsored open source product.

4.4 Paper IV: A Prolonged Two Phase Case Study on Im-
plementation of Open Source Development Practices
within a Large Company Setting

Based on previous research [Gur+06], [MM08], [Lin+08b], and motivation to ex-
plore the applicability of open source development practices within an industry

20 INTRODUCTION

context, a prolonged, two phase case study was designed for this purpose. The
study was conducted in a large software and hardware developing company that
bases its software products on a large open source solution. Through a long in-
volvement with the open source project, the company has modified some of its
development practices to be more in line with the open source community devel-
opment processes, and thus represented a good case candidate to study the appli-
cability of the OSDP in a closed company setting. The purpose of the first phase
of the study was two-fold: identification of a common open source development
framework based on evidence and practice, and the assessment of the framework
compatibility with the case company’s development processes. The author of the
thesis was granted company and network access to study the company’s portal
and internal documents related to past and ongoing projects, as well as develop-
ment practices and guidelines. The results of the portal and documentation review
were validated through semi-structured interviews conducted with the case com-
pany’s employees. The research results show existence of the processes and roles
compliant with the open source development, such as common development por-
tal and electronic communication infrastructure, formally are present in the com-
pany. However, in practice they are very little used, and the development process
seems to fit more traditional development than the open source context. Further-
more, results of the research show existence of roles in line with the roles found in
open source communities, but with additional and conflicting tasks, e.g., ensuring
soundness of technical solution and not sacrificing it due to a time constraint and
being project lead working under the time constraint.

The second phase of the research, conducted as focus group meeting with the
same participants that were involved in the first phase, had overall goal of un-
derstanding changes and the underlying causes in the level of implementation of
OSDP over period of two years. Results of the second phase of the study show that
the company’s development practices have higher level of alignment with OSDP
and that the change was driven by need to more efficiently collaborate with the
company’s new, globally distributed development site. The case study is relevant
as it shows what happens when implementation of OSDP within company is driven
primarily by employees who have been working under the OSS process and have
recognized its benefits. Hence, since the implementation was not carried out in
a systematized way, the benefits of inner source could not be noted in the short
run, but rather in the long run when the new development site was opened. The
findings of the study are relevant since with growing usage of OSS by industry,
more companies could find themselves in the same position, implementing some
aspects of the OSDP, and thus can learn from this example.

4 Results 21

4.5 Paper V: Network Analysis of a Large Scale Open
Source Project

Research conducted in Paper V, was motivated by a need to define a quantifiable
approach for assessing development communities in terms of source code com-
mitters’ structure, influence, centrality, and cross project collaboration. The study
focuses on the Android Open Source project community, an interesting case to ex-
amine, not only because of the OSS product’s broad use by almost entire mobile
eco-system [Goo13] and its leading market share position [GS13], but also since it
is built as an OSS stack, thus including over 150 other open source projects. This
work also proposes a new approach for using social network analysis to study open
source project committer networks. The new approach is the result of a study on
social network analysis theory and the existing research within the field. By apply-
ing the existing analysis procedure on the data extracted from the Android source
code repository, we came to the conclusion that the results do not accurately repre-
sent the studied community. The main reason for such outcome, lies in the fact that
the existing social network analysis procedures, study committer networks from a
perspective which does not take into account the committers’ weights relative to
the source code change event. The results of the research show that in an industry
sponsored open source project, the company exhibits large control over the source
code, even in the other OSS projects that are included in the stack and whose com-
munities are not led by the company. The implications of such finding are relevant
as they show one example of how a large company through an OSS project can
impact industry participants, as well as assert influence in projects that are not di-
rectly under its guidance. This information is relevant for the companies who plan
to undertake similar projects or join an OSS community. The proposed approach
can also be applied to study structure and evolution of any software development
community.

4.6 Paper VI: Development Process Monitoring Through
Application of Network Analysis on Source Code Repos-
itory Data

Paper VI explores fitness of the network analysis based approach to detect changes
in developers’ networks in relation to developments’ organization structure and
process level changes introduced in a large division of Ericsson. For this purpose,
the company’s source code repository was mined to extract data on all the source
code commits and to construct corresponding weighted and directed developers’
networks. Network metrics such as weighted average degree, graph density, clus-
tering coefficient, etc, were calculated for three discrete three month long periods
as well as for the entire length of the project. The metrics were then presented and
discussed through three focus group meetings attended by 5 to 6 company repre-
sentatives. The company representatives were knowledgable of the process and

22 INTRODUCTION

organization level changes introduced in the company, and participated either in
managerial or technical roles on the development projects. The results of the study
show that the calculated network metrics are indicative of the project work carried
out during the specified periods, e.g. network modularity metrics properly iden-
tified the number of distinct development projects being worked on. The metrics
also properly reflect development networks which are sparsely connected, indicat-
ing very low degree of collaboration between the developers and very high level
of specialization. The feedback received in the focus group meeting validated the
fitness of the approach in this one case study, as well as pointed that monitoring
of development network metrics could be useful as a monitoring tool for ongoing
project work.

4.7 Paper VII: Benchmarking Apache Software Founda-
tion Projects: Network Analysis of the Contributors’
Collaboration Networks

The research carried out in Paper VI pointed to absence of network metrics for
other similar development projects that Ericsson metrics could be compared to.
This motivated work in Paper VII which constructed developers’ networks for over
249 mature and wide-industry used projects that were hosted under the Apache
Software Foundation and calculates associated network metrics. The metrics were
then analyzed using standard statistics tools to detect any correlation between size
of the OSS community with calculated metrics such as developers’ centrality and
degree distributions and clustering coefficients. The clustering coefficient for all
the different types and sizes of the project show high values, ranging from 0.62-
0.8, given that the maximum value for the clustering coefficient is 1. The results
of the research show high correlation of project size, measured by the number
of developers that have worked on the project, with developers’ betweenness and
closeness centralities. The results also show high degree of specialization of the
majority of developers on smaller parts of the system. At the same time there exist
very few expert developers that bind larger parts of the system together. We argue
that such network topology could be indicative of the preferred way to structure
development of large-scale software development projects.

5 Synthesis

This section presents a synthesis of the results of the thesis with respect to research
questions discussed in the section 2.

RQ1: What interactions exist between different industry roles with respect to
OSS?

Based on the systematic literature review presented in Paper I, the industry
roles with respect to OSS can be divided into four distinct categories: usage of OSS

5 Synthesis 23

components, participation in OSS communities, implementation of OSS business
models, and application of open source development practices. Each of the roles as
presented in Figure 3 facilitates furthering of the relationship between a company
and an OSS community. As discussed in Paper II, the companies using OSS prod-
ucts are motivated to participate and contribute code to an OSS community due
to future update of functionality and community support for the product. There
exist evidence that a company that has built competence and knowledge of the
open source development practices, tends to implement some aspects of the open
source development, as is discussed in the Paper IV. Large global companies have
recognized business opportunities with respect to OSS, and thus there exist exam-
ples of companies, e.g. Red Hat [Red16b], Sugar CRM [Sug16], Ubuntu [Ubu16],
[Alf16], that have built successful business models around an OSS product such
as the one presented in Paper III.

RQ2: What are the major characteristics of OSS development framework?
The research presented in Paper IV shows that the most important aspects of

large and active OSS communities are well organized supporting portal infrastruc-
ture, clear communication norms, and governance models. The portal infrastruc-
ture enables geographically distributed participants having different roles in the
community, to easily access the product as well as get involved in its develop-
ment. This means that community portals of mature OSS software products are
intuitive and easy to navigate and use in order to attract and retain participants.
The communication norms are clearly defined and information about product doc-
umentation, planned and ongoing work, new releases, security issues, bug reports,
and mailing lists and archives are easily accessible and up to date. Community
facilitates friendly and pleasant communication environment so participants are
not discouraged from participating and contributing to the project. The commu-
nity governance adheres to meritocracy rules when assigning roles to community
members, thus community respect is earned though demonstrated experience and
presence on the project.

RQ3: What are the perceived benefits and drawbacks of OSS development
process implementation within a closed development environment?

In Paper IV we present a case study of a large and global software and hard-
ware company that bases its products on an OSS product, and which has over
years built competence with the OSS community. As a consequence, the company
has formally adopted some of the open source development practices, but in real-
ity this partial or superficial adoption has created some issues, such as roles with
conflicting tasks. For example, the structure of the organization was changed and
code guardian positions were put in place, but besides their primary responsibility
of ensuring high code quality, they were also under time pressure to deliver. Such
conflicting roles can significantly diminish the primary purpose of the position. In
the follow up study with the company, a higher level of alignment was found with
respect to the defined open source development framework. However, the increase
in the alignment was necessitated by need since the company had opened another

24 INTRODUCTION

large development office on another continent in the mean time. This speaks for
open source development process being facilitating to needs of distributed soft-
ware development effort.

A company culture that is not acquainted with the operating culture of an OSS
community can discourage online communication approach and instead replace
it with “go talk to the expert approach”. The research presented in Paper IV
shows that this behavior can unnecessarily overburden knowledge experts, tak-
ing their time from other projects. Some of the experts have resorted to creating
online documentation for FAQs, whose existence is one of the standard features of
OSS communities. The research conducted in HP [MM08], Lucent [Gur+06], and
Nokia [Lin+08b] shows that implementation of open source development within
a company setting can be beneficial, especially in terms of standardization of de-
velopment tools and processes across an organization, higher rapid team redeploy-
ment, improved code quality, lower maintenance costs and increased innovation.
The main differences observed between traditional and open source development
practices exist in transparent communication process and constant feedback loop
between the core developers and beta testers of the OSS product. Therefore, as
there exist many demonstrated benefits for inclusion of some of the open source
development practices, companies tend to implement them only through necessi-
tated need, rather then through a planned process.

Some of the drawbacks stem from the fact that commercial organizations deal
with a limited pool of development resources, which is not the case in true OSS
environment where a potential development pool is much larger. Some of the
companies have resorted to earlier discussed progressive open source (POS), so
that a part of development effort is opened for its technology partners, enabling the
software partners to partake in continuous feedback loop and report bugs and new
feature requests. While decisions on new product features in OSS community are
decided through a consensus based on the needs of the community members, e.g.
Apache Software Foundation, commercial development effort normally involves
higher management structure and product owners, each with their own needs for
new feature requests which might not be aligned with the customers’ needs.

RQ4: How can the proposed network analysis based approach be used to un-
derstand and monitor development structures and associated development met-
rics?

The results of the research presented in Paper V show that the proposed method
for constructing weighted and directed developers’ network and its associated met-
rics can be used to properly assess development structures and influences of OSS
communities. The approach was applied in a large division of Ericsson in Paper
VI and it was shown to be a very effective tool to monitor changes to developers’
networks caused by implemented changes in the development organization and
development process. Further more, the network approach when applied on large
scale in study VII has shown that some common metrics can be found across 249
distinct, wide-industry used OSS projects.

6 Threats to Validity 25

The results of the implemented network analysis when applied to the OSS
communities can help companies better understand the underlying development
structures, development trends, and influencers, information that can be useful
when making decisions on joining an OSS community, or forming alliances. When
applied internally, within a closed development setting, the method can be used to
monitor the development process, uncover the most valuable contributors, under-
stand development clusters and cliques. This information can be used when de-
ciding which are the most appropriate resources to be involved in future projects,
or for contingency resource planning. Finally, the same method was applied on a
large set of mature open source projects, and network metric patterns related to de-
veloper centrality metrics were identified. These metrics can be compared against
other similar size and type development projects in order to identify differences
and analyze their root cause. Large differences could be indicators of software
development structures that might not be organized in the most efficient way.

6 Threats to Validity
Identification of the threats that can potentially jeopardize a research validity is of
utmost importance, especially in the field of empirical software research context
where observations and measurements of the studied phenomena are conducted in
a natural context. The research questions presented in this thesis are analyzed for
validity threats based on the classification proposed by Wohlin et. al [Woh+12].
The threats to validity category are divided into four main types: construct, inter-
nal, external, and conclusion.

Construct validity is related to the relationship between the concepts and the-
ories behind the research and observations. Even if it is shown that the causal
relationship between the two exists, we need to question weather the measurement
tools are appropriate for the investigated subject of the study. There is a risk that
terminology used in academia might be misunderstood by industry practitioners
or that researchers might lead practitioners to respond in an assumed way. The se-
lection of the interviewees might be biased, and thus the way their answers might
be unbalanced or limited. The following steps were taken to lessen the risks:

• Selection of interviewees: In order to obtain a balanced set of interviewees,
roles covered span a wide range, from upper level management, and middle
managers, to more technical roles, such as developers, architects, testers,
and source code guardians.

• Design of interviews: The interviews were designed based on research ques-
tions, and validated by other researchers. The interviews conducted in semi-
structured way provided opportunity to discuss and further clarify questions.

• Prolonged involvement: The selected companies provided one of the re-
searchers with long-term accommodation. Hence, at least one of the re-

26 INTRODUCTION

searchers was seated at the companies and given access to necessary com-
pany resources. This helped establish a stronger relationship with the com-
panies’ participants, based on openness and honesty.

• Reactive bias: Presence of a researcher and knowledge of the topic of the
study might hinder the results, as correspondents might provide answers in
accordance to assumed expectations. To reduce the risc, all interviewees
were granted anonymity, and were not given any rewards for their participa-
tion.

In Paper IV we base our research on the comparison of the common charac-
teristics of the OSDP with the development practices of the case company. The
possible construct validity threats exist in form of inappropriate identification of
OSDP characteristics, also referred to as OSDP framework, and inappropriate as-
sessment of the case company’s development practices. To reduce the threats, the
OSDPs characteristics were defined based on relevant works and assessment of a
mature and large open source community. In addition, the author of the thesis spent
two months within the company, and was granted access the company’s internal
electronic resources which is also known as prolonged involvement [Run+11], a
practice used to improve validity of the research. The result were validated through
a semi-structured survey whose results were coded, buy the second researcher, and
a company employee in a senior technical position.

Internal validity is concerned with factors that may affect the dependent vari-
ables without the researcher’s knowledge. The case study presented in the Paper
III includes a quasi experiment, that examines the effects of the source code mod-
ifications, made by the open source community, on the static source code quality
metrics. One of Lehman’s laws [Leh80] states that a product which is not rig-
orously adapted or changed will, over a period of time, see decrease in software
quality metrics. However, since there is no available data on the average change in
software quality metrics for the studied type of the software we can not compare
the observed change to some average change value. However, since the transition
into the open source community was a major event in terms of software mainte-
nance, it is probable that the transition had affect on the software quality metrics.

External validity is related to the ability to generalize the results of the this
study. The research presented in Paper II is based on a focus-group meeting whose
participants were industry representatives. Hence, the results of the research are
based on the personal opinions, which may not be in line with a view of the or-
ganization they represent. Thus, there exist a risk that these results can not be
generalized or that they might not be applicable to other organizations. According
to Robson [Rob02], the extreme individual opinions tend to be offset by group
reactions to them, and group dynamics can be facilitating to focus discussion on
relevant issues. In the context of the thesis, the findings of the focus-group are in
line with the results from the systematic review presented in Paper I, on the con-
cerns commercial organizations have with regard to selecting an OSS component.

7 Conclusion and Future Work 27

The research presented in Papers V, VI, VII applied weighted and directed net-
work based approach on broad sets of projects which included OSS projects and
proprietary ones: Android OSS stack, a closed-source repository in Ericsson, and
on over 250 projects hosted under the Apache Software Foundation. This raises
the aspect of generalizability.

Conclusion validity is concerned with the possibility to draw correct conclu-
sions regarding the relationship between treatments and the outcome of an ex-
periment. The static software quality measures, as presented in Paper II, did not
follow normal distribution, and thus in their analysis test of lower statistic power
then the t-test were used. However, since the number of the analyzed data points
can be considered high, the chance of detecting difference in distributions even
when using non-parametric tests, is high as well.

7 Conclusion and Future Work

In the last couple of decades, the OSS software phenomena has increasingly gained
support from commercial organizations due to the recognized potential to increase
software development efficiency and facilitate creation of new business models.
As a result, the perception of the OSS movement has shifted from an informal
hobbyist software playground to a viable, mainstream industry value creator. In
the systematic literature review presented in Paper I we identify four distinct roles
industry takes with respect to OSS communities which further the industry en-
gagement with the OSS community. The commercial organizations include OSS
components in their products or use the products for internal purposes as presented
in Paper II. The usage tends to create a relationship between the company and the
community for the reasons of product support and maintenance. There exists ev-
idence of successful transitions of OSS products from proprietary to open source
community, and successful business models built around such communities as pre-
sented in Paper III. By participating in OSS communities, a company can develop
expertise in open source development process and practices and decide to imple-
ment some of the practices as presented in Paper IV.

Given the broad impact of the OSS movement on the industry, the ability to
understand the structure and the evolution of an open source community is an im-
portant factor that should be considered when a commercial organization plans to
work with an OSS community. Paper V proposes a new network theory based ap-
proach to study development communities and applies the approach to the study of
the Android OSS project. The paper also demonstrates the importance of properly
forming the edge weights between the developers relative to the total number of
changes done on a file. When the weights are formed as mere sums of common
contributions done to a file, in communities where a strong influence of very few
major contributors exists, the resulting networks do not accurately represent the
underlying development community. Paper VI applies the weighted and directed

28 INTRODUCTION

approach to proprietary source code base in a branch of Ericsson detecting changes
in the underlying development network that were introduced by reorganization of
development teams. Paper VII shows that by applying the same network analysis
approach on a set of 249 projects hosted under the Apache Software Foundation
yields a set of associated network metrics that indicate existence of patterns with
respect to the sizes of the projects. The uncovered patterns also indicate that across
the OSS development communities, development work is carried so that the ma-
jority of developers are specialized on smaller parts of the project, with only few
developers with high centrality metrics, serving as a "glue" connecting distinct
parts of the projects. More work is needed to understand how the data from such
analysis can be used to predict the future behavior of development communities.

The industry acceptance of the OSS has changed the way software is produced
and marketed. From the research stand point, the rich and growing OSS com-
munities provide much of the archived data that lends itself to further study. The
contribution of this thesis is demonstrated effectiveness of the proposed network
analysis approach to study development structures and deliver results that can be
used by business in creation of their own OSS strategies. Understanding struc-
tures of development communities, the main influencers and changes in associated
metrics is valuable when companies plan to include OSS products. This more
so, as the research has shown that inclusion of OSS components into company
products creates a long lasting relationship between the company and the commu-
nity. The company depends on the community for the new versions, especially
the ones containing security patches, while at the same time wants to ensure that
any modifications it has made to the product are included in the latest releases.
Hence, understanding the development fabric is equivalent to understanding the
community leaders and trend setters.

Besides aiding business in understanding the OSS community structure influ-
encers, the network analysis approach can also be used to improve monitoring of
internal development efforts. Development structures not only uncover the most
valuable resources, but can also show how development structures and influences
change over time. This information can be also valuable when planning future
projects as it brings raised understanding on best fit resources for the planned work.

Finally, the network based approach can be used to benchmark any develop-
ment effort against the results of the study presented in Paper VII. Scarce networks,
with centrality and degree metrics not following power a law distribution may in-
dicate development structures that are not organized in the most efficient way.

More replicated studies on greater number of projects are needed to validate
the research results as well as to fully understand the potential applicability of the
metrics provided through network analysis based approach. Future work should
also consider studies of the metrics though formal time series analysis methods
which could uncover some evolutionary patterns in associated metrics. Ideally, an
automated tool should be created to extract, analyze and present the results of the
network analysis.

7 Conclusion and Future Work 29

As previous research has shown that team structures and code architecture
modulate each other, a potential interesting area of future work could be appli-
cation of the used weighted and directed approach on the source code, so that
networks are created with classes as nodes and in and out links constructed and
weighted based on the predefined inter-class dependancies. Then, the two network
topologies could be further analyzed for similarities and differences on larger num-
ber of projects. If indeed a strong correlation is shown between the two network
topologies, then this information could serve as a base for planning and monitoring
the team structures for preferred architectures.

Through the work done in this thesis, we have shown that OSS has in its rather
short life span penetrated mainstream software development arena, which was just
until a decade ago considered a place that was primarily reserved for large-scale
closed source development effort. Not only did the OSS development practices
found their natural fit in a world of globally distributed software development,
but the availability of mature OSS products served as catalyzer for value creation
though various business models. Dynamics of the OSS and industry synergy re-
quire proper formal methods to assess the OSS development structures and pro-
cesses so the information can be used to improve planning of development effort
and market positioning.

References
[AGVP00] Rishab Aiyer Ghosh and Vipul Ved Prakash. “The Orbiten Free Soft-

ware Survey”. In: First Monday, Peer Reviewed Journal on the Inter-
net 5.7 (2000).

[Alf16] Alfresco Software, Inc. Alfresco. http://www.ubuntu.com.
2016.

[AL13] Mohammad Y. Allaho and Wang-Chien Lee. “Analyzing the social
ties and structure of contributors in open source software commu-
nity”. In: Advances in Social Networks Analysis and Mining 2013,
ASONAM ’13, Niagara, ON, Canada - August 25 - 29, 2013. 2013,
pp. 56–60.

[Aug16] Larry M. Augustine. Hewlett Packard Enterprise Development LP.
http://site05.goscon.org/presentations_2005/
Larry\%20Augustin-Medsphere.pdf. 2016.

[Bon+07] Andrea Bonaccorsi, Dario Lorenzi, Monica Merito, and Cristina Rossi.
“Business Firms’ Engagement in Community Projects - Empirical
Evidence and Further Developments of the Research”. English. In:
Proc. International Workshop on Emerging Trends in FLOSS Re-
search and Development. 2007, pp. 57 –61.

30 INTRODUCTION

[BP00] Stephen Bradley and Kelley Porter. “eBay, Inc.” In: Journal of Inter-
active Marketing, no. 4 (2000).

[Bre+07] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner,
and Mohamed Khalil. “Lessons from applying the systematic liter-
ature review process within the software engineering domain”. In:
Journal of Systems and Software 80.4 (2007), pp. 571–583.

[Con10] Andreas Constantinou. Symbian is dead. Long live Symbian. http:
//www.visionmobile.com/blog/2010/10/symbian-
is-dead-long-live-symbian/. 2010.

[CH05] Kevin Crowston and James Howison. “The social structure of free
and open source software development”. In: First Monday 10.2 (2005).

[Dav+41] A. Davis, B. Gardner, and M.R. Gardner. “Deep South; a social an-
thropological study of caste and class.” In: Chicago, IL, US: Univer-
sity of Chicago Press Deep South; a social anthropological study of
caste and class. 1941, p. 558.

[Dav+04] Robert M. Davison, Maris G. Martinsons, and Ned Kock. “Principles
of canonical action research”. In: Inf. Syst. J. 14.1 (2004), p. 65.

[Dij83] Edsger W. Dijkstra. “The structure of the multiprogramming sys-
tem”. In: Communications of the ACM 26.1 (Jan. 1983), pp. 49–52.

[Din+02] Jamie Dinkelacker, Pankaj K. Garg, Rob Miller, and Dean Nelson.
“Progressive open source”. In: Proceedings of the 22rd International
Conference on Software Engineering, ICSE 2002, 19-25 May 2002,
Orlando, Florida, USA. 2002, pp. 177–184.

[Eas07] Steve M. Easterbrook. “Empirical research methods for software en-
gineering”. In: IEEE/ACM International Conference on Automated
Software Engineering. 2007, p. 574.

[Fag86] Michael E. Fagan. “Advances in Software Inspections”. In: IEEE
Trans. Software Eng. 12.7 (1986), pp. 744–751.

[Fit06a] Brian Fitzgerald. “The Transformation of Open Source Software”.
In: MIS Quarterly 30.3 (2006), pp. 587–598.

[Fog05] Karl Fogel. Producing open source software - how to run a successful
free software project. O’Reilly, 2005, pp. I–XX, 1–279.

[Fou15c] Linux Open Foundation. Linux Operating System. http://www.
linuxfoundation.org. 2015.

[Fou16] The Apache Software Foundation. Apache Project. http://www.apache.org.
2016.

[Fre16a] Free Software Foundation, Inc. About FSF. http://www.fsf.
org/about/. 2016.

7 Conclusion and Future Work 31

[Fre16b] Free Software Foundation, Inc. GCC, the GNU Compiler Collection.
https://gcc.gnu.org. 2016.

[GS13] Market Analysis Gartner and Statistics. Market Share: Mobile De-
vices, Worldwide, 1Q12. http://www.gartner.com/newsroom/
id/2017015. 2013.

[Gla95] Robert L. Glass. “A structure-based critique of contemporary com-
puting research”. In: Journal of Systems and Software 28.1 (1995),
pp. 3–7.

[Gla+02] Robert L. Glass, Iris Vessey, and Venkataraman Ramesh. “Research
in software engineering: an analysis of the literature”. In: Information
& Software Technology 44.8 (2002), pp. 491–506.

[GT00a] Michael W. Godfrey and Qiang Tu. “Evolution in Open Source Soft-
ware: A Case Study”. In: 2000 International Conference on Software
Maintenance, ICSM 2000, San Jose, California, USA, October 11-
14, 2000. 2000, pp. 131–142.

[GC94] Benjamin Gomes-Casseres. “Group vs. Group: How Alliance Net-
works Compete.” In: Harvard Business Review (1994).

[Goo13] Google. Android Open Handset Alliance Members. http://www.
openhandsetalliance.com/oha_members.html. 2013.

[Gur+05] Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb. “A case
study of open source tools and practices in a commercial setting”. In:
ACM SIGSOFT Software Engineering Notes 30.4 (2005), pp. 1–6.

[Gur+06] Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb. “A case
study of a corporate open source development model”. In: ICSE.
2006.

[Her+03] Guido Hertel, Sven Niedner, and Stefanie Herrmann. “Motivation
of software developers in Open Source projects: an Internet-based
survey of contributors to the Linux kernel”. In: Research Policy 32
(2003), pp. 1159 –1177.

[Hew16] Hewlett Packard Enterprise Development LP. CHP and IBM Soft-
ware Group Alliance. http://h22168.www2.hp.com/us/
en/partners/ibm/. 2016.

[H+̈14] Martin Höst, Klaas-Jan Stol, and Alma Oručević-Alagić. “Inner Source
Project Management”. English. In: Software Project Management in
a Changing World. Ed. by Gunther Ruhe and Claes Wohlin. Springer
Berlin Heidelberg, 2014, pp. 343–369.

[Kit+02] Barbara A. Kitchenham, Shari Lawrence Pfleeger, David Hoaglin,
Khaled El Emam, and Jarrett Rosenberg. “Preliminary Guidelines for
Empirical Research in Software Engineering”. In: IEEE Transactions
on Software Engineering 28 (8 2002), pp. 721–734.

32 INTRODUCTION

[KC07] Barbara Kitchenham and S. Carter. Guidelines for performing sys-
tematic literature reviews in software engineering, v. 2.3. Tech. rep.
Keele University and University of Durham, 2007.

[Koe09] John Koenig. Seven Open Source Business Strategies for Competi-
tive Advantage. http://www.cs.up.ac.za/cs/aboake/
sws780/references/designapproaches/collaborative/
Koenig-SevenOpenSourceStrategies.pdf. 2009.

[Kon+04] Jyrki Kontio, Laura Lehtola, and Johanna Bragge. “Using the Focus
Group Method in Software Engineering: Obtaining Practitioner and
User Experiences”. In: 2004, pp. 271–280.

[LW05] Karim Lakhani and Robert Wolf. “Why Hackers Do What They Do:
Understanding Motivation and Effort in Free Open Source Software
Projects.” In: Perspectives on Free and Open Source Software. Ed. by
Joesph Feller, Brian Fitzgerald, Scott Hissam, and Karim Lakhani.
MIT Press, 2005.

[Lau99] Francis Y. Lau. “Toward a framework for action research in informa-
tion systems studies”. In: IT & People 12.2 (1999), pp. 148–176.

[Leh80] Meir M. Lehman. “On understanding laws, evolution, and conser-
vation in the large-program life cycle”. In: Journal of Systems and
Software 1 (1980), pp. 213–221.

[LR01] Meir M. Lehman and Juan F. Ramil. “Rules and Tools for Software
Evolution Planning and Management”. In: Ann. Software Eng. 11.1
(2001), pp. 15–44.

[Li+09] Jingyue Li, Reidar Conradi, Christian Bunse, Marco Torchiano, Odd
Petter N. Slyngstad, and Maurizio Morisio. “Development with Off-
the-Shelf Components: 10 Facts”. In: IEEE Software 26.2 (2009),
pp. 80–87.

[Lin+09a] F. van der Linden, B. Lundell, and P. Marttiin. “Commodification of
Industrial Software: A Case for Open Source”. In: Software, IEEE
26.4 (2009), pp. 77–83.

[Lin+08b] Juho Lindman, Matti Rossi, and Pentti Marttiin. “Applying Open
Source Development Practices Inside a Company”. In: International
Conference on Open Source Systems, OSS (2008), pp. 381–387.

[Lin16] Linux Foundation. Linux Foundation Board Directors. http://
www.linuxfoundation.org/about/board-members.
2016.

7 Conclusion and Future Work 33

[LF+06] Luis López-Fernández, Gregorio Robles Robles, Jesús M. González-
Barahona, and Israel Herraiz. “Applying Social Network Analysis
Techniques to Community-Driven Libre Software Projects”. In: In-
ternational Journal of Information Technology and Web Engineering
1.3 (2006), pp. 27–48.

[Lun+06] Björn Lundell, Brian s Ling, and Edvin Lindqvist. “Perceptions and
Uptake of Open Source in Swedish Organizations”. In: nternational
Conference on Open Source Systems, OSS. 2006, pp. 155–163.

[McK99] Marshall Kirk McKusick. “Twenty Years of Berkeley Unix: From
AT&T-Owned to Freely Redistributablet”. English. In: Open Sources:
Voices from the Open Source Revolution. Ed. by Chris DiBona, Sam
Ockman, and Mark Stone. O’Reilly Media, 1999. Chap. 3.

[MM08] Catharina Melian and Magnus Mähring. “Lost and Gained in Trans-
lation: Adoption of Open Source Software Development at Hewlett-
Packard”. In: OSS. 2008, pp. 93–104.

[Mor34] Jacob Levy Moreno. “Who Will Survive”. In: Beacon House, Bea-
con, NY (1934).

[New13] Mark Newman. Networks. Oxford University Press, 2013.

[OSI13a] OSI. Open Source Initiative Board. http://opensource.org/
board. 2013.

[OSI13b] OSI. Open Source Initiative Mission Statement. http://opensource.
org/about. 2013.

[Ora16] Oracle Corporation, Inc. MySQL. https://www.mysql.com.
2016.

[OAH10] Alma Oručević-Alagić and Martin Höst. “A Case Study on the Trans-
formation from Proprietary to Open Source Software”. In: OSS. 2010,
pp. 367–372.

[OAH14b] Alma Oručević-Alagić and Martin Höst. “Network Analysis of a
Large Scale Open Source Project”. In: 2014 40th EUROMICRO Con-
ference on Software Engineering and Advanced Applications, Verona,
Italy, August 27-29, 2014. 2014, pp. 25–29.

[Par72] David Lorge Parnas. “On the Criteria To Be Used in Decompos-
ing Systems into Modules”. In: Communications of the ACM 15.12
(1972), pp. 1053–1058.

[Per05] Bruce Perens. “The emerging economic paradigm of Open Source”.
In: First Monday 10(special issue 2: Open source) (2005).

[Ray01a] Eric S. Raymond. The Cathedral and the Baazar. O’Reilly Media,
Inc., 2001.

34 INTRODUCTION

[Red16a] Red Hat, Inc. JBoss Development Community. http : / / www .
jboss.org/technology/. 2016.

[Red16b] Red Hat, Inc. Rad Hat Open Source Project. http://www.redhat.
com/en. 2016.

[Rob+05] Gregorio Robles, Juan José Amor, Jesús M. González-Barahona, and
Israel Herraiz. “Evolution and Growth in Large Libre Software Projects”.
In: 8th International Workshop on Principles of Software Evolution
(IWPSE 2005), 5-7 September 2005, Lisbon, Portugal. 2005, pp. 165–
174.

[Rob+07] Gregorio Robles, Santiago Dueñas, and Jesús M. González-Barahona.
“Corporate Involvement of Libre Software: Study of Presence in De-
bian Code over Time”. In: International Conference on Open Source
Systems. 2007, pp. 121–132.

[Rob02] Colin Robson. Real World Reserach. 2:nd. Blackwell Publishing,
2002.

[RH09a] Per Runeson and Martin Höst. “Guidelines for conducting and re-
porting case study research in software engineering”. In: Empirical
Software Engineering 14.2 (2009), pp. 131–164.

[Run+11] Per Runeson, Martin Höst, Austin Rainer, and Björn Regnell. Case
Study Research in Software Engineering. Wiley, 2011.

[Sea99] Carolyn B. Seaman. “Qualitative Methods in Empirical Studies of
Software Engineering”. In: IEEE Transactions on Software Engi-
neering 25.4 (1999), pp. 557–572.

[Sug16] Sugar CRM, Inc. Sugar Content Resource Management. https:
//www.sugarcrm.com. 2016.

[Tim13] Time, Inc. Fortune 500, Sorted by Industry. http://fortune.
com/fortune500/. 2013.

[Ubu16] Ubuntu. Sugar Content Resource Management. http://www.
ubuntu.com. 2016.

[WF94a] Stanley Wasserman and Katherine Faust. Social Network Analysis.
Methods and Applications. Cambridge University Press, 1994.

[Web04b] Steven Weber. The Success of Open Source. Harvard University Press,
2004.

[Wes03] Joel West. “How open is open enough?: Melding proprietary and
open source platform strategies”. In: Research Policy 32.7 (2003),
pp. 1259 –1285.

[Wes07] Joel West. “Value Capture and Value Networks in Open Source Ven-
dor Strategies”. In: Hawaii International Conference on System Sci-
ences. 2007, p. 176.

7 Conclusion and Future Work 35

[Wie12] Roel Wieringa. “Designing Technical Action Research and Gener-
alizing from Real-World Cases”. In: International Conference on
Advanced Information Systems Engineering, CAISE. 2012, pp. 697–
698.

[WM12] Roel Wieringa and Ayse Morali. “Technical Action Research as a
Validation Method in Information Systems Design Science”. In: De-
sign Science Research in Information Systems. Advances in Theory
and Practice - 7th International Conference, DESRIST 2012, Las Ve-
gas, NV, USA, May 14-15, 2012. Proceedings. 2012, pp. 220–238.

[Woh+12] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, and
Björn Regnell. Experimentation in Software Engineering. Springer,
2012, pp. I–XXIII, 1–236.

INCLUDED PAPERS

PA
P

E
R

I

A SYSTEMATIC REVIEW OF
RESEARCH ON OPEN

SOURCE SOFTWARE IN
COMMERCIAL SOFTWARE
PRODUCT DEVELOPMENT

Abstract

Context: The popularity of the open source software development in the last
decade, has brought about an increased interest from the industry on how to use
open source components, participate in the open source community, build busi-
ness models around this type of software development, and learn more about open
source development methodologies. There is a need to understand the results of
research in this area
Objective: Since there is a need to understand conducted research, the aim of this
study is to summarize the findings of research that has ben carried out on usage of
open source components and development methodologies by the industry, as well
as companies’ participation in the open source community.
Method: Systematic review through searches in library databases and manual
identification of articles from the open source conference. The search was first
carried out in May 2009 and then once again in May 2010.

Martin Höst, Alma Oručević-Alagić
Information & Software Technology, 53:6, 616-624, 2011.

40 A Systematic Review of Research on Open Source Software in Commercial . . .

Results: In 2009, 237 articles were first found, from which 19 were selected based
on content and quality, and in 2010, 76 new articles were found from which 4 were
selected. 23 articles were identified in total.
Conclusions: The articles could be divided into four categories: open source as
part of component based software engineering, business models with open source
in commercial organization, company participation in open source development
communities, and usage of open source processes within a company.

1 Introduction

Traditional software development is often perceived as a proprietary, in-house soft-
ware development, with developers working in a geographically centralized or
distributed company’s location. Open source software is developed free of charge
through a community driven development process, and as such, it is also provided
to public at no cost, but under certain usage and distribution conditions. Many of
the traditional software companies have tried to take advantage of the free soft-
ware, not just by using the software, but also by creating business models and
strategies around the open source software.

For example, in the mobile industry there are several attempts to form open
source communities for development of software, such as the Android project1

and the Symbian project2. Using and relying on open source software can be seen
as an alternative way to reduce development costs and stay competitive. Hence, in
a way, it can be compared to other similar business methods and strategies, such
as outsourcing or acquirement of off the shelf components.

This open source business ecosystem, which has been growing over the past
two decades, is quite complex and there exists a need to better understand many
of its aspects. Some of the aspects are interesting in at least two different ways.
Firstly, an organization can include open source components in its proprietary soft-
ware product. This is comparable to including any other third party component,
although the difference is that the component is now obtained from an open source
community instead from a commercial organization. Secondly, an organization
can provide its own proprietary software to open source community and that way
reduce development costs in long run, reposition itself on the market, create a new
source of income through new services, etc.

Already in 2001, Lerner and Tirole [LT01] identified ”opening proprietary
code” as an important research area, and observed that large open source projects
often start based on software provided by ”academic or semi-academic institu-
tions”. This motivates systematically investigating what research has been pub-
lished in the area.

1http://www.android.com/
2http://www.symbian.org/

2 Background and related work 41

The outline of this paper is as follows. In Section 2 background on open source
software and some related work is presented. In Section 3 the methodology with
respect to search strategy and inclusion and exclusion criteria are presented, and
the resulting set of articles is presented in Section 4. Finally, there is a discussion
in Section 5, and conclusions presented in Section 6.

2 Background and related work

2.1 Open Source Software

Open source software has been around since the very beginning of electronic com-
puting. In the early days of information technology it was quite natural and fi-
nancially sound for developers to share source code among very few and very
expensive computing machines. As the machines became smaller, more diversi-
fied, and cheaper, the number of developers grew, and the source code, in general,
became more complex. Development of free software was especially flourishing
in the academic environments. Barkley Software Distribution (BSD) is a license
developed for distribution of the BSD version of the Unix operating system devel-
oped by the University of California, Berkeley, from 1977 to 1995 in collaboration
with AT&T labs, as described in [Ray01b]. At the beginning of the development,
code was shared between AT&T and Berkeley. Due to anti-monopoly laws at
the time, AT&T could not sell software, but as the company was using it to sell
phone-related services, it had vested interest in improving the software. During
the beginning of the 1980:s and the market deregulation, AT&T was granted the
right to sell software. In order to continue distribution of BSD Unix, a lot of code
that was not developed by University of California Berkeley had to be backed off
and rewritten.

Since the beginning of 1980s, the idea of close-sourced/proprietary software
became mainstream, taking the place that free software sharing has held for a long
time. The open source supporters went to found their own organizations such
as free software foundation (FSF) founded by Richard Stallman, as described in
[Web04a]. The FSF did not have desired impact on bringing back open source
software development to the mainstream. However, this situation was about to
change with the successful release of the Linux kernel. The system was initially
developed by Linus Torvalds as part of an academic project, and with the support
of the developer community it became a very complex, sophisticated software that
was free for everyone to use. Eric Raymond was very much inspired by this set of
events, and in his now famous book ”The Cathedral and the Bazaar” [Ray01b] he
talks about the importance of Linux, as it was the very first time the open source
developer community showed that not only complex and sophisticated software
can be built in such way, but also that business models can be built around such
way of software development and distribution.

42 A Systematic Review of Research on Open Source Software in Commercial . . .

In 1998, Raymond was one of the main contributors to the Open Source Initia-
tive (OSI), an organization that is envisioned as open source educational and ad-
vocacy organization. Many companies have followed the suit, and decided to open
source a piece of their proprietary software as a part of business strategy to deal
with the competition. Thus, among the initial suitors we can find Netscape corpo-
ration, who by open sourcing Netscape internet browser tried to compete against
closed source and free distribution of Microsoft’s Internet Explorer [Ray01b].

In the past ten years, many companies have entered the open source business
arena, using some of the business models proposed in [Ray01b]. Unfamiliar with
the environment, companies had very quickly to readjust their way of doing busi-
ness in order to ripe some perceived benefits of open source trends. Besides open
sourcing software, companies tend to participate and contribute to open source
projects, as well as adopt some of software development methodologies such dis-
tributed and voluntary based development community as open source utilizes.

2.2 Related Work
Stol and Ali Babar [SAB09] have made a review of the broad area of ”open source”
from the conference on Open Source Systems, OSS. They manually selected em-
pirical papers from the conference and investigated them. The scope of the review
that we present in this paper is more narrow (open source in commercial organi-
zations) but we searched a broader set of articles (we searched articles in library
databases with a search string, and we searched articles from the OSS conference
manually, as explained in more detail below).

Stol and Ali Babar [SAB10] have also compiled a list of challenges in using
open source as components in product development, based on a literature review.
In this review, where they did not require any empirical grounding of the findings,
they identified 21 challenges.

In [HOA10] earlier results of this work is presented, based on a search in biblo-
graphic databases that was carried out 18 May 2009. The search that is the basis
for this paper was conducted 14 May 2010, and it resulted in 4 additional articles.

3 Review Method
This research is carried out as a systematic literature review, based on the guide-
lines presented in [KC07].

3.1 Research Questions
The objective of this research is to understand the result of the research that has
been carried out on the usage of open source software and open source software
development in proprietary software development organizations. Before the re-
view, this was broken down to the following research questions:

3 Review Method 43

1. What approaches and processes are applied by commercial organizations to
introduce open source products in their proprietary products?

2. What approaches and processes are applied by commercial organizations to
provide their software products to the open source community?

3. What experience is available from identified approaches and processes, for
example, with respect to quality of the software products, cost of develop-
ment for the providing organization, time taken to introduce new function-
ality, etc.?

4. What are the main motivations and business incentives for the procedures
and processes identified in question 1 and question 2?

That is, we address the need to understand both what research that has been
done in the area, what methods and approaches that exist, and what experience
is available for the different methods. It should be noted that the objective of the
research has not been to derive quantitative knowledge of which methods perform
the best. The objective is more to understand which methods are used and how
well the methods work in a qualitative way. If the field was more mature, and
it could be expected to find a large number of empirical studies investigating the
performance of alternative methods, it would of course be interesting to synthesize
this knowledge. However, it is not realistic to find this many studies of this type.
The objective of this work is instead to review the research that has been con-
ducted, and in particular what kind of experience that is available for these kind of
questions. That is, the research has elements of a mapping study (see for example
[KC07]). However, since the objective is to summarize the findings and to under-
stand the total result of the research that has been conducted, and the focus is not
merely on identifying published research we classify this as a systematic review.

Open source software in commercial organization is related to a number of
research questions that to some extent are relevant to the review, but where it was
necessary to decide whether to include them in the study or not. One aspect that
is often mentioned concerning open source is the importance of ”legal aspects”,
such as licensing, intellectual property, etc. For example, there is a large number
of licenses, all complying with the definition of open source described in [FF02],
and the implications of choosing different licenses could be an important research
field. This is an important and interesting field, which can affect both the adoption
of open source practices and open source software components. However, for
this study it was seen as out of scope for two main reasons. Even if software
engineering is a multi-disciplinary field which includes legal aspects, we thought
that it is of another kind than more traditional software engineering topics. To
some extent the research questions that have to do with legal aspects are not the
same as traditional research questions. If legal aspects were included, then there
are other areas that also would be reasonable to include, such as marketing and
sales. Second, it would probably require extensive cooperation with researchers

44 A Systematic Review of Research on Open Source Software in Commercial . . .

in legal aspects to make sure that the correct search terms were used, and that the
right publication fora were searched. These aspects in combination mean that legal
aspects were not included in the study.

An area where there are a number of research results available is on compar-
isons of usage of open source software, such as Open Office, and similar propri-
etary software systems. This was not seen as highly related to the research ques-
tions in this study and therefore excluded. It is, of course, interesting understand
the differences, but it was not seen as relevant enough to the question of transform-
ing developed software to open source or to the inclusion of open source software
in developed software. Neither are studies on adoption of open source programs,
for example as presented by Goode [Goo05], included. That is, this study is more
on development of software than on the usage of existing software. In the same
way it was decided not to include research results on usage of open source tools,
such as Eclipse, in software development.

Another area that is not included, but still interesting and of potential interest to
commercial organizations, concerns how open source practices can be transferred
to hardware development. Only a few articles on this topic exist [AB09]. This area
was not included since it is not mainly concerning software development.

3.2 Search methodology

Two main sources were searched for relevant articles: a broad search in academic
databases; and a manual search through all articles of the Conference on Open
Source Systems.

Searched academic databases

The INSPEC and the COMPENDEX databases were searched. Both of these
databases intend to provide complete coverage of the area, and include articles
from all major conferences, journals, and publishers (e.g. IEEE, ACM, Springer,
and IEE). We believe that these two databases give a good coverage of articles in
”computer science” and ”electrical engineering and electronics”, which includes
typical questions in software engineering, at least in more well known journals
and conferences. However, the coverage of more business-related articles and ar-
ticles on legal aspects is, as described above, more uncertain. Both databases were
accessed through Engineering Village3.

The following search string was used:

(({open?source} wn ALL) OR
(opensource wn ALL) OR
(libre wn ALL) OR

3http://www.engineeringvillage2.org

3 Review Method 45

(OSS wn ALL) OR
(FLOSS wn ALL))
AND
((proprietary wn ALL) OR
(commercial wn ALL) OR
({non?open?source} wn ALL) OR
({non?opensource} wn ALL))
AND
((empirical* wn ALL) OR
(experiment* wn ALL) OR
({case?study} wn ALL) OR
(survey wn ALL))

The search string contains three main parts, separated by AND-clauses. The
first part states that the article must include the term ”open source” or some other
synonym term that is often used, such as ”OSS”. The second part states that the
article must include terms about commercial software development. The third part
makes sure that the article is empirical, by searching for terms like ”empirical”
and ”experiment”. The intention of the ”*” after experiment is to include also
search terms as ”experimental” and ”experimentation”. According to [Die+07]
this should be sufficient in order to find most relevant articles in this respect.

A few more terms and details in the search string may have to be explained.
The ?-sign denotes any character, which, for example, means that both articles
with the term ”case study” and the term ”case-study” are found. The term wn
means that the phrase left of it should be found in the entity to the right of it, in
this case ALL, which means all fields of database entries, such as title, abstract and
key words. It would have been possible to list other entities such as abstract and
title, but in this case ALL was chosen. Text within {}-parentheses are searched as
phrases and a search is not case sensitive.

Manual identification of relevant articles

In addition to the database searches, all articles in all OSS-conferences (Interna-
tional Conference on Open Source Systems4) were inspected. The conference has
been held annually since 2005 and all articles are available in full text (2005 online
and from 2006 onwards from library databases). The selection was based on the
formulated research questions in Section 3.1, which thereby means that articles
matching the same kind of content as the identified with search string presented in
Section 3.2 were found, but there was no check that the articles matched exactly.

4For more information see http://www.ifipwg213.org/

46 A Systematic Review of Research on Open Source Software in Commercial . . .

3.3 Selection of relevant articles

Articles are selected in a number of steps. First, all articles identified from the
databases with the search string were listed with title and abstract. Since the arti-
cles have been selected with a search string in a database there are many articles
that are not relevant. Therefore, articles that are not relevant, based on our inter-
pretation of title and abstract, were removed. That is the articles that were not
relevant compared to the research questions wee removed.

After this, the remaining articles were downloaded and read in full text. Based
on this, more articles were seen as non-relevant according to the same criteria as
for the title and abstract, and therefore removed.

After analysis of articles selected with the search string, articles from the OSS
conference were selected manually. Since this selection was carried out after the
analysis of articles identified with the search string, it was possible to use knowl-
edge that was gained from analysis of articles identified with the search string.

All articles that so far have been selected were analyzed with respect to re-
search methodology implementation and presentation. Three different classes
were used for this:

Class A: In this type of article the research is presented in a way that makes it very
likely that it was conducted according to normal requirements on empirical
research methods in software engineering.

Compared to the quality assessment criteria presented used by [DD08] and
[Che+08] the answer is positive to most evaluation questions, especially
concerning whether it is research or merely experience report, if there is
a clear statement of aims, if there is an adequate context description, if the
research design is appropriate for the questions, if the data collection was
appropriate for the questions, if the data was analyzed with sufficient rigor,
and if there is a clear statement of findings.

This class includes both articles that do reference empirical software engi-
neering research method descriptions, such as [RH09b], and articles that do
not explicitly reference this kind of descriptions.

Class B: This class of articles may not be presented as a typical article on empir-
ical software engineering even if the overall impression of it is that it was
carried out in this way. That is, all aspects of a typical article of class A may
not be included, but the main impression of the paper is that the research
was carried out according to normal requirements on empirical software en-
gineering.

Class C: For this type of article our interpretation is that the researchers have not
followed any traditional research method during the research. The reason
may be that the presentation forum is not suitable for presentation of struc-
tured research methods or there may be other reasons.

4 Results 47

These steps are further presented in Section 4 and illustrated in Figure 1.

3.4 Data Extraction and Synthesis

Articles of class A and class B were treated equally, while articles of class C were
not further included in the review. Data from the identified articles were derived by
defining categories of articles and summarizing the research in each category. Both
authors first defined categories individually and then a final set of categories was
defined based on discussion between the authors. The summaries were developed
first by one author and then updated based on discussion between the authors.

3.5 Phases

The search was conducted in two phases. First in phase 1 the databases were
searched in 2009, and the result was summarized and presented in [HOA10]. Then
the same search string was used again in phase 2 in 2010, and the results were
updated with the new articles that were identified.

4 Results

In this section the actual results of the steps presented in Section 3 are presented.
The results are summarized in Figure 1 and below. The research was conducted in
two major phases as described in Section 3.5.

4.1 Phase 1

First the academic databases were searched on 18 May 2009, which resulted in
357 articles. However, among these articles there were a number of duplicates
because the searches were made in different databases. Duplicates were identified
with a simple java-program based on titles. After this, 237 articles remained (i.e.
the result of step 1 in Figure 1).

After this, unrelated articles were removed based on both title and abstract.
First an attempt was made to remove articles based only on title and then based on
abstract, but it was not seen as possible to remove an article only based on the title.
Therefore both titles and abstracts were studied during this process. After this, 45
titles remained.

After this, one additional duplicate was identified where the title was written
slightly differently in different databases (”&” instead of ”and”), which means that
44 titles remained (i.e. the result of step 2 in Figure 1).

The first author of this paper first conducted these steps, and then the second
author reviewed the result. None of the previously excluded articles were reintro-
duced.

48 A Systematic Review of Research on Open Source Software in Commercial . . .

1. Search 1 in academic
databases 237 articles

2. Selection of related
articles based on title and

abstract
 44 articles

3. Selection of articles
based on full text

4. Manual selection of
articles from the OSS
conference (-2009)

 19 articles

5. Search 2 in academic
databases 76 new articles

Results presented
in [7]

7. Selection of articles
based on full text

 4 new articles

6. Selection of related
articles based on title and

abstract
 18 new articles

+

 19 + 4 = 23
articles

Results presented in
this article

Figure 1: Summary of article selection process.

In these steps, some articles were found for which it was hard to decide whether
to keep them or not based on the title and abstract. In these cases we decided to
keep them to the next step instead of removing them. That is, articles that were
hard to judge based on only title and abstract were kept to the next step, where the
whole articles were read.

After this, the identified articles were obtained from the library database, and
they were reviewed in full text. Here, some articles were removed since they were
not really related to the research questions or because they were not available in
full text from the databases.

Some of the removed articles were about developing open source in general,
which was not seen as relevant for this work. Some were about using open source
software in general, without seeing the context as an IT system that is built.

To this list of articles, relevant articles from the OSS conference were added.
There was no overlap between these manually found articles and the articles that
were found through the search in the databases. After this, a final set of 19 articles
remained (i.e. the result of step 3 in Figure 1).

4 Results 49

In the analysis of the papers it was clear that both anticipated and unanticipated
areas were covered by the identified articles. That is, some papers dealt with ques-
tions that we thought of before, and therefore were aware of when the research
questions were formulated. Other areas were more unexpected, mainly the articles
about transferring the open source development process to the internal work in a
non-open source product. Articles of both types were of course included in the
study as long as they were seen as relevant compared to the formulated research
questions.

One paper for which it was hard to judge the relevance for this study is the
paper by [Kri06], which concerns motivation of developers, to some extent dis-
cussing both unpaid and paid developers. Even if the question of motivation for
open source developers in general is out of scope of the review, the discussion
about paid and unpaid developers makes it more relevant. However, we decided
not to include the paper since it was seen as a too small part of the article. Also,
concerning the paper by [Lea+02] it could be argued that this type of article should
be included. The main focus of it is on design of a modular system for data anal-
ysis, but they also conclude that working with the system as OSS improves the
possibility of collaborating between different universities, government agencies,
and private industry, both nationally and internationally. However, this was stated
as a minor part of the paper, which means that the article was not included.

4.2 Phase 2

The databases were searched with the same search string as in phase 1 once again
14 May 2010. This resulted in 76 new articles that were not identified in phase 1
(i.e. the result of step 5 in Figure 1).

The title and abstract of the articles were studied in order to remove articles
that were not of interest. This was done as a cooperation between the two authors.
After this step, 18 of the new articles were kept (i.e. the result of step 6 in Figure
1).

The next step was to download all articles and study them in full text in order to
decided whether they really are of interest with respect to the research questions,
and of type A or type B. Some articles could not be downloaded from the library
databases, but most could. After this step 4 of the new articles remained.

4.3 Analysis of identified articles

After phase 2 there were in total 23 articles, i.e. 19 from phase 1 and 4 additional
from phase 2.

In the rest of this paper, the selected articles are referred to with the keys that
are presented in bold in appendix. For example, the first identified article is re-
ferred to as [Arhippainen03].

50 A Systematic Review of Research on Open Source Software in Commercial . . .

Table 1: Identified articles

Article Research methodology Class Identification phase
[Arhippainen03] case study A 1
[Ayala09] survey A 1
[Bonaccorsi05] survey A 1
[Bonaccorsi06] survey A 1
[Bonaccorsi07] survey A 1
[Gaughan09] case study B 2
[Gurbani06] case study A 1
[Harison10] survey A 2
[Henkel08] interviews and survey A 2
[Hauge07] survey A 1
[Hauge09] case study A 1
[Li05a] survey A 1
[Li05b] survey A 1
[Li06a] survey A 1
[Li06b] survey A 1
[Li09] summary A 1
[Lindman08] case study A 1
[Lindman09] case study A 1
[Lundell06] survey A 1
[Munga09] case study B 2
[Robles07] case study A 1
[West03] case study B 1
[Westenholz06] case study A 1

The research methodologies that were used in the identified articles are sum-
marized in Table 1. This is our interpretation of the chosen methodology after
reading the articles. In some cases it was very clear which methodology that was
used, but in other cases it was somewhat harder. For example when a set of inter-
views was conducted in different organizations we classified this as a survey, since
we wanted to classify according to commonly used methods. However, it could
had also been classified as something like ”interview study”.

In Table 1 we also present our interpretation of the classification of the method
implementation (A or B). Our experience is that it is hard to evaluate articles in this
way. Since no difference has been made between the two classes in the analysis,
this classification should only be seen as our interpretation of the article for the
purpose of this review.

The article [Li09] requires some further explanation. Since it is a summary of

4 Results 51

!"

#"

$"

%"

&"

'"

("

)"

$!!#" $!!$" $!!%" $!!&" $!!'" $!!(" $!!)" $!!*" $!!+" $!#!"

Figure 2: Publication year for included articles

the other articles by the author ([Li05a]–[Li06b]), the methodology is presented
as ”summary”, and even if it is presented as a popular science article we have
classified it as class A and thereby included it in the study based on the contents
of the other articles.

In Figure 2 it can be seen that the oldest identified article is from year 2003, and
that the most recent is from 2010. Here it should be noted that the last search in the
database was conducted in may 2010, which means that there may be more articles
published in 2010. It can be noted that all the identified articles are published rather
recently (i.e. since 2003). There were rather many articles published in 2005 and
2006. Four of these were by the same author on the same subject.

4.4 Investigated research areas

Introduction

The articles can be divided into a number of main areas based on the contents
of the articles. The formulation of content areas was done without the explicit
objective to adhere to the identified research questions defined in Section 3.

The categories were defined based on the contents of the articles. That is the
whole articles were used and no specific common parts of the articles were derived
with a data extraction template. Each article was sorted into the category where
it belonged the most even if it could be argued that some articles to some extent
were related to more than one category. However, there was no article where it was
really hard to decide the category or where we thought that it was equally related to
more than one category. This is probably natural since the categories were defined
based on the contents of the articles, and the objective during this process was to
define categories based on the articles. It should be noted that the classification

52 A Systematic Review of Research on Open Source Software in Commercial . . .

was first conducted in phase 1 based on the 19 articles that were identified in that
phase. It was rather easy to classify the 4 new articles in phase 2 in the same way,
which means that the same classification scheme (i.e. the four areas) was kept in
phase 2.

The identified categories are listed below. For each category the articles related
to it are listed.

• Company participation in open source development communities: [Bonac-
corsi07], [Hauge07], [Henkel08], [Lundell06], [Robles07].

• Business models with open source in commercial organizations: [Bonac-
corsi05], [Bonaccorsi06], [Harison10], [Hauge09], [Lindman09], [Munga09],
[Westenholz06], [West03].

• Open source as part of component based software engineering: [Arhip-
painen03], [Ayala09], [Li05a], [Li05b], [Li06a], [Li06b], [Li09].

• Using the open source process within a company: [Gaughan09], [Gurbani05],
[Lindman08].

The research conducted in each area is shortly summarized below.

Company participation in open source development communities

It is clear that there is company participation in many open source projects. For
example [Bonaccorsi07] found that in one third of the most active projects on
SourceForge there was some form of company participation. Companies can par-
ticipate as project coordinator, collaborator in code development, and by providing
code etc. In [Hauge07] one additional role, which is more concerned with integra-
tion of open source components, is identified.

Concerning the number of companies that participate in this kind of develop-
ment, [Lundell06] suggests that a significant number of the companies marginally
participate in open source community. However, the participation has increased es-
pecially in SME, compared to earlier conducted studies. Of the companies that use
open source projects, 75% can be said to have ”symbiotic relationship” with the
OS community. This can be compared to the investigation presented by [Rables07]
that show that 6-7% of the code in Linux Debian GNU distribution over the period
1998-2004 has been contributed by corporations. That is, it is clear that a rather
large part of the open source code has been provided by commercial organizations,
and that those commercial organizations play crucial roles in open source projects.
This is especially clear in the larger and more active projects.

It is also clear that if software should be provided to a community it is im-
portant to provide enough documentation and information to get the community
members going (e.g. [Hauge07]).

4 Results 53

One risk that could be seen by companies is that people working in the orga-
nization would reveal too much information to the outside of the organization if
they work with an open source community. However, the revealing behavior of
this kind of software engineers was investigated in [Henkel08] and it was found
that even if the engineers identified with the community they were significantly
less identified and ideological about open source than the control group of non-
commercial developers. The conclusion from that research is that there is indica-
tors of commercially harmful behavior in this kind of development.

[Bonaccorsi07] presents a list of important questions for further research, which
is relevant with respect to these questions. For example, are companies participat-
ing in open source projects more successful than other companies, and what are
the characteristics of companies participating in open source projects? It is worth
noting that no identified paper presents much research about how companies’ in-
ternal processes for collaborating with communities work. This could also be an
area for further research.

Business models with open source in commercial organizations

Concerning the business models it is clear that companies involved in open source
development besides developing open source products also offer customized soft-
ware based on open source products. It is also common to offer consulting and
training (e.g. [Bonaccorsi06]). It is also clear that business models include hybrid
strategies, such as described by [West03], where the focus is on large software
vendors. The paper presents an in-depth analysis on historical development of op-
erating systems, computers, and business strategies adopted by vendors. It is also
possible to base the business on being the link between an open source project
and the enterprise customers by integrating the product in a commercial package
[Munga09].

[Hauge09] presents a case study on a small Norwegian company that success-
fully established a business model around two open source products by establish-
ing three specialized user communities. The paper also concludes that while it is
important to attract developers to the community, it is as important to retain some
control over the product for commercial benefits.

Bonaccorsi [Bonaccorsi05] investigates reasons why companies participate in
open source communities. In particular, the paper analyzes discrepancies between
attitudes and behaviors in relation to three primary research questions. The ques-
tions deal with motivation to set up an open source business, whether the firms’
claims to uphold intrinsic, community-based values are aligned with the firms’ ac-
tions, and finally, if there is discrepancy, are there any observable patterns. The
conclusion points out that there is misalignment in attitudes and behavior of firms
in open source market place, confirming earlier research that companies use in-
trinsic values to attract developers in order to fulfill their own extrinsic goals. In
[Harison10] it is found that software companies with higher proportions of highly

54 A Systematic Review of Research on Open Source Software in Commercial . . .

educated personnel are more likely to adopt a business model based on supplying
open source software.

[Westenholz06] offers an insight into challenges of creating a sustainable busi-
ness around open source business model based on a case study. The study offers
insight into shifting of business strategies conducted by the entrepreneur in order
to make the business profitable around the combination of open source and propri-
etary software.

[Lindman09] asserts that business models can sometimes be too generic and
undertake an exploratory case study of three different organizations in order to
empirically identify different incentives companies have in releasing a product as
open source beyond the revenue generating ones. The paper points to challenges
in attracting and sustaining a community for a software product that is highly spe-
cialized.

Open source as part of component based software engineering

The article from Arhippainen [Arhippainen03] is a case study conducted at Nokia
on the usage of the OTS components. The paper presents a detailed analysis on
usage of third party components in general, and discusses advantages of using
proprietary over open source components and vice versa. It also identifies issues
related to software development methodology in terms of including third party
components.

The research presented in [Ayala09] assesses the state of reusable components
in the open source market based on survey conducted in Spanish and Norwegian
companies. The results of the survey also assess the needs of OSS industrial users
in component selection and identify challenges that can aid in maturing the open
source components market.

The 5 articles [Li05a], [Li09], [Li05b], [Li06a], [Li06b] are based on the anal-
ysis of data collected through state-of-the practice survey conducted in Norway,
Germany, and Italy. This research, conducted on over 100 projects that use pro-
prietary or open source OTS components, looks into risks associated with use of
such components, reasoning behind using OTS components, and impact on devel-
opment process when using the OTS components. Some of the findings suggest
that selection of OTS components is a very informal process, that OTS compo-
nents are selected throughout the development process life cycle even though early
selection yields benefits. It is also suggested that estimates on effort needed to in-
tegrate components is informal and dependent on experience, and as such, is often
inaccurate. Furthermore, some general conclusions of the studies point that the
OTS components rarely have negative impact on the system. Open source OTS
components are used in the same manner as proprietary components, thus without
modification. If a problem occurs with the OTS components, it takes substantial
amount of effort to correct them.

5 Discussion 55

It can be noticed that in [Li05a]–[Li09] there is no in-depth analysis of what
kind of open source components as OTS components, were used by companies.
For example, many mainstream proprietary IT workshops, sometimes very ”hos-
tile” to the idea of using open source components, like the ones producing software
for big financial houses, use PGP and other Unix based open source components
as these over the time have become de-facto standard. Investigating into the diver-
sity and type of open source OTS components that are used in projects can be a
question for further research.

Using the open source process within a company

An interesting area that is investigated in [Gurbani05] and [Lindman08] is that
of using an open source process within a company. That is, the product is not
provided to any community outside the organization, but instead handled as an
open source project within the company. One unit of the organizations owns the
product and provides it to the rest of the organization. Everyone in the organizatin
are allowed to use and modify the code, and changes are approved by the original
owners as in any other open source project.

Gurbani et. al. [Gurbani05] presents a case study on transferring the open
source development model for one software product at Lucent technology. In this
case the approach was judged successful by the authors, for example because the
product was needed in several products and the architecture was suitable for this.
Lindman et. al. [Lindman08] also investigates the usage of an internal open source
development methodology through a case study. This case study is conducted on
usage of Nokia iSource portal for hosting projects. The portal became very pop-
ular for managing heterogeneous types of projects: SCM, distributed, agile, inter-
company collaboration projects. The research results showed that implementation
of open source project management tools can facilitate innovation within the com-
pany. In [Gaughan09] the area is also investigated in a set of studies. Positive
aspects based on increased visibility in the organization such as as better code
quality and pride in work are listed. However, visibility can also lead to other as-
pects, such as privacy and knowledge retention, and easier workplace monitoring.
It should be noticed that all case studies are conducted at large companies, which
probably is natural.

A number of further research questions can be identified. One concerns how
contributions can be included in this kind of product when different developers
have different needs for the developed product.

5 Discussion
In this review, 23 articles were identified. We do not think that this is a large
number of articles compared to the importance of the field, and the general amount
of discussion about how open source can be used by commercial organizations.

56 A Systematic Review of Research on Open Source Software in Commercial . . .

Many of the studies are in the form of surveys, which gives a broad and neces-
sary understanding. Based on this it would probably be possible to conduct more
studies investigating specific cases of implementation of methodologies for deal-
ing with different aspects of open source in industry. More case studies could
probably be conducted on all aspects of the research questions. More case studies
could probably also provide more knowledge of research question 3 and research
question 4. That is, research could be carried out to understand more about the
cost and advantages of different approaches, and why different approaches are
chosen. It is also worth noticing that there are no controlled experiments at all in
the identified articles.

There is, of course, a risk that some articles have been missed in the search,
either because the search string has not identified all relevant articles, or because
the set of searched journals was not complete. The search string was developed
through a ”trial and error” approach in order to find as many relevant articles as
possible, but it is impossible to guarantee that all articles have been found. The
same is true for the coverage of the search. It is not possible to guarantee that all
relevant journals and conferences have been searched. Here the most severe risk is
probably for articles not in the traditional software engineering literature, such as
articles on business models, which is more general than traditional software engi-
neering. Since there is a risk that all articles have not been found it is reasonable to
discuss the effects of missing articles. Of course, the more complete the selection
of articles is the better it is. However, in this case the objective is more to identify
and summarize conducted research and experience than to carry out meta-analysis,
which probably means that the effect of missing single articles is lower. Even if
more articles would be found it is not unlikely that the major conclusions in terms
of identified areas, and main conclusions in areas, would be the same.

6 Conclusions

Concerning research question 1 and 2, i.e. what approaches and process are used
to introduce and provide open source components, it was possible to divide the the
identified papers into different areas. The following areas were defined based on
the articles: i) participation in open source development communities, ii) business
models with open source, and iii) treating open source software as components
in component based development. Besides this there are articles on iv) how open
source processes can be used within a company.

In all areas experience in some form were presented in the articles, although the
papers were on rather different areas. Some results were presented on motivation
and incentives.

The areas are important for research and it is interesting to see that research
is available in all these areas. The question of how to use open source practices
within a closed company (iv) is for example an interesting area for further research.

6 Conclusions 57

Based on this review we also propose that further research is conducted on
how companies can transform their proprietary software to open source and build
a community on it. Further research related to all four research questions in Sec-
tion 3.1 could involve more case studies on implementation of specific methodolo-
gies for dealing with different aspects of open source in industry.

Acknowledgment
This work was partly funded by the Industrial Excellence Center EASE – Embed-
ded Applications Software Engineering, (http://ease.cs.lth.se).

References
[AB09] N. Abdelkafi and T. Blecker. “From open source in the digital to the

physical world: a smooth transfer?” In: Management Decisions 47.10
(2009), pp. 1610–1632.

[Che+08] L. Chen, M. Ali Babar, and C. Cawley. “A status report on the eval-
uation of variability management approaches”. In: Proceedings of
Evaluation and Assessment in Software Engineering (EASE). 2008.

[Die+07] O. Dieste, A. Griman, and N. Juristo. “Developing search strategies
for detecting relevant experiments”. In: Empirical Software Engi-
neering 14 (5 2007), pp. 513–539.

[DD08] Tore Dybå and Torgeir Dingsøyr. “Strength of evidence in system-
atic reviews in software engineering”. In: Proceedings of the Inter-
national Symposium on Empirical Software Engineering and Mea-
surement. ESEM’08. Kaiserslautern, Germany, 2008, pp. 178–187.

[FF02] Joseph Feller and Brian Fitzgerald. Understanding Open Source Soft-
ware Development. Addison Wesley, 2002.

[Goo05] Sigi Goode. “Something for nothing: management rejection of open
source software in Australia’s top firms”. In: Information & Manage-
ment 42 (5 2005), pp. 669–681.

[HOA10] Martin Höst and Alma Oručević-Alagić. “A Systematic Review of
Research on Open Source Software in Commercial Software Prod-
uct Development”. In: Proceedings of Evaluation and Assessment in
Software Engineering (EASE). 2010.

[KC07] Barbara Kitchenham and S. Carter. Guidelines for performing sys-
tematic literature reviews in software engineering, v. 2.3. Tech. rep.
Keele University and University of Durham, 2007.

58 A Systematic Review of Research on Open Source Software in Commercial . . .

[Kri06] Sandeep Krishnamurthy. “On the Intrinsic and Extrinsic Motivation
of Free/Libre/Open Source (FLOSS) Developers”. In: Knowledge,
Technology & Policy 18.4 (2006), pp. 17–40.

[Lea+02] G. H. Leavesley, S. L. Markstrom, P. J. Restrepo, and R. J. Viger. “A
modular approach to addressing model design, scale, and parameter
estimation issues in distributed hydrological modelling”. In: Hydro-
logical Processes 16 (2 2002), pp. 173–187.

[LT01] Josh Lerner and Jean Tirole. “The open source movement: Key re-
search questions”. In: European Economic Review 45.4-6 (2001),
pp. 819 –826.

[Ray01b] Eric S. Raymond. The Cathedral and the Bazaar. O’Reilly Media,
2001.

[RH09b] Per Runeson and Martin Höst. “Guidelines for conducting and re-
porting case study research in software engineering”. In: Empirical
Software Engineering 14 (2 2009), pp. 131–164.

[SAB09] K-J. Stol and M. Ali Babar. “Reporting empirical research in open
source software: the state of practice”. In: Proceedings International
Conference on Open Source Systems. Skövde, Sweden, 2009, pp. 156–
169.

[SAB10] K-J. Stol and M. Ali Babar. “Challenges in using open source soft-
ware in product development: a review of the literature”. In: Proceed-
ings FLOSS. Cape Town, South Africa, 2010, pp. 17–22.

[Web04a] S. Weber. The Success of Open Source. Harvard University Press,
2004.

Appendix: Articles included in review
Arhippainen03 L. Arhippainen, Use and integration of third-party components in software

development. Technical report, VTT Publubilcation 489:84, 2003. In this report
a case study on component based development, including the use of open source
components, at Nokia is presented.

Ayala09 C. Ayala, Ø. Hauge, R. Conradi, X. Franch, J. Li, and K. Sandanger Velle, Chal-
lenges of the Open Source Component Marketplace in the Industry, In proc. OSS,
pp. 213-224, 2009. The paper analyzes the state of open source market place and
how companies interact to reuse components that the market place offers.

Bonaccorsi05 A. Bonaccorsi and C. Rossi, Intrinsic Motivations and Profit-oriented Firms
in Open Source Software. Do firms practise what they preach?. In proc. OSS, pp.
241-245, 2005. The articles investigates true motivation behind companies involve-
ment in open source activities based on data gathered through a survey of 146 Italian
companies supplying open source solutions.

6 Conclusions 59

Bonaccorsi06 A. Bonaccorsi, S. Giannangeli, and C. Rossi Entry strategies under compet-
ing standards: Hybrid business models in the open source software industry. Man-
agement Science, 52(7):1085-109, 2006. This is a further analysis of the same survey
as presented in [Bonaccorsi05]. They have developed a regression model explaining
the ”friendliness” to open source based on a set of factors.

Bonaccorsi07 A. Bonaccorsi, D. Lorenzi, M. Merito, and C. Rossi Business firms’ en-
gagement in community projects, empirical evidence and further developments of
the research, In First International Workshop on Emerging Trends in FLOSS Re-
search and Development, FLOSS’07, 2007. This is a survey based on a sample of
300 projects from SourceForge. In 97 of the projects there was at least one com-
pany participating. The three main types of involvement were ”project coordinator”,
”collaboration”, and ”provision of code”.

Gaughan09 Gaughan, G., Fitzgerald, B., and M. Shaikh, An examination of the use of
open source software processes as a global software development solution for com-
mercial software engineering. In proc. Euromicro Software Engineering and Ad-
vanced Applications, pp. 20-27, 2009. This paper summarizes experiences from
using open source processes within companies.

Gurbani06 V.K. Gurbani, A. Garvert, and J.D. Herbsleb, A case study of a corporate open
source development model. International Conference on Software Engineering, pp.
472-481, 2006. This paper presents a case study on transferring the open source
development model for one software product to a commercial environment at Lucent
technology, keeping the software proprietary in the company.

Harison10 E. Harison and H. Koski, Applying open innovation in business strategies: ev-
idence from Finnish software firms. Research Policy, Vol. 39, pp. 351-359, 2010. A
survey of 170 Finnish software firms with respect to business strategies is presented.

Hauge07 Ø. Hauge, C.F. Sørensen, and A. Røsdal, Surveying Industrial Roles in Open
Source Software Development. In proc. OSS, pp. 259-264, 2007. This paper defines
different industrial roles in open source community: provider, integrator, participant,
and inner source software participant. Through a survey, it investigates motivation,
challenges, and development practices of the companies taking on these roles within
the ITEA COSI project.

Hauge09 Ø. Hauge and S. Ziemer, Providing Commercial Open Source Software: Lessons
Learned. In proc. OSS, pp. 70-82, 2009. This paper presents a study on a small
Norwegian software company that has built its business around own OSS products
and compares the findings to other cases reported in literature.

Henkel08 J. Henkel, Champions of revealing – the role of open source developers in com-
mercial firms, Industrial Corporate Change, Vol. 18, No. 3, pp. 435-471, 2008.
This paper discusses how company employed persons can cooperate in open source
communities, with focus on how code is committed to the community.

Li05a J. Li, R. Conradi, O.P.N. Slyngstad, C. Bunse, U. Khan, M. Torchiano, and M.
Morisio, An empirical study on off-the-shelf component usage in industrial projects.
In Product Focused Software Development and Process Improvement (Profes), pp.
54-68, 2005. The paper presents survey conducted a large number of companies
from Norway, Germany, and Italy on the off-the shelf (OTC) components usage. It

60 A Systematic Review of Research on Open Source Software in Commercial . . .

focuses on factors that influence the choice in terms of whether the OTS component
is open source or proprietary.

Li05b J. Li, R. Conradi, O.P.N. Slyngstad, C. Bunse, U. Khan, M. Torchiano, and M.
Morisio, Validation of new theses on off-the-shelf component based development,
International Software Metrics Symposium, pp. 231-240, 2005. The paper focuses
on validating six theses related to usage of off-the-shelf components within compa-
nies.

Li06a J. Li, R. Conradi, O.P.N. Slyngstad, C. Bunse, U. Khan, M. Torchiano, and M.
Morisio, An empirical study on decision making in off-the-shelf component-based
development. In proc. International Conference on Software Engineering (ICSE),
pp. 897-900, 2006. This article investigates research questions resembling those in
[Li05a], but with a larger sample of projects.

Li06b J. Li, M. Torchiano, R. Conradi, O.P.N. Slyngstad, and C. Bunse, A state-of-the-
practice survey of off-the-shelf component-based development processes. In Reuse
of off-the-shelf Components, International Conference on Software Reuse, pp. 16-
28, 2006. This paper focuses on the development process when OTS components
are used.

Li09 J. Li, R. Conradi, C. Bunse, M. Torchiano, O.P.N. Slyngstad, and M. Morisio, Devel-
opment with off-the-shelf components: 10 facts. IEEE Software, 26(2):80-87, 2009.
This article basically summarizes the findings from the earlier articles by the same
group of authors. The conclusions are presented in the form of 10 facts learned about
development with OTS components.

Lindman08 J. Lindman, M. Rossi, P. Marttiin, Applying Open Source Development Prac-
tices Inside a Company. In proc. OSS, pp. 131-387, 2008. This paper investigates
characteristics of using open source and agile development practices within a com-
pany. It argues that usage of such practices can unlock innovation potential within a
company.

Lindman09 J. Lindman, J.P. Juutilainen, M. Rossi, Beyond the Business Model: Incen-
tives for Organizations to Publish Software Source Code. In proc. OSS, pp. 47-56,
2009. The paper investigates incentives for companies to release software as open
source through three exploratory case studies at different stages of code release.

Lundell06 B. Lundell, B. Lings, and E. Lindqvist, Perceptions and Uptake of Open Source
in Swedish Organizations. In proc. OSS, pp. 155-163, 2006. This paper investigates
usage of open source within Swedish companies from the perspective that goes be-
yond mere adoption of an open source software product. It focuses on participation
of the companies within the open source communities in roles of code contributors
on existing third party projects or its own products.

Munga09 N. Munga, T. Fogwill, and Q. Williams, The adoption of open software in busi-
ness models: a Red Hat and IBM case study. In proc 2009 Annual Research Con-
ference of the South African Institute of Computer Scientists and Information Tech-
nologists, pp. 112-121, 2009. This paper investigates the business models of open
source related aspects of Red Hat and IBM.

Robles07 G. Robles, S. Dueñas, and J.M. Gonzalez-Barahona, Corporate Involvement of
Libre Software: Study of Presence in Debian Code over Time. In proc. OSS, pp.

6 Conclusions 61

121-132, 2007. This paper investigates corporate involvement in Linux Debian GNU
distribution over the period from 1998-2004 based on copyright attributions in the
source code. The results of the research show that 6-7% of the code has been con-
tributed by corporations.

West03 J. West, How open is open enough? melding proprietary and open source platform
strategies. Research Policy, 32(7):1259-1285, 2003. The authors present a timeline
for what has happened with respect to ”hybrid” software systems, that is software
systems that consists of a mixture of open source software and proprietary software,
such as an Apple computer. Three case studies are presented.

Westenholz06 A. Westenholz, Institutional Entrepreneurs and the Bricolage of Intellectual
Property Discourses. In proc. OSS, pp. 183-193, 2006. This paper is a case study on
an institutional entrepreneur who builds his own company on a business model that
mixes open and closed source software practices.

PA
P

E
R

II

USAGE OF OPEN SOURCE IN
COMMERCIAL SOFTWARE
PRODUCT DEVELOPMENT

Abstract

Open source components can be used as one type of software component in devel-
opment of commercial software. In development using this type of component, po-
tential open source components must first be identified, then specific components
must be selected, and after that selected components should maybe be adapted be-
fore they are included in the developed product. A company using open source
components must also decide how they should participate in open source project
from which they use software. These steps have been investigated in a focus group
meeting with representatives from industry. Findings, in the form of recommen-
dations to engineers in the field are summarized for all the mentioned phases. The
findings have been compared to published literature, and no major differences or
conflicting facts have been found.

1 Introduction

Open source software denotes software that is available with source code free of
charge, according to an open source license [FF02]. Depending on the license type,

Martin Höst, Alma Oručević-Alagić, and Per Runeson
International Conference on Product Focused Software Development and Process Improvement
(PROFES), pp. 143-155, 2011

64 Usage of Open Source in Commercial Software Product Development

there are possibilities to include open source components in products in the same
way as other components are included. That is, in a large software development
projects, open source software can be used as one type of component as an alter-
native to components developed in-house or components obtained from external
companies.

There are companies that have experience from using well known open source
projects. Munga et al. [Mun+09], for example, investigate business models for
companies involved in open source development in two case studies (Red Hat and
IBM) and concludes that ”the key to their success was investing resources into the
open source development community, while using this foundation to build stable,
reliable and integrated solutions that were attractive to enterprise customers”. This
type of development, using open source software, is of interest for several com-
panies. If open source components are used in product development there are a
number steps that the company needs to go through, and there are a number of
questions that need to be solved for each step.

First potential components must be identified, which can be done in several
ways. That is the company must decide how to identify components. Then, when
potential components have been identified, it must be decided which component
to use. In this decision there are several factors to consider, and the company must
decide how to make this decision. Using the components there may be reasons
to change them, which gives rise to a number of questions on how this should
be done and to what extent this can be recommended. A company working with
open source components must also decide to what extent to get involved in the
community of an open source project.

There is some research available in this area [HOA10], although there is still
a need to collect and summarize experience from companies working in this way.
In this paper, findings are presented from a workshop, in the form of a focus group
meeting, where these topics were analyzed by industry representatives.

The outline of this paper is as follows. In Section 2 the methodology of the
research is presented, and in Section 3 the results are presented. The results are
compared to results presented in the literature in Section 4, and in Section 5 the
main conclusions are presented.

2 Methodology

2.1 Focus group

The workshop was run as a focus group meeting [Rob02; Kon+08]. At the work-
shop, participants informally presented their experience from development with
open source software, for example from using open source components in their
product development, or from participating in open source communities. The in-
tention was to give all participants both an insight into how others in similar situ-

2 Methodology 65

ations work with these issues, and to get feedback on one’s own work from other
organizations. The result of a similar type of workshop was presented in [ER10].

Invitations to the workshop were sent to the network of the researchers. This
includes earlier participants at a seminar on ”research on open source in industry”
where rather many (≈ 50) people attended, and mailing lists to companies in the
region. This means that the participants cannot be seen as a representative sample
of a population and generalizations cannot be made in traditional statistical terms.
Instead analysis must be made according to a qualitative method, e.g. as described
by Fink [Fin02, p. 61-78]. This is further discussed in Section 2.4.

2.2 Objectives and discussion questions

The main research questions for the study were:

• How should open source components for inclusion in products be selected?
Is there a need to modify selected components, and if so, how should this be
done?

• To what extent is code given back to the open source community, and what
are the reasons behind doing so?

Discussion questions could be derived from the objectives in different ways.
One possibility would be to let the participants focus on a specific project and
discuss issues based on that. The advantage of this would be that it would probably
be easy for the participants to know what actually happened since it concerns a
specific project. The difficulties with this approach are that there is a risk that
participants have valuable experience from more than one project and therefore
cannot express all experiences they have since they should focus on one specific
project. There is also a risk that data becomes more sensitive if it is about a specific
project. Another alternative is to ask about more general experience from the
participant and let them express this in the form of advice to someone working
in the area. That is, the participants use all the experience and knowledge they
have, without limiting it to a specific project or presenting details about projects,
customers, etc. This was the approach that was taken in this research.

Based on the objectives of workshop, the following discussion questions were
phrased:

1. How should one identify components that are useful, and how should one
select which component to use?

2. How should one modify the selected component and include it in ones prod-
uct?

3. How should one take care of updates from the community?

66 Usage of Open Source in Commercial Software Product Development

Transcribe into

electronic form

Sort notes under

phases

Develop

summaries for

each phase

P-notes R-notes

Divide into shorter

notes

Participants review

summaries

meeting

participants

report

Figure 1: Main analysis steps

4. How should one handle own modifications/changes? What are the reasons
for giving back code (or not giving back code)?

In order to get a good discussion, where as many relevant aspects as possible
were covered, it was monitored in the following way. For each discussion ques-
tion, the participants were given some time to individually formulate an answer, or
several answers, on a Post-it note. When individual answers had been formulated
each participant presented their answer to the others, and the notes were posted on
the wall. During the discussions, the researchers also took notes.

2.3 Analysis procedure
The main data that was available for analysis were the notes formulated by the
participants (”P-notes” below) and the notes taken by the researchers (”R-notes”
below). The analysis was carried out in a number of steps, which are summarized
in Figure 1 and explained below.

First all P-notes were transcribed into electronic form. In this step one note was
transformed into one line of text. However, in some cases the participants wrote
lists with more than one note at each piece of paper. In these cases this was clearly

2 Methodology 67

marked in the transcript. When interpreting the notes, the researcher were helped
by the fact that the participants had presented the notes at the meeting earlier.

The R-notes were derived by dividing a longer text into single notes. After this
the P-notes and the R-notes were on the same form.

After this a set of phases were defined, based on the lifecycle phases in soft-
ware development. These phases were based on the areas covered by the questions,
but not exactly the same. Then, all notes could be sorted under the phases in which
they are relevant.

Next, all notes were grouped in related themes within phases, and based on
these summaries were developed. This means that one presentation summary was
developed for each phase. The final version of these summaries are presented in
Section 4.

Based on this, a report was developed with the summaries. The participants
were given the possibility to review and adapt the summaries in the report. This
resulted only in minor changes.

This procedure results in a summary, as presented in Section 4. The results
were given back to the participants in the form of a technical report. This result is
also compared to the literature in Section 4 of this article.

2.4 Validity
Since the collected data is analyzed qualitatively, the validity can be analyzed in
the same way as in a typical case study, which in many cases also is analyzed qual-
itatively. Validity can for example be analyzed with respect to construct validity,
internal validity, external validity, and reliability [Rob02; RH09b].

Construct validity reflects to what extent the factors that are studied really rep-
resent what the researcher have in mind and what is investigated according
to the research questions.

In this study we believe that the terms (like ”open source”, ”component”,
etc.) that are used are commonly used terms and that the risk of not meaning
the same thing is low. It was also the case that the participants formulated
much of the notes themselves, which means that they used terms that they
fully understood. Besides this, the researchers participated in the whole
meeting, which means that it was possible for them to obtain clarifications
when it was needed. Also, the report with the same material as in Chapter 4
of this paper was reviewed by the participants.

Internal validity is of concern when causal relations are examined. In this study
no causal relations are investigated.

External validity is concerned with to what extent it is possible to generalize
the findings, and to what extent the findings are of interest to other people
outside the investigated case.

68 Usage of Open Source in Commercial Software Product Development

The study was conducted with a limited set of participants from a limited set
of organizations. This means, of course, that the results cannot automatically
be generalized to other organizations. Instead it must be up to the reader
to judge if it is reasonable to believe that the results are relevant also for
another organization or project. The results are compared and validated to
other literature and the type of results is not intended to be specific for a
certain type of results.

It should also be noticed that the findings from the focus group are based on
the opinions of the participants. There may be a risk that the opinions are
very specific for one participant or for the organization he/she represents.
The nature of a focus group meeting helps avoiding this problem. According
to Robson there is a natural quality control and participants tend to provide
checks and react to extreme views that they do not agree with, and group
dynamics help in focusing on the most important topics [Rob02, Box 9.5].

Reliability is concerned with to what extent the data and the analysis are depen-
dent on the specific researchers.

In order to obtain higher validity with respect to this, more than one re-
searcher were involved in the design and the analysis of the study. Also, as
mentioned above, the report with the same material as in Chapter 4 of this
paper was reviewed by the participants.

Another aspect that is relevant to this is how the questions were asked and
what type of data the participants are asked to provide. In order to avoid
problems with confidentiality, the participants were asked to formulate an-
swers more as advice to someone who is working in the area than as concrete
experiences from specific (and named) projects. We believe that this makes
it easier to provide data for this type of participants.

3 Results from focus group meeting

3.1 Participants
At the workshop the following participants and organizations participated:

A. Four researchers in Software Engineering from Lund University, i.e. the
authors of this paper and one more person

B. One researcher in Software Engineering from another university

C. Two persons from a company developing software and hardware for embed-
ded systems.

D. One person from a company developing software and functionality based on
an embedded system

3 Results from focus group meeting 69

E. One person from an organization developing software and hardware for em-
bedded systems with more than 10 years tradition of using open source soft-
ware

F. One person from an organization with the objective of supporting organiza-
tions in the region to improve in research, innovation and entrepreneurship
in mobile communications

That is, in total 10 persons participated, including the authors of this paper.

3.2 Identification
Previously, companies were used to choose between making components them-
selves or to buying them. Now the choice is between making or buying, or using
an open source component. That is, there is one more type of component to take
into account in the identification process. It should also be pointed out that it is
a strategic decision in terms of whether the product you are developing should
be seen as a closed product with open source components or as an open source
product.

When components are identified it is important that this is based on a need in
the development and that it maps to the product requirements. When it comes to
the criteria that are used when identifying components, they should preferably be
identified in advance.

In the search process, the advice is to start with well-known components and
investigate if they fulfill the requirements. There is also a lot of knowledge avail-
able among the members in the communities, so if there are engineers in the or-
ganization that are active in the community, they should be consulted. A further
advice is to encourage engineers to participate in communities, in order to gain this
kind of experience. However, the advice to consult engineers in the organization is
not depending on that they are members of the communities. A general knowledge
and awareness of existing communities is also valuable.

The next step is to search in open source forums like sourceforge and with
general search engines like google. The advice here is to use technical terms for
searching (algorithm, protocols, standards), instead of trying to express what you
try to solve. For example, it is harder to find information on "architectural frame-
work" than on specific techniques for this.

3.3 Selection
The more general advises concerning the selection process is to, again, use pre-
defined criteria and recommendations from colleagues. It is also possible to con-
duct a basic SWOT-analysis in the analysis phase.

A more general aspect that is important to take into account is if any of the
identified components can be seen as an ”ad hoc standard”, meaning that they are

70 Usage of Open Source in Commercial Software Product Development

used in many products of that kind and if it will increase interoperability and the
ease communication with other components. One criterion that is important in this
selection concerns the legal aspects. It is necessary to understand the constraints
posed by already included components and, of course, other aspects of the licenses.

Other more technical criteria that are important include programming lan-
guage, code quality, security, and maintainability and quality of documentation.
It is necessary to understand how much effort is required to include the component
in the architecture and it is necessary to understand how the currently used tool
chain fits with the component. A set of test cases is one example of an artifact that
is positive if it is available in the project.

A very important factor concerns the maturity of the community. It is neces-
sary to investigate if the community is stable and if here is a ”backing organization”
taking a long-term responsibility. It is also important to understand what type of
participants in the community that are active. The roadmap of the open source
project is important to understand in order to take a decision that is favorable for
the future of the project.

3.4 Modification

First it should be emphasized that there are disadvantages of making changes to an
own version of the components. The disadvantages are that the maintenance costs
increase when updates to new versions of the components are made, and it is not
possible to count on extensive support for specific updates from the community.
So, a common recommendation is to do this only if it is really necessary.

There are some reasons why modifications must be made. Especially adapta-
tion to specific hardware is needed, but also optimizations of different kind. When
these changes are made it is in many cases favorable to give back to the commu-
nity as discussed in the next section but if this is not possible an alternative is to
develop ”glue software” and in that way keeping the API unchanged.

If changes should be made it is necessary to invest effort in getting a deep
knowledge of the source code and architecture, even if a complete set of docu-
mentation is not available.

3.5 Giving back code

It is, as discussed in the previous section, in many cases an advantage to commit
changes to the open source project instead of working with an own forked version.
In this way it is easier to include updates of the open source component. In order
to manage this it is in many cases an advantage to become an active member of
the community, and maybe also take a leading role in it. When modifying an open
source component it is, of course, an advantage if ones own changes can be aligned
with the future development of the open source component.

4 Conclusions 71

Identification

Selection

Modification

Giving back

- Take "ad-hoc standards" into account

- Consider legal constraints

- Consider technical aspects (language, code quality)

- Assess needed changes to product

- Take community status into account

- Base identification on needs/requirements

- Investigate well-known components

- Talk to engineers

- Search in open source forums and google, use technical terms

- Try to avoid changes, but maybe necessary e.g. due to hardware

- If component is modified, deep knowledge is necessary

- If changes are needed consider making "glue software"

- An advantage to give back if you need to modify

- Become active member in the community, and even take leadership

- IPR issues and competencies main reasons not to give back code

- Complementing material, such as test cases, can be supplied

Figure 2: Main findings from workshop

However, there are some reasons not to give back changes too. The most im-
portant reason is probably that you want to protect essential IPR’s and core com-
petences in the organization. That is, key competence must in some situations be
hidden from competitors. It should, however, be noticed that there may be require-
ments from the license to give back code. Also, after some time, all software will
be seen as commodity, which means that this kind of decision must be reconsidered
after a while. Another reason not to make changes public is that possible security
holes can be made public. In some cases it is easier to get a change accepted if test
cases are supplied.

3.6 Summary of results

The main findings from the workshop, in terms of recommendations for the four
phases, are summarized in Figure 2.

4 Conclusions

We believe that many of the recommendations from the participants are important
to take into account in research and in process improvement in other companies.
The most important findings from the workshop are summarized below. The find-

72 Usage of Open Source in Commercial Software Product Development

ings are in line with presented research in literature as described in Section 4,
although the details and formulations are specific to the results of this study.

In the identification phase it is important to take the needs and the requirements
into account, and to investigate well-known components. It is also advised to dis-
cuss the needs with engineers in the organization, since they can have knowledge
of different components and communities. When forums are searched, an advice
is to use technical terms in the search string. When selecting which components
to use it is important to, besides taking technical aspects, like programming lan-
guage, into account, also consider legal constraints and ”ad-hoc standards”. It is
important to investigate the status of the community of a project, and the future of
the project, which for example depends on the community. In general it can be said
that changing components should be avoided if possible. If it is possible to make
adaptations with ”glue-code” this is in many cases better since less effort will be
required in the future when components are updated by the community. However,
there are situations when it is necessary to make changes in the components.

Even if there may be issues with property rights, it is in many cases an advan-
tage to provide code to the community if changes have been made. In general it
can be said that it is advised to become an active member in open source projects.

The findings from the focus group meeting were compared to published litera-
ture, and no conflicting facts were found.

Together with further research on the subject it will be possible to formulate
guidelines for software project managers on how to work with open source soft-
ware.

Acknowledgments
The authors would like to thank the participants for participating in the study.

This work was funded by the Industrial Excellence Center EASE – Embedded
Applications Software Engineering, (http://ease.cs.lth.se).

References
[ER10] Emelie Engström and Per Runeson. “A Qualitative Survey of Re-

gression Testing Practices”. In: Proceedings of International Confer-
ence on Product-Focused Software Process Improvement (PROFES).
2010, pp. 3–16.

[FF02] Joseph Feller and Brian Fitzgerald. Understanding Open Source Soft-
ware Development. Addison Wesley, 2002.

[Fin02] Arlene Fink. The Survey Handbook. 2:nd. Sage Publications, 2002.

4 Conclusions 73

[HOA10] Martin Höst and Alma Oručević-Alagić. “A Systematic Review of
Research on Open Source Software in Commercial Software Prod-
uct Development”. In: Proceedings of Evaluation and Assessment in
Software Engineering (EASE). 2010.

[Kon+08] Jyrki Kontio, Johanna Bragge, and Laura Lehtola. “The Focus Group
Method as an Empirical Tool in Software Engineering”. In: Guide
to Advanced Empirical Software Engineering. Ed. by Forrest Shull,
Janice Singer, and Dag I. K. Sjøberg. Springer, 2008.

[Mun+09] Neeshal Munga, Thomas Fogwill, and Quentin Williams. “The adop-
tion of open source software in business models: A Red Hat and IBM
case study”. In: Annual Research Conference of the South African In-
stitute of Computer Scientists and Information Technologists, 2009,
pp. 112 –121.

[Rob02] Colin Robson. Real World Reserach. 2:nd. Blackwell Publishing,
2002.

[RH09b] Per Runeson and Martin Höst. “Guidelines for conducting and re-
porting case study research in software engineering”. In: Empirical
Software Engineering 14 (2 2009), pp. 131–164.

PA
P

E
R

II
I

A CASE STUDY ON THE
TRANSFORMATION FROM

PROPRIETARY TO OPEN
SOURCE SOFTWARE

Abstract
Many large companies, from the traditionally proprietary software industry, are
opening up and embracing the open source software (OSS) development process
model as a part of their business strategy. Despite the recognized potential the
OSS community offers, there are still many questions and unknowns about the
transition process. We present an extensive analysis of static software quality met-
rics changes for Ingres, an open source enterprise database management system
(DBMS), as the software was moved from the proprietary into open source soft-
ware development environment. The software quality metrics of special interest
for the research are cyclomatic complexity, effective lines of code, the degree of
system modularity, and the amount of comments in the code. The conducted re-
search shows an overall improvement in the software quality metrics and signifi-
cant increase of the source code base. The overall improvement is comprised of
a decrease in software quality metrics for source files that were changed between
the proprietary and the OSS version and an increase in software quality metrics for
the source files added through Ingres OSS community development process.

Alma Oručević-Alagić, Martin Höst
Extended version of 6th International IFIP WG 2.13 Conference on Open Source Systems (OSS
2010), Notre Dame, IN, USA, May 30 - June 2, 2010, Proceedings, pp. 367-372, 2010

76 A Case Study on the Transformation From Proprietary to Open Source . . .

1 Introduction

In the last few decades, a traditional software production has come to presume an
”in-house” or closed source development process, which means that all develop-
ment is carried out by engineers employed within the same organization and the
software source code that is not available for the general public. There are several
different types of OSS licenses [FF02; Ray01a] with common characteristic of
source code being available free of charge to the general public. This means that
the traditional business models which are based on the sale of software licenses
are not applicable for software produced through the OSS community process.

The traditional software development has been taking advantage of third party
components, among which open source components have been playing an im-
portant role [Li+06b; Li+06a]. Thus, the open source components are perceived
as just another third party component or an alternative to in-house solution and
COTS. This approach has large similarities to traditional development, but a dif-
ference is that the company that uses the open source component must decide to
what extent it will participate in the development of the component. It would, of
course, be possible to use the available component as is, but for several reasons
companies may want to participate in OSS development process, e.g. to increase
their understanding of the software they are using, to be able to affect the software
evolution, and to support it in order to secure its future existence. There is also
an interest not only in participating in an open source community, but to provide a
software product to an open source community, e.g. [Bon+07].

Since virtually no development starts from scratch, an important process to
investigate is that of transforming a traditional proprietary software product to an
open source product. In this process the company will probably have less control
over the evolution of the software than in traditional development, and an impor-
tant question concerns what impact the changes made by the community will have
on the software quality metrics such as cyclomatic complexity of the code and
modularity.

The purpose of this paper is to investigate one case of this type of transforma-
tion. The case that is chosen is the Ingres database management system [Ing09],
which, according to many, has received a new breath of life after its release into
the open source community. The software was for a long time proprietary and
after that it was transformed to open source. Software metrics that show how the
source code has evolved under the OSS development process, are identified and
then analyzed for this product before the transition started and after the transition
has occurred.This is one case of this type of transformation and the intention is to
learn as much as posible from this case. It should however be seen as one case
and the results are not by default representative for all other cases. Instead, other
case studies can bring light on other cases and together they can form aggregated
knowledge.

The outline of this paper is as follows. In Section 2, the background informa-

2 Background and related work 77

tion on the case software and related research studies is presented. In Section 3,
the research method is further defined. Section 4.4 presents the obtained results,
while Section 5 discusses and analyses the obtained results in some more detail.
Finally, conclusions are drawn in Section 6.

2 Background and related work

The roots of the Ingres reach back to the 1970s and UC Barkley, when the initial
development of the software was started as open source. The same code base
was modified and spawned into Sybase and Microsoft SQL server in 1980s. In
1994, the software was acquired by CA (Computer Associates) from the ASK
Group, the company that created a proprietary version of the Ingres code. By the
year 2004, there were roughly around 5000 customers of the proprietary Ingres
DBMS software which was rather small customer base compared to the customer
base of some of its major competitors such as MySQL and Oracle. In order to
increase the market share, CA decided to transform the product to open source
in 2004. The company implemented loss-leader/market positioner business model
[Ray01a]. To reaffirm its commitment and support to Linux development process,
Computer Associates has contributed Kernel Generalized Event Model software
to Linux. The software, incorporated into the Linux kernel, improves security
of Linux and feeds performance information from Linux systems to management
systems [O’G04].

In November of 2005, Computer Associates and Garnett and Helfirch capital
created a new company, Ingres Corporation. The main role of Ingres Corporation
is to oversee the open source development process, provide support and services
for Ingres and OpenRoad. Today, Ingres customer base includes 10,000 enterprise
customers, among which 136 belong to the Fortune 500 companies like 3M, Bea
Systems, and Lufthansa [Ass09]. Hence, the positive turnaround Ingres has made
since it went open source, make the analysis of the software code quality metrics
even more interesting, especially when viewed from the historical perspective, i.e.
comparing the code metrics of the last proprietary version of the software from
2004, and the most recent one released as open source in November of 2008.

The Open Source Report, released in 2008, is the product of a two years long
effort by Coverity Software with support from the US Department of Homeland
Security[Sof08]. Over 55 million lines of code over the two year period for more
than 250 open source projects, totaling around 10 billion lines of code, was an-
alyzed. One of the main purposes of this study was to provide developers with
better understanding of the relationships between software defects and fundamen-
tal elements of coding such as function lengths and code complexity.

Bonaccorsi et. al. [Bon+07] have investigated business firms involvment in
OSS projects. They found that in 97 out of 300 sampled projects, at least one
business firm was involved. Three main kinds of involvement were found: project

78 A Case Study on the Transformation From Proprietary to Open Source . . .

coordination, which was the most frequent case, collaboration of software devel-
opment, and provision of code. This confirms the need for investigation of the
process of transforming proprietary software to OSS.

Stemlos [IS02] conducted code quality analysis in open source development
for 100 applications written for Linux. It was determined that some open source
products have lower quality of code produced in OSS environment then that which
is expected as an industry standard. Unlike this research which compares software
quality of the same product in its latest proprietary version and version created
after 4 years of OSS development, the presented work in [IS02] analyses quality
metrics for code produced by OSS community against industry standard.

Related work also includes the work of Gurbani et. al. [VKG06], who have
conducted a case study of managing an internal project as an OSS project. The
difference compared to this research is that the work presented in [VKG06] con-
cerns a project that was kept within a company, and there was not the same focus
on code quality metrics.

3 Research approach

3.1 Introduction
The study is conducted as a case study [RH08]. The investigated case is the trans-
formation of the Ingres code, from proprietary to open source. The study is ex-
ploratory with the overall objective to understand what type changes that were
made to the case software and how this affected some commonly use code met-
rics.

In this study a quantitive approach has been taken. Hence, code metrics such as
cyclomatic complexity, effective lines of code, modularity or average file function
count, have been measured and compared. For example, the study performed by
Zhang [HZ07] on public NASA datasets shows that static code complexity mea-
sures can be useful indicators of component quality.

In order to analyze and compare code metrics of the most recent proprietary
version, further referred as 2004v, and open source version, further referred as
2008v, of Ingres, the 2004v was obtained by directly contacting the Ingres Corpo-
ration. The 2008v was downloaded from the Ingres Open Source community web
site1 in November of 2008.

3.2 Research questions
The following research questions were investigated during the research:

1. What parts of the Ingres DBMS software components went through the most
source code changes in terms of source files added, changed, and deleted?

1http://community.ingres.com/wiki/Ingres _DBMS _Downloads

3 Research approach 79

Ingres Source Code Architecture

Front End Common Back End

CL/GL

Figure 1: High Level View of Major Source Code Components of Ingres Source
Code Architecture

2. How did Ingres DBMS code base change under the OS community process
in terms of static source code metrics?

For research question 1, the focus is on architecture level changes. For research
question 2, metrics with respect to quality attributes like size, complexity, and
amount of comments in the code are of interest. It should be noted that there is no
simple linear relationship between these metrics and how ”good” the software is.
For example, with respect to complexity it is in general recommended not to have
too high complexity, but when the complexity is below a certain value, required
functionality cannot be implemented. For comments there is probably a similar
relationship. If there are very few comments it is probably not as good as if there
are more comments, but if there are very many comments it is probably not better
than, or even as good as, if here a bit fewer comments. This makes it important to
highlight the objective of this study, i.e. to understand what changes that have been
carried out, and not to assess or compare the case software to any other software.

3.3 Investigated software

In order to ease the understanding of the approach for collecting and analyzing data
the high level architecture of the case software is described here. The architecture
is illustrated in Figure 1. It is grouped into four major components:

Front End: Functionality covers user interface facilities.

Back End: Functionality covers DBMS server functionality.

Common: Functionality covers connectivity and communications between the
front end the back end.

Utility: Functionality covers utility libraries that interact with operating system.

80 A Case Study on the Transformation From Proprietary to Open Source . . .

Deleted

Unchanged

Changed

Added

Type 0

Type 1

Type 2

Type 3

2004v 2008v

Figure 2: File types (files represented by circles)

A program that parses through the 2004v and 2008v code base was created, or
more specifically, the files and subdirectories under the main src directory that
contains all of the source files. The files were compared between the two code
bases in order to determine which files exist only in 2004v, further referred as file
type 0, which files are identical in 2004v and 2008v versions, further referred as
file type 1, which files were modified between the two versions, further referred as
file type 2, and finally, which files only exist, in 2008v, further referred as file type
3. The following list provides an overview of the changes, and the types are also
shown in Figure 2.

• File type 0 : Source files that can be found only in 2004v

• File type 1 : Source files identical - unchanged between the 2004v and 2008v

• File type 2: Source files that were changed between the 2004v and 2008v

• File type 3: Source files that were added in 2008v

3.4 Metrics

The following metrics were measured in both versions:

3 Research approach 81

• lines of code (LOC)

• effective lines of code (ELOC)

• comment lines (C)

• total cyclomatic complexity (TCC)

• file functions count (FFC)

All metrics are calculated on file level. For example, LOC denotes how many
lines of code there are in each source file, and the sum of these values for all
source files denotes the total number of lines of code per source code base. The
LOC metric takes into consideration all lines of code but blank only or comment
only lines. Hence, all lines in the source file except the blank lines or comment
lines are taken into consideration by the LOC statistic.

For coding purposes developers often use braces or parenthesis to make code
more readable, but this practice can inflate LOC metrics [RSM08]. The ELOC
metric takes into consideration all lines of code except blank only or comment
only lines as well as the lines containing only standalone braces or parenthesis ({,
}, (,)) Thus, lines counted by the ELOC metric are a subset of the lines counted
by the LOC metric.

C denotes the number of comment lines. The comment lines can appear by
themselves on one physical line of code, or can be co-mingled.

The TCC or total cyclomatic complexity metric, also known as McCabe’s
cyclomatic complexity, is the degree of logical branching per source file. The
cyclomatic complexity is calculated as

TCC = E −N + 2P

where E denotes the number of edges of the graph, N the number of nodes
of the graph, and P is the number of connected components [FP98]. This value is
calculated for each function in a file. For each file a value is calculated as the sum
of the complexity of each function in the file.

FFC, or total number of file functions, within a source file determines the
modularity of the file.

The FFC metric combined with ELOC metric produces average number of
effective lines of code AELOC metric, calculated as:

AELOC =
ELOC

FFC
.

In the same way, the average cyclomatic complexity (ACC) can be calculated
as:

ACC =
TCC

FFC

82 A Case Study on the Transformation From Proprietary to Open Source . . .

In addition to the above metrics, the amount of comments are of interest.
Therefore a metric describing the relative number of comments in each file RC
is calculated:

RC =
C

ELOC + C

Metrics for each file were derived with a metrics tool and stored in a database
together with file type information for analysis.

3.5 Analysis procedure
Analysis with respect to research question 1 was conducted by determining the
percentage changes in terms of file type 0, file type 1, file type 2, and file type 3 per
major components of the source code. The components correspond to directories
listed under "src" directory which houses all of the Ingres source code. In addition,
more granular analysis were conducted on file level.

When analysing research question 2, the differences between the different ver-
sions of the case software were investigated with hypothesis tests. The null hy-
potheses state that the code changes made to 2004v, resulting in 2008v, had no
impact on code metrics. The two-sided alternative hypotheses state that there was
an impact.

Let T = {0, 1, 2, 3} denote file types according to above and let
M = {AELOC,ACC,RC} denote the different metrics of interest, so that
µm(v, Ts) represents the expected mean of metric m ∈ M for all files of types
Ts ⊆ T in version v. Then the following null hypotheses and alternative hypothe-
ses have been defined:

H0m,changed : µm(2004v, {2}) = µm(2008v, {2})

Ham,changed : µm(2004v, {2}) 6= µm(2008v, {2})

and
H0m,new : µm(2004v, {0, 1, 2}) = µm(2008v, {3})

Ham,new : µm(2004v, {0, 1, 2}) 6= µm(2008v, {3})

and
H0m,all : µm(2004v, {0, 1, 2}) = µm(2008v, {1, 2, 3})

Ham,all : µm(2004v, {0, 1, 2}) 6= µm(2008v, {1, 2, 3})

That is, three null hypotheses have been formulated for each metric in M so
that there is one concerning only the changed files (H0m,changed), one concerning
all files from 2004v and only newly added files to 2008v (H0m,new), and one
concerning all the files in 2004v and 2008v (H0m,all). This means that |M |×3 =
3 × 3 = 9 null hypotheses and equally many alternative hypotheses have been
defined in total.

3 Research approach 83

This means that hypothesis tests are conducted by treating file level measure-
ments as independent samples. This gives the possibility to see if observed changes
are of a true pattern (it is possible to reject the null hypothesis) or if they have
occurred more by chance (it is not possible to reject the null hypothesis). Analy-
sis of data for distributions of metrics results for version 2004v and 2008v were
performed and it was determined that data for the metrics do not follow normal
distribution. Hence in order to compare distribution of the metrics, non parametric
tests, Mann-Whitney and Wilcoxon were performed. The Wilcoxon Signed-Rank
Test for matched pairs was used in order to compare paired data sets (i.e., in analy-
sis ofH0m,changed), and the Mann-Whitney U test was used to compare un-paired
data (i.e., in analysis of H0m,all and H0m,new).

3.6 Validity

In this section the validity of the research is analysed with respect to the types of
validity threats presented, for example, in [Woh+00].

Construct validity: The construct validity is related to the relationship between
the concepts and theories behind the experiment and what is measured and
affected. Commonly accepted metrics for static software quality measure-
ments such as cyclomatic complexity, lines of code, file function count, ef-
fective lines of code, were used. This means that the risk of using metrics
that do not represent the concept of code quality is lowered.

Conclusion validity: The conclusion validity is concerned with the possibility to
draw correct conclusions regarding the relationship between treatments and
the outcome of an experiment. All of the population distributions analyzed
did not follow normal distributions, and thus, in order to analyze the distri-
butions, tests of lower statistical power than the t-test had to be used. Hence,
the statistical tests used to analyze the data were Wilcoxon Signed-Rank Test
for a matched pairs experiment and the Mann-Whitney U Test for indepen-
dent random samples. This means that the statistics were not dependent on
a normal distribution. It should be noted that the number of data points can
be considered high. This means that even if non-parametric tests were to be
used, the chance of detecting differences in distributions can be seen as high
due to the large amount of data.

Internal validity: The internal validity is concerned with factors that may affect
the dependent variables without the researcher’s knowledge. Over some pe-
riod of time, software quality will change, as the software goes through vari-
ous maintenance processes. The software that is left unchanged for a longer
period of time, will normally see its software quality metrics depreciated
e.g. as stated by Lehman’s laws [Som07]. On the other hand, a software that
is maintained will see a change in its software quality metrics. It is unknown

84 A Case Study on the Transformation From Proprietary to Open Source . . .

what an average change in software quality metrics for similar products over
four year period would be in proprietary environment. If the average change
amount was established then it could be compared to the one introduced by
the OSS maintenance process. However, the fact that the product has been
transformed to OSS has been a major event for the product during these
years, and it is not probable that the transformation have not had any affect
on the quality.

External validity: The external validity is related to the ability to generalise the
results of the experiments. While the case software is quite relevant in terms
of its source code size, market, decades long life span, and impressive cus-
tomer base, more research is needed to make general conclusion on whether
the results of this study can be applied to other similar software systems.
This is a case study, and the focus is on the case as such and not on general-
ization.

4 Results

4.1 Research question 1: Distribution of source code
changes

Figure 3 shows the distribution of 2008v source files in percentages for each subdi-
rectory under src directory, or i.e. directories: src/tst, src/tools, src/testtool, src/sig,
src/ha, src/gl, src/front, src/dbutil, src/common, src/cl, src/back, and src/admin.
Not all of the source code subdirectories will be analyzed in more detail, but only
front, back, common, gl, and cl, since these directories contain almost 95% of the
code. Hence, the most of the source files are located under /src/front directory
or 54.7% of all 2008v. In the second place is src/cl directory housing 15.40% of
source files in 2008v, followed by the src/back and src/common, housing 14.06%
and 10.44% of all 2008v source files, respectively. Thus, these four directories
contain 94.6% of 2008v source files. For this reason, in the following discussions,
the types of changes made to these directories are analyzed in more detail (see
section 3.3).

Under the src/front directory the components that belong to the front end layer
of the software are stored. The front end functionality includes embedded SQL
support, character based tools such as Application by Form (ABF), Query by
Form (QBF), Report by Form (RBF) and Terminal Monitor (TM). Furthermore,
the front end also includes Web Deployment Option that enables inclusion of data
from Ingres data source into HTML page. Finally, the front end also houses the
functionality related to replication that facilitates consistency of data sources lo-
cated on different targets. From the data in Figure 3, it is clear that over 50% of
all changes in the front end layer are due to the addition of the new source file
components (type 3). Another 33% of changes are due to changes (file type 2).

4 Results 85

Figure 3: Distribution of file types (0, 1, 2, 3 according to Section 3.3) for source
code directories

Therefore, around 88% of front end layer source files have been changed since
the case software went open source. When this fact is combined with the fact that
the front layer houses 54.7% of all source files, it can be said that some 48%, or
almost a half of the source code was added and changed, with 44% of all 2008v
file changes being contributed to addition of new source files (file type 3) to the
front layer.

Under src/cl library source files for Ingres Compatibility Library are housed.
The Ingres Compatibility Library provides interface to underlying operating sys-
tem. This library provides the common interfaces for Memory, I/O, IPC and it may
not call the higher levels of Ingres code. Referring to Figure 2.0 it can be observed
that this library grew 69% between 2004v and 2008v, that is it contains 69% of file
type 3 files. The src/back end components are deemed very important as the proper
functioning of these components significantly affects database performance. The
back end components are responsible for query storage, parsing, optimization and
execution. In addition, the back end also facilitates logging, locking, archiving and

86 A Case Study on the Transformation From Proprietary to Open Source . . .

Figure 4: Total source code changes (File Type 2 and File Type 3) per each top
level source code directory

recovery operations. The back end components went through the least amount of
source code changes and additions, having 67.5% of code unchanged (file type 1)
between the 2004v and 2008v. It also contains the least number of file additions
(file type 3), thus only having 2.92% of the total number of the source files added
(file type 3).

Finally the src/common contains components used by both, front and back
end. These components include Abstract Datatype Facility (ADF), Common Util-
ity Facility (CUF), General Communications Facility (GCF), Ingres .NET Data
Provider, Java Database Connectivity (JDBC), Open Database Connectivity (ODBC)
and Open Application Program Interface (Open API). The common components
contain 49.05% of file type 1, or almost half of its components are same for 2004v
and 2008v. It can be observed that 19.5% of its file were of file type 3, or newly
added components.

4.2 Research question 2: Change in Static Code Quality
Metrics

Table 2 displays code metric statistics summarized for the entire source code base
of 2004v and 2008v. Hence, it can be observed that the number of file functions,
lines of code and effective lines of code has increased. As one would expect,

4 Results 87

Table 1: Summary of source code metrics for the whole system
Code Metric 2004v 2008v
Total LOC 840,502 1,442,225
Total ELOC 650,055 1,110,261
Total C 484,349 630,635
Total TCC 167,753 300,493
Total FFC 15,588 45,216

Table 2: Mean values and p-values
H0 mean 2004 mean 2008 p reject H0

H0AELOC,changed 41.35 41.69 < 0.001 yes
H0ACC,changed 10.47 10.80 < 0.001 yes
H0RC,changed 0.53 0.54 1 no
H0AELOC,new 23.68 11.85 0.0042 yes
H0ACC,new 6.12 2.80 0.01 yes
H0RC,new 0.56 0.42 < 0.001 yes
H0AELOC,all 23.68 19.02 0.1383 no
H0ACC,all 6.12 4.85 0.1841 no
H0RC,all 0.56 0.50 < 0.001 yes

the higher number of functions and lines of code produced higher values for total
cyclomatic complexity of 2008v code compared to 2004v.

The results of hypothesis testing for the stated hypotheses are presented in
Table 2. As significance level, 0.05 is chosen.

Concerning AELOC, this metric is somewhat increased for changed files,
meaning that when files are changed the functions in the files have become some-
what larger. For new files the metric is much lower than for old files, meaning that
functions in new files are smaller than in older files. In total, looking at all files,
the metric is higher in the new version than in the older version. The differences
are statistically different for changed code and new code compared to old code,
but not for all code.

Concerning ACC the same type of observation as for AELOC can be made.
For changed files the complexity is slightly higher and for new files the complexity
is much lower.

For RC there is no significant difference for changed code, but for new code
there are significantly less comments. In total there is relatively less comments in
the new version compared to the old version.

88 A Case Study on the Transformation From Proprietary to Open Source . . .

5 Discussion

The results of the conducted research indicate that in terms of number of files that
were changed and updated, source files grouped under the front end component
were most affected. The source files grouped under the components library (the
src/cl directory) have seen the most of the 2004v source files deleted (file type 0)
number-wise. The least amount of changes was seen in the back end component or
src/back library. This means that more changes have been made to the ”top level”
components than the more ”lower level” components. There can be many reasons
for this, e.g. simply that more changes were needed in these components, but
another reason may be that these are nearer to the interest of the new community
that was formed during the open source transition process. This is a question that
can be investigated in future research.

The metrics pertaining to file type 2 changes indicate that changes made to
2004v source files resulted in significant increase in average cyclomatic complex-
ity ACC and increase in average effective lines of code AELOC. A simple an-
swer to why this happened cannot be given, but one possible explanation may
be that many times in practice, when maintenance of certain components is done,
rather then doing complete re-factoring of the source code affected by the changes,
chunks of code deemed too complicated to thoroughly re-factor are surpassed.
This way, changes made to source code in terms of the affect on the rest of the sys-
tem are minimal, but such actions can increase complexity. This too needs further
research.

The results of comparison of code quality metrics between all files in 2004v
and new files in 2008v show significant and large decrease in ACC and AELOC,
that is, significant and large increase in quality metrics for code developed by the
OSS community. The code quality decrease in metrics smaller than the increase
of the changed files, and as a result the code quality metrics for 2008v are higher
than those of the 2004v, but this increase in code quality is not significant.

At the same time the number of comments per effective lines of code (RC)
has seen significant decrease between the 2004v and 2008v of source code base.
Hence, while there was a small improvement in ACC and AELOC, the lower
number of comments per effective lines of code suggests that code in OSS com-
munity was not documented as much as in closed source environment. This is also
an input to further research. It cannot at this stage be said if the lower number of
comments is an increase or decrease of quality, but it is clear that there has been a
change in the way comments are made.

For the companies planning to go open source, this study can provide an ex-
ample on how the OSS community can have a positive impact on software quality
metrics in terms of files that are added to the source code base, but also the negative
impact in terms of the files that were changed.

6 Conclusions 89

6 Conclusions
The conducted analysis have shown that over half of the changes made to the
case source code were made in the front end group of source code components,
while the least of the changes were seen in the back end components. The overall
code quality metrics, in terms of average cyclomatic complexity and the average
effective lines of code per function has increased somewhat for changed code, and
decreased rather much for new code. This might be interpreted as an improvement
for added code. The number of comment lines per effective lines of code ACC
has decrased and there are significantly less comments in newly added code.

The transition of the software was also accompanied by 100% increase in cus-
tomer base, out of which some 138 customers belong to the Fortune 500 group, and
32% revenue increase reported for the 2008. Hence, the example of Ingres DMBS
software migration from proprietary to OSS environment provides one example on
how software development can be transitioned from the proprietary environment
to OSS community and what kind of impact community can have on the static
software quality metrics. To be able to draw some more general conclusions or
propose guidelines for improvement of the proprietary to OSS transition process
and related software quality metrics, a more analysis of ongoing and completed
transition processes should be done.

Based on the presented research it is possible to formulate a number of research
questions for further research in the area. In the research it was found that the
complexity and size of changed functions increased somewhat. Further research
can be carried to understand more about the reasons for this, and to understand if
it is an effect that is general for more systems.

It was also found that the length and complexity of functions that were added
after the software was transformed to open source were lower. Further, it was
found that the amount of comments were lower in code added after the open
source transistion. These facts could also be further researched. More research
is also needed to determine how these static quality metrics affect dynamic soft-
ware quality metrics such as performance, reliability etc.

Acknowledgment
The authors would like to express their gratitude to the Ingres Corporation for
providing us with a last proprietary version of the software.

References
[Ass09] Matt Assay. February 2009 Web Server Survey. http://news.

cnet.com/8301-13505_3-10156188-16.html. 2009.

90 A Case Study on the Transformation From Proprietary to Open Source . . .

[Bon+07] Andrea Bonaccorsi, Dario Lorenzi, Monica Merito, and Cristina Rossi.
“Business Firms’ Engagement in Community Projects - Empirical
Evidence and Further Developments of the Research”. English. In:
Proc. International Workshop on Emerging Trends in FLOSS Re-
search and Development. 2007, pp. 57 –61.

[FF02] Joseph Feller and Brian Fitzgerald. Understanding Open Source Soft-
ware Development. Addison Wesley, 2002.

[FP98] Norman E Fenton and Shari Lawrence Pfleeger. Software Metrics: A
Rigorous and Practical Approach, Revised. PWS Publishing Com-
pany, ITP International Thomson Publishing Company, 1998.

[HZ07] Ming Gu Hongyu Zhang Xiuzhen Zhang. “Predicting Defective Soft-
ware Components from Code Complexity Measures”. In: Depend-
able Computing, IEEE 13th Pacific Rim International Symposium
(2007), pp. 93–96.

[Ing09] IngresWebSite. Official Web Site of Ingres Corporation. http://
ingres.com/. 2009.

[IS02] Apostolos Oikonomou Ioannis Stamelos Lefteris Angelis. “Code Qual-
ity Analysis in Open Source Development”. In: Information Systems
Journal 12.1 (2002), pp. 43–60.

[Li+06a] Jingyue Li, Marco Torchiano, Reidar Conradi, Odd Petter N. Slyn-
gstad, and Christian Bunse. “A state-of-the-practice survey of off-
the-shelf component-based development processes”. In: 2006, pp. 16
–28.

[Li+06b] Jingyue Li, Reidar Conradi, Odd Petter N. Slyngstad, Christian Bunse,
Marco Torchiano, and Maurizio Morisio. “An empirical study on de-
cision making in off-the-shelf component-based development”. In:
Proceedings - International Conference on Software Engineering.
2006, pp. 897 –900.

[O’G04] Maureen O’Gara. CA Exorcises Linux’ Hooking Demons. http:
//maureenogara.sys-con.com/node/44941. 2004.

[RSM08] RSM. Effective Lines of Code eLOC Metrics for popular Open Source
Software Linux Kernel 2.6.17, Firefox, Apache HPPD, MySQL, PHP
using RSM. http://msquaredtechnologies.com/m2rsm/
docs/rsm_metrics_narration.htm. 2008.

[Ray01a] Eric S. Raymond. The Cathedral and the Baazar. O’Reilly Media,
Inc., 2001.

[RH08] Per Runeson and Martin Höst. “Guidelines for conducting and re-
porting case study research in software engineering”. In: Empirical
Software Engineering 14 (2008), pp. 131–164.

6 Conclusions 91

[Sof08] Coverity Software. Open Source Report. http://scan.coverity.
com/report/Coverity_White_Paper- Scan_Open_
Source_Report_2008.pdf-. 2008.

[Som07] Ian Sommeville. “Software Engineering”. In: Addison Wesley, 2007.

[VKG06] James D. Herbsleb Vijay K. Gurbani Anite Garvert. “A Case Study
of a Corporate Open Source Development Model”. English. In: Proc.
International Conference on Software Engineering (ICSE). 2006, pp. 472
–81.

[Woh+00] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in Software Engi-
neering: An Introduction. The Kluwer International Series In Soft-
ware Engineering. Kluwer, 2000.

PA
P

E
R

IV

A PROLONGED TWO PHASE
CASE STUDY ON

IMPLEMENTATION OF OPEN
SOURCE DEVELOPMENT

PRACTICES WITHIN A LARGE
COMPANY SETTING

Abstract

It has ben seen that the implementation of open source development practices
within commercial settings can bring benefits such as improved source code qual-
ity, lower maintenance costs, rapid team redeployment, and increased innovation.
However, despite the benefits, a wide-spread in-house implementation of the prac-
tices has not been observed. The goal of this research is to understand factors
which hinder the implementation. For the purpose, development practices of a
large, global software and hardware organization that bases its products on open
source software, and has over a decade long experience of contributing to various
open source projects were studied. The results were validated through a set of
structured interviews and a focus group meeting. It is found that the initial imple-
mentation of the process has not been carried out in a planned and systematic way

Alma Oručević-Alagić, Martin Höst, Submitted.

94 A Prolonged Two Phase Case Study on Implementation of Open Source . . .

within the company, but rather in superficial manner, implementing some aspects
of the process. The results of the follow-up focus group meeting show that while
the company’s practices acquired a higher degree of alignment over a two-year pe-
riod, the change was necessitated by a need to have a more efficient development
effort across new, globally distributed, development sites. This study shows that
experience and a favorable view of open source development processes motivates
the company to implement open source development practices in house, but when
the implementation is not systematically planned and carried through, very little
benefit is gained. It also shows that as the company grows, and development sites
become globally distributed, a greater level of alignment evolves.

1 Introduction

Open source software (OSS) has influenced the way software is produced and
distributed. Some companies use open source as another type of off-the-shelf soft-
ware, while others integrate it into their software products and actively partici-
pate and contribute code to open source communities, see for example Höst and
Oručević-Alagić [HOA11]. By participating in OSS development processes, com-
panies gain experience in how online, distributed collaboration effort is organized,
and how information and knowledge are managed in these projects. While the
software built by OSS communities spans a wide range of domains, sizes, and ma-
turity levels, an increased industry interest and involvement with OSS came with
the emergence of a large, complex, and industry-grade software products, such as
Linux [Fou15c], Android [Inc13], and Hadoop [Fou15b].

Most common profile of the developers contributing to OSS projects is that of
unpaid, geographically distributed, and well integrated into highly organized and
structured fabric of OSS projects [Ray01a]. However, with increased usage and
participation of the industry in OSS projects, a greater participation of paid devel-
opers can be noted. As OSS gains mainstream acceptance, business models and
industry involvement strategies mature as presented e.g. by Fitzgerald [Fit06a].
While it is important to understand the OSS impact on the software and related in-
dustries, understanding how OSS development practices could be applied in house
to enhance proprietary software development process requires further investigation
for several reasons. Scacchi [Sca10] argues that OSS development is an interest-
ing alternative approach to development of large systems and suggests that further
research, especially using empirical examination, is conducted in order to better
understand OSS development practices (OSDP). A description on adopting open
source development practices within the organizations, also known as inner source,
was proposed by Stol and Fitzgerald [Fit06b]. They show three important aspects
of software projects that are run as inner source: types of projects, practices and
tools, and people and management. While there exist a number of case studies
showing successful adoption of OSS in-house, HP [MM08], Lucent [Gur+06],

2 Background 95

and Nokia [Lin+08b], still more evidence is needed to better understand how the
companies apply OSDP internally and what common issues they encounter in the
process.

In this case study we present alignment of software development practices and
OSDP in a large, international, software and hardware company, referred to as
the Case Company. The company has a long experience of working with mature
communities, and has recognized the value of the OSDP. This study is a second
part of the two phase study [OAH14a] which tracks the adoption of OSDP in
commercial setting over a two year period.

The outline of this paper is as follows. In Section 2, the background informa-
tion on OSDP is presented. In Section 3, the research approach is further defined,
thus stating what the relevant research questions are, analysis approach and valid-
ity concerns. Section 4.4 presents the obtained results, while Section 5 discusses
and analyses the obtained results in some more detail. Finally, conclusions are
drawn in Section 6.

2 Background

Some of the studies that are used to demonstrate successful application of OSDP
within commercial settings are the ones conducted in HP [MM08], Lucent [Gur+06],
and Nokia [Lin+08b]. The studies analyzed, for example, development of a com-
plex software product across departments [Gur+06] using OSDP, and transitioning
of an entire development to adopt OSDP [MM08]. The software produced in such
manner is called “inner source”, “progressive open source”, or “closed open sour-
ce”.

A case study conducted by Stol et al. [Sto+11] focuses on the challenges of
building and integrating software products developed as a shared asset. In this case
study the focus is on challenges of developing and integrating software developed
as a shared asset within the company setting, and comparing these challenges with
the challenges of integrating an open source software product developed outside
of the company. The Stol et al. [Sto+11] research concludes that organizations can
benefit in adoption of OSDP, but that more research in this area is needed to further
identify and address the challenges of OSDP within a company setting.

Melian and Mähring conducted a study in HP [MM08] observing the process
of progressively transitioning HP’s development team to work under OSDP. The
motivation for introduction of POS in HP is the business need to increase the de-
velopment cost efficiency and shorten time to market by making software highly
modular and reusable asset. The research has produced a comparative listing of
open source and “progressive open source” development practices. Some of the
biggest differences between the two practices lied in the aspects of organizational
structure, time and budget to deliver, abundance of available human resources and
reward system. They conclude that implementation of OSDP within a corporate

96 A Prolonged Two Phase Case Study on Implementation of Open Source . . .

setting can bring long lasting benefits in terms of development efficiency and code
quality, but they also state that more research is needed to address differences in
reward system, and control and monitoring of individual participants.

A case study conducted by Gurbani and Gavert in Lucent [Gur+06] provides
another relevant insight into what happens when a software product is developed
within a company as a shared asset, and employees from other departments are
involved in its development through development process compliant with OSDP.
The lessons learned form that case study are that source code ownership and the
“many eyeballs” contributing to a transparent development process facilitate effi-
cient software development especially if the software product is shared and highly
utilized across different departments as it was the case in that case study [Gur+06].

All the studies discussed above ([MM08], [Lin+08b], [Sto+11], [Gur+06])
identified the importance of having a common set of standard development tools,
a single version control system, and an standardized change management system.

For the purpose of this study a set of Open Source development practices was
identified based on the work by Fogel [Fog05] and outlined in Table 1. The work
details the most important aspects and characteristics of free software develop-
ment, based on experiences gained with the Apache Subversion project [Apa12],
the OSS source code version control system with widespread use in open source
and corporate setting. It provides a valuable insight on how the Subversion [Apa12]
community has been built and sustained over a period of twelve years. Besides an-
alyzing the infrastructure needed to support the project in an online environment,
Fogel [Fog05] also elaborates on the importance of building a healthy environment
culture, facilitating authority based on meritocracy and communication relying on
standardized channels and formats.

While shared OSDP aspects, across different sizes and domains of mature OSS
projects, include Infrastructure and Communication aspects, defined by IDs S1-
S21, in the Table 1, they can differ in governance types, defined by IDs S22-S24.
For example, the Linux project adheres to the “benevolent dictator” management
practice, where lieutenants are assigned for different parts of the code, but the ul-
timate decisions are made by Linus Torvalds. The community source governance
type for library and related fields software, popularized by Kuali Open Library
Environment [KF16], enables institutions to share development resources and in-
fluence development of a software project in a closed source setting, provided that
in the later phase the project is open sourced. The government type applied in
the Apache Subversion project is base on meritocracy, also referred popularly as
“do-ocracy”, where roles, authority and promotion is based on the participants’
demonstrated knowledge and contributions to a project. We argue that such gov-
ernance model can be suitable also for a closed source industry setting.

While the adoption of open Source practices can benefit companies [Gur+10],
there are also some issues it raises. Some of the issues include development of
products across organizational boundaries, especially in the companies where the
development process is highly hierarchical.

2 Background 97

Table 1: Categories of Open Source development practices
Aspect Category Subcategory I.D.
Infrastructure Product Info Features S1

Documentation S2
FAQ S3
News S4
Road Map S5
Security S6

Code Access Download location S7
Binary package S8
Release Notes S9

Community Guide Community Overview S10
Community Roles S11
Coding Conventions S12
Commit Conventions S13
Building and Testing S14
Debugging S15
Mailing Lists S16
Bugs/Issues S17
Releases S18

Communication Standardized Message S19
Channel S20
Norm S21

Management Meritocracy Role S22
Promotion S23
Authority S24

98 A Prolonged Two Phase Case Study on Implementation of Open Source . . .

3 Research approach

3.1 Introduction
The research presented in this study is conducted as focus group meeting [Rob02],
[Kon+08] and it represents a second phase of the two phase prolonged study as
depicted in Figure 1 which depicts the entire research process.

The Case Company is a global market leader in software and hardware produc-
tion within its field, and its core products are based on an OSS product licensed
under GPL. The company has over a thousand employees and, through own and
partners’ offices, it is present in over 170 world countries. The Case Company is
also a significant contributor to a number of different OSS communities.

The participants of the focus group meeting were the same individuals that
were involved in the execution of the first phase of the study and thus were well
acquainted with purpose and details of the study. The meeting discussion was
structured around predefined interview questions with overall goal of assessing
current level of OSDP implementation within the company and identifying and
understanding factors behind any changes in the implementation.

3.2 Research Questions
The main questions that are analyzed in the study are:

RQ1 What differences in the level of implementation of OSDP presented in Ta-
ble 1 can be noted over the past two years in the Case Company?

RQ2 What are the underlying reasons for the change in the OSDP implementation
levels?

The main research question, RQ2, tries to understand and answer why certain
practices are introduced and other practices are not introduced. In order to under-
stand this, RQ1 focuses on what has happened at the case company during the last
two years.

In order to answer the questions it is necessary to understand the status be-
fore the two years started and what has happened during the two years, and why
these changes have been made. Phase I (see Figure 1) of the study answers what
practices were introduced two years before Phase II. Phase I, as presented in
[OAH14a]), was conducted by studying the alignment of the case company and
Open Source practices, and to what extent developers thought that practices would
be feasible to introduce in their environment. This was done by observing the case
company and conducting interviews six persons with roles covering project man-
agement, technical lead, architect, and developer. Phase I was carried out over a
period of 2 months with the first author visiting the case company during this time.
Some further details about the conducted research are presented when the research
validity is discussed in Section 3.4.

3 Research approach 99

Figure 1: The two phase research process

Phase II was, as described above, conducted through as a focus group meeting.
In order to understand what has happened after Phase I, and by that being able to
answer RQ1 and R2, a number of discussion questions were phrased and used at
the focus group meeting:

1. How often do you use intra company online resources to discuss or solve
project related tasks(e.g. online communication, knowledgbase, ongoing
projects)?

2. How are change requests handled?

3. Can developers or smaller teams independently choose task to work on?

4. Which aspects of OSDP need to be implemented at greater level and why?

In order to facilitate discussion in an efficient way, the following format was
followed. For each discussion question participants were given some time to think
about the question and write down their answers on an enclosed questionary. Af-
ter formulating individual answers, each participant shared his answer with the
group, which presented bases for a discussion. The individual answers were then
collected by the researchers. During the discussion, one of the researchers also
took notes.

3.3 Analysis Procedure
The participants answers were transcribed, systematized based on commonality of
their responses, and further analyzed by comparing them to the notes taken by one
of the researchers. Based on this, a report was developed with summaries for each
of the interview questions. During the analysis the results were also compared to

100 A Prolonged Two Phase Case Study on Implementation of Open Source . . .

the results from Phase I. The summaries are presented in Section 4.4 where they
are also analyzed and compared to the results from the first phase of the study.

3.4 Validity

In this section the validity of the research is analyzed with respect to the types
of validity threats typically present in qualitative studies: construct validity, inter-
nal validity, external validity, and reliability [Rob02], [RH08]. As this study is a
continuation of the two phased study, the validity assessment includes both of the
phases.

The construct validity is concerned with the relationship between the subject
of the study and what is measured, in this case the alignment of OSDP of mature
OSS communities and software development practices of the Case Company. In
order to properly identify mature Open Source development practices, the work
by Fogel [Fog05] was used and the result was verified by studying the Apache
Subversion [Apa12] project. To assess the development practices within the Case
Company the first researcher spent two months in the company, studying the com-
pany’s processes and examining online communication trails and documentation.

Thus, a prolonged involvement [Run+11] was applied in order to improve the
validity of the research. The results of the documentation study were discussed
and validated with the Case Company senior employees through a set of six struc-
tured interviews, i.e. member checking [RH08]. The results were also reviewed
by the second researcher who did not spend time in the company, i.e., peer de-
briefing [RH08]. This also reduces the possible bias that the first researcher might
have developed with a prolonged involvement. It also means that research triangu-
lation was applied which also increases validity of the research. The participants
included in Phase II of the study were the same individuals as the ones that par-
ticipated in Phase I of the study, and thus were well acquainted with the subject
of research and previous work completed. The participants formulated the an-
swers to the questions themselves, and participated in the discussion that followed
which gave the opportunity to discuss and clarify their written answers even fur-
ther. There exists possibility that participants were not representative sample, but
the chances for this are very small.

The internal validity is concerned with causal relations. Since the nature of
this study is to compare and analyze development practices, the causal relations
are not seen as a threat of the study.

The external validity is related to the ability to generalize the results of the
this study. The OSDP as defined in the paper can be relevant for future analy-
sis. The Case Company studied is large software and hardware company, a world
leader in its field, where the main products are built around OSS products. Hence,
the participants are experienced in working with mature OSS communities. The
competition in the market is typical. Hence, the findings of this research might be
relevant to other large software companies that consider implementation of OSDP

4 Results 101

internally. It provides a framework of characteristics present in OSDP and an in-
sight on benefits and challenges on implementing OSDP within a company setting.

The reliability aspect of validity is concerned with the aspect of data and anal-
ysis dependence of the underlying research on the researchers. The study was
conducted as a prolonged, two phase, structured case study, with the analysis, in-
terviews, and focus group meeting conducted in a structured way.

4 Results

4.1 RQ1

Research Question RQ1 concerns the changes in alignment of OSDP and software
development practices of the Case Company over the past two years. To answer
research question 1, the results of the first phase and second phase of the study
are presented and compared. The results are grouped under the three categories as
outlined in Table 1.

Infrastructure

The web portal is well structured and contains documents with information on or-
ganization structure, administrative information, roles and responsibilities, infor-
mation on development processes, methods, standards, past, and ongoing project
related information, code repository, use-net groups, and training manuals. De-
velopment processes and the methodology are well defined, with a project man-
agement process which is best categorized as a set of sequential steps (also called
tollgates), which need to be completed before the next step can be taken. The
coding standards are clearly spelled out in the documentation. There exists ongo-
ing project documentation mostly with information on project management plans,
allocated resources, assigned tasks, and task completion.

In the fist phase of the study, only two interview study participants indicated
that they use the portal in their daily work, the architect and the senior project
manager. The two interviewees use it for the purpose of updating project man-
agement plans or technical documents. At the same time developers, code block
architects, and technical leads indicated that they use the portal very little in their
daily project related tasks. They also agree that the documents on the portal were
not well organized, were hard to search, and that much of the documentation they
were interested in was out of date. In case there were multiple projects related to a
product, each project had their own version of the documentation, which in itself
was outdated.

In the second phase of the study, all focus group participants indicated that
they use the company portals several times on daily bases. The portal is used
for the following purposes: to get up-to-date information on current bugs, fixes,
and releases, to prioritize backlogs, to review design and architecture, to engage in

102 A Prolonged Two Phase Case Study on Implementation of Open Source . . .

communication about software projects, to follow mailing lists for different groups
and projects, and as development wiki.

Communication

The internal portal also hosts infrastructure necessary to carry out discussions on
various topics and create searchable archives.

In the fist phase of the study, the majority of the interviewees agreed that a
great majority of inefficiencies and issues they encounter in their daily work are
related to inadequate communication. Most thought that better communication
would lead to more efficiency at work. They expressed that usage of electronic
communication in a standardized form would be desirable, especially if it would
create searchable archives which could later on be referenced for problem solv-
ing purposes, similarly to how they would search the internet to understand why
programs produce certain error codes and how such issues could be resolved. On
the other hand, the majority of the interviewees agreed that it is much more time-
efficient and easier to “go and talk” to a person about a problem, recognizing that
in this way no written trail on the problem would be left, and thus, no one could
refer to it in the future. While there exist non-standardized means to communi-
cate electronically, some interviewees said that the majority of developers refrain
from using it, partly due to past experience, where questions and issues brought up
through electronic discussions were not addressed in a manner that would facilitate
such discussion.

In the second phase of the study, all of the participants indicated that they
engage in online communication for the purposes of solving ongoing issues, dis-
cussing ongoing project work, and searching for information through communica-
tion logs, mailing lists, on daily bases. The participants also noted that the increase
in online communication was necessitated by opening of a new, global distributed
development sight. They pointed out that in the distributed development envi-
ronment the “go and talk to a person” option was no longer viable and they also
recognized the benefits of having the communication archives of the discussions
available as they provided a searchable information trail. This has also encour-
aged different area knowledge experts to produce wiki documents on the most fre-
quently asked questions, which reduced time inefficiencies previously manifested
in repeating the same information in person-to-person communication, which also
failed to produced any written trail one could refer to.

Management

In the fist phase of the study, it was found that the organizational structure and
roles and responsibilities within the R&D resemble roles which can be found in
the OSS communities. Hence, besides developers (code contributors), there are
technical leads, code block maintainers, code block architects, and architects. The
code block architects and code block maintainers can thus be seen as fulfilling

4 Results 103

the role of gate keepers in the open source community. The majority of developers
were clearly positive towards the idea of being able to select tasks they would work
on from a pool of tasks in the similar manner as this is done in OSS communities.
However, interviewees that were in manager positions indicated that this might not
be feasible as much time would then need to be spent on managing conflicts for
those developers that could not choose tasks or that were stuck with less interesting
tasks. All interviewees agreed that task deadlines are needed, but sometimes too
tight deadlines tend to negatively affect quality, as there then exists a tendency to
put in as much functionality as possible, without properly testing it.

Five of the interviewees thought that the number of formal meetings held was
excessive. They expressed that if more time was put in planning of the meeting
and appropriate selection of the attendees, the meetings might be less frequent
and more efficient. Interviewees at more advanced technical position believed that
there was a tendency to involve them into projects too early or too late. This
adversely affects efficiency on individual and project level.

Code block architects and code block maintainers noted that in practice their
roles overlap with the role of technical lead. Such overlapping roles on the project
are conflicting, as technical lead is perceived to be more of a project driver, while
code block architects and maintainers are considered to be expert of a product or
a part of it with a sole role of making sure that underlying product development is
in line with overall architecture.

In the second phase of the study there were no changes noted with respect to
the development roles which continued to be aligned with roles observed in mature
OSS communities. The development teams are specialized in a part of the plat-
form and do not have the opportunity to initiate changes independently without
consulting the platform owner. However, in a case the changes are small, e.g. not
affecting common APIs, not conflicting with customer requirements, and devel-
opment resources are available, teams can independently implement the changes.
The majority of the change requests are managed by platform owners who also
distributes work to appropriate teams. An increased usage of online communi-
cation channels has positively affected the management aspect resulting in less
unnecessary meetings, and greater information dissemination resulting in involv-
ing appropriate technical resources in early stages of project planning. However,
the communication is still restricted to development resources, with platform own-
ers serving as links to other project stakeholders or end customers. Hence, there
is no direct feedback loop between the development teams and end customer, as is
the case in OSS communities.

4.2 RQ2

Research question RQ2 concerns the underlying reasons for the changes in the
OSDP implementation levels. Based on the results of the focus group meeting, the
underlying reasons for change in level of the OSDP implementation practices is

104 A Prolonged Two Phase Case Study on Implementation of Open Source . . .

opening of a new distributed development site. This necessitated greater level of
online communication has taken up the same characteristics as the ones observed
in OSS communities. The increase in online communication manifested itself in
greater usage of mailing lists, project wiki pages, and other online resources, e.g.
for project management, bug reports, etc., thus transferring some of the work from
’live’ interactions to an online milieu. This results in the creation of searchable
archives, which further increased the development efficiency.

5 Discussion

Based on the results of the prolonged study, it is evident that the level of the align-
ment of the Case Company development practices with OSDP has increased over
a two year period, with the change being driven by the need to achieve greater
development efficiency across distributed development sites.

Basing its core software and hardware products on OSS and with develop-
ment teams highly experienced and versed in OSDP, the Case Company has tried
to mimic major characteristics of OSDP as presented in Table 1. The company
has replicated many of the roles present in OSS communities, such as the role of
code block architects, technical leads, head architects, code maintainers, and they
have implemented the online portal and setup the usenet groups. Development re-
sources are highly aligned with OSDP in respect to the common understanding of
technical issues and value of standardized practices in design, coding, testing, and
development stages. Hence, in both stages of the study, it is evident that knowledge
and experience gained on OSS roles and practices, assumed by primarily company
employees in technical roles, through participation in the OSS community process
were transferred back into the company.

Due to the lack of planned effort to encourage company-wide usage of an
online communication milieu, in the first phase of the project it was observed
that such resources are used scarcely. While a majority of developers preferred
having searchable communication archives, a starting place where one could go to
find out if there exists more information about an investigated issue, they perceive
that communicating electronically instead of “face-to-face” is less efficient. The
interviewees also indicated a reluctance to take part in open electronic discussions
and such discussion are not formally encouraged or enforced to any degree. Face-
to-face communication reduces the amount of time one needs to spend searching
through archives and can also ask “on-demand” for further clarification of an issue.
On the other hand, ’face-to-face’ communication can be less efficient in case the
resources one needs to talk to are not currently available. The second phase of the
study showed significantly improved usage of company portals since they enabled
more efficient communication and development between the existing and a new
globally distributed sites. Transferring some of the ’face-to-face’ communication
to an online milieu created a searchable communication archives, and improved

6 Conclusions 105

the documentation process, e.g. creating more documentation on the system and
“F.A.Q. lists”. The more transparent, online, nature of discussions on ongoing
projects helped involve relevant resources in early stages of project planning, thus
reducing the number of unnecessary meetings and ensured that relevant inputs are
acquired early on.

The greatest misalignment still is evident in the way work is assigned and
projects are managed. There is still a closed feedback loop between developers
and outside company partners and customers, and much of this communication is
channelled through higher, management level roles, such as platform owners. De-
velopers only make up-stream change request, without involving platform owners
in cases where the changes are minor and not affecting common APIs, provided
that there resources available.

In the studied case, it seems like the matter of adopting OSDP is highly mo-
tivated and carried out by technical personnel that has recognized its benefits
through experience with OSS communities. The management structures need to be
further educated on the OSDP so an appropriate adoption process can be found and
implemented, as this was the case presented in earlier studies, e.g. at HP [MM08]
and Lucent [Gur+06].

6 Conclusions

The results of the prolonged case study show that as a company expends and
acquires geographically distributed development sites, adoption of OSDP is pre-
ferred and a natural way to engage all software product stakeholders in the most
efficient way. This is a relevant finding, as with current need for highly skilled
work force, many companies struggle with hiring appropriate human resources in
one location, and are forced to either open new sites or outsource some part of
development.

Unlike the previous studies which show how systematically planned OSDP
implementation is carried out, we show what can happen when such process is
carried out in a less planned way, driven by individuals in highly technical roles
with extensive experience in working under the OSS process. Characteristics of
such approach have shown that OSDP are implemented to a higher degree in a form
of infrastructure, and less in a form of communication and management practices.
Hence, there exist technical roles modeled around the software product, such as
head architect and code block maintainer. There also exist standardized develop-
ment practices and processes facilitating cross project work. The Case Company
portal is created with the purpose of resembling an OSS community online mi-
lieu, but in practice, during the first phase of the study, the content of the portal
was not well organized, complete, or up-to-date. However, with a new, geographi-
cally distributed development site, the second phase of the study observed that the
online resources were used more, and thus more resembling OSDP. The greater

106 A Prolonged Two Phase Case Study on Implementation of Open Source . . .

transparency brought through increased online communication and work has also
ensured that appropriate resources are involved in earlier stages of project plan-
ning, thus also reducing unnecessary meetings. Repetitive, time consuming tasks,
such as ’go-and-talk-to expert’ were reduced by having online resources, such as
up-to-date documentation and a project wiki.

The prolonged case study presented in this research shows benefits and chal-
lenges of implementing OSDP within a closed company setting, when the adoption
is not carried out in a systematic and planned way, but rather driven by employees
in highly technical roles with experience of working under the OSS communities.
We believe that there are more case companies undergoing the same challenges,
especially as the software industry increases usage of OSS products and related
business models. For this reason, more studies of similar type are needed, not only
to raise awareness to the possible problems, but primary to better plan the adoption
process so its full benefits can be taken advantage of.

References
[Apa12] Apache. Apache Subversion Open Source Project. http://subversion.

apache.org/. 2012.

[Fit06a] Brian Fitzgerald. “The Transformation of Open Source Software”.
In: MIS Quarterly 30.3 (2006), pp. 587–598.

[Fit06b] Brian Fitzgerald. “The Transformation of Open Source Software”.
In: MIS Quarterly 30.3 (2006), pp. 587–598.

[Fog05] Karl Fogel. Producing open source software - how to run a successful
free software project. O’Reilly, 2005, pp. I–XX, 1–279.

[Fou15b] Apache Software Foundation. Apache Hadoop. https://hadoop.
apache.org/. [Online; accessed 20-October-2015]. 2015.

[Fou15c] Linux Open Foundation. Linux Operating System. http://www.
linuxfoundation.org. 2015.

[Gur+06] Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb. “A case
study of a corporate open source development model”. In: ICSE.
2006.

[Gur+10] Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb. “Manag-
ing a corporate open source software asset”. In: Commun. ACM 53.2
(2010), pp. 155–159.

[HOA11] Martin Höst and Alma Oručević-Alagić. “A systematic review of
research on open source software in commercial software product
development”. In: Information & Software Technology 53.6 (2011),
pp. 616–624.

6 Conclusions 107

[Inc13] Google Inc. Android Open Source Software Project. http://www.
android.com/. 2013.

[Kon+08] Jyrki Kontio, Johanna Bragge, and Laura Lehtola. “The Focus Group
Method as an Empirical Tool in Software Engineering”. In: Guide
to Advanced Empirical Software Engineering. Ed. by Forrest Shull,
Janice Singer, and Dag I. K. Sjøberg. Springer, 2008.

[KF16] Inc Kuali Foundation. Open Library Environment. http://www.kuali.org/ole.
2016.

[Lin+08b] Juho Lindman, Matti Rossi, and Pentti Marttiin. “Applying Open
Source Development Practices Inside a Company”. In: International
Conference on Open Source Systems, OSS (2008), pp. 381–387.

[MM08] Catharina Melian and Magnus Mähring. “Lost and Gained in Trans-
lation: Adoption of Open Source Software Development at Hewlett-
Packard”. In: OSS. 2008, pp. 93–104.

[OAH14a] Alma Oručević-Alagić and Martin Höst. “A Case Study of Open
Source Development Practices within a Large Company Setting”. In:
ICSET 2014 International Conference on Software Engineering and
Technology, Istanbul, Turkey, Sep 29-30, 2014 (2014).

[Ray01a] Eric S. Raymond. The Cathedral and the Baazar. O’Reilly Media,
Inc., 2001.

[Rob02] Colin Robson. Real World Reserach. 2:nd. Blackwell Publishing,
2002.

[RH08] Per Runeson and Martin Höst. “Guidelines for conducting and re-
porting case study research in software engineering”. In: Empirical
Software Engineering 14 (2008), pp. 131–164.

[Run+11] Per Runeson, Martin Höst, Austin Rainer, and Björn Regnell. Case
Study Research in Software Engineering. Wiley, 2011.

[Sca10] Walt Scacchi. “The future of research in free/open source software
development”. In: Future of Software Engineering Research. 2010,
pp. 315–320.

[Sto+11] Klaas-Jan Stol, Muhammad Ali Babar, Paris Avgeriou, and Brian
Fitzgerald. “A comparative study of challenges in integrating Open
Source Software and Inner Source Software”. In: Information & Soft-
ware Technology 53.12 (2011), pp. 1319–1336.

PA
P

E
R

V

NETWORK ANALYSIS OF A
LARGE SCALE OPEN

SOURCE PROJECT

Abstract

Industry involvement in open source software development has become a pop-
ular practice among companies which, e.g., share software development costs
with other community participants or implement an open source based business
model. An increased understanding of the underlying social structure and influ-
ences within an open source community, especially in a case where the community
participants are composed of competing industry members, can be viewed as an
important component of company’s business strategy planning and management.
One way to understand the social structure of an open source community is by ap-
plying social network analysis to source code repositories. We use methodology
from social network analysis to study Android, an operating system for mobile
devices.

The aim of this study is to understand how large and in many cases competing
companies collaborate on a large scale company sponsored open source project.
We propose a new approach for studying committers’ networks as weighted di-
graph networks. To conduct the case study, change log records of all files bundled
under the Android open source project stack were extracted and studied in the
context of committers’ networks.

Alma Oručević-Alagić, Martin Höst
Extended version of 40th EUROMICRO Conference on Software Engineering and Advanced
Applications, Verona, Italy, August 27-29, 2014

110 Network Analysis of a Large Scale Open Source Project

The results obtained show that Android project development is highly influ-
enced and led by development effort of Google.

This case study shows how a large, company sponsored, and industry backed
open source project, i.e. open source project with the majority of community
members affiliated with the industry, is structured. In particular, it shows that
the involvement of an entire industry eco system within a company sponsored
open source project does not imply more equal distribution of the participating
community members’ influences in terms of committers’ social networks. This
setup of an open source community by itself does not imply any particular, either
positive or negative, connotations. Consequently, the results of the study should be
interpreted on a case bases, within a context of a company’s strategy to participate
or base products around a company sponsored open source product.

1 Introduction

Open source software (OSS) has been growing in importance and affecting the
way companies develop their products and services [HOA11], plan their business
strategy and compete [Ray01a].

Many companies have already recognized that implementation of software
product lines can facilitate software development in an assembly line like man-
ner. A study by Linden et al. [Lin+08a] shows that software product lines can
decrease software production cost. In a similar manner, an OSS product can be
reused across different companies, e.g., Android phones produced by Samsung,
Sony Mobile, HTC, etc. Another study by Linden et al. [Lin+09b] refers to soft-
ware reused across an industry as commodity software. The study argues that a
part of a software product over time loses commercial value, and thus becomes a
good candidate for intra-industry or open source development. In this way, devel-
opment costs of commodity software become shared among the industry members,
enabling companies to focus their resources on development of commercial or dif-
ferentiating parts of their software products.

There have been many studies conducted on open source projects by analyzing
source code change logs and mailing list archives in order to understand the un-
derlying structure and behavior of the community. The studies focused either on
some individual open source projects [LF+06], or on an entire portal hosting tens
of thousands of open source projects [How+06]. Different methodologies have
been applied to analyze the obtained data including social network analysis. As
open source communities are composed of geographically distributed participants
that contribute on volunteer or paid basis (e.g. company participating in OSP), so-
cial network analysis has shown to be an effective methodology to analyze partic-
ipants’ affiliation networks, identify the most influential participants, and uncover
cliques. The Android was initially developed as proprietary software by the An-
droid corporation. In 2005, Google Inc. bought the Android [And05] and open

2 Background 111

sourced the operating system in 2007 [And07] . At the same time, Google also
founded an open handset alliance [And07]. The open handset alliance is a con-
sortium of over eighty globally leading companies in market segments of mobile
operators, handset manufacturers, semiconductors, and software and commercial-
ization companies. The companies contribute to the development of the Android
and deliver devices and services built around the Android operating system. Com-
panies like Vodafone, Sprint, T-Mobile, Acer, HTC, Samsung, Sony Mobile, Arm,
Intel, ST Ericsson, eBay, Accenture, are some of the members of the alliance.

Besides the core components open sourced by Google in 2007, the Android
also includes over 150 other open source projects, the majority of which were in
existence before the Android project. One such project that is included under the
Android bundle is WebKit, which was initially developed as proprietary software
and later open sourced by Apple. Hence, another interesting aspect of the study
is assessment of cross collaboration among participants of various open source
projects bundled under the Android stack.

The Android source code committer’s network is analyzed through application
of social network analysis. The committers are grouped based on affiliations, i.e.,
all contributors affiliated with a company or an organization are viewed as the
same contributor, e.g., committers with a google.com email suffix are viewed as
Google company committer. The affiliation data such as authorship information
and contribution date and time are extracted from the source code repository logs.

The aim of this study is relevant given the importance of the Android in the mo-
bile device industry and diversity and type of participants within the Android open
source project. For any company that plans to either sponsor, lead, contribute to,
or build products based on an OSS product, understanding of project’s underlying
community structure and behavior is an important factor in the company’s strategic
positioning. This paper shows one way to assess the structure of an open source
community by applying social network analysis. Given that Android includes ex-
ternal open source projects, i.e. the projects not developed or open sourced by
Google, it is also important to understand how the underlying community struc-
ture of the external projects can be affected when the projects are used by another
company sponsored open source project with global industry support.

The outline of this paper is as follows. In Section 2, the background informa-
tion on the case software and related research studies is presented. In Section 3,
the research method is further defined. Section 4.4 presents the obtained results,
while Section 5 discusses and analyses the obtained results in some more detail.
Finally, conclusions are drawn in Section 6.

2 Background

The field of social network analysis (SNA) is based on network theory [Sal95]
that provides tools for analyzing relationships between network nodes. A study

112 Network Analysis of a Large Scale Open Source Project

carried by Borgatti and Halgin [BH11] shows that papers indexed under Google
Scholar have exhibited exponential growth in the past ten years in the number of
articles which use the term social network across all fields of study. SNA has
been used to study open source communities by analyzing publicly available data
such as source code repositories and communication archives. Luis et al. [LF+06]
proposes a methodology for studying committer and module networks. A com-
mitter network shows nodes of committers as connected or linked in case they
have changed the same module. A module network consists of module nodes that
are linked in case a module is changed by the same committers. Social networks
where nodes are connected through some affiliation such as "committers modified
the same module", or "modules changed by same committers" are also referred
to as collaboration or affiliation networks. Research by Cleidson et al. [Cle+05]
shows that the network structure of source code is highly related to the way a com-
munity is organized. Hence, source code produced by a community also has the
community’s organization structure inscribed in it. Cleidson also identifies three
different forms of participation:

1. Centralized. The code is produced in a centralized way, where through one
module, i.e., a central node, other modules are linked.

2. Densely Networked. Represents a network where contributions are equally
divided and linked. Hence, there does not exist a node with significantly
higher centrality from the rest of the network nodes.

3. Core and Periphery. Indicates that there exists a larger group of core devel-
opers that produces code that is highly connected and independent of code
produced by another group of developers. Hence, there exist two or more
distinct cliques within the network, that are very loosely linked.

A study by Jin Xu et al. [Xu+05] based on social network analysis of 39000
open source projects hosted under SourceForge argues that the open source projects
have decentralized structure whose organization resembles that of self-organizing
social networks. Further on, the study underlines the importance of understanding
the social structure of the projects, especially from the industry’s perspective. An
ability to understand the evolution of collaborations in an open source project is
important especially for the companies that plan to become involved in an OSP.

The aim of this study is to understand the underlying community structure
and to identify the most influential participants and clusters through an applica-
tion of social network analysis to the Android committer’s network. The Android
project is an important case to study due to the fact that it is maintained by one
of the largest software companies of today, Google, as well as the fact that it has
attracted the most of the leading companies across the entire mobile device eco
system. While there are other open source projects that have a wide spread indus-
try acceptance and usage, the Android stands out in terms of: being a large scale

3 Research approach 113

company sponsored open source stack, having other large and competing compa-
nies basing their products around it, and including over 150 other, external open
source projects within its core stack.

In particular, this study analyzes the involvement of all companies as source
code contributors to the Android project since the project was initiated till today.
Hence, the study has a two fold focus; firstly a study of contributions and interac-
tions of contributors within the core Android components, and secondly, a study of
contributions and collaboration with other, external open source projects included
in Android project.

3 Research approach

3.1 Introduction

The study is conducted as a case study [RH08]. The investigated case is commit-
ters’ network structure of Android OSP. The study is exploratory with the overall
objective to understand how the community participants collaborate in develop-
ment of the software through the Android OSS process. The data of the study
was collected according to the process presented in the Figure 1. Thus, change
log data was extracted for each file within the Android repository, and loaded into
a database to simplify data manipulation process which identified all pairs of au-
thors that modified the same file. For each identified co-authorship par, weight and
direction of the relationship was calculated. Finally, this data was loaded into the
Gephi[Org13], software for network visualization and analysis.

In this study a quantitive approach has been taken. A study by Luis et al.
[LF+06] has shown how social network analysis methodologies can be used to
study OSS projects in order to characterize the projects’ evolution over time as
well as the projects’ structure. Affiliation networks are a special type of social
network where two distinct sets of actors are related, e.g., a committer network
relates a set of committers to a set of changed source code modules. Hence, there
exists a link between two committers when they have changed a same module. An
actor or a network node is referred to as a vertex and the links between the vertices
are called edges as shown in Figure 2.

In this study we propose an approach for studying committers’ networks. In
Luis et al. Luis [LF+06] the proposed methodology establishes links between the
committers, where the weight of the link or the edge is calculated as being the num-
ber of commits performed by committers to all common modules, i.e. the degree
of relationship. The definition of the common module differs between projects,
but usually corresponds to the top level directories of a source code repository.

According to Borgatti and Halgin [BH11] an important factor to consider when
studying strength of the co-affiliation among an event’s participants is the actual
size of the event. The research suggests that one of the ways to normalize the
strength of a co-affiliation between event participants is to weight participation

114 Network Analysis of a Large Scale Open Source Project

Data on commits extracted from the
company's source code repository.

1

The extracted data analyzed and
manually validated.

Validated data imported into a
database management system for
added ease of manipulation.

Developers' collaboration data
processed by Gephi in order to
construct collaboration networks and
calculate respective network metrics.

Three focus group meetings with the
relevant company representatives
conducted to analyze the results.

3

4

5

2

Figure 1: Analysis Process

Figure 2: A Three Actor Network

3 Research approach 115

relative to the size of event. In the studied context, the size of the event is the
total number of changes made to same file. Then, the strength of co-affiliation
among participants relative to the size of event can be expressed as the number
of file changes performed by each participant relative to the total number of the
changes performed on the file by all participants. For example, if two companies,
A and B, make changes to same file, where company A makes only a few changes
while company B makes a majority of the changes, then the influence of A over
B is much smaller than the influence of B over A relative to the size of the event.
A study by Hangal et.al [Han+M] also examines asymmetric influences of nodes
through a friendship example and infers weights on friendship relationship. Hence,
we propose a new approach to study committers networks as weighted digraphs
as shown in Figure 3. The figure shows weights of the edges for committers as-
sociated with companies A, B, and C who have changed the same source file 5,
10, and 15 times, respectively. The edge weight is calculated as the number of the
committers’ changes on a file relative to the total number of changes for the file,
which in this case is 30. Thus, the committer A infers a weighted influence of 1/6,
B of 1/3, and C of 1/2 to the files’s co-committers.

In Riitta Toivonen [Toi+07] argues the importance of strengths of edge ties
when modeling social structure and dynamics of social networks. We argue that
inferring the edge weight relative to the size of the event provides a more accurate
social network structure from the one suggested by Luis et al. Luis [LF+06] which
does not take into account relative size of event. For example, if only a degree of
relationship is considered in the above example for the committers A, B, and C
for, e.g., the total number of files they changed together, then the edge weights be-
tween the three committers would be the same. This would mean that the strength
of co-affiliation between A, B, and C is the same relative to the source file change
event, which is clearly not the case. While this is a simple and trivial example,
in a context of a large network, with many committers, where, e.g, a subgroup of
committers performs a large number of changes, computing edge weights relative
to the number of all changes performed on a file is important in order to accurately
assess relationship strength. This is more so as the data on committers, corre-
sponding edges, and their weights are building elements of a network structure,
based on which other network metrics are derived.

In this study, the weight of the edge between two participants is calculated on a
file level. Affiliation networks link actors into a social network by virtue of partic-
ipants attending a specific event. In the context of committer network analysis we
define the event as performing modifications on a specific source code file. Hence,
for a set of actors V = {v1, v2, ..., vk} and events U = {u1, u2, ..., um} we define
a weight W of an edge between an actor vi and all other actors that participate in
the event ut as:

W (vi, ut) =
X(vi,ut)∑k

c=1 X(vc,ut)

where X(vi, ut) denotes the number of times an actor/committer vi made
changes to the file, i.e., participated in the event ut.

116 Network Analysis of a Large Scale Open Source Project

Figure 3: A Weighted Three Actor Network for Modification of One Source Code
File

This means that the weight of the edge W (vi, vj) for all events vi and vj
attended together equals:

W (vi, vj) =
∑m

t=1W (vi, vj , ut)
In order to obtain committer data on the source code changes, Android project

source code repository was downloaded in November 2012 from the Android
project web site [Inc13]. Change log records, with information on authors and
change dates for all Android source code files were extracted and loaded into a
database. The social network data on network nodes/committers, edges, and as-
sociated edge weights and labels was analyzed using Gephi software for social
network analysis [Org13]. The labels correspond to the main subdirectories un-
der the Android source code tree, as displayed in table 1. The Gephi software
was used to calculate relevant social network metrics which are discussed in more
detail in the Section 2.4 as well as to generate a visual representation of the com-
mitters’ networks. Besides analyzing committer network for the entire repository,
we also analyze two additional distinct committer sub-networks. The tree commit-
ters’ subnetworks are constructed:

1. External committers network which includes committers that changed files
located under the external top subdirectory.

2. Core committers network which includes committers that changed files lo-
cated under all top subdirectories excluding the external subdirectory.

3. The entire committers network which includes committers that changed files
located under both, the core and the external subdirectories.

Since the external subdirectory contains source files for over 150 other open
source projects, we believe that studying this diverse community separately from
the core Android community can provide some additional insight. Committers that
participate in the external open source projects do not necessarily use the Android
OSS or participate directly in its community process. Distinguishing between the
core and external committers can also provide an additional insight into commit-
ters that work under the Android OSS project. Finally, a combined network of all,
the external and the core committers is studied.

3 Research approach 117

Table 1: Android Subprojects or Modules
Top Level Subdirectory Description
abi Features
bionic The C-runtime library for Android.
bootable Boot and startup related code.
build Utilities and scripts for building system imple-

mentation.
cts Android compatibility testing framework.
dalvik Android virtual machine.
development Source code for SDK and NDK, and emulator.
device Product specific code for different vendor devices.
docs Tutorials, references, and miscellaneous informa-

tion.
external External open source projects (WebKit, SQLite,

etc).
frameworks Key Android framework library (JNI, services,

phone and telephony components, etc)
gdk Compiler infrastructure for the NDK based on

LLVM
hardware Libraries for basic hardware support.
libcore The Harmony Java Virtual Machine used by

Dalvik.
libnativehelper Native development helper library.
ndk Native Development Kit.
packages Source code for default Android applications (e.g.

calendar, contacts,etc).
pdk Platform development kit provided to chipset ven-

dors and OEMs before new platform is released.
prebuilts Files distributed in binary form.
sdk Android Software Development Kit.
system Core Linux system libraries.
tools Development Tools.

118 Network Analysis of a Large Scale Open Source Project

3.2 Research questions
The following research questions were investigated during the research:

1. What are the characteristics of the committers’ networks for each set of the
Android project source files: the core, the external, and combined core and
external?

2. How can a company utilize network analysis to study the Android develop-
ment community?

For research question 1, the focus is an assessment of the three distinct net-
work structures, the core components committer network structure, the external
committer network structure, and the combined core and the external committer
network structure. Metrics on network influence, clustering, centrality, existence
of sub-communities, and network density are presented and discussed.

For research question 2, we analyze results of research question 1 from the
perspective of a company planning to develop software through Android or similar
OSP.

3.3 Investigated software
A program that parses trough all source files located under the Android OSP sub-
directories (table 1) was created and run in order to collect information on all the
changes made to all the source files in terms of authors and change dates. The
extracted data was loaded into a relational database in order to perform a thorough
data validation and provide flexible way to create different file input formats for
the Gephi [Org13] social network analysis software. All authors were grouped
based on a company affiliation. The affiliation is determined based on commit-
ter’s e-mail domain suffix. In case email data was not provided, authors individual
names are used and no company affiliation is implied. All of the contributions
made by the author named "Initial Android Open Source Project Contribution"
was excluded from the analysis, as these contributions were not developed under
the Android OSS community process, but internally by Google before the project
was initially open sourced. The Gephi data records are of the form "source, target,
edge weight, edge label". If we consider the earlier example depicted in Figure 3,
a sample record would look like "A, B, 1/6, the changed source file’s top subdirec-
tory".

3.4 Metrics
The following metrics were measured for the three committer networks:

• Weighted average in-degreeWAID and weighted average out-degreeWAOD
of a vertex.

3 Research approach 119

• Betweenness centrality BC, closeness centrality CC, and eigenvector cen-
trality EV C of a vertex.

• Average Clustering Coefficient ACC of a vertex.

• Modularity MC of a network.

• Number of MCN of a network.

• Graph density GD of a network.

textitWeighted degree of a vertex denotes degree of relationship of the vertex
with its direct neighborhood. It is calculated as the sum of weights of all edges
connected to the vertex. Since the analyzed network is weighted digraph, there
exist two types of edges; the edges originating from a vertex, or the out degree
(WAOD), and the edges pointing to a vertex, or the in-degree (WAID). Hence,
the weighted average in-degree of a vertex denotes degree of relationship of the
vertex to its direct neighborhood for the edges pointing to the vertex. By the same
analogy, the weighted average out degree of a vertex denotes degree of relationship
of the vertex to its direct neighborhood for the edges originating from that vertex.
In the context of committer network analysis, the out degree can be interpreted as
the measure of collaboration strength or influence of the committer on commit-
ters in its direct neighbourhood. The in degree can be interpreted as the measure
strength of influence of committers in direct neighborhood of the committer on the
committer.

textitBetweenness centrality index (BC) is the number of shortest paths that
traverse through a vertex and it can be interpreted as a measure of importance of the
vertex in a graph. The higher betweenness centrality index of a vertex, the more
important the vertex is. In the context of this study, the betweenness centrality
index indicates the number shortest distance paths between any two committers
which traverse through a committer.

textitCloseness centrality CC indicates how close on average a vertex is to all
other vertices. A high value of the distance centrality index identifies vertices that
are well related.

textitEigenvector centrality EV C metric measures the influence of a vertex
on a network by assigning scores to all vertices in the network. The scores are
assigned so that an edge to a higher scoring vertices is valued more than the same
edge to a lower scoring vertex. The eigenvector represents the most accurate metric
for influence of a vertex on other vertexes in the network. Gephi uses an algorithm
by Brandes [Bra01a] to calculate the centrality network measures for weighted
graphs.

textitAverage clustering coefficient ACC of a vertex shows the tendency of
the network to form cliques or isolated groups. The average clustering coefficient
is calculated based on sum of individual clustering coefficients. The individual
clustering coefficient is calculated as the number of edges from a vertex to its

120 Network Analysis of a Large Scale Open Source Project

direct neighborhood relative to the number of links that could exist between them
[WS98a].

textitModularity of a network MC identifies the sub-communities within the
network with densely connected vertices. The value of modularity is calculated
as a difference in fraction of edges that fall into the sub-communities and a frac-
tion of edges that could be found in the sub-communities if the edges were dis-
tributed at random per Blondel et. al[Blo+08]. In the context of the committer
network study, the modularity class is used to identify committer sub-networks
with higher degree of collaboration. The modularity value falls between the val-
ues of -1/2 and 1, where negative number indicates that a random distribution the
edges is more likely to form sub-communities than the actually identified sub-
communities. The modularity class number MCN indicates the number of iden-
tified sub-communities for a given modularity class MC.

textitGraph density index GD measures how close the network is to being
complete, i.e., that there exist edges between all the vertexes in the network. A
value of 1 for the graph density index indicates a fully complete or connected
network.

3.5 Analysis procedure

Analysis with respect to research question 1 was conducted by calculating the
WAID, WAOD, BC, CC, EV C, ACC, MC, GD on the core, external, and
combined core and external Android OSP source code tree. For research question
2, the presented network structure data in question 1 is analyzed from a business/-
company perspective.

3.6 Validity

In this section the validity of the research is analyzed with respect to the types of
validity threats presented, for example, in [RH08].

Construct validity: The construct validity is related to the relationship between
the concepts and theories behind the experiment and what is measured and af-
fected. The subset of metrics from the network theory used in this research has
been accepted and validated in other studies within the filed of OSP repositories
and mailing archive studies. This means that the risk of using metrics that do not
represent the concept of social network structure is lowered.

Conclusion validity: The conclusion validity is concerned with the possibility
to draw correct conclusions regarding the relationship between treatments and the
outcome of an experiment. The interpretation of the metrics is grounded in the
widely accepted network theory and the field of social network analysis.

Internal validity: The internal validity is concerned with factors that may affect
the dependent variables without the researcher’s knowledge. The data extracted
from the repositories was examined and validated manually through sampling. The

4 Results 121

approach used in constructing committers network is grounded on network theory
concepts applied in other disciplines.

External validity: The external validity is related to the ability to generalize the
results of the experiments. The studied software is relevant example of a successful
industry led OSP as the project includes leading global companies from the mobile
eco system.

4 Results

4.1 Research question 1: An assessment of the three
distinct network structures, the core components com-
mitters’ network structure, the external OSPs com-
mitters network structure, and the combined com-
mitter’s and external network structure.

The core committers’ network has a total of 250 vertices and 3606 edges, which
in this case means that committers have 250 distinct affiliations and there are
1803 distinct committer co-authorship pairs. Since the network is modeled as a
weighted digraph, the edges are bi-directional. The external committers’ network
has 329 vertices and 11196 edges, while the combined core and external commit-
ters’ network has 513 vertices and 14484 edges.

Table 2 shows ACC, MC, MCN , and GD for the three studied committer
network structures. The average clustering coefficients for the three networks show
high tendency of the networks to form cliques.

The identified number of closely related sub-communities MCN for the core
committer network is 4. However, the MC value of 0,0009 indicates that a prob-
ability of such sub-communities occurring at random is very high. Hence, the
identified potential sub-communities for the core committer network should be
disregarded since their existence is not statistically significant. The number of
sub-communities identified within the external committer network is 6 with the
MC value of 0,356 indicating that existence of the 6 subnetworks is statistically
significant. The number of identified sub communities for the combined, external
and internal committers’ networks is 7, with the MC value of 0,43 indicating that
the existence of the sub-communities is statistically relevant.

The graph density metric GD for the core, external, and combined core and
external committer networks is 0,058, 0,104, and 0,055, respectively. The value
of 1 for GD indicates that all the components within the network are highly con-
nected. Hence, all three types of the committers’ network showing low graph
density values indicate that the committers’ networks are weakly connected. The
high clustering coefficient shows that even though many edges between the com-
mitters are absent, committers in a direct neighborhood of a committer are well
linked.

122 Network Analysis of a Large Scale Open Source Project

Table 2: Summary of the committers’ networks measures
Metric Core External Core and External
ACC 0,782 0.791 0,799
MC 0,0009 0,356 0,43
MCN 4 6 7
GD 0,058 0,104 0,055

Figure 4 displays the weighted average in-degree and out-degree for the top
16 committers in core committers’ network. As noted earlier, the out-degree in
the weighted directed network indicates influence of a vertex over other vertices in
its direct neighborhood. Hence, committers affiliated with Google have the high-
est WAOD value. The value is also more than two times higher than the WAOD
value for the second most influential group of committers, that is the group of com-
mitters are affiliated with Android OSP community. TheWAODmetric decreases
tenfold for the third highest rated committer group affiliated with the Gmail.com
address as compared to the Google. The weighted average in-degree WAID met-
ric for Google representing the influence of all other committers in Google’s direct
neighborhood on Google is 50% of WAOD value for Google. Hence, the col-
laboration strength or the influence of the Google on the committers in its direct
neighborhood is twice as high as compared to the influence of all committers in
Google’s direct neighborhood on Google.

Figure 5 displays the weighted average in-degree and out-degree for the top
20 committers in external committers’ network. Committers affiliated with the
apple.com email address have the highest value for WAOD metric. Some 30%
lower value for the WAOD metric have committers associated with gmail and
google. The fourth and fifth highest value of WAOD metric have committers
affiliated with nondot.org an zuster.org. The highest WAID value has Google,
followed by committer associated with gmail.com email address.

Figure 6 shows the weighted average in-degree and out-degree for the top 20
committers in the combined, core and external committers’ networks. Committers
affiliated with the Google email address have highest value of WAOD. Some
30% lower value of WAOD has Apple, followed by committers associated with
gmail.com, nondot.org, and android.com.

The WAOD and WAID metrics indicate that for the entire Android source
code base Google has the highest strength of co-affiliation with members in its
direct neighborhood.

Figure 7 shows network centrality metrics values BC,CC, and EV C, for the
core committers network. Committers with Google.com and Android.com have
highest values for EV C, followed by committers associated with Gmail, Sony
Ericsson, and Motorla. The value of BC is highest for committers associated with
Google.com and Android.com, and decreasing sharply for committers associated

4 Results 123

Figure 4: Weighted average in-degree and out-degree for top 16 committers in
core committers’ network

Figure 5: Weighted in and out degree for top 20 committers in external project
committers’ network

124 Network Analysis of a Large Scale Open Source Project

Figure 6: Weighted in and out degree for top 20 committers in core and external
project committers’ network

with Sonyericsson.com and Motorola.com. Thus, the majority, i.e., 40% and 50%
of shortest paths between two committers within the core committer network pass
trough committers associated with Google.com and Android.com email addresses,
respectively. The third and fourth highest values for BC metric have committers
associated with Gmail.com and Sonyericsson.com email addresses, with the metric
values indicating that only some 2% and 1% of shortest paths traverse through
these committers, respectively.

Figure 8 shows network centrality metrics values BC,CC, and EV C, for the
external committers network. The highest values for the EV C metric have com-
mitters associate with gmail.com, google.com, debian.org, non dot.org, apple.com,
etc. Unlike EV C values for the core committers’ network, the EV C values for
external committers’ network is more balanced and does not indicate as high of
a differences among the top 30 committers. The BC value is highest for the
committers associated with the google.com address, followed by the commuters
associated with the gmail.com and debian.org address.

Figure 9 shows network centrality metrics valuesBC,CC,EV C for combined
core and external components. Unlike EV C values for the core external commit-
ters network, the EV C values for the combined core and external committers’
network show highest values for committers affiliated with google.com, followed
by committers associated with gmail.com, intel.com, debian.org, codeaurora.org,
etc address. The combined core and external committers’ network shows more
balanced values for CC and EV C, while the BC values indicated that some 40%
of the shortest paths traverse through committers associated with a google.com ad-
dress, followed by gmail.com with some 20% of the shortest paths, and intel.com

4 Results 125

Figure 7: Network centrality measures for top 20 committers in the core commit-
ters’ network

with some 2% of the shortest paths.
Hence the metrics presented above in summery show:

Android core committers network The high average clustering coefficient and
low graph density indicate that committers in a direct neighborhood of a
committer are well linked. The identified potential sub-communities for the
core committer network should be disregarded since their existence is not
statistically significant. The collaboration strength or the influence of the
Google on the committers in its direct neighborhood is twice as high com-
pared to the influence of all committers in Google’s direct neighborhood on
Google. The majority, i.e., 40% and 50% of shortest paths between two
committers within the core committer network pass trough committers as-
sociated with Google.com and Android.com email addresses, respectively.

Android external committers network The number of sub-communities identi-
fied within the external committer network is 6 with the MC value of 0,356
indicating that existence of the 6 subnetworks is statistically significant. The
EV C values for external committers’ network is balanced among the top
30 committers. The BC value is highest for the committers associated
with the google.com address, followed by the commuters associated with
the gmail.com and debian.org address.

Android core and external network The number of identified sub communities
for the combined, external and internal committers’ networks is 7, with the
MC value of 0,43 indicating that the existence of the sub-communities is

126 Network Analysis of a Large Scale Open Source Project

Figure 8: Network centrality measures for top 20 committers in external commit-
ters’ network

Figure 9: Network centrality measures for top 20 committers in combined core
and external committers’ network

4 Results 127

statistically relevant. Committers affiliated with the Google email address
have highest value of WAOD. Some 30% lower value of WAOD has
Apple, followed by committers associated with gmail.com, nondot.org, and
android.com. Values for CC and EV C are balanced betweeing the top 20
committers, while the BC values indicated that some 40% of the shortest
paths traverse through committers associated with a google.com address,
followed by gmail.com with some 20% of the shortest paths, and intel.com
with some 2% of the shortest paths.

Based on the results, the three committers networks show characteristics of
highly centralized network structure, with committers affiliated with google.com,
gmail.com, android.com, and apple.com being central to linking other committers.
The four committers’ affiliations also have the highest influence on other commit-
ters. Graph density metrics show that the core committers network and combined
core and external committers network are not well connected with GD values of
0,058 and 0,055 respectively. The external committers network, composed of over
150 different OSPs has a twice as high value for the GD metric as for the Android
OSPs core components network. As noted above, the highest value of GD metric
is 1 indicating that all vertexes are connected.

The Figure 10, Figure 11, Figure 12 show graphical structures of core, external,
combined core and external commiters’ networks. The absence of subnetworks in
the core committers network discussed above as well as low graph density can be
seen in the Figure 10. The external network depicted in Figure 11 shows existence
of subnetworks, which is expected for a source code base composed of different
open source projects.

4.2 Research question 2: What type of concerns should
a company take into consideration when planning to
become a contributor to the Android or a similar type
OSP

Based on the results presented for research question 1, Android OSP exhibits
characteristics of a highly centralized OSP, where committers with affiliations to
google.com, gmail.com, android.com, and apple.com have the highest level of in-
fluence. The external open source projects that Android OSP hosts in its source
code repository under the external top subdirectory shows committers affiliated
with Google.com as being third most influential. The committers affiliated with
Google have the highest BC value for the external committer’s network, indicat-
ing that 40% of committers in the external committer network have shortest paths
to other committers transversing through committers affiliated with Google. This
is a compelling evidence that Google has been the most central, and the most influ-
ential in the Android OSP development not only for the core source components,
but also for the external open source projects. The Android committers network

128 Network Analysis of a Large Scale Open Source Project

Figure 10: Core committers’ network

Figure 11: External committers’ network

4 Results 129

Figure 12: Combined core and external committers’ network

has low graph density, i.e. low connectedness of committers, indicating low co-
affiliation among committers.

From a perspective of a company that is planning to participate or participates
in Android or a similar OSP this means that it should take into consideration that
OSS product development tends to be highly influenced by one company. This
might indicate that the company planning to incorporate the Android into its prod-
uct will need to work closely with Google to ensure that the changes it needs to
see implemented in the source code base are included in a future OSS product re-
leases. Google has built different sales models around the Android, primarily the
GooglePlay store, the application market for Android devices, AdMob platform,
and Web search. Hence, it is in the Google’s interest to have the Android used and
distributed on as many mobile devices as possible since this would mean higher
revenues from its GooglePlay store, AdMob, and Search engine. However, the
company should be aware that sales and marketing models change, and different
alliances form. In order to influence and lead a large open source project, a com-
pany controlling the project development usually has a large development effort
dedicated to the project. In case a company is no longer able to support the devel-
opment is is possible that some other company takes the lead. Hence, it is possible
for a company with highest control over the open source project to take the project
in a direction not favored by some other project participants.

130 Network Analysis of a Large Scale Open Source Project

5 Discussion

The Android OSS project is an open source stack of software, i.e., a mix of OSS
from over 150 OSS projects and components which Google initially purchased
from Android corporation and later open sourced. Hence, different OSS projects
have been used as a reusable software components to build a mobile device op-
erating system used by companies from entire mobile ecosystem. While different
open source solution stacks are not in itself a novel idea, e.g. [LAM], the Android
OSS project stack is unique for several reasons. Firstly, it combines over 150 OSS
projects of highly diverse nature into one integrated OSS product. Secondly, the
integrated OSS product is of large scale, mostly maintained and developed by one
company. Finally, this product has become the most used OSS product for mobile
devices in 2012.

Based on the social network structure analysis results for Android commit-
ters’s networks, it is evident that Google has the highest degree of influence and
centrality on both, the core, and the external components. This shows how a large
company with significant resources can create a large scale software products us-
ing other OSS components. In a company sponsored open source project the com-
pany invests a large development effort into the OSS product and there exists a
possibility that the company might not be able to maintain the high level of devel-
opment commitment. This possibility would also mean uncertainty for the future
of the OSS product development, and, if realized, it can bring shifts in commit-
ters’ influence on the project. This can create uncertainty on the future of the OSS
product development, an important factor that should be considered by companies
planning to join similar company sponsored projects. A company might decide to
also closed source and license the open source product. Such situation can then
create a vendor lock-in effect, which contradicts a generally accepted notion of an
OSS software product being free from vendor lock-in.

6 Conclusions

The conducted analysis have shown that Google has the major influence on the
Android OSP. While it is favorable to use an OSS product as a commodity soft-
ware, and thus decrease development costs by focusing available resources on de-
veloping differentiating parts of a product, at the same time this can raise many
uncertainties. The future of OSS product whose development is highly sponsored
and influenced by one company can come under the influence of market condi-
tions the company finds itself in. This seems to go against the nature of OSS,
which among other characteristics includes protection from vendor lock-in, i.e.,
high dependance of companies using Android on the Google.

More research is needed to understand and properly categorize OSPs in a way
that would help the industry better understand own strategic position in a context

6 Conclusions 131

of using an OSP to build business model. The research approach proposed in this
study can be used as one way of studying a committer’s network structure of a
software development community.

Acknowledgment
This work was funded by the Industrial Excellence Center EASE - Embedded
Applications Software Engineering, (http://ease.cs.lth.se)

References
[And05] AndroidCorp. Google Buys Android for Its Mobile Arsenal. http:

//www.businessweek.com/stories/2005- 08- 16/
google- buys- android- for- its- mobile- arsenal.
2005.

[And07] AndroidOS. Breaking: Google Announces Android and Open Hand-
set Alliance. http://techcrunch.com/2007/11/05/
breaking-google-announces-android-and-open-
handset-alliance/. 2007.

[Blo+08] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and
Etienne Lefebvre. “Fast unfolding of communities in large network”.
In: Journal of Statistical Mechanics: Theory and Experiment 10 (2008),
P100.

[BH11] Stephen P. Borgatti and Daniel S. Halgin. “On Network Theory”. In:
Organization Science 22.5 (2011), pp. 1168–1181.

[Bra01a] Ulrik Brandes. “A Faster Algorithm for Betweenness Centrality”. In:
Journal of Mathematical Sociology 25 (2001), pp. 163–177.

[Cle+05] R. B. de Souza Cleidson, Jon Froehlich, and Paul Dourish. “Seeking
the source: software source code as a social and technical artifact”.
In: Proceedings of the 2005 International ACM SIGGROUP Confer-
ence on Supporting Group Work. 2005, pp. 197–206.

[Han+M] Sudheendra Hangal, Diana MacLean, Monica S. Lam, and Jeffrey
Heer. “All friends are not equal: Using weights in social graphs to
improve search”. In: SNAKDD-2010: 4th SIGKDD Workshop on So-
cial Network Mining and Analysis (ACM, 2010).

[HOA11] Martin Höst and Alma Oručević-Alagić. “A systematic review of
research on open source software in commercial software product
development”. In: Information & Software Technology 53.6 (2011),
pp. 616–624.

132 Network Analysis of a Large Scale Open Source Project

[How+06] James Howison, Keisuke Inoue, and Kevin Crowston. “Social dy-
namics of free and open source team communications”. In: Open
Source Systems, IFIP Working Group 2.13 Foundation on Open Source
Software. 2006, pp. 319–330.

[Inc13] Google Inc. Android Open Source Software Project. http://www.
android.com/. 2013.

[LAM] Open Source Community LAMP. Linux, Apache, MySql, Python Open
Stack. http://onlamp.com/.

[Lin+08a] Frank Van der Linden, Björn Lundell, and Gary J. Chastek Chastek.
“Open Source Software Product Lines”. In: International Software
Product Line Conference (2008), p. 387.

[Lin+09b] Frank Van der Linden, Björn Lundell, and Pentti Marttiin. “Com-
modification of Industrial Software: A Case for Open Source”. In:
IEEE Software 26.4 (2009), pp. 77–83.

[LF+06] Luis López-Fernández, Gregorio Robles Robles, Jesús M. González-
Barahona, and Israel Herraiz. “Applying Social Network Analysis
Techniques to Community-Driven Libre Software Projects”. In: In-
ternational Journal of Information Technology and Web Engineering
1.3 (2006), pp. 27–48.

[Org13] Gephi Organization. Open Source Software for Exploring and Ma-
nipulating Networks. https://gephi.org. 2013.

[Ray01a] Eric S. Raymond. The Cathedral and the Baazar. O’Reilly Media,
Inc., 2001.

[RH08] Per Runeson and Martin Höst. “Guidelines for conducting and re-
porting case study research in software engineering”. In: Empirical
Software Engineering 14 (2008), pp. 131–164.

[Sal95] Gerald R. Salancik. “WANTED: A good network theory of organiza-
tion”. In: Administrative Science Quarterly 40 (1995), pp. 345–349.

[Toi+07] Riitta Toivonen, Jussi M. Kumpula, Jari Sarmaki, Jukka Pekka Onella,
Janos Kertesz, and Kimmo Kaski. “The role of edge weights in social
networks: modeling structure and dynamics”. In: Proc. International
Society for Optics and Photonics, SPIE 6601 (2007).

[WS98a] Duncan J. Watts and Steven H. Strogatz. “Collective dynamics of
‘small-world’ networks”. In: Nature 393.6684 (1998), pp. 440–442.

[Xu+05] Jin Xu, Yongqin Gao, Scott Christley, and Gregory R. Madey. “A
Topological Analysis of the Open Souce Software Development Com-
munity”. In: HICSS. 2005.

PA
P

E
R

V
I

DEVELOPMENT PROCESS
MONITORING THROUGH

APPLICATION OF NETWORK
ANALYSIS ON SOURCE CODE

REPOSITORY DATA

Abstract

Context: The emergence of new development practices, e.g. agile development,
has prompted many companies to implement extensive changes to the way soft-
ware development effort is organized and managed. Understanding if and how
the implemented changes affect the way the teams collaborate to produce soft-
ware products is crucial in assessing the effects of the implemented changes. One
way to analyze the teams’ collaborations is by studying developers’ collaboration
networks.

Objective: The goal of the research is to understand if and how the developers’
network metrics can be used to assess and monitor the effectiveness of the newly
introduced changes.

Method: In this work, network analysis of data extracted from a source code
repository of a large unit within Ericsson, a Swedish multinational company with
focus on communication technology, is performed. The unit has undergone ma-
jor organization and development process changes in the recent years. For this

Alma Oručević-Alagić, Martin Höst, Submitted

134 Development Process Monitoring Through Application of Network . . .

purpose the source code repository data was mined in order to calculate relevant
network metrics. The resulting network metrics were validated through three focus
group meetings with participants from the company.

Results: The presented network analysis based approach has shown to be ef-
fective and useful in the assessment of software development dynamics. In addi-
tion, based on the feedback received in the focus group meetings, the underlying
metrics can be useful to correctly assess software development structures and mon-
itor how they evolve over the time.

Conclusion: Developers’ network metrics can be used to identify and track
changes in specialized development subgroups and degree of collaboration. More
studies are needed to gain a better understanding on the best usage of the metrics.

1 Introduction

Effectively monitoring large software development efforts is an ongoing and com-
plex task, especially in large software organizations. A number of methodologies
with associated benchmarks have been proposed and implemented with the goal of
improving software product quality and development efficiency, e.g. as described
by Bohnet and Döllner [BD11]. The post-mortem meeting groups have been con-
ducted in order to assess pros and cons of the implemented methodologies and
suggest improvements, e.g. Kupiainen et al.[Kup+14].

The emergence of large, complex and industry-grade open source software
products has prompted an increased research effort in the study of the open source
software (OSS) development communities. Furthermore, the transparency of open
source communities has offered an open access to developers’ communication
archives, source code repositories, as well as insights into the communities’ or-
ganizational structure and participants’ roles according to Crowston and Howison
[CH05]. Some of the conducted research has utilized network analysis methods
based on the social network analysis approach e.g. Wasserman and Faust [WF94a]
to study communication archives and source code repositories. The results of the
research provide an increased understanding of the communities’ dynamics, es-
pecially from the perspectives of the participants’ roles, communication channels
and developers’ collaborations, e.g. Crowston and Howison [CH05]. In the past
decade network analysis has gained popularity in the software field and has been
increasingly used to study open source community data López-Fern and Robles
[LF+06]. In contrast, software development efforts carried out in large companies
have not been studied as extensively which is probably due to the very nature of the
proprietary software development, i.e. closed source code archives and intellectual
property rights.

As Basili et al. [Bas+02] noted in their experiences gained in over twenty-five
years long research effort on process improvement in NASA, the data collection,
analysis, application of obtained results, and reevaluation of the applied changes is

2 Background and related work 135

an ongoing effort. Thus, there are many ways to evaluate efficiency and effective-
ness of software development. Hence, the conducted research described in this pa-
per should be viewed as an effort to collect data and analyze it within the scope of
one large software company setting that has introduced extensive changes to devel-
opment process and organization structure. In order to further the understanding
on how the proposed methodology can be used to assess and monitor software de-
velopment efforts, more studies over a longer time periods are required. However,
the research presented here provides concrete results of one such study conducted
within the closed setting, discusses issues encountered during data collection as
well as evaluation process carried out via three focus group meetings, and offers
possible direction for the future research.

In this paper the source code repository of a large development unit within
Ericsson is mined, source code committers’ networks constructed, and relevant
network metrics calculated and validated through three focus group meetings. The
goal of the study is to understand if the effects of the organization and process
level changes implemented in the company can be observed in the developers’
collaboration network metrics, and if so, if the monitoring of the metrics could be
useful in management of software development effort. It is important to note that
the goal of this research is not to evaluate the effectiveness of the changes intro-
duced in the company, but rather to investigate if the changes could be observed
in network metrics based on data extracted from the source code repository. Fur-
thermore, we argue that if the changes could be observed on the source code level,
then the network metrics could be used to monitor development effort and changes
in development collaboration dynamics. In particular, one can observe if the or-
ganization level changes leave ’foot-prints’ in the source code, or if some other
software quality or development efficiency metrics are related to the topology of
developers networks and corresponding metrics. A variety of network metrics is
measured and evaluated, e.g., developer’s centrality, influence, or change in num-
ber of distinct subgroups of developers which collaborate more closely.

The outline of this paper is as follows. Section 2 presents the background
information about the case study and related research studies. In Section 3 the
research method is presented in more detail, while in Section 4 the results of the
study are presented. Section 5 discusses and analyses the obtained results in some
more detail. Finally, conclusions are drawn in Section 6 .

2 Background and related work

In this section related research on application of network theory to study source
code repository data is discussed. A brief description of the case company in which
this research was conducted is also provided.

136 Development Process Monitoring Through Application of Network . . .

2.1 Related Research
Many studies have been conducted in order to examine the relation between the
team organization and the underlying software being produced. The famous Con-
way law [Con68] coined in 1968 states that design of an information system is a
copy of communication structure of the organization that produced the system. Re-
lating an organization structure to the work produced has remained a relevant and
interesting subject examined in a number of studies. In this paper, the organization
structure is related to collaboration networks which are a type of social networks
where relationships between the actors are formed though different events, such
as, co-authorship on the same paper, Newman [New13]. In the work by Ning and
Kumar [NK13] team structure and architecture of open source projects have been
examined arguing that they moderate each other and affect development perfor-
mance. Research by Cleidson et al. [Cle+05] shows that the network structure of
the source code is highly related to the way a community is organized. In [Lia+06]
communication archives were extracted and analyzed and it was shown that actors
exhibiting high level of network centrality are correlated with the ability to coor-
dinate actions of others in the team.

In work by Roach and Menezes [RM10] network analysis was used to con-
struct undirected projection of bipartite developers’ collaboration network where
edges between the developers or the nodes of the network were formed if two de-
velopers changed the same file. The edges weights were then calculated based
on how many different files developers changed together. In the fore mentioned
research, authors argued that usage of network metrics to understand the most in-
fluential developers was superior to static network metrics such as source lines of
code (SLOC), number of commits, or number of issues found and demonstrated
this by analyzing Python OSS project.

The field of social network analysis is based on network theory e.g. Salan-
cik [Sal95] that provides tools for analyzing relationships between network nodes.
The study by López-Fernández et al. [LF+06] proposes a methodology based on
social network analysis field that can be used to study developer collaboration.
The methodology constructs weighted and undirected developers’ collaboration
networks, while in this study directed and weighted networks are constructed. The
weighted and directed networks facilitate calculation of weighted out degree met-
ric, which can be used to identify the most influential contributors. This research
builds on the study by Oručević-Alagić and Höst [OAH14b] which proposes a
methodology for constructing weighted and directed developers’ networks based
on source code commits data, arguing that networks built in this manner offer a
more accurate developer network structures.

2.2 Case Company Setting
The company is a relevant case to study, not only due to its large software base,
global presence, and distributed development sites but also because it has intro-

3 Research approach 137

duced some major changes to the way work is organized, moving from a hi-
erarchical to a vertical organization as well as introducing Scrum development
framework, e.g. Schwaber and Beedle [SB01]. Thus, the development teams were
reorganized so that each team is composed of members with expertise in all dif-
ferent software layers, rather than one specialized software layer. The decision
to reorganize teams was motivated by the need for developers to broaden their
system expertise, thus shifting from a specific architecture layer to a system wide
view. By organizing teams in this way, the case company hopes to achieve greater
knowledge dissemination, which in turn should lead to higher software product
quality and increased development efficiency. The company was motivated to par-
ticipate in the study since it could offer an increased understanding on how the
implemented changes are reflected in developers’ collaboration dynamics as ob-
served in corresponding collaboration networks derived from the source code files
changed.

3 Research approach

The study is conducted as a case study based on the case study guidelines by
Runeson and Höst [RH09b]. The study is exploratory with the overall objective
to understand if the organization and the process level changes can be observed in
the developers’ collaboration network metrics, and if so, if monitoring the changes
in metrics would be useful for the company to track and assess the effects and
effectiveness of the applied changes.

3.1 Research questions

The following research questions were investigated in this study:

1. How do committers’ collaboration network metrics reflect development pro-
cess changes within the case company?

2. How can the metrics be used in order to aid planning, assessment and mon-
itoring of the development process?

For research question 1, the calculated network metrics are analyzed from the con-
text of the company’s organizational changes. For this purpose, discussion feed-
back and input obtained from the focus group meetings is analyzed. For research
question 2, the results from research questions 1 were synthesized and discussed in
order to understand if the proposed committers network data can be used to assess
and monitor software development organization and process changes.

138 Development Process Monitoring Through Application of Network . . .

Data on commits extracted from the
company's source code repository.

1

The extracted data analyzed and
manually validated.

Validated data imported into a
database management system for
added ease of manipulation.

Developers' collaboration data
processed by Gephi in order to
construct collaboration networks and
calculate respective network metrics.

Three focus group meetings with the
relevant company representatives
conducted to analyze the results.

3

4

5

2

Figure 1: Research Process

3.2 Research Steps

The data used in the study was collected and analyzed according to the process
presented in Figure 1.

The first step of the research was to obtain access to the Git source code repos-
itory of the case company, and run a custom built software to extract repository in-
formation such as developer unique ID, date and time of the source code commit,
and the name and the location of the source code file the commit was performed
on. The first author was seated at the company with a team dedicated to the in-
tegration and building of the software product. Thus, the integration team had a
complete picture of all development efforts carried out throughout the company as
well as know-how related to building the software product.

In step two, an experienced member of the integration team was assigned to
help the first author validate the extracted data. Initially, developers having multi-
ple IDs on the system were identified and consolidated under one unique id. When
building a new software release, integrators tend to make changes to sets of files,
very often the file headers, updating them with build or release related informa-
tion. Thus, source code commits by the integrators were excluded from the ex-
tracted data sets as the changes they make are not considered relevant in the study
and could possibly corrupt the results. Including data from the integrators’ com-
mits could skew the relevant study data, i.e. data related to actual developer level

3 Research approach 139

commits. The resource from the integration team was also able to relate different
teams to the source code subdirectories that the teams normally work on.

In the third step, the validated source code committers data was loaded into
a database for ease of manipulation, i.e. transformation into a format that can be
analyzed using the Gephi [Org13] software for network analysis. According to
the methodology from Oručević-Alagić and Höst [OAH14b], Figure 2 shows an
example, for illustration purpose, of the data transformation using three developers
A, B, and C, each responsible for 3, 4, and 5 changes (source code commits) made
to the same source file, respectively. The developers A, B, and C are nodes or
vertices of the presented network, while the directed and weighted links between
the nodes are referred to as the edges representing developers weights from one to
another with respect to all changes made to the file. Thus, for each source file on
the system all developers changing the file were identified as well as the number
of changes each of the developers made to the file counted. Then, based on the
number of changes per developer divided by the total number of changes made
on the file, their relative edge weights are calculated. While this is a simple and
trivial example, in a context of a large network, with many committers, where, e.g,
a subgroup of committers performs a large number of changes, computing edge
weights relative to the number of all changes performed on a file is important in
order to accurately assess the relationship strength. This is more so as the data
on committers, corresponding edges, and their weights are building elements of a
network structure, based on which other network metrics are derived.

Using a more general notation to represent the procedure we identify a set of
developers V = {v1, v2, ..., vk} and set of changes made on a fileU = {u1, u2, ..., um}
and define a weightW of an edge between an actor vi and all other actors that par-
ticipate in changing the file ut as:

W (vi, ut) =
X(vi,ut)∑k

c=1 X(vc,ut)

where X(vi, ut) denotes the number of times a developer vi made changes to
the file ut.

Based on this, the weight of edge W (vi, vj) for all changes vi and vj per-
formed together equals:

W (vi, vj) =
∑m

t=1W (vi, vj , ut)
In step four, all the developers’ pairs that changed the same file, their corre-

sponding weights and the file name with its corresponding folder location were
loaded into the Gephi. Hence, Gephi was used to create graphs as well as to cal-
culate relevant network metrics. Figure 3 shows a network graph on developers’
collaborations for the entire source code repository for the case company. The
nodes of the graph represent developers, while the edges relate together two de-
velopers who made changes to the same file. The edges are assigned the different
unique color label representing the subfolder the source file is located in. Figure 4
shows a sample folder structure under which source code files are stored. Hence,
Figrue 3 shows developers’ collaboration graphs at level 1 subfolder level. In the
Figure 5, the developers’ collaboration network graph is shown at level 2 for a sub-

140 Development Process Monitoring Through Application of Network . . .

Developer Number of
Commits

A 3

B 4

C 5

Ordered Pair

Collaboration
Weight

(A,B) (B,A) (A,C) (C,A) (B,C) (C,B)

3/12 4/12 3/12 5/12 4/12 5/12

A

B C
5/12

4/12

4/12
3/12 3/12 5/12

Figure 2: Transformation of the Extracted Data to the Weighted and Directed
Pairs, Three Developers Changing the Same File Example

3 Research approach 141

Figure 3: Developers’ Collaboration Network at Level of the Entire Source Code
Repository

folder A2, while Figure 6 demonstrates developers’ collaboration network at level
3 for a subfolder A3. Each first level subfolder normally includes source files as-
sociated with a specific software function, e.g., all work related to modems would
be located under modem subfolder. Through the Gephi interface one can than vi-
sually inspect developers’ collaboration networks related to a particular subfolder,
as well as obtain network metrics for the inspected subfolder. The goal of the
presented graphs on developers’ collaboration is to have a visual which can pro-
vide a high level insight into the structure of developers’ collaboration, and relate
different parts of the system though use of colored labels for the edges. While
the graphs provide an interesting representation of developers’ collaborations for a
given folder which can also be further analyzed by zooming in on a subfolder one
wishes to explore, in order to gain a better understanding on the network structure
and dynamics, an in-depth examination of associated network metrics is needed.

The following network metrics explained in more detail in Wasserman and
Faust [WF94a] were calculated and discussed in the focus group meetings:

142 Development Process Monitoring Through Application of Network . . .

 Level 0
 Root folder

 Level 1
 Subfolder A1

Level 2
 Subfolder A2

Level 2
 Subfolder B2

Level 1
 Subfolder n

Figure 4: An Example of Folders/Subfolders Layout

Figure 5: Developers’ Collaboration Network at Level of the First Level of Sub-
folder

3 Research approach 143

Figure 6: Developers’ Collaboration Network at Level of a Second Level Sub-
folder

1. Weighted average degree (WAD). The WAD represents the average of the
sum of weights of the edges of nodes. In case of developers’ collaboration
networks the nodes represents developers and a high WAD metric points to
a developer with high level of collaboration with other developers.

2. Graph density (GD). The GD metrics shows how well the developers are
connected and it is calculated as ratio of existing edges (links between de-
velopers) to all possible edges. Hence, GD of 1 means that edges exist
between all vertices.

3. Average path length (APL). The APL metric is calculated as average of all
shortest paths between nodes on the network. Thus, the APL of 1 means
that every two developers within the network have changed all the files at
least once.

4. Network diameter (ND). The ND represents the longest shortest path be-
tween two nodes.

5. Network modularity (NM). The NM score uncovers existence of sub-networks
of developers that tend to work more closely on a set of files. A high net-
work modularity score normally points to communities that are organized as
opposed to random or unorganized.

6. Connected components (CC). CC indicates the number of subnetworks-
components that exist within the network and which are not connected.

144 Development Process Monitoring Through Application of Network . . .

7. Clustering coefficient (CCF). CCF metric shows how well nodes in the
neighborhood of some node are connected. Average CFF is calculated over
all nodes of the network. Hence, e.g., if all developers connected to a de-
veloper are connected as well with the rest of the developers, and the APL
is small, this can indicate a ’small-world effect’ or rather cohesive develop-
ment environment.

The metrics above are calculated for the directed network with weighted edges,
which influences the calculation of the WAD metric. While there have been al-
gorithms proposed for the calculation of metrics such as GD based on weighted
edges, the metric has not been implemented as of yet in Gephi.

The network metrics explained above were collected for a year long period,
and for the analysis purposes calculated for the four three-months long periods.

Finally, in step five, the obtained results were presented to three different
groups composed of five to six actors, whose roles within the company were either
senior technical roles such as software architects and code guardians, or middle
management. The focus group meetings were divided equally into three parts over
the two hour time period. At the beginning of the focus group meetings, the first
fifteen minutes were used by the authors of the paper to present the goals and the
methodology of the study. The main objective of the focus group meetings was to
:

1. Identify organization and development process changes that have been im-
plemented in the company in order to gain a better understanding of the
changes introduced in the development organization of the case company.

2. Understand if and how the results of the study can be related to the above
identified changes.

3. Understand if and to what extent the calculated network metrics could be
used to assess and monitor organization and developer level changes.

In order to achieve the objective of the focus group meeting the following
questions were discussed:

1. Name a couple of major changes you have seen in the period of the last year
with respect to development teamÕs organization and collaboration.

2. To what degree the results of the study match participantÕs experience?

3. How can the presented metrics be used in planning and monitoring of the
changes related to software development organization and collaboration?

Each of the above listed questions were discussed in a format where researchers
posed the questions, participants would take five minutes to reflect on the questions
and write down their answers on post-it notes. Then, an open discussion session

3 Research approach 145

lasting approximately twenty minutes was held, where the focus group participants
shared and discussed their answers. Both authors participated in the meeting, with
first author serving the role of presenter and moderator, while the second author
took notes on the discussion. At the end of the focus group meeting, the par-
ticipants’ post-it notes were collected and categorized according to the discussed
subject. The categorized notes were analyzed for the purpose of this study along
with the notes the second researcher took on the discussion.

3.3 Validity

In this section the validity of the research is analyzed with respect to the types of
validity threats presented [RH09b].

Construct validity: The construct validity is related to the relationship between
the concepts and theories behind the case study and what is measured and affected.
The information on source code commits was pulled and analyzed using standard
and tested software libraries. The subset of metrics from the network analysis used
in this research has been accepted and validated in other studies within the domain
of open source project repositories and mailing archive studies as discussed in the
Section 2. This means that the risk of using metrics that do not represent the con-
cept of social network structure is lowered. During the focus group meetings, the
metrics used were explained to the participants, and through discussion sessions,
the participants demonstrated understanding of the metrics.

Conclusion validity: Conclusion validity is concerned with drawing correct
conclusions from the study results. The analyzed networks and related metrics
were collected for a year-long period, and divided into four three months long pe-
riods. This way the focus group participants were able to relate each set of metrics
for a given period to projects that were completed during the period. Analyzing
obtained data through discrete periods and noting the changes in them can provide
a better analysis results. However, there is no assurance that a one year period
is long enough to account for possible result variabilities, and thus be sufficient
representative to test the hypothesis.

Internal validity: The internal validity is concerned with factors that may af-
fect the observations without the researcher’s knowledge. The data extracted from
the repositories was examined and validated manually through sampling. A highly
experienced internal company resource was consulted during data extraction and
validation process. The expert was able to identify source code committers that
should be excluded from the data sets, such as software integrators that make
changes to a large number of files normally updating file headers with build in-
formation. In addition, the extracted data was manually validated to ensure that
developer identities are consistent.

External validity: The external validity is related to the ability to generalize
the results of the study. The studied software and organization structure is a rele-
vant example of a global telecommunication software based company with a large

146 Development Process Monitoring Through Application of Network . . .

and distributed development effort. Hence, given the company and development
profile, the likelihood of the results being specific and unique to this company is
lowered.

4 Results
Table 1 shows calculated values of the network metrics.

Metric Period 1 Period 2 Period 3 All
WAD 12.5 12.55 9.385 27.691
GD 0.023 0.025 0.02 0.032
APL 2.915 2.597 3.018 2.609
ND 11 10 10 10
NM 0.772 0.732 0.783 0.69
CC 2 8 2 1
CCF 0.366 0.346 0.322 0.363

Table 1: Network Metrics Results

The decrease in average developers’ strength or the WAD metric indicates that
developer collaboration on average for the three consecutive periods has been de-
creasing. For the entire year it was at 27.6, over two times higher than for each
of the three month periods. The WAD metric can be affected by the nature of
software projects being worked on, i.e., for different projects different parts of the
source code base need to be modified. However, when WAD of developers’ is
examined during the year-long period, thus taking into account the collaborations’
over multiple projects, this metric seems to increase since multiple projects are
more likely to require modification of greater number of source files and, thus,
increase developers’ collaboration or the WAD metric. Thus, to properly investi-
gate the WAD metric it is important to understand the nature of the implemented
software projects.

The graph density metrics, GD, with values lower than 0.033 indicate that the
developers’ collaboration network is scarcely connected. As noted earlier, the GD
metric is computed as ratio of all existing edges to all possible edges. If the GD
was 1, this would mean that each developer has changed all the source files at least
once which is, of course, an unrealistic expectation for a global software intensive
company with large source code base. However, the GD does seems to fluctuate
less than the WAD metric when comparing the four-month and yearly values. This
can be explained by the fact that unlike the WAD metric, the GD metric is not
affected by the number of changes developers have performed together, as even
one common file change would create an edge between the two developers. For
the WAD metric the weights of the developers with respect to the file changed are
based on the number of changes performed by the developers on the file. However,

4 Results 147

the invariability of the GD metric during the year can indicate that implemented
changes did not result in increased knowledge dissemination among the develop-
ers. Thus, one would expect the GD to increase as developers start working on
code and hence changing other source files than the ones they are specialized in.

The average shortest path length is 2.69 for the entire network indicating that
on average each developer is at least 3 degrees away from the other developers.
Again, we should note that this metric is not fluctuating significantly between the
individual periods and the cumulative year-long period. Like the GD metric, the
APL metric is not affected by the number of changes developers have performed
on a file, i.e. even a single common change on the file would create an edge
between the two developers. As in the case of the GD metric, one can argue that
formation of some new links between developers should be seen if the developers
start working on the source code they have not worked on before the implemented
organization changes.

The network diameter, ND, or the longest shortest network path for the entire
system fluctuates between 10 and 11, indicating that there exist developers that
work on quite unconnected parts of the system. This metric has insignificantly
decreased for periods 2 and 3.

High network modularity, NM, indicates that development teams are highly
organized into subgroups. While the modularity for the whole period is lower than
the one for the each period, the difference is not significant.

Wile CC, connected components for the individual periods have values 2, 8,
and 2, the network for the entire period seems to be connected, having CC value of
1. This means that during the individual periods, there existed networks of closely
related developers that were disconnected from each other.

The clustering coefficient CCF can take values in the range from 0 to 1, thus
clustering coefficient of 0.3 is on the lower end indicating that for the entire net-
work on average developers in the neighborhood of a developer are not well con-
nected.

The results of the focus group meeting are presented in the Figure 7. The
focus group participants have identified the major changes in the development or-
ganization as restructuring of the teams so the members include developers with
expertise in all software layers as opposed to one software layer, usage of a new
software management system, adoption of SCRUM methodology, and introduc-
tion of distributed code ownership. It can be expected that such changes would
make significant impact on network metrics, such as an increase in the weighted
average degree of developers, greater graph density, i.e. developer connectedness,
and a decrease in average path length. Greater collaboration would also imply an
increase in the network density as well as create shifts in network modularity and
clustering coefficients.

When presented with the impact of the changes on the collaboration of devel-
opers per calculated network metrics, the focus group participants agreed that they
reflect what they have observed in their day to day work. Hence, while the team

148 Development Process Monitoring Through Application of Network . . .

organization and development process have went through significant changes, the
effect of the changes on developers’ collaboration is insignificant. The main rea-
son for this was identified as time pressure to deliver, so the developers do not have
time to learn other parts of the system or work in the cross-functionally structured
team in manner that the knowledge would be disseminated over the time between
the team members. Instead, the individuals with expertise in particular function-
ality were involved in the projects irrespective of the new team organization. The
participants have also commented on the change in CC metric from 2 in the first
period to 8 in the second, suggesting that such clustering coefficient was due to the
nature and heavy load of the projects being worked on during the second period.

Finally, all of the focus group participants agreed that being able to monitor
the network metrics presented in this paper would help them gain a better picture
on the effect of the introduced changes as well as gain an insight into the dynam-
ics of developers’ collaboration. The participants were especially interested in the
network metrics as a tool that would provide ’hard data’ as opposed to subjec-
tive opinions, stating that the ’hard data’ is less prone to open discussions. The
importance of tracking the metrics for a longer time period was expressed as this
would help in improved analysis of the data, such as establishment of benchmarks,
and being able to identify trends that should prompt an action. Due to the scope
and time of the focus group meetings only the presented high level metrics for
the entire source code base were analyzed and discussed. The participants have
expressed that the same analysis applied on finer grade, e.g. developers collabo-
ration on a team level, for a particular project, or across geographically different
development sites, would be helpful in understanding how to best use the metrics
in order to improve management of the development effort.

5 Discussion

labelsection:discussion The presented developers’ collaboration network metrics
in the results section show that the changes implemented in the global software
centric company have insignificant effect on the actual developers’ collaboration.
The findings from the focus group meetings are in line with the results of the anal-
ysis of the developers’ collaboration metrics. As is often the case in a commercial
development organization, the need to deliver products to the market tends to cre-
ate a situation where the work is assigned in a manner that the task is completed
fastest, thus not leaving space for the implemented changes to truly take the ef-
fect. Thus, while a work on a project under the new organization was supposed
to be carried out by team members with less experience so they could learn from
the new members on the team with required experience, in practice the work was
allocated to the person with previous experience so it could be completed fastest.
The low CCF value combined with the shortest average path length of 2.6, graph
density of 0.03 and NM 0.69, indicates that the development teams at the case

5 Discussion 149

What major
changes were
introduced to
software
development
organization?

- Switch from GIT to Clear Case
- Adoption of Scrum methodology
- Teams restructured to cover a wider range of expertise
- Distributed code ownership

How do the
results of the
study match
experience?

- The results of the study reflect experience observed in the
 development organization.
- The organization and process changes did not increase cross-collaboration
- Due to time pressure to deliver, developers do not get an opportunity to
 work on different parts of the system.
- Period 2 identified 8 distinct network components which is in line with
 projects being worked on during the period.

How can the
network metrics
be used to
monitor
development
process
changes?

- Calculated metrics are 'hard data' as opposed to, many times, subjective
 qualitative assessment of developers' collaboration.
 - Monitor metrics over sufficiently long time periods to establish benchmarks.
 and possibly discover action prompting trends.
- Analyze metrics for different types of granularities, e.g, of geographically
 distributed development sites and compare results and trends.

Figure 7: Focus Group Meeting Results

150 Development Process Monitoring Through Application of Network . . .

company are highly specialized and that no significant difference in developers’
collaboration can be observed during the one year period. Discussion on the val-
ues of the individual metrics is quite difficult, given that there are no benchmarks
to compare them against. However, as focus group participants have confirmed,
monitoring metrics over a prolonged period of time can help the organization to
establish benchmarks, get an insight into changes in development dynamics on
different levels such as for a particular team or development site. The focus group
participants indicated that it would be relevant to derive and analyze the network
metrics on individual developer level as opposed for all the developers, as this
would provide an insight into shifts in developers influence and centrality by ob-
serving the corresponding WAD metric.

6 Conclusions
The results of the conducted study show that the presented methodology and re-
lated metrics can be useful in understanding dynamics of developers’ collabora-
tion especially with respect to the organization level and process level changes.
Thus, one can use the metrics to identify and track changes in specialized devel-
opment subgroups and degree of collaboration. Based on the presented metrics,
focus group participants related project work to collaboration subgroups, as well
as network density. Furthermore, the focus group participants expressed that the
prolonged monitoring and analysis of the metrics would provide benchmarks that
can improve the usage of the metrics. More studies over a prolonged period of time
are needed to understand the full potential of using the proposed methodology and
the metrics to manage software development effort. One way to better understand
the results of the research is to create benchmarks either by prolonged monitoring
of the changes in the network metrics, or by applying the same methodology on
open source software projects of similar type and size. Relating the results of the
study to some other software quality measurements, like number of bugs, time to
delivery, etc can provide an insight on the network topology characteristics that
are more correlated to production of higher quality software.

References
[Bas+02] V. R. Basili, F. E. McGarry, R. Pajerski, and M. V. Zelkowitz. “Lessons

learned from 25 years of process improvement: the rise and fall of the
NASA software engineering laboratory”. In: Software Engineering,
2002. ICSE 2002. Proceedings of the 24rd International Conference
on. 2002, pp. 69–79.

6 Conclusions 151

[BD11] Johannes Bohnet and Jürgen Döllner. “Monitoring Code Quality and
Development Activity by Software Maps”. In: Proceedings of the
2Nd Workshop on Managing Technical Debt. MTD ’11. Honolulu,
USA: ACM, 2011, pp. 9–16.

[Cle+05] R. B. de Souza Cleidson, Jon Froehlich, and Paul Dourish. “Seeking
the source: software source code as a social and technical artifact”.
In: Proceedings of the 2005 International ACM SIGGROUP Confer-
ence on Supporting Group Work. 2005, pp. 197–206.

[Con68] Melvin E. Conway. “How Do Committees Invent?” In: F. D. Thomp-
son Publications, Inc., 1968.

[CH05] Kevin Crowston and James Howison. “The social structure of free
and open source software development”. In: First Monday 10.2 (2005).

[Kup+14] Eetu Kupiainen, Mika Mäntylä, and Juha Itkonen. “Why are indus-
trial agile teams using metrics and how do they use them?” In: Pro-
ceedings of the 5th International Workshop on Emerging Trends in
Software Metrics, WETSoM 2014, Hyderabad, India, June 3, 2014.
2014, pp. 23–29.

[Lia+06] Hossain Liaquat, Andrè Wu, and Kon Shing Kenneth Chung. “Actor
centrality correlates to project based coordination”. In: Proceedings
of the 2006 ACM Conference on Computer Supported Cooperative
Work, CSCW 2006, Banff, Alberta, Canada, November 4-8, 2006.
2006, pp. 363–372.

[LF+06] Luis López-Fernández, Gregorio Robles Robles, Jesús M. González-
Barahona, and Israel Herraiz. “Applying Social Network Analysis
Techniques to Community-Driven Libre Software Projects”. In: In-
ternational Journal of Information Technology and Web Engineering
1.3 (2006), pp. 27–48.

[NK13] Ning Nan and Sanjeev Kumar. “Joint Effect of Team Structure and
Software Architecture in Open Source Software Development”. In:
IEEE Trans. Engineering Management 60.3 (2013), pp. 592–603.

[New13] Mark Newman. Networks. Oxford University Press, 2013.

[Org13] Gephi Organization. Open Source Software for Exploring and Ma-
nipulating Networks. https://gephi.org. 2013.

[OAH14b] Alma Oručević-Alagić and Martin Höst. “Network Analysis of a
Large Scale Open Source Project”. In: 2014 40th EUROMICRO Con-
ference on Software Engineering and Advanced Applications, Verona,
Italy, August 27-29, 2014. 2014, pp. 25–29.

152 Development Process Monitoring Through Application of Network . . .

[RM10] Christopher Roach and Ronaldo Menezes. “Using Networks to Un-
derstand the Dynamics of Software Development”. In: Complex Net-
works - Second International Workshop, CompleNet 2010, Rio de
Janeiro, Brazil, October 13-15, 2010, Revised Selected Papers. 2010,
pp. 119–129.

[RH09b] Per Runeson and Martin Höst. “Guidelines for conducting and re-
porting case study research in software engineering”. In: Empirical
Software Engineering 14 (2 2009), pp. 131–164.

[Sal95] Gerald R. Salancik. “WANTED: A good network theory of organiza-
tion”. In: Administrative Science Quarterly 40 (1995), pp. 345–349.

[SB01] Ken Schwaber and Mike Beedle. Agile Software Development with
Scrum. 1st. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001.

[WF94a] Stanley Wasserman and Katherine Faust. Social Network Analysis.
Methods and Applications. Cambridge University Press, 1994.

PA
P

E
R

V
II

BENCHMARKING APACHE
SOFTWARE FOUNDATION

PROJECTS: NETWORK
ANALYSIS OF THE
CONTRIBUTORS’
COLLABORATION

NETWORKS

Abstract

Software development is a collaborative effort that can be studied from perspective
of changes made by developers to the source code repository. Network analysis
has been applied in prior research to construct and study developers’ networks. But
to the best of our knowledge, similar analysis has not been performed on a larger
scale with goal of understanding if there exist patterns in developers’ collaboration
network metrics in a set of unrelated, mature, and wide industry used software
products.

Hence, the aim of this study is to understand if such patterns can be observed

Alma Oručević-Alagić, Nicklas Johansson, Christian Tenggren, Martin Höst,
Submitted.

154 Benchmarking Apache Software Foundation Projects: Network Analysis of . . .

across 258 software project hosted under the Apache Software Foundation. We ar-
gue that natural occurrence of the patterns in the network metrics can be indicative
of healthy, preferable network topology for developers’ collaboration networks,
the one that possibly maximizes development efficiency.

For the purpose of this study, 258 source code repositories of projects hosted
under Apache Software Foundation have been mined, storing all the historical data
on commits into a database for the easiness of network and statistical analysis. We
show that several interesting trends can be found especially relating the size of the
project with developers betweens and closeness centralities, indicating that high
specialization of majority of developers on a particular, smaller part, of the sys-
tem with very few developers or experts that bind the larger parts of the system
together might be the most efficient way to develop software in the open source
software context. As with any preliminary findings, more work is needed to ex-
plore the patterns and understand their potential applicability within the closed
source context.

1 Introduction

Software development is a collaborative effort, ultimately projected onto the final
software product, i.e. the source code, where changes made to the source code base
can be viewed as footprints left by the developers. The footprints can be studied to
understand which distinct developers have crossed paths on how many occasions.
If several projects are studied it is possible to study if there exist features common
across different development efforts.

Until the recent couple of decades, studying source code repositories was
not feasible due to the prevalence of closed-source projects, as described by e.g.
Lerner [LT00]. The emergence and wide-spread usage of open source software
provide access to mature, industry-grade open source projects. The public avail-
ability of source code repositories enables us to extract and study how developers’
networks in distributed, online environment form and evolve.

As the production of software is a complex endeavor with a large number
of software projects exceeding their initial budget, understanding if there exist
patterns, or common features in developers’ collaboration networks across ma-
ture, industry grade software products can potentially offer some guidelines for
more efficient organization of the development effort. Bloch et al. [Blo+12] have
shown that budget overruns of software projects are partially due to ineffective-
ness, caused by inappropriate organization of development effort. Hence, compa-
nies are actively seeking and applying new practices that have potential to improve
the developers’ collaboration.

One way to formally study developers’ collaboration networks is through the
application of network analysis as presented, e.g., in work by Wassermann [WF94b].
Network analysis is a way of measuring specific relationships between different

1 Introduction 155

entities in a graph. Each node or vertex in a network represents an entity, such
as a developer, and the links or edges between vertices represent some kind of
relationship. Edges can be either directed or undirected. Undirected edges indi-
cate a mutual relationship between the vertices, while directed edges can be used
to represent either a one-sided relationship or a mutual relationship with different
weights. A weight attached to an edge can demonstrate how strong of a relation-
ship it represents or how much information that flows through the edge as shown
in Figure 1.

Figure 1: Example of undirected, directed and weighted directed graphs

There is a wide range of metrics that one can apply when performing a net-
work analysis. Each metric looks at a specific property of the network. This
study focuses on centrality indices and the clustering coefficient, described in de-
tail in Section 3.3. The clustering coefficient can give an indication if there exist
subgroups in the committer networks and the centrality metrics can show the in-
fluence the developers have over each other. The analysis performed is based on
data extracted from 258 mature OSS projects hosted under the Apache Software
Foundation (ASF) at the time this study was conducted.

This paper is organized as follows. Section 2 presents related work and Section
3 presents the design of the study, including the research questions. Section 4
presents the results and analysis of the data, while the section 5 discusses the
results of the study in more detail. Finally, Section 6 presents the conclusions and
future work.

156 Benchmarking Apache Software Foundation Projects: Network Analysis of . . .

2 Background and related work

Applying network analysis to study interactions on software projects is not a novel
idea, as it has been used in earlier research, e.g. to study the collaboration be-
tween authors of scientific papers as reported by Newman [New01] and on neural
networks in study by Latora [LM03]. Lopez-Fernandez et al. [LF+08] analyzed
several open source projects, among which ’Apache’ was one project, treating it as
a one project and not as a collection of individual projects. This is due to the fact
that the size and content of the Apache Software Foundation (ASF) has changed
considerably since 2006. The research showed that even very large projects exhibit
small-world effects, i.e. the ability to reach most other vertices from every vertex
in the network with only a small number of hops.

Crowston [Cro03] analyzed the social structure of several open source soft-
ware (OSS) projects using social network analysis. The analysis was based on
projects hosted on SourceForge, which is a free web-based system that provides
tools for OSS development and distribution. The focus of the study was on the de-
veloper interactions within the bug reporting process where the edges were defined
as interactions between different developers. Madey et al. [Mad+02] performed
a similar study on SourceForge projects with the focus on developer collaboration
in and between different projects [Mad+02]. The research shows that there are
individuals that serve as links between many projects.

A study by Oručević-Alagić and Höst [OAH14c] examined the committers’
network of the Android open source project [OAH14c]. The aim for that study
was to understand how one can utilize network analysis to study development
communities where a majority of the community contributors are affiliated with
commercial organizations. The results showed that the approach proposed in the
study can be used to accurately study developers’ collaboration in software devel-
opment communities.

Bird et al. [Bir+08] studied the reply-to relationship on mailing lists and de-
velopers working on the same files. The study was carried out on five mature OSS
projects using social network analysis. The results of the study show existence
of sub-groups, i.e. that the networks were modular, as well as that the developers
who performed changes to the same files were also more likely to interact with
each other on the mailing lists.

Godfrey and Tu [GT00b] studied the growth of the large scale OSS projects
over time. The results showed that the project kept a linear growth pattern even
after reaching a huge size, several millions lines of code. This contradicts the com-
monly accepted belief that with an increase in size the growth declines. Mockus
et al. [Moc+00] studied the Apache Web Server and showed that the developers’
networks in Apache projects may have interesting properties, e.g. that the 15 most
active developers stood for more than 85% of the lines of codes produced in the
Apache web server.

3 Research approach 157

In 1999 an initiative to create the ASF was taken when an already established
group of developers decided that a more legal structure for their software de-
velopment efforts was needed [Sev12]. Several of the projects hosted under the
ASF have become leaders in their domains, e.g. the Apache Web Server [Fou15a],
Apache OpenOffice [Ope], and the Hadoop distributed computing engine [Fou15b].
As the ASF over the time has taken more projects under its umbrella, the projects
hosted under the ASF can now be divided into two groups; those originally started
under the ASF and those that were added later in the the projects’ life cycles.

This study aims to expand on earlier studies on open-source projects, by not
focusing on one or few projects, but rather exploring a plethora of over 250 mature
and industry used OSS projects hosted under the ASF. The goal is to understand if
these distinct software projects share common features in terms of developers’ col-
laboration network metrics for the purpose of establishing benchmarks that could
potentially be used as guidelines for developers’ collaboration networks on any
software project.

3 Research approach
The research done in this study can be classified as case study as per Runeson and
Höst [RH08]. The study is exploratory with the overall objective to understand
if there exist patterns in network metrics of the developers’ collaborations across
OSS projects hosted under the ASF foundation. The results could be potentially
used as benchmarks for assessing other software development projects.

3.1 Research Questions
The research conducted in this paper aims to answer the following research ques-
tions:

• Which commonalities can be observed in collaboration metrics for the projects
hosted under the Apache Software Foundation?

• What (if any) benchmarks can be proposed based on the analyzed network
metrics?

For research question 1, the calculated network metrics are analyzed for the
presence of commonalities and any patterns are noted. Research question 2 in-
vestigates whether the results of research question 1 can be used as benchmarks,
which software development projects in general can be compared to.

3.2 Research Steps
The data used in the study was collected and analyzed according to the process
presented in Figure 2.

158 Benchmarking Apache Software Foundation Projects: Network Analysis of . . .

Figure 2: Overview over the work process in this project

3 Research approach 159

In the first step, the location of the projects’ source code repositories was col-
lected. Apache hosts an alphabetical list of the projects [Apa] with links to pages
with information about the projects, including the location of the repositories and
which categories the projects belong to. Using the Curl library [Lib] to fetch data
over HTTP, a program to collect the relevant information was written. The com-
mit data was obtained in late February and early March 2015 for 249 different
projects hosted under the ASF. The direct links to git projects were often wrong
and needed to be manually corrected. A small part of them lead to repositories
hosted on other services, primarily GitHub. The projects under ASF use different
revision control systems to track changes in the software and provide backups so
that it is possible to restore earlier versions of files. Such systems track when a
file has been changed and by whom, as well as store commit messages describing
and motivating the changes. By comparing different versions of files it is possible
to see what changes have been made to the files between the versions. The ASF
uses two different systems for revision control, Subversion (SVN) and Git, which
are also the two most widely used solutions according to a survey made by Eclipse
[Ske14].

In the second step, all the commit histories extracted from the repository con-
taining data such as contributor’s name, email, source file modified, time of mod-
ification, project name, and project category were loaded into a custom built SQL
database. A program was written in order to parse the XML-files containing the
commit histories and insert the data into the database. After this step, 228 projects
remained from the original 249. Some project repositories had been unreachable
at the time of data collection and some were discarded because the number of com-
mitters were below a threshold value needed to perform the analysis. The database
schema presented in Figure 3 displays entities and corresponding attributes that
were used in the analysis process.

In the third step, the commit history data was formatted into an appropriate net-
work analysis format, thus creating edges between all developers who had worked
on the same file in a project. The weight for an edge from developer di to developer
dj was defined as ∑

f∈Fij

eif∑
f∈Fij

∑
k

ekf
(1)

where Fij is the set of all files modified by both developer i and j and eif is the
number of commits modifying file f by developer i.

Finally, in the forth step, network analysis of developers’ collaboration net-
works was performed and appropriate per project network metrics calculated. The
strength of the collaboration is calculated as the number of changes done by one
developer to a file relative to the total number of changes for the file by all devel-
opers. An example is presented in Table1 and Figure 4 where a file has received
commits from three different developers with in total 10 commits to that specific

160 Benchmarking Apache Software Foundation Projects: Network Analysis of . . .

Figure 3: Database design

file. The three developers are called X, Y and Z. Developer X has committed once
to the file while developer Y has done three commits and developer Z has done six
changes to the file. The weight on the outwards edges from a developer will then
be the number of commits that the developer has made divided by the total number
of commits. For the edges originating from Developer Y the weight would then be
3/10. The graph has two edges between each pair of vertices (developers) since
all the developers have changed the file once. This process is repeated for all files
in the projects and the resulting weights are summed up.

Developer Number of Commits
X 1
Y 3
Z 6

Table 1: Number of commits per developer

3.3 Metrics

This section defines network metrics used in this study, and discusses their mean-
ing within the context of the constructed developers’ collaboration metrics. This
study analyzes distribution of metrics with respect to size and type of the project
in order to understand if there exists a correlation between the two.

3 Research approach 161

Figure 4: Network structure with 3 developers modifying the same file

Vertex Strength
The strength of a vertex is a representation of a developer’s influence over
the ones he/she has worked with. A high vertex strength indicates that the
developer has a significant influence in the network. Vertex strength is a
modified version of vertex degree where the weight of the edges are taken
into account. In this study the definition of strength of a vertex v from Barrat
et al. [Bar+04] is used:

sv =
∑

i∈N(v)

wvi (2)

where N(v) is the set of all neighbours to vertex v and wvi is the weight of
the edge from vertex v to i. In unweighted networks (i.e. all weights are
equal to 1) vertex strength and degree are equal. In directed networks each
vertex will have an in-degree and an out-degree. The in-degree is the sum
of the weights of all edges coming into the vertex and the out-degree is the
the sum for all outgoing edges from that vertex.

Clustering Coefficient
The clustering coefficient metric was first introduced in 1998 by Watts and
Strogatz[WS98b] as an indicator of how well connected the neighborhood
of a vertex is. It can be applied both to a single vertex or to a complete graph,
where it is defined as the average clustering coefficient of all vertices. For
the network that is studied in this research, the metric indicates how well
developers, that have all collaborated with a developer, are connected among
themselves, if they have also made changes to same files. The clustering
coefficient for a directed graph is defined as:

Cv =
nv

kv(kv − 1)
(3)

162 Benchmarking Apache Software Foundation Projects: Network Analysis of . . .

where nv is the number of edges between the neighbors of vertex v, and kv
is the degree of v. In other words, the clustering coefficient is the number
of edges between a vertex’s neighbors divided by the maximum possible
number of edges between its neighbors.

The average clustering coefficient is simply defined as the arithmetic mean
of the clustering coefficients:

C =
1

|V |
∑
v∈V

Cv (4)

where V is the set of all vertices in the graph and Cv is the clustering coef-
ficient of vertex v.

For weighted networks, Barrat et al. [Bar+04] presented the following defi-
nition

Cw
v =

1

sv(kv − 1)

∑
i,j

wvi + wvj

2
aviavjaij (5)

where kv once again is the degree of vertex v, avi = 1 if there exists an edge
from v to i and 0 otherwise, wvi is the weight of the edge from v to i and sv
is the strength of vertex v as defined in Equation 2.

For directed networks, the standard definition of the global clustering coef-
ficient is not applicable. Instead, a modified version of the global clustering
coefficient that uses transitivity may be used.

CG =
TC
T

(6)

Equation 6 shows the definition of the global clustering coefficient, where
TC is the number of triangles in the graph and T is the number of connected
triples. When transitivity is taken into account, only triples where one of the
included vertices has both an inwards edge and one outwards. In order for
the triple to be included in the connected triangles, there has to be an edge
from the start of the chain to the last (third) vertex in the chain. Optsahl and
Panzarasa [OP09] build upon this version of the global clustering coefficient
to adapt it to weighted networks. Note that each triangle is counted three
times, once for each vertex.

Centrality
There are several different measures of centrality in a network. The cen-
trality measures use different forms of criteria to indicate the importance of
each vertex in a network. The importance of a vertex is not an individual
attribute but is instead a measure of the level of influence that the vertex has
over the other vertices [HR05]. There is no guarantee that a vertex that is
considered important by one criteria is equally important for another crite-
ria. Degree centrality uses the number of adjacent edges as criteria to rank

3 Research approach 163

Figure 5: A transitive triangle when centered around vertex 3, but not when
centered around vertex 1 or 2

the importance of the vertices. A high number of adjacent edges indicates
that a lot of information passes through the vertex. The degree centrality for
directed graphs can be expanded to an in-degree and an out-degree, where
the in-degree is the sum of weights on the edges coming into the vertex and
the out-degree is the total weight of edges leaving the vertex.

That is, a measure of degree centrality can be defined as

Cd(v) = d(v) (7)

where d(v) is the numbers of edges to or from vertex v and d is the direction,
i.e. in-degree or out-degree.

Betweenness centrality is a measure of the centrality of an individual vertex
in a network. It is defined as how many of all the shortest paths in the
network that passes through a vertex. In this study, a high betweenness
centrality of a developer indicates that a the developer is an expert on the
system, since he/she has made a large number of changes on different parts
of the source code base. A high betweenness centrality indicates that the
vertex has a large influence in the flow of data in the network. A developer
with very high betweenness centrality can be a risk in a project, since if that
vertex for some reason disappears from the network then the communication
in the network has to change drastically.

A proposed algorithm for calculating betweenness centrality on weighted
networks is presented by Brandes [Bra01b]. Brandes suggests that commu-
nication might be quicker along a path that is a little longer than the shortest,
but where the weights of the edges are larger. A larger weight indicates more
frequent communication which can be beneficial.

164 Benchmarking Apache Software Foundation Projects: Network Analysis of . . .

The sum of the distance of the shortest paths from a vertex to every other
vertex in the network is measured as closeness centrality. The idea is that
it is easier for a vertex with a large closeness centrality index to spread in-
formation to the rest of the network, than for a vertex with a small index.
Hence, in the context of this study, a developer with high closeness cen-
trality is not necessarily the one who performed the highest number of the
changes on the different parts of the system as is the case with betweenness
centrality, but the one who has performed at least one change on the high-
est number of different source code files. The definition of the closeness
centrality for vertex v is as follows:

CC(v) =
1∑

s6=v∈V

dG(v, t)
(8)

where V is the set of all vertices in the network and dG(v, t) is the length of
the shortest path from vertex v to vertex t [Fre79].

3.4 Validity

Internal validity is concerned with influences that can affect the results without the
researchers’ knowledge. The ASF organizational structure allows a community
participant to act in several different roles, which can influence the results of the
study. Thus, there can be cases where the committer that performs a commit has
not actually made the changes in the commit. The initiator of a change in the code
could be a developer that does not have write access to the source code repository.
In this case the developer proposes the changes to a committer which then ap-
proves them if the changes are considered a valuable improvement to the project.
Hence, there exists a possibility that a committer has performed several commits
that he/she is not the author of. On the other hand, the committer has to critically
review the proposed changes and probably discuss with the developer the purpose
of the changes. This would make the committer knowledgable of the changes so
that he/she will be able to explain to other developers why the changes were made
and what purpose they have.

Threats to external validity pertain to factors that limit generalization of the
results. The case study conducted deals with developers’ collaboration networks
of OSS projects hosted under the ASF. While 258 different projects that were
analyzed originate from and outside of the ASF and are developed by different
groups of developers, there is no guarantee that the selected projects are good
representative of the OSS projects.

Threats to construct validity stem from incorrect measurements being taken via
tools used. The information on source code commits was pulled using standard and
tested software libraries such as Curl, as well as software management tools for
Git and SVN. Data samples were randomly chosen for manual validation as well.

4 Results 165

The software used to create and validate network metrics is commonly used for
weighted networks and in line with the description of metrics used in this paper.

Conclusion validity is concerned with drawing correct conclusions from the
study results. The calculated metrics are complementing in nature and are based on
a field of network theory. The conclusions of the study are based on the previously
established norms for the interpretation of the metrics used.

4 Results

In this section the results from the performed analysis are presented. In order
to gain a better insight into distribution of the network metrics, majority of the
figures presented in this section show metrics for the projects sized by number of
committers (up to 30, 31-50, 51-10, 101-200, and more than 200).

4.1 Network Metrics in relation to number of committers

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300 350 400

A
v
e
ra

g
e
 B

e
tw

e
e
n
n
e
ss

 C
e
n
tr

a
lit

y
 I
n
d

e
x

Committers

a) Betweenness Centrality

 0.001

 0.01

 0.1

 1

 1 10 100 1000

C
lo

se
n
e
ss

 C
e
n
tr

a
lit

y

Committers

b) Closeness Centrality

Figure 6: Centrality metrics over number of committers per project. Each data
point reapersents one project

166 Benchmarking Apache Software Foundation Projects: Network Analysis of . . .

The correlation coefficient for the average betweenness centrality shown in
Figure 6(a) is 0.958, which indicates strong positive correlation of average be-
tweenness centrality with the number of committers on the project. The increase
in average betweenness centrality with respect to increase in number of commit-
ters on the project is almost linear which is in line with research by Godfrey and Tu
[GT00b] discussed in Section 2. The average closeness centrality over the number
of committers per project is shown in Figure 6(b). There is a −0.960 correlation
coefficient, thus indicating a strong negative correlation. Hence, as the number
of developers on the project increases, the average closeness centrality decreases.
This indicates that as the number of developers on a project increases, so does their
specialization in particular system functionality.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

1-30
31-50

50-100

101-200

200+

A
v
e
ra

g
e
 D

e
g

re
e

a) Average Degree

 0.5

 1

 1.5

 2

 2.5

 3

1-30
31-50

50-100

101-200

200+

A
v
e
ra

g
e
 O

u
t-

S
tr

e
n
g

th

b) Average Out-Degree

Figure 7: Average Degree and Average Out-Degree over number of committers
on the project

Figure 7(a), showing distribution of average degree over number of commit-
ters per project with correlation coefficient of 0.811, indicates a strong correlation
between the number of committers and their average degree. Figure 7(b) also in-
dicates low positive correlation between average strength of committers and the
number of committers per project with correlation coefficient of 0.512.

4 Results 167

4.2 Distribution of centrality indices

Figure 8 shows the measured distribution of individual developer betweenness cen-
trality for different sizes of projects. It can be seen that the betweenness centrality
tends to increase rapidly as the number of developers on the project increases, but
only for a rather small percentage of developers. The vast majority of developers
continues to have betweenness centrality values close to 0. This is indicative of
highly specialized software development effort, with very few central developers
having worked on all different parts of the system. When compared to the average
betweenness centrality displayed in figure 6(a), a better perspective is gained on
the high positive correlation between the betweenness centrality and number of
committers on the project. The high positive correlation coefficient is due to cen-
tral developers rapidly increasing values in betweenness centrality as more people
become specialized in particular parts of the system.

Figure 9 shows the distribution of developers’ individual closeness centrality
in projects of different different sizes. The closeness centrality tends to decrease
as the number of developers on the project increases and shows a more balanced
distribution of values when compared to betweenness centrality.

4.3 Clustering Coefficient

Figure 10 shows box-plots of the clustering coefficients for different sizes of the
projects, indicating that the majority of the values fall between 0.5 and 0.8. As
clustering coefficient with value 1 indicates a fully connected developers network,
values in the range 0.5-0.8 can be interpreted as moderately to highly connected
developers networks.

According to these measurements there is no large difference between projects
of different size when it comes to the clustering coefficient.

4.4 Metrics for different project-categories

Table 2 shows average degree metrics of all projects based on a category they fall
in. The category is based on a type or a domain of the software solution, e.g. all
projects that pertain to content management are listed under the category content.
While the average degree metrics representing sum of in and out degrees seems
to vary between values 9-30, average out-degree or average developers strength
seems to show lower variability in range of 1.2-1.9. Table 3 presents centrality
metrics and clustering coefficients for different project categories. It is interesting
to note here that clustering coefficient that can take values from 0-1, seems to fall
into range 0.62-0.8 across all different project sizes and categories.

168 Benchmarking Apache Software Foundation Projects: Network Analysis of . . .

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500

C
o
u
n
t

Betweenness Centrality

a) 30 or less committers

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 345 690 1035 1380 1725

C
o
u
n
t

Betweenness Centrality

b) 31 to 50 committers

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 680 1360 2040 2720 3400

C
o
u
n
t

Betweenness Centrality

c) 51 to 100 committers

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5800 11600 17400 23200 29000

C
o
u
n
t

Betweenness Centrality

d) 101 to 200 committers

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 4300 8600 12900 17200 21500

C
o
u
n
t

Betweenness Centrality

e) more than 200 committers

Figure 8: Betweenness centrality for projects with different numbers of commit-
ters

4 Results 169

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.36 0.72 1.08 1.44 1.8

C
o
u
n
t

Closeness Centrality

a) 30 or less committers

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.06 0.12 0.18 0.24 0.3

C
o
u
n
t

Closeness Centrality

b) 31 to 50 committers

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.018 0.036 0.054 0.072 0.09

C
o
u
n
t

Closeness Centrality

c) 51 to 100 committers

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.044 0.088 0.132 0.176 0.22

C
o
u
n
t

Closeness Centrality

d) 101 to 200 committers

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.004 0.008 0.012 0.016 0.02

C
o
u
n
t

Closeness Centrality

e) more than 200 committers

Figure 9: Closeness centrality for projects with different numbers of committers

170 Benchmarking Apache Software Foundation Projects: Network Analysis of . . .

 0

 0.2

 0.4

 0.6

 0.8

 1

1-30
31-50

50-100

101-200

200+

C
lu

st
e
ri

n
g

 C
o
e
ffi

ci
e
n
t

Figure 10: Clustering coefficient over number of committers per project.

Table 2: Average Degree and Strength for different project categories
Category Count Average Degree Average Out-Strength

all 228 13.8456 1.4385
big-data 27 15.7087 1.4860

build-management 17 16.9502 1.1942
cloud 10 22.4263 1.5872

content 14 9.8305 1.5362
database 22 23.6451 1.5136
graphics 5 21.0555 1.6763

http 14 29.7259 1.7260
httpd-module 4 24.2663 1.2070

javaee 9 19.0324 1.8808
library 82 10.0269 1.3700

network-client 18 13.9835 1.5277
network-server 35 16.6735 1.5966

retired 9 9.4677 1.5785
testing 4 13.8425 1.2042

web-framework 25 14.8778 1.5341
xml 28 13.7537 1.5609

4 Results 171

Table 3: Average centrality metrics and clustering coefficients for different
project categories

Category Count Clustering Closeness Betweenness
all 228 0.6949 0.0659 39.6982

big-data 27 0.6794 0.0472 54.8562
build-management 17 0.6522 0.1318 49.1389

cloud 10 0.6261 0.0487 156.5869
content 14 0.6493 0.0515 21.3229
database 22 0.7433 0.0379 57.1528
graphics 5 0.7929 0.0419 37.8886

http 14 0.6872 0.0288 89.6320
httpd-module 4 0.7726 0.1703 46.5317

javaee 9 0.6850 0.0304 63.0450
library 82 0.6851 0.0578 24.0122

network-client 18 0.6627 0.0443 38.3626
network-server 35 0.6707 0.0494 42.5121

retired 9 0.7191 0.0575 16.3592
testing 4 0.7400 0.0829 53.5187

web-framework 25 0.7338 0.0734 33.7100
xml 28 0.7430 0.0705 26.8053

172 Benchmarking Apache Software Foundation Projects: Network Analysis of . . .

5 Discussion

In this section the results of the study are discussed in more detail in order to
answer the research questions of the study.

5.1 Centrality

Both centrality indices, betweenness and closeness as depicted in Figure 6(a) and
Figure 6(b), have a clear correlation to the number of committers in a project,
with the correlation coefficients, 0.96 for betweenness centrality and −0.96, re-
spectively. Thus, as the number of committers on the project increases, so does
betweenness centrality, while at the same time closeness centrality decreases. One
way to interpret such results is to consider the impact of adding new developers to
the project. Those developers with high values of betweenness centrality, will see
an increase in the metric as newly added members contribute source code there will
be more shortest paths passing through them. On the other hand, closeness cen-
trality will decrease, as newly added developers will form new edges, thus further
decreasing distance from the central to peripheral nodes. If trends were different,
e.g. betweenness centrality decreasing, and closeness centrality increasing, this
could be indicative of shifts in the developers influence, with the strongest devel-
opers losing their standing within the project. This could possibly be attributed
to addition of large chunks of new code by newly added developers. However, in
the analyzed OSS project, both centrality metrics show high probability of linear
correlation with the number of committers for the project indicating that central
and most influential developers tend to be involved in the development. In com-
plex networks, like networks modeling real world phenomena, it is common that a
majority of the nodes have a few links to other nodes, while a small percentage of
nodes are highly connected to other nodes.

The projects analyzed in this paper show that the 20.3% most active developers
contributed more than 75% of the commits on average. The software projects an-
alyzed in this study, often have a small core of developers that are responsible for
most of the commits in a project. Consequently, this creates a network structure
with a small amount of developers in the centre and the rest in the periphery. As
discussed above, in such network topology, all of the shortest paths pass through
a small percentage of vertices (developers) giving these vertices a very high be-
tweenness centrality.

In a network with N committers, when a new committer is added to the de-
veloper network there will be N new shortest paths since there is a shortest path
from all the ”old” vertices to the ”new” vertex. Almost all of these shortest paths
will go through the core developers increasing significantly their betweenness cen-
trality while the ”new” vertex will have a very low betweenness centrality. Thus,
several vertices will have an increased betweenness centrality increasing the av-
erage for the whole network. The same reasoning can be applied to explain the

5 Discussion 173

decrease in closeness centrality with an increase in number of committers. The
number of developers in the periphery compared to the number of developers in
the core increases with the total number of developers giving the network a lower
average closeness centrality.

Distribution of centrality

The distributions of betweenness and closeness centrality presented in Figure 8
and Figure 9 for projects with different number of developers show a very large
number of the developers with a betweenness index relatively small. It is only
a very small amount of developers that have a high betweenness centrality but
on the other hand their betweenness centrality are in some cases extremely large.
This further implies a network structure where a few developers in the core are
responsible for a large number of commits while most developers in the periphery
of the developer networks only does relatively few commits. Closeness centrality
has a similar tendency where the majority of the developers are in the lower half
of the observed interval.

5.2 Clustering
Distribution of individual clustering coefficients presented in Figure 10 shows that
as the number of committers on the project increases (1-30, 31-50, 51-100), the
median clustering coefficient decreases. For the projects with over 100 develop-
ers, the second quartile of the distribution is larger, indicating more even spread of
clustering coefficients when compared to the projects with less than 100 develop-
ers.

Extreme values for the clustering coefficient can be found in smaller projects
(projects with a low number of committers) where the clustering coefficient is
either 1, 0 or very close to them. This can not be seen in projects with more than
about 20 committers. No correlation was found between the clustering coefficient
and any other metric, such as project age, lines of code, number of committers,
average degree or average strength. The clustering coefficients vary on average
by some 0.2 points for data falling into the distributions’ second quartiles, 0.65-
0.8, 0.6-0.78, 0.56-0.75, and 0.45–0.78 for project sizes 1–30, 31–50, 51–100, and
101–200, respectively. When all three quartiles are taken into consideration, the
clustering coefficients of the data varies from 0.3 to 0.9.

Average clustering coefficients for the projects shown in Table 3 fall into range
0.62-0.8 and indicate low variability of this metric across all different projects’
sizes and categories.

5.3 Average Degree
As can be seen in Figure 7(a) the median degree and second quartile range in-
creases as the size of the project increases. Thus in larger projects one can expect

174 Benchmarking Apache Software Foundation Projects: Network Analysis of . . .

to see higher and more diversely distributed values of the average degree. The av-
erage degree is calculated based on in and out edges from a developers node, while
the average strength displayed in Figure 7(b) is based only on the developers out
degree.

Taking into account that a developer’s strength is an indicator of her/his col-
laboration strength measured as the relative number of changes performed by the
developer, from Figure 7(b) we can see that average developer’s strength increases
at slower pace than the average degree. The average strength for projects with
over 100 contributors, starts decreasing which can be interpreted that an increase
in project size brings more even distribution of developers’ strengths, as more de-
velopers are being specialized in different parts of the system.

5.4 Synthesis of Results
Per research question 1, the results of the study indicate that sustainable OSS
projects of different types and sizes show certain commonalities that can be seen
in linear growth of the centrality metrics based on a project size or the number
of committers on a project, a medium to high average clustering coefficient and
predictable developers’ strength.

Per research question 2, benchmarks that can be proposed from the results
include average clustering coefficient falling into range 0.62-0.8, average devel-
opers’ strength metric falling into range 1.2-1.9, and high linear correlation of
betweenness and closeness centrality metrics throughout a project’s growth phase.

6 Conclusions
The work in this study investigated the developer collaboration in OSS projects
hosted under ASF by applying network analysis with a goal of finding common
collaboration metrics among the projects. The results show that the average be-
tweenness centrality and average closeness centrality is correlated with the num-
ber of committers, which might be attributed to the structure of the developer net-
works where the core consists of a few developers that are responsible for a large
proportion of the total number of commits. The distribution of centrality indices
in the projects also seems to support this network structure. This information can
be used as a baseline to which any software project effort could be compared and
monitored, especially as new developers are added to the project. A large project
with a very low average betweenness centrality compared to the ASF projects may
have an ineffective development process because a low betweenness centrality in-
dicates that most developers seem to do changes on almost all parts of the projects.
The study results could indicate that the most effective way of developing quality
software in OSS context, is to have the majority of the developers specialized on a
specific part of the project and only a small percentage of the developers or experts
that bind different parts of the system together into the final software product.

6 Conclusions 175

The individual clustering coefficients show more variability, an increase in me-
dian and lower second quartile distribution variability for projects of up to 100
developers, while for the projects with over 100 committers, the median clustering
coefficient does not follow the increasing trend. However, trends were observed
for the average clustering coefficient across different types and sizes of the project
with value range from 0.62-0.8, so this range could potentially serve as baseline
against any development effort as well. Very low clustering coefficients, that can
be observed in networks that are randomly generated, were rare and only found in
projects with less than 20 contributors.

Hence, the results of this study indicate a possibility that some common collab-
oration metrics in OSS projects exist, and more work is needed to validate results
in OSS context by analyzing other widely used OSS products as well as in the
closed source context. The results could be potentially used to assess effectiveness
of development within the closed source environment by carrying out the simi-
lar analysis on closed source code, and comparing the network metrics to the one
found in the OSS projects. We believe that the results of the study are promising
enough to motivate additional analysis of other OSS communities that host mature
and widely used open source projects with the purpose of establishing the bench-
marks.

References
[Ope] Apache Open Office. https://www.openoffice.org/. [On-

line; accessed 20-October-2015]. 2015.

[Apa] Apache Projects Alphabetical Index. http://projects.apache.
org/indexes/alpha.html. [Online; accessed 20-October-
2015]. 2015.

[Bar+04] A. Barrat, M. Bartholemy, R. Pastor-Satorras, and A. Vespignani.
“The architecture of complex weighted networks”. In: Proceedings
of the National Academy of Sciences of the United States of America
101.11 (2004), pp. 3747–3752.

[Bir+08] Christian Bird, David Pattison, Raissa D’Souza, Vladimir Filkov,
and Premkumar Devanbu. “Latent social structure in open source
projects”. In: Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering. ACM. 2008,
pp. 24–35.

[Blo+12] Michael Bloch, Sven Blumberg, and Jurgen Laartz. “Delivering large-
scale IT projects on time, on budget, and on value.” In: Mckinsey
Quarterly (2012).

176 Benchmarking Apache Software Foundation Projects: Network Analysis of . . .

[Bra01b] Ulrik Brandes. “A faster algorithm for betweenness centrality”. In:
Journal of Mathematical Sociology 25.2 (2001), pp. 163–177.

[Cro03] Kevin Crowston. “The social structure of open source software de-
velopment teams”. PhD thesis. Syracuse University, 2003.

[Lib] Curl Open Source Project. http://projects.apache.org/
indexes / alpha . html. [Online; accessed 20-October-2015].
2015.

[Fou15a] Apache Software Foundation. Apache HTTP Server. http://httpd.
apache.org/. [Online; accessed 20-October-2015]. 2015.

[Fou15b] Apache Software Foundation. Apache Hadoop. https://hadoop.
apache.org/. [Online; accessed 20-October-2015]. 2015.

[Fre79] Linton C. Freeman. “Centrality in social networks conceptual clari-
fication”. In: Social networks 1.3 (1979), pp. 215–239.

[GT00b] Michael W. Godfrey and Qiang Tu. “Evolution in open source soft-
ware: A case study”. In: Proceedings of the International Conference
on Software Maintenance, 2000. IEEE. 2000, pp. 131–142.

[HR05] Robert A. Hanneman and Mark Riddle. Introduction to social net-
work methods. University of California Riverside, 2005.

[LM03] Vito Latora and Massimo Marchiori. “Economic small-world behav-
ior in weighted networks”. In: The European Physical Journal B-
Condensed Matter and Complex Systems 32.2 (2003), pp. 249–263.

[LT00] Josh Lerner and Jean Triole. The Simple Economics of Open Source.
Working Paper 7600. National Bureau of Economic Research, 2000.

[LF+08] L. Lopez-Fernandez, G. Robles, J. Gonzalez-Barahona, and I. Her-
raiz. “Applying Social Network Analysis Techniques to Community-
Driven Libre Software Projects”. In: International Journal of Infor-
mation Technology and Web Engineering 1 (2008), pp. 28–50.

[Mad+02] Gregory Madey, Vincent Freeh, and Renee Tynan. “The open source
software development phenomenon: An analysis based on social net-
work theory”. In: Proceedings of the American Conference of Infor-
mation Systems. 2002, p. 247.

[Moc+00] Audris Mockus, Roy T. Fielding, and James Herbsleb. “A case study
of open source software development: the Apache server”. In: Pro-
ceedings of the 22nd international conference on Software engineer-
ing. ACM. 2000, pp. 263–272.

[New01] Mark EJ. Newman. “Scientific collaboration networks. II. Shortest
paths, weighted networks, and centrality”. In: Physical review E 64.1
(2001), p. 016132.

6 Conclusions 177

[OP09] Tore Opsahl and Pietro Panzarasa. “Clustering in weighted networks”.
In: Social networks 31.2 (2009), pp. 155–163.

[OAH14c] Alma Oručević-Alagić and Martin Höst. “Network analysis of a large
scale open source project”. In: Proceedings of the 40th EUROMI-
CRO Conference on Software Engineering and Advanced Applica-
tions. IEEE. 2014, pp. 25–29.

[RH08] Per Runeson and Martin Höst. “Guidelines for conducting and re-
porting case study research in software engineering”. In: Empirical
Software Engineering 14 (2008), pp. 131–164.

[Sev12] Charles Severance. “The Apache Software Foundation: Brian Behlen-
dorf”. In: Computer 45.10 (2012), pp. 8–9.

[Ske14] Ian Skerrett. Eclipse Community Survey 2014. https://ianskerrett.
wordpress.com/2014/06/23/eclipse-community-
survey-2014-results/". [Online; accessed 20-October-2015].
2014.

[WF94b] Stanley Wasserman and Katherine Faust. Social network analysis:
Methods and applications. Vol. 506. Cambridge University Press,
1994.

[WS98b] Duncan J. Watts and Steven H. Strogatz. “Collective dynamics of
small-world networks”. In: nature 393.6684 (1998), pp. 440–442.

