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Abstract

This thesis consists of 4 papers, their content is described below:
Paper I.
We present a new method for manufacturing complex-valued harmonic mor-
phisms from a wide class of Riemannian Lie groups. This yields new solutions
from an important family of homogeneous Hadamard manifolds. We also give a
new method for constructing left-invariant foliations on a large class of Lie groups
producing harmonic morphisms.
Paper II.
We study left-invariant complex-valued harmonic morphisms from Riemannian
Lie groups. We show that in each dimension greater than 3 there exist Riemann-
ian Lie groups that do not have any such solutions.
Paper III.
We construct harmonic morphisms on the compact simple Lie group G2 us-
ing eigenfamilies. The construction of eigenfamilies uses a representation theory
scheme and the seven-dimensional cross product.
Paper IV.
We study the curvature of a manifold on which there can be defined a complex-
valued submersive harmonic morphism with either, totally geodesic fibers or that
is holomorphic with respect to a complex structure which is compatible with the
second fundamental form.
We also give a necessary curvature condition for the existence of complex-valued
harmonic morphisms with totally geodesic fibers on Einstein manifolds.
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Populärvetenskaplig sammanfattning

En harmonisk morfi är en avbildning som bevarar harmoniska funktioner. De
studerades först av Jacobi år 1848, han studerade dem i syfte att hitta harmoniska
avbildningar från rummet till planet.

Man kan visa att harmoniska morfier är precis de avbildingar som bevarar
Brownska rörelser. En Brownsk rörelse är en typ av slumpvandring där riktin-
gen i varje steg är likafördelad och steglängden är normalfördelad.

Fuglede och Ishihara visade att en harmonisk morfi måste vara både en har-
monisk avbildning och en konform avbildning, detta är för många vilkor för att
garantera existens.

Om vi går från två dimensioner till två dimensioner så är harmoniska mor-
fier precis de vinkelbevarande avbildningarna. Mellan två mångfalder av samma
dimension som är högre än två är det precis de avståndsbevarande avbildningarna.

Avhandlingen behandlar existens och icke-existens resultat för harmoniska mor-
fier. Artikel 1 och 3 handlar om existens medans artikel 2 och 4 handlar om
icke-existens.

I artikel 1 går vi igenom en metod för att producera harmoniska morfier på
lösbara Lie grupper. Metoden fungerar utmärkt på nästan alla homogena Had-
amardrum.

Detta för oss till artikel 2 som visar att det inte finns vänster-invarianta har-
moniska morfier på några av de homogena Hadamardrum där metoden från ar-
tikel 1 ej fungerade.

I artikel 3 visar vi att det går att konstruera egenfamiljer på G2. Vi använder
dessa egenfamiljer för att konstruera harmoniska morfier på öppna delmängder
av G2.

I den sista artikeln visar vi att harmoniska morfier med totalt geodetiska fiber
måste uppfylla ett starkt geometriskt vilkor. På Einstein-mångfalder får vi ett
nödvänligt vilkor som är enkelt att använda för att motbevisa existens.
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This Doctoral dissertation is based on the following scientific publications by
the author:
Paper I. S. Gudmundsson, J. Nordström, Harmonic morphisms from homogeneous
Hadamard manifolds, Ann. Global Anal. Geom. 39 (2011), 215-230.
DOI: 10.1007/s10455-010-9229-x
Paper II. J. Nordström, Riemannian Lie groups with no left-invariant complex-
valued harmonic morphisms, Ann. Global Anal. Geom. 45 (2014), 1-10.
DOI: 10.1007/s10455-013-9383-z
Paper III. J. Nordström, Harmonic morphisms and eigenfamilies on the exceptional
Lie group G2, preprint, Lund University 2013.
Paper IV. J. Nordström, Curvature conditions for complex-valued harmonic mor-
phisms, preprint, Lund University 2014.

1 Summary

In sections 2, 3 and 4 we introduce necessary background material for this work.
The sections 5, 6, 7 and 8 are aimed at describing our results and putting them
into context.

In section 2 we define harmonic morphisms, show their connection to har-
monic maps and discuss some of their properties. Section 3 deals with an equiv-
alent formulation on harmonic morphism, that of foliations, which is sometimes
more convenient. Finally, section 4 deals with some existence results.

In section 5 we show that there is a large amount of solvable groups on which we
can find harmonic morphisms [Paper I]. Section 6 concerns examples of solvable
groups on which there are no left-invariant harmonic morphisms [Paper II]. In
section 7 we present our results on the existence of eigenfamilies on G2 [Paper
III]. The last section 8 is about harmonic morphisms with totally geodesic fibres
and holomorphic harmonic morphisms. These maps are particularly rigid and
allow us to get some necessary conditions [Paper IV].
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2 Harmonic morphisms

The first to show an interest in harmonic morphisms was Jacobi. In [29] he
studied maps from R3 to C that pull back holomorphic functions to harmonic
functions. The maps he wanted are exactly the harmonic morphisms. For a more
detailed history of harmonic morphisms see [7].

Definition 2.1. Let ϕ ∶ (M,g) → (N,h) be a C2-map. We say that ϕ is a
harmonic morphism if for every subset V of N such that U = ϕ−1(V ) is non-
empty and for every harmonic function f ∶ V → R the function f ○ϕ ∶ U → R is
harmonic.

Fuglede [11] and Ishihara [28] characterized harmonic morphisms in terms of
harmonic maps and weak horizontal conformality. We have

Theorem 2.2. A C2-map ϕ ∶ (M,g) → (N,h) is a harmonic morphism if and
only if it is a harmonic map and horizontally weakly conformal.

Given a map ϕ ∶ (M,g) → (N,h) we define the vertical space by Vp =
ker(dϕp) and the horizontal spaceHp as its orthogonal complement.

Definition 2.3. A C1-map ϕ ∶ (M,g) → (N,h) is said to be horizontally
weakly conformal if for each p ∈M

(i) dϕp = 0, or

(ii) dϕp∣Hp ∶Hp → Tϕ(p)N is conformal.

The function λ ∶M → R+0 defined by

hϕ(p)(dϕp(X),dϕp(Y )) = λ(p)2gp(Xp, Y)

is called the dilation of ϕ. A point p ∈M is said to be a critical point if λ(p) = 0,
otherwise it is said to be a regular point.

Definition 2.4. We say that a map ϕ ∶ (M,g) → (N,h) is harmonic if it is a
critical point of the energy functional

E(ϕ) = 1

2
∫
K
∣dϕ∣2dν

for any compact subset K of M .
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The tension field of a C2-map ϕ ∶ (M,g)→ (N,h) is given by

τ(ϕ) = trace(∇dϕ).

A map ϕ ∶ (M,g) → (N,h) is harmonic if and only if it satisfies the Euler-
Lagrange equation for the energy functional i.e. τ(ϕ) = 0.

Introduce local coordinates x = (xi) ∶ U → Rm and y = (yα) ∶ V → Rn on
M and N , respectively. If we set ϕγ = yγ ○ ϕ ∶ U → R then the n equations for
ϕ to be a harmonic map are given by

τ(ϕ)γ =∑
ij

gij
⎛
⎝
∂2ϕγ

∂xi∂xi
−∑

m

Γk
ij

∂ϕγ

∂xk
+∑

αβ

(Γγ
αβ ○ ϕ)

∂ϕα

∂xi
∂ϕβ

∂xj
⎞
⎠
= 0,

where Γk
ij and Γγ

αβ are the Christoffel symbols of M and N , respectively.

The (n+12 ) − 1 equations for ϕ to be horizontally conformal are given by

∑
ij

gij
∂ϕα

∂xi
∂ϕβ

∂xj
= λ2(hαβ ○ ϕ).

Thus the number of equations for a map to be a harmonic morphism increases
quadratically with the dimension of the codomain.

3 Foliations

A foliation is a decomposition of a manifold into submanifolds in such a way that
locally the submanifolds are the fibres of a submersion.

Definition 3.1. Let M be a manifold. A foliation F on M is a partition {Lα}
into connected subsets, called leaves, such that, for each p ∈ M there is a local
submersion ϕ ∶W → N where Lα ∩W are the fibres of ϕ.

A related concept to foliations are distributions which are smooth subbundles
of the tangent bundle. We say that a distribution V is integrable if U,V ∈ Γ(V)
implies [U,V ] ∈ Γ(V). The tangent spaces of the leaves of a foliation will gener-
ate an integrable distribution. Conversely, if a distribution is integrable, then the
Frobenius theorem tells us that it is locally the tangent spaces of the leaves of a
foliation.
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The second fundamental form BV of V is defined by

BV(U,V ) = 1

2
H(∇UV +∇V U)

for U,V ∈ V and the mean curvature vector field by

µV = trace(BV).

Definition 3.2. A distribution V is said to be

(i) totally geodesic if BV = 0,

(ii) minimal if µV = 0 and

(iii) conformal if (LV g)(X,Y ) = ν(V )g(X,Y ) for some
ν ∶ Γ(V)→ C∞(M).

A foliation is said to, have totally geodesic leaves, have minimal leaves, or to be
conformal, corresponding to its induced distribution.

An additional property of harmonic morphisms was given by Baird and Eells
in [3], they showed that the tension field of a horizontally weakly conformal map
ψ is given by

τ(ψ) = (n − 2)V(grad(lnλ)) + (m − n)µV .

From this the obtain the following result.

Theorem 3.3 ([3]). Let ϕ ∶ (M,g) → (N,h) be a horizontally weakly conformal
map. If dim(N) = 2, then ϕ is a harmonic morphism if and only if it has minimal
fibres at regular points. If dim(N) ≥ 3, then any two of the following imply the third:

(i) ϕ is harmonic.

(ii) ϕ is horizontally homothetic, i.e., grad(λ) ∈ V at regular points.

(iii) ϕ has minimal fibres at regular points.

Furthermore Fuglede showed in [12] that a horizontally homothetic harmonic
morphism has no critical points. Observe that there exist harmonic morphisms
that do not have minimal fibres, see Example 5.4 of [3].

Using foliations we can obtain local existence of harmonic morphisms without
involving the codomains.
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Theorem 3.4 ([37]). A foliation on a Riemannian manifold of codimension 2 pro-
duces harmonic morphisms if and only if it is conformal and has minimal leaves.

There is a similar result about foliations of codimension not equal to 2, but si-
nce we are interested in complex-valued harmonic morphisms we will not discuss
it here.

4 Existence of harmonic morphisms

The fact that harmonic morphisms are harmonic maps means that they are subject
to a maximum principle and thus we can not have any non-constant morphism
from a compact manifold to a non-compact one. This is the simplest of the
topological obstructions to harmonic morphisms. Since we are mostly interested
in the geometric consequences we will not go into this any further.

In [11] Fuglede gave a few examples of harmonic morphisms, such as, Rie-
mannian projections and holomorphic maps from Kähler manifolds to surfaces.
Baird showed in Section 8 of [1] that for m ≥ n there exist harmonic morphisms
Rm → Rn given by polynomials and that some of these restrict to harmonic
morphisms from Sm−1 → Sn−1

The equations for a harmonic morphism form an over-determined system, thus
we do not expect harmonic morphisms to exist on all Riemannian manifolds.
There is no general existence theory, but in 3 and 4 dimensions there are some
classification results, see [5], [38] and [2]. Thus finding examples of Riemannian
manifolds on which we can define a harmonic morphism is of interest.

A program to find Riemannian manifolds allowing harmonic morphisms was
started by Gudmundsson. His idea was to look at Riemannian manifolds with
lots of ”symmetries”. Starting with Riemannian manifolds of constant curvature,
which are locally isometric to one of Sn, Rn or RHn, see [14]. Then existence
of non-holomorphic harmonic morphisms on complex projective space CPn in
[15]. Since CPn is Kähler each component of the coordinate charts are har-
monic morphisms. This shows that the equations are not too rigid. Examples
of harmonic morphisms from real hyperbolic space with non-totally geodesic fi-
bres, were found in [17] in the odd-dimensional case. This lead to the following
conjecture.

Conjecture 4.1 (Gudmundsson 1995). Let (M,g) be an irreducible Riemannian
symmetric space of dimensionm ≥ 2. For each point p ∈M there exists a non-constant
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complex-valued harmonic morphism ϕ ∶ U → C defined on an open neighbourhood
U of p. If M is of non-compact type then the domain U can be chosen to be the whole
of M .

Other symmetric spaces of non-compact type are the complex and quaternionic
hyperbolic spaces where existence was proven in [18]. This together with the fact
that several non-compact symmetric spaces have natural holomorphic harmonic
morphisms, give some credibility to the conjecture.

5 Existence on solvable Lie groups

Much progress has been made on the Gudmundsson conjecture and currently
harmonic morphisms have been found to exist on all symmetric spaces except for
G2/SO(4) and its non-compact dual, see [23].

The duality principle of Theorem 7.1 in [21] states that a harmonic morphism
exists on a symmetric space of compact type if and only if there exists one on
its non-compact dual. Thus we study existence on the symmetric spaces of non-
compact type.

It is know that all symmetric spaces of non-compact type are solvable Lie
groups, thus we are lead to finding harmonic morphisms on solvable Lie groups.

In [23] the authors give two methods for producing harmonic morphisms on
solvable Lie groups. The first method is given in Theorems 5.2 and 11.3 and
is suited for symmetric spaces of rank at least 3. The second method, that of
Theorem 12.1 from [23], is suited for symmetric spaces with restricted root spaces
of dimension at least 2.

The next result is a generalized version of Theorem 12.1 in [23].

Theorem 5.1 ([Paper I], Theorem 3.1). Let G = N ⋊A be a semi-direct product
of the simply-connected Lie groups A and N . Let G be equipped with a left-invariant
metric g and g = a⊕ k⊕m be an orthogonal decomposition of the Lie algebra g of G
such that a and n = k⊕m are the Lie algebras of A and N , respectively. Let K be a
closed simply connected subgroup of N with Lie algebra k such that

(i) [a, k] ⊆ k,

(ii) [a,m] ⊆ m,

(iii) [n,n] ⊆ k,

xvi
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(iv) trace(adZ) = 0 for all Z ∈ m,

(v) there exists an λ ∈ a∗ such that for each H ∈ a and Z ∈ m

(adH +adtH)(Z) = 2λ(H)Z.

Then there exists a harmonic morphism on Φ ∶ G→ Rm, where m = dim(m).

This result works particularly well on homogeneous Hadamard manifolds, si-
nce they have to be solvable Lie groups and have natural candidates for m, the
generalized root spaces of the almost normal operators adA, A ∈ a. This is not
enough for existence, but almost, as we see in the following result which follows
easily from the above theorem.

Theorem 5.2 ([Paper I], Theorem 10.3). Let the solvable Riemannian Lie group
S be a homogeneous Hadamard manifold with Lie algebra s = a ⊕ n. Furthermore
assume that there exists a generalized root space nα,β of n of dimension m ≥ 2 such
that

(i) adH ∣nα,β
is normal for all H ∈ a,

(ii) [n,n] is contained in the orthogonal complement n�α,β of nα,β in n,

(iii) adH(n�α,β) ⊆ n
�
α,β for all H ∈ a.

Then there exists a harmonic morphism Φ ∶ S → Rm.

The harmonic morphisms produced will foliate S by left-translated Lie sub-
groups of S, thus we are lead to the concept of a left-invariant foliation.

Definition 5.3. A foliation F = {ℓg}g∈G of a Lie group G is said to be left-
invariant if ℓe =K is a closed subgroup and ℓg = Lg(ℓe).

In the case of the non-compact dual of G2/SO(4), which is a symmetric space
of rank 2, all the eigenspaces of adA for A ∈ a have dimension 1. Thus this
method will not produce harmonic morphisms.
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6 Non-existence on solvable Lie groups

In [Paper II] we investigate the existence of left-invariant foliations. We answer
the following question: Are there solvable Lie groups of dimension larger than 3
that do not have left-invariant conformal foliations with minimal fibres?

For a Riemannian manifold (M,g) and a point p ∈M we define Isop(M) to
be the set of isometries F ∶M →M such that F (p) = p.

Proposition 6.1 ([Paper II], Theorem 3.1). Let s be a Euclidean Lie algebra with
orthonormal basis

{X0 = A,X1, . . . ,Xn}

and brackets [A,Xi] = λiXi. Let S be the simply connected Lie group with Lie
algebra s and the induced left-invariant Riemannian metric. If 0 < λ1 < . . . < λn
then Isoe(S) is finite.

To give a non-existence result we show that if there is a left-invariant harmonic
morphism on this space then there must exist a fix-point isometry.

Theorem 6.2 ([Paper II], Theorem 5.1). Let s be a solvable Euclidean Lie algebra
with n = [s, s] Abelian and strictly negative sectional curvature. If there exist an
orthogonal decomposition s = h⊕ v, with dim(h) ≥ 2, such that

(i) [v,v] ⊆ v,

(ii) tracev(adH) = 0 for all H ∈ h,

(iii) there exists λ ∈ v∗ such that

⟨adV H1,H2⟩ + ⟨H1,adV H2⟩ = 2λ(V ) ⟨H1,H2⟩

for all V ∈ v and all H1,H2 ∈ h, and

(iv) adA ∶ n→ n is normal for all A ∈ a = n�,

then there exists a non-zero skew-symmetric derivation T of s.

Corollary 6.3 ([Paper II], Corollary 5.2). Let S be a 2-step solvable Riemannian
Lie group with strictly negative sectional curvature. Let s be the Lie algebra of S,
set n = [s, s] and a = n�. If adA ∶ n → n is normal and there exists a left-
invariant conformal foliation with minimal fibres on S, then the isotropy group at e
is of dimension at least one.
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Combining the results of Proposition 6.1 and Corollary 6.3, we get the follow-
ing.

Theorem 6.4 ([Paper II], Theorem 1.1). Let s be a Euclidean Lie algebra with
orthonormal basis

{A,X1, . . . ,Xn}

and brackets [A,Xi] = λiXi. If 0 < λ1 < . . . < λn then there exist no complex-
valued left-invariant harmonic morphisms on the simply connected Lie group S with
Lie algebra s and the induced left-invariant Riemannian metric.

We do not know if harmonic morphisms on a Lie group have to be left-
invariant, except in some cases: The rank one symmetric spaces of non-compact
type, where there exist non left-invariant harmonic morphisms. Opposite, on
3-dimensional Riemannian Lie groups with non-constant curvature all harmonic
morphisms are left-invariant, as was shown in Proposition 13.4 in [23].

7 Existence on G2

In this section we discuss existence of harmonic morphisms on the compact Lie
groups, the eigenfamily method for finding harmonic morphisms, and the exis-
tence of eigenfamilies on G2 proven in [Paper III].

The compact simple Lie groups are divided into the classical and the exceptional
ones. The classical are SO(n), SU(n) and Sp(n). While the exceptional are
G2, F4, E6, E7 and E8. Any of these Lie groups when equipped with a bi-
invariant metric is a symmetric space of compact type.

The homogeneous projection G → G/K is a Riemannian submersion with
totally geodesic fibres, hence a harmonic morphism. More generally Bérnard-
Bergery and Bourguignon proved in [8] that for mild conditions on the Lie sub-
groups K ⊆ H the projection G/H → G/K is a Riemannian submersion with
totally geodesic fibres. Thus in the case that we have existence of complex-valued
harmonic morphisms from G/K we also get existence on G/H . This was used in
[13] to get existence of harmonic morphism on the classical compact Lie groups.

A more general construction, taking a compact Lie group to a flag-manifold was
introduced in [36]. In [21] the authors use this to show the existence of harmonic
morphisms on all the compact simple Lie groups by mapping to a flag manifold

G→ G/(G ∩ P ) = GC/P

xix
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where P is a parabolic subgroup of GC. Since the latter is a cosymplectic Her-
mitian manifold, each component of a coordinate chart is a complex-valued har-
monic morphism.

In [19], Gudmundsson and Sakovich introduced a different method to find
harmonic morphisms on compact Lie groups, that of eigenfamilies.

Introduce the operators ∆ and κ by

∆(ϕ) = div(grad(ϕ)) and κ(ϕ,ψ) = ⟨∇ϕ,∇ψ⟩ ,

for ϕ,ψ ∶ (M,g)→ C.

Definition 7.1. Let (M,g) be a Riemannian manifold and λ,µ ∈ C. A set E of
functions ϕ ∶ (M,g)→ C such that

τ(ϕ) = λϕ and κ(ϕ,ψ) = µϕψ

for all ϕ,ψ ∈ E is said to be an eigenfamily.

Once we have an eigenfamily it follows from the following that there exist
harmonic morphisms.

Theorem 7.2 ([19], Theorem 2.5). Let (M,g) be a semi-Riemannian manifold
and E = {ϕ1, . . . , ϕn} be a finite eigenfamily of complex-valued functions on M .
If P,Q ∶ Cn → C are linearly independent homogeneous polynomials of the same
positive degree then the quotient

P (ϕ1, . . . , ϕn)
Q(ϕ1, . . . , ϕn)

is a harmonic morphism on the open and dense set

{p ∈M ∣Q(ϕ1, . . . , ϕn)(p) ≠ 0}.

Gudmundsson and Sakovich proved the existence of eigenfamilies on the classi-
cal compact Lie groups, SO(n), SU(n) and Sp(n). In particular they showed:
If p ∈ Cn be an isotropic vector, i.e. ⟨p, p⟩ = 0, then

Ep = {SO(n) ∋ g ↦ ⟨a, g ⋅ p⟩∣a ∈ Cn}

is an eigenfamily on SO(n). If q ∈ Cn and G = SU(n) or G = Sp(n), then

Eq = {G ∋ g ↦ ⟨a, g ⋅ q⟩∣a ∈ Cn}

xx
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is an eigenfamily on G.
In [26] the authors show that existence of the eigenfamilies above follow easily

from the irreducibility of the exterior product for SO(n) and symmetric product
for SU(n) and Sp(n). They also found eigenfamilies that do not come from the
standard representation, the families given above.

Let ρ ∶ G2 → Aut(V ) denote the standard real representation of G2. The
exterior square representation ρ̃ ∶ G2 → Aut(⋀2 V ) has two irreducible orthog-
onal subspaces ⋀2 V = g2 ⊕W , see page 541 in [9]. As dim(g2) = 14 we have
dim(W ) = 7.

Since neither the exterior nor the symmetric product of the standard represen-
tation are irreducible we can not proceed as in [26].

In [Paper III] we show that the projection onto g2 is in fact given by the
operator κ at the point e. We then use the seven dimensional cross product to
understand the projection onto W . In essence we show that ∣PW (a ∧ b)∣2 =
1
3 ∣a × b∣

2.

Theorem 7.3 ([Paper III], Theorem 1.1). Let ρ ∶ G2 → Aut(R7) be the stan-
dard representation of the exceptional compact Lie group G2. Extend ρ(g) to act on
complex vectors by ρ(g)(u + iv) = ρ(g)u + iρ(g)v. For any a, b ∈ C7 define

ϕab(g) = ⟨a, ρ(g)b⟩,

where ⟨⋅, ⋅⟩ is the complex-bilinear extension of the standard scalar product on R7.
Suppose that p ∈ C7 satisfies ⟨p, p⟩ = 0. Then

Ep = {ϕap ∣a ∈ C7}

is an eigenfamily on G2 i.e. there exist non-positive λ,µ ∈ R such that

∆(ϕ) = λϕ and κ(ϕ,ψ) = µϕψ

for all ϕ,ψ ∈ Ep.

The harmonic morphisms produced by these eigenfamilies live on the complex
quadratic Q5 = G2/U(2)−.
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8 Necessary curvature conditions for harmonic
morphisms

Baird and Wood show in the paper [6] that for a harmonic morphism from a
3-dimensional Riemannian manifold to a surface the Ricci curvature satisfies

Ric(X + iY,X + iY ) = 0, for X,Y ∈H.

In three dimensions this condition is in fact equivalent toK(Xθ, U) not depend-
ing on θ for U ∈ V . From this condition they can find necessary conditions for
the existence of harmonic morphisms. They apply this to the unimodular solvable
Lie group Sol3 and show that this does not have any harmonic morphism, not
even locally.

In three dimensions the minimal fibres are curves thus they are geodesics. To
generalize to higher dimensions we assume that the fibres are totally geodesic.

Harmonic morphisms with totally geodesic fibres were studied by Mustafa. His
interest was in the case of codimension at least 4. He got some global results in
the case of non-positive curvature on the domain see Theorem 4.1 in [32]. Later
this was extended to codimension at least 2 assuming the harmonic morphism is
horizontally homothetic [34].

There is a classification of all complex-valued harmonic morphisms with to-
tally geodesic fibres on spaces of constant curvature due to Baird and Wood in
Section 6.8 of [7]. This was later extended to Riemannian manifolds which are
conformaly equivalent to a constant curvature metric by Pantilie [33].

Holomorphic harmonic morphisms have been studied extensively. It is a nat-
ural class of maps to study, since any (pseudo)-holomorphic map from an almost
Hermitian manifold to a surface is conformal. Eells and Sampson showed in [10]
that if the domain is Kähler then any holomorphic map is also harmonic. Lich-
nerowicz showed in [30] that the Kähler condition is too strong, and that it is
enough that the domain is cosymplectic, divJ = 0, for any holomorphic map to
a surface to be harmonic. The complete description came with [27] where Gud-
mundsson and Wood show that the tension field of a holomorphic map is given
by

τ(ϕ) = −dϕ(J divJ)

thus ϕ is a harmonic morphism if and only if divJ ∈ kerdϕ.
In [31] Loubeau and Pantilie study twistorial harmonic morphisms, which in

a sense are holomorphic maps with respect to an integrable Hermitian structure.

xxii



Preface

They show that in four dimensions a holomorphic harmonic morphism satisfies
the Ricci curvature condition

Ric(X + iY,X + iY ) = 0.

In the case of harmonic morphisms with minimal but not totally geodesic fibres
we have Examples 6.1 and 6.2 from [25]. These two maps are not holomorphic
with respect to an integrable Hermitian structure.

We are interested in the case of codimension 2, where the curvature operator
has to satisfy a strong symmetry property, rotations in the horizontal plane do not
change the sectional curvature.

Theorem 8.1 ([Paper IV], Theorem 1.1). Let (M,g) and (N2, h) be Riemann-
ian manifolds, let ϕ ∶ (M,g) → (N2, h) be a submersive harmonic morphism with
totally geodesic fibres and p ∈M . Given U,V ∈ Vp = ker(dϕ) and any orthonormal
basis {X,Y } forHp = V�p , set Xθ = cos(θ)X + sin(θ)Y . Then

⟨R(Xθ ∧U),Xθ ∧ V ⟩

is independent of θ.

If we consider an Einstein manifold we have the following proposition which
is easy to test.

Proposition 8.2 ([Paper IV], Proposition 3.1). Let (M,g) be an Einstein man-
ifold and (N2, h) be a Riemannian surface. Let R be the curvature operator of
(M,g) at p ∈ M . If there is a submersive harmonic morphism ϕ ∶ (M,g) →
(N2, h) with totally geodesic fibres then R has at least dim(M) − 2 pairs of eigen-
values.

This gives an example of an Einstein metric which does not have any harmonic
morphism with totally geodesic fibres, see Example 4.1 in [Paper IV].

We are not able to show that the conditions of Theorem 11 in [Paper IV]
are valid for holomorphic harmonic morphisms. However, we can show that the
Ricci curvature condition holds if we also add that the second fundamental form
is compatible with the complex structure. So we show that for a Hermitian metric
we can get the Ricci condition even if the fibres are not superminimal.
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Theorem 8.3 ([Paper IV], Theorem 5.1). Let ϕ ∶ M2m → N2 be a harmonic
morphism between Hermitian manifolds (M2m, g, J) and (N2, h, JN). Suppose
that J is adapted to ϕ and compatible with the second fundamental form B. Then

Ric(X,X) = Ric(Y,Y ) and Ric(X,Y ) = 0

for X,Y ∈H orthonormal.

Note that this does not imply that X and Y are eigenvectors of the Ricci cur-
vature operator, since we can have Ric(X,U) ≠ 0 for some U ∈ V .
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