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Braided Convolutional Codes: A New Class of
Turbo-Like Codes

Wei Zhang,Member, IEEE, Michael LentmaierMember, IEEE, Kamil Sh. Zigangirov,Fellow, |EEE,
and Daniel J. Costello, JiLife Fellow, |IEEE

Abstract—We present a new class of iteratively decodable codes (SBBC's), and it was shown that iterative decoding
turbo-like codes, called braided convolutional codes. Castruc-  performance is greatly improved with SBBC's.

tions and encoding procedures for tightly and sparsely braied . . .
convolutional codes are introduced. Sparsely braided codeex- In this paper, we study a new class of braided cobesded

hibit good convergence behavior with iterative decoding, ad a convolutional codes (BCC's), first introduced in [7]. In contrast
statistical analysis using Markov permutors shows that thefree  to BBC's, which are described in detail in [1], we use convo-
distance of these codes grows linearly with constraint lent, i.e., |utional codes as component codes. Convolutional perrautor
they are asymptotically good. an important ingredient of BCC's, are introduced in Sectlpn
Index Terms—braided convolutional codes, turbo-like codes, and code constructions are described in Section Ill. Armisg
codes on graphs, iterative decoding, convolutional permet, free {5 BBC's, atightly braided convolutional code (TBCC) results
distance. when a dense array is used to store the information and parity
symbols.Sparsely braided convolutional codes (SBCC'’s) are
|. INTRODUCTION then proposed to overcome the short cycles in the Tannehgrap
Braided block codes (BBC's) [1] were first introduced irrepresentation [8] of TBCC’s. The storage array of SBCC's
[2] [3]. These codes can be viewed as a sliding versidras a lower density, resulting in improved iterative dengdi
of product codes [4] or expander codes [5] [6]. In braidegerformance. In Section IV a syndrome former matrix is
codes, information symbols are checked by two componefgfined, and SBCC’s are shown to be a type of low density
encoders, and the parity symbols of one component encogarity check (LDPC) convolutional code. Then in Section V a
are used as inputs to the other component encoder. The qoipeline decoder architecture for high speed continuota da
nections between the two component encoders are definediansmission is presented. In Section VI, a blockwise versi
the positions where information symbols and parity symbot§ BCC’s is proposed for applications involving packetized
are stored in a two-dimensional array. Braided codes fomiata. The performance of ratB = 1/3 SBCC’s is then
a class of continuously decodable codes defined on graghaluated by computer simulation in Section VII. By means
[2], and thus iterative decoding can be employed. Owimgf a Markov permutor analysis [9], a numerical method is
to the continuously decodable property of these codes, ttheveloped in Section VIII to compute a lower bound on free
decoder can be implemented using a highly efficient pipeligéstance for the ensemble of BCC’s. The free distance bound
structure. Therefore braided codes are well suited for highows linear growth in free distance as a function of coirdtra
speed continuous data transmission. length. This implies that BCC's, in contrast to turbo codes o
In [3], short block codes such as Hamming codes weserially concatenated codes, are asymptotically goodringe
employed as component codes. Two families of BBC’s werd distance growth. Finally, we present some conclusions in
proposed based on the density of the storage array, i.ktlytig Section IX.
braided block codes (TBBC'’s) and sparsely braided block

Manuscript received May 31, 2006; revised January 30, 2009.

This work was supported in part by NSF Grant CCR02-05310, yAgnant II. CONVOLUTIONAL PERMUTORS
DAAD16-02-C-0057, and NASA grant NNGO5GH73G. '

The material of this paper was presented in part at the 20&%E |Bter-
ggg"”a' Symposium on Information Theory, Adelaide, Aakiar, September A essential part of the encoder for BCC's is a convolutional

5. .

W. Zhang was with the Department of Electrical Engineeridgiversity pe.rmUtor_ (also Cal_led a C_OnV0|Ut|0na|. scrambler [10]): In
of Notre Dame, Notre Dame, IN 46556 USA. He is now with QUALCEIM this section, we briefly review the basic theory of multiple
Incorporated, San Diego, CA (e-mail:wzhang@qualcomm)com convolutional permutors given in [1]

M. Lentmaier was with the Department of Electrical Engifegr Univer- ) ) ) )
sity of Notre Dame, Notre Dame, IN 46556 USA. He is now with ®fhe A symmetric multiple convolutional permutor (MCP) of

Chair Mobile Communications Systems, Dresden Universftyffechnology, muItipIicity k can be described by a semi-infinite matrix
01062 Dresden, Germany (e-mail: Michael.Lentmaier@ifruelresden.de). P— ' e gt hich hask . h di
K. Sh. Zigangirov is with University of Notre Dame, Notre DamiN - (pt=t/>' t,t € o whic ask ones In each row and in
46556 USA, Lund University, Lund, Sweden, and the InstifaeProblems each column starting from thAth column. The other entries
of Information Transmission, Moscow, Russia (e-mail: kzigi@nd.edu). — gre zeros. The matriP also satisfies the causality condition,
D. J. Costello, Jr. is with the Department of Electrical Hwgr- .
ing, University of Notre Dame, Notre Dame, IN 46556 USA (edma 1e.,
Daniel.J.Costello.2@nd.edu).
Communicated by T. Richardson, Associate Editor for Codihgory. Py = 0, t <t (1)



IEEE TRANSACTIONS ON INFORMATION THEORY, ACCEPTED FOR PUBCATION 2

We use the following representation fé. These permutation functions are stored in a ROM for imple-
mentation.

To reduce the storage space required by the permutation
functions, periodic permutors are assumed. In this case,

Po,s  Po,5+1 s Po,A

P _ : . : . ’
Ptt+s DPti+s+1 0 Dei+A ,
Dt/ = Dt+T,t'+T» vt t. (8)

(2) The minimalT for which (8) is satisfied is called theeriod

and we assume that ;.5 = 1 for at least one value ofand of a periodic convolutional permutor.
pre+a = 1 for at least one value of The parameted > 0 |y [11], [1], a method was proposed to construct periodic
is called theminimal permutor delay and A > 0 is called my|tiple convolutional permutors from multiple block pesm
the maximal permutor delay. As in convolutional coding, we tors. A 7' x T block permutor of multiplicityk is described
call the maximal delay thenemory m of the permutor, i.e., by aT x T square matrix having: ones in each row and
m = A. The valuew = A — 4 + 1 is called thepermutor  each column. A periodic multiple convolutional permutottwi
width. A single convolutional permutor has multiplicityk = 1. period 7' is then constructed from theasic multiple block
If w=1andp,, =1Vt a single permutor is thedentity permutor of size T x T and multiplicity & using the so-called
permutor. If p, .15 = 1 V¢, a single permutor is theelay unwrapping procedure [1].
permutor with delay §. If a multiple permutor is described Example 1: The construction of a single convolutional per-
by the matrix?, the inverse permutor is described by the, tor with periodT’ = 6, minimal delays = 0, and maximal
transpose matrixP]". _ _ ~ delayA = 5, from a6 x 6 basic block permutor of multiplicity

With this matrix representation, we can describe a single _ | s illustrated in Figure 1. First divide thé x 6
convolutional permutor as follows. Let = (zo,21,...) be  permutation matrix describing the basic block permutootel
the input sequence to the permutor. Then the output Sequefe diagonal as shown in Figure 1(a), then unwrap the lower
y = (¥0,%1,--.) is given by part of the matrix as shown in Figure 1(b), and finally repica

y = xP. 3) the unwrapped matrix diagonally as shown in Figure 1Kc).

In this way, the mapping between the input and output is
defined agy; = z, wheret’ is determined by the permutation
functionf, (-) associated wittP, i.e.,

t' =1, (¢). 4)

Equation (3) describes the operation of a single convaiatio (a) Basic block permutor.  (b) Unwrapped block permutor.
permutor, but the operation of a multiple ¢ 1) convolutional
permutor can’'t be described as the multiplication of a vecto
by a matrix.

In the case of a multiple permutor, the 1 entries in the
matrix P represent memory units that can store an input
symbol. The input sequencX entering the MCP is di-
vided into k-tuples, i.e., X = (x¢,x1,...,X¢,...), Where
x¢t = (241, %2, ..,21%)". The blocksx,, t = 0,1,..., are
written to the memory units row by row. The output sequence
Y = (Yo, Y1, 5 ¥t5---), Wherey, = (ye1, 92,5 yek)"
is read out column wise. Since there are the same number of
ones in each row and column, every input symbol occurs once

(c) Convolutional permutor.

and only once in the output sequence. Fig. 1. Construction of a single periodic convolutional petor.
To describe the operation of a multiple convolutional per-
mutor, amatrix permutation operator or permutation tensor The convolutional permutor introduced in Example 1 is a

P can be introduced. (Refer to [1] for details.) Similar to &ingle periodic convolutional permutor. Single convautl
single convolutional permutor, we define the mapping betwepermutors are used in this paper to describe fate- 1/3

inputs and outputs as BCC's. An example of an MCP with multiplicityy = 2 and
) periodT = 5 constructed using the unwrapping procedure is
Yei =, 1< <k, () shown in Figure 2.

wheret' andi’ are determined by the permutation functions From the unwrapping procedure, we see that a single pe-

£,(-,-) andg,(-,-) associated with the permutation operatdliOdiC convolutional permutor constructed as describeavab
P as follows may not always have minimal delay= 0 and maximal delay

¢ =1, (t i) (6) (memory)A = m = T — 1. In other words, its width is not
R necessarilyl’. However, as shown in [1], if a block permutor
i =g (t,1). (7) of multiplicity k£ is chosen randomly, then with probability
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11 11 11 11 For w > 1, the overall constraint length of a single
11 1 1 1 convolutional permutor must satisfy
' 111 11 11 0<SM<T-2 (11)
() Multiple block permutor. (b) Unwrapped block permutor. The single convolutional permutors for the BCC's con-

sidered in this paper were constructed from a basic block
permutor (permutation matrix) chosen randomly, assuming
that all T"! possible permutation matrices of siZdéx 7' are
equiprobable. The delays of the corresponding convolation
permutors then satisf) < 6 < A < T — 1, and we
note that the identity permutor has parametérs= 1 and
0 = A = M = 0. Multiple convolutional permutors of
multiplicity k& for BCC's can be constructed from sets of
(c) Multiple convolutional permutor. k2 permutation matrices by using the operations of row- and
column-interleaving and unwrapping (see [1] for details).

Convolutional permutors constructed frofi x 7' block
permutors cannot have period larger th&in Their periods
gan beT, T/2,T/3, ..., and so on. If the period i¥/2 (T
even), then thé€T /2 + i)-th row of the basic block permutor
is a cyclic shift of thei-th row, for1 < ¢ < T'/2. Similar
Brguments are valid for periods @%/3, T/4, ..., and so on.
Yhe probability that the cyclic shift condition is satisfigdes
to zero asl" — oo for randomly chosen permutors.

An MCP of multiplicity £ constructed from & x T block
Po={pi;i<tj>t} tel . 9) permutor is calledypical [1] if it has periodT, maximal delay

(memory)A =T — 1, and overall constraint length

Fig. 2. Construction of a multiple periodic convolutionarmutor.

~ 1— (1/e)* the maximal delay (memory) of the unwrappe
multiple convolutional permutor of multiplicity equals’—1.

The memorym is an important parameter characterizin
the behavior of a convolutional permutor. Another impotrta
parameter is itoverall constraint length M. For a givent,
we introduce the set

The overall congtraint length of the convolutional permutor is _ _
then defined by M=kT=1)/2. (12)
M =w, (P,), (10) Shifting atypical MCP of multipllicity k by a > 0 symppls,
i.e., Pt — Ditat'+q, WE Obtain an MCP with additional
wherew,, (P;) is the Hamming weight of the s&,. It follows delay a. For this permutor, the minimal delay %+ a, the
that M is equal to the maximum number of symbols that igaximal delay isA + a, and the overall constraint length is
stored in a realization of the permutor at any time, analsgou
to the definition of overall constraint length for convoartal M = ka+ k(T —1)/2. (13)
codes [10], [12]. For single convolutional permutors, sinc In general, a single convolutional permutor with maximal
each row and column dP have only a single “1”, the weight delay A can be implemented with a shift register of length
of P, does not depend on the time indgxand we can omitin - The permutation functiofi, (-) associated with the permutor
defining M. Thus the overall constraint length is independeii stored in a controller to indicate the output indices of
of ¢ for single convolutional permutors. the register stages. At each time unit, the permutor selects
Example 2: Figure 3 illustrates a single convolutional peran output from one of the stored symbols according to the
mutor with the same parameteS= 6, 6 = 0, andA =5, as permutation function. Then it deletes the right most symbol
the convolutional permutor shown in Figure 1(c). Its ovierahnd shifts all other symbols one stage to the right. The new
constraint length isM = 4. By contrast, the convolutional input symbol is placed into the left most position.
permutor in Figure 1(c) has overall constraint length= 1.

u IIl. CONSTRUCTION OFBRAIDED CONVOLUTIONAL
CODES

In this section, we describe the construction of BCC's. In
general, braided codes, including BBC'’s [2] [3] and BCC's,
represent a sliding version of classic product codes [4]. As
illustrated in Figure 4, product codes are constructeddase
a rectangular array that stores the coded symbols. £ ke
information (systematic) symbols are located in the upefr-
corner of the array. The symbols in each row form a codeword
of a horizontal component cod&;(nq, k1). Meanwhile, the
Fig. 3. A single periodic convolutional permutor with= 6,5 = 0, A = 5, symbols of each column form a codeword of vartical
and M = 4. component cod&€,(ns, ko). In contrast, braided codes are
constructed on an infinite two-dimensional array. Furthemen
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the horizontal and vertical encoders are linked througlitypardepends omﬁ)l, ug, and the convolutional encoder state. The

feedback. In this manner, the systematic and parity symbeisrtical encoder performs its encoding analogously. So the

are “braided” together. t-th row of the array contains!”), u;, and 5{”, and the
t-th column of the array containé(i)l, ug, and ﬁ§2). The
= encoding procedure continues in this fashion as the haiton
& D Ci (1, k1) and vertical encoders slide down and to the right along the di
! Information | Row agonal. The code sequence of the horizontal encodéf is=
:J: " - (V((Jl)v Vgl)v R Vgl)v N ')' where Vgl) = ('Uig.,ll)v vg}Q)vvg}BP)i
= Ut(.,l1) =y, vt(lz) = 4%}, and vt(lg) = o{"). The code sequence
Column Pty of the vertical encoder is(?) = (v(2),v§2),...,vg(z),...),
parity ity
v parity Wherev§2) = (viiﬁﬁ?,vfﬁ, vg?l) = Uy, 117522) = ﬁti)l, nd
Ca(n, k) vt@g = ﬁt@). The code sequence transmitted over the channel
isv = (vo,V1,...,Vy,...), Wherev, = (v;1,v2,v;,3), and
Fig. 4. An(nina, ki1ke) product code.
Ut N =1
vi=4 0 L i=2. (14)
. . ~(2 .
A. Rate R = 1/3 Braided Convolutional Codes o L i=3

The rate of the TBCC isR = 1/3. During the encoding
process, two previously encoded parity bits are stored én th
array, and thus the overall constraint length\is= 2.

Short cycles are generated in the Tanner graph of TBCC'’s
due to their dense array structure. Thus iterative decoding
performance can be improved if the cycle length is increased
IS R This motivates the construction of SBCC’s, in which in-
formation symbols and parity symbols are spread out in a
sparse array. An example of the array representation ofea rat

2 s | 212 | PO

o) \ R = 1/3 SBCC is illustrated in Figure 6. Each row and
— ) column of the array contains one information symbol, one
[P<Z)]T P

parity symbol from the vertical encoder, and one parity sgimb
from the horizontal encoder. Analogous to TBCC's, the spars
array retains the three-ribbon structure and three cooresp
4pg convolutional permutors. We assume that the permutors

Fig. 5. Array representation of a rafé = 1/3 TBCC.

Depending on the density of the array, we can distingui B ) S ; .
two types of BCC's — TBCC's and SBCC’s. An example of &7 = (p;7;;) are periodic with periods, j = {0,1,2},
rate R = 1/3 TBCC is illustrated in Figure 5. Similar to turbo@nd that they are constructed using the unwrapping proeedur
codes, recursive systematic convolutional (RSC) encaligs descnbed_ln Section II, with th_e width of each ribbon equal
rate R = 2/3 are used as horizontal and vertical componef the period of the correspondmg permutor. Thus the widths
encoders. The array consists of three diagonal ribbonk, efac ©f the central, upper, and lower ribbons afg 71, and T,

width one symbol. Each entry in the array is characterized B§SPectively. o ,
a pair of position indicet, t'): the vertical positiort and the All the entries in the array are again indexed by coordinates
horizontal positiont’, ¢ — 1 < #' < ¢ + 1. The information (t,t"), wheret andt’ represent the times of the horizontal and

symbols u; are placed in the central ribbon with positionvertical encodings, respectively, as shown in Figure 6. The
indices (¢,#'), wheret = #, corresponding to an identityinformation symbols; are placed in the central ribbon. The

permutor P(). The parity symbols{;t(l) of the horizontal stru(%ture of the central ribbon is defined by the permiRoy.

) o . .
encoder (encoder 1) are stored in the upper ribbon withPe.v =1 then thet-th Input s_ymbolu/t of the encoder is
position indices(#,¢ + 1). We may consider that the uppeP/@ced in the array entry with indet, ¢'). This means that
ribbon is described by a delaypermutor and is denotel(l), Ut enters the horizontal encoder at timeand the permuted
The parity symbolsﬁf) of the vertical encoder (encoder 2)symbo_lﬁtl, enter; the vertipal encoder at tinfe Based on the
are stored in the lower ribbon with position indicgst 1,¢). analysis in Section II, aypical permutorP®) has an overall

! nstraint length ofM, = (Tp — 1)/2. The parity symbols

The lower ribbon corresponds to the transpose of a deIaSQ _ |
, o " of the h tal d laced in thén f
1 permutor and is denotefP(®]T. The dark entries in the v+ = Of th€ horizontal encoder areé placed in row o

array indicate the previous inputs and outputs of the ermsodfe Upper ribbon. The structure of the upper ribbon is defined
that are known at time. Note that at ime), when the first PY PermutorP(). To match the ribbon structure of the array,

information symbol arrives, the previous parity symbole atfiS Permutor has an additional delay &f symbols, a(lln)d its
assumed to be, i.e., 3" ando® are zeros for < 0. At ©verall constraint length 'wfl =To+ (Tv —1)/2. W p; =
time ¢, the horizontal encoder encodes the current informatidn then the parity symboit( ) is placed in the position with

symbolu, and its left neighbor,”); . The output symbob!") index (¢,#). Sincep{') = 0 for t > ¢, the permuted parity
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O The permuted parity sequengé!) at the output of convo-

. t lutional permutorP() is fed back to the second input of
K encoder 2, and the permuted parity sequeriéeat the output
) of convolutional permutoP® is fed back to the second
i input of encoder 1. The information sequenaeand the
parity sequences’) andv(?) are multiplexed into the output
‘ sequence of the encoder = (vo,vi,...,Vvy,...), where
A S o) | [ torbental vy = (vr1, V2, v,3), and
Ut ) 1=
o vi=1{oY L i=2. (17)
f}(2) i =
t ’ -
i PO
9 P L o[ Rate2/3
% \ " Encoder 1
(21T
[P] i ot
Fig. 6. Array representation for SBCC's. E(O)
i i [ pm]ait”
symbolf;t(,l) will enter the vertical encoder at time when it [

leaves permutoP"). The parity symbols?t(g) of the vertical Rate 2/3
encoder are placed in theth column of the lower ribbon, ~ T\ Encoder 2
whose structure depends on permu®$#). To match the array ) )
structure,P(Q) has minimal delayl, maximal delayZs, and Fig. 7. Encoder for a rat&® = 1/3 braided convolutional code.

overall constraint lengthify = (Ty — 1)/2 + 1. If pft), =1,

then the parity symbo]t@) is placed in the position with index
t',t). Sincepgi), = 0 for ¢ > ¢/, the permuted parity symbol

ﬁt(?) will enter the horizontal encoder at timewhen it leaves , : o :
other rates is straightforward. In principle, we can ustedgit

permutorP (), ] : .
The memory of the encoder is defined as the maxim gmponent encoders for the horizontal and vertical engsdin
Ewe employ a rate

B. Generalized Braided Convolutional Codes
Generalizing the rat&? = 1/3 BCC’s in Section Ill-A to

number of time units that a symbol stays in the encoder. THe
overall constraint length A/ of an SBCC encoder is defined " kO 4 k(2
as the total number of symbols stored in the encoder. Thus, if e = O+ D ¥ k@ (18)
all permutorsP(®, P(M andP(® aretypical, then horizontal encoder and a rate
TO —1 Tl -1 T2 -1 k(o) + k(l)
M= + + + Ty + 1. 15 (2) —
2 2 2 0 (15) R = 50 7750 7 7@ (19)

If the permutors are altypical andT, = Ty = T = T', the  vertical encoder, wherg(®, k() andk® are positive inte-

total width of the three ribbons in a BCC 3§, and the total gers, the rate of the resulting BCC is

number of symbols stored in the memory of the permutors is

given by R
M=5(T-1)/2+2. (16)

1:(0)
T 50 kO 1+ k@
The array representation is shown in Figure 8. The central

The implementation of a rat&? = 1/3 BCC encoder ribbon is described by an MCP(®) of multiplicity #(*), and
is shown in Figure 7. The encoder consists of two ratbe upper and lower ribbons are described by MG®% and
R.. = 2/3 RSC component encoders, the horizontal encod@(?]™ of multiplicity ¥(*) and£(?), respectively. Horizontal
(encoder 1) and the vertical encoder (encoder 2), and theeel vertical encoding proceeds by row and column in the
convolutional permutor® (@, P(1) and P(® are employed. same fashion as for rate = 1/3 BCC's. If the convolutional
The information sequence = (ug, u1, ..., us...) enters the permutors are constructed from block permutors as destribe
first input of encoder 1 directly, and the permuted informati in Section Il and they aré¢ypical, then the overall constraint
sequencen at the output of convolutional permutd?(® length of the encoder is given by
enters the first input of encoder 2. Encoder 1 generates the 0y 1 _ 2 (.
parity sequence™® = (3{", (", ... oY) ...) and encoder2 M = K (1;0 DN )(1;1 D K (1;2 1)+k(1)T0+k(2),
generates the parity sequend® = (87,9, ... 9%, . ). (21)

(20)
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tween the inputs and outputs of each generalized BCC com-
ponent encoder can be described by

Drnllltiplicity—k(] Ut ,1<i< 1(0)
ﬁzgli)—k(o)—]g@) L 1<i— kO — @ <M
and
Ui L 1<i<k©
vﬁ) = ’Di.i)fk(o) L1 <i— kO <M . (24)
{)Ei‘)—k(ﬂ)_k(l) ,1<i— kO — D) < k3

At the receiver, these mapping rules determine the demulti-
plexing requirements of the component decoders.

Fig. 8. Array representation of generalized BCC's.

u
@ Encoder 1 @ A

whereTy, Ti, andT; are the periods aP(®, P andP®), e R = KOk
respectively. T ROROE

As illustrated in Figure 9, the structure of the encoder 0 O
for generalized BCC’s is similar to the rafe = 1/3 case, — PO
except that the permutors may now be MCP’s. The horizontal
encoder (encoder 1) has$® + k£(® inputs. At time instant, PO
the k(©-tuple information blocku; = (us,1, ue2, ..., U ko) i e o
of the information sequence = (up,uy,...,us,...) enters b — POt
the first (©) inputs of the horizontal encoder. Meanwhile,
the vertical encoder produces a block/d®) parity symbols R— _ KOk
v = (6,6,...,51%),,)) that enters the MCPP(®), The = FOR0 5
output #\?) = (f;t(i),f;t(?, . ,17§2]3(2)) of P appears in the Encoder 2

t-th row of the lower ribbon and provides the remainitld’  Fig. 9. Encoder for generalized BCCs.
inputs to the horizontal encoder. In parallel, the inforiorat

sequencer = (ug, uy, ..., uy,...) enters the MCAP(), The

output sequence dP() is @ = (w1, 01g,...,1;,...), where

@y = (fig.1, @, ..., 7 xo). The vertical encoder (encoder IV. SYNDROME FORMER REPRESENTATION OFBRAIDED

2) hask© + k() inputs. The blocki, enters the first(© CONVOLUTIONAL CODES

inputs of vertical encoder at the time instantThis block | this section, we derive a canonical representation of

tJ"(%hOYiZAC()ll’;tc’iJ((f)ncodeAr(%roduceSa block6f parity slymbols former is useful for interpreting the structural propestief
Vit = (041,043, : 0, ) that enters the MCRP(). The BCC's. In particular, we show that the sparsity of the per-

outputv!? = (1715(11)7@(.12),---,17151,3(1)) of P(1) appears in the- mutors in the BCC encoder insures that the overall BCC

th column of the upper ribbon and provides the remairifiy syndrome former is sparse, thus making BCC’s suitable for

inputs to the vertical encoder. The combination of the bdocierative decoding. We consider first some examples of the

w,, v\9, and v, consisting ofk© + k(1) 4 k(2 bits, forms construction of syndrome formers for convolutional codes.

the output code block; = (vi,1, 1,2, -+, V4 ) 1) 4 ) Of Example 3: Consider a ratefi.. = 1/2 RSC encoder with
the generalized BCC encoder. The multiplexing rule is deffing€nerator matrix
as .
GD)=11 —— |. 25
Ut g L 1<i< kO (D) < 1+D—|—D2> (25)
(1 ) _ .
Vi = Yik© 1 <i— kO < kW - (22)  The input sequence of the encodemis= (WO, ULy« vy Uty e -)
02 oy > 1<i— kO — kD <O and the output sequence is = (v, v1,...,v;,...). We
’ denote the two individual outputs of the encoderwy) =
We can also denote the output code sequences (9f% (* . @  )yandv® = " P o),
the horizontal ¢ :(e) 1)(e)and veertical ¢ = 2)6 en-  Since the encoder is systemati® = u. A parity check
coders asv(® = (volyvi 7, vy 7,...), wherev;™” = matrix for this encoder is given b (D) = ( H(1>(D)) _

(0 0%, .,v§f2(0)+k<1>+k<z))- Here, the mapping rules be-(1 1+ D + D?). Corresponding ta") (D), we introduce
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the semi-infinite matrix corresponds td(?) (D), and [H(1>]T is defined in (26). The
1 1 1 syndrome former in the conventional form is then given by
111 H' =8([HO]", [HV]"), andvHT = 0. n
T 1 1 1 Example 5: Consider a ratek.. = 2/3 RSC encoder with
{H(l)} = . . (26) generator matrix
1
Lo 1+D+ D2
G(D) = . 15 D? : (33)
which we call thepartial syndrome former matrix. Then 1+ D+ D?
theuztrilé:r(])der’s parity constraint is described by the folfayi Th(e) i(n)put s?()quences are der)loted) aﬁ(0> _
0) (0 0 n_ (1)
vOT v [EHO]T o 7y Lot ) andut) = (u, )
- The output sequence IS/ = (vo,vl,VQ,.. vt,. D,
wherel is a semi-infinite identity matrix. m where v = (v ,50), (2)) Since the encoder is
In order to obtain the usual description of a convolutionalystematic, v(0) = (v , <§0 o) = u),
syndrome former, we will use the operations iv- and v = (ofY WV WP ) = u®, and
column- interleaving. These operations were introduced iR,(2) — (U(Q) v§2),...,v§2),...) is the parity sequence.

[10] for two matrices and generalized in [1] for a largepn parity check matrix is given by H(D) =
number of matrices. The row-interleaving of the set of me(l HO) (D) H(l)(D)) = (1 1+D2 14D+ DZ), Then

trices (PO, P@ ... P ) (see Definition 2.2 in [1]) we we have

deS|gnate as V(O)I i V(l) [H(Q)}T + V(2) [H(l)]T -0, (34)
P:E(P<1>,P<2>,...,P<k>). (28) _ o _ -
where I is an semi-infinite identity matrix andH(]
Analogously, the column-interleaving of the set of masicegg [|1 [ } are defined in (32) and (26), respectively. The
(P(1>,P(2), ..., P ) (see Definition 2.3 in [1]) we desig- syndrome former is then given by

t
e H' = 8(L =], V], (35)

]
1) We now describe the construction of the syndrome former
(Vo Vi, ..., Ve,...), wherev, = (v, 7,0, "), can be repre- o the BCC of Figure 7. For simplicity, we assume that

i i 1
sented as an interleaved version of sequeTzné@sandv< ). I component encoders 1 and 2 are given by the generator
we row-interleave the matricdsand [H'")] *, then we obtain matrix in (33). Letu — v(?) be the information sequence

P- m(P<1>,P<2>,...,P<k>). (29)

In Example 3, the output (c)ode sequence =
0

the syndrome formeHT:E(I, [H(l)]T) of the encoder in and v(©) = v\, v{?, ... %9 ) e e {1,2}, where
Example 3, i.e.vHT = 0. W9 = (b t(el), At(erj, At(eg)) be the output parity sequences of
Example 4: Consider a rateR.. = 1/2 RSC encoder with encoder 1 (horlzontal) and encoder 2 (vertical), respelstiv
generator matrix Then they must satisfy the following parity constraints:
2 ~ T N T
G(D) = ( 1+ D > . (30) vOT + O [HO] 4 3@p@ [HO)" =0, (36)
LD+ D2 (0)p(0) Op@) gOT @ g™
With input sequenceu = (uo,ul,...,ut,...), the out- vOP® v WPUHD] + v [HV] =0 (37)
puto sequencev = (vo,Vv1,...,V¢,...), Where v; = Equation (36) describes the horizontal encoder. The synelro
(vt( ) vt( )), can be represented as an interleaved version fefmer H} . of the horizontal encoder is
sequencesv(o) and v(V, wherev(® = wu and v»V = . .
o0, o). A parity check matrix is given by H = E(I, HWY], PO HO] ), (38)
H(D) = (HOD) HV(D)) = (1+D* 1+ D+ D?). _ _
Then we have and it follows thatvHY = = 0, wherev is the output
©) re3(0)1 T (1) rex (07T sequence of the BCC encoder shown in Figure 7. Similarly,
v Y]+ v HYT =0, (31) (37) describes the vertical encoder. Its syndrome former is
where HT, — E(P(O),P(l) [H(‘))}T, [H(l)}T)7 (39)
1 0 1
1o 1 andvH!, =o0.
- 1 0 1 It follows that the syndrome form@d ™ of the rateR = 1/3
[HO]" = (32) BCC in Figure 7 with rateR.. = 2/3 component encoders

given by (33) is
HT (Hhor’ HE@N ) (40)
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and hencevH™T = 0. Now we have a conventional rep-sequence is r = (ro,r1,...,1r4,...), Where
resentation of the syndrome former matrix. If the periods = (Tt_rl,rtg,...,Tt7k(o)+k<1)+k(2)). Using the conditional
Ty, Ty, and Ty of permutorsP(®), P, andP(? are large probability p(r|v) of receiving the signalr given the

enoughP©, P2 [H(O)]T,andp(l)[H@)]T are also sparse. transmitted signalv, we can calculate the channel log-
Thus the syndrome former matrid™ is sparse, and the likelihood ratio’s (LLR’s) 1 = (lp,1i,...,L,...), where
corresponding BCC can be considered as a special casd:of (I+,1,0¢,2, .., o 1 x0 1k ), for the coded bits:

an LDPC convolutional code [11]. The syndrome former for p(reilve: = 0)
generalized BCC's can be expressed in a similar way By = log m, t>0,1<i<k@+k® 45,
making use the row and column interleaving operations. PATealvei = (42)

The model we have considered so far assumes the traRgeording to the mapping rules (23) and (24), these
mission of an infinite length information sequence. Singg R's are demultiplexed into two streams. For component
real communication systems transmit finite length infofiomat gncodere. ¢ < {1,2}, the channel LLR’s corresponding

sequences, the encoding of BCC’s should be terminated§0 o outputs v(®) _ (V(e) vie e )
that the information bits at the end of the input sequence VO Z ) g(e’)( )1 ’() ’( )t) e
,7 ,1""t7k0+kl+k2 1

are adequately protected. In convolutional coding, therabr (@) () &
method of termination is to add a tail to the informatiogiven by 1 = (17 1,7, ... .1,”,...), where
sequence that forces the encoder to the zero state. The l'ﬁ(éhz (lg,efvlt(,ez)a = '7l£j};3(0)+k(1)+k(2))-

depends both on the encoder structure and the encoder statket L(0) = (Lo(0), L1 (0),...,L(0),...), whereL;(0) =
The tail bits can be computed by a simple termination circuif+,1(0), L¢2(0), . . ., Ly x©) 1 41 (0)), be the set obpri-
if the encoder is based on a partial syndrome realization, @$ LLR’s for the code sequence. In this way, we denote
developed for LDPC convolutional codes in [13] and applieéne apriori LLR for the coded bit; » as L; ,(0). Theapriori

to BBCs in [1]. Given a syndrome former representation of ld-R'’s for the code sequence are given by

specific code, the parameters for this termination circait ¢ so. t<0
be precomputed by solving a system of linear equations. L, ;(0) = { ’ L 1<i<kO 4+ kW 4?0 (43)
For the turbo-like encoder structure shown in Figure 7, the 0, t=0

state of the BCC encoder depends not only on the states of Kigyjogously, letL( (0) and L) (0) be the set ofapriori
component encoders, but also on the states of the convailitio | R's for the code sequencas?) andv(® from the horizon-
permutors. The determination of tail bits that drive theralle (5] and vertical encoders, respectively. Since there isecacoe
encoder to the zero state is in this case not straightforward mapping between the symbols of the sequencasdv()) and
suboptimal but simple way of terminating such an encoder s$2) according to (22), (23), and (24), we can also find the
to append a tail of zero bits to the information sequence. {3 es forL(l)(O) andL® (0).

this case, only the parity bits in the tail must be transmditte \yhen the transmitted signals arrive at the receiver, the
For BCC’s with periodT" convolutional permutors, a lengthchannel LLR's are calculated and placed into parallel baffe
2T zero tail has been determined to be sufficient in practic(gOng with theapriori LLR’s. The component codes are then
In this case, if the length of the information sequencé ®r gecoded using a parallel bank ®f a posteriori probability
arateR = 1/3 BCC, the resulting code rate of the terminatedlapp) processors using the windowed BCJR algorithm [14]

code is given by 1L [15], where I is the number of iterations to be performed.
R=-—"—" . (41) Based on the channel LLR$") and the apriori LLR’s
3L +4T/3 LM (0), the first APP processoB!") obtains the extrinsic

s LD i
V. PIPELINE DECODERARCHITECTURE LLR's L (11) for a Wlndpw of W coded symbols of t_he_
o ) ) sequencaz( ) from the horizontal encoder. Then the extrinsic
A plpellne.decoder arch@ecture for LDPC convo!utlonql_LRls L()(1) are reordered t&(?) (1) according to the order
codes was first proposed in [11], where the continuousl¥ ihe code sequence® of the vertical encoder, based on

decodable property of these codes was exploited to actelegg, mapping rules in (23) and (24). During the reordering,
the decoding speed. By employing a number of ProcessQis avirinsic LLR’s in L1 1)

| to th b f iterati t te the decod (1) for wy, ‘~,§2>, and OE are
algorithm in parallel, the pipeline decoder yields estiaat PomUted BYP?), [PE]", andP(), respeciivelyL® (1 is
J P ’ PP y used aspriori LLR’s for the code sequence® by the APP

outputs at each execution cycle after some initial decoding 52 In th for the first
delay. Since BCC's are a special class of LDPC convolutiord ?cesso 2 22) € Same manner qs _Or € first processor
processoB3,” calculates the extrinsic LLRE(?) (2) for

)
codes, they can be decoded using the pipeline architedtureB1 e
dow of W symbols of the sequence?. The extrinsic

this section, we describe the pipeline structure for cartis & WiN y € _
decoding of BCC's. LLR’s L(?)(2) are then reordered th(")(2) according to the

Assume that the generalized BCC encod&der of the code sequensé!) of the horizontal encoder,

described in Section II-B is used. The coddased on the mapping rules in (24) and (23). During the
: reordering, the extrinsic LLR’s i (2) for i, v\", and

sequence is v = (Vo,Vi,---, Ve, ...), Where ) 9, - " Ui Vi

Vi = (V1,V25 -,V o) 450 1 ). After transmitting v,” are permuted b{’P(O)] ,[P(l)} ,andP ), respectively.

over a memoryless channel, such as an additiidne third APP processoﬁél) then usesL(!)(2) as apriori
white  Gaussian (AWGN) channel, the receiveiLR’s. The following APP processors work in a similar
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fashion as described above. A pipeline decoder comprissaime change of notation, a rafé = 1/3 blockwise BCC

of 21 APP processors to perforhiterations of decoding is encoder can still be described by Figure 7. In particular,
shown in Figure 10. Processo@i1 and Bg), 1<j<1, PO PO andP® now denote block permutors of siZé
perform horizontal and vertical component decoding, respeather than convolutional permutors. The information sginb
tively. Each processor performs the windowed BCJR algorithu; at the encoder input is replaced by the bloak the

on a window of sizé¥, wherelV should be large compared toparity symbolf;t(l) of the horizontal encoder is replaced by
the constraint length of the component encoder [16]. In ordhe parity bIock€r§1) = (ﬁt(}l),ﬁt(}g), . ,vlfl]z,) and the parity

to avoid_different processors working on overlapping sédts Qymbolﬁt@) of the vertical encoder is replaced by the parity
coded blt_s at the same tlme,sap{;\ratlon delay of = coded block ‘752) _ (@t(21)ﬂ7t(22)a N ,17152]2,). As component encoders
symbols is imposed between adjacent processors so that\yée ’ " :

I : . consider now rateR = 2/3 tail-biting convolutional
apriori values are updated without memory conflictsTIfis o oqers that start from and end in the same state. This
the period of all the permutors, it is sufficient to set

way the trellises are decoupled between different blockk an
7 =3T. (44) the component decoding can be performed independently for
different time instant$. A termination of the encoders to the
Eventually the received sequence flows through the seriggo state within each time instant might slightly improlze t

of processorsB{”, B, B, ..., B, which update the performance but at the cost of a loss in rate.
apriori values for the coded bita times. The last processor At the 0-th time instant, information blocks, and its

2 .. . . .
Bél) makes hard decisions for the information bits based Yermuted version, = uoP® enter the first inputs of encoder

its output APP values. Using this pipeline structure, we 4N 4nd encoder 2, respectively. Meanwhile, blodt&f and

process2/ information symbols in parallel, thus achieving_ ) L )
high speed decoding. v' i, consisting of N zeros each, enter the second inputs of

encoder 1 and encoder 2, respectively. Encoders 1 and 2 then

enerate the lengtV parity blocksv'" and v'%. Blocks
et Buflr S0 o P ) ey e h
— ] = = s R [ ‘ vy = ug, Vo = V5, andvy’ = vy’ are sent over the

channel. At the-th time instant, parity blockrgl) is calculated
by encoder 1 as a function of, and v\ = v, P®.
..... and Similarly, parity blockv§2) is calculated by encoder 2 as a
decisions  function of i, = w,P© andv{? = v\, PO, The blocks
v§0> = uy, v§1> = og”, andv§2) = \?§2) are multiplexed into
the code sequence

((Demux) (Demux) (Demux)
ho [1® [10

2

| I
LM (1) L) (2) LM (3)
L(0) o o o
puk /S 7 I ) IR 7 S B N 7 I [ I o S

B ‘ B B
L(M(0) L@ (1) LW (2) L™ (21 - 1)

Fig. 10. Pipeline decoder for BCC's.

This procedure is similar to the decoding of turbo codes. V= (V0 Vis s Vi) (45)
The major difference is that the pipeline decoder uses a
windowed BCJR decoder and calculates APP values for g
the code symbols instead of only the information symbols.
A drawback of pipeline decoding is that it has a large initial
decoding delay. Only after the last processor in the pigelin v, = (v{”, (" v o oV o2 v @ P o).
has filled up does the decoder start making hard decisions on (46)
the information bits. Thus there is an initial delay (latgnof In the following example, we use partial syndrome for-

2I(W + 7) coded symbols, or abo@ 51 times the overall mer matrices to describe the encoding process for blockwise
constraint length of the encoder. Nevertheless, we obtggcrs.

continuous decoding outputs after this initial delay. Example 6: Consider the rateR — 2/3 encoder with

In the next section, we CO!’]SIdbeC!(WISG BCC's. In this nerator matrix given by (33). In Examples 3-5, (27), (31),
case, we assume that the information sequence enters . T ;
. . ) and (34) describe the constraints implied by the encodeengi
encoder in a block by block manner with a relatively large

block size. This corresponds to many practical application Ih (25), (30), and (33). Suppose that the encoder in (33)ed us

which the data stream is transmitted in finite length packe > a tail-biting ratef? = 2/3 encoder to encode the leng

i (1) (2) i
In this sense, the BCC's introduced in the previous sectiolﬁlsformatlon sequences and u™™. The partial syndrome
.y , ormers areN x N matrices
are referred to abitwise BCC's.

|’1ere

VI. BLOCKWISE BRAIDED CONVOLUTIONAL CODES L o1
To encode a blockwise BCC the information sequence Lot
is divided into blocks of lengthN symbols, i.e.,u = [ﬁ(o)]T: (47)
(uo,ul,...,ut,...), Whereut = (utﬂl,utﬂg,...,ut_’]v). To 1 0 1
simplify the description, we suppose that the whole block 1 10
u; is sent to the encoder at time instantlf we allow for 0 1 1
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and Similar to bitwise BCC's, termination is used to give protec
11 1 tion to the information blocks at the end of the input seqeenc
11 1 for blockwise BCC's. To reduce the encoding complexity,
_ we again use termination with a tail of all-zero blocks for
[ﬁ(l)]T = B . (48) Dblockwise BCC's. In this case, after the information blocks

1 11 up, 1 = (W, u1,...,ur_1) (59)

1 1 enter the blockwise BCC encoddr,additional all-zero blocks
ur,...,ur+a—1 enter the encoder. Since the&eblocks are

&; sent over the channel, the component encoders have, in
act, rateR = 1/2 instead ofR = 2/3. The resulting rate of

the BCC including the tail is

1 L
— T — T _
v 4y EHO)T L v EM]T <0, (49) R= ESESIVER (60)

where the overbars oH(®) andH") indicate the tail-biting
versions of the syndrome formers. Then the code seque
(v, v v2) wherev(® = u® andv()) = u), satisfies
the constraint

B where a tail lengthA = 2 blocks QN bits) has been
We assume that two such tail-biting convolutional encodegigtermined to be sufficient in practice.
are used in the rat& = 1/3 blockwise BCC encoder. Then

VII. SIMULATION RESULTS

In this section, the bit-error-rate (BER) performance d¢éra
Vgo)P(O) +v§1_)1P(1> [ﬁ(O)}T +V§2> [ﬁ(1>]T =0. (51) R =1/3 BCCss is evaluated on an additive white Gaussian
noise (AWGN) channel using computer simulation.
Given v{”, v{Y andv!?,, (50) and (51) define the code We consider first bitwise SBCC'’s with two identical rate
blocksv{") andv!?. These equations for!" andv!® can Rcc = 2/3, memorym,. = 2, low complexity (4-state) RSC
be uniquely solved if and only if the matrigIV)] " has a component encoders. The generator matrix of the component

viO v POEOT vV EO) =0,  (50)

right inverseG(). Then encoders is given by
~ 1
1) _ 01 | @ p@ 1T 10
v —v0GM v POEHOTGD,  (52) S
t t t—1 [ }T G(D) = 1_|il_zl_52D2 . (61)
v = yOpOGH 4 v PO EO]TGL.  (53) 01

We can use the same techniques as in Section IV to constregk three convolutional permuto©®), P and P used
the syndrome former for blockwise BCC's. The followingn the encoder were constructed randomly with the same
matrices are derived from the row-interleaving operation, period 7. We assumed that transmission consists of an in-
AT (7 1T @) o) T) formation sequence of leng#07 and a tail of21" zero tail
Hyor = E(I’ =], POED]), (54) bits. Thus we have a rate loss ?f67%, i.e., the effective
_ _ _ rate is about).325. In the pipeline BCJR decoder, a window
T T T il
Hyer = E(P(O)vP(l) [HO], [HY] )v (55)  length of T and I = 100 decoding iterations were usedrhe
results are presented in Figure 11, where we view the effect
f the periodT of the convolutional permutors on the error
erformance as a function of the signal-to-noise ratio (BNR
Ey/Ny. We see that the performance of iterative decoding

whereI is the N x N identity matrix. By means of the o
Kronecker product [17], the syndrome former matrices fer tfb
horizontal and vertical component codes is then given by

H =IgH/, (56) improves dramatically as the permutor period increases, an
effect equivalent to the “interleaver gain” of turbo cod&S8][
and - The SBCC achieves a BER af)=° at an E},/N, of 0.4dB
H,, K =IzH.,, (57)  with permutor period” = 8000, which is aboutidB from the
capacity of the binary-input AWGN channel with code rate

respectively, wheré is the semi-infinite identity matrix so that
the block matricesH) = and H_,, are replicated infinitely

along the diagonal. Corresponding to the code sequence,

given by (45) for a rateR = 1/3 blockwise BCC, the syn- T ) _
drome former is obtained by column-interleaving the masic matrix is given in (61) was employed. The three block per

. mutors used in the encoder were chosen randomly with the
HTY andH! ,ie. ) - : ;
hor verr same sizeN. As above, the transmission &) information
HT = @ (HEOWHEeT)' (58 blocks is terminated witf2 all-zero blocks. The parameters
for decoding are the same as for the bitwise SBCC case,

0.325.
We also studied the performance of réte= 1/3 blockwise
CC'’s. The tail-biting version of the encoder whose gerwrat

If N is large, the syndrome former matiik" of the blockwise | : . .
BCC i d blockwi BCC b id d A value of W = T was chosen for convenience, but in a practical

IS Sparse, an ockwise | S can be considered i@siementation, a much smaller value B can be chosen to minimize
special cases of LDPC convolutional codes. latency [16].
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with a separation delay = N. The BER performance is o
shown in Figure 12, where we changed the size of the blo 10 ‘ ' ' ' T —8— Permutor period 100
permutors fromV = 100 to 8000. Similar to the bitwise case, —6— Permutor period 500
. y . Permutor period 1000
the performance of blockwise BCC's improves as we increa Permutor period 8000
the size of the block permutors. Furthermore, we see tt
the performance of blockwise BCC's is close to the bitwis
case when the block permutor size equals the convolutiol
permutor period. Finally, the blockwise BCC was compared
arateR = 1/3 turbo code with 4-statél, 5/7] (octal format)
component encoders and permutor $$262. The turbo code
exhibits an error floor at a BER df~% and E}, /Ny = 0.5dB.
By contrast, the blockwise BCC’s achieve a BER 16f ¢
at £, /Ny = 0.3dB with permutor sizeNV = 8000 and error
floor did not show in the simulation. These results sugge
that BCC’s have good minimum distance properties. In tt ~ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
next section, we present a distance analysis for the ensen 00z 04 06 08 1 12 14 16 18
of BCC'’s that confirms this observation. BN, (48)
Figure 13 shows the performance of the same block-
wise BCC'’s for a continuous pipeline decoder without anggﬁvcl)llu-tionifl“égg::grnm::jfw‘g,Lacm;ainél/ 3 terminated sparsely braided
termination. The corresponding density evolution thrégho '
at 0.98dB has been estimated by tracking the probability
density functions of the decoder output LLR’s with Monte
Carlo methods, as described in [19]. Although a differer
protograph-based BCC ensemble [20] is considered in [1!
the structure of the computation tree and, consequently, |
asymptotic threshold are the same as for our bitwise a
blockwise ensemblésAlready for permutor sizé&V = 500 the
blockwise BCC'’s achieve BER levels beldWw—° at anE; /N,
that is less thar).02dB away from the estimated threshold
For larger permutors, like for BBCs [1], it can be observe
that terminated blockwise BCC’'s have better performan
and even outperform the thresholds of continuous BCC
This again indicates that terminated convolutional codmesh
better thresholds than their non-terminated counterpags
was shown in [21].

m

BER

10° ; , , : ; ;
—&— Permutor size 100
=—©— Permutor size 500
vl Permutor size 1000 E
| === Permutor size 8000

=8 Turbo code [1 5/7] permutor size 8192

VIIl. STATISTICAL ANALYSIS OF BRAIDED
CONVOLUTIONAL CODES

One of the most important performance measures of
convolutional code is its minimum free distanég,.., since
its large SNR performance with maximum likelihood decodingjg. 12. Error performance of ratR = 1/3 terminated blockwise braided
depends Omfree- Also, with iterative decoding, a |arg%me convolutional codes and turbo codes on an AWGN channel.
protects against the appearance of an error floor at low BER’s
In this section, we describe a method to compute a lower
bound on the free distance of BCC’s with sufficiently large
overall constraint length. Using a numerical analysis for gelay A = cc. It stores a fixed number of symbold, i.e.,
randomized ensemble of BCC's, we obtain a lower bound @fe overall constraint length of the Markov permutor is M.
dsree that grows linearly with overall constraint lenglld as  To find a lower bound on free distance for the ensemble of

M goes to infinity. BCC's based on Markov permutors, we define the state of the
Markov permutor as the number of 1's stored in the permutor.
A. Markov Permutors At each time unit, the Markov permutor chooses one symbol

In [9], a stochastic device called Markov permutor was from the stored symbols as its output symbol. The probabilit
introduced to analyze the distance properties of LDPC cotirat a given stored symbol in the Markov permutor becomes
volutional codes. A Markov permutor is a time-varying nonthe output symbol isl/M. Based on these assumptions, the
periodic permutor with minimal delay = 1 and maximal probability distributions of the outputs and state traosi can

) , , _ be derived. In this fashion, the Markov permutor charagéeyi

The threshold has been estimated to b&.a0dB in [20]. This value was . .
improved t00.98dB by improving the resolution in the representation of théh ensemble Of randomly chosen convolutional permutoh; wit
estimated probability density functions. overall constraint length/.
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0 Ut >
10 — 1 ; \ ‘ YL
1 =—8— Permutor size 100 (0) —: ’
X 1 —O— Permutor size 500 Uy (1>
10 B it =& Permutor size 1000 |4 > R )
~ ate 2/3 v
1 —=fe— Permutor size 8000 U,EOT / :
; . - = - Threshold Multiple _ Encoderl
10 1 H E
= Markov (1)
Permuton Uy 2)

" Rate 2/3 Uy

U, Encoder 2

Fig. 14. RateR = 1/3 BCC encoder with a multiple Markov permutor.

BER

10 "k
v = (0, 5",5?) together with the information symbol
0 o8 o5 oo s Tos 11 1as 1, w toencoders1 and 2. Bas_ed on the inputs, the component
E/N, (dB) encoders calculate the parity symbols. The code symbols
0 _ (1) (2 ;
v, =uy, v, andv;”’ are then fed to the MMP input, and

Fig. 13. Error performance of rat& = 1/3 continuous blockwise braided code blockv,; = (v,go),vgl), vt(z)) is sent over the channel.

convolutional codes on an AWGN channel. Consider the ensemble of BCC's using an MMP of multi-
plicity 3, as shown in Figure 14. By definition, tiseate ., of
the MMP at thet-th time instant is the number of 1's stored

It follows that the average delay of a symbol is given by in its memory, and

i¢(1—i)i_liM (62) pe € {0,1,..., M} (63)
, M M

=t We assume component encodethas memorymgi), e €
This means that a Markov permutor stores each input symiqal 21, Let gt(e) denote the state of component encodeat
an average ofM/ time instants in its memory. (Note thatthe ¢-th time instant, where

in contrast to fixed convolutional permutors, where a symbol ©

(e) mey
cannot be held longer than the maximal delay a Markov o €{0,1,...,2 1}. (64)

permutor can store symbols, in principle, for an infiniteein The composite state of the two component encoders atttime
Consider as an example the ralie= 1/3 BCC encoder genoteds; — (Ugl)’at@))_ Combining the states of the MMP
in Figure 7, but replace each convolutional permutor witQq the component encoders, tiate of the BCC encoder
a Markov permutor having overall constraint lengiti/3. s defined adju, o). As shown in Figure 15, a super trellis
(The bound to be derived below can be extended to gengjr the encoder ensemble can be constructed for analyzéng th
alized BCC's in a straightforward manner.) At time instantate transitions during encoding. The branches of thersupe
t,t=0,1,..., each permutor chooses randomly one symbgk|jis are labeled withu, /¥;v;. The output blockv, of the
from among thel/3 symbols that are stored in its memongncoder at time and the composite state of the two component

and passes this symbol to the permutor output. The permuidoders at time+ 1 are functions of the composite state,
P(©) replaces this symbol with a new information symbol. Thgye input symbol:;, and the output of the MMR;:

permutorsP(!) andP(? replace their outputs with new parity

symbolsv{" and v{?, respectively. The ensemble of BCC vi = Glos, ug, Vi), (65)
encoders _with Markov permutors can be studied analytically Ori1 = F(os, up, V). (66)
to determine an average distance spectrum and, conseguentl

a lower bound on free distance for BCC’s. The problem infhe functions ofG(-) and F(-) depend on the component
volves solving a system of recursive equations whose vi@sabencoders. The code symbats are then fed back to the MMP,
represent the path weights and the states of the permutdpél the next state of the MMP is given by

and the component encoders. However, this approach is quite
difficult for numerical calculation. To simplify the analgs

we replace the three Markov permutors with omeltiple Conditioned on the permutor staje, we can find the
Markov permutor (MMP) of overall constraint lengttd/ and probability distribution of the permutor output;. From a
multiplicity 3 (see Figure 14). By definition, an MMP ofpopulation ofn symbols, the number of ordered samples of
multiplicity k& hask inputs andk outputs per time instant. size: that can be formed without replacement is given by [22]

(n)iZnn—1)---(n—i+1)
in(s)tan}t)z 0, the permutor chooses uniformly three symbols =nl/(n =)
0) ~(1

TR T andfzt@) from among the\/ symbols in its memory. Thus, the total number of ordered samples of the outputs from
As shown in Figure 14, the permutor sends this three-tuglee multiplicity-3 MMP with overall constraint length\/ is

i1 = [ + Wy (Vt) — Wy ({’t) (67)

Initially, the MMP storesM zero symbols. At each time (68)
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(%) . Among them, there ar¢ o) (3_1‘5‘(‘30) ordered wherev,, o1, and .41 are given by (65), (66), and (67),
samples with the same weight (ﬁumber of 1's)vas Under respectively. Note that the codeword weights, information
the assumption that the output symbols are randomly selecteeights, and path lengths of the AEWS’s from the successor
from the MMP, we have states must be decreased to take into account the weights on

. . . the transition branch.
0, if 3—w, (V) > M — p orw, (V) >

T ) () e

which follows from the fact that the number of 0's or 1's
in x; cannot exceed the number of 0's or 1's in storage.
This probability distribution is used in the next section to
recursively calculate the average distance spectrum of an
ensemble of BCC's.

B. Calculation of the Average Distance Spectrum
Fiﬁi 15. State transitions on a super trellis.

In this section, we analyze the average distance spectru
of the codes in the ensemble of BCC’s based on the MarkovI h liis. th h that di f he alb
permutors described above. Since BCC's are linear, this-spe n the super treflis, the path that diverges from the albzer

trum coincides with the average weight spectrum of the cod%@thb'sl unlqlJe since '_t canh be cauzed c_)lfuy byhan mfcl;rn;?_tlon
in the ensemble. We assume that initially the BCC encoderi$MPo! to = 1 e’_“e””g .t. € encoder. 1hus the probability
associated with this transition is unity. Ligt;, o1 ) denote the

in the zero state, i.eyo = 0, g = 0. Assume an information i tth 4 e h
symboluy = 1 enters the encoder. Correspondingly, the mmperresponding succ_gssorstate of the encoderia ”‘?te,t €
eight of the transition from{0, 0) to (u1,01). Substituting

transitions to the statg; = 1 and the component encoders . .
to a stateo; # 0. The encoding process then continues frortrﬁ1ese values in (71), we obtain

state(u1, o1). Ultimately, with probabilityl, the BCC encoder a(d, i) = a((p1,01),d —dy,i—1,1—1) (72)
will return to the zero statéu;, ;) = (0,0) at somel-th time i )

instant. For the purpose of bounding the free distance, W the basis of the AEWS, thaverage weight spectrum

are interested in the weight distribution of the encodepout (AWS) is defined as

sequence between the two time instants when the encoder is oo I
in the zero state. a(d) = Z a(d,i,1). (73)
Let a(d,i,l) = Ela(d,i,l)] denote the expectation of the =1 i=1

number of paths with codeword weight and information as in (73), if we sum over ali and! in (71), we obtain the
weight i that depart from the all-zero path at time instant fo|lowing system of recursive equations for the AWS from
and remerge with the all-zero path at timel > 1. The set state(y,, o,):

{a(d,i,1)}, 0 < d,i < oo, 1 <1< o0, is called theaverage

1
extended weight spectrum (AEWS) of the encoder. The AEWS _ -
ght spectrurh (AEWS) i) d) = 30 3 P(ilur)

is derived using a backward recursion on the super treflis. | — < (74)
the backward recursion, we must consider truncated patts th e
start from non-zero states, i.€u:, ;) # (0,0), where the Ca((per, Oeg) d = w(ve)).
AEWS from state(y,, o) is denoted as((p, ot),d,,1). Finally, the AWS can be computed using following steps:

Now we describe the backward recursion. As shown in 1) set the overall constraint length/ and generate the
Figure 15, we assume that the encoder is in stateo). super trellis{(u:,0¢) — (je41,0141)} according to
With inputw, = {0,1} and random outputs, from the MMP, (66) and (67) for the component encoders.
several successive stat@s;1,0.11) are possible in a one ) Find (u1,01) andd,.
step transition. Withu, known, it follows directly from (66)  3) Set the boundary conditions
that the transition probability is

Ploy = ovilu) = P@l) (70 maww={;j>2 75

where P(v¢|u.) is given by (69). All paths starting from B
these successor states are extensions of the paths passing and -
through state(u;, o;). In summary, the AEWS's from the a((p, o),d) =0, ¥d <0. (76)

successor state§i;1,0.+1) contribute to the AEWS from Forp=0to M
state(u, o¢) in a probabilistic summation. It follows that
1 4) Ford = 0 t0 dinaq
a((pe,0),d,i,1) = Z ZP(VHM) Foru=0to M
=0 ¥, (71) For all o, calculatea((u, o), d) based
ca((peg1, 0e41),d —w(vy), i —ug, l — 1), on (74) and boundary conditions;
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End constraint length is lower bounded by., where~,. is the
a(d) =a((p1,01),d —dq); average slope of the corresponding curves in Figure 16 e¢alu
End of . derived from Figure 16 are given in Table | for BCC'’s
with rate R.. = 2/3 component encoders of memory.. = 2,
C. A Lower Bound on Free Distance 3, and4. The generator polynomials are denoted in octal form.
After deriving the AWS for given component encoders with TABLE |
constraint lengthM, a free distance lower bound can be FREE DISTANCE BOUND FOR RATER = 1/3 BCC’S WITH DIFFERENT
obtained using the usual Gilbert-Varshamov (see, e.g]) [10 COMPONENT ENCODERS

argument, as stated in the following theorem.
Theorem 1. If d is the largest integer value é6fthat satisfies

Component encoder memorly Generator matrix | Asymptotic ratio~.

= Mee = 2 (1 0 4/7> 0.6069
> a(d) <1, (77) 0 1 57
d=1 Mo = 3 ((1) 0 gﬁg) 0.7230

then at least one code in the ensemble must have free distance 1 0 25/35

not less thanl. ] mee =4 (0 1 23/35) 0.7341

We calculated, and it follows from Theorem 1 that there
exists at least one code in the ensemble for whigh.. is It is interesting to compare this bound with the Costello

lower bounded byd. The free distance bound implied bybound [23] on the free distance of the ensemble of convo-
(77) is a function of the component encoders and the overhitional codes. The Costello bound states that there exists
constraint length)M of the MMP. Recall that in Section Ill rate R = b/c convolutional encoders of memory with free
we showed that a BCC encoder with three convolutiondistance lower bounded by the following inequality
permutors of width7T has an overall constraint length of d R loc
M = 5(T —1)/2+ 1. Solving ford for different values of\/ free 5 _ —% +0 <g_2) ,  (78)
then gives us a numerical lower bound @p.... We plotd cm logy[21=F —1] m
as a function ofM, 0 < M < 1000, in Figure 16. Three rate which can also be written as
R =1/3 SBCC's with identical RSC component encoders of d 1 lo
. . . free go M

memorym.. = 2, 3, and4 were considered in the calculation. =z = -r +0

: o : . bm log,[2 —1]
We see that the free distance bounds exhibit essentiathadin _ .
growth as a function of the overall constraint lengthof the Since the overall constraint lengthf of a convolutional

(79)

MMP. encoder is upper bounded by the inequality < bm, we
can write
dfree 1 1Og2 M>

> — +0 . 80

1000 . . . . . . . . . : M~ 10g2[21_R - 1] < M (80)

o0l —o—m>=2 ] Asymptotically, asM goes to infinity, we havelty.e >

. —o—m =3 Yeost M, Where e, = —1/(logy[21 =% — 1]). In particular,

[ < m 1 for R = 1/3, vest = 1.3028. Note that the coefficients

1 . for BCC’s are roughly a factor of 2 less than the ratio
~eost IN the Costello bound. This is consistent with the typical
reduction in distance growth rate observed when comparing
Gallager’'s minimum distance bound [24] for LDPC block
4 codes to the Gilbert-Varshamov [10] minimum distance bound
for the ensemble of block codes.

Free distance lower bound

IX. CONCLUSIONS

In this paper, we proposed a new class of turbo-like codes,
namely, braided convolutional codes, that are suitable for
high speed continuous data transmission. We presented a
construction method for tightly and sparsely braided cenvo
lutional codes. For applications involving packetizedagate
Fig. 16. Lower bounds on the free distance of BCC's with défe @lSO introduced a blockwise encoding structure. Computer
component encoders. simulation results show that sparsely braided convolafion

codes achieve good convergence performance with iterative

Although the numerical results plotted in Figure 16 extendiecoding. Furthermore, the simulation results suggesis th
only to M = 1000, they provide strong evidence to conjectureraided convolutional codes have good distance properties
that asymptotically, as\/ goes to infinity, the ratio of the in contrast to conventional turbo codes. This observatias w
free distance of these rate = 1/3 BCC's to their overall theoretically confirmed by an analysis of braided convolusi

T T T T T T T T T T
0 200 400 600 800 1000
Permutor overall constraint length



IEEE TRANSACTIONS ON INFORMATION THEORY, ACCEPTED FOR PUBCATION

15

codes using a statistical Markov permutor model. For thjg] M.B.S. Tavares, M. Lentmaier, K.Sh. Zigangirov, andPGFettweis,

model, we showed that braided convolutional codes have a

free distance that grows linearly with overall constraantdth,
i.e., braided convolutional codes are asymptotically good
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