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Braided Convolutional Codes: A New Class of
Turbo-Like Codes

Wei Zhang,Member, IEEE, Michael Lentmaier,Member, IEEE, Kamil Sh. Zigangirov,Fellow, IEEE,
and Daniel J. Costello, Jr.,Life Fellow, IEEE

Abstract—We present a new class of iteratively decodable
turbo-like codes, called braided convolutional codes. Construc-
tions and encoding procedures for tightly and sparsely braided
convolutional codes are introduced. Sparsely braided codes ex-
hibit good convergence behavior with iterative decoding, and a
statistical analysis using Markov permutors shows that thefree
distance of these codes grows linearly with constraint length, i.e.,
they are asymptotically good.

Index Terms—braided convolutional codes, turbo-like codes,
codes on graphs, iterative decoding, convolutional permutor, free
distance.

I. I NTRODUCTION

Braided block codes (BBC’s) [1] were first introduced in
[2] [3]. These codes can be viewed as a sliding version
of product codes [4] or expander codes [5] [6]. In braided
codes, information symbols are checked by two component
encoders, and the parity symbols of one component encoder
are used as inputs to the other component encoder. The con-
nections between the two component encoders are defined by
the positions where information symbols and parity symbols
are stored in a two-dimensional array. Braided codes form
a class of continuously decodable codes defined on graphs
[2], and thus iterative decoding can be employed. Owing
to the continuously decodable property of these codes, the
decoder can be implemented using a highly efficient pipeline
structure. Therefore braided codes are well suited for high
speed continuous data transmission.

In [3], short block codes such as Hamming codes were
employed as component codes. Two families of BBC’s were
proposed based on the density of the storage array, i.e., tightly
braided block codes (TBBC’s) and sparsely braided block
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codes (SBBC’s), and it was shown that iterative decoding
performance is greatly improved with SBBC’s.

In this paper, we study a new class of braided codes,braided
convolutional codes (BCC’s), first introduced in [7]. In contrast
to BBC’s, which are described in detail in [1], we use convo-
lutional codes as component codes. Convolutional permutors,
an important ingredient of BCC’s, are introduced in SectionII,
and code constructions are described in Section III. Analogous
to BBC’s, atightly braided convolutional code (TBCC) results
when a dense array is used to store the information and parity
symbols.Sparsely braided convolutional codes (SBCC’s) are
then proposed to overcome the short cycles in the Tanner graph
representation [8] of TBCC’s. The storage array of SBCC’s
has a lower density, resulting in improved iterative decoding
performance. In Section IV a syndrome former matrix is
defined, and SBCC’s are shown to be a type of low density
parity check (LDPC) convolutional code. Then in Section V a
pipeline decoder architecture for high speed continuous data
transmission is presented. In Section VI, a blockwise version
of BCC’s is proposed for applications involving packetized
data. The performance of rateR = 1/3 SBCC’s is then
evaluated by computer simulation in Section VII. By means
of a Markov permutor analysis [9], a numerical method is
developed in Section VIII to compute a lower bound on free
distance for the ensemble of BCC’s. The free distance bound
shows linear growth in free distance as a function of constraint
length. This implies that BCC’s, in contrast to turbo codes or
serially concatenated codes, are asymptotically good in terms
of distance growth. Finally, we present some conclusions in
Section IX.

II. CONVOLUTIONAL PERMUTORS

An essential part of the encoder for BCC’s is a convolutional
permutor (also called a convolutional scrambler [10]). In
this section, we briefly review the basic theory of multiple
convolutional permutors given in [1].

A symmetric multiple convolutional permutor (MCP) of
multiplicity k can be described by a semi-infinite matrix
P = (pt,t′), t, t′ ∈ Z

+, which hask ones in each row and in
each column starting from the∆th column. The other entries
are zeros. The matrixP also satisfies the causality condition,
i.e.,

pt,t′ = 0, t′ < t. (1)
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We use the following representation forP :

P =













p0,δ p0,δ+1 · · · p0,∆

. . .
. . .

pt,t+δ pt,t+δ+1 · · · pt,t+∆

.. .
. . .













,

(2)
and we assume thatpt,t+δ = 1 for at least one value oft and
pt,t+∆ = 1 for at least one value oft. The parameterδ ≥ 0
is called theminimal permutor delay and ∆ ≥ 0 is called
the maximal permutor delay. As in convolutional coding, we
call the maximal delay thememory m of the permutor, i.e.,
m = ∆. The valuew = ∆ − δ + 1 is called thepermutor
width. A single convolutional permutor has multiplicityk = 1.
If w = 1 and pt,t = 1 ∀t, a single permutor is theidentity
permutor. If pt,t+δ = 1 ∀t, a single permutor is thedelay
permutor with delay δ. If a multiple permutor is described
by the matrixP, the inverse permutor is described by the
transpose matrix[P]T.

With this matrix representation, we can describe a single
convolutional permutor as follows. Letx = (x0, x1, . . .) be
the input sequence to the permutor. Then the output sequence
y = (y0, y1, . . .) is given by

y = xP. (3)

In this way, the mapping between the input and output is
defined asyt = xt′ , wheret′ is determined by the permutation
function f

P
(·) associated withP, i.e.,

t′ = f
P
(t). (4)

Equation (3) describes the operation of a single convolutional
permutor, but the operation of a multiple (k > 1) convolutional
permutor can’t be described as the multiplication of a vector
by a matrix.

In the case of a multiple permutor, the 1 entries in the
matrix P represent memory units that can store an input
symbol. The input sequenceX entering the MCP is di-
vided into k-tuples, i.e.,X = (x0,x1, . . . ,xt, . . .), where
xt = (xt,1, xt,2, . . . , xt,k)T. The blocksxt, t = 0, 1, . . ., are
written to the memory units row by row. The output sequence
Y = (y0,y1, . . . ,yt, . . .), whereyt = (yt,1, yt,2, . . . , yt,k)T,
is read out column wise. Since there are the same number of
ones in each row and column, every input symbol occurs once
and only once in the output sequence.

To describe the operation of a multiple convolutional per-
mutor, amatrix permutation operator or permutation tensor
P can be introduced. (Refer to [1] for details.) Similar to a
single convolutional permutor, we define the mapping between
inputs and outputs as

yt,i = xt′,i′ , 1 ≤ i ≤ k, (5)

wheret′ and i′ are determined by the permutation functions
f
P
(·, ·) and g

P
(·, ·) associated with the permutation operator

P as follows
t′ = f

P
(t, i), (6)

i′ = g
P
(t, i). (7)

These permutation functions are stored in a ROM for imple-
mentation.

To reduce the storage space required by the permutation
functions, periodic permutors are assumed. In this case,

pt,t′ = pt+T,t′+T , ∀ t, t′. (8)

The minimalT for which (8) is satisfied is called theperiod
of a periodic convolutional permutor.

In [11], [1], a method was proposed to construct periodic
multiple convolutional permutors from multiple block permu-
tors. A T × T block permutor of multiplicityk is described
by a T × T square matrix havingk ones in each row and
each column. A periodic multiple convolutional permutor with
period T is then constructed from thebasic multiple block
permutor of sizeT ×T and multiplicityk using the so-called
unwrapping procedure [1].

Example 1: The construction of a single convolutional per-
mutor with periodT = 6, minimal delayδ = 0, and maximal
delay∆ = 5, from a6×6 basic block permutor of multiplicity
k = 1 is illustrated in Figure 1. First divide the6 × 6
permutation matrix describing the basic block permutor below
the diagonal as shown in Figure 1(a), then unwrap the lower
part of the matrix as shown in Figure 1(b), and finally replicate
the unwrapped matrix diagonally as shown in Figure 1(c).

1

1

1

1
1

1

(a) Basic block permutor.

1

1
1

1
1

1

(b) Unwrapped block permutor.

1

1
1

1

1
1

1
1

1
1

1
1

1
(c) Convolutional permutor.

Fig. 1. Construction of a single periodic convolutional permutor.

The convolutional permutor introduced in Example 1 is a
single periodic convolutional permutor. Single convolutional
permutors are used in this paper to describe rateR = 1/3
BCC’s. An example of an MCP with multiplicityk = 2 and
periodT = 5 constructed using the unwrapping procedure is
shown in Figure 2.

From the unwrapping procedure, we see that a single pe-
riodic convolutional permutor constructed as described above
may not always have minimal delayδ = 0 and maximal delay
(memory)∆ = m = T − 1. In other words, its width is not
necessarilyT . However, as shown in [1], if a block permutor
of multiplicity k is chosen randomly, then with probability
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(a) Multiple block permutor.
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(b) Unwrapped block permutor.
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11
1

1

1 1

1

1
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11
1

1

(c) Multiple convolutional permutor.

Fig. 2. Construction of a multiple periodic convolutional permutor.

≈ 1− (1/e)k the maximal delay (memory) of the unwrapped
multiple convolutional permutor of multiplicityk equalsT−1.

The memorym is an important parameter characterizing
the behavior of a convolutional permutor. Another important
parameter is itsoverall constraint length M . For a givent,
we introduce the set

Pt = {pi,j : i ≤ t, j > t} , t ∈ Z
+ . (9)

The overall constraint length of the convolutional permutor is
then defined by

M = w
H

(Pt), (10)

wherew
H

(Pt) is the Hamming weight of the setPt. It follows
that M is equal to the maximum number of symbols that is
stored in a realization of the permutor at any time, analogous
to the definition of overall constraint length for convolutional
codes [10], [12]. For single convolutional permutors, since
each row and column ofP have only a single “1”, the weight
of Pt does not depend on the time indext, and we can omitt in
definingM . Thus the overall constraint length is independent
of t for single convolutional permutors.

Example 2: Figure 3 illustrates a single convolutional per-
mutor with the same parameters,T = 6, δ = 0, and∆ = 5, as
the convolutional permutor shown in Figure 1(c). Its overall
constraint length isM = 4. By contrast, the convolutional
permutor in Figure 1(c) has overall constraint lengthM = 1.

1
1

1
1

1
1

1

1
1

1
1

1

1

Fig. 3. A single periodic convolutional permutor withT = 6, δ = 0, ∆ = 5,
andM = 4.

For w > 1, the overall constraint length of a single
convolutional permutor must satisfy

0 ≤ M ≤ T − 2. (11)

The single convolutional permutors for the BCC’s con-
sidered in this paper were constructed from a basic block
permutor (permutation matrix) chosen randomly, assuming
that all T ! possible permutation matrices of sizeT × T are
equiprobable. The delays of the corresponding convolutional
permutors then satisfy0 ≤ δ ≤ ∆ ≤ T − 1, and we
note that the identity permutor has parametersT = 1 and
δ = ∆ = M = 0. Multiple convolutional permutors of
multiplicity k for BCC’s can be constructed from sets of
k2 permutation matrices by using the operations of row- and
column-interleaving and unwrapping (see [1] for details).

Convolutional permutors constructed fromT × T block
permutors cannot have period larger thanT . Their periods
can beT , T/2, T/3, . . ., and so on. If the period isT/2 (T
even), then the(T/2 + i)-th row of the basic block permutor
is a cyclic shift of thei-th row, for 1 ≤ i ≤ T/2. Similar
arguments are valid for periods ofT/3, T/4, . . ., and so on.
The probability that the cyclic shift condition is satisfiedgoes
to zero asT → ∞ for randomly chosen permutors.

An MCP of multiplicity k constructed from aT × T block
permutor is calledtypical [1] if it has periodT , maximal delay
(memory)∆ = T − 1, and overall constraint length

M = k(T − 1)/2 . (12)

Shifting a typical MCP of multiplicity k by a > 0 symbols,
i.e., pt,t′ → pt+a,t′+a, we obtain an MCP with additional
delay a. For this permutor, the minimal delay isδ + a, the
maximal delay is∆ + a, and the overall constraint length is

M = ka + k(T − 1)/2. (13)

In general, a single convolutional permutor with maximal
delay∆ can be implemented with a shift register of length∆.
The permutation functionf

P
(·) associated with the permutor

is stored in a controller to indicate the output indices of
the register stages. At each time unit, the permutor selects
an output from one of the stored symbols according to the
permutation function. Then it deletes the right most symbol
and shifts all other symbols one stage to the right. The new
input symbol is placed into the left most position.

III. C ONSTRUCTION OFBRAIDED CONVOLUTIONAL

CODES

In this section, we describe the construction of BCC’s. In
general, braided codes, including BBC’s [2] [3] and BCC’s,
represent a sliding version of classic product codes [4]. As
illustrated in Figure 4, product codes are constructed based on
a rectangular array that stores the coded symbols. Thek1k2

information (systematic) symbols are located in the upper-left
corner of the array. The symbols in each row form a codeword
of a horizontal component codeC1(n1, k1). Meanwhile, the
symbols of each column form a codeword of avertical
component codeC2(n2, k2). In contrast, braided codes are
constructed on an infinite two-dimensional array. Furthermore,
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the horizontal and vertical encoders are linked through parity
feedback. In this manner, the systematic and parity symbols
are “braided” together.

bitsInformation
parityC2(n1; k1)Column ParityonparityparityRow C1(n1; k1)k 2 k1 n1

n 2
Fig. 4. An (n1n2, k1k2) product code.

A. Rate R = 1/3 Braided Convolutional Codes

v̂(2)t�1 v̂(1)tutv̂(2)t ut+1 v̂(1)t+1v̂(2)t+1[P(2)℄T P(0)

t0
t P(1)v̂(1)t�1

Fig. 5. Array representation of a rateR = 1/3 TBCC.

Depending on the density of the array, we can distinguish
two types of BCC’s – TBCC’s and SBCC’s. An example of a
rateR = 1/3 TBCC is illustrated in Figure 5. Similar to turbo
codes, recursive systematic convolutional (RSC) encoderswith
rate R = 2/3 are used as horizontal and vertical component
encoders. The array consists of three diagonal ribbons, each of
width one symbol. Each entry in the array is characterized by
a pair of position indices(t, t′): the vertical positiont and the
horizontal positiont′, t − 1 ≤ t′ ≤ t + 1. The information
symbols ut are placed in the central ribbon with position
indices (t, t′), where t = t′, corresponding to an identity
permutor P(0). The parity symbolsv̂(1)

t of the horizontal
encoder (encoder 1) are stored in the upper ribbon with
position indices(t, t + 1). We may consider that the upper
ribbon is described by a delay-1 permutor and is denotedP(1).
The parity symbolŝv(2)

t of the vertical encoder (encoder 2)
are stored in the lower ribbon with position indices(t + 1, t).
The lower ribbon corresponds to the transpose of a delay-
1 permutor and is denoted[P(2)]T. The dark entries in the
array indicate the previous inputs and outputs of the encoders
that are known at timet. Note that at time0, when the first
information symbol arrives, the previous parity symbols are
assumed to be0, i.e., v̂

(1)
t and v̂

(2)
t are zeros fort < 0. At

time t, the horizontal encoder encodes the current information
symbolut and its left neighbor̂v(2)

t−1. The output symbol̂v(1)
t

depends on̂v(2)
t−1, ut, and the convolutional encoder state. The

vertical encoder performs its encoding analogously. So the
t-th row of the array containŝv(2)

t−1, ut, and v̂
(1)
t , and the

t-th column of the array containŝv(1)
t−1, ut, and v̂

(2)
t . The

encoding procedure continues in this fashion as the horizontal
and vertical encoders slide down and to the right along the di-
agonal. The code sequence of the horizontal encoder isv(1) =

(v
(1)
0 ,v

(1)
1 , . . . ,v

(1)
t , . . .), where v

(1)
t = (v

(1)
t,1 , v

(1)
t,2 , v

(1)
t,3 ),

v
(1)
t,1 = ut, v

(1)
t,2 = v̂

(2)
t−1, andv

(1)
t,3 = v̂

(1)
t . The code sequence

of the vertical encoder isv(2) = (v
(2)
0 ,v

(2)
1 , . . . ,v

(2)
t , . . .),

wherev
(2)
t = (v

(2)
t,1 , v

(2)
t,2 , v

(2)
t,3 ), v

(2)
t,1 = ut, v

(2)
t,2 = v̂

(1)
t−1, and

v
(2)
t,3 = v̂

(2)
t . The code sequence transmitted over the channel

is v = (v0,v1, . . . ,vt, . . .), wherevt = (vt,1, vt,2, vt,3), and

vt,i =











ut , i = 1

v̂
(1)
t , i = 2

v̂
(2)
t , i = 3

. (14)

The rate of the TBCC isR = 1/3. During the encoding
process, two previously encoded parity bits are stored in the
array, and thus the overall constraint length isM = 2.

Short cycles are generated in the Tanner graph of TBCC’s
due to their dense array structure. Thus iterative decoding
performance can be improved if the cycle length is increased.
This motivates the construction of SBCC’s, in which in-
formation symbols and parity symbols are spread out in a
sparse array. An example of the array representation of a rate
R = 1/3 SBCC is illustrated in Figure 6. Each row and
column of the array contains one information symbol, one
parity symbol from the vertical encoder, and one parity symbol
from the horizontal encoder. Analogous to TBCC’s, the sparse
array retains the three-ribbon structure and three correspond-
ing convolutional permutors. We assume that the permutors
P(j) = (p

(j)
i,k) are periodic with periodsTj, j = {0, 1, 2},

and that they are constructed using the unwrapping procedure
described in Section II, with the width of each ribbon equal
to the period of the corresponding permutor. Thus the widths
of the central, upper, and lower ribbons areT0, T1, andT2,
respectively.

All the entries in the array are again indexed by coordinates
(t, t′), wheret andt′ represent the times of the horizontal and
vertical encodings, respectively, as shown in Figure 6. The
information symbolsut are placed in the central ribbon. The
structure of the central ribbon is defined by the permutorP(0).
If p

(0)
t,t′ = 1, then thet-th input symbolut of the encoder is

placed in the array entry with index(t, t′). This means that
ut enters the horizontal encoder at timet, and the permuted
symbolũt′ enters the vertical encoder at timet′. Based on the
analysis in Section II, atypical permutorP(0) has an overall
constraint length ofM0 = (T0 − 1)/2. The parity symbols
v̂
(1)
t of the horizontal encoder are placed in thet-th row of

the upper ribbon. The structure of the upper ribbon is defined
by permutorP(1). To match the ribbon structure of the array,
this permutor has an additional delay ofT0 symbols, and its
overall constraint length isM1 = T0 + (T1 − 1)/2. If p

(1)
t,t′ =

1, then the parity symbol̂v(1)
t is placed in the position with

index (t, t′). Sincep
(1)
t,t′ = 0 for t > t′, the permuted parity
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Fig. 6. Array representation for SBCC’s.

symbol ṽ(1)
t′ will enter the vertical encoder at timet′ when it

leaves permutorP(1). The parity symbolŝv(2)
t of the vertical

encoder are placed in thet-th column of the lower ribbon,
whose structure depends on permutorP(2). To match the array
structure,P(2) has minimal delay1, maximal delayT2, and
overall constraint lengthM2 = (T2 − 1)/2 + 1. If p

(2)
t,t′ = 1,

then the parity symbol̂v(2)
t is placed in the position with index

(t′, t). Sincep
(2)
t,t′ = 0 for t > t′, the permuted parity symbol

ṽ
(2)
t′ will enter the horizontal encoder at timet′ when it leaves

permutorP(2).
The memory of the encoder is defined as the maximal

number of time units that a symbol stays in the encoder. The
overall constraint length M of an SBCC encoder is defined
as the total number of symbols stored in the encoder. Thus, if
all permutorsP(0), P(1), andP(2) are typical, then

M =
T0 − 1

2
+

T1 − 1

2
+

T2 − 1

2
+ T0 + 1. (15)

If the permutors are alltypical and T0 = T1 = T2 = T , the
total width of the three ribbons in a BCC is3T , and the total
number of symbols stored in the memory of the permutors is
given by

M = 5(T − 1)/2 + 2. (16)

The implementation of a rateR = 1/3 BCC encoder
is shown in Figure 7. The encoder consists of two rate
Rcc = 2/3 RSC component encoders, the horizontal encoder
(encoder 1) and the vertical encoder (encoder 2), and three
convolutional permutorsP(0), P(1), andP(2) are employed.
The information sequenceu = (u0, u1, . . . , ut, . . .) enters the
first input of encoder 1 directly, and the permuted information
sequenceũ at the output of convolutional permutorP(0)

enters the first input of encoder 2. Encoder 1 generates the
parity sequencêv(1) = (v̂

(1)
0 , v̂

(1)
1 , . . . , v̂

(1)
t , . . .) and encoder 2

generates the parity sequencev̂(2) = (v̂
(2)
0 , v̂

(2)
1 , . . . , v̂

(2)
t , . . .).

The permuted parity sequencẽv(1) at the output of convo-
lutional permutorP(1) is fed back to the second input of
encoder 2, and the permuted parity sequenceṽ(2) at the output
of convolutional permutorP(2) is fed back to the second
input of encoder 1. The information sequenceu and the
parity sequenceŝv(1) andv̂(2) are multiplexed into the output
sequence of the encoderv = (v0,v1, . . . ,vt, . . .), where
vt = (vt,1, vt,2, vt,3), and

vt,i =











ut , i = 1

v̂
(1)
t , i = 2

v̂
(2)
t , i = 3

. (17)

En
oder 1Rate 2/3

En
oder 2Rate 2/3
P(1)
P(2)P(0)

MUXut vt
~ut

v̂(1)t
v̂(2)t

~v(1)t
~v(2)t

Fig. 7. Encoder for a rateR = 1/3 braided convolutional code.

B. Generalized Braided Convolutional Codes

Generalizing the rateR = 1/3 BCC’s in Section III-A to
other rates is straightforward. In principle, we can use different
component encoders for the horizontal and vertical encodings.
If we employ a rate

R(1)
cc =

k(0) + k(2)

k(0) + k(1) + k(2)
(18)

horizontal encoder and a rate

R(2)
cc =

k(0) + k(1)

k(0) + k(1) + k(2)
(19)

vertical encoder, wherek(0), k(1), andk(2) are positive inte-
gers, the rate of the resulting BCC is

R =
k(0)

k(0) + k(1) + k(2)
. (20)

The array representation is shown in Figure 8. The central
ribbon is described by an MCPP(0) of multiplicity k(0), and
the upper and lower ribbons are described by MCP’sP(1) and
[P(2)]T of multiplicity k(1) andk(2), respectively. Horizontal
and vertical encoding proceeds by row and column in the
same fashion as for rateR = 1/3 BCC’s. If the convolutional
permutors are constructed from block permutors as described
in Section II and they aretypical, then the overall constraint
length of the encoder is given by

M =
k(0)(T0 − 1)

2
+

k(1)(T1 − 1)

2
+

k(2)(T2 − 1)

2
+k(1)T0+k(2),

(21)
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P(0)multipli
ity-k(0)multipli
ity-k(1)P(1)[P(2)℄Tmultipli
ity-k(2)
Fig. 8. Array representation of generalized BCC’s.

whereT0, T1, andT2 are the periods ofP(0), P(1), andP(2),
respectively.

As illustrated in Figure 9, the structure of the encoder
for generalized BCC’s is similar to the rateR = 1/3 case,
except that the permutors may now be MCP’s. The horizontal
encoder (encoder 1) hask(0) + k(2) inputs. At time instantt,
the k(0)-tuple information blockut = (ut,1, ut,2, . . . , ut,k(0))
of the information sequenceu = (u0,u1, . . . ,ut, . . .) enters
the first k(0) inputs of the horizontal encoder. Meanwhile,
the vertical encoder produces a block ofk(2) parity symbols
v̂

(2)
t = (v̂

(2)
t,1 , v̂

(2)
t,2 , . . . , v̂

(2)

t,k(2)) that enters the MCPP(2). The

output ṽ(2)
t = (ṽ

(2)
t,1 , ṽ

(2)
t,2 , . . . , ṽ

(2)

t,k(2)) of P(2) appears in the

t-th row of the lower ribbon and provides the remainingk(2)

inputs to the horizontal encoder. In parallel, the information
sequenceu = (u0,u2, . . . ,ut, . . .) enters the MCPP(0). The
output sequence ofP(0) is ũ = (ũ0, ũ2, . . . , ũt, . . .), where
ũt = (ũt,1, ũt,2, . . . , ũt,k(0)). The vertical encoder (encoder
2) hask(0) + k(1) inputs. The blockũt enters the firstk(0)

inputs of vertical encoder at the time instantt. This block
appears in thet-th column of the central ribbon. Meanwhile,
the horizontal encoder produces a block ofk(1) parity symbols
v̂

(1)
t = (v̂

(1)
t,1 , v̂

(1)
t,2 , . . . , v̂

(1)

t,k(1)) that enters the MCPP(1). The

outputṽ(1)
t = (ṽ

(1)
t,1 , ṽ

(1)
t,2 , . . . , ṽ

(1)

t,k(1)) of P(1) appears in thet-

th column of the upper ribbon and provides the remainingk(1)

inputs to the vertical encoder. The combination of the blocks
ut, v̂

(1)
t , andv̂

(2)
t , consisting ofk(0) + k(1) + k(2) bits, forms

the output code blockvt = (vt,1, vt,2, . . . , vt,k(0)+k(1)+k(2)) of
the generalized BCC encoder. The multiplexing rule is defined
as

vt,i =











ut,i , 1 ≤ i ≤ k(0)

v̂
(1)

t,i−k(0) , 1 ≤ i − k(0) ≤ k(1)

v̂
(2)

t,i−k(0)−k(1) , 1 ≤ i − k(0) − k(1) ≤ k(2)

. (22)

We can also denote the output code sequences of
the horizontal (e = 1) and vertical (e = 2) en-
coders asv(e) = (v

(e)
0 ,v

(e)
1 , . . . ,v

(e)
t , . . .), where v

(e)
t =

(v
(e)
t,1 , v

(e)
t,2 , . . . , v

(e)

t,k(0)+k(1)+k(2) ). Here, the mapping rules be-

tween the inputs and outputs of each generalized BCC com-
ponent encoder can be described by

v
(1)
t,i =











ut,i , 1 ≤ i ≤ k(0)

ṽ
(2)

t,i−k(0) , 1 ≤ i − k(0) ≤ k(2)

v̂
(1)

t,i−k(0)
−k(2) , 1 ≤ i − k(0) − k(2) ≤ k(1)

(23)

and

v
(2)
t,i =











ũt,i , 1 ≤ i ≤ k(0)

ṽ
(1)

t,i−k(0) , 1 ≤ i − k(0) ≤ k(1)

v̂
(2)

t,i−k(0)
−k(1) , 1 ≤ i − k(0) − k(1) ≤ k(2)

. (24)

At the receiver, these mapping rules determine the demulti-
plexing requirements of the component decoders.

Encoder 2

P
(1)

P
(2)

P
(0)

MUX

ut
vt

u
(1)
t

v̂
(1)
t

v̂
(2)
t

ṽ
(1)
t

ṽ
(2)
tũt

R =
k(0)+k(2)

k(0)+k(1)+k(2)

R =
k(0)+k(1)

k(0)+k(1)+k(2)

Encoder 1

Fig. 9. Encoder for generalized BCC’s.

IV. SYNDROME FORMER REPRESENTATION OFBRAIDED

CONVOLUTIONAL CODES

In this section, we derive a canonical representation of
BCC’s using the syndrome former matrix. The syndrome
former is useful for interpreting the structural properties of
BCC’s. In particular, we show that the sparsity of the per-
mutors in the BCC encoder insures that the overall BCC
syndrome former is sparse, thus making BCC’s suitable for
iterative decoding. We consider first some examples of the
construction of syndrome formers for convolutional codes.

Example 3: Consider a rateRcc = 1/2 RSC encoder with
generator matrix

G(D) =

(

1
1

1 + D + D2

)

. (25)

The input sequence of the encoder isu = (u0, u1, . . . , ut, . . .)
and the output sequence isv = (v0, v1, . . . , vt, . . .). We
denote the two individual outputs of the encoder byv(0) =

(v
(0)
0 , v

(0)
1 , . . . , v

(0)
t , . . .) andv(1) = (v

(1)
0 , v

(1)
1 , . . . , v

(1)
t , . . .).

Since the encoder is systematic,v(0) = u. A parity check
matrix for this encoder is given byH(D) =

(

1 H(1)(D)
)

=
(

1 1 + D + D2
)

. Corresponding toH(1)(D), we introduce
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the semi-infinite matrix

[

H(1)
]T

=





















1 1 1
1 1 1

1 1 1
. . .

. . .





















, (26)

which we call thepartial syndrome former matrix. Then
the encoder’s parity constraint is described by the following
equation

v(0)I + v(1)
[

H(1)
]T

= 0, (27)

whereI is a semi-infinite identity matrix.
In order to obtain the usual description of a convolutional

syndrome former, we will use the operations ofrow- and
column- interleaving. These operations were introduced in
[10] for two matrices and generalized in [1] for a larger
number of matrices. The row-interleaving of the set of ma-
trices

(

P(1),P(2), . . . ,P(k)
)

(see Definition 2.2 in [1]) we
designate as

P = ⊟

(

P(1),P(2), . . . ,P(k)
)

. (28)

Analogously, the column-interleaving of the set of matrices
(

P(1),P(2), . . . ,P(k)
)

(see Definition 2.3 in [1]) we desig-
nate as

P = ⊟

(

P(1),P(2), . . . ,P(k)
)

. (29)

In Example 3, the output code sequencev =

(v0,v1, . . . ,vt, . . .), wherevt = (v
(0)
t , v

(1)
t ), can be repre-

sented as an interleaved version of sequencesv(0) andv(1). If
we row-interleave the matricesI and

[

H(1)
]T

, then we obtain

the syndrome formerHT = ⊟

(

I,
[

H(1)
]T

)

of the encoder in

Example 3, i.e.,vHT = 0.
Example 4: Consider a rateRcc = 1/2 RSC encoder with

generator matrix

G(D) =

(

1
1 + D2

1 + D + D2

)

. (30)

With input sequenceu = (u0, u1, . . . , ut, . . .), the out-
put sequencev = (v0,v1, . . . ,vt, . . .), where vt =

(v
(0)
t , v

(1)
t ), can be represented as an interleaved version of

sequencesv(0) and v(1), where v(0) = u and v(1) =

(v
(1)
0 , v

(1)
0 , . . . , v

(1)
t , . . .). A parity check matrix is given by

H(D) =
(

H(0)(D) H(1)(D)
)

=
(

1 + D2 1 + D + D2
)

.
Then we have

v(0)
[

H(0)
]T

+ v(1)
[

H(1)
]T

= 0, (31)

where

[

H(0)
]T

=





















1 0 1
1 0 1

1 0 1
. . .

. . .





















(32)

corresponds toH(0)(D), and
[

H(1)
]T

is defined in (26). The
syndrome former in the conventional form is then given by
HT = ⊟

(

[

H(0)
]T

,
[

H(1)
]T

)

, andvHT = 0.

Example 5: Consider a rateRcc = 2/3 RSC encoder with
generator matrix

G(D) =







1 0
1

1 + D + D2

0 1
1 + D2

1 + D + D2






. (33)

The input sequences are denoted asu(0) =

(u
(0)
0 , u

(0)
1 , . . . , u

(0)
t , . . .) andu(1) = (u

(1)
0 , u

(1)
1 , . . . , u

(1)
t , . . .).

The output sequence isv = (v0,v1,v2, . . . ,vt, . . .),
where vt = (v

(0)
t , v

(1)
t , v

(2)
t ). Since the encoder is

systematic, v(0) = (v
(0)
0 , v

(0)
1 , . . . , v

(0)
t , . . .) = u(0),

v(1) = (v
(1)
0 , v

(1)
1 , . . . , v

(1)
t , . . .) = u(1), and

v(2) = (v
(2)
0 , v

(2)
1 , . . . , v

(2)
t , . . .) is the parity sequence.

A parity check matrix is given by H(D) =
(

1 H(0)(D) H(1)(D)
)

=
(

1 1 + D2 1 + D + D2
)

. Then
we have

v(0)I + v(1)
[

H(0)
]T

+ v(2)
[

H(1)
]T

= 0, (34)

where I is an semi-infinite identity matrix and
[

H(0)
]T

and
[

H(1)
]T

are defined in (32) and (26), respectively. The
syndrome former is then given by

HT = ⊟

(

I,
[

H(0)
]T

,
[

H(1)
]T

)

. (35)

We now describe the construction of the syndrome former
for the BCC of Figure 7. For simplicity, we assume that
component encoders 1 and 2 are given by the generator
matrix in (33). Let u = v(0) be the information sequence
and v̂(e) = (v̂

(e)
0 , v̂

(e)
1 , . . . , v̂

(e)
t , . . .), e ∈ {1, 2}, where

v̂
(e)
t = (v̂

(e)
t,1 , v̂

(e)
t,2 , v̂

(e)
t,3 ), be the output parity sequences of

encoder 1 (horizontal) and encoder 2 (vertical), respectively.
Then they must satisfy the following parity constraints:

v(0)I + v̂(1)
[

H(1)
]T

+ v̂(2)P(2)
[

H(0)
]T

= 0, (36)

v(0)P(0) + v̂(1)P(1)
[

H(0)
]T

+ v̂(2)
[

H(1)
]T

= 0. (37)

Equation (36) describes the horizontal encoder. The syndrome
formerHT

hor of the horizontal encoder is

HT
hor = ⊟

(

I,
[

H(1)
]T

,P(2)
[

H(0)
]T

)

, (38)

and it follows that vHT
hor = 0, where v is the output

sequence of the BCC encoder shown in Figure 7. Similarly,
(37) describes the vertical encoder. Its syndrome former is

HT
ver = ⊟

(

P(0),P(1)
[

H(0)
]T

,
[

H(1)
]T

)

, (39)

andvHT
ver = 0.

It follows that the syndrome formerHT of the rateR = 1/3
BCC in Figure 7 with rateRcc = 2/3 component encoders
given by (33) is

HT = ⊟

(

HT
hor,H

T
ver,

)

(40)



IEEE TRANSACTIONS ON INFORMATION THEORY, ACCEPTED FOR PUBLICATION 8

and hencevHT = 0. Now we have a conventional rep-
resentation of the syndrome former matrix. If the periods
T0, T1, andT2 of permutorsP(0), P(1), andP(2) are large
enough,P(0), P(2)

[

H(0)
]T

, andP(1)
[

H(0)
]T

are also sparse.
Thus the syndrome former matrixHT is sparse, and the
corresponding BCC can be considered as a special case of
an LDPC convolutional code [11]. The syndrome former for
generalized BCC’s can be expressed in a similar way by
making use the row and column interleaving operations.

The model we have considered so far assumes the trans-
mission of an infinite length information sequence. Since
real communication systems transmit finite length information
sequences, the encoding of BCC’s should be terminated so
that the information bits at the end of the input sequence
are adequately protected. In convolutional coding, the normal
method of termination is to add a tail to the information
sequence that forces the encoder to the zero state. The tail
depends both on the encoder structure and the encoder state.
The tail bits can be computed by a simple termination circuit
if the encoder is based on a partial syndrome realization, as
developed for LDPC convolutional codes in [13] and applied
to BBCs in [1]. Given a syndrome former representation of a
specific code, the parameters for this termination circuit can
be precomputed by solving a system of linear equations.

For the turbo-like encoder structure shown in Figure 7, the
state of the BCC encoder depends not only on the states of the
component encoders, but also on the states of the convolutional
permutors. The determination of tail bits that drive the overall
encoder to the zero state is in this case not straightforward. A
suboptimal but simple way of terminating such an encoder is
to append a tail of zero bits to the information sequence. In
this case, only the parity bits in the tail must be transmitted.
For BCC’s with periodT convolutional permutors, a length
2T zero tail has been determined to be sufficient in practice.
In this case, if the length of the information sequence isL for
a rateR = 1/3 BCC, the resulting code rate of the terminated
code is given by

R =
1

3

L

L + 4T/3
. (41)

V. PIPELINE DECODERARCHITECTURE

A pipeline decoder architecture for LDPC convolutional
codes was first proposed in [11], where the continuously
decodable property of these codes was exploited to accelerate
the decoding speed. By employing a number of processors
equal to the number of iterations to execute the decoding
algorithm in parallel, the pipeline decoder yields estimated
outputs at each execution cycle after some initial decoding
delay. Since BCC’s are a special class of LDPC convolutional
codes, they can be decoded using the pipeline architecture.In
this section, we describe the pipeline structure for continuous
decoding of BCC’s.

Assume that the generalized BCC encoder
described in Section III-B is used. The code
sequence is v = (v0,v1, . . . ,vt, . . .), where
vt = (vt,1, vt,2, . . . , vt,k(0)+k(1)+k(2)). After transmitting
over a memoryless channel, such as an additive
white Gaussian (AWGN) channel, the received

sequence is r = (r0, r1, . . . , rt, . . .), where
rt = (rt,1, rt,2, . . . , rt,k(0)+k(1)+k(2)). Using the conditional
probability p(r|v) of receiving the signalr given the
transmitted signalv, we can calculate the channel log-
likelihood ratio’s (LLR’s) l = (l0, l1, . . . , lt, . . .), where
lt = (lt,1, lt,2, . . . , lt,k(0)+k(1)+k(2)), for the coded bits:

lt,i = log
p(rt,i|vt,i = 0)

p(rt,i|vt,i = 1)
, t ≥ 0, 1 ≤ i ≤ k(0) + k(1) + k(2).

(42)
According to the mapping rules (23) and (24), these
LLR’s are demultiplexed into two streams. For component
encodere, e ∈ {1, 2}, the channel LLR’s corresponding
to the outputs v(e) = (v

(e)
0 ,v

(e)
1 , . . . ,v

(e)
t , . . .),

where v
(e)
t = (v

(e)
t,1 , v

(e)
t,2 , . . . , v

(e)

t,k(0)+k(1)+k(2)), are

given by l(e) = (l
(e)
0 , l

(e)
1 , . . . , l

(e)
t , . . .), where

l
(e)
t = (l

(e)
t,1 , l

(e)
t,2 , . . . , l

(e)

t,k(0)+k(1)+k(2)).
Let L(0) = (L0(0),L1(0), . . . ,Lt(0), . . .), whereLt(0) =

(Lt,1(0), Lt,2(0), . . . , Lt,k(0)+k(1)+k(2)(0)), be the set ofapri-
ori LLR’s for the code sequencev. In this way, we denote
the apriori LLR for the coded bitvt,k asLt,k(0). Theapriori
LLR’s for the code sequencev are given by

Lt,i(0) =

{

∞, t < 0

0, t ≥ 0
, 1 ≤ i ≤ k(0) + k(1) + k(2). (43)

Analogously, letL(1)(0) and L(2)(0) be the set ofapriori
LLR’s for the code sequencesv(1) andv(2) from the horizon-
tal and vertical encoders, respectively. Since there is a one-one
mapping between the symbols of the sequencesv andv(1) and
v(2) according to (22), (23), and (24), we can also find the
values forL(1)(0) andL(2)(0).

When the transmitted signals arrive at the receiver, the
channel LLR’s are calculated and placed into parallel buffers
along with theapriori LLR’s. The component codes are then
decoded using a parallel bank of2I a posteriori probability
(APP) processors using the windowed BCJR algorithm [14]
[15], where I is the number of iterations to be performed.
Based on the channel LLR’sl(1) and the apriori LLR’s
L(1)(0), the first APP processorB(1)

1 obtains the extrinsic
LLR’s L(1)(1) for a window of W coded symbols of the
sequencev(1) from the horizontal encoder. Then the extrinsic
LLR’s L(1)(1) are reordered toL(2)(1) according to the order
of the code sequencev(2) of the vertical encoder, based on
the mapping rules in (23) and (24). During the reordering,
the extrinsic LLR’s in L(1)(1) for ut, ṽ

(2)
t , and v̂

(1)
t are

permuted byP(0),
[

P(2)
]T

, andP(1), respectively.L(2)(1) is
used asapriori LLR’s for the code sequencev(2) by the APP
processorB(2)

2 . In the same manner as for the first processor
B

(1)
1 , processorB(2)

2 calculates the extrinsic LLR’sL(2)(2) for
a window ofW symbols of the sequencev(2). The extrinsic
LLR’s L(2)(2) are then reordered toL(1)(2) according to the
order of the code sequencev(1) of the horizontal encoder,
based on the mapping rules in (24) and (23). During the
reordering, the extrinsic LLR’s inL(2)(2) for ũt, ṽ

(1)
t , and

v̂
(2)
t are permuted by

[

P(0)
]T

,
[

P(1)
]T

, andP(2), respectively.

The third APP processorB(1)
3 then usesL(1)(2) as apriori

LLR’s. The following APP processors work in a similar
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fashion as described above. A pipeline decoder comprised
of 2I APP processors to performI iterations of decoding is
shown in Figure 10. ProcessorsB(1)

2j−1 andB
(2)
2j , 1 ≤ j ≤ I,

perform horizontal and vertical component decoding, respec-
tively. Each processor performs the windowed BCJR algorithm
on a window of sizeW , whereW should be large compared to
the constraint length of the component encoder [16]. In order
to avoid different processors working on overlapping sets of
coded bits at the same time, aseparation delay of τ coded
symbols is imposed between adjacent processors so that the
apriori values are updated without memory conflicts. IfT is
the period of all the permutors, it is sufficient to set

τ = 3T. (44)

Eventually the received sequence flows through the series
of processorsB(1)

1 , B
(2)
2 , B

(1)
3 , . . ., B

(2)
2I , which update the

apriori values for the coded bits2I times. The last processor
B

(2)
2I makes hard decisions for the information bits based on

its output APP values. Using this pipeline structure, we can
process2I information symbols in parallel, thus achieving
high speed decoding.

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Demux

B
(1)
1 B

(2)
2 B

(1)
3

B
(2)
2I

l
(1) l

(2)
l
(1)

l
(2)

Buffer

L(0)

l

L
(1)(1) decisions

DemuxDemux

L
(2)(2) L

(1)(3)

Demux

W τ

hard

L
(1)(2)L

(2)(1) L
(2)(2I − 1)L

(1)(0)

Fig. 10. Pipeline decoder for BCC’s.

This procedure is similar to the decoding of turbo codes.
The major difference is that the pipeline decoder uses a
windowed BCJR decoder and calculates APP values for all
the code symbols instead of only the information symbols.
A drawback of pipeline decoding is that it has a large initial
decoding delay. Only after the last processor in the pipeline
has filled up does the decoder start making hard decisions on
the information bits. Thus there is an initial delay (latency) of
2I(W + τ) coded symbols, or about2.5I times the overall
constraint length of the encoder. Nevertheless, we obtain
continuous decoding outputs after this initial delay.

In the next section, we considerblockwise BCC’s. In this
case, we assume that the information sequence enters the
encoder in a block by block manner with a relatively large
block size. This corresponds to many practical applications in
which the data stream is transmitted in finite length packets.
In this sense, the BCC’s introduced in the previous sections
are referred to asbitwise BCC’s.

VI. B LOCKWISE BRAIDED CONVOLUTIONAL CODES

To encode a blockwise BCC the information sequence
is divided into blocks of lengthN symbols, i.e.,u =
(u0,u1, . . . ,ut, . . .), where ut = (ut,1, ut,2, . . . , ut,N ). To
simplify the description, we suppose that the whole block
ut is sent to the encoder at time instantt. If we allow for

some change of notation, a rateR = 1/3 blockwise BCC
encoder can still be described by Figure 7. In particular,
P(0), P(1), andP(2) now denote block permutors of sizeN
rather than convolutional permutors. The information symbol
ut at the encoder input is replaced by the blockut, the
parity symbol v̂(1)

t of the horizontal encoder is replaced by
the parity blockv̂(1)

t = (v̂
(1)
t,1 , v̂

(1)
t,2 , . . . , v̂

(1)
t,N ), and the parity

symbol v̂(2)
t of the vertical encoder is replaced by the parity

block v̂
(2)
t = (v̂

(2)
t,1 , v̂

(2)
t,2 , . . . , v̂

(2)
t,N). As component encoders

we consider now rateR = 2/3 tail-biting convolutional
encoders that start from and end in the same state. This
way the trellises are decoupled between different blocks and
the component decoding can be performed independently for
different time instantst. A termination of the encoders to the
zero state within each time instant might slightly improve the
performance but at the cost of a loss in rate.

At the 0-th time instant, information blocku0 and its
permuted versioñu0 = u0P

(0) enter the first inputs of encoder
1 and encoder 2, respectively. Meanwhile, blocksṽ

(2)
−1 and

ṽ
(1)
−1, consisting ofN zeros each, enter the second inputs of

encoder 1 and encoder 2, respectively. Encoders 1 and 2 then
generate the lengthN parity blocks v̂

(1)
0 and v̂

(2)
0 . Blocks

v
(0)
0 = u0, v

(1)
0 = v̂

(1)
0 , andv

(2)
0 = v̂

(2)
0 are sent over the

channel. At thet-th time instant, parity blockv(1)
t is calculated

by encoder 1 as a function ofut and ṽ
(1)
t = v

(2)
t−1P

(2).

Similarly, parity blockv
(2)
t is calculated by encoder 2 as a

function of ũt = utP
(0) and ṽ

(2)
t = v

(1)
t−1P

(1). The blocks

v
(0)
t = ut, v

(1)
t = v̂

(1)
t , andv

(2)
t = v̂

(2)
t are multiplexed into

the code sequence

v = (v0,v1, . . . ,vt, . . .), (45)

where

vt = (v
(0)
1 , v

(1)
1 , v

(2)
1 , v

(0)
2 , v

(1)
2 , v

(2)
2 , . . . , v

(0)
N , v

(1)
N , v

(2)
N ).

(46)

In the following example, we use partial syndrome for-
mer matrices to describe the encoding process for blockwise
BCC’s.

Example 6: Consider the rateR = 2/3 encoder with
generator matrix given by (33). In Examples 3–5 , (27), (31),
and (34) describe the constraints implied by the encoders given
in (25), (30), and (33). Suppose that the encoder in (33) is used
as a tail-biting rateR = 2/3 encoder to encode the lengthN
information sequencesu(1) and u(2). The partial syndrome
formers areN × N matrices

[

H̄(0)
]T

=



















1 0 1
1 0 1

. . .
1 0 1

1 1 0
0 1 1



















(47)
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and

[

H̄(1)
]T

=



















1 1 1
1 1 1

. . .
1 1 1

1 1 1
1 1 1



















, (48)

where the overbars on̄H(0) and H̄(1) indicate the tail-biting
versions of the syndrome formers. Then the code sequence
(v(0),v(1),v(2)), wherev(0) = u(0) andv(1) = u(1), satisfies
the constraint

v(0) + v(1)
[

H̄(0)
]T

+ v(2)
[

H̄(1)
]T

= 0. (49)

We assume that two such tail-biting convolutional encoders
are used in the rateR = 1/3 blockwise BCC encoder. Then

v
(0)
t + v

(2)
t−1P

(2)
[

H̄(0)
]T

+ v
(1)
t

[

H̄(1)
]T

= 0, (50)

v
(0)
t P(0) + v

(1)
t−1P

(1)
[

H̄(0)
]T

+ v
(2)
t

[

H̄(1)
]T

= 0. (51)

Given v
(0)
t , v

(1)
t−1, and v

(2)
t−1, (50) and (51) define the code

blocksv
(1)
t andv

(2)
t . These equations forv(1)

t andv
(2)
t can

be uniquely solved if and only if the matrix
[

H̄(1)
]T

has a
right inverseG(1). Then

v
(1)
t = v

(0)
t G(1) + v

(2)
t−1P

(2)
[

H̄(0)
]T

G(1), (52)

v
(2)
t = v

(0)
t P(0)G(1) + v

(1)
t−1P

(1)
[

H̄(0)
]T

G(1). (53)

We can use the same techniques as in Section IV to construct
the syndrome former for blockwise BCC’s. The following
matrices are derived from the row-interleaving operation,

H̄T
hor = ⊟

(

Ī,
[

H̄(1)
]T

,P(2)
[

H̄(0)
]T

)

, (54)

H̄T
ver = ⊟

(

P(0),P(1)
[

H̄(0)
]T

,
[

H̄(1)
]T

)

, (55)

where Ī is the N × N identity matrix. By means of the
Kronecker product [17], the syndrome former matrices for the
horizontal and vertical component codes is then given by

HT
hor = I⊗ H̄T

hor (56)

and
HT

ver = I ⊗ H̄T
ver, (57)

respectively, whereI is the semi-infinite identity matrix so that
the block matricesH̄T

hor and H̄T
ver are replicated infinitely

along the diagonal. Corresponding to the code sequencev

given by (45) for a rateR = 1/3 blockwise BCC, the syn-
drome former is obtained by column-interleaving the matrices
HT

hor andHT
ver, i.e.,

HT = ⊟

(

HT
hor,H

T
ver

)

. (58)

If N is large, the syndrome former matrixHT of the blockwise
BCC is sparse, and blockwise BCC’s can be considered as
special cases of LDPC convolutional codes.

Similar to bitwise BCC’s, termination is used to give protec-
tion to the information blocks at the end of the input sequence
for blockwise BCC’s. To reduce the encoding complexity,
we again use termination with a tail of all-zero blocks for
blockwise BCC’s. In this case, after the information blocks

u[0,L−1] = (u0,u1, . . . ,uL−1) (59)

enter the blockwise BCC encoder,Λ additional all-zero blocks
uL, . . . ,uL+Λ−1 enter the encoder. Since theseΛ blocks are
not sent over the channel, the component encoders have, in
fact, rateR = 1/2 instead ofR = 2/3. The resulting rate of
the BCC including the tail is

R =
1

3

L

L + 2Λ/3
, (60)

where a tail lengthΛ = 2 blocks (2N bits) has been
determined to be sufficient in practice.

VII. S IMULATION RESULTS

In this section, the bit-error-rate (BER) performance of rate
R = 1/3 BCC’s is evaluated on an additive white Gaussian
noise (AWGN) channel using computer simulation.

We consider first bitwise SBCC’s with two identical rate
Rcc = 2/3, memorymcc = 2, low complexity (4-state) RSC
component encoders. The generator matrix of the component
encoders is given by

G(D) =







1 0
1

1 + D + D2

0 1
1 + D2

1 + D + D2






. (61)

The three convolutional permutorsP(0), P(1), andP(2) used
in the encoder were constructed randomly with the same
period T . We assumed that transmission consists of an in-
formation sequence of length50T and a tail of2T zero tail
bits. Thus we have a rate loss of2.67%, i.e., the effective
rate is about0.325. In the pipeline BCJR decoder, a window
length ofT andI = 100 decoding iterations were used1. The
results are presented in Figure 11, where we view the effect
of the periodT of the convolutional permutors on the error
performance as a function of the signal-to-noise ratio (SNR)
Eb/N0. We see that the performance of iterative decoding
improves dramatically as the permutor period increases, an
effect equivalent to the “interleaver gain” of turbo codes [18].
The SBCC achieves a BER of10−5 at anEb/N0 of 0.4dB
with permutor periodT = 8000, which is about1dB from the
capacity of the binary-input AWGN channel with code rate
0.325.

We also studied the performance of rateR = 1/3 blockwise
BCC’s. The tail-biting version of the encoder whose generator
matrix is given in (61) was employed. The three block per-
mutors used in the encoder were chosen randomly with the
same sizeN . As above, the transmission of50 information
blocks is terminated with2 all-zero blocks. The parameters
for decoding are the same as for the bitwise SBCC case,

1A value of W = T was chosen for convenience, but in a practical
implementation, a much smaller value ofW can be chosen to minimize
latency [16].
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with a separation delayτ = N . The BER performance is
shown in Figure 12, where we changed the size of the block
permutors fromN = 100 to 8000. Similar to the bitwise case,
the performance of blockwise BCC’s improves as we increase
the size of the block permutors. Furthermore, we see that
the performance of blockwise BCC’s is close to the bitwise
case when the block permutor size equals the convolutional
permutor period. Finally, the blockwise BCC was compared to
a rateR = 1/3 turbo code with 4-state[1, 5/7] (octal format)
component encoders and permutor size8192. The turbo code
exhibits an error floor at a BER of10−6 andEb/N0 = 0.5dB.
By contrast, the blockwise BCC’s achieve a BER of10−6

at Eb/N0 = 0.3dB with permutor sizeN = 8000 and error
floor did not show in the simulation. These results suggest
that BCC’s have good minimum distance properties. In the
next section, we present a distance analysis for the ensemble
of BCC’s that confirms this observation.

Figure 13 shows the performance of the same block-
wise BCC’s for a continuous pipeline decoder without any
termination. The corresponding density evolution threshold
at 0.98dB has been estimated by tracking the probability
density functions of the decoder output LLR’s with Monte
Carlo methods, as described in [19]. Although a different,
protograph-based BCC ensemble [20] is considered in [19],
the structure of the computation tree and, consequently, the
asymptotic threshold are the same as for our bitwise and
blockwise ensembles2. Already for permutor sizeN = 500 the
blockwise BCC’s achieve BER levels below10−5 at anEb/N0

that is less than0.02dB away from the estimated threshold.
For larger permutors, like for BBCs [1], it can be observed
that terminated blockwise BCC’s have better performance
and even outperform the thresholds of continuous BCC’s.
This again indicates that terminated convolutional codes have
better thresholds than their non-terminated counterparts, as
was shown in [21].

VIII. S TATISTICAL ANALYSIS OF BRAIDED

CONVOLUTIONAL CODES

One of the most important performance measures of a
convolutional code is its minimum free distancedfree, since
its large SNR performance with maximum likelihood decoding
depends ondfree. Also, with iterative decoding, a largedfree

protects against the appearance of an error floor at low BER’s.
In this section, we describe a method to compute a lower
bound on the free distance of BCC’s with sufficiently large
overall constraint length. Using a numerical analysis for a
randomized ensemble of BCC’s, we obtain a lower bound on
dfree that grows linearly with overall constraint lengthM as
M goes to infinity.

A. Markov Permutors

In [9], a stochastic device called aMarkov permutor was
introduced to analyze the distance properties of LDPC con-
volutional codes. A Markov permutor is a time-varying non-
periodic permutor with minimal delayδ = 1 and maximal

2The threshold has been estimated to be at1.10dB in [20]. This value was
improved to0.98dB by improving the resolution in the representation of the
estimated probability density functions.
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Fig. 11. Error performance of rateR = 1/3 terminated sparsely braided
convolutional codes on an AWGN channel.
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Fig. 12. Error performance of rateR = 1/3 terminated blockwise braided
convolutional codes and turbo codes on an AWGN channel.

delay ∆ = ∞. It stores a fixed number of symbolsM , i.e.,
the overall constraint length of the Markov permutor is M .
To find a lower bound on free distance for the ensemble of
BCC’s based on Markov permutors, we define the state of the
Markov permutor as the number of 1’s stored in the permutor.
At each time unit, the Markov permutor chooses one symbol
from the stored symbols as its output symbol. The probability
that a given stored symbol in the Markov permutor becomes
the output symbol is1/M . Based on these assumptions, the
probability distributions of the outputs and state transitions can
be derived. In this fashion, the Markov permutor characterizes
an ensemble of randomly chosen convolutional permutors with
overall constraint lengthM .
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Fig. 13. Error performance of rateR = 1/3 continuous blockwise braided
convolutional codes on an AWGN channel.

It follows that the average delay of a symbol is given by

∞
∑

i=1

i

(

1 −
1

M

)i−1
1

M
= M. (62)

This means that a Markov permutor stores each input symbol
an average ofM time instants in its memory. (Note that,
in contrast to fixed convolutional permutors, where a symbol
cannot be held longer than the maximal delay∆, a Markov
permutor can store symbols, in principle, for an infinite time.)

Consider as an example the rateR = 1/3 BCC encoder
in Figure 7, but replace each convolutional permutor with
a Markov permutor having overall constraint lengthM/3.
(The bound to be derived below can be extended to gener-
alized BCC’s in a straightforward manner.) At time instant
t, t = 0, 1, . . ., each permutor chooses randomly one symbol
from among theM/3 symbols that are stored in its memory
and passes this symbol to the permutor output. The permutor
P(0) replaces this symbol with a new information symbol. The
permutorsP(1) andP(2) replace their outputs with new parity
symbolsv

(1)
t and v

(2)
t , respectively. The ensemble of BCC

encoders with Markov permutors can be studied analytically
to determine an average distance spectrum and, consequently,
a lower bound on free distance for BCC’s. The problem in-
volves solving a system of recursive equations whose variables
represent the path weights and the states of the permutors
and the component encoders. However, this approach is quite
difficult for numerical calculation. To simplify the analysis,
we replace the three Markov permutors with onemultiple
Markov permutor (MMP) of overall constraint lengthM and
multiplicity 3 (see Figure 14). By definition, an MMP of
multiplicity k has k inputs andk outputs per time instant.

Initially, the MMP storesM zero symbols. At each time
instantt ≥ 0, the permutor chooses uniformly three symbols
ṽ
(0)
t , ṽ

(1)
t , andṽ

(2)
t from among theM symbols in its memory.

As shown in Figure 14, the permutor sends this three-tuple

v
(0)
t

Permutor

Multiple
Markov

Encoder 2

Rate 2/3

Encoder 1

Rate 2/3

MUX
vt

ṽ
(0)
t

u
(0)
t

ṽ
(1)
t

ṽ
(2)
t

ut

v
(1)
t

v
(2)
t

Fig. 14. RateR = 1/3 BCC encoder with a multiple Markov permutor.

ṽt = (ṽ
(0)
t , ṽ

(1)
t , ṽ

(2)
t ) together with the information symbol

ut to encoders 1 and 2. Based on the inputs, the component
encoders calculate the parity symbols. The code symbols
v
(0)
t = ut, v

(1)
t , andv

(2)
t are then fed to the MMP input, and

code blockvt = (v
(0)
t , v

(1)
t , v

(2)
t ) is sent over the channel.

Consider the ensemble of BCC’s using an MMP of multi-
plicity 3, as shown in Figure 14. By definition, thestate µt of
the MMP at thet-th time instant is the number of 1’s stored
in its memory, and

µt ∈ {0, 1, . . . , M}. (63)

We assume component encodere has memorym(e)
cc , e ∈

{1, 2}. Let σ
(e)
t denote the state of component encodere at

the t-th time instant, where

σ
(e)
t ∈ {0, 1, . . . , 2m(e)

cc − 1}. (64)

The composite state of the two component encoders at timet is
denotedσt = (σ

(1)
t , σ

(2)
t ). Combining the states of the MMP

and the component encoders, thestate of the BCC encoder
is defined as(µt, σt). As shown in Figure 15, a super trellis
for the encoder ensemble can be constructed for analyzing the
state transitions during encoding. The branches of the super
trellis are labeled withut/ṽtvt. The output blockvt of the
encoder at timet and the composite state of the two component
encoders at timet+1 are functions of the composite stateσt,
the input symbolut, and the output of the MMP̃vt:

vt = G(σt, ut, ṽt), (65)

σt+1 = F(σt, ut, ṽt). (66)

The functions ofG(·) and F(·) depend on the component
encoders. The code symbolsvt are then fed back to the MMP,
and the next state of the MMP is given by

µt+1 = µt + w
H

(vt) − w
H

(ṽt). (67)

Conditioned on the permutor stateµt, we can find the
probability distribution of the permutor output̃vt. From a
population ofn symbols, the number of ordered samples of
sizei that can be formed without replacement is given by [22]

(n)i , n(n − 1) · · · (n − i + 1)

= n!/(n − i)! .
(68)

Thus, the total number of ordered samples of the outputs from
the multiplicity-3 MMP with overall constraint lengthM is
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(

M
3

)

. Among them, there are
(

µt

w
H

(ṽt)

)(

M−µt

3−w
H

(ṽt)

)

ordered
samples with the same weight (number of 1’s) asṽt. Under
the assumption that the output symbols are randomly selected
from the MMP, we have

P (ṽt|µt) =











0, if 3 − w
H

(ṽt) > M − µt or w
H

(ṽt) > µt
(

µt

w
H

(ṽt)

)(

M − µt

3 − w
H

(ṽt)

)(

M

3

)

−1

, otherwise

(69)
which follows from the fact that the number of 0’s or 1’s
in xt cannot exceed the number of 0’s or 1’s in storage.
This probability distribution is used in the next section to
recursively calculate the average distance spectrum of an
ensemble of BCC’s.

B. Calculation of the Average Distance Spectrum

In this section, we analyze the average distance spectrum
of the codes in the ensemble of BCC’s based on the Markov
permutors described above. Since BCC’s are linear, this spec-
trum coincides with the average weight spectrum of the codes
in the ensemble. We assume that initially the BCC encoder is
in the zero state, i.e.,µ0 = 0, σ0 = 0. Assume an information
symbolu0 = 1 enters the encoder. Correspondingly, the MMP
transitions to the stateµ1 = 1 and the component encoders
to a stateσ1 6= 0. The encoding process then continues from
state(µ1, σ1). Ultimately, with probability1, the BCC encoder
will return to the zero state(µl, σl) = (0,0) at somel-th time
instant. For the purpose of bounding the free distance, we
are interested in the weight distribution of the encoder output
sequence between the two time instants when the encoder is
in the zero state.

Let ā(d, i, l) = E[a(d, i, l)] denote the expectation of the
number of paths with codeword weightd and information
weight i that depart from the all-zero path at time instant0
and remerge with the all-zero path at timel, l ≥ 1. The set
{ā(d, i, l)}, 0 ≤ d, i ≤ ∞, 1 ≤ l ≤ ∞, is called theaverage
extended weight spectrum (AEWS) of the encoder. The AEWS
is derived using a backward recursion on the super trellis. In
the backward recursion, we must consider truncated paths that
start from non-zero states, i.e.,(µt, σt) 6= (0,0), where the
AEWS from state(µt, σt) is denoted as̄a((µt, σt), d, i, l).

Now we describe the backward recursion. As shown in
Figure 15, we assume that the encoder is in state(µt, σt).
With inputut = {0, 1} and random outputsxt from the MMP,
several successive states(µt+1, σt+1) are possible in a one
step transition. Withut known, it follows directly from (66)
that the transition probability is

P (σt → σt+1|µt) = P (ṽt|µt), (70)

where P (ṽt|µt) is given by (69). All paths starting from
these successor states are extensions of the paths passing
through state(µt, σt). In summary, the AEWS’s from the
successor states(µt+1, σt+1) contribute to the AEWS from
state(µt, σt) in a probabilistic summation. It follows that

ā((µt, σt),d, i, l) =

1
∑

ut=0

∑

ṽt

P (ṽt|µt)

· ā((µt+1, σt+1), d − w(vt), i − ut, l − 1),

(71)

wherevt, σt+1, andµt+1 are given by (65), (66), and (67),
respectively. Note that the codeword weights, information
weights, and path lengths of the AEWS’s from the successor
states must be decreased to take into account the weights on
the transition branch.

(µt, σt)

t t + 10

(µt+1, σt+1)

u
t = 1/ṽ

tv
t

ut
= 0/ṽ

t
vt

Fig. 15. State transitions on a super trellis.

In the super trellis, the path that diverges from the all-zero
path is unique since it can be caused only by an information
symbol u0 = 1 entering the encoder. Thus the probability
associated with this transition is unity. Let(µ1, σ1) denote the
corresponding successor state of the encoder, andd1 denote the
weight of the transition from(0,0) to (µ1, σ1). Substituting
these values in (71), we obtain

ā(d, i, l) = ā((µ1, σ1), d − d1, i − 1, l − 1) (72)

On the basis of the AEWS, theaverage weight spectrum
(AWS) is defined as

ā(d) =

∞
∑

l=1

l
∑

i=1

ā(d, i, l). (73)

As in (73), if we sum over alli and l in (71), we obtain the
following system of recursive equations for the AWS from
state(µt, σt):

ā((µt, σt), d) =

1
∑

ut=0

∑

ṽt

P (ṽt|µt)

· ā((µt+1, σt+1), d − w(vt)).

(74)

Finally, the AWS can be computed using following steps:

1) Set the overall constraint lengthM and generate the
super trellis{(µt, σt) → (µt+1, σt+1)} according to
(66) and (67) for the component encoders.

2) Find (µ1, σ1) andd1.
3) Set the boundary conditions

ā((0,0), d) =

{

1 d = 0

0 d ≥ 1
(75)

and
ā((µ, σ), d) = 0, ∀d < 0. (76)

For µ = 0 to M

4) For d = 0 to dmax

For µ = 0 to M
For all σ, calculatēa((µ, σ), d) based
on (74) and boundary conditions;



IEEE TRANSACTIONS ON INFORMATION THEORY, ACCEPTED FOR PUBLICATION 14

End
ā(d) = ā((µ1, σ1), d − d1);

End

C. A Lower Bound on Free Distance

After deriving the AWS for given component encoders with
constraint lengthM , a free distance lower bound can be
obtained using the usual Gilbert-Varshamov (see, e.g., [10])
argument, as stated in the following theorem.

Theorem 1: If d̂ is the largest integer value ofδ that satisfies

δ−1
∑

d=1

ā(d) < 1, (77)

then at least one code in the ensemble must have free distance
not less than̂d.

We calculated̂, and it follows from Theorem 1 that there
exists at least one code in the ensemble for whichdfree is
lower bounded byd̂. The free distance bound implied by
(77) is a function of the component encoders and the overall
constraint lengthM of the MMP. Recall that in Section III
we showed that a BCC encoder with three convolutional
permutors of widthT has an overall constraint length of
M = 5(T − 1)/2+1. Solving for d̂ for different values ofM
then gives us a numerical lower bound ondfree. We plot d̂
as a function ofM , 0 < M ≤ 1000, in Figure 16. Three rate
R = 1/3 SBCC’s with identical RSC component encoders of
memorymcc = 2, 3, and4 were considered in the calculation.
We see that the free distance bounds exhibit essentially linear
growth as a function of the overall constraint lengthM of the
MMP.
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Fig. 16. Lower bounds on the free distance of BCC’s with different
component encoders.

Although the numerical results plotted in Figure 16 extend
only to M = 1000, they provide strong evidence to conjecture
that asymptotically, asM goes to infinity, the ratio of the
free distance of these rateR = 1/3 BCC’s to their overall

constraint length is lower bounded byγbc, whereγbc is the
average slope of the corresponding curves in Figure 16. Values
of γbc derived from Figure 16 are given in Table I for BCC’s
with rateRcc = 2/3 component encoders of memorymcc = 2,
3, and4. The generator polynomials are denoted in octal form.

TABLE I
FREE DISTANCE BOUND FOR RATER = 1/3 BCC’S WITH DIFFERENT

COMPONENT ENCODERS.

Component encoder memory Generator matrix Asymptotic ratioγbc

mcc = 2

�
1 0 4/7
0 1 5/7

�
0.6069

mcc = 3

�
1 0 17/15
0 1 13/15

�
0.7230

mcc = 4

�
1 0 25/35
0 1 23/35

�
0.7341

It is interesting to compare this bound with the Costello
bound [23] on the free distance of the ensemble of convo-
lutional codes. The Costello bound states that there exists
rateR = b/c convolutional encoders of memorym with free
distance lower bounded by the following inequality

dfree

cm
≥ −

R

log2[2
1−R − 1]

+ O

(

log2 m

m

)

, (78)

which can also be written as

dfree

bm
≥ −

1

log2[2
1−R − 1]

+ O

(

log2 m

m

)

. (79)

Since the overall constraint lengthM of a convolutional
encoder is upper bounded by the inequalityM ≤ bm, we
can write

dfree

M
≥ −

1

log2[2
1−R − 1]

+ O

(

log2 M

M

)

. (80)

Asymptotically, asM goes to infinity, we havedfree ≥
γcostM , whereγcost = −1/(log2[2

1−R − 1]). In particular,
for R = 1/3, γcost = 1.3028. Note that the coefficients
γbc for BCC’s are roughly a factor of 2 less than the ratio
γcost in the Costello bound. This is consistent with the typical
reduction in distance growth rate observed when comparing
Gallager’s minimum distance bound [24] for LDPC block
codes to the Gilbert-Varshamov [10] minimum distance bound
for the ensemble of block codes.

IX. CONCLUSIONS

In this paper, we proposed a new class of turbo-like codes,
namely, braided convolutional codes, that are suitable for
high speed continuous data transmission. We presented a
construction method for tightly and sparsely braided convo-
lutional codes. For applications involving packetized data, we
also introduced a blockwise encoding structure. Computer
simulation results show that sparsely braided convolutional
codes achieve good convergence performance with iterative
decoding. Furthermore, the simulation results suggests that
braided convolutional codes have good distance properties,
in contrast to conventional turbo codes. This observation was
theoretically confirmed by an analysis of braided convolutional
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codes using a statistical Markov permutor model. For this
model, we showed that braided convolutional codes have a
free distance that grows linearly with overall constraint length,
i.e., braided convolutional codes are asymptotically good.
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