
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Advancing Software Development Efficiency in an Open Source Software Context

Orucevic-Alagic, Alma

2013

Link to publication

Citation for published version (APA):
Orucevic-Alagic, A. (2013). Advancing Software Development Efficiency in an Open Source Software Context.
[Licentiate Thesis, Department of Computer Science]. Department of Computer Science, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 26. Apr. 2024

https://portal.research.lu.se/en/publications/e12d93a1-06a6-40f0-8a61-de6cc37f0d45

Advancing Software Development Efficiency
in an Open Source Software Context

Alma Oručević-Alagić

Licentiate Thesis, 2013

Department of Computer Science
Lund University

ii

ISSN 1652-4691
Licentiate Thesis 1, 2013
LU-CS-DISS:2013-1

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: Alma.Orucevic-Alagic@cs.lth.se

Typeset using LATEX
Printed in Sweden by Tryckeriet i E-huset, Lund, 2013

c© 2013 Alma Oručević-Alagić

ABSTRACT

Open source software has been gaining popularity, especially among commercial
organizations. The broad industry acceptance is in large part due to the demon-
strated ability of open source solutions to compete with proprietary alternatives.
Using open source software components enables companies to reduce their own
development costs, and thus improve software development efficiency. Many open
source business models have emerged around open source software, the majority
of which focus on service oriented revenue models while some include parts of
proprietary software, i.e., hybrid business models. In a global economy, where
many companies have offices and software development resources distributed in
different geographic locations, development practices used by open source com-
munity pique industry interest.

Given the dynamic of the open source software phenomena and commercial in-
terest in the area, research focus is needed to understand the fabric of open source
communities. In particular, more research is needed to understand motivation, in-
ner workings, and different consequences of collaborative industry partnerships
observed within open source communities. In addition, more evidence is needed
to understand criteria and implications for selection and usage of open source soft-
ware components within a commercial setting. Finally, more research is needed to
define methodology which can be used to assess and measure the applicability of
open source development practices within a closed development setting process.

The research effort presented in this thesis has used both the qualitative and
quantitative empirical approach to study the phenomena.

The preliminary results show that open source software is a viable alterna-
tive to proprietary software. It helps companies reduce development costs by
using an open source component as a type of off-the-shelf component for non-
differentiating parts of software products, and thus providing an opportunity to
focus development efforts on differentiating aspects of their software products.
Analysis of the open source development process have shown some major differ-
ences as compared to traditional development practices. Many companies have
found pragmatic ways to collaborate with open source communities, thus reduc-

iv ABSTRACT

ing the cost of software development and creating new business models. A new
approach based on social network analysis has been proposed and applied to assess
the Android committersÕ network structures and measure cross-collaboration and
influences within the networks.

The future research will focus on defining quantitative approaches based on
network theory to assess the structure and evolution of software development ef-
fort by studying open source projects as well as the projects implemented within
a closed company setting. The overall goal is to implement the approach within a
closed setting in order to test if it can better assess effectiveness of software devel-
opment process by uncovering efficiency issues and offering possible solutions.

CONTENTS

ABSTRACT iii

PREFACE vii

ACKNOWLEDGEMENTS ix

I INTRODUCTION 1
1 Introduction . 1
2 Background and Related Work 2
3 Research Focus . 7
4 Method . 8
5 Results . 10
6 Synthesis . 15
7 Threats to Validity . 17
8 Agenda for Future Research . 18
9 Context and FRQs . 18
10 Conclusion . 19
References . 21

Included Papers 27

I A Systematic Review of Research on Open Source Software in Com-
mercial Software Product Development 29
1 Introduction . 30
2 Background and related work . 31
3 Review Method . 32
4 Results . 37

vi CONTENTS

5 Discussion . 45
6 Conclusions . 46
References . 47

II Usage of Open Source in Commercial Software Product Development 53
1 Introduction . 53
2 Methodology . 54
3 Results from focus group meeting 58
4 Conclusions . 61
References . 62

III A Case Study on the Transformation From Proprietary to Open Source
Software 65
1 Introduction . 66
2 Background and related work . 67
3 Research approach . 68
4 Results . 74
5 Discussion . 78
6 Conclusions . 79
References . 79

IV A Case Study of Open Source Development Practices within a Large
Company Setting 83
1 Introduction . 84
2 Background and related work . 85
3 Research approach . 88
4 Results . 91
5 Discussion . 95
6 Conclusions . 97
References . 98

V Network Analysis of a Large Scale Open Source Project 101
1 Introduction . 102
2 Research approach . 103
3 Results . 111
4 Discussion . 120
5 Conclusions . 121
References . 121

PREFACE

List of Included Publications

The following publications are included in this licentiate theses:

I A systematic review of research on open source software in commercial
software product development
Martin Höst, Alma Oručević-Alagić
Journal of Information & Software Technology, 53:6, pp. 616-624, 2011

II Usage of Open Source in Commercial Software Product Development -
Findings from a Focus Group Meeting
Martin Höst, Alma Oručević-Alagić, and Per Runeson
International Conference on Product Focused Software Development and
Process Improvement (PROFES) 2011, pp. 143-155, 2011

III A Case Study on the Transformation from Proprietary to Open Source
Software
Alma Oručević-Alagić, Martin Höst,
Extended version of 6th International IFIP WG 2.13 Conference on Open
Source Systems (OSS 2010), Notre Dame, IN, USA, May 30 - June 2, 2010,
Proceedings, pp. 367-372, 2010

IV A Case Study of Open Source Development Practices within a Large
Company Setting
Alma Oručević-Alagić, Martin Höst
Submitted to a journal 2012

V Network Analysis of a Large Scale Open Source Project
Alma Oručević-Alagić, Martin Höst
Submitted to a journal 2013

viii PREFACE

Contribution statement
The author of this licentiate theses, Alma Oručević-Alagić, is main contributor of
publications III-V. For these papers, she was the main designer, implementer, and
responsible for most of the writing and the running of the research process. For
the Paper II, the author participated in the design and implementation of the focus-
group meeting. The author was involved in the implementation of the research
presented in Paper I, the systematic literature review, in particular the articles’
selection and assessment process, as well as in the writing of parts of the paper,
such as summarizing two subject areas.

ACKNOWLEDGEMENTS

This work was funded by the Industrial Excellence Center EASE - Embedded Ap-
plication Software Engineering.

I would like to express my utmost gratitude, to all the people without whose
help this licentiate thesis would not be possible. Thank you Prof. Dr. Martin Höst,
for your invaluable guidance, insight, and patience during my journey of knowl-
edge acquirement. It has helped me look at the field of research from a different
perspective and increased my awareness on the importance of objective and struc-
tured research approach. My thanks also go to Prof. Dr. Per Runeson, whose
guidance and leadership by example is an inspiration for everyone who has had
an opportunity to work with him. I would also like to thank all my colleagues at
the department of computer science at Lund University, especially members of the
SERG for the inspiring discussions and helpful advises. I am very grateful for hav-
ing the opportunity to work with such a wonderful group of people. In addition,
my special thanks go to faculty members with whom I had an opportunity to work
with and learn from, especially Prof. Dr. Görel Hedin, Dr. Lennart Anderson, and
Per Holm. I would also like to thank the members from the companies supporting
EASE project, without whose help much of the research would not be possible.

Finally, I would like to thank the most those who have to put up with me on
daily basis, and that is my loving family. I would especially like to thank my
parents, my mother Sabira, and especially my father Ramiz, who has truly been
the most inspiring person in my life. His kindness, patience, and willingness to
spend a lot of time with me showing me the importance of education and honorable
conduct have been the most valuable gift a child could ask for. Special thanks also
go to my aunt, Fatima Druškić, who has been that very special sunshine in my
life. Last, but not the least, I would like to thank my wonderful husband Amir, for
his support, patience, and all the joy he brings to my life’s endeavors. My girls,
Aiša, Emina, and Selma, have made this life journey truly worthwhile. At the end,
my deepest thanks go to the God, the Lord of the worlds, the omnipotent and the
omnipresent, and the provider of all good in life.

INTRODUCTION

1 Introduction

1.1 Software Development Efficiency: Open Source Soft-
ware Perspective

Improving software development efficiency has been a daunting and a complex
task. Different software development methodologies and processes have been pro-
posed and applied to pragmatically manage complex and entangled software de-
velopment entities comprised of resources, requirements, software development
artifacts, and schedule [PC86]. Waterfall development [Roy87], rapid prototyping
[LG97], iterative development models such as spiral model[Boe88] and incremen-
tal delivery [LB03], rational unified process [Kru02], agile unified process[NB07],
agile methodologies such as scrum and extreme programming [DD09] are exam-
ples of well known and utilized software development methodologies and pro-
cesses. However, it seems that no single one of them systematically reduced the
initial complexity problem. This goes in line with a statement of a well known
computer scientist, Frederick Brooks, that there seems not to exist a silver bullet,
that is a methodology or a process that would bring a significant improvement in
software development efficiency [Fra+07].

In the past couple of decades open source software (OSS) solutions have be-
come an important alternative to many in-house, proprietary software solutions
[HOA11a]. Operating systems, database management solutions, web and applica-
tion servers, development tools, and office software are some examples of types
of software products that successfully compete with corresponding proprietary al-
ternatives. Many business models have emerged around OSS, and many industry
eco-systems have profoundly been shaped by OSS solutions, such as, e.g., An-
droid open source project [Inc13]. While initially OSS development was reserved
for enthusiasts contributing their free time to work under an open source com-
munity developing an open source product, industry interest in the software has

2 INTRODUCTION

introduced some new models of open source communities. Hence, today we can
see many successful open source communities flourishing under guidance and re-
source commitment from commercial organizations.

The dynamics of the OSS and industry involvement with the field have prompted
research in order to better understand how communities of geographically dis-
tributed developers that rely primarily on electronic means for communication
can organize work to develop large scale, enterprise quality software solutions.
This more so given the inherent software development complexity. The goal of
conducted research is to understand the fabric of open source community, i.e.
what development methodologies and processes are present in successful open
source communities and their applicability within a closed development setting.
As means to achieve this goal, the following subgoals were identified:

1. Assess the usage, development, and business models of commercial organi-
zations with respect to OSS.

2. Identify a framework of the most important OSS development process char-
acteristics and assess its applicability within a closed development setting.

3. Explore applicability of network theory analysis in studying a structure and
an evolution of OSS development communities.

Paper I presents a comprehensive literature review of previous research on the
topic of OSS in commercial software development. Based on the results of the re-
view and with the intent to further our understanding of current industry practices,
a focus group meeting with relevant industry participants who use open source
software was held. The conclusions of the meeting were analyzed and presented
in Paper II. Paper III analyzes a process of transitioning the Ingres database solu-
tion [Ass09] from proprietary to open source focusing on the changes in the code’s
quality metrics. In order to assess the applicability of open source development
practices within a closed development setting a study which identifies common
open source software development practices and studies their applicability within
a large company setting was conducted. The results of the study are presented in
the Paper IV. Finally, Paper V presents a quantitative, network theory based ap-
proach, to study the structure of open source communities by identifying network
centrality features, tendencies to form cliques, the most influential and the most
central participants.

2 Background and Related Work

In the early days of software development, during the late 1940’s, building large
and expensive computers involved more effort and resources than creation of soft-
ware that would execute on the machines. Hence, the code was shared freely

2 Background and Related Work 3

among the scientist. With technology advancement and production of more com-
plex and diversified computing machines, the field of computer programming yielded
new guidelines for creation of more complex software products. Among the first
pioneers of the field were Edsger Dijkstra proposing layered architectures in 1968
[Dij83] and David L. Parnas who in 1972 [Par72] introduced concepts of system
modularization. Thus, instead of building new solutions from the scratch, which
was a common practice in 1970s, programmers started building and using reusable,
tested and verified families/architectures, enabling them to create unique software
products by introducing variance and specific implementations at appropriate lev-
els. Hence, the ability to share software architectures increases software reuse and,
as a result, it improves productivity and reduces cost of software development.

Sharing of the code became especially popular in academic environment. As
described by Raymond [Ray01a], the Berkeley Software Distribution license also
known as BSD, is a result of years long collaboration on the development of
the Unix operating system by the University of California, Berkeley and AT&T
labs. In the beginning of 1980s, especially during the time the personal comput-
ers gained popularity, the decades old concept of software source code sharing,
was replaced with proprietary, closed source software products. As a response to
the new situation, open source proponents led by the effort of Richard Stallman
founded the Free Software Foundation (FSF) [FSF13]. However, the efforts were
not met with a broader public acceptance, especially among the industry partic-
ipants [Web04b]. According to Raymond [Ray01a], the emergence of the Linux
operating system was a pivotal for the open source movement proliferation espe-
cially with industry, as it has demonstrated that a large open source community can
produce complex and sophisticated software and that business models can be built
around open source software. In 1998 Eric Raymond became one of the founders
of the Open Source Initiative (OSI) [OSI13a], a non profit organization with aim
to advocate and educate about the benefits of open source. The OSI also issues
Open Source Initiative Licence trademark, which according to the organization’s
mission statement, has a purpose of building trust around all constituencies of an
open source community carrying the trademark [OSI13b].

2.1 Open Source Software: Industry Perspective

A wide industry acceptance of OSS products such as the Linux and the Apache,
and the emergence of OSS business models has created a need for systematic
study of the OSS phenomenon from different perspectives. Research by Joel West
[Wes07] discusses the aspect of software commoditization. He argues that while
there exist some unique and new technology inventions coming from the OSS
world, such as the Apache web server, the majority of broadly adopted OSS solu-
tions are counterparts for existing proprietary solutions, such as, e.g., Linux and
MySQL. Android is another example of enterprise grade open source operating
system for mobile devices. Companies from the entire mobile eco-system have

4 INTRODUCTION

joined Android Handset Alliance in an effort to help build and promote it. Sharing
of development costs enables companies to decrease production costs of undiffer-
entiating part of the product, in this case the underlying Android operating system,
and focus resources which customers perceive as added value.

Besides using an OSS component as a third party component, companies can
also choose to open source all or a part of their software product. For exam-
ple, Computer Associates, the company ranked as one of the five largest software
vendors [For13] as discussed by Raymond [Ray01b], open sourced the Ingres
database management system. The software is used in some of the company’s
products, but over the time it has become a non-differentiating technology, and
lost its leading edge over other commercial and OSS solutions, e.g., Oracle and
MySQL [OAH10]. Hence, the motivation for the Ingres open sourcing is sharing
of development burden with the community, but also regaining some of the lost
market share. The Netscape web browser is one example where a company has
lost a large part of its market share due to entrance of the Internet Explorer web
browser distributed by Microsoft corporation. To remedy the situation, Netscape
decided to become OSS in 1998 [Ray01a]. The Eclipse OSS project develops and
maintains Eclipse, leading software development platform, and it is governed by
the Eclipse Foundation whose members are largely comprised of leading industry
software companies. By participating in the Eclipse OSS, companies can ensure
that necessary functionality for building software products with their proprietary or
open source solutions is included in the Eclipse. Hence, by contributing resources
to an OSS project, company can also proliferate usage of its own products. This
was also the main motivation for the IBM to open source Eclipse in 2001 [Wes07],
which based on development effort was valued at 40 million dollars at the time.

Many studies have been conducted to understand the underlying fabric of the
OSS communities. The Orbitan Software Survey [RAG00], conducted in 2000,
studied the make up of participants that participate in OSS projects, such as Red-
Hat Linux v 6.1, Linux Kernel sources v 2.2.14, Munitions Cryptography, and
some 50% of projects available through Freshmeat. The results of the survey show
that 10% of developers, or 1276 of them, contribute to 72% of the code base com-
prised in total of 25 million lines of code and 3149 distinct projects. A study by
Crowston and Howison [CH05], analyzed the way participants communicate in
projects hosted under Source Forge. Even though Source Forge at the time of the
study hosted over 50000 distinct OSS projects, by eliminating projects that have
less than 7 developers and less than 100 bugs in bug reporting system, they dis-
covered that only 124 projects or just 0,002% of all hosted projects fit the criteria.
The outcome of such selection criteria can point at the importance of understand-
ing the studied OSS communities at an individual level, as there seems to exist
many projects hosted by various OSS portals that are not active. The results, based
on studying communication channels for 61068 bug reports, show that the major-
ity of the projects have highly centralized decision and communication structures.
Further more, the study also found that there exists a predictable relationship be-

2 Background and Related Work 5

tween the structure of the code and the organizational structure of the development
team.

A question of what motivates participants to take part in development of OSS
has been analyzed in studies at Kiel University [HNH03] and by Boston Consult-
ing group [BCG02]. The study at Kiel University examined motivations of Linux
kernel project participants from 28 countries. The two leading motivating factors
identified in the study are participants’ desire to increase their own commercial/-
market value and personal satisfaction. A study by Boston Consulting Group,
done on 525 Source Forge community members, showed results in line with the
Kiel University study, with the highest motivating factors as personal belief in
OSS, hope of increasing ones commercial value, and an opportunity to enhance
skills.

2.2 Software Development Efficiency: Central Software
Engineering Issue

Raymond [Ray01a] notes that the emergence of the Linux operating system has
demonstrated the effectiveness of OSS development process, i.e., that large and
complex enterprise grade software can be produced by very large number of self-
managed developers using primarily electronic communication channels. He goes
on to show that this defies Frederick Brooks’ notion that adding more resources to
a late project increases communication costs and complexity and thus makes the
project even more late/less efficient [Bro95]. The argument for this lies in the setup
of the traditional OSS communities that is very different from the traditional devel-
opment communities found in commercial organizations. The pivotal difference,
as Raymond claims, is the existence of a small core group of developers in OSS
projects, and a large community of beta testers and occasional contributors that
through close-nit and transparent communication can early and more efficiently
identify bugs. Hence, the Brooks law in an OSS community only applies to the
close nit group of developers, and not the entire OSS community. This argument
has been called by Raymond the Linus Law and phrased as ’Given enough eye-
balls, all bugs are shallow’.

Fogel [Fog05] presents a thorough insight into the fabric of OSS communities,
by describing common open source development practices (OSDP) present in suc-
cessful OSS projects. Some companies have shown interest in implementation of
OSDP internally, within a closed development setting, in order to improve devel-
opment efficiency. The OSDP also seems to be a good fit for global companies,
having development teams in different location sites. A number of studies have
been conducted to understand the applicability of the OSDP within a closed, com-
mercial environment. The studies conducted in HP [MM08], Lucent [GGH06],
and Nokia [LRM08a] analyzed development of software product within the com-
pany setting. Software developed in such way is called, e.g., inner-source or closed
open source. The results of the studies show that the application of OSDP within

6 INTRODUCTION

a company setting can have benefits such as improved reuse, improved quality,
rapid developer redeployment, increased awareness of a developed software, and
increased development speed.

Scacchi [Sca10] argues that OSS development is an interesting alternative ap-
proach to development of large systems and suggests that further research, espe-
cially using empirical examination, is needed in order to better understand OSS
development practices (OSDPs).

2.3 Software Development Efficiency: Micro and Macro
Aspects of Network Analysis Applicability

Social network analysis is a study approach based on the application of network
theory on social networks for the purpose of studying structure and dynamics of
social relationships [WF94]. A few studies have applied social network analysis to
study communication archives of open source communities, as well as committer
and module networks. Kevin et al.[HIC06a] study concludes that there seem to ex-
ists a predictable relationship between structure of the code and the organizational
structure of the development team. Results of a study by Cleidson et al. [SFD05]
show that the network structure of the source code is highly related to the way
communication is organized.

The availability of OSS source code repositories, as well as the presence of
OSS communities’ communication archives makes it possible to study the OSS
phenomenon as social networks. Thus, social network analysis can be used to
understand, e.g., an underlying structure of a development organization, the ex-
istence of cliques, and to identify participants with high influence and centrality.
As source code repositories and communication archives host historical data, this
quantitative approach can be used to assess a project’s evolution.

Understanding the structure and dynamics of an OSS community can be an im-
portant factor from both a macro and a micro perspective. The macro perspective
assumes knowledge of the nature of governance and influences within the com-
munity, which can be especially relevant for companies planning to participate in
an OSS community. As discussed in earlier sections, the companies’ motivation
can be to share cost of development burden or to proliferate its own technology.
As more and more OSS stacks emerge, social network analysis can be used to
study committer networks of distinct OSS communities whose software is bun-
dled under an OSS project, such as the case with the Android OSS. The micro
perspective deals with aspect of applying social network analysis to closed devel-
opment communities, e.g., to measure how some organizational or development
process changes impact underlying committer and module networks, or to under-
stand who the most relevant and influential code contributors are, assess cross-
team collaboration, etc. Hence, social network analysis can provide an insight that
can help companies define appropriate strategies to improve software development
efficiency on the macro and the micro level.

3 Research Focus 7

Table 1: Research questions with respect to the identified industry’s OSS com-
munity roles

Role Paper Research Questions
Identification of the
industry roles in an
OSS context

Paper I RQ1: What are the industry roles with
respect to OSS?

User of OSS Compo-
nents

Paper II RQ2: What are industry practices for
an OSS component selection process?

Implmenetor of an
OSS business model

Paper III RQ3: How does the open source com-
munity change an open-sourced propri-
etary software product in terms of static
software quality metrics?

Implementor of
OSDP within closed
development setting

Paper IV RQ4: How aligned are OSDPs with the
traditional development practices ?

Participant in an OSS
community

Paper V RQ5: How can social network analysis
theory be applied to access the structure
of software development communities?

3 Research Focus

This section describes how the work included in the thesis can contribute to an
increased understanding of the OSS development process and its relevance and
applicability within a commercial organization. The relationship between the con-
tributions are presented in Figure 1. In order to gain a better understanding of how
OSS can be used to improve software development efficiency, a systematic review
on the topic of usage of OSS was conducted. The results of the review, presented
in Paper I, show that there exist four distinct roles that industry participants have
taken with respect to the OSS. A commercial organization roles with respect to an
OSS community are identified as:

1. User of OSS components, as a part of component based software engineer-
ing.

2. Implementor of an OSS business model.

3. Implementor of open source development practices (OSDPs) within own
closed development setting.

4. Participant in an OSS community.

The roles are further examined through more specific research questions (RQs),
as presented in Table1

8 INTRODUCTION

The identified roles also represent different aspects or categories on which re-
search could focus. In many cases the roles tend to be overlapping, e.g., a company
using OSS components is often also a participant in the OSS community. Hence,
focusing research exclusively on one category, ignoring the roles’ synergy, can re-
sult in an inadequate and partial assessment of the OSS with respect to commercial
context. Paper IV presents a case of a large, global software and hardware com-
pany that bases its product on an OSS, and as a consequence, also participates in
the OSS community. This synergy has also created competence within the com-
pany on how the OSS community works and the underlying OSDP it implements.
Recognizing potential benefits of the OSDP, some of the company’s internal de-
velopment roles and processes were modified to resemble those found in the OSS
community. Hence, the studied company fills the four OSS roles, in an effort to
increase its development efficiency.

Paper II further explores industry prerequisits in relation to the use of OSS
components. Software components that are not maintained deteriorate according
to Land [Lan02], so the virtue of successful use of OSS components assumes con-
cerns such as component modification and bidirectional updates, from the com-
pany to the OSS community and vise-versa. Paper III studies the transitioning
process of a proprietary database product, Ingres, into company sponsored OSS
community focusing on how the OSS community impacts different software qual-
ity metrics. This case study also brings further clarification on the OSDP. In par-
ticular, the transitioning process shows the types of modifications that need to be
made to the proprietary solution in order for it to become compliant with OSDP,
such as a creation of complete and up-to-date documentation, setup of intuitive and
accessible OSS project portal infrastructure, installment of appropriate resources
that govern community.

The work presented in Paper V was motivated by the need of quantitative ap-
proach for the assessment of an OSS community. In particular, understanding the
structure of the community, the most central and influential participants, its cen-
trality features and tendencies to form cliques. As discussed in Section 2, there has
been some work done on the applicability of social network analysis on the study
of development communities. In this research we propose an approach where the
networks are studied as directional and valued graphs, and argue that this approach
can result in higher assessment accuracy.

4 Method

The research presented in this thesis is based on empirical research, which accord-
ing to Easterbrook [Eas07] implies that the research questions are related to the
class of knowledge questions, i.e. the questions focused on the observable and
measurable state of the world. The research is of exploratory nature, which ac-
cording to Eeasterbrook, is typical for the early stages of the research, when an

4 Method 9

Figure 1: Overview of Contributions of Thesis

attempt is made to understand the studied phenomena. According to Kitchenham
et al. [Kit+02], the exploratory studies are an important instrument for formulation
of hypothesis questions and an aid in the planning of the future research activities.
The exploratory research conducted in this paper is of qualitative and quantitative
nature. Since software engineering involves a human factor, according to Seaman
[Sea99], qualitative studies are necessary to study complex phenomena such as
the ones that involve human behavior. Seaman also recommends to complement
qualitative methods with quantitative methods. Qualitative and quantitative empir-
ical software engineering can be conducted in the form of systematic reviews, a
surveys, action research, experiments, or case studies.

According to Kitchenham et al. [Bre+07], systematic reviews can be used,
among others, to provide a framework to appropriately position new research. A
systematic review is divided into three stages; the planning, the execution, and
review phase during which review protocol is created and validated, appropriate
relevant research is identified, assessed for quality, and synthesized. Paper I is
conducted as systematic literature review to provide background on the current
state of research with respect to industry roles within the OSS world.

The research presented in Paper II was conducted in the form of a focus-group
meeting, which according to Kontio [KLB04], is an effective method to obtain
qualitative insights and paracticioner feedback. However, as the data obtained in
such way is limited in time and scope, it is suggested that this type of research be
complemented by another more rigorous methodology. The results of the Paper
II, have been shown to complement the result obtained from the systematic review
presented in Paper I.

10 INTRODUCTION

Table 2: Research Type and Method Used in the Papers
Work Research Type Research Method
Paper I Exploratory Systematic Literature Review
Paper II Exploratory Focus-group Meeting
Paper III Exploratory Case Study and Quasi-Experiment
Paper IV Exploratory Case Study and Survey
Paper V Exploratory Action Research

The research Paper III is conducted as a case study with a quasi-experiment
component, which according to Eeasterbrook [Eas07], is a variant of an experi-
ment performed when the conditions for a true experiment are not feasible. Since
the event of open-sourcing the Ingres solution was performed in the past, and the
event could not be recreated, this quasi-experiment methodology was deemed as
appropriate to use. Paper IV, is conducted as a case study with survey elements.
According to Runeson and Höst [RH09], case study is appropriate methodology
to use when observing a phenomenon within its natural context, and it can be
combined with survey.

Finally, the paper V is conducted as action research, which according to Wieringa
[Wie12], consists of developing new techniques for software engineering and eval-
uating them for the purpose of continues improvement. In paper V we propose a
new approach to the application of social network analysis for the purpose of as-
sessing committers networks. Hence, the action research is done with respect to
finding appropriate approach to create the committers’ networks and then testing
the approach with Android. Table2 provides a summery of research methodology
type and research method used. Figure 2 provides an overview of the thesis focus
with respect to the research methodology used. More specifically, it shows links
between results of earlier studies in context of them being used as research topics
in later studies. Hence, e.g., the results of study presented in Paper I, were used
as research topics in Paper II, Paper III, and Paper IV. Further more, findings pre-
sented in Paper III and Paper IV motivated research topics of study presented in
Paper V.

5 Results

This sections presents the results of the conducted research from each of the in-
cluded papers.

5 Results 11

Figure 2: Research methodology and relationships between the exploratory re-
search subcategories

12 INTRODUCTION

5.1 Paper I: A Systematic Review of Research on Open
Source Software in Commercial Software Product De-
velopment

The aim of this study was to conduct a comprehensive systematic review of re-
search on usage of OSS components and OSDP within the commercial context
as well as the industry participation in the OSS communities. We have identi-
fied and reviewed a total of 495 articles, 357 of which were found through an
automated search of INSPECT and COMPENDEX databases which include arti-
cles from major conferences, journals, and publishers (e.g. IEEE, ACM, Springer,
IEE). The remaining 138 reviewed publications were identified through a manual
search and include all, at the time available, articles from the Conference on Open
Source Systems. By applying rigorous methodology, we have identified 23 most
relevant publications that can be divided into four categories: OSS as a part of
component based software engineering, business models based on OSS, company
participation in open source communities, and usage of OSDP within a company
setting. The research methodologies used in the identified articles are equally di-
vided between case study and survey. The results of the research by Lundell et
al. [LLL06] show that 75% the companies that use the OSS components for de-
velopment purposes, also participate in the OSS communities. Another research
shows that 6-8% of the Linux Debian GNU code base is contributed by companies
[RDGB07]. The conducted research also shows that there is not enough research
done on how OSS communities function [Bon+07]. While there is evidence of suc-
cessful business models built around OSS, especially for hybrid models [Wes03],
there exist many challenges in sustaining development communities. According to
Koening [Koe09], open source is conducive to creating competitive advantage by
shifting from traditional revenue model based around a program’s functionality,
and focusing on service oriented revenue models. The results of the systematic
review show that companies engage in an informal process when it comes to se-
lecting an OSS component to use internally [Li+09]. Finally, studies conducted
on using OSDP within a company setting can facilitate innovation Gurbani et al.
[GGH05], Lindman et al. [LRM08b].

5.2 Paper II: Usage of Open Source in Commercial Soft-
ware Product Development - Findings from a Focus
Group Meeting

The objective of this study was to get relevant industry views on prerequisites for
using OSS components within a commercial setting. For this purpose, a focus
group meeting was held with industry representatives, and the meeting’s discus-
sion was based around predefined questions. The questions had two primary con-
cerns: to understand the selection process of OSS components, and to understand
how modifications of OSS components were handled. The discussion input was

5 Results 13

collected in form of notes, that were later classified and summarized, and thus re-
sults of the research were presented in the summary form. The main identified
aspects include:

1. Concerns related to the discovery process of candidate OSS components’.

2. Management of the decision making process pertaining to the selection of
best fit OSS candidate with respect to legal, technical, and community sup-
port aspects.

3. Practices and issues with respect to management of OSS component modi-
fications.

4. Advantages of participating in the OSS community.

The findings of the research are in line with findings from the literature review
in Paper I. The results also confirm that when a company decides to use an OSS
component, it is important to establish ties with the respective OSS community in
order to acquire skills needed to maintain the component. In order to ensure com-
patibility with future releases of the OSS component, it is important for a company
to give back to the OSS community changes made to the OSS component.

5.3 Paper III: A Case Study on the Transformation from
Proprietary to Open Source Software

Paper III presents a case study on the transition process of Ingres database man-
agement system from proprietary to open source. The research provides an insight
into business motivation to open source the proprietary solution, concerns and is-
sues that need to be taken into account during the open-sourcing process, as well
as an outcome of a well planned transition process. The focal point of this research
is measuring change in software quality metrics, e.g., effective lines of code, cy-
clomatic complexity, and file function count between the proprietary and the open
source community modified version of the product. The software metric changes
were tracked for separate groups of the Ingres source code modules grouped by
their functionality into the back end, front end, common, and utilities components.
The research shows that the majority of the new code added and changed by the In-
gres open source community was located in the front end module, while the small-
est number of changes were made to the backend module. The software quality
metrics such as cyclomatic complexity, effective lines of code were improved after
the transition to open source. The open sourcing process resulted also in a 100%
increase in customer base, and 32 %increase in revenues. While the investigated
software presents just one case of the proprietary software product open-sourcing
process, and thus can not be freely generalized, it offers a valuable insight into
open-sourcing concerns, business motivation, and the effect of community on the
company sponsored open source product.

14 INTRODUCTION

5.4 Paper IV: A Case Study of Open Source Development
Practices within a Large Company Setting

Based on the previous research, and motivation to explore the applicability of
OSDP within an industry context, a case study was designed for this purpose.
The study was conducted in a large software and hardware developing company
that bases its software products on a large open source solution. Through a long
involvement with the open source project, the company has modified some of its
development practices to be more in line with the open source community devel-
opment processes, and thus represented a good case candidate to study the ap-
plicability of the OSDP in a closed company setting. The purpose of the study
was two-fold: identification of a common OSDP framework based on evidence
and practice, and the assessment of the framework compatibility with the case
company’s development processes. The author of the thesis was granted com-
pany and network access to study the company’s portal and internal documents
related to past and ongoing projects, as well as development practices and guide-
lines. The results of the portal and documentation review were validated through
semi-structured interviews conducted with the case company’s employees. The
research results show that many of the processes and roles characteristic to OSDP,
such as common development portal and electronic communication infrastructure,
formally are present in the company. However, in practice they are very little
used, and the development process seems to fit more traditional development than
the open source context. Furthermore, results of the research show existence of
roles in line with the roles found in open source communities, but with additional
and conflicting tasks, e.g., ensuring soundness of technical solution and not sac-
rificing it due to a time constraint and being project lead working under the time
constraint. The research was conducted as one part of a two part prolonged re-
search. The completed, first part of the research presented in this paper, is planned
to serve as an input into second part, where certain modifications will be made
to the company’s development practices based on results. The second part of the
research would then observe the outcome of applying of the changes to the overall
development efficiency.

5.5 Paper V: Network Analysis of a Large Scale Open
Source Project

Research conducted in paper V, was motivated by a need to define a quantifiable
approach for assessing development communities in terms of source code com-
mitters’ structure, influence, centrality, and cross project collaboration. The study
focuses on the Android Open Source project community, an interesting case to ex-
amine, not only because of the OSS product’s broad use by almost entire mobile
eco-system [Goo13] and its leading market share position [GS13], but also since
it is built as an OSS stack, thus including over 150 other open source projects.

6 Synthesis 15

This work also proposes a new approach for using social network analysis to study
open source project committer networks. The new approach is the result of a
study on social network analysis theory and the existing research within the field.
By applying the existing analysis procedure on the data extracted from the An-
droid source code repository, we came to the conclusion that the results do not
accurately represent the studied community. The main reason for such outcome,
lies in the fact that the existing social network analysis procedures, study commit-
ter networks from a perspective which does not take into account the committers’
weights relative to the source code change event, i.e., it does not take into account
the number of times a committer has made a change to a source file. The results
of the research show that in an industry sponsored open source project, the com-
pany exhibits large control over the source code, even in the other OSS projects
that are included in the stack and whose communities are not led by the company.
The implications of such finding are relevant as they show one example of how a
large company through an OSS project can impact industry participants, as well as
assert influence in projects that are not directly under its guidance. This informa-
tion is relevant for the companies who plan to undertake similar projects or join
an OSS community. The proposed approach can also be applied to study structure
and evolution of any software development community.

6 Synthesis

This section presents a synthesis of the results of the thesis with respect to research
questions discussed in the section 3.

RQ1: What are the industry roles with respect to OSS?
Based on the systematic literature review presented in Paper I, the industry

roles with respect to OSS can be divided into four distinct categories: usage of OSS
components, participation in OSS communities, implementation of OSS business
models, and application of OSDP. The research has shown a combination of the
roles practiced concurrently. As discussed in Paper II, the companies using OSS
product are motivated to participate and contribute code to an OSS community
due to future update functionality and community support for the product. Some
of the companies that have built competence and knowledge of the OSDP, tend to
implement some aspects of the OSDP, as is discussed in the Paper III. Many large
global companies have recognized business opportunities with respect to OSS,
and thus there exist many examples of large companies that have built successful
business models around an OSS product.

RQ2: What are industry practices for an OSS component selection process?
The industry has recognized that an OSS component can be used as an al-

ternative to a proprietary solution or off-the shelf component. While there is a
shared pool of concerns when choosing any type of a third party component, there
are some specific concerns identified for the OSS component, such as community

16 INTRODUCTION

support, legal issues, code maintainability, and handling of future updates. Re-
sults of Paper II show that the industry practices for an OSS component selection
exhibit ad hoc characteristics. The selection criteria assumes gathering informa-
tion through informal means, e.g., searching web forums and OSS development
communities. The results of a focus-group meeting presented in the paper II show
that industry has recognized the importance of building competence with an OSS
community.

RQ3: How does the open source community change an open-sourced pro-
prietary software product in terms of static software quality metrics?

Results from the case study on a transition of the Ingres database management
system from proprietary to open source, as presented in Paper III, indicate that a
community can have a positive impact on the static source code quality metrics. In
addition, over half of the source code changes were done in the front end module,
and very little code was changed in the database back-end module. While Ingres
database presents only one case of open-sourcing process, it offers a relevant in-
sight into business motivation to open source as well as points to open-sourcing
concerns that need to be addressed in such process.

RQ4: How aligned are OSDP with the traditional development practices?
The research presented in paper IV shows the most important main charac-

teristics of the OSDP found in large and active OSS communities. The OSDP
assume existence of portal infrastructure which enables participants to easily use
and develop software products. This portal architecture hosts an up to date in-
formation on community governance and development guidelines, as well as the
software product information and documentation. The main differences observed
between traditional and OSDP exist in OSDP’s transparent communication pro-
cess and constant feedback loop between the core developers and beta testers of
the OSS product. In paper IV we present a case study of a large and global soft-
ware and hardware company that bases its products on an OSS product, and which
has over years built competence with the OSS community. As a consequence, the
company has formally adopted some of the OSDP characteristics, but in reality
this partial adoption has created some issues, such as roles with conflicting tasks.
The research conducted in HP [MM08], Lucent [GGH06], and Nokia [LRM08a]
shows that implementation of OSDP within a company setting can be beneficial,
especially from the open innovation perspective.

RQ5: How can social network analysis theory be applied to assess the struc-
ture of software development communities?

In Paper V we show that field of social network analysis can be used to un-
derstand the underlying structure of committers network. Research by Cleidson
[SFD05] and Howison et. al [HIC06a] indicate that such analysis can be used
to assess organizational structure of development community. Knowledge of the
structure and its most central and influential participants can be used as an input in
a strategic decision making process, e.g., when deciding to participate in an OSS
community, or to assess development structure of a closed source community. By

7 Threats to Validity 17

collecting the historical social network data on a community structure, we can
construct the community’s evolution model.

7 Threats to Validity

Identification of the threats that can potentially jeopardize a research validity is of
utmost importance, especially in the field of empirical software research context
where observations and measurements of the studied phenomena are conducted in
natural context. The papers presented in this thesis are analyzed for validity threats
based on the classification proposed by Wohlin et. al [Woh+12]. The threats to
validity category are divided into four main types: construct, internal, external,
and conclusion.

Construct validity is related to the relationship between the concepts and theo-
ries behind the experiment and what is measured and affected. Even if it is shown
that the causal relationship between the two exists, we need to question weather
the measurement tools are appropriate for the investigated subject of the study. In
paper IV we base our research on the comparison of the common characteristics
of the OSDP with the development practices of the case company. The possi-
ble construct validity threats exist in form of inappropriate identification of OSDP
characteristics, also referred to as OSDP framework, and inappropriate assessment
of the case company’s development practices. To reduce the threats, the OSDPs
characteristics were defined based on relevant works and assessment of a mature
and large open source community. In addition, the author of the thesis spent two
months within the company, access the company’s internal electronic resources
which is also known as prolonged involvement [Run+11], a practice used to im-
prove validity of the research. The result were validated through a semi-structured
survey whose results were coded, buy the second researcher, and a company em-
ployee in a senior technical position.

Internal validity is concerned with factors that may affect the dependent vari-
ables without the researcher’s knowledge. The case study presented in the Paper
III includes a quasi experiment, that examines the effects of the source code mod-
ifications, made by the open source community, on the static source code quality
metrics. One of LehmanÕs laws [Leh80] states that a product which is not rig-
orously adapted or changed will, over a period of time, see decrease in software
quality metrics. However, since there is no available data on the average change in
software quality metrics for the studied type of the software we can not compare
the observed change to some average change value. However, since the transition
into open source community was a major event in terms of software maintenance,
it is not probable that the transition had no affect on the software quality metrics.

External validity is related to the ability to generalize the results of the this
study. The research presented in Paper II is based on the focus-group meeting
whose participants were industry representatives. Hence, the results of the re-

18 INTRODUCTION

search are based on the personal opinions, which my not be in line with a view
of organization they represent. Thus, there exist a probability that these results
can not be generalized or that they might not be applicable to other organizations.
According to [Rob02], the extreme individual opinions tend to be offset by group
reactions to them, and group dynamics can be facilitating to focus discussion on
relevant issues. In the context of the thesis, the findings of the focus-group are in
line with the results from the systematic review presented in Paper I, on the con-
cerns commercial organizations have with regard to selecting an OSS component.

Conclusion validity is concerned with the possibility to draw correct conclu-
sions regarding the relationship between treatments and the outcome of an ex-
periment. The static software quality measures, as presented in Paper II, did not
follow normal distribution, and thus in their analysis test of lower statistic power
then the t-test were used. However, since the number of the analyzed data points
can be considered high, the chance of detecting difference in distributions even
when using non-parametric tests, is high as well.

8 Agenda for Future Research

In this section, directions for the future of the research are discussed. The two most
recent papers, Paper IV and Paper V, discuss applicability of the OSDP within the
industry context and propose a quantitative approach for the assessment of the
development communities, respectively. The ambition is to further explore the
two themes, as they are of complimentary nature. Sacchi [Sca10] defined that
more empirical studies are needed to understand the applicability of the OSDP
within a closed development setting. In order to be able to measure changes in the
structure of a development community, a quantitative method is needed. While
the community structure assessment approach presented in the Paper V provides
information on some important social network metrics, it lends itself to further
investigation. Planned research with respect to the results of Paper IV, and Paper
V are presented in this section in form of Future Research Questions (FRQ).

9 Context and FRQs

The research approach for studying community structure, presented in Paper V
can be extended. The observed social network metrics can be analyzed from the
time perspective, thus creating an evolutionary view of the community. One pos-
sible exploration route is to obtain evolutionary metrics for many large and active
communities, and assess distribution data from a statistical perspective in order to
test the existence of statistically significant patterns or causality relations. Based
on the results of paper V, a research was initiated in a large mobile company that
would like to test its applicability internally. The company is planning to make

10 Conclusion 19

some significant organizational changes that will impact the way software is de-
veloped. The plan is to obtain committers data from source code archives, and to
compare changes in developers networks for the pre-change, and the post change
time. Hence, the social network metrics will need to be analyzed from the evo-
lutionary perspective, and statistical analysis will need to be applied in order to
detect significant changes. Another interesting topic is to assess cross-team work.
Some FRQs that can be formulated around planned research include:

• FRQ1:Is there evidence for existence of statistically relevant patterns in
committer networks’ evolution data?

• FRQ2:What metrics are suitable for measuring the cross-project collabora-
tion?

• FRQ3:Can historical data on committer networks’ be used to predict the
future trends in a development community?

As discussed in the section 3, Paper IV is a part of a planned two part research
with the case company. Potential future research would focus around a project and
its corresponding development community run in accordance to previously defined
OSDP framework. The researchers would be there to assess the setup process, and
to observe how the closed community works utilizing OSDP. It is probable that it
will take a certain amount of time for the community participants to get acquainted
with the new setup, but since the company’s development resources have open
source community competence, it is probable that the adjustment period will be
short. The goal of the research is to observe implications, the benefits as well as
the challenges, of applying OSDP within a closed commercial setting. For the
purpose of the study the following FQ can be defined:

• FRQ4:What are the major challenges and benefits of OSDP implementation
within a closed development setting?

• FRQ5:What are the effects of OSDP implementation within a closed setting
on overall software development efficiency?

• FRQ6:What are the guidelines for implementing OSDP within a closed
company setting?

The research method and approach for the identified FRQs is presented in Ta-
ble 3.

10 Conclusion
In the last couple of decades, the OSS software phenomena has increasingly gained
support from the commercial organizations from its potential to increase software

20 INTRODUCTION

Table 3: Planned FRQs and Corresponding Research Method
FRQ Description Research Method Type of Research
1 Detection of patterns in

committers networks
Multi-Case Study Exploratory

2 Assessment of the cross-
project collaboration

Multi-Case Study Exploratory

3 Prediction of trends Multi-Case Study Descriptive
4 Challenges and Benefits of

implementing OSDP
Case-Study Exploratory

5 Software development effi-
ciency and OSDP

Case-Study Exploratory

6 Guidelines for OSDP imple-
mentation

Design science Descriptive

development efficiency and facilitate creation of new business models. In the sys-
tematic literature review presented in Paper I we identify four distinct roles indus-
try takes with respect to OSS community (RQ1). The commercial organizations
include OSS components in their products or use of the products for internal pur-
poses as presented in Paper II. The usage tends to creates a relationship between
the company and the community for the reasons of product support and main-
tenance (RQ2). By participating in OSS communities, a company can develop
expertise on OSDP (RQ4) and may chose to implement some of the practices as
presented in Paper IV. There exists evidence of successful transitions of OSS prod-
ucts from proprietary to open source community, and successful business models
built around such communities (RQ3).

Ability to understand the structure and the evolution of an open source com-
munity can be an important factor that should be considered when a commercial
organization plans to work with an OSS community (RQ5). Paper V proposes a
new network theory based approach to study development communities and ap-
plies the approach to the study of the Android OSS project. While there has been
some research done on the applicability of social network analysis in context of an
OSS community structure, more work is needed to understand how the data from
such analysis can be used to predict the future behavior of development communi-
ties.

As there exists little evidence on the applicability, benefits, and challenges
of the OSDPs implementation within a closed development setting, we intend to
conduct more studies on the subject. In particular, we plan to conduct more case
studies in order to asses impact of the OSDPs on software development efficiency
and propose some general guidelines that can be used for the implementation. In
order to asses software development effort in context of committers’ networks,
we plan to further evaluate the approach proposed in Paper V, and apply it to the

10 Conclusion 21

closed development setting.

References
[Ass09] Matt Assay. February 2009 Web Server Survey. http://news.c

net.com/8301-13505_3-10156188-16.html. 2009.

[BCG02] BCG. The Boston Consulting Group Hacker Survey, accessed on
April 22, 2013. http://mirror.linux.org.au/linu
x.conf.au/2003/papers/Hemos/Hemos.pdf. 2002.

[Boe88] Barry W. Boehm. “A Spiral Model of Software Development and
Enhancement”. In: IEEE Computer 21.5 (1988), pp. 61–72.

[Bon+07] A. Bonaccorsi et al. “Business Firms’ Engagement in Community
Projects. Empirical Evidence and Further Developments of the Re-
search”. In: First International Workshop on Emerging Trends in
FLOSS Research and Development (FLOSS’07: ICSE Workshops
2007). 2007.

[Bre+07] Pearl Brereton et al. “Lessons from applying the systematic literature
review process within the software engineering domain”. In: Journal
of Systems and Software 80.4 (2007), pp. 571–583.

[Bro95] Frederick P. Brooks. The mythical man-month - essays on software
engineering (2. ed.) Addison-Wesley, 1995, pp. I–XIII, 1–322.

[CH05] Kevin Crowston and James Howison. “The social structure of free
and open source software development”. In: First Monday 10.2 (2005).

[Dij83] Edsger W. Dijkstra. “The structure of the multiprogramming sys-
tem”. In: Communications of the ACM 26.1 (Jan. 1983), pp. 49–52.

[DD09] Tore Dybå and Torgeir Dingsøyr. “What Do We Know about Agile
Software Development?” In: IEEE Software 26.5 (2009), pp. 6–9.

[Eas07] Steve M. Easterbrook. “Empirical research methods for software en-
gineering”. In: IEEE/ACM International Conference on Automated
Software Engineering. 2007, p. 574.

[FSF13] FSF. Free Software Foundation. http://www.fsf.org/abou
t/staff-and-board/. 2013.

[Fog05] Karl Fogel. Producing open source software - how to run a success-
ful free software project. O’Reilly, 2005, pp. I–XX, 1–279.

[For13] ForbesL. Forbes Leading 2000 Global Companies, Sorted by Indus-
try. http://www.forbes.com/global2000/list/. 2013.

22 INTRODUCTION

[Fra+07] Steven Fraser et al. “"No silver bullet" reloaded: retrospective on
"essence and accidents of software engineering"”. In: Object-Oriented
Programming, Systems, Languages and Applications, OOPSLA Com-
panion. 2007, pp. 1026–1030.

[GS13] Market Analysis Gartner and Statistics. Market Share: Mobile De-
vices, Worldwide, 1Q12. http://www.gartner.com/newsr
oom/id/2017015. 2013.

[Goo13] Google. Android Open Handset Alliance Members. http://www.
openhandsetalliance.com/oha_members.html. 2013.

[GGH05] Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb. “A case
study of open source tools and practices in a commercial setting”.
In: ACM SIGSOFT Software Engineering Notes 30.4 (2005), pp. 1–
6.

[GGH06] Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb. “A case
study of a corporate open source development model”. In: ICSE.
2006.

[HNH03] Guido Hertel, Sven Niedner, and Stefanie Herrmann. “Motivation
of software developers in Open Source projects: an Internet-based
survey of contributors to the Linux kernel”. In: Research Policy 32
(2003), pp. 1159 –1177.

[HOA11a] Martin Höst and Alma Oručević-Alagić. “A systematic review of
research on open source software in commercial software product
development.” In: 2011, pp. 616–624.

[HIC06a] James Howison, Keisuke Inoue, and Kevin Crowston. “Social dy-
namics of free and open source team communications”. In: 2006,
pp. 319–330.

[Inc13] Google Inc. Android Open Source Software Project. http://ww
w.android.com/. 2013.

[Kit+02] Barbara A. Kitchenham et al. “Preliminary Guidelines for Empirical
Research in Software Engineering”. In: IEEE Transactions on Soft-
ware Engineering 28 (8 2002), pp. 721–734.

[Koe09] John Koenig. Seven Open Source Business Strategies for Competitive
Advantage. http://www.cs.up.ac.za/cs/aboake/sws7
80/references/designapproaches/collaborative/
Koenig-SevenOpenSourceStrategies.pdf. 2009.

[KLB04] Jyrki Kontio, Laura Lehtola, and Johanna Bragge. “Using the Focus
Group Method in Software Engineering: Obtaining Practitioner and
User Experiences”. In: 2004, pp. 271–280.

[Kru02] Philippe Kruchten. “Tutorial: introduction to the rational unified process R©”.
In: ICSE. 2002, p. 703.

10 Conclusion 23

[Lan02] Rikard Land. “Software Deterioration And Maintainability–A Model
Proposal”. In: Proceedings of Second Conference on Software Engi-
neering Research and Practise in Sweden (SERPS). Citeseer. 2002.

[LB03] Craig Larman and Victor R. Basili. “Iterative and Incremental Devel-
opment: A Brief History”. In: IEEE Computer 36.6 (2003), pp. 47–
56.

[Leh80] Meir M. Lehman. “On understanding laws, evolution, and conser-
vation in the large-program life cycle”. In: Journal of Systems and
Software 1 (1980), pp. 213–221.

[Li+09] Jingyue Li et al. “Development with Off-the-Shelf Components: 10
Facts”. In: IEEE Software 26.2 (2009), pp. 80–87.

[LRM08a] Juho Lindman, Matti Rossi, and Pentti Marttiin. “Applying Open
Source Development Practices Inside a Company”. In: OSS. 2008,
pp. 381–387.

[LRM08b] Juho Lindman, Matti Rossi, and Pentti Marttiin. “Applying Open
Source Development Practices Inside a Company”. In: 2008, pp. 381–
387.

[LLL06] Björn Lundell, Brian Lings, and Edvin Lindqvist. “Perceptions and
Uptake of Open Source in Swedish Organizations”. In: nternational
Conference on Open Source Systems, OSS. 2006, pp. 155–163.

[LG97] Luqi and Joseph A. Goguen. “Formal Methods: Promises And Prob-
lems”. In: IEEE Software 14.1 (1997), pp. 73–85.

[MM08] Catharina Melian and Magnus Mähring. “Lost and Gained in Trans-
lation: Adoption of Open Source Software Development at Hewlett-
Packard”. In: OSS. 2008, pp. 93–104.

[NB07] Sridhar Nerur and VenuGopal Balijepally. “Theoretical reflections
on agile development methodologies”. In: Commun. ACM 50.3 (Mar.
2007), pp. 79–83.

[OSI13a] OSI. Open Source Initiative Board. http://opensource.or
g/board. 2013.

[OSI13b] OSI. Open Source Initiative Mission Statement. http://openso
urce.org/about. 2013.

[OAH10] Alma Oručević-Alagić and Martin Höst. “A Case Study on the Trans-
formation from Proprietary to Open Source Software”. In: OSS. 2010,
pp. 367–372.

[Par72] David Lorge Parnas. “On the Criteria To Be Used in Decompos-
ing Systems into Modules”. In: Communications of the ACM 15.12
(1972), pp. 1053–1058.

24 INTRODUCTION

[PC86] David Lorge Parnas and Paul C. Clements. “Correction to "A Ratio-
nal Design Process: How and Why to Fake It"”. In: IEEE Transac-
tions on Software Engineering 12.8 (1986), p. 874.

[Ray01a] Eric S. Raymond. The Cathedral and the Baazar. O’Reilly Media,
Inc., 2001.

[Ray01b] Eric S. Raymond. The Cathedral and the Bazaar. O’Reilly Media,
2001, p. 186.

[RAG00] Vipul Ved Prakash Rishab Aiyer Ghosh. “The Orbiten Free Software
Survey”. In: First Monday, Peer Reviewed Journal on the Internet 5.7
(2000).

[RDGB07] Gregorio Robles, Santiago Dueñas, and Jesús M. González-Barahona.
“Corporate Involvement of Libre Software: Study of Presence in De-
bian Code over Time”. In: International Conference on Open Source
Systems. 2007, pp. 121–132.

[Rob02] Colin Robson. Real World Reserach. 2:nd. Blackwell Publishing,
2002.

[Roy87] W. W. Royce. “Managing the Development of Large Software Sys-
tems: Concepts and Techniques”. In: 1987, pp. 328–339.

[RH09] Per Runeson and Martin Höst. “Guidelines for conducting and re-
porting case study research in software engineering”. In: Empirical
Software Engineering 14 (2 2009), pp. 131–164.

[Run+11] Per Runeson et al. Case Study Research in Software Engineering.
Wiley, 2011.

[Sca10] Walt Scacchi. “The future of research in free/open source software
development”. In: Future of Software Engineering Research. 2010,
pp. 315–320.

[Sea99] Carolyn B. Seaman. “Qualitative Methods in Empirical Studies of
Software Engineering”. In: IEEE Transactions on Software Engi-
neering 25.4 (1999), pp. 557–572.

[SFD05] Cleidson R. B. de Souza, Jon Froehlich, and Paul Dourish. “Seeking
the source: software source code as a social and technical artifact”.
In: GROUP. 2005, pp. 197–206.

[WF94] Stanley Wasserman and Katherine Faust. Social Network Analysis.
Methods and Applications. Cambridge University Press, 1994.

[Web04b] Steven Weber. The Success of Open Source. Harvard University Press,
2004.

[Wes03] Joel West. “How open is open enough?: Melding proprietary and
open source platform strategies”. In: Research Policy 32.7 (2003),
pp. 1259 –1285.

10 Conclusion 25

[Wes07] Joel West. “Value Capture and Value Networks in Open Source Ven-
dor Strategies”. In: Hawaii International Conference on System Sci-
ences. 2007, p. 176.

[Wie12] Roel Wieringa. “Designing Technical Action Research and Gener-
alizing from Real-World Cases”. In: International Conference on
Advanced Information Systems Engineering, CAISE. 2012, pp. 697–
698.

[Woh+12] Claes Wohlin et al. Experimentation in Software Engineering. Springer,
2012, pp. I–XXIII, 1–236.

INCLUDED PAPERS

PA
P

E
R

I

A SYSTEMATIC REVIEW OF
RESEARCH ON OPEN

SOURCE SOFTWARE IN
COMMERCIAL SOFTWARE
PRODUCT DEVELOPMENT

Abstract

Context: The popularity of the open source software development in the last
decade, has brought about an increased interest from the industry on how to use
open source components, participate in the open source community, build busi-
ness models around this type of software development, and learn more about open
source development methodologies. There is a need to understand the results of
research in this area
Objective: Since there is a need to understand conducted research, the aim of this
study is to summarize the findings of research that has ben carried out on usage of
open source components and development methodologies by the industry, as well
as companies’ participation in the open source community.
Method: Systematic review through searches in library databases and manual
identification of articles from the open source conference. The search was first
carried out in May 2009 and then once again in May 2010.

Martin Höst, Alma Oručević-Alagić
Information & Software Technology, 53:6, 616-624, 2011.

30 A Systematic Review of Research on Open Source Software in Commercial . . .

Results: In 2009, 237 articles were first found, from which 19 were selected based
on content and quality, and in 2010, 76 new articles were found from which 4 were
selected. 23 articles were identified in total.
Conclusions: The articles could be divided into four categories: open source as
part of component based software engineering, business models with open source
in commercial organization, company participation in open source development
communities, and usage of open source processes within a company.

1 Introduction

Traditional software development is often perceived as a proprietary, in-house soft-
ware development, with developers working in a geographically centralized or
distributed company’s location. Open source software is developed free of charge
through a community driven development process, and as such, it is also provided
to public at no cost, but under certain usage and distribution conditions. Many of
the traditional software companies have tried to take advantage of the free soft-
ware, not just by using the software, but also by creating business models and
strategies around the open source software.

For example, in the mobile industry there are several attempts to form open
source communities for development of software, such as the Android project1

and the Symbian project2. Using and relying on open source software can be seen
as an alternative way to reduce development costs and stay competitive. Hence, in
a way, it can be compared to other similar business methods and strategies, such
as outsourcing or acquirement of off the shelf components.

This open source business ecosystem, which has been growing over the past
two decades, is quite complex and there exists a need to better understand many
of its aspects. Some of the aspects are interesting in at least two different ways.
Firstly, an organization can include open source components in its proprietary soft-
ware product. This is comparable to including any other third party component,
although the difference is that the component is now obtained from an open source
community instead from a commercial organization. Secondly, an organization
can provide its own proprietary software to open source community and that way
reduce development costs in long run, reposition itself on the market, create a new
source of income through new services, etc.

Already in 2001, Lerner and Tirole [LT01] identified ”opening proprietary
code” as an important research area, and observed that large open source projects
often start based on software provided by ”academic or semi-academic institu-
tions”. This motivates systematically investigating what research has been pub-
lished in the area.

1http://www.android.com/
2http://www.symbian.org/

2 Background and related work 31

The outline of this paper is as follows. In Section 2 background on open source
software and some related work is presented. In Section 3 the methodology with
respect to search strategy and inclusion and exclusion criteria are presented, and
the resulting set of articles is presented in Section 4. Finally, there is a discussion
in Section 5, and conclusions presented in Section 6.

2 Background and related work

2.1 Open Source Software

Open source software has been around since the very beginning of electronic com-
puting. In the early days of information technology it was quite natural and fi-
nancially sound for developers to share source code among very few and very
expensive computing machines. As the machines became smaller, more diversi-
fied, and cheaper, the number of developers grew, and the source code, in general,
became more complex. Development of free software was especially flourishing
in the academic environments. Barkley Software Distribution (BSD) is a license
developed for distribution of the BSD version of the Unix operating system devel-
oped by the University of California, Berkeley, from 1977 to 1995 in collaboration
with AT&T labs, as described in [Ray01c]. At the beginning of the development,
code was shared between AT&T and Berkeley. Due to anti-monopoly laws at
the time, AT&T could not sell software, but as the company was using it to sell
phone-related services, it had vested interest in improving the software. During
the beginning of the 1980:s and the market deregulation, AT&T was granted the
right to sell software. In order to continue distribution of BSD Unix, a lot of code
that was not developed by University of California Berkeley had to be backed off
and rewritten.

Since the beginning of 1980s, the idea of close-sourced/proprietary software
became mainstream, taking the place that free software sharing has held for a long
time. The open source supporters went to found their own organizations such
as free software foundation (FSF) founded by Richard Stallman, as described in
[Web04a]. The FSF did not have desired impact on bringing back open source
software development to the mainstream. However, this situation was about to
change with the successful release of the Linux kernel. The system was initially
developed by Linus Torvalds as part of an academic project, and with the support
of the developer community it became a very complex, sophisticated software that
was free for everyone to use. Eric Raymond was very much inspired by this set of
events, and in his now famous book ”The Cathedral and the Bazaar” [Ray01c] he
talks about the importance of Linux, as it was the very first time the open source
developer community showed that not only complex and sophisticated software
can be built in such way, but also that business models can be built around such
way of software development and distribution.

32 A Systematic Review of Research on Open Source Software in Commercial . . .

In 1998, Raymond was one of the main contributors to the Open Source Initia-
tive (OSI), an organization that is envisioned as open source educational and ad-
vocacy organization. Many companies have followed the suit, and decided to open
source a piece of their proprietary software as a part of business strategy to deal
with the competition. Thus, among the initial suitors we can find Netscape corpo-
ration, who by open sourcing Netscape internet browser tried to compete against
closed source and free distribution of Microsoft’s Internet Explorer [Ray01c].

In the past ten years, many companies have entered the open source business
arena, using some of the business models proposed in [Ray01c]. Unfamiliar with
the environment, companies had very quickly to readjust their way of doing busi-
ness in order to ripe some perceived benefits of open source trends. Besides open
sourcing software, companies tend to participate and contribute to open source
projects, as well as adopt some of software development methodologies such dis-
tributed and voluntary based development community as open source utilizes.

2.2 Related Work

Stol and Ali Babar [SAB09] have made a review of the broad area of ”open source”
from the conference on Open Source Systems, OSS. They manually selected em-
pirical papers from the conference and investigated them. The scope of the review
that we present in this paper is more narrow (open source in commercial organi-
zations) but we searched a broader set of articles (we searched articles in library
databases with a search string, and we searched articles from the OSS conference
manually, as explained in more detail below).

Stol and Ali Babar [SAB10] have also compiled a list of challenges in using
open source as components in product development, based on a literature review.
In this review, where they did not require any empirical grounding of the findings,
they identified 21 challenges.

In [HOA10a] earlier results of this work is presented, based on a search in
biblographic databases that was carried out 18 May 2009. The search that is the
basis for this paper was conducted 14 May 2010, and it resulted in 4 additional
articles.

3 Review Method

This research is carried out as a systematic literature review, based on the guide-
lines presented in [KC07].

3.1 Research Questions

The objective of this research is to understand the result of the research that has
been carried out on the usage of open source software and open source software

3 Review Method 33

development in proprietary software development organizations. Before the re-
view, this was broken down to the following research questions:

1. What approaches and processes are applied by commercial organizations to
introduce open source products in their proprietary products?

2. What approaches and processes are applied by commercial organizations to
provide their software products to the open source community?

3. What experience is available from identified approaches and processes, for
example, with respect to quality of the software products, cost of develop-
ment for the providing organization, time taken to introduce new function-
ality, etc.?

4. What are the main motivations and business incentives for the procedures
and processes identified in question 1 and question 2?

That is, we address the need to understand both what research that has been
done in the area, what methods and approaches that exist, and what experience
is available for the different methods. It should be noted that the objective of the
research has not been to derive quantitative knowledge of which methods perform
the best. The objective is more to understand which methods are used and how
well the methods work in a qualitative way. If the field was more mature, and
it could be expected to find a large number of empirical studies investigating the
performance of alternative methods, it would of course be interesting to synthesize
this knowledge. However, it is not realistic to find this many studies of this type.
The objective of this work is instead to review the research that has been con-
ducted, and in particular what kind of experience that is available for these kind of
questions. That is, the research has elements of a mapping study (see for example
[KC07]). However, since the objective is to summarize the findings and to under-
stand the total result of the research that has been conducted, and the focus is not
merely on identifying published research we classify this as a systematic review.

Open source software in commercial organization is related to a number of
research questions that to some extent are relevant to the review, but where it was
necessary to decide whether to include them in the study or not. One aspect that
is often mentioned concerning open source is the importance of ”legal aspects”,
such as licensing, intellectual property, etc. For example, there is a large number
of licenses, all complying with the definition of open source described in [FF02],
and the implications of choosing different licenses could be an important research
field. This is an important and interesting field, which can affect both the adoption
of open source practices and open source software components. However, for
this study it was seen as out of scope for two main reasons. Even if software
engineering is a multi-disciplinary field which includes legal aspects, we thought
that it is of another kind than more traditional software engineering topics. To
some extent the research questions that have to do with legal aspects are not the

34 A Systematic Review of Research on Open Source Software in Commercial . . .

same as traditional research questions. If legal aspects were included, then there
are other areas that also would be reasonable to include, such as marketing and
sales. Second, it would probably require extensive cooperation with researchers
in legal aspects to make sure that the correct search terms were used, and that the
right publication fora were searched. These aspects in combination mean that legal
aspects were not included in the study.

An area where there are a number of research results available is on compar-
isons of usage of open source software, such as Open Office, and similar propri-
etary software systems. This was not seen as highly related to the research ques-
tions in this study and therefore excluded. It is, of course, interesting understand
the differences, but it was not seen as relevant enough to the question of transform-
ing developed software to open source or to the inclusion of open source software
in developed software. Neither are studies on adoption of open source programs,
for example as presented by Goode [Goo05], included. That is, this study is more
on development of software than on the usage of existing software. In the same
way it was decided not to include research results on usage of open source tools,
such as Eclipse, in software development.

Another area that is not included, but still interesting and of potential interest to
commercial organizations, concerns how open source practices can be transferred
to hardware development. Only a few articles on this topic exist [AB09]. This area
was not included since it is not mainly concerning software development.

3.2 Search methodology

Two main sources were searched for relevant articles: a broad search in academic
databases; and a manual search through all articles of the Conference on Open
Source Systems.

Searched academic databases

The INSPEC and the COMPENDEX databases were searched. Both of these
databases intend to provide complete coverage of the area, and include articles
from all major conferences, journals, and publishers (e.g. IEEE, ACM, Springer,
and IEE). We believe that these two databases give a good coverage of articles in
”computer science” and ”electrical engineering and electronics”, which includes
typical questions in software engineering, at least in more well known journals
and conferences. However, the coverage of more business-related articles and ar-
ticles on legal aspects is, as described above, more uncertain. Both databases were
accessed through Engineering Village3.

The following search string was used:

3http://www.engineeringvillage2.org

3 Review Method 35

(({open?source} wn ALL) OR
(opensource wn ALL) OR
(libre wn ALL) OR
(OSS wn ALL) OR
(FLOSS wn ALL))
AND
((proprietary wn ALL) OR
(commercial wn ALL) OR
({non?open?source} wn ALL) OR
({non?opensource} wn ALL))
AND
((empirical* wn ALL) OR
(experiment* wn ALL) OR
({case?study} wn ALL) OR
(survey wn ALL))

The search string contains three main parts, separated by AND-clauses. The
first part states that the article must include the term ”open source” or some other
synonym term that is often used, such as ”OSS”. The second part states that the
article must include terms about commercial software development. The third part
makes sure that the article is empirical, by searching for terms like ”empirical”
and ”experiment”. The intention of the ”*” after experiment is to include also
search terms as ”experimental” and ”experimentation”. According to [DGJ07] this
should be sufficient in order to find most relevant articles in this respect.

A few more terms and details in the search string may have to be explained.
The ?-sign denotes any character, which, for example, means that both articles
with the term ”case study” and the term ”case-study” are found. The term wn
means that the phrase left of it should be found in the entity to the right of it, in
this case ALL, which means all fields of database entries, such as title, abstract and
key words. It would have been possible to list other entities such as abstract and
title, but in this case ALL was chosen. Text within {}-parentheses are searched as
phrases and a search is not case sensitive.

Manual identification of relevant articles

In addition to the database searches, all articles in all OSS-conferences (Interna-
tional Conference on Open Source Systems4) were inspected. The conference has
been held annually since 2005 and all articles are available in full text (2005 online
and from 2006 onwards from library databases). The selection was based on the
formulated research questions in Section 3.1, which thereby means that articles
matching the same kind of content as the identified with search string presented in
Section 3.2 were found, but there was no check that the articles matched exactly.

4For more information see http://www.ifipwg213.org/

36 A Systematic Review of Research on Open Source Software in Commercial . . .

3.3 Selection of relevant articles

Articles are selected in a number of steps. First, all articles identified from the
databases with the search string were listed with title and abstract. Since the arti-
cles have been selected with a search string in a database there are many articles
that are not relevant. Therefore, articles that are not relevant, based on our inter-
pretation of title and abstract, were removed. That is the articles that were not
relevant compared to the research questions wee removed.

After this, the remaining articles were downloaded and read in full text. Based
on this, more articles were seen as non-relevant according to the same criteria as
for the title and abstract, and therefore removed.

After analysis of articles selected with the search string, articles from the OSS
conference were selected manually. Since this selection was carried out after the
analysis of articles identified with the search string, it was possible to use knowl-
edge that was gained from analysis of articles identified with the search string.

All articles that so far have been selected were analyzed with respect to re-
search methodology implementation and presentation. Three different classes
were used for this:

Class A: In this type of article the research is presented in a way that makes it very
likely that it was conducted according to normal requirements on empirical
research methods in software engineering.

Compared to the quality assessment criteria presented used by [DD08] and
[CAC08] the answer is positive to most evaluation questions, especially con-
cerning whether it is research or merely experience report, if there is a clear
statement of aims, if there is an adequate context description, if the research
design is appropriate for the questions, if the data collection was appropriate
for the questions, if the data was analyzed with sufficient rigor, and if there
is a clear statement of findings.

This class includes both articles that do reference empirical software engi-
neering research method descriptions, such as [RH09], and articles that do
not explicitly reference this kind of descriptions.

Class B: This class of articles may not be presented as a typical article on empir-
ical software engineering even if the overall impression of it is that it was
carried out in this way. That is, all aspects of a typical article of class A may
not be included, but the main impression of the paper is that the research
was carried out according to normal requirements on empirical software en-
gineering.

Class C: For this type of article our interpretation is that the researchers have not
followed any traditional research method during the research. The reason
may be that the presentation forum is not suitable for presentation of struc-
tured research methods or there may be other reasons.

4 Results 37

These steps are further presented in Section 4 and illustrated in Figure 1.

3.4 Data Extraction and Synthesis

Articles of class A and class B were treated equally, while articles of class C were
not further included in the review. Data from the identified articles were derived by
defining categories of articles and summarizing the research in each category. Both
authors first defined categories individually and then a final set of categories was
defined based on discussion between the authors. The summaries were developed
first by one author and then updated based on discussion between the authors.

3.5 Phases

The search was conducted in two phases. First in phase 1 the databases were
searched in 2009, and the result was summarized and presented in [HOA10a].
Then the same search string was used again in phase 2 in 2010, and the results
were updated with the new articles that were identified.

4 Results

In this section the actual results of the steps presented in Section 3 are presented.
The results are summarized in Figure 1 and below. The research was conducted in
two major phases as described in Section 3.5.

4.1 Phase 1

First the academic databases were searched on 18 May 2009, which resulted in
357 articles. However, among these articles there were a number of duplicates
because the searches were made in different databases. Duplicates were identified
with a simple java-program based on titles. After this, 237 articles remained (i.e.
the result of step 1 in Figure 1).

After this, unrelated articles were removed based on both title and abstract.
First an attempt was made to remove articles based only on title and then based on
abstract, but it was not seen as possible to remove an article only based on the title.
Therefore both titles and abstracts were studied during this process. After this, 45
titles remained.

After this, one additional duplicate was identified where the title was written
slightly differently in different databases (”&” instead of ”and”), which means that
44 titles remained (i.e. the result of step 2 in Figure 1).

The first author of this paper first conducted these steps, and then the second
author reviewed the result. None of the previously excluded articles were reintro-
duced.

38 A Systematic Review of Research on Open Source Software in Commercial . . .

1. Search 1 in academic
databases 237 articles

2. Selection of related
articles based on title and

abstract
 44 articles

3. Selection of articles
based on full text

4. Manual selection of
articles from the OSS
conference (-2009)

 19 articles

5. Search 2 in academic
databases 76 new articles

Results presented
in [7]

7. Selection of articles
based on full text

 4 new articles

6. Selection of related
articles based on title and

abstract
 18 new articles

+

 19 + 4 = 23
articles

Results presented in
this article

Figure 1: Summary of article selection process.

In these steps, some articles were found for which it was hard to decide whether
to keep them or not based on the title and abstract. In these cases we decided to
keep them to the next step instead of removing them. That is, articles that were
hard to judge based on only title and abstract were kept to the next step, where the
whole articles were read.

After this, the identified articles were obtained from the library database, and
they were reviewed in full text. Here, some articles were removed since they were
not really related to the research questions or because they were not available in
full text from the databases.

Some of the removed articles were about developing open source in general,
which was not seen as relevant for this work. Some were about using open source
software in general, without seeing the context as an IT system that is built.

To this list of articles, relevant articles from the OSS conference were added.
There was no overlap between these manually found articles and the articles that
were found through the search in the databases. After this, a final set of 19 articles
remained (i.e. the result of step 3 in Figure 1).

4 Results 39

In the analysis of the papers it was clear that both anticipated and unanticipated
areas were covered by the identified articles. That is, some papers dealt with ques-
tions that we thought of before, and therefore were aware of when the research
questions were formulated. Other areas were more unexpected, mainly the articles
about transferring the open source development process to the internal work in a
non-open source product. Articles of both types were of course included in the
study as long as they were seen as relevant compared to the formulated research
questions.

One paper for which it was hard to judge the relevance for this study is the
paper by [Kri06], which concerns motivation of developers, to some extent dis-
cussing both unpaid and paid developers. Even if the question of motivation for
open source developers in general is out of scope of the review, the discussion
about paid and unpaid developers makes it more relevant. However, we decided
not to include the paper since it was seen as a too small part of the article. Also,
concerning the paper by [Lea+02] it could be argued that this type of article should
be included. The main focus of it is on design of a modular system for data anal-
ysis, but they also conclude that working with the system as OSS improves the
possibility of collaborating between different universities, government agencies,
and private industry, both nationally and internationally. However, this was stated
as a minor part of the paper, which means that the article was not included.

4.2 Phase 2

The databases were searched with the same search string as in phase 1 once again
14 May 2010. This resulted in 76 new articles that were not identified in phase 1
(i.e. the result of step 5 in Figure 1).

The title and abstract of the articles were studied in order to remove articles
that were not of interest. This was done as a cooperation between the two authors.
After this step, 18 of the new articles were kept (i.e. the result of step 6 in Figure
1).

The next step was to download all articles and study them in full text in order to
decided whether they really are of interest with respect to the research questions,
and of type A or type B. Some articles could not be downloaded from the library
databases, but most could. After this step 4 of the new articles remained.

4.3 Analysis of identified articles

After phase 2 there were in total 23 articles, i.e. 19 from phase 1 and 4 additional
from phase 2.

In the rest of this paper, the selected articles are referred to with the keys that
are presented in bold in appendix. For example, the first identified article is re-
ferred to as [Arhippainen03].

40 A Systematic Review of Research on Open Source Software in Commercial . . .

Table 1: Identified articles

Article Research methodology Class Identification phase
[Arhippainen03] case study A 1
[Ayala09] survey A 1
[Bonaccorsi05] survey A 1
[Bonaccorsi06] survey A 1
[Bonaccorsi07] survey A 1
[Gaughan09] case study B 2
[Gurbani06] case study A 1
[Harison10] survey A 2
[Henkel08] interviews and survey A 2
[Hauge07] survey A 1
[Hauge09] case study A 1
[Li05a] survey A 1
[Li05b] survey A 1
[Li06a] survey A 1
[Li06b] survey A 1
[Li09] summary A 1
[Lindman08] case study A 1
[Lindman09] case study A 1
[Lundell06] survey A 1
[Munga09] case study B 2
[Robles07] case study A 1
[West03] case study B 1
[Westenholz06] case study A 1

The research methodologies that were used in the identified articles are sum-
marized in Table 1. This is our interpretation of the chosen methodology after
reading the articles. In some cases it was very clear which methodology that was
used, but in other cases it was somewhat harder. For example when a set of inter-
views was conducted in different organizations we classified this as a survey, since
we wanted to classify according to commonly used methods. However, it could
had also been classified as something like ”interview study”.

In Table 1 we also present our interpretation of the classification of the method
implementation (A or B). Our experience is that it is hard to evaluate articles in this
way. Since no difference has been made between the two classes in the analysis,
this classification should only be seen as our interpretation of the article for the
purpose of this review.

The article [Li09] requires some further explanation. Since it is a summary of

4 Results 41

!"

#"

$"

%"

&"

'"

("

)"

$!!#" $!!$" $!!%" $!!&" $!!'" $!!(" $!!)" $!!*" $!!+" $!#!"

Figure 2: Publication year for included articles

the other articles by the author ([Li05a]–[Li06b]), the methodology is presented
as ”summary”, and even if it is presented as a popular science article we have
classified it as class A and thereby included it in the study based on the contents
of the other articles.

In Figure 2 it can be seen that the oldest identified article is from year 2003, and
that the most recent is from 2010. Here it should be noted that the last search in the
database was conducted in may 2010, which means that there may be more articles
published in 2010. It can be noted that all the identified articles are published rather
recently (i.e. since 2003). There were rather many articles published in 2005 and
2006. Four of these were by the same author on the same subject.

4.4 Investigated research areas

Introduction

The articles can be divided into a number of main areas based on the contents
of the articles. The formulation of content areas was done without the explicit
objective to adhere to the identified research questions defined in Section 3.

The categories were defined based on the contents of the articles. That is the
whole articles were used and no specific common parts of the articles were derived
with a data extraction template. Each article was sorted into the category where
it belonged the most even if it could be argued that some articles to some extent
were related to more than one category. However, there was no article where it was
really hard to decide the category or where we thought that it was equally related to
more than one category. This is probably natural since the categories were defined
based on the contents of the articles, and the objective during this process was to
define categories based on the articles. It should be noted that the classification

42 A Systematic Review of Research on Open Source Software in Commercial . . .

was first conducted in phase 1 based on the 19 articles that were identified in that
phase. It was rather easy to classify the 4 new articles in phase 2 in the same way,
which means that the same classification scheme (i.e. the four areas) was kept in
phase 2.

The identified categories are listed below. For each category the articles related
to it are listed.

• Company participation in open source development communities: [Bonac-
corsi07], [Hauge07], [Henkel08], [Lundell06], [Robles07].

• Business models with open source in commercial organizations: [Bonac-
corsi05], [Bonaccorsi06], [Harison10], [Hauge09], [Lindman09], [Munga09],
[Westenholz06], [West03].

• Open source as part of component based software engineering: [Arhip-
painen03], [Ayala09], [Li05a], [Li05b], [Li06a], [Li06b], [Li09].

• Using the open source process within a company: [Gaughan09], [Gurbani05],
[Lindman08].

The research conducted in each area is shortly summarized below.

Company participation in open source development communities

It is clear that there is company participation in many open source projects. For
example [Bonaccorsi07] found that in one third of the most active projects on
SourceForge there was some form of company participation. Companies can par-
ticipate as project coordinator, collaborator in code development, and by providing
code etc. In [Hauge07] one additional role, which is more concerned with integra-
tion of open source components, is identified.

Concerning the number of companies that participate in this kind of develop-
ment, [Lundell06] suggests that a significant number of the companies marginally
participate in open source community. However, the participation has increased es-
pecially in SME, compared to earlier conducted studies. Of the companies that use
open source projects, 75% can be said to have ”symbiotic relationship” with the
OS community. This can be compared to the investigation presented by [Rables07]
that show that 6-7% of the code in Linux Debian GNU distribution over the period
1998-2004 has been contributed by corporations. That is, it is clear that a rather
large part of the open source code has been provided by commercial organizations,
and that those commercial organizations play crucial roles in open source projects.
This is especially clear in the larger and more active projects.

It is also clear that if software should be provided to a community it is im-
portant to provide enough documentation and information to get the community
members going (e.g. [Hauge07]).

4 Results 43

One risk that could be seen by companies is that people working in the orga-
nization would reveal too much information to the outside of the organization if
they work with an open source community. However, the revealing behavior of
this kind of software engineers was investigated in [Henkel08] and it was found
that even if the engineers identified with the community they were significantly
less identified and ideological about open source than the control group of non-
commercial developers. The conclusion from that research is that there is indica-
tors of commercially harmful behavior in this kind of development.

[Bonaccorsi07] presents a list of important questions for further research, which
is relevant with respect to these questions. For example, are companies participat-
ing in open source projects more successful than other companies, and what are
the characteristics of companies participating in open source projects? It is worth
noting that no identified paper presents much research about how companies’ in-
ternal processes for collaborating with communities work. This could also be an
area for further research.

Business models with open source in commercial organizations

Concerning the business models it is clear that companies involved in open source
development besides developing open source products also offer customized soft-
ware based on open source products. It is also common to offer consulting and
training (e.g. [Bonaccorsi06]). It is also clear that business models include hybrid
strategies, such as described by [West03], where the focus is on large software
vendors. The paper presents an in-depth analysis on historical development of op-
erating systems, computers, and business strategies adopted by vendors. It is also
possible to base the business on being the link between an open source project
and the enterprise customers by integrating the product in a commercial package
[Munga09].

[Hauge09] presents a case study on a small Norwegian company that success-
fully established a business model around two open source products by establish-
ing three specialized user communities. The paper also concludes that while it is
important to attract developers to the community, it is as important to retain some
control over the product for commercial benefits.

Bonaccorsi [Bonaccorsi05] investigates reasons why companies participate in
open source communities. In particular, the paper analyzes discrepancies between
attitudes and behaviors in relation to three primary research questions. The ques-
tions deal with motivation to set up an open source business, whether the firms’
claims to uphold intrinsic, community-based values are aligned with the firms’ ac-
tions, and finally, if there is discrepancy, are there any observable patterns. The
conclusion points out that there is misalignment in attitudes and behavior of firms
in open source market place, confirming earlier research that companies use in-
trinsic values to attract developers in order to fulfill their own extrinsic goals. In
[Harison10] it is found that software companies with higher proportions of highly

44 A Systematic Review of Research on Open Source Software in Commercial . . .

educated personnel are more likely to adopt a business model based on supplying
open source software.

[Westenholz06] offers an insight into challenges of creating a sustainable busi-
ness around open source business model based on a case study. The study offers
insight into shifting of business strategies conducted by the entrepreneur in order
to make the business profitable around the combination of open source and propri-
etary software.

[Lindman09] asserts that business models can sometimes be too generic and
undertake an exploratory case study of three different organizations in order to
empirically identify different incentives companies have in releasing a product as
open source beyond the revenue generating ones. The paper points to challenges
in attracting and sustaining a community for a software product that is highly spe-
cialized.

Open source as part of component based software engineering

The article from Arhippainen [Arhippainen03] is a case study conducted at Nokia
on the usage of the OTS components. The paper presents a detailed analysis on
usage of third party components in general, and discusses advantages of using
proprietary over open source components and vice versa. It also identifies issues
related to software development methodology in terms of including third party
components.

The research presented in [Ayala09] assesses the state of reusable components
in the open source market based on survey conducted in Spanish and Norwegian
companies. The results of the survey also assess the needs of OSS industrial users
in component selection and identify challenges that can aid in maturing the open
source components market.

The 5 articles [Li05a], [Li09], [Li05b], [Li06a], [Li06b] are based on the anal-
ysis of data collected through state-of-the practice survey conducted in Norway,
Germany, and Italy. This research, conducted on over 100 projects that use pro-
prietary or open source OTS components, looks into risks associated with use of
such components, reasoning behind using OTS components, and impact on devel-
opment process when using the OTS components. Some of the findings suggest
that selection of OTS components is a very informal process, that OTS compo-
nents are selected throughout the development process life cycle even though early
selection yields benefits. It is also suggested that estimates on effort needed to in-
tegrate components is informal and dependent on experience, and as such, is often
inaccurate. Furthermore, some general conclusions of the studies point that the
OTS components rarely have negative impact on the system. Open source OTS
components are used in the same manner as proprietary components, thus without
modification. If a problem occurs with the OTS components, it takes substantial
amount of effort to correct them.

5 Discussion 45

It can be noticed that in [Li05a]–[Li09] there is no in-depth analysis of what
kind of open source components as OTS components, were used by companies.
For example, many mainstream proprietary IT workshops, sometimes very ”hos-
tile” to the idea of using open source components, like the ones producing software
for big financial houses, use PGP and other Unix based open source components
as these over the time have become de-facto standard. Investigating into the diver-
sity and type of open source OTS components that are used in projects can be a
question for further research.

Using the open source process within a company

An interesting area that is investigated in [Gurbani05] and [Lindman08] is that
of using an open source process within a company. That is, the product is not
provided to any community outside the organization, but instead handled as an
open source project within the company. One unit of the organizations owns the
product and provides it to the rest of the organization. Everyone in the organizatin
are allowed to use and modify the code, and changes are approved by the original
owners as in any other open source project.

Gurbani et. al. [Gurbani05] presents a case study on transferring the open
source development model for one software product at Lucent technology. In this
case the approach was judged successful by the authors, for example because the
product was needed in several products and the architecture was suitable for this.
Lindman et. al. [Lindman08] also investigates the usage of an internal open source
development methodology through a case study. This case study is conducted on
usage of Nokia iSource portal for hosting projects. The portal became very pop-
ular for managing heterogeneous types of projects: SCM, distributed, agile, inter-
company collaboration projects. The research results showed that implementation
of open source project management tools can facilitate innovation within the com-
pany. In [Gaughan09] the area is also investigated in a set of studies. Positive
aspects based on increased visibility in the organization such as as better code
quality and pride in work are listed. However, visibility can also lead to other as-
pects, such as privacy and knowledge retention, and easier workplace monitoring.
It should be noticed that all case studies are conducted at large companies, which
probably is natural.

A number of further research questions can be identified. One concerns how
contributions can be included in this kind of product when different developers
have different needs for the developed product.

5 Discussion
In this review, 23 articles were identified. We do not think that this is a large
number of articles compared to the importance of the field, and the general amount
of discussion about how open source can be used by commercial organizations.

46 A Systematic Review of Research on Open Source Software in Commercial . . .

Many of the studies are in the form of surveys, which gives a broad and neces-
sary understanding. Based on this it would probably be possible to conduct more
studies investigating specific cases of implementation of methodologies for deal-
ing with different aspects of open source in industry. More case studies could
probably be conducted on all aspects of the research questions. More case studies
could probably also provide more knowledge of research question 3 and research
question 4. That is, research could be carried out to understand more about the
cost and advantages of different approaches, and why different approaches are
chosen. It is also worth noticing that there are no controlled experiments at all in
the identified articles.

There is, of course, a risk that some articles have been missed in the search,
either because the search string has not identified all relevant articles, or because
the set of searched journals was not complete. The search string was developed
through a ”trial and error” approach in order to find as many relevant articles as
possible, but it is impossible to guarantee that all articles have been found. The
same is true for the coverage of the search. It is not possible to guarantee that all
relevant journals and conferences have been searched. Here the most severe risk is
probably for articles not in the traditional software engineering literature, such as
articles on business models, which is more general than traditional software engi-
neering. Since there is a risk that all articles have not been found it is reasonable to
discuss the effects of missing articles. Of course, the more complete the selection
of articles is the better it is. However, in this case the objective is more to identify
and summarize conducted research and experience than to carry out meta-analysis,
which probably means that the effect of missing single articles is lower. Even if
more articles would be found it is not unlikely that the major conclusions in terms
of identified areas, and main conclusions in areas, would be the same.

6 Conclusions

Concerning research question 1 and 2, i.e. what approaches and process are used
to introduce and provide open source components, it was possible to divide the the
identified papers into different areas. The following areas were defined based on
the articles: i) participation in open source development communities, ii) business
models with open source, and iii) treating open source software as components
in component based development. Besides this there are articles on iv) how open
source processes can be used within a company.

In all areas experience in some form were presented in the articles, although the
papers were on rather different areas. Some results were presented on motivation
and incentives.

The areas are important for research and it is interesting to see that research
is available in all these areas. The question of how to use open source practices
within a closed company (iv) is for example an interesting area for further research.

6 Conclusions 47

Based on this review we also propose that further research is conducted on
how companies can transform their proprietary software to open source and build
a community on it. Further research related to all four research questions in Sec-
tion 3.1 could involve more case studies on implementation of specific methodolo-
gies for dealing with different aspects of open source in industry.

Acknowledgment
This work was partly funded by the Industrial Excellence Center EASE – Embed-
ded Applications Software Engineering, (http://ease.cs.lth.se).

References
[AB09] N. Abdelkafi and T. Blecker. “From open source in the digital to

the physical world: a smooth transfer?” In: Management Decisions
47.10 (2009), pp. 1610–1632.

[CAC08] L. Chen, M. Ali Babar, and C. Cawley. “A status report on the eval-
uation of variability management approaches”. In: Proceedings of
Evaluation and Assessment in Software Engineering (EASE). 2008.

[DGJ07] O. Dieste, A. Griman, and N. Juristo. “Developing search strategies
for detecting relevant experiments”. In: Empirical Software Engi-
neering 14 (5 2007), pp. 513–539.

[DD08] Tore Dybå and Torgeir Dingsøyr. “Strength of evidence in system-
atic reviews in software engineering”. In: Proceedings of the Inter-
national Symposium on Empirical Software Engineering and Mea-
surement. ESEM’08. Kaiserslautern, Germany, 2008, pp. 178–187.

[FF02] Joseph Feller and Brian Fitzgerald. Understanding Open Source Soft-
ware Development. Addison Wesley, 2002.

[Goo05] Sigi Goode. “Something for nothing: management rejection of open
source software in Australia’s top firms”. In: Information & Man-
agement 42 (5 2005), pp. 669–681.

[HOA10a] Martin Höst and Alma Oručević-Alagić. “A Systematic Review of
Research on Open Source Software in Commercial Software Prod-
uct Development”. In: Proceedings of Evaluation and Assessment in
Software Engineering (EASE). 2010.

[KC07] Barbara Kitchenham and S. Carter. Guidelines for performing sys-
tematic literature reviews in software engineering, v. 2.3. Tech. rep.
Keele University and University of Durham, 2007.

48 A Systematic Review of Research on Open Source Software in Commercial . . .

[Kri06] Sandeep Krishnamurthy. “On the Intrinsic and Extrinsic Motivation
of Free/Libre/Open Source (FLOSS) Developers”. In: Knowledge,
Technology & Policy 18.4 (2006), pp. 17–40.

[Lea+02] G. H. Leavesley et al. “A modular approach to addressing model de-
sign, scale, and parameter estimation issues in distributed hydrolog-
ical modelling”. In: Hydrological Processes 16 (2 2002), pp. 173–
187.

[LT01] Josh Lerner and Jean Tirole. “The open source movement: Key re-
search questions”. In: European Economic Review 45.4-6 (2001),
pp. 819 –826.

[Ray01c] Eric S. Raymond. The Cathedral and the Bazaar. O’Reilly Media,
2001.

[RH09] Per Runeson and Martin Höst. “Guidelines for conducting and re-
porting case study research in software engineering”. In: Empirical
Software Engineering 14 (2 2009), pp. 131–164.

[SAB09] K-J. Stol and M. Ali Babar. “Reporting empirical research in open
source software: the state of practice”. In: Proceedings International
Conference on Open Source Systems. Skövde, Sweden, 2009, pp. 156–
169.

[SAB10] K-J. Stol and M. Ali Babar. “Challenges in using open source soft-
ware in product development: a review of the literature”. In: Pro-
ceedings FLOSS. Cape Town, South Africa, 2010, pp. 17–22.

[Web04a] S. Weber. The Success of Open Source. Harvard University Press,
2004.

Appendix: Articles included in review
Arhippainen03 L. Arhippainen, Use and integration of third-party components in software

development. Technical report, VTT Publubilcation 489:84, 2003. In this report
a case study on component based development, including the use of open source
components, at Nokia is presented.

Ayala09 C. Ayala, Ø. Hauge, R. Conradi, X. Franch, J. Li, and K. Sandanger Velle, Chal-
lenges of the Open Source Component Marketplace in the Industry, In proc. OSS,
pp. 213-224, 2009. The paper analyzes the state of open source market place and
how companies interact to reuse components that the market place offers.

Bonaccorsi05 A. Bonaccorsi and C. Rossi, Intrinsic Motivations and Profit-oriented Firms
in Open Source Software. Do firms practise what they preach?. In proc. OSS, pp.
241-245, 2005. The articles investigates true motivation behind companies involve-
ment in open source activities based on data gathered through a survey of 146 Italian
companies supplying open source solutions.

6 Conclusions 49

Bonaccorsi06 A. Bonaccorsi, S. Giannangeli, and C. Rossi Entry strategies under compet-
ing standards: Hybrid business models in the open source software industry. Man-
agement Science, 52(7):1085-109, 2006. This is a further analysis of the same survey
as presented in [Bonaccorsi05]. They have developed a regression model explaining
the ”friendliness” to open source based on a set of factors.

Bonaccorsi07 A. Bonaccorsi, D. Lorenzi, M. Merito, and C. Rossi Business firms’ en-
gagement in community projects, empirical evidence and further developments of
the research, In First International Workshop on Emerging Trends in FLOSS Re-
search and Development, FLOSS’07, 2007. This is a survey based on a sample of
300 projects from SourceForge. In 97 of the projects there was at least one com-
pany participating. The three main types of involvement were ”project coordinator”,
”collaboration”, and ”provision of code”.

Gaughan09 Gaughan, G., Fitzgerald, B., and M. Shaikh, An examination of the use of
open source software processes as a global software development solution for com-
mercial software engineering. In proc. Euromicro Software Engineering and Ad-
vanced Applications, pp. 20-27, 2009. This paper summarizes experiences from
using open source processes within companies.

Gurbani06 V.K. Gurbani, A. Garvert, and J.D. Herbsleb, A case study of a corporate open
source development model. International Conference on Software Engineering, pp.
472-481, 2006. This paper presents a case study on transferring the open source
development model for one software product to a commercial environment at Lucent
technology, keeping the software proprietary in the company.

Harison10 E. Harison and H. Koski, Applying open innovation in business strategies: ev-
idence from Finnish software firms. Research Policy, Vol. 39, pp. 351-359, 2010. A
survey of 170 Finnish software firms with respect to business strategies is presented.

Hauge07 Ø. Hauge, C.F. Sørensen, and A. Røsdal, Surveying Industrial Roles in Open
Source Software Development. In proc. OSS, pp. 259-264, 2007. This paper defines
different industrial roles in open source community: provider, integrator, participant,
and inner source software participant. Through a survey, it investigates motivation,
challenges, and development practices of the companies taking on these roles within
the ITEA COSI project.

Hauge09 Ø. Hauge and S. Ziemer, Providing Commercial Open Source Software: Lessons
Learned. In proc. OSS, pp. 70-82, 2009. This paper presents a study on a small
Norwegian software company that has built its business around own OSS products
and compares the findings to other cases reported in literature.

Henkel08 J. Henkel, Champions of revealing – the role of open source developers in com-
mercial firms, Industrial Corporate Change, Vol. 18, No. 3, pp. 435-471, 2008.
This paper discusses how company employed persons can cooperate in open source
communities, with focus on how code is committed to the community.

Li05a J. Li, R. Conradi, O.P.N. Slyngstad, C. Bunse, U. Khan, M. Torchiano, and M.
Morisio, An empirical study on off-the-shelf component usage in industrial projects.
In Product Focused Software Development and Process Improvement (Profes), pp.
54-68, 2005. The paper presents survey conducted a large number of companies
from Norway, Germany, and Italy on the off-the shelf (OTC) components usage. It

50 A Systematic Review of Research on Open Source Software in Commercial . . .

focuses on factors that influence the choice in terms of whether the OTS component
is open source or proprietary.

Li05b J. Li, R. Conradi, O.P.N. Slyngstad, C. Bunse, U. Khan, M. Torchiano, and M.
Morisio, Validation of new theses on off-the-shelf component based development,
International Software Metrics Symposium, pp. 231-240, 2005. The paper focuses
on validating six theses related to usage of off-the-shelf components within compa-
nies.

Li06a J. Li, R. Conradi, O.P.N. Slyngstad, C. Bunse, U. Khan, M. Torchiano, and M.
Morisio, An empirical study on decision making in off-the-shelf component-based
development. In proc. International Conference on Software Engineering (ICSE),
pp. 897-900, 2006. This article investigates research questions resembling those in
[Li05a], but with a larger sample of projects.

Li06b J. Li, M. Torchiano, R. Conradi, O.P.N. Slyngstad, and C. Bunse, A state-of-the-
practice survey of off-the-shelf component-based development processes. In Reuse
of off-the-shelf Components, International Conference on Software Reuse, pp. 16-
28, 2006. This paper focuses on the development process when OTS components
are used.

Li09 J. Li, R. Conradi, C. Bunse, M. Torchiano, O.P.N. Slyngstad, and M. Morisio, Devel-
opment with off-the-shelf components: 10 facts. IEEE Software, 26(2):80-87, 2009.
This article basically summarizes the findings from the earlier articles by the same
group of authors. The conclusions are presented in the form of 10 facts learned about
development with OTS components.

Lindman08 J. Lindman, M. Rossi, P. Marttiin, Applying Open Source Development Prac-
tices Inside a Company. In proc. OSS, pp. 131-387, 2008. This paper investigates
characteristics of using open source and agile development practices within a com-
pany. It argues that usage of such practices can unlock innovation potential within a
company.

Lindman09 J. Lindman, J.P. Juutilainen, M. Rossi, Beyond the Business Model: Incen-
tives for Organizations to Publish Software Source Code. In proc. OSS, pp. 47-56,
2009. The paper investigates incentives for companies to release software as open
source through three exploratory case studies at different stages of code release.

Lundell06 B. Lundell, B. Lings, and E. Lindqvist, Perceptions and Uptake of Open Source
in Swedish Organizations. In proc. OSS, pp. 155-163, 2006. This paper investigates
usage of open source within Swedish companies from the perspective that goes be-
yond mere adoption of an open source software product. It focuses on participation
of the companies within the open source communities in roles of code contributors
on existing third party projects or its own products.

Munga09 N. Munga, T. Fogwill, and Q. Williams, The adoption of open software in busi-
ness models: a Red Hat and IBM case study. In proc 2009 Annual Research Con-
ference of the South African Institute of Computer Scientists and Information Tech-
nologists, pp. 112-121, 2009. This paper investigates the business models of open
source related aspects of Red Hat and IBM.

Robles07 G. Robles, S. Dueñas, and J.M. Gonzalez-Barahona, Corporate Involvement of
Libre Software: Study of Presence in Debian Code over Time. In proc. OSS, pp.

6 Conclusions 51

121-132, 2007. This paper investigates corporate involvement in Linux Debian GNU
distribution over the period from 1998-2004 based on copyright attributions in the
source code. The results of the research show that 6-7% of the code has been con-
tributed by corporations.

West03 J. West, How open is open enough? melding proprietary and open source platform
strategies. Research Policy, 32(7):1259-1285, 2003. The authors present a timeline
for what has happened with respect to ”hybrid” software systems, that is software
systems that consists of a mixture of open source software and proprietary software,
such as an Apple computer. Three case studies are presented.

Westenholz06 A. Westenholz, Institutional Entrepreneurs and the Bricolage of Intellectual
Property Discourses. In proc. OSS, pp. 183-193, 2006. This paper is a case study on
an institutional entrepreneur who builds his own company on a business model that
mixes open and closed source software practices.

PA
P

E
R

II

USAGE OF OPEN SOURCE IN
COMMERCIAL SOFTWARE
PRODUCT DEVELOPMENT

Abstract

Open source components can be used as one type of software component in devel-
opment of commercial software. In development using this type of component, po-
tential open source components must first be identified, then specific components
must be selected, and after that selected components should maybe be adapted be-
fore they are included in the developed product. A company using open source
components must also decide how they should participate in open source project
from which they use software. These steps have been investigated in a focus group
meeting with representatives from industry. Findings, in the form of recommen-
dations to engineers in the field are summarized for all the mentioned phases. The
findings have been compared to published literature, and no major differences or
conflicting facts have been found.

1 Introduction

Open source software denotes software that is available with source code free of
charge, according to an open source license [FF02]. Depending on the license type,

Martin Höst, Alma Oručević-Alagić, and Per Runeson
International Conference on Product Focused Software Development and Process Improvement
(PROFES), pp. 143-155, 2011

54 Usage of Open Source in Commercial Software Product Development

there are possibilities to include open source components in products in the same
way as other components are included. That is, in a large software development
projects, open source software can be used as one type of component as an alter-
native to components developed in-house or components obtained from external
companies.

There are companies that have experience from using well known open source
projects. Munga et al. [MFW09], for example, investigate business models for
companies involved in open source development in two case studies (Red Hat and
IBM) and concludes that ”the key to their success was investing resources into the
open source development community, while using this foundation to build stable,
reliable and integrated solutions that were attractive to enterprise customers”. This
type of development, using open source software, is of interest for several com-
panies. If open source components are used in product development there are a
number steps that the company needs to go through, and there are a number of
questions that need to be solved for each step.

First potential components must be identified, which can be done in several
ways. That is the company must decide how to identify components. Then, when
potential components have been identified, it must be decided which component
to use. In this decision there are several factors to consider, and the company must
decide how to make this decision. Using the components there may be reasons
to change them, which gives rise to a number of questions on how this should
be done and to what extent this can be recommended. A company working with
open source components must also decide to what extent to get involved in the
community of an open source project.

There is some research available in this area [HOA10a], although there is still
a need to collect and summarize experience from companies working in this way.
In this paper, findings are presented from a workshop, in the form of a focus group
meeting, where these topics were analyzed by industry representatives.

The outline of this paper is as follows. In Section 2 the methodology of the
research is presented, and in Section 3 the results are presented. The results are
compared to results presented in the literature in Section 4, and in Section 5 the
main conclusions are presented.

2 Methodology

2.1 Focus group

The workshop was run as a focus group meeting [Rob02; KBL08]. At the work-
shop, participants informally presented their experience from development with
open source software, for example from using open source components in their
product development, or from participating in open source communities. The in-
tention was to give all participants both an insight into how others in similar situ-

2 Methodology 55

ations work with these issues, and to get feedback on one’s own work from other
organizations. The result of a similar type of workshop was presented in [ER10].

Invitations to the workshop were sent to the network of the researchers. This
includes earlier participants at a seminar on ”research on open source in industry”
where rather many (≈ 50) people attended, and mailing lists to companies in the
region. This means that the participants cannot be seen as a representative sample
of a population and generalizations cannot be made in traditional statistical terms.
Instead analysis must be made according to a qualitative method, e.g. as described
by Fink [Fin02, p. 61-78]. This is further discussed in Section 2.4.

2.2 Objectives and discussion questions

The main research questions for the study were:

• How should open source components for inclusion in products be selected?
Is there a need to modify selected components, and if so, how should this be
done?

• To what extent is code given back to the open source community, and what
are the reasons behind doing so?

Discussion questions could be derived from the objectives in different ways.
One possibility would be to let the participants focus on a specific project and
discuss issues based on that. The advantage of this would be that it would probably
be easy for the participants to know what actually happened since it concerns a
specific project. The difficulties with this approach are that there is a risk that
participants have valuable experience from more than one project and therefore
cannot express all experiences they have since they should focus on one specific
project. There is also a risk that data becomes more sensitive if it is about a specific
project. Another alternative is to ask about more general experience from the
participant and let them express this in the form of advice to someone working
in the area. That is, the participants use all the experience and knowledge they
have, without limiting it to a specific project or presenting details about projects,
customers, etc. This was the approach that was taken in this research.

Based on the objectives of workshop, the following discussion questions were
phrased:

1. How should one identify components that are useful, and how should one
select which component to use?

2. How should one modify the selected component and include it in ones prod-
uct?

3. How should one take care of updates from the community?

56 Usage of Open Source in Commercial Software Product Development

Transcribe into

electronic form

Sort notes under

phases

Develop

summaries for

each phase

P-notes R-notes

Divide into shorter

notes

Participants review

summaries

meeting

participants

report

Figure 1: Main analysis steps

4. How should one handle own modifications/changes? What are the reasons
for giving back code (or not giving back code)?

In order to get a good discussion, where as many relevant aspects as possible
were covered, it was monitored in the following way. For each discussion ques-
tion, the participants were given some time to individually formulate an answer, or
several answers, on a Post-it note. When individual answers had been formulated
each participant presented their answer to the others, and the notes were posted on
the wall. During the discussions, the researchers also took notes.

2.3 Analysis procedure
The main data that was available for analysis were the notes formulated by the
participants (”P-notes” below) and the notes taken by the researchers (”R-notes”
below). The analysis was carried out in a number of steps, which are summarized
in Figure 1 and explained below.

First all P-notes were transcribed into electronic form. In this step one note was
transformed into one line of text. However, in some cases the participants wrote
lists with more than one note at each piece of paper. In these cases this was clearly

2 Methodology 57

marked in the transcript. When interpreting the notes, the researcher were helped
by the fact that the participants had presented the notes at the meeting earlier.

The R-notes were derived by dividing a longer text into single notes. After this
the P-notes and the R-notes were on the same form.

After this a set of phases were defined, based on the lifecycle phases in soft-
ware development. These phases were based on the areas covered by the questions,
but not exactly the same. Then, all notes could be sorted under the phases in which
they are relevant.

Next, all notes were grouped in related themes within phases, and based on
these summaries were developed. This means that one presentation summary was
developed for each phase. The final version of these summaries are presented in
Section 3.

Based on this, a report was developed with the summaries. The participants
were given the possibility to review and adapt the summaries in the report. This
resulted only in minor changes.

This procedure results in a summary, as presented in Section 3. The results
were given back to the participants in the form of a technical report. This result is
also compared to the literature in Section 4 of this article.

2.4 Validity
Since the collected data is analyzed qualitatively, the validity can be analyzed in
the same way as in a typical case study, which in many cases also is analyzed qual-
itatively. Validity can for example be analyzed with respect to construct validity,
internal validity, external validity, and reliability [Rob02; RH09].

Construct validity reflects to what extent the factors that are studied really rep-
resent what the researcher have in mind and what is investigated according
to the research questions.

In this study we believe that the terms (like ”open source”, ”component”,
etc.) that are used are commonly used terms and that the risk of not meaning
the same thing is low. It was also the case that the participants formulated
much of the notes themselves, which means that they used terms that they
fully understood. Besides this, the researchers participated in the whole
meeting, which means that it was possible for them to obtain clarifications
when it was needed. Also, the report with the same material as in Chapter 3
of this paper was reviewed by the participants.

Internal validity is of concern when causal relations are examined. In this study
no causal relations are investigated.

External validity is concerned with to what extent it is possible to generalize
the findings, and to what extent the findings are of interest to other people
outside the investigated case.

58 Usage of Open Source in Commercial Software Product Development

The study was conducted with a limited set of participants from a limited set
of organizations. This means, of course, that the results cannot automatically
be generalized to other organizations. Instead it must be up to the reader
to judge if it is reasonable to believe that the results are relevant also for
another organization or project. The results are compared and validated to
other literature and the type of results is not intended to be specific for a
certain type of results.

It should also be noticed that the findings from the focus group are based on
the opinions of the participants. There may be a risk that the opinions are
very specific for one participant or for the organization he/she represents.
The nature of a focus group meeting helps avoiding this problem. According
to Robson there is a natural quality control and participants tend to provide
checks and react to extreme views that they do not agree with, and group
dynamics help in focusing on the most important topics [Rob02, Box 9.5].

Reliability is concerned with to what extent the data and the analysis are depen-
dent on the specific researchers.

In order to obtain higher validity with respect to this, more than one re-
searcher were involved in the design and the analysis of the study. Also, as
mentioned above, the report with the same material as in Chapter 3 of this
paper was reviewed by the participants.

Another aspect that is relevant to this is how the questions were asked and
what type of data the participants are asked to provide. In order to avoid
problems with confidentiality, the participants were asked to formulate an-
swers more as advice to someone who is working in the area than as concrete
experiences from specific (and named) projects. We believe that this makes
it easier to provide data for this type of participants.

3 Results from focus group meeting

3.1 Participants
At the workshop the following participants and organizations participated:

A. Four researchers in Software Engineering from Lund University, i.e. the
authors of this paper and one more person

B. One researcher in Software Engineering from another university

C. Two persons from a company developing software and hardware for embed-
ded systems.

D. One person from a company developing software and functionality based on
an embedded system

3 Results from focus group meeting 59

E. One person from an organization developing software and hardware for em-
bedded systems with more than 10 years tradition of using open source soft-
ware

F. One person from an organization with the objective of supporting organiza-
tions in the region to improve in research, innovation and entrepreneurship
in mobile communications

That is, in total 10 persons participated, including the authors of this paper.

3.2 Identification
Previously, companies were used to choose between making components them-
selves or to buying them. Now the choice is between making or buying, or using
an open source component. That is, there is one more type of component to take
into account in the identification process. It should also be pointed out that it is
a strategic decision in terms of whether the product you are developing should
be seen as a closed product with open source components or as an open source
product.

When components are identified it is important that this is based on a need in
the development and that it maps to the product requirements. When it comes to
the criteria that are used when identifying components, they should preferably be
identified in advance.

In the search process, the advice is to start with well-known components and
investigate if they fulfill the requirements. There is also a lot of knowledge avail-
able among the members in the communities, so if there are engineers in the or-
ganization that are active in the community, they should be consulted. A further
advice is to encourage engineers to participate in communities, in order to gain this
kind of experience. However, the advice to consult engineers in the organization is
not depending on that they are members of the communities. A general knowledge
and awareness of existing communities is also valuable.

The next step is to search in open source forums like sourceforge and with
general search engines like google. The advice here is to use technical terms for
searching (algorithm, protocols, standards), instead of trying to express what you
try to solve. For example, it is harder to find information on "architectural frame-
work" than on specific techniques for this.

3.3 Selection
The more general advises concerning the selection process is to, again, use pre-
defined criteria and recommendations from colleagues. It is also possible to con-
duct a basic SWOT-analysis in the analysis phase.

A more general aspect that is important to take into account is if any of the
identified components can be seen as an ”ad hoc standard”, meaning that they are

60 Usage of Open Source in Commercial Software Product Development

used in many products of that kind and if it will increase interoperability and the
ease communication with other components. One criterion that is important in this
selection concerns the legal aspects. It is necessary to understand the constraints
posed by already included components and, of course, other aspects of the licenses.

Other more technical criteria that are important include programming lan-
guage, code quality, security, and maintainability and quality of documentation.
It is necessary to understand how much effort is required to include the component
in the architecture and it is necessary to understand how the currently used tool
chain fits with the component. A set of test cases is one example of an artifact that
is positive if it is available in the project.

A very important factor concerns the maturity of the community. It is neces-
sary to investigate if the community is stable and if here is a ”backing organization”
taking a long-term responsibility. It is also important to understand what type of
participants in the community that are active. The roadmap of the open source
project is important to understand in order to take a decision that is favorable for
the future of the project.

3.4 Modification

First it should be emphasized that there are disadvantages of making changes to an
own version of the components. The disadvantages are that the maintenance costs
increase when updates to new versions of the components are made, and it is not
possible to count on extensive support for specific updates from the community.
So, a common recommendation is to do this only if it is really necessary.

There are some reasons why modifications must be made. Especially adapta-
tion to specific hardware is needed, but also optimizations of different kind. When
these changes are made it is in many cases favorable to give back to the commu-
nity as discussed in the next section but if this is not possible an alternative is to
develop ”glue software” and in that way keeping the API unchanged.

If changes should be made it is necessary to invest effort in getting a deep
knowledge of the source code and architecture, even if a complete set of docu-
mentation is not available.

3.5 Giving back code

It is, as discussed in the previous section, in many cases an advantage to commit
changes to the open source project instead of working with an own forked version.
In this way it is easier to include updates of the open source component. In order
to manage this it is in many cases an advantage to become an active member of
the community, and maybe also take a leading role in it. When modifying an open
source component it is, of course, an advantage if ones own changes can be aligned
with the future development of the open source component.

4 Conclusions 61

Identification

Selection

Modification

Giving back

- Take "ad-hoc standards" into account

- Consider legal constraints

- Consider technical aspects (language, code quality)

- Assess needed changes to product

- Take community status into account

- Base identification on needs/requirements

- Investigate well-known components

- Talk to engineers

- Search in open source forums and google, use technical terms

- Try to avoid changes, but maybe necessary e.g. due to hardware

- If component is modified, deep knowledge is necessary

- If changes are needed consider making "glue software"

- An advantage to give back if you need to modify

- Become active member in the community, and even take leadership

- IPR issues and competencies main reasons not to give back code

- Complementing material, such as test cases, can be supplied

Figure 2: Main findings from workshop

However, there are some reasons not to give back changes too. The most im-
portant reason is probably that you want to protect essential IPR’s and core com-
petences in the organization. That is, key competence must in some situations be
hidden from competitors. It should, however, be noticed that there may be require-
ments from the license to give back code. Also, after some time, all software will
be seen as commodity, which means that this kind of decision must be reconsidered
after a while. Another reason not to make changes public is that possible security
holes can be made public. In some cases it is easier to get a change accepted if test
cases are supplied.

3.6 Summary of results

The main findings from the workshop, in terms of recommendations for the four
phases, are summarized in Figure 2.

4 Conclusions

We believe that many of the recommendations from the participants are important
to take into account in research and in process improvement in other companies.
The most important findings from the workshop are summarized below. The find-

62 Usage of Open Source in Commercial Software Product Development

ings are in line with presented research in literature as described in Section 4,
although the details and formulations are specific to the results of this study.

In the identification phase it is important to take the needs and the requirements
into account, and to investigate well-known components. It is also advised to dis-
cuss the needs with engineers in the organization, since they can have knowledge
of different components and communities. When forums are searched, an advice
is to use technical terms in the search string. When selecting which components
to use it is important to, besides taking technical aspects, like programming lan-
guage, into account, also consider legal constraints and ”ad-hoc standards”. It is
important to investigate the status of the community of a project, and the future of
the project, which for example depends on the community. In general it can be said
that changing components should be avoided if possible. If it is possible to make
adaptations with ”glue-code” this is in many cases better since less effort will be
required in the future when components are updated by the community. However,
there are situations when it is necessary to make changes in the components.

Even if there may be issues with property rights, it is in many cases an advan-
tage to provide code to the community if changes have been made. In general it
can be said that it is advised to become an active member in open source projects.

The findings from the focus group meeting were compared to published litera-
ture, and no conflicting facts were found.

Together with further research on the subject it will be possible to formulate
guidelines for software project managers on how to work with open source soft-
ware.

Acknowledgments
The authors would like to thank the participants for participating in the study.

This work was funded by the Industrial Excellence Center EASE – Embedded
Applications Software Engineering, (http://ease.cs.lth.se).

References
[ER10] Emelie Engström and Per Runeson. “A Qualitative Survey of Re-

gression Testing Practices”. In: Proceedings of International Confer-
ence on Product-Focused Software Process Improvement (PROFES).
2010, pp. 3–16.

[FF02] Joseph Feller and Brian Fitzgerald. Understanding Open Source Soft-
ware Development. Addison Wesley, 2002.

[Fin02] Arlene Fink. The Survey Handbook. 2:nd. Sage Publications, 2002.

4 Conclusions 63

[HOA10a] Martin Höst and Alma Oručević-Alagić. “A Systematic Review of
Research on Open Source Software in Commercial Software Prod-
uct Development”. In: Proceedings of Evaluation and Assessment in
Software Engineering (EASE). 2010.

[KBL08] Jyrki Kontio, Johanna Bragge, and Laura Lehtola. “The Focus Group
Method as an Empirical Tool in Software Engineering”. In: Guide
to Advanced Empirical Software Engineering. Ed. by Forrest Shull,
Janice Singer, and Dag I. K. Sjøberg. Springer, 2008.

[MFW09] Neeshal Munga, Thomas Fogwill, and Quentin Williams. “The adop-
tion of open source software in business models: A Red Hat and IBM
case study”. In: Annual Research Conference of the South African In-
stitute of Computer Scientists and Information Technologists, 2009,
pp. 112 –121.

[Rob02] Colin Robson. Real World Reserach. 2:nd. Blackwell Publishing,
2002.

[RH09] Per Runeson and Martin Höst. “Guidelines for conducting and re-
porting case study research in software engineering”. In: Empirical
Software Engineering 14 (2 2009), pp. 131–164.

PA
P

E
R

II
I

A CASE STUDY ON THE
TRANSFORMATION FROM

PROPRIETARY TO OPEN
SOURCE SOFTWARE

Abstract
Many large companies, from the traditionally proprietary software industry, are
opening up and embracing the open source software (OSS) development process
model as a part of their business strategy. Despite the recognized potential the
OSS community offers, there are still many questions and unknowns about the
transition process. We present an extensive analysis of static software quality met-
rics changes for Ingres, an open source enterprise database management system
(DBMS), as the software was moved from the proprietary into open source soft-
ware development environment. The software quality metrics of special interest
for the research are cyclomatic complexity, effective lines of code, the degree of
system modularity, and the amount of comments in the code. The conducted re-
search shows an overall improvement in the software quality metrics and signifi-
cant increase of the source code base. The overall improvement is comprised of
a decrease in software quality metrics for source files that were changed between
the proprietary and the OSS version and an increase in software quality metrics for
the source files added through Ingres OSS community development process.

Alma Oručević-Alagić, Martin Höst
Extended version of 6th International IFIP WG 2.13 Conference on Open Source Systems (OSS
2010), Notre Dame, IN, USA, May 30 - June 2, 2010, Proceedings, pp. 367-372, 2010

66 A Case Study on the Transformation From Proprietary to Open Source . . .

1 Introduction

In the last few decades, a traditional software production has come to presume an
”in-house” or closed source development process, which means that all develop-
ment is carried out by engineers employed within the same organization and the
software source code that is not available for the general public. There are several
different types of OSS licenses [FF02; Ray01a] with common characteristic of
source code being available free of charge to the general public. This means that
the traditional business models which are based on the sale of software licenses
are not applicable for software produced through the OSS community process.

The traditional software development has been taking advantage of third party
components, among which open source components have been playing an im-
portant role [Li+06b; Li+06a]. Thus, the open source components are perceived
as just another third party component or an alternative to in-house solution and
COTS. This approach has large similarities to traditional development, but a dif-
ference is that the company that uses the open source component must decide to
what extent it will participate in the development of the component. It would, of
course, be possible to use the available component as is, but for several reasons
companies may want to participate in OSS development process, e.g. to increase
their understanding of the software they are using, to be able to affect the software
evolution, and to support it in order to secure its future existence. There is also
an interest not only in participating in an open source community, but to provide a
software product to an open source community, e.g. [Bon+07].

Since virtually no development starts from scratch, an important process to
investigate is that of transforming a traditional proprietary software product to an
open source product. In this process the company will probably have less control
over the evolution of the software than in traditional development, and an impor-
tant question concerns what impact the changes made by the community will have
on the software quality metrics such as cyclomatic complexity of the code and
modularity.

The purpose of this paper is to investigate one case of this type of transforma-
tion. The case that is chosen is the Ingres database management system [Ing09],
which, according to many, has received a new breath of life after its release into
the open source community. The software was for a long time proprietary and
after that it was transformed to open source. Software metrics that show how the
source code has evolved under the OSS development process, are identified and
then analyzed for this product before the transition started and after the transition
has occurred.This is one case of this type of transformation and the intention is to
learn as much as posible from this case. It should however be seen as one case
and the results are not by default representative for all other cases. Instead, other
case studies can bring light on other cases and together they can form aggregated
knowledge.

The outline of this paper is as follows. In Section 2, the background informa-

2 Background and related work 67

tion on the case software and related research studies is presented. In Section 2,
the research method is further defined. Section 3.2 presents the obtained results,
while Section 4 discusses and analyses the obtained results in some more detail.
Finally, conclusions are drawn in Section 5.

2 Background and related work

The roots of the Ingres reach back to the 1970s and UC Barkley, when the initial
development of the software was started as open source. The same code base
was modified and spawned into Sybase and Microsoft SQL server in 1980s. In
1994, the software was acquired by CA (Computer Associates) from the ASK
Group, the company that created a proprietary version of the Ingres code. By the
year 2004, there were roughly around 5000 customers of the proprietary Ingres
DBMS software which was rather small customer base compared to the customer
base of some of its major competitors such as MySQL and Oracle. In order to
increase the market share, CA decided to transform the product to open source
in 2004. The company implemented loss-leader/market positioner business model
[Ray01a]. To reaffirm its commitment and support to Linux development process,
Computer Associates has contributed Kernel Generalized Event Model software
to Linux. The software, incorporated into the Linux kernel, improves security
of Linux and feeds performance information from Linux systems to management
systems [O’G04].

In November of 2005, Computer Associates and Garnett and Helfirch capital
created a new company, Ingres Corporation. The main role of Ingres Corporation
is to oversee the open source development process, provide support and services
for Ingres and OpenRoad. Today, Ingres customer base includes 10,000 enterprise
customers, among which 136 belong to the Fortune 500 companies like 3M, Bea
Systems, and Lufthansa [Ass09]. Hence, the positive turnaround Ingres has made
since it went open source, make the analysis of the software code quality metrics
even more interesting, especially when viewed from the historical perspective, i.e.
comparing the code metrics of the last proprietary version of the software from
2004, and the most recent one released as open source in November of 2008.

The Open Source Report, released in 2008, is the product of a two years long
effort by Coverity Software with support from the US Department of Homeland
Security[Sof08]. Over 55 million lines of code over the two year period for more
than 250 open source projects, totaling around 10 billion lines of code, was an-
alyzed. One of the main purposes of this study was to provide developers with
better understanding of the relationships between software defects and fundamen-
tal elements of coding such as function lengths and code complexity.

Bonaccorsi et. al. [Bon+07] have investigated business firms involvment in
OSS projects. They found that in 97 out of 300 sampled projects, at least one
business firm was involved. Three main kinds of involvement were found: project

68 A Case Study on the Transformation From Proprietary to Open Source . . .

coordination, which was the most frequent case, collaboration of software devel-
opment, and provision of code. This confirms the need for investigation of the
process of transforming proprietary software to OSS.

Stemlos [IS02] conducted code quality analysis in open source development
for 100 applications written for Linux. It was determined that some open source
products have lower quality of code produced in OSS environment then that which
is expected as an industry standard. Unlike this research which compares software
quality of the same product in its latest proprietary version and version created
after 4 years of OSS development, the presented work in [IS02] analyses quality
metrics for code produced by OSS community against industry standard.

Related work also includes the work of Gurbani et. al. [VKG06], who have
conducted a case study of managing an internal project as an OSS project. The
difference compared to this research is that the work presented in [VKG06] con-
cerns a project that was kept within a company, and there was not the same focus
on code quality metrics.

3 Research approach

3.1 Introduction
The study is conducted as a case study [RH08]. The investigated case is the trans-
formation of the Ingres code, from proprietary to open source. The study is ex-
ploratory with the overall objective to understand what type changes that were
made to the case software and how this affected some commonly use code met-
rics.

In this study a quantitive approach has been taken. Hence, code metrics such as
cyclomatic complexity, effective lines of code, modularity or average file function
count, have been measured and compared. For example, the study performed by
Zhang [HZ07] on public NASA datasets shows that static code complexity mea-
sures can be useful indicators of component quality.

In order to analyze and compare code metrics of the most recent proprietary
version, further referred as 2004v, and open source version, further referred as
2008v, of Ingres, the 2004v was obtained by directly contacting the Ingres Corpo-
ration. The 2008v was downloaded from the Ingres Open Source community web
site1 in November of 2008.

3.2 Research questions
The following research questions were investigated during the research:

1. What parts of the Ingres DBMS software components went through the most
source code changes in terms of source files added, changed, and deleted?

1http://community.ingres.com/wiki/Ingres _DBMS _Downloads

3 Research approach 69

Figure 1: High Level View of Major Source Code Components of Ingres Source
Code Architecture

2. How did Ingres DBMS code base change under the OS community process
in terms of static source code metrics?

For research question 1, the focus is on architecture level changes. For research
question 2, metrics with respect to quality attributes like size, complexity, and
amount of comments in the code are of interest. It should be noted that there is no
simple linear relationship between these metrics and how ”good” the software is.
For example, with respect to complexity it is in general recommended not to have
too high complexity, but when the complexity is below a certain value, required
functionality cannot be implemented. For comments there is probably a similar
relationship. If there are very few comments it is probably not as good as if there
are more comments, but if there are very many comments it is probably not better
than, or even as good as, if here a bit fewer comments. This makes it important to
highlight the objective of this study, i.e. to understand what changes that have been
carried out, and not to assess or compare the case software to any other software.

3.3 Investigated software

In order to ease the understanding of the approach for collecting and analyzing data
the high level architecture of the case software is described here. The architecture
is illustrated in Figure 1. It is grouped into four major components:

Front End: Functionality covers user interface facilities.

Back End: Functionality covers DBMS server functionality.

Common: Functionality covers connectivity and communications between the
front end the back end.

Utility: Functionality covers utility libraries that interact with operating system.

70 A Case Study on the Transformation From Proprietary to Open Source . . .

Deleted

Unchanged

Changed

Added

Type 0

Type 1

Type 2

Type 3

2004v 2008v

Figure 2: File types (files represented by circles)

A program that parses through the 2004v and 2008v code base was created, or
more specifically, the files and subdirectories under the main src directory that
contains all of the source files. The files were compared between the two code
bases in order to determine which files exist only in 2004v, further referred as file
type 0, which files are identical in 2004v and 2008v versions, further referred as
file type 1, which files were modified between the two versions, further referred as
file type 2, and finally, which files only exist, in 2008v, further referred as file type
3. The following list provides an overview of the changes, and the types are also
shown in Figure 2.

• File type 0 : Source files that can be found only in 2004v

• File type 1 : Source files identical - unchanged between the 2004v and 2008v

• File type 2: Source files that were changed between the 2004v and 2008v

• File type 3: Source files that were added in 2008v

3.4 Metrics

The following metrics were measured in both versions:

3 Research approach 71

• lines of code (LOC)

• effective lines of code (ELOC)

• comment lines (C)

• total cyclomatic complexity (TCC)

• file functions count (FFC)

All metrics are calculated on file level. For example, LOC denotes how many
lines of code there are in each source file, and the sum of these values for all
source files denotes the total number of lines of code per source code base. The
LOC metric takes into consideration all lines of code but blank only or comment
only lines. Hence, all lines in the source file except the blank lines or comment
lines are taken into consideration by the LOC statistic.

For coding purposes developers often use braces or parenthesis to make code
more readable, but this practice can inflate LOC metrics [RSM08]. The ELOC
metric takes into consideration all lines of code except blank only or comment
only lines as well as the lines containing only standalone braces or parenthesis ({,
}, (,)) Thus, lines counted by the ELOC metric are a subset of the lines counted
by the LOC metric.

C denotes the number of comment lines. The comment lines can appear by
themselves on one physical line of code, or can be co-mingled.

The TCC or total cyclomatic complexity metric, also known as McCabe’s
cyclomatic complexity, is the degree of logical branching per source file. The
cyclomatic complexity is calculated as

TCC = E −N + 2P

where E denotes the number of edges of the graph, N the number of nodes
of the graph, and P is the number of connected components [FP98]. This value is
calculated for each function in a file. For each file a value is calculated as the sum
of the complexity of each function in the file.

FFC, or total number of file functions, within a source file determines the
modularity of the file.

The FFC metric combined with ELOC metric produces average number of
effective lines of code AELOC metric, calculated as:

AELOC =
ELOC

FFC
.

In the same way, the average cyclomatic complexity (ACC) can be calculated
as:

ACC =
TCC

FFC

72 A Case Study on the Transformation From Proprietary to Open Source . . .

In addition to the above metrics, the amount of comments are of interest.
Therefore a metric describing the relative number of comments in each file RC
is calculated:

RC =
C

ELOC + C

Metrics for each file were derived with a metrics tool and stored in a database
together with file type information for analysis.

3.5 Analysis procedure
Analysis with respect to research question 1 was conducted by determining the
percentage changes in terms of file type 0, file type 1, file type 2, and file type 3 per
major components of the source code. The components correspond to directories
listed under "src" directory which houses all of the Ingres source code. In addition,
more granular analysis were conducted on file level.

When analysing research question 2, the differences between the different ver-
sions of the case software were investigated with hypothesis tests. The null hy-
potheses state that the code changes made to 2004v, resulting in 2008v, had no
impact on code metrics. The two-sided alternative hypotheses state that there was
an impact.

Let T = {0, 1, 2, 3} denote file types according to above and let
M = {AELOC,ACC,RC} denote the different metrics of interest, so that
µm(v, Ts) represents the expected mean of metric m ∈ M for all files of types
Ts ⊆ T in version v. Then the following null hypotheses and alternative hypothe-
ses have been defined:

H0m,changed : µm(2004v, {2}) = µm(2008v, {2})

Ham,changed : µm(2004v, {2}) 6= µm(2008v, {2})

and
H0m,new : µm(2004v, {0, 1, 2}) = µm(2008v, {3})

Ham,new : µm(2004v, {0, 1, 2}) 6= µm(2008v, {3})

and
H0m,all : µm(2004v, {0, 1, 2}) = µm(2008v, {1, 2, 3})

Ham,all : µm(2004v, {0, 1, 2}) 6= µm(2008v, {1, 2, 3})

That is, three null hypotheses have been formulated for each metric in M so
that there is one concerning only the changed files (H0m,changed), one concerning
all files from 2004v and only newly added files to 2008v (H0m,new), and one
concerning all the files in 2004v and 2008v (H0m,all). This means that |M |×3 =
3 × 3 = 9 null hypotheses and equally many alternative hypotheses have been
defined in total.

3 Research approach 73

This means that hypothesis tests are conducted by treating file level measure-
ments as independent samples. This gives the possibility to see if observed changes
are of a true pattern (it is possible to reject the null hypothesis) or if they have
occurred more by chance (it is not possible to reject the null hypothesis). Analy-
sis of data for distributions of metrics results for version 2004v and 2008v were
performed and it was determined that data for the metrics do not follow normal
distribution. Hence in order to compare distribution of the metrics, non parametric
tests, Mann-Whitney and Wilcoxon were performed. The Wilcoxon Signed-Rank
Test for matched pairs was used in order to compare paired data sets (i.e., in analy-
sis ofH0m,changed), and the Mann-Whitney U test was used to compare un-paired
data (i.e., in analysis of H0m,all and H0m,new).

3.6 Validity

In this section the validity of the research is analysed with respect to the types of
validity threats presented, for example, in [Woh+00].

Construct validity: The construct validity is related to the relationship between
the concepts and theories behind the experiment and what is measured and
affected. Commonly accepted metrics for static software quality measure-
ments such as cyclomatic complexity, lines of code, file function count, ef-
fective lines of code, were used. This means that the risk of using metrics
that do not represent the concept of code quality is lowered.

Conclusion validity: The conclusion validity is concerned with the possibility to
draw correct conclusions regarding the relationship between treatments and
the outcome of an experiment. All of the population distributions analyzed
did not follow normal distributions, and thus, in order to analyze the distri-
butions, tests of lower statistical power than the t-test had to be used. Hence,
the statistical tests used to analyze the data were Wilcoxon Signed-Rank Test
for a matched pairs experiment and the Mann-Whitney U Test for indepen-
dent random samples. This means that the statistics were not dependent on
a normal distribution. It should be noted that the number of data points can
be considered high. This means that even if non-parametric tests were to be
used, the chance of detecting differences in distributions can be seen as high
due to the large amount of data.

Internal validity: The internal validity is concerned with factors that may affect
the dependent variables without the researcher’s knowledge. Over some pe-
riod of time, software quality will change, as the software goes through vari-
ous maintenance processes. The software that is left unchanged for a longer
period of time, will normally see its software quality metrics depreciated
e.g. as stated by Lehman’s laws [Som07]. On the other hand, a software that
is maintained will see a change in its software quality metrics. It is unknown

74 A Case Study on the Transformation From Proprietary to Open Source . . .

what an average change in software quality metrics for similar products over
four year period would be in proprietary environment. If the average change
amount was established then it could be compared to the one introduced by
the OSS maintenance process. However, the fact that the product has been
transformed to OSS has been a major event for the product during these
years, and it is not probable that the transformation have not had any affect
on the quality.

External validity: The external validity is related to the ability to generalise the
results of the experiments. While the case software is quite relevant in terms
of its source code size, market, decades long life span, and impressive cus-
tomer base, more research is needed to make general conclusion on whether
the results of this study can be applied to other similar software systems.
This is a case study, and the focus is on the case as such and not on general-
ization.

4 Results

4.1 Research question 1: Distribution of source code
changes

Figure 3 shows the distribution of 2008v source files in percentages for each subdi-
rectory under src directory, or i.e. directories: src/tst, src/tools, src/testtool, src/sig,
src/ha, src/gl, src/front, src/dbutil, src/common, src/cl, src/back, and src/admin.
Not all of the source code subdirectories will be analyzed in more detail, but only
front, back, common, gl, and cl, since these directories contain almost 95% of the
code. Hence, the most of the source files are located under /src/front directory
or 54.7% of all 2008v. In the second place is src/cl directory housing 15.40% of
source files in 2008v, followed by the src/back and src/common, housing 14.06%
and 10.44% of all 2008v source files, respectively. Thus, these four directories
contain 94.6% of 2008v source files. For this reason, in the following discussions,
the types of changes made to these directories are analyzed in more detail (see
section 2.3).

Under the src/front directory the components that belong to the front end layer
of the software are stored. The front end functionality includes embedded SQL
support, character based tools such as Application by Form (ABF), Query by
Form (QBF), Report by Form (RBF) and Terminal Monitor (TM). Furthermore,
the front end also includes Web Deployment Option that enables inclusion of data
from Ingres data source into HTML page. Finally, the front end also houses the
functionality related to replication that facilitates consistency of data sources lo-
cated on different targets. From the data in Figure 3, it is clear that over 50% of
all changes in the front end layer are due to the addition of the new source file
components (type 3). Another 33% of changes are due to changes (file type 2).

4 Results 75

Figure 3: Distribution of file types (0, 1, 2, 3 according to Section 2.3) for source
code directories

Therefore, around 88% of front end layer source files have been changed since
the case software went open source. When this fact is combined with the fact that
the front layer houses 54.7% of all source files, it can be said that some 48%, or
almost a half of the source code was added and changed, with 44% of all 2008v
file changes being contributed to addition of new source files (file type 3) to the
front layer.

Under src/cl library source files for Ingres Compatibility Library are housed.
The Ingres Compatibility Library provides interface to underlying operating sys-
tem. This library provides the common interfaces for Memory, I/O, IPC and it may
not call the higher levels of Ingres code. Referring to Figure 2.0 it can be observed
that this library grew 69% between 2004v and 2008v, that is it contains 69% of file
type 3 files. The src/back end components are deemed very important as the proper
functioning of these components significantly affects database performance. The
back end components are responsible for query storage, parsing, optimization and
execution. In addition, the back end also facilitates logging, locking, archiving and

76 A Case Study on the Transformation From Proprietary to Open Source . . .

Figure 4: Total source code changes (File Type 2 and File Type 3) per each top
level source code directory

recovery operations. The back end components went through the least amount of
source code changes and additions, having 67.5% of code unchanged (file type 1)
between the 2004v and 2008v. It also contains the least number of file additions
(file type 3), thus only having 2.92% of the total number of the source files added
(file type 3).

Finally the src/common contains components used by both, front and back
end. These components include Abstract Datatype Facility (ADF), Common Util-
ity Facility (CUF), General Communications Facility (GCF), Ingres .NET Data
Provider, Java Database Connectivity (JDBC), Open Database Connectivity (ODBC)
and Open Application Program Interface (Open API). The common components
contain 49.05% of file type 1, or almost half of its components are same for 2004v
and 2008v. It can be observed that 19.5% of its file were of file type 3, or newly
added components.

4.2 Research question 2: Change in Static Code Quality
Metrics

Table 2 displays code metric statistics summarized for the entire source code base
of 2004v and 2008v. Hence, it can be observed that the number of file functions,
lines of code and effective lines of code has increased. As one would expect,

4 Results 77

Table 1: Summary of source code metrics for the whole system
Code Metric 2004v 2008v
Total LOC 840,502 1,442,225
Total ELOC 650,055 1,110,261
Total C 484,349 630,635
Total TCC 167,753 300,493
Total FFC 15,588 45,216

Table 2: Mean values and p-values
H0 mean 2004 mean 2008 p reject H0

H0AELOC,changed 41.35 41.69 < 0.001 yes
H0ACC,changed 10.47 10.80 < 0.001 yes
H0RC,changed 0.53 0.54 1 no
H0AELOC,new 23.68 11.85 0.0042 yes
H0ACC,new 6.12 2.80 0.01 yes
H0RC,new 0.56 0.42 < 0.001 yes
H0AELOC,all 23.68 19.02 0.1383 no
H0ACC,all 6.12 4.85 0.1841 no
H0RC,all 0.56 0.50 < 0.001 yes

the higher number of functions and lines of code produced higher values for total
cyclomatic complexity of 2008v code compared to 2004v.

The results of hypothesis testing for the stated hypotheses are presented in
Table 2. As significance level, 0.05 is chosen.

Concerning AELOC, this metric is somewhat increased for changed files,
meaning that when files are changed the functions in the files have become some-
what larger. For new files the metric is much lower than for old files, meaning that
functions in new files are smaller than in older files. In total, looking at all files,
the metric is higher in the new version than in the older version. The differences
are statistically different for changed code and new code compared to old code,
but not for all code.

Concerning ACC the same type of observation as for AELOC can be made.
For changed files the complexity is slightly higher and for new files the complexity
is much lower.

For RC there is no significant difference for changed code, but for new code
there are significantly less comments. In total there is relatively less comments in
the new version compared to the old version.

78 A Case Study on the Transformation From Proprietary to Open Source . . .

5 Discussion

The results of the conducted research indicate that in terms of number of files that
were changed and updated, source files grouped under the front end component
were most affected. The source files grouped under the components library (the
src/cl directory) have seen the most of the 2004v source files deleted (file type 0)
number-wise. The least amount of changes was seen in the back end component or
src/back library. This means that more changes have been made to the ”top level”
components than the more ”lower level” components. There can be many reasons
for this, e.g. simply that more changes were needed in these components, but
another reason may be that these are nearer to the interest of the new community
that was formed during the open source transition process. This is a question that
can be investigated in future research.

The metrics pertaining to file type 2 changes indicate that changes made to
2004v source files resulted in significant increase in average cyclomatic complex-
ity ACC and increase in average effective lines of code AELOC. A simple an-
swer to why this happened cannot be given, but one possible explanation may
be that many times in practice, when maintenance of certain components is done,
rather then doing complete re-factoring of the source code affected by the changes,
chunks of code deemed too complicated to thoroughly re-factor are surpassed.
This way, changes made to source code in terms of the affect on the rest of the sys-
tem are minimal, but such actions can increase complexity. This too needs further
research.

The results of comparison of code quality metrics between all files in 2004v
and new files in 2008v show significant and large decrease in ACC and AELOC,
that is, significant and large increase in quality metrics for code developed by the
OSS community. The code quality decrease in metrics smaller than the increase
of the changed files, and as a result the code quality metrics for 2008v are higher
than those of the 2004v, but this increase in code quality is not significant.

At the same time the number of comments per effective lines of code (RC)
has seen significant decrease between the 2004v and 2008v of source code base.
Hence, while there was a small improvement in ACC and AELOC, the lower
number of comments per effective lines of code suggests that code in OSS com-
munity was not documented as much as in closed source environment. This is also
an input to further research. It cannot at this stage be said if the lower number of
comments is an increase or decrease of quality, but it is clear that there has been a
change in the way comments are made.

For the companies planning to go open source, this study can provide an ex-
ample on how the OSS community can have a positive impact on software quality
metrics in terms of files that are added to the source code base, but also the negative
impact in terms of the files that were changed.

6 Conclusions 79

6 Conclusions
The conducted analysis have shown that over half of the changes made to the
case source code were made in the front end group of source code components,
while the least of the changes were seen in the back end components. The overall
code quality metrics, in terms of average cyclomatic complexity and the average
effective lines of code per function has increased somewhat for changed code, and
decreased rather much for new code. This might be interpreted as an improvement
for added code. The number of comment lines per effective lines of code ACC
has decrased and there are significantly less comments in newly added code.

The transition of the software was also accompanied by 100% increase in cus-
tomer base, out of which some 138 customers belong to the Fortune 500 group, and
32% revenue increase reported for the 2008. Hence, the example of Ingres DMBS
software migration from proprietary to OSS environment provides one example on
how software development can be transitioned from the proprietary environment
to OSS community and what kind of impact community can have on the static
software quality metrics. To be able to draw some more general conclusions or
propose guidelines for improvement of the proprietary to OSS transition process
and related software quality metrics, a more analysis of ongoing and completed
transition processes should be done.

Based on the presented research it is possible to formulate a number of research
questions for further research in the area. In the research it was found that the
complexity and size of changed functions increased somewhat. Further research
can be carried to understand more about the reasons for this, and to understand if
it is an effect that is general for more systems.

It was also found that the length and complexity of functions that were added
after the software was transformed to open source were lower. Further, it was
found that the amount of comments were lower in code added after the open
source transistion. These facts could also be further researched. More research
is also needed to determine how these static quality metrics affect dynamic soft-
ware quality metrics such as performance, reliability etc.

Acknowledgment
The authors would like to express their gratitude to the Ingres Corporation for
providing us with a last proprietary version of the software.

References
[Ass09] Matt Assay. February 2009 Web Server Survey. http://news.c

net.com/8301-13505_3-10156188-16.html. 2009.

80 A Case Study on the Transformation From Proprietary to Open Source . . .

[Bon+07] A. Bonaccorsi et al. “Business Firms’ Engagement in Community
Projects. Empirical Evidence and Further Developments of the Re-
search”. In: First International Workshop on Emerging Trends in
FLOSS Research and Development (FLOSS’07: ICSE Workshops
2007). 2007.

[FF02] Joseph Feller and Brian Fitzgerald. Understanding Open Source Soft-
ware Development. Addison Wesley, 2002.

[FP98] Norman E Fenton and Shari Lawrence Pfleeger. Software Metrics: A
Rigorous and Practical Approach, Revised. PWS Publishing Com-
pany, ITP International Thomson Publishing Company, 1998.

[HZ07] Ming Gu Hongyu Zhang Xiuzhen Zhang. “Predicting Defective Soft-
ware Components from Code Complexity Measures”. In: Depend-
able Computing, IEEE 13th Pacific Rim International Symposium
(2007), pp. 93–96.

[Ing09] IngresWebSite. Official Web Site of Ingres Corporation. http://i
ngres.com/. 2009.

[IS02] Apostolos Oikonomou Ioannis Stamelos Lefteris Angelis. “Code Qual-
ity Analysis in Open Source Development”. In: Information Systems
Journal 12.1 (2002), pp. 43–60.

[Li+06a] Jingyue Li et al. “A state-of-the-practice survey of off-the-shelf component-
based development processes”. In: 2006, pp. 16 –28.

[Li+06b] Jingyue Li et al. “An empirical study on decision making in off-
the-shelf component-based development”. In: Proceedings - Inter-
national Conference on Software Engineering. 2006, pp. 897 –900.

[O’G04] Maureen O’Gara. CA Exorcises Linux’ Hooking Demons. http:
//maureenogara.sys-con.com/node/44941. 2004.

[RSM08] RSM. Effective Lines of Code eLOC Metrics for popular Open Source
Software Linux Kernel 2.6.17, Firefox, Apache HPPD, MySQL, PHP
using RSM. http://msquaredtechnologies.com/m2rs
m/docs/rsm_metrics_narration.htm. 2008.

[Ray01a] Eric S. Raymond. The Cathedral and the Baazar. O’Reilly Media,
Inc., 2001.

[RH08] Per Runeson and Martin Höst. “Guidelines for conducting and re-
porting case study research in software engineering”. In: Empirical
Software Engineering 14 (2008), pp. 131–164.

[Sof08] Coverity Software. Open Source Report. http://scan.coveri
ty.com/report/Coverity_White_Paper-Scan_Open_
Source_Report_2008.pdf-. 2008.

[Som07] Ian Sommeville. “Software Engineering”. In: Addison Wesley, 2007.

6 Conclusions 81

[VKG06] James D. Herbsleb Vijay K. Gurbani Anite Garvert. “A Case Study
of a Corporate Open Source Development Model”. English. In: Proc.
International Conference on Software Engineering (ICSE). 2006, pp. 472
–81.

[Woh+00] Claes Wohlin et al. Experimentation in Software Engineering: An
Introduction. The Kluwer International Series In Software Engineer-
ing. Kluwer, 2000.

PA
P

E
R

IV

A CASE STUDY OF OPEN
SOURCE DEVELOPMENT

PRACTICES WITHIN A LARGE
COMPANY SETTING

Abstract

Open source communities have demonstrated that complex and enterprise grade
software can be produced, supported, and maintained by self-organizing groups
using primarily electronic form of communication. Due to the inherent nature
of open source development, a specific set of open source software development
practices has evolved. While there is an ongoing research on the topic of open
source development practices and their implementation within a company setting,
still little is known about their benefits and challenges. The objective of this re-
search is to understand if and to what degree open source development practices
observed within a mature open source community are aligned with development
practices within a large company setting. For the purpose of this case study a set
of open source development practices that are present in a mature open source
community has been defined. Then, development practices of a major hardware
and software company were assessed. It is shown that there are many similarities
between a mature open source community and a large company setting in regard
to software development practices. We also identify practices that exist in open
source communities and that are not standard within a company setting, but whose

Alma Oručević-Alagić, Martin Höst

84 A Case Study of Open Source Development Practices within a Large . . .

implementation can result in an improved software development efficiency within
the company setting.

1 Introduction

In the past two decades Open Source Software (OSS) has emerged as an impor-
tant player in the field of software production e.g. [Ray01a]. Many companies
traditionally operating around closed source/proprietary software have taken inter-
est in different aspects of the OSS. Some companies use open source as another
type of off-the-shelf software, while others use it as a part of their software or
hardware product and/or even choose to actively participate and contribute code
to open source communities (OSCs), see for example Höst and Oručević-Alagić
[HOA10b].

Software production is a complex engineering endeavor, and the more peo-
ple are added to an ongoing software project, the more development efficiency
decreases due to need for ’ramp up’ time and an increase in communication over-
heads [Jr.95]. Large OSCs, like the ones under the Apache Foundation [Apa12b]
with over 100 OSS projects, have self-organized to produce complex enterprise-
grade software. Most of the developers contributing to OSS projects are unpaid,
geographically distributed, and yet integrated into highly organized and structured
fabric of OSS projects [Ray01a]. Scacchi [Sca10] argues that OSS development
is an interesting alternative approach to development of large systems and sug-
gests that further research, especially using empirical examination, is needed in
order to better understand OSS development practices (OSDPs). While there exist
many OSS projects, very few are active. Research has shown that most of the OSS
projects fail, and very few of them succeed in building a sustainable community
capable of producing enterprise-grade software [HIC06a]. However, when OSCs
are sustained more than a decade, such as Apache or Linux, it is interesting to
further examine OSDPs of such communities.

Fogel [Fog05] provides an in-depth analysis of what it takes to build a sustain-
able open source community, such as the one existing around the Apache Subver-
sion project [Apa12a]. Hence, through study of Fogel [Fog05] and Apache Sub-
version project [Apa12a], a set of OSDPs has been defined. Then, software devel-
opment practices (SDPs) of a large international hardware and software company
based in Sweden were assessed. The company, which will be referred to as the
Case Company, is a relevant case to study since its core software is built around
OSS, and many of the team members are active participants of different OSCs.
The intention is that the comparison of OSDPs and SDPs of the Case Company
will identify similarities and differences, which can later serve as a starting base
for further analysis.

The outline of this paper is as follows. In Section 2, the background informa-
tion on OSDPs is presented. In Section 2, the research approach is further defined,

2 Background and related work 85

thus stating what the relevant research questions are, analysis approach and valid-
ity concerns. Section 3.2 presents the obtained results, while Section 4 discusses
and analyses the obtained results in some more detail. Finally, conclusions are
drawn in Section 5.

2 Background and related work

Studies conducted in HP [MM08], Lucent [GGH06], and Nokia [LRM08a] have
investigated possibility of building software products using OSDPs within a con-
fined environment defined by closed organization boundaries. The studies ana-
lyzed development of a complex software product across departments [GGH06]
using OSDPs and transitioning of an entire development to adopt OSDPs [MM08].
The software produced in such manner is called "inner source" (ISS), "progressive
open source" (POS), or "closed open source" (COS).

A case study conducted by Stol et al. [Sto+11] focuses on the challenges of
building and integrating software products developed as a shared asset. In this case
study the focus is on challenges of developing and integrating software developed
as a shared asset within the company setting (ISS), and comparing these challenges
with the challenges of integrating an open source software product developed out-
side of the company. The Stol et al. [Sto+11] research concludes that organizations
can benefit in adoption of OSDPs, but that more research in this area is needed to
further identify and address the challenges of OSDPs within a company setting.
Melian and Mähring conducted a study in HP [MM08] observing the process of
progressively transitioning HP’s development team to work under OSDPs. Moti-
vation for introduction of POS in HP is a business need to increase development
cost efficiency and shorten time to market by making software highly modular and
reusable asset. The research has produced a comparative listing of open source
and POS development practices. Some of the biggest differences between the two
practices lied in the aspects of organizational structure, time and budget to deliver,
abundance of available human resources and reward system. They also conclude
that implementation of OSDPs within a corporate setting can bring long lasting
benefits in terms of development efficiency and code quality, but also state that
more research is needed to address differences in reward system, and control and
monitoring of individual participants.

A case study conducted by Gurbani and Gavert in Lucent [GGH06] provides
another relevant insight into what happens when a software product is developed
within a company as a shared asset, and employees from other departments are
involved in its development through development process compliant with OSDPs.
The lessons learned form this case study are that source code ownership and "many
eyeballs" contributing to transparent development process facilitate efficient soft-
ware development especially if the software product is shared and highly utilized
across different departments as this was the case in Lucent [GGH06]. All of the

86 A Case Study of Open Source Development Practices within a Large . . .

studies identified importance of having a common set of standard development
tools, a single version control system, and standardized change management sys-
tem.

The Apache Subversion project [Apa12a] is an open source version control
system with widespread use in open source and corporate setting. The project
was first released as open source in 2000 by CollabNet [Col12]. In 2009 the
project became a part of Apache Incubator [Apaa], while in 2010 it became a top
level Apache project [Apab]. The Apache Subversion [Apa12a] is used widely by
OSC in projects such as Apache Software Foundation [Apa12b], FreeBSD [Fre],
SourceForge [Sou], GoogleCode [Goo], and in corporate world according to For-
rester [For]. Fogel [Fog05] offers valuable insight on how Subversion [Apa12a]
community has been built and sustained over the past twelve years. Besides an-
alyzing the infrastructure needed to host the project tools and, thus, provide a
common place for the community’s users, testers, and developers to interact, Fo-
gel [Fog05] also elaborates on the importance of building a healthy environment
culture, facilitating authority based on meritocracy and communication relying on
standardized channels and formats.

The main characteristics of OSDPs were derived from Fogel [Fog05] and thor-
ough study of the actual Apache Subversion project portal [Apa12a]. These major
characteristics have been summarized in Table 1 . Hence, the OSDPs’ characteris-
tics can be collated under three major aspects:

1. Project web portal infrastructure

2. Communication structure, nature, and norms

3. Participants’ roles and rules of engagement within the project

The project infrastructure ensures that there exists a portal that holds informa-
tion about project such as documentation, source code repository location, binaries
and build info, relevant participation information such as mailing lists, issues man-
agement, bug info, testing info, and communication archives. The portal should be
up to date, intuitive, thus easy to browse and find relevant information. Another,
equally important aspect concerns the communication atmosphere and organiza-
tion. As all communication is in electronic form, the communication atmosphere
needs to be comfortable and friendly facilitating team work. Communication chan-
nels and norms should be standardized and there should exist an effective way to
deal with conflicts. Finally, management based on transparent meritocracy is the
key in making sure that the OSC functions properly. Authority is based on merits,
and merits are earned and measured through contributions made to the project. It
is of utmost importance that the project decision-making structure and roles and
rights are clearly defined and followed through consistently.

As a consequence of such setup, OSDPs are characterized by a set of highly
standardized communication, management, and development norms. The setup

2 Background and related work 87

Table 1: OSDPs’ Characteristics
Aspect Category Subcategory I.D.
Infrastructure Product Info Features S1

Documentation S2
FAQ S3
News S4
Road Map S5
Security S6

Code Access Download location S7
Binary package S8
Release Notes S9

Community Guide Community Overview S10
Community Roles S11
Coding Conventions S12
Commit Conventions S13
Building and Testing S14
Debugging S15
Mailing Lists S16
Bugs/Issues S17
Releases S18

Communication Standardized Message S19
Channel S20
Norm S21

Management Meritocracy Role S22
Promotion S23
Authority S24

ensures that the participants are aligned on requirements engineering/issues man-
agement, bug reporting, source code management, development tools, processes
and release management. Hence, the standard software quality levels are shared.
Standardized development environment can be conducive to redeployment of de-
velopers within or among different projects. Communication transparency and
traceability through archives has shown to facilitate cross learning and innovation,
and can uncover valuable resources [GGH06].

While the adoption of OSDPs can benefit companies [GGH10], there are also
some issues it raises. Some of the issues include development of products across
organizational boundaries, especially in the companies where development pro-
cess is highly hierarchical.

88 A Case Study of Open Source Development Practices within a Large . . .

3 Research approach

3.1 Introduction
The study is conducted as a single case study per Runeson et al. [Run+11]. This
study is exploratory with the overall objective to investigate alignment of SDPs of
the Case Company with the OSDPs as outlined in Table 1. The Case Company is
a global market leader in software and hardware production within its field, and its
core products are based on an OSS product licensed under GPL. The company has
over a thousand employees and, through own and partners’ offices, it is present in
over 170 world countries. The Case Company is also a significant contributor to
different OSCs. Employees in technical and engineering positions at the company
have had some level of experience with OSC.

3.2 Research Questions
The following research questions were investigated during the research:

1. How aligned are the SDPs of the Case Company with the OSDPs (Table 1)?

2. What are the underlying causes for the largest differences in OSDPs and the
SDPs of the Case Company?

3. Would implementation of the OSDPs with highest degree of misalignment
with SDPs within the Case Company benefit or hinder software development
efficiency in the long run?

For research question 1 the goal is to identify to what degree the OSDPs are
present in the SDPs of the Case Company. Research question 2 analyzes the largest
differences between the development practices and their underlying causes. Fi-
nally, research question 3 investigates possible short term and long term effects of
implementation of OSDPs within the Case Company.

3.3 Data Collection
In this study a qualitative approach has been taken. Figure 1 gives an overview
of the research process. Identification of key characteristics of OSDPs present in
mature OSCs is based on Fogel [Fog05] and the Apache Subversion web portal
[Apa12a]. We refer to an OSC as mature in case the OSC has managed to produce
enterprise-grade software widely used by OSCs and the industry, and the commu-
nity has been sustained for more than five years. In the book Fogel [Fog05] gives
detailed analysis on how the Subversion [Apa12a] project evolved over the past
12 years, what were the greatest challenges in establishing OSC as well as how
these challenges were resolved. Fogel [Fog05] also analyzes different aspects of
the OSC and provides guidelines for their setup. The book study was verified by

3 Research approach 89

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

"#$%&!'()*+!!!

'%(!#,!-'./!

.#0)1%2(3(4#2!

'()*+!3(!536%!

5#1732+!!

82(%9:4%;!'()*+!

3(!536%!5#1732+!!

'%(!#,!'./!

<23&+646!32*!

=%0#11%2*3(4#26!

!

<730>%!

"#)2*3(4#2!

')?:%964#2!'()*+!!!

Figure 1: Research Process

analyzing setup of Subversion [Apa12a] project web portal in terms of infrastruc-
ture, communication, and roles and responsibilities. The OSDPs’ characteristics
are summarized in Table 1.

In order to gain understanding of the Case Company’s SDPs, on-site documen-
tation was analyzed and interviews were conducted. The first author was granted
access to the Case Company, and had conducted a two months long documenta-
tion analysis and interview study on-site. In particular, the documentation study
assumed analysis and review of documentation hosted on the company’s inter-
nal portal, such as organizational structure, project development model, info on
completed and ongoing projects, training materials, and development standards.
The first researcher met four times with an experienced employee from the Case
Company to discuss the progress of the documentation analysis and/or get a clari-
fication on any outstanding issue. This is a form of data triangulation according to
Runeson et. al [Run+11]. Based on the gathered information from the documen-
tation study, a set of interview questions was created. The interview questions fall
into three groups. The first group of questions deals with the profile of interviewee,
such as current job role, responsibilities, years of experience within the Case Com-
pany and OSC, and rewarding and motivating aspects of the job. The second group
of the interview questions analyzes the level of usage of the company’s standard-
ized project and documentation portal. It also tries to assess the level of alignment
between formal documents on SDPs and the actual-ongoing SDPs within the Case
Company. The third group of questions was designed to provide an insight into the
Case Company’s communication, social and work culture. Interview data was col-
lected through six face-to-face semi-structured interviews with the Case Company
employees holding positions of developer, technical lead, IT architect, and project

90 A Case Study of Open Source Development Practices within a Large . . .

Table 2: Interview Participants
ID Position Years at the Case Company
1 Senior Project Manager 3
2 Code Block Maintainer 5

Code Block Architect
Technical Lead

3 Technical Lead 2.5
4 Architect 4
5 Developer 5
6 Developer 4

manager. Individual interviews lasted for an hour. All participants had extensive
experience and knowledge of the Case Company development practices. All inter-
views were transcribed and analyzed and coded according to Seaman [Sea99]. The
phrases from the answers were initially labeled, and then grouped and merged into
categories. Finally, the information gathered from the documentation and the in-
terviews was synthesized and normalized to the form of the Table 1 so the OSDPs
versus Case Company’s SDPs comparison can be performed more efficiently.

3.4 Analysis procedure

For research questions, the focus is on the information gathered from studies of Fo-
gel [Fog05], Apache Subversion project [Apa12a], Case Company documentation
and the interviews. As the core software development of the company is largely
based on OSS, members of the development teams have been active members of
large and mature open source communities, for over 15 years. All but one inter-
viewee was acquainted with the way OSCs organize and function. In this study the
roles and responsibilities of the research and development were of special interest
and so more time and effort was put into their analysis while other departments
such as sales and marketing were not analyzed.

3.5 Validity

In this section the validity of the research is analyzed with respect to the types of
validity threats presented, for example, in [Run+11].

Construct validity: The construct validity is concerned with relationship between
the subject of the study and what is measured, in this case the alignment
of OSDPs of a mature OSC and SDPs of the Case Company. In order to
gain an understanding of the OSDPs of a mature OSC, author used Fogel
[Fog05] and verified the results by studying setup and communication trails
of the Apache Subversion [Apa12a] project. The Subversion [Apa12a] is an

4 Results 91

enterprise-grade software that has been developed by the OSC over a decade.
To assess SDPs within the Case Company the first researcher has spent two
months within the company, and was seated at one of the company’s of-
fices with other company employees. The data on documentation study was
collected using a company computer connected to the company’s network
resources. Thus, prolonged involvement [Run+11] was applied in order to
improve the validity of the research. The results of the documentation study
were clarified and double-checked with the Case Company employee with
senior technical position, i.e. member checking [Run+11]. The results were
also reviewed by the second researcher who did not spend time in the com-
pany, i.e. peer debriefing [Run+11]. This also reduces the possible bias that
the first researcher might have developed with a prolonged involvement. It
also means that research triangulation was applied which also increases va-
lidity of the research. There exists possibility that six interviewees was not
representative sample, but the chances for this are very small.

Internal validity: The internal validity is concerned with causal relations. Since
the nature of this study is to compare and analyze development practices,
the causal relations do not affect the results of the study.

External validity: The external validity is related to the ability to generalize the
results of the this study. The OSDPs as defined in the paper can be relevant
for future analysis. The Case Company studied is large software and hard-
ware company, a world leader in its field, where the main products are built
around OSS. The competition in the market is typical. Hence, the findings
of this research might be relevant to other large software companies that
consider implementation of OSDPs internally. It provides a framework of
characteristics present in OSDPs and an insight on benefits and challenges
of OSDPs internal implementation.

Reliability: The reliability aspect of validity is concerned with the aspect of data
and analysis dependence of the underlying research on the researchers. The
study was conducted as a structured case study, the analysis and the inter-
views were done in the structured way, and the interview data was coded
according to appropriate methodology thus reducing the risk of data being
dependent on the researchers.

4 Results

4.1 Research Question 1: Alignment of OSDPs and SDPs
of the Case Company

To answer research question 1, the results of the documentation assessment and
the interviews are grouped under the three categories as outlined in Table 1.

92 A Case Study of Open Source Development Practices within a Large . . .

Infrastructure

The analysis of the company’s internal portal and documentation has uncovered
the existence of infrastructure compliant with OSDPs as outlined in Table 1.

The web portal contains documents with information on organization structure,
administrative information, roles and responsibilities, information on development
processes, methods, standards, past, and ongoing project related information, code
repository, use-net groups, and training manuals. Development processes and the
methodology is well defined, with a project management process which is best cat-
egorized as a set of sequential steps (also called tollgates), which need to be com-
pleted before the next step can be taken. The coding standards are clearly spelled
out in the documentation. There exists ongoing project documentation mostly with
information on project management plans, allocated resources, assigned tasks, and
task completion.

The interview study conducted shows that development team members are
aware of the existence of the portal and the information that can be found on it.
Even though the internet portal infrastructure is present, only two interviewees in-
dicated that they use portal in their daily work, the architect and the senior project
manager. These two interviewees use it for the purpose of updating project man-
agement plans or technical documents. Developers, code block architects, and
technical leads indicated that they use portal very little in daily project related
tasks. They also agree that the documents on the portal were not well organized,
were hard to search, and that much of the documentation they were interested in
was out of date. In case there were multiple projects related to a product, each
project had their own version of the documentation, which in itself was outdated.

Communication

The internal portal also hosts infrastructure necessary to carry out discussions on
various topics and create searchable archives.

The majority of the interviewees agreed that a great majority of inefficiencies
and issues they encounter in their daily work are related to inadequate communi-
cation. Most thought that better communication would lead to more efficiency at
work. They expressed that usage of electronic communication in a standardized
form would be desirable, especially if it would create searchable archives which
could later on be referenced for problem solving purposes, similarly to how they
would search the internet to understand why programs produce certain error codes
and how such issues could be resolved. On the other hand, the majority of the
interviewees agreed that it is much more time efficient and easier to ’go and talk’
to a person about a problem, recognizing that in this way no written trail on the
problem would be left, and thus, no one could refer to it in the future. While there
exist non-standardized means to communicate electronically, some interviewees
said that the majority of developers refrain from using it, partly due to past experi-

4 Results 93

ence, where questions and issues brought up through electronic discussions were
not addressed in a manner that would facilitate such discussion.

Management

Interviewees coming from developer, code block architect, code block maintainer,
and architect roles had varying levels of involvement with open source communi-
ties. In general, the more advanced technical role the interviewee held, the more
involvement with the OSC he/she possessed. Except for a project manager, all in-
terviews were users of OSS, and four have contributed bug reports and/or code to
and OSS project. The majority of the contributors did this as a part of their work,
while some worked on non work related OSS projects at their free time.

The organizational structure and roles and responsibilities within the R&D re-
semble roles which can be found in the OSC. Hence, besides developers (code
contributors), there are technical leads, code block maintainers, code block archi-
tects, and architects. The code block architects and code block maintainers can
thus be seen as fulfilling the role of ’gate keepers’ in the open source community.
Similarly to the motivation of OSC members to participate in OSS projects ac-
cording to Raymond [Ray01a] , the interviewees noted that what motivates them
to excel in the job is getting "a kick" from solving a technical problem, ability to
create something that works and that is self improving or self sustainable.

The majority of developers were very positive toward the idea of being able to
select tasks they would work on from a pool of tasks in the similar manner as this is
done in OSC. However, interviewees that were in manager positions indicated that
this might not be feasible as then much time would need to be spent on managing
conflicts for those developers that could not choose tasks or that were stuck with
less interesting tasks.

All interviewees agreed that task deadlines are needed, but sometimes too tight
deadlines tend to reflect on quality, as there exists a tendency to put in as much
functionality as possible, without properly testing it.

Five of the interviewees thought that the number of formal meetings held was
excessive. They expressed that if more time was put in planning of the meeting
and appropriate selection of the attendees, the meetings might be less frequent
and more efficient. Interviewees at more advanced technical position believed that
there was a tendency to involve them into projects too early or too late. This
adversely affects efficiency on individual and project level.

Code block architects and code block maintainers noted that in practice their
roles overlap with the role of technical lead. Such overlapping roles on the project
are conflicting, as technical lead is perceived to be more of a project driver, while
code block architects and maintainers are considered to be expert of a product or
a part of it with a sole role of making sure that underlying product development is
in line with overall architecture.

94 A Case Study of Open Source Development Practices within a Large . . .

4.2 Analysis for research question 1: The alignment of
OSDPs and SDPs of the Case Company

Hence, based on the carried our research, there is evidence which supports pres-
ence of an infrastructure setup, and a role and process organization which is com-
pliant with the mature OSC. However, based on the conducted interview study, the
actual day to day business seems to be in a lesser degree aligned with the mature
OSC. Thus, even though there exists a portal with information, it is not used much.
Developers and, in general, employees in more technical roles find the portal hard
to search, and project documentation outdated. Individuals in more management
roles tend to use the portal on daily bases and update it with info on a project
progress. While there exists communication infrastructure, the usenet groups are
very rarely used. Standardized group discussions are the core of communication
that enables an OSC to develop OSS products. It also creates searchable archives
on past project discussions, and thus can be a very useful source of information
when individuals who have worked on a project leave the company. Any sup-
port issues and error messages can be stored in such archives, so that in the future
similar or same types of issues could be resolved faster.

The existence of archives would also indirectly show who the experts on par-
ticular issues are, so that roles of area experts are filled appropriately. Lack of such
archives means lower transparency of contributors within a project which hinders
the ability of managers to organize resources in meritocratic manner. While there
exist area experts, and groups of experts, the interviewees said that the roles are
many times overlapping, adding to higher job stress and inability to do the job of
’expert’ properly.

Hence, while in the Case Company the three aspects of OSDP are implemented
to varying levels of degree, the actual level of alignment between the SDPs of the
Case Company and OSDPs has some space for improvement.

4.3 Research Question 2: The greatest misalignment in
OSDPs and SDPs of the Case Company

Through the analysis of the research question one, it has become evident that the
Case Company has a dedicated portal to host information as described in Table
1, and marked with I.D. S1-S18. However, the provided portal content in many
instances is not complete, up-to-date, searchable or formatted so it can be utilized
to its true potential. Hence, the portal infrastructure facilitating OSDPs is present,
but the content is not relevant and used by software development resources of
the Case Company in the degree and manner that it is relevant and used by the
participants of the OSCs.

The communication architecture with characteristics S19-S21 is formally not
present. Usenet groups are sporadically used. Electronic transparent discussions
are not formally enforced. Communication archives as such do not exist. Histor-

5 Discussion 95

ical information on completed and ongoing projects can serve to some extent as
searchable communication/project history archive, but in much lesser sense than
the communication archive is intended to provide such information in the OSC.

4.4 Research Question 3: Misaligned practices and their
implementation within the Case Company

The following SDPs of the Case Company showed the highest level of misalign-
ment with the OSDPs. Earlier research has shown that these OSDPs can improve
efficiency in the company setting.

1. Well organized, easily searchable infrastructure portal holding relevant and
up-to-date information for R&D team.

2. Up-to-date documentation on product.

3. Searchable communication archives and issues database.

4. Communication standards and norms in electronic form.

5. Communication atmosphere which facilitates group discussions.

6. Non-overlapping contributors’ roles.

7. Higher degree of transparency for an ongoing project, from its inception to
completion.

5 Discussion
The fabric of OSCs is defined by the information hosted by the web portal and
the OSCs’ "code of conduct". The portal is the only interface OSC member has
with the project worked on, and thus it is the sole source of information about the
project, its purpose, development, issues, and future direction. As such the role
of the portal or the common OSC’s playground is to attract, educate, and retain
contributing participants with the goal of further improving its OSS product.

The Case Company has recognized benefits of using and further improving
the software developed by OSC. It has also replicated many of the roles present
in OSC, such as the role of code block architects, technical leads, head archi-
tects, code maintainers. The Case Company has also implemented the portal
and formally set up the usenet groups. Development resources are highly aligned
with OSDPs in respect to common understanding of technical issues and value of
standardized practices in the respect to design, coding, testing, and development
stages. They also recognize value of code ownership, and existence of technical
roles found in OSC, sure as code gatekeepers, code block architects and technical
committees.

96 A Case Study of Open Source Development Practices within a Large . . .

The OSCs attract new participants through the project portal. Since there exists
no formal individual training process for a new OSC participant, the portal, that
is, the information hosted on it, plays this role. Thus the portal of a mature OSC
has complete, unambiguous, and up-to-date documentation on project features, di-
rection, technical aspects and OSDPs. It is expected that the new OSC participant
will acquire all necessary information to become a member of such community
through the portal resources. On the other hand, in the Case Company much of
this educational aspect of portal is shifted to human resources, mostly their peers.
Four of the six participants from the interview study have indicated that updating
project documentation is one of the lower priorities since normally there exist tight
project deadlines and many times time planned for such activity is spent on issues
with higher priority. While in the short run not completing project documentation
may speed up the completion of the project, in the long run it creates incomplete
and out of date project documentation. The four interviewees also indicated that
project documentation in many instances is ambiguous if, for example, there exist
multiple development projects around one software product and the projects do
not sync-up the product documents. This way, the new employees working on
some future projects around the software product, and in need of such informa-
tion will have to spend time with resources which were involved in the project to
understand particular product features, design decisions, architecture, etc. If the
resource leaves the company, then an additional amount of time will need to be
spent analyzing perhaps the source code to obtain the relevant information.

Some of the main misalignments between the SDPs and OSDPs are seen in
the area of communication and management aspects of the project. While major-
ity of developers would like to have searchable communication archives, a start-
ing place where one could go to find out if there exists more information about
an investigated issue, they perceive that communicating electronically instead of
"face-to-face" is less efficient. The interviewees also indicated reluctance to part
take in open electronic discussions and such discussion are not formally encour-
aged or enforced to any degree. Face-to-face communication reduces the amount
of time one needs to spend searching through archives and can also "on-demand"
ask for further clarification of an issue. On the other hand, ’face-to-face’ talk can
be less efficient in case the resource one needs to talk to is not currently available.
The resource might need to repeat the same sort of information or give similar
clarifications over and over again. The closed, non-transparent nature of such
communication might result in exclusion of relevant decision makers. Two of the
interviewees indicated that meetings concerning an issue are called prematurely
or too late, and many times they do not involve appropriate resources. Majority
of the interviewees have expressed that coordination and communication takes up
large amounts of their time. Hence, ’face-to-face’ communication can be more
efficient in some cases in short-run, but in the long-run establishing communica-
tion norms, appropriate mailing lists or forums, and archiving discussions might
improve efficiency.

6 Conclusions 97

The Apache Subversion project states that Subversion uses a compromise be-
tween time-driven and feature driven release planning. The community partici-
pants believe that a new feature needs time to mature, and thus they do not want to
force technical discussions to premature consensus. In a market oriented organi-
zation it can be difficult to afford time for a technical discussion to slowly mature.
Such environment is functioning within time constraints formed by customers’
needs and market competition. Normally developers in a closed company setting
are separated from the end users and through intermediaries learn of the issues or
newly requested features. Hence, the aspect of truly transparent communication
not only within the company among peers, teams or departments, but also towards
the end users can not be easily established in the closed company setting. As such,
OSDPs and SDPs can not be fully aligned.

Since there exists an interface between the end user and development team,
the interface comprised of project sponsor, project manager, project owner, a lot of
time is spent on coordination and communication of the relevant project players.
This highly time intensive activities which are crucial in creating the software
product per end user needs, would under OSDPs happen transparently through
issue/bug reporting fora. As mentioned earlier, OSCs are not under time/market
constraint to push out certain features, rather they can afford time and let a feature
discussion mature.

6 Conclusions

The assessment of the company has shown OSDPs to be implemented to a higher
degree in a form of infrastructure, and less in a form of communication and man-
agement practices. Hence, there exist technical roles modeled around software
product, such as head architect, code block maintainers, code block architects.
There also exist standardized development practices and processes facilitating cross
project work. The Case Company portal is created with purpose of mimicking an
OSC portal, but in practice the contents of the portal are not well organized, com-
plete, or up-to-date, and in many instances are ambiguous and hard to search.

The communication aspect is relaxed, where unlike the OSC whose rules of
communication conduct is in strict standardized, archived, and transparent form,
the communication is face-to-face, and important discussions are done within ded-
icated groups perceived as appropriate decision makers. Management of the re-
sources is in line with project planning and existence of interface between the end
user and development.

Some of the differences seen can be justified by time to market constraints,
such as higher degree of management involvement and task assignment. However,
aspect of communication is largely misaligned with OSDPs due to perceived ef-
fectiveness of "go and talk" to the person. Effective communication process can,

98 A Case Study of Open Source Development Practices within a Large . . .

in the long run, change or evolve roles currently set up around projects, as it can
bring clarity to which positions are truly needed.

Further research is needed in form of similar case study research or experi-
ments to test applicability of OSDPs within the closed company setting and thus
to clarify to what extent further implementation of OSDPs within the closed set-
tings can benefit the companies.

An interesting research topic for the future would be to conduct an experiment
in a close company setting mimicking requirement gathering of OSDPs and letting
internal resources participate in online discussions and selection of features and
tasks. This in-house OSC could then be observed and analyzed in order to gain
a better understanding of challenges and benefits of such software development
process.

Acknowledgment
This work was funded by the Industrial Excellence Center EASE - Embedded
Applications Software Engineering, (http://ease.cs.lth.se)

References
[Apaa] Apache Incubtor. http://incubator.apache.org/. 2012.

[Apab] Apache Top Level Projects. http://projects.apache.or
g/. 2012.

[Apa12a] Apache. Apache Subversion Open Source Project. http://subv
ersion.apache.org/. 2012.

[Apa12b] Apache. The Apache Software Foundation. http://www.apach
e.org/foundation/. 2012.

[Col12] CollabNet. CollabNet Community. http://www.collab.ne
t/. 2012.

[Fog05] Karl Fogel. Producing open source software - how to run a success-
ful free software project. O’Reilly, 2005, pp. I–XX, 1–279.

[Fre] FreeBSD Open Source Project. http://www.freebsd.org/.
2012.

[Goo] Google Code. http://code.google.com/. 2012.

[GGH06] Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb. “A case
study of a corporate open source development model”. In: ICSE.
2006.

6 Conclusions 99

[GGH10] Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb. “Managing
a corporate open source software asset”. In: Commun. ACM 53.2
(2010), pp. 155–159.

[HOA10b] Martin Höst and Alma Oručević-Alagić. “A Systematic Review of
Research on Open Source Software in Commercial Software Product
Development”. In: 2010.

[HIC06a] James Howison, Keisuke Inoue, and Kevin Crowston. “Social dy-
namics of free and open source team communications”. In: 2006,
pp. 319–330.

[Jr.95] Frederick P. Brooks Jr. “The Mythical Man-Month: After 20 Years”.
In: IEEE Software 12.5 (1995), pp. 57–60.

[LRM08a] Juho Lindman, Matti Rossi, and Pentti Marttiin. “Applying Open
Source Development Practices Inside a Company”. In: OSS. 2008,
pp. 381–387.

[MM08] Catharina Melian and Magnus Mähring. “Lost and Gained in Trans-
lation: Adoption of Open Source Software Development at Hewlett-
Packard”. In: OSS. 2008, pp. 93–104.

[Ray01a] Eric S. Raymond. The Cathedral and the Baazar. O’Reilly Media,
Inc., 2001.

[Run+11] Per Runeson et al. Case Study Research in Software Engineering.
Wiley, 2011.

[Sca10] Walt Scacchi. “The future of research in free/open source software
development”. In: Future of Software Engineering Research. 2010,
pp. 315–320.

[Sea99] Carolyn B. Seaman. “Qualitative Methods in Empirical Studies of
Software Engineering”. In: IEEE Transactions on Software Engi-
neering 25.4 (1999), pp. 557–572.

[Sou] Source Forge Project. http://sourceforge.net/. 2012.

[Sto+11] Klaas-Jan Stol et al. “A comparative study of challenges in integrat-
ing Open Source Software and Inner Source Software”. In: Informa-
tion & Software Technology 53.12 (2011), pp. 1319–1336.

[For] Subversion Sole Leader for Standalone SCM in SCM Forrester Waveł
report; 2007. http://blogs.collab.net/subversion/2
007/06/subversion_sole/. 2012.

PA
P

E
R

V

NETWORK ANALYSIS OF A
LARGE SCALE OPEN

SOURCE PROJECT

Abstract

Industry involvement in open source software development has become a pop-
ular practice among companies which, e.g., share software development costs
with other community participants or implement an open source based business
model. An increased understanding of the underlying social structure and influ-
ences within an open source community, especially in a case where the community
participants are composed of competing industry members, can be viewed as an
important component of company’s business strategy planning and management.
One way to understand the social structure of an open source community is by ap-
plying social network analysis to source code repositories. We use methodology
from social network analysis to study Android, an operating system for mobile
devices.

The aim of this study is to understand how large and in many cases competing
companies collaborate on a large scale company sponsored open source project.
We propose a new approach for studying committers’ networks as weighted di-
graph networks. To conduct the case study, change log records of all files bundled
under the Android open source project stack were extracted and studied in the
context of committers’ networks.

The results obtained show that Android project development is highly influ-
enced and led by development effort of Google.

Alma Oručević-Alagić, Martin Höst

102 Network Analysis of a Large Scale Open Source Project

This case study shows how a large, company sponsored, and industry backed
open source project, i.e. open source project with the majority of community
members affiliated with the industry, is structured. In particular, it shows that
the involvement of an entire industry eco system within a company sponsored
open source project does not imply more equal distribution of the participating
community members’ influences in terms of committers’ social networks. This
setup of an open source community by itself does not imply any particular, either
positive or negative, connotations. Consequently, the results of the study should be
interpreted on a case bases, within a context of a company’s strategy to participate
or base products around a company sponsored open source product.

1 Introduction

Open source software (OSS) has been growing in importance and affecting the
way companies develop their products and services [HOA11b], plan their business
strategy and compete [Ray01a].

Many companies have already recognized that implementation of software
product lines can facilitate software development in an assembly line like man-
ner. A study by Linden et al. [LLC08] shows that software product lines can
decrease software production cost. In a similar manner, an OSS product can be
reused across different companies, e.g., Android phones produced by Samsung,
Sony Mobile, HTC, etc. Another study by Linden et al. [LLM09] refers to soft-
ware reused across an industry as commodity software. The study argues that a
part of a software product over time loses commercial value, and thus becomes a
good candidate for intra-industry or open source development. In this way, devel-
opment costs of commodity software become shared among the industry members,
enabling companies to focus their resources on development of commercial or dif-
ferentiating parts of their software products.

There have been many studies conducted on open source projects by analyz-
ing source code change logs and mailing list archives in order to understand the
underlying structure and behavior of the community. The studies focused either
on some individual open source projects [LF+06], or on an entire portal hosting
tens of thousands of open source projects [HIC06b]. Different methodologies have
been applied to analyze the obtained data including social network analysis. As
open source communities are composed of geographically distributed participants
that contribute on volunteer or paid basis (e.g. company participating in OSP), so-
cial network analysis has shown to be an effective methodology to analyze partic-
ipants’ affiliation networks, identify the most influential participants, and uncover
cliques. The Android was initially developed as proprietary software by the An-
droid corporation. In 2005, Google Inc. bought the Android [And05] and open
sourced the operating system in 2007 [And07] . At the same time, Google also
founded an open handset alliance [And07]. The open handset alliance is a con-

2 Research approach 103

sortium of over eighty globally leading companies in market segments of mobile
operators, handset manufacturers, semiconductors, and software and commercial-
ization companies. The companies contribute to the development of the Android
and deliver devices and services built around the Android operating system. Com-
panies like Vodafone, Sprint, T-Mobile, Acer, HTC, Samsung, Sony Mobile, Arm,
Intel, ST Ericsson, eBay, Accenture, are some of the members of the alliance.

Besides the core components open sourced by Google in 2007, the Android
also includes over 150 other open source projects, the majority of which were in
existence before the Android project. One such project that is included under the
Android bundle is WebKit, which was initially developed as proprietary software
and later open sourced by Apple. Hence, another interesting aspect of the study
is assessment of cross collaboration among participants of various open source
projects bundled under the Android stack.

The Android source code committer’s network is analyzed through application
of social network analysis. The committers are grouped based on affiliations, i.e.,
all contributors affiliated with a company or an organization are viewed as the
same contributor, e.g., committers with a google.com email suffix are viewed as
Google company committer. The affiliation data such as authorship information
and contribution date and time are extracted from the source code repository logs.

The aim of this study is relevant given the importance of the Android in the mo-
bile device industry and diversity and type of participants within the Android open
source project. For any company that plans to either sponsor, lead, contribute to,
or build products based on an OSS product, understanding of project’s underlying
community structure and behavior is an important factor in the company’s strategic
positioning. This paper shows one way to assess the structure of an open source
community by applying social network analysis. Given that Android includes ex-
ternal open source projects, i.e. the projects not developed or open sourced by
Google, it is also important to understand how the underlying community struc-
ture of the external projects can be affected when the projects are used by another
company sponsored open source project with global industry support.

The outline of this paper is as follows. In Section 2, the background informa-
tion on the case software and related research studies is presented. In Section 2,
the research method is further defined. Section 3.2 presents the obtained results,
while Section 4 discusses and analyses the obtained results in some more detail.
Finally, conclusions are drawn in Section 5.

2 Research approach

2.1 Introduction

The study is conducted as a case study [RH08]. The investigated case is commit-
ters’ network structure of Android OSP. The study is exploratory with the overall

104 Network Analysis of a Large Scale Open Source Project

Figure 1: Analysis Process

objective to understand how the community participants collaborate in develop-
ment of the software through the Android OSS process. The data of the study
was collected according to the process presented in the Figure 1. Thus, change
log data was extracted for each file within the Android repository, and loaded into
a database to simplify data manipulation process which identified all pairs of au-
thors that modified the same file. For each identified co-authorship par, weight and
direction of the relationship was calculated. Finally, this data was loaded into the
Gephi[Gep13], software for network visualization and analysis.

In this study a quantitive approach has been taken. A study by Luis et al.
[LF+06] has shown how social network analysis methodologies can be used to
study OSS projects in order to characterize the projects’ evolution over time as
well as the projects’ structure. Affiliation networks are a special type of social
network where two distinct sets of actors are related, e.g., a committer network
relates a set of committers to a set of changed source code modules. Hence, there
exists a link between two committers when they have changed a same module. An
actor or a network node is referred to as a vertex and the links between the vertices
are called edges as shown in Figure 2.

In this study we propose an approach for studying committers’ networks. In
Luis et al. Luis [LF+06] the proposed methodology establishes links between the
committers, where the weight of the link or the edge is calculated as being the num-
ber of commits performed by committers to all common modules, i.e. the degree
of relationship. The definition of the common module differs between projects,

2 Research approach 105

Figure 2: A Three Actor Network

but usually corresponds to the top level directories of a source code repository.
According to Borgatti and Halgin [BH11] an important factor to consider when

studying strength of the co-affiliation among an event’s participants is the actual
size of the event. The research suggests that one of the ways to normalize the
strength of a co-affiliation between event participants is to weight participation
relative to the size of event. In the studied context, the size of the event is the
total number of changes made to same file. Then, the strength of co-affiliation
among participants relative to the size of event can be expressed as the number
of file changes performed by each participant relative to the total number of the
changes performed on the file by all participants. For example, if two companies,
A and B, make changes to same file, where company A makes only a few changes
while company B makes a majority of the changes, then the influence of A over
B is much smaller than the influence of B over A relative to the size of the event.
A study by Hangal et.al [Han+M] also examines asymmetric influences of nodes
through a friendship example and infers weights on friendship relationship. Hence,
we propose a new approach to study committers networks as weighted digraphs
as shown in Figure 3. The figure shows weights of the edges for committers as-
sociated with companies A, B, and C who have changed the same source file 5,
10, and 15 times, respectively. The edge weight is calculated as the number of the
committers’ changes on a file relative to the total number of changes for the file,
which in this case is 30. Thus, the committer A infers a weighted influence of 1/6,
B of 1/3, and C of 1/2 to the files’s co-committers.

In Riitta Toivonen [Toi+07] argues the importance of strengths of edge ties
when modeling social structure and dynamics of social networks. We argue that
inferring the edge weight relative to the size of the event provides a more accurate
social network structure from the one suggested by Luis et al. Luis [LF+06] which
does not take into account relative size of event. For example, if only a degree of
relationship is considered in the above example for the committers A, B, and C
for, e.g., the total number of files they changed together, then the edge weights be-
tween the three committers would be the same. This would mean that the strength
of co-affiliation between A, B, and C is the same relative to the source file change
event, which is clearly not the case. While this is a simple and trivial example,
in a context of a large network, with many committers, where, e.g, a subgroup of
committers performs a large number of changes, computing edge weights relative

106 Network Analysis of a Large Scale Open Source Project

Figure 3: A Weighted Three Actor Network for Modification of One Source Code
File

to the number of all changes performed on a file is important in order to accurately
assess relationship strength. This is more so as the data on committers, corre-
sponding edges, and their weights are building elements of a network structure,
based on which other network metrics are derived.

In this study, the weight of the edge between two participants is calculated on a
file level. Affiliation networks link actors into a social network by virtue of partic-
ipants attending a specific event. In the context of committer network analysis we
define the event as performing modifications on a specific source code file. Hence,
for a set of actors V = {v1, v2, ..., vk} and events U = {u1, u2, ..., um} we define
a weight W of an edge between an actor vi and all other actors that participate in
the event ut as:

W (vi, ut) =
X(vi,ut)∑k

c=1 X(vc,ut)

where X(vi, ut) denotes the number of times an actor/committer vi made
changes to the file, i.e., participated in the event ut.

This means that the weight of the edge W (vi, vj) for all events vi and vj
attended together equals:

W (vi, vj) =
∑m

t=1W (vi, vj , ut)

In order to obtain committer data on the source code changes, Android project
source code repository was downloaded in November 2012 from the Android
project web site [Inc13]. Change log records, with information on authors and
change dates for all Android source code files were extracted and loaded into a
database. The social network data on network nodes/committers, edges, and as-
sociated edge weights and labels was analyzed using Gephi software for social
network analysis [Gep13]. The labels correspond to the main subdirectories un-
der the Android source code tree, as displayed in table 1. The Gephi software
was used to calculate relevant social network metrics which are discussed in more
detail in the Section 2.4 as well as to generate a visual representation of the com-
mitters’ networks. Besides analyzing committer network for the entire repository,
we also analyze two additional distinct committer sub-networks. The tree commit-
ters’ subnetworks are constructed:

1. External committers network which includes committers that changed files

2 Research approach 107

located under the external top subdirectory.

2. Core committers network which includes committers that changed files lo-
cated under all top subdirectories excluding the external subdirectory.

3. The entire committers network which includes committers that changed files
located under both, the core and the external subdirectories.

Since the external subdirectory contains source files for over 150 other open
source projects, we believe that studying this diverse community separately from
the core Android community can provide some additional insight. Committers that
participate in the external open source projects do not necessarily use the Android
OSS or participate directly in its community process. Distinguishing between the
core and external committers can also provide an additional insight into commit-
ters that work under the Android OSS project. Finally, a combined network of all,
the external and the core committers is studied.

2.2 Research questions

The following research questions were investigated during the research:

1. What are the characteristics of the committers’ networks for each set of the
Android project source files: the core, the external, and combined core and
external?

2. How can a company utilize network analysis to study the Android develop-
ment community?

For research question 1, the focus is an assessment of the three distinct net-
work structures, the core components committer network structure, the external
committer network structure, and the combined core and the external committer
network structure. Metrics on network influence, clustering, centrality, existence
of sub-communities, and network density are presented and discussed.

For research question 2, we analyze results of research question 1 from the
perspective of a company planning to develop software through Android or similar
OSP.

2.3 Investigated software

A program that parses trough all source files located under the Android OSP sub-
directories (table 1) was created and run in order to collect information on all the
changes made to all the source files in terms of authors and change dates. The
extracted data was loaded into a relational database in order to perform a thorough
data validation and provide flexible way to create different file input formats for
the Gephi [Gep13] social network analysis software. All authors were grouped

108 Network Analysis of a Large Scale Open Source Project

Table 1: Android Subprojects or Modules
Top Level Subdirectory Description
abi Features
bionic The C-runtime library for Android.
bootable Boot and startup related code.
build Utilities and scripts for building system imple-

mentation.
cts Android compatibility testing framework.
dalvik Android virtual machine.
development Source code for SDK and NDK, and emulator.
device Product specific code for different vendor devices.
docs Tutorials, references, and miscellaneous informa-

tion.
external External open source projects (WebKit, SQLite,

etc).
frameworks Key Android framework library (JNI, services,

phone and telephony components, etc)
gdk Compiler infrastructure for the NDK based on

LLVM
hardware Libraries for basic hardware support.
libcore The Harmony Java Virtual Machine used by

Dalvik.
libnativehelper Native development helper library.
ndk Native Development Kit.
packages Source code for default Android applications (e.g.

calendar, contacts,etc).
pdk Platform development kit provided to chipset ven-

dors and OEMs before new platform is released.
prebuilts Files distributed in binary form.
sdk Android Software Development Kit.
system Core Linux system libraries.
tools Development Tools.

2 Research approach 109

based on a company affiliation. The affiliation is determined based on commit-
ter’s e-mail domain suffix. In case email data was not provided, authors individual
names are used and no company affiliation is implied. All of the contributions
made by the author named "Initial Android Open Source Project Contribution"
was excluded from the analysis, as these contributions were not developed under
the Android OSS community process, but internally by Google before the project
was initially open sourced. The Gephi data records are of the form "source, target,
edge weight, edge label". If we consider the earlier example depicted in Figure 3,
a sample record would look like "A, B, 1/6, the changed source file’s top subdirec-
tory".

2.4 Metrics

The following metrics were measured for the three committer networks:

• Weighted average in-degreeWAID and weighted average out-degreeWAOD
of a vertex.

• Betweenness centrality BC, closeness centrality CC, and eigenvector cen-
trality EV C of a vertex.

• Average Clustering Coefficient ACC of a vertex.

• Modularity MC of a network.

• Number of MCN of a network.

• Graph density GD of a network.

textitWeighted degree of a vertex denotes degree of relationship of the vertex
with its direct neighborhood. It is calculated as the sum of weights of all edges
connected to the vertex. Since the analyzed network is weighted digraph, there
exist two types of edges; the edges originating from a vertex, or the out degree
(WAOD), and the edges pointing to a vertex, or the in-degree (WAID). Hence,
the weighted average in-degree of a vertex denotes degree of relationship of the
vertex to its direct neighborhood for the edges pointing to the vertex. By the same
analogy, the weighted average out degree of a vertex denotes degree of relationship
of the vertex to its direct neighborhood for the edges originating from that vertex.
In the context of committer network analysis, the out degree can be interpreted as
the measure of collaboration strength or influence of the committer on commit-
ters in its direct neighbourhood. The in degree can be interpreted as the measure
strength of influence of committers in direct neighborhood of the committer on the
committer.

textitBetweenness centrality index (BC) is the number of shortest paths that
traverse through a vertex and it can be interpreted as a measure of importance of the

110 Network Analysis of a Large Scale Open Source Project

vertex in a graph. The higher betweenness centrality index of a vertex, the more
important the vertex is. In the context of this study, the betweenness centrality
index indicates the number shortest distance paths between any two committers
which traverse through a committer.

textitCloseness centrality CC indicates how close on average a vertex is to all
other vertices. A high value of the distance centrality index identifies vertices that
are well related.

textitEigenvector centrality EV C metric measures the influence of a vertex on
a network by assigning scores to all vertices in the network. The scores are as-
signed so that an edge to a higher scoring vertices is valued more than the same
edge to a lower scoring vertex. The eigenvector represents the most accurate met-
ric for influence of a vertex on other vertexes in the network. Gephi uses an
algorithm by Brandes [Bra01] to calculate the centrality network measures for
weighted graphs.

textitAverage clustering coefficient ACC of a vertex shows the tendency of
the network to form cliques or isolated groups. The average clustering coefficient
is calculated based on sum of individual clustering coefficients. The individual
clustering coefficient is calculated as the number of edges from a vertex to its
direct neighborhood relative to the number of links that could exist between them
[WS98].

textitModularity of a network MC identifies the sub-communities within the
network with densely connected vertices. The value of modularity is calculated
as a difference in fraction of edges that fall into the sub-communities and a frac-
tion of edges that could be found in the sub-communities if the edges were dis-
tributed at random per Blondel et. al[Blo+08]. In the context of the committer
network study, the modularity class is used to identify committer sub-networks
with higher degree of collaboration. The modularity value falls between the val-
ues of -1/2 and 1, where negative number indicates that a random distribution the
edges is more likely to form sub-communities than the actually identified sub-
communities. The modularity class number MCN indicates the number of iden-
tified sub-communities for a given modularity class MC.

textitGraph density index GD measures how close the network is to being
complete, i.e., that there exist edges between all the vertexes in the network. A
value of 1 for the graph density index indicates a fully complete or connected
network.

2.5 Analysis procedure

Analysis with respect to research question 1 was conducted by calculating the
WAID, WAOD, BC, CC, EV C, ACC, MC, GD on the core, external, and
combined core and external Android OSP source code tree. For research question
2, the presented network structure data in question 1 is analyzed from a business/-
company perspective.

3 Results 111

2.6 Validity

In this section the validity of the research is analyzed with respect to the types of
validity threats presented, for example, in [RH08].

Construct validity: The construct validity is related to the relationship between
the concepts and theories behind the experiment and what is measured and af-
fected. The subset of metrics from the network theory used in this research has
been accepted and validated in other studies within the filed of OSP repositories
and mailing archive studies. This means that the risk of using metrics that do not
represent the concept of social network structure is lowered.

Conclusion validity: The conclusion validity is concerned with the possibility
to draw correct conclusions regarding the relationship between treatments and the
outcome of an experiment. The interpretation of the metrics is grounded in the
widely accepted network theory and the field of social network analysis.

Internal validity: The internal validity is concerned with factors that may affect
the dependent variables without the researcher’s knowledge. The data extracted
from the repositories was examined and validated manually through sampling. The
approach used in constructing committers network is grounded on network theory
concepts applied in other disciplines.

External validity: The external validity is related to the ability to generalize the
results of the experiments. The studied software is relevant example of a successful
industry led OSP as the project includes leading global companies from the mobile
eco system.

3 Results

3.1 Research question 1: An assessment of the three
distinct network structures, the core components com-
mitters’ network structure, the external OSPs com-
mitters network structure, and the combined com-
mitter’s and external network structure.

The core committers’ network has a total of 250 vertices and 3606 edges, which
in this case means that committers have 250 distinct affiliations and there are
1803 distinct committer co-authorship pairs. Since the network is modeled as a
weighted digraph, the edges are bi-directional. The external committers’ network
has 329 vertices and 11196 edges, while the combined core and external commit-
ters’ network has 513 vertices and 14484 edges.

Table 2 shows ACC, MC, MCN , and GD for the three studied committer
network structures. The average clustering coefficients for the three networks show
high tendency of the networks to form cliques.

112 Network Analysis of a Large Scale Open Source Project

Table 2: Summary of the committers’ networks measures
Metric Core External Core and External
ACC 0,782 0.791 0,799
MC 0,0009 0,356 0,43
MCN 4 6 7
GD 0,058 0,104 0,055

The identified number of closely related sub-communities MCN for the core
committer network is 4. However, the MC value of 0,0009 indicates that a prob-
ability of such sub-communities occurring at random is very high. Hence, the
identified potential sub-communities for the core committer network should be
disregarded since their existence is not statistically significant. The number of
sub-communities identified within the external committer network is 6 with the
MC value of 0,356 indicating that existence of the 6 subnetworks is statistically
significant. The number of identified sub communities for the combined, external
and internal committers’ networks is 7, with the MC value of 0,43 indicating that
the existence of the sub-communities is statistically relevant.

The graph density metric GD for the core, external, and combined core and
external committer networks is 0,058, 0,104, and 0,055, respectively. The value
of 1 for GD indicates that all the components within the network are highly con-
nected. Hence, all three types of the committers’ network showing low graph
density values indicate that the committers’ networks are weakly connected. The
high clustering coefficient shows that even though many edges between the com-
mitters are absent, committers in a direct neighborhood of a committer are well
linked.

Figure 4 displays the weighted average in-degree and out-degree for the top
16 committers in core committers’ network. As noted earlier, the out-degree in
the weighted directed network indicates influence of a vertex over other vertices in
its direct neighborhood. Hence, committers affiliated with Google have the high-
est WAOD value. The value is also more than two times higher than the WAOD
value for the second most influential group of committers, that is the group of com-
mitters are affiliated with Android OSP community. TheWAODmetric decreases
tenfold for the third highest rated committer group affiliated with the Gmail.com
address as compared to the Google. The weighted average in-degree WAID met-
ric for Google representing the influence of all other committers in Google’s direct
neighborhood on Google is 50% of WAOD value for Google. Hence, the col-
laboration strength or the influence of the Google on the committers in its direct
neighborhood is twice as high as compared to the influence of all committers in
Google’s direct neighborhood on Google.

Figure 5 displays the weighted average in-degree and out-degree for the top
20 committers in external committers’ network. Committers affiliated with the

3 Results 113

Figure 4: Weighted average in-degree and out-degree for top 16 committers in
core committers’ network

apple.com email address have the highest value for WAOD metric. Some 30%
lower value for the WAOD metric have committers associated with gmail and
google. The fourth and fifth highest value of WAOD metric have committers
affiliated with nondot.org an zuster.org. The highest WAID value has Google,
followed by committer associated with gmail.com email address.

Figure 6 shows the weighted average in-degree and out-degree for the top 20
committers in the combined, core and external committers’ networks. Committers
affiliated with the Google email address have highest value of WAOD. Some
30% lower value of WAOD has Apple, followed by committers associated with
gmail.com, nondot.org, and android.com.

The WAOD and WAID metrics indicate that for the entire Android source
code base Google has the highest strength of co-affiliation with members in its
direct neighborhood.

Figure 7 shows network centrality metrics values BC,CC, and EV C, for the
core committers network. Committers with Google.com and Android.com have
highest values for EV C, followed by committers associated with Gmail, Sony
Ericsson, and Motorla. The value of BC is highest for committers associated with
Google.com and Android.com, and decreasing sharply for committers associated
with Sonyericsson.com and Motorola.com. Thus, the majority, i.e., 40% and 50%
of shortest paths between two committers within the core committer network pass
trough committers associated with Google.com and Android.com email addresses,
respectively. The third and fourth highest values for BC metric have committers
associated with Gmail.com and Sonyericsson.com email addresses, with the metric

114 Network Analysis of a Large Scale Open Source Project

Figure 5: Weighted in and out degree for top 20 committers in external project
committers’ network

Figure 6: Weighted in and out degree for top 20 committers in core and external
project committers’ network

3 Results 115

Figure 7: Network centrality measures for top 20 committers in the core commit-
ters’ network

values indicating that only some 2% and 1% of shortest paths traverse through
these committers, respectively.

Figure 8 shows network centrality metrics values BC,CC, and EV C, for the
external committers network. The highest values for the EV C metric have com-
mitters associate with gmail.com, google.com, debian.org, non dot.org, apple.com,
etc. Unlike EV C values for the core committers’ network, the EV C values for
external committers’ network is more balanced and does not indicate as high of
a differences among the top 30 committers. The BC value is highest for the
committers associated with the google.com address, followed by the commuters
associated with the gmail.com and debian.org address.

Figure 9 shows network centrality metrics valuesBC,CC,EV C for combined
core and external components. Unlike EV C values for the core external commit-
ters network, the EV C values for the combined core and external committers’
network show highest values for committers affiliated with google.com, followed
by committers associated with gmail.com, intel.com, debian.org, codeaurora.org,
etc address. The combined core and external committers’ network shows more
balanced values for CC and EV C, while the BC values indicated that some 40%
of the shortest paths traverse through committers associated with a google.com ad-
dress, followed by gmail.com with some 20% of the shortest paths, and intel.com
with some 2% of the shortest paths.

Hence the metrics presented above in summery show:

Android core committers network The high average clustering coefficient and
low graph density indicate that committers in a direct neighborhood of a
committer are well linked. The identified potential sub-communities for the

116 Network Analysis of a Large Scale Open Source Project

Figure 8: Network centrality measures for top 20 committers in external commit-
ters’ network

Figure 9: Network centrality measures for top 20 committers in combined core
and external committers’ network

3 Results 117

core committer network should be disregarded since their existence is not
statistically significant. The collaboration strength or the influence of the
Google on the committers in its direct neighborhood is twice as high com-
pared to the influence of all committers in Google’s direct neighborhood on
Google. The majority, i.e., 40% and 50% of shortest paths between two
committers within the core committer network pass trough committers as-
sociated with Google.com and Android.com email addresses, respectively.

Android external committers network The number of sub-communities identi-
fied within the external committer network is 6 with the MC value of 0,356
indicating that existence of the 6 subnetworks is statistically significant. The
EV C values for external committers’ network is balanced among the top
30 committers. The BC value is highest for the committers associated
with the google.com address, followed by the commuters associated with
the gmail.com and debian.org address.

Android core and external network The number of identified sub communities
for the combined, external and internal committers’ networks is 7, with the
MC value of 0,43 indicating that the existence of the sub-communities is
statistically relevant. Committers affiliated with the Google email address
have highest value of WAOD. Some 30% lower value of WAOD has
Apple, followed by committers associated with gmail.com, nondot.org, and
android.com. Values for CC and EV C are balanced betweeing the top 20
committers, while the BC values indicated that some 40% of the shortest
paths traverse through committers associated with a google.com address,
followed by gmail.com with some 20% of the shortest paths, and intel.com
with some 2% of the shortest paths.

Based on the results, the three committers networks show characteristics of
highly centralized network structure, with committers affiliated with google.com,
gmail.com, android.com, and apple.com being central to linking other committers.
The four committers’ affiliations also have the highest influence on other commit-
ters. Graph density metrics show that the core committers network and combined
core and external committers network are not well connected with GD values of
0,058 and 0,055 respectively. The external committers network, composed of over
150 different OSPs has a twice as high value for the GD metric as for the Android
OSPs core components network. As noted above, the highest value of GD metric
is 1 indicating that all vertexes are connected.

The Figure 10, Figure 11, Figure 12 show graphical structures of core, external,
combined core and external commiters’ networks. The absence of subnetworks in
the core committers network discussed above as well as low graph density can be
seen in the Figure 10. The external network depicted in Figure 11 shows existence
of subnetworks, which is expected for a source code base composed of different
open source projects.

118 Network Analysis of a Large Scale Open Source Project

Figure 10: Core committers’ network

Figure 11: External committers’ network

3 Results 119

Figure 12: Combined core and external committers’ network

3.2 Research question 2: What type of concerns should
a company take into consideration when planning to
become a contributor to the Android or a similar type
OSP

Based on the results presented for research question 1, Android OSP exhibits
characteristics of a highly centralized OSP, where committers with affiliations to
google.com, gmail.com, android.com, and apple.com have the highest level of in-
fluence. The external open source projects that Android OSP hosts in its source
code repository under the external top subdirectory shows committers affiliated
with Google.com as being third most influential. The committers affiliated with
Google have the highest BC value for the external committer’s network, indicat-
ing that 40% of committers in the external committer network have shortest paths
to other committers transversing through committers affiliated with Google. This
is a compelling evidence that Google has been the most central, and the most influ-
ential in the Android OSP development not only for the core source components,
but also for the external open source projects. The Android committers network
has low graph density, i.e. low connectedness of committers, indicating low co-
affiliation among committers.

From a perspective of a company that is planning to participate or participates
in Android or a similar OSP this means that it should take into consideration that
OSS product development tends to be highly influenced by one company. This

120 Network Analysis of a Large Scale Open Source Project

might indicate that the company planning to incorporate the Android into its prod-
uct will need to work closely with Google to ensure that the changes it needs to
see implemented in the source code base are included in a future OSS product re-
leases. Google has built different sales models around the Android, primarily the
GooglePlay store, the application market for Android devices, AdMob platform,
and Web search. Hence, it is in the Google’s interest to have the Android used and
distributed on as many mobile devices as possible since this would mean higher
revenues from its GooglePlay store, AdMob, and Search engine. However, the
company should be aware that sales and marketing models change, and different
alliances form. In order to influence and lead a large open source project, a com-
pany controlling the project development usually has a large development effort
dedicated to the project. In case a company is no longer able to support the devel-
opment is is possible that some other company takes the lead. Hence, it is possible
for a company with highest control over the open source project to take the project
in a direction not favored by some other project participants.

4 Discussion

The Android OSS project is an open source stack of software, i.e., a mix of OSS
from over 150 OSS projects and components which Google initially purchased
from Android corporation and later open sourced. Hence, different OSS projects
have been used as a reusable software components to build a mobile device op-
erating system used by companies from entire mobile ecosystem. While different
open source solution stacks are not in itself a novel idea, e.g. [LAM], the Android
OSS project stack is unique for several reasons. Firstly, it combines over 150 OSS
projects of highly diverse nature into one integrated OSS product. Secondly, the
integrated OSS product is of large scale, mostly maintained and developed by one
company. Finally, this product has become the most used OSS product for mobile
devices in 2012.

Based on the social network structure analysis results for Android commit-
ters’s networks, it is evident that Google has the highest degree of influence and
centrality on both, the core, and the external components. This shows how a large
company with significant resources can create a large scale software products us-
ing other OSS components. In a company sponsored open source project the com-
pany invests a large development effort into the OSS product and there exists a
possibility that the company might not be able to maintain the high level of devel-
opment commitment. This possibility would also mean uncertainty for the future
of the OSS product development, and, if realized, it can bring shifts in commit-
ters’ influence on the project. This can create uncertainty on the future of the OSS
product development, an important factor that should be considered by companies
planning to join similar company sponsored projects. A company might decide to
also closed source and license the open source product. Such situation can then

5 Conclusions 121

create a vendor lock-in effect, which contradicts a generally accepted notion of an
OSS software product being free from vendor lock-in.

5 Conclusions
The conducted analysis have shown that Google has the major influence on the
Android OSP. While it is favorable to use an OSS product as a commodity soft-
ware, and thus decrease development costs by focusing available resources on de-
veloping differentiating parts of a product, at the same time this can raise many
uncertainties. The future of OSS product whose development is highly sponsored
and influenced by one company can come under the influence of market condi-
tions the company finds itself in. This seems to go against the nature of OSS,
which among other characteristics includes protection from vendor lock-in, i.e.,
high dependance of companies using Android on the Google.

More research is needed to understand and properly categorize OSPs in a way
that would help the industry better understand own strategic position in a context
of using an OSP to build business model. The research approach proposed in this
study can be used as one way of studying a committer’s network structure of a
software development community.

Acknowledgment
This work was funded by the Industrial Excellence Center EASE - Embedded
Applications Software Engineering, (http://ease.cs.lth.se)

References
[And05] AndroidCorp. Google Buys Android for Its Mobile Arsenal. http:

//www.businessweek.com/stories/2005-08-16/goo
gle-buys-android-for-its-mobile-arsenal. 2005.

[And07] AndroidOS. Breaking: Google Announces Android and Open Hand-
set Alliance. http://techcrunch.com/2007/11/05/bre
aking-google-announces-android-and-open-hand
set-alliance/. 2007.

[Blo+08] Vincent D Blondel et al. “Fast unfolding of communities in large net-
work”. In: Journal of Statistical Mechanics: Theory and Experiment
10 (2008), P100.

[BH11] Stephen P. Borgatti and Daniel S. Halgin. “On Network Theory”. In:
Organization Science 22.5 (2011), pp. 1168–1181.

122 Network Analysis of a Large Scale Open Source Project

[Bra01] Ulrik Brandes. “A Faster Algorithm for Betweenness Centrality”. In:
Journal of Mathematical Sociology 25 (2001), pp. 163–177.

[Gep13] Gephi. Open Source Software for Exploring and Manipulating Net-
works. https://gephi.org. 2013.

[Han+M] Sudheendra Hangal et al. “All friends are not equal: Using weights in
social graphs to improve search”. In: SNAKDD-2010: 4th SIGKDD
Workshop on Social Network Mining and Analysis (ACM, 2010).

[HOA11b] Martin Höst and Alma Oručević-Alagić. “A systematic review of
research on open source software in commercial software product
development”. In: Information & Software Technology 53.6 (2011),
pp. 616–624.

[HIC06b] James Howison, Keisuke Inoue, and Kevin Crowston. “Social dy-
namics of free and open source team communications”. In: Open
Source Systems, IFIP Working Group 2.13 Foundation on Open Source
Software. 2006, pp. 319–330.

[Inc13] Google Inc. Android Open Source Software Project. http://ww
w.android.com/. 2013.

[LAM] Open Source Community LAMP. Linux, Apache, MySql, Python Open
Stack. http://onlamp.com/.

[LLC08] Frank van der Linden, Björn Lundell, and Gary J. Chastek. “Open
Source Software Product Lines”. In: International Software Product
Line Conference (2008), p. 387.

[LLM09] Frank van der Linden, Björn Lundell, and Pentti Marttiin. “Com-
modification of Industrial Software: A Case for Open Source”. In:
IEEE Software 26.4 (2009), pp. 77–83.

[LF+06] Luis López-Fernández et al. “Applying Social Network Analysis
Techniques to Community-Driven Libre Software Projects”. In: In-
ternational Journal of Information Technology and Web Engineering
1.3 (2006), pp. 27–48.

[Ray01a] Eric S. Raymond. The Cathedral and the Baazar. O’Reilly Media,
Inc., 2001.

[RH08] Per Runeson and Martin Höst. “Guidelines for conducting and re-
porting case study research in software engineering”. In: Empirical
Software Engineering 14 (2008), pp. 131–164.

[Toi+07] Riitta Toivonen et al. “The role of edge weights in social networks:
modeling structure and dynamics”. In: Proc. International Society
for Optics and Photonics, SPIE 6601 (2007).

[WS98] Duncan J. Watts and Steven H. Strogatz. “Collective dynamics of
‘small-world’ networks”. In: Nature 393.6684 (1998), pp. 440–442.

