Hur säker är bussen? Skador och risker i samband med bussresor i tätort

Berntman, Monica; Holmberg, Bengt; Wretstrand, Anders

2012

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Hur säker är bussen?
Skador och risker i samband med bussresor i tätort.

Monica Berntman, Bengt Holmberg och Anders Wretstrand

2012
Hur säker är bussen?
Skador och risker i samband med bussresor i tätort.

Monica Berntman, Bengt Holmberg och Anders Wretstrand

2012
Monica Berntman, Bengt Holmberg och Anders Wretstrand

Hur säker är bussen?

Skador och risker i samband med bussresor i tätort.

2012

Ämnesord:
Kollektivtrafik, olyckor, skador, risk, bussresa, tätort, STRADA

Referat:

Förord

Denna studie har finansierats av Trafikverket (dåvarande Vägverket). Kontaktperson på Trafikverket har varit Anders Arvelius.

Projektet hade inte kunnat genomföras utan hjälp av personal på Region Skånes akutmottagningar i de studerade städerna. Vi vill därför tacka följande personer för deras ovärderliga insatser för att se till att vi fick våra data:

Gunilla Collin, Helsingborg
Lotta Björkqvist, Kristianstad
Gunilla Palmberg och Christina Hagström, Lund
Linda Andersson, Malmö

Projektet är ett samarbete mellan tre kollegor på institutionen. Bengt Holmberg har varit projektledare, Monica Berntman har stått för all insamling och analys av olycksdata och Anders Wretstrand har tagit fram exponeringsdata och räknat på risker. Vi har hjälpts åt att ta fram denna rapport.

Lund, april 2012

Bengt Holmberg
Innehåll

Sammanfattning .. 2
Summary ... 10

1. Inledning .. 18
 1.1 Bakgrund ... 18
 1.2 Bussäkerhet ... 20
 1.3 Jämförelse mellan olika färdmedel .. 21
 1.4 Andra säkerhetsstudier ... 24
 1.5 Syfte och avgränsning .. 26

2. Metod .. 27
 2.1 Skadedata .. 27
 2.2 Risk och exponering .. 30

3. Resultat ... 35
 3.1 Olycks- och skadedata ... 35
 3.2 Resultat, risk .. 60

4. Slutsatser och rekommendationer .. 68
 4.1 Diskussion ... 68
 4.2 Åtgärder för busspassagerarna ... 68
 4.3 Åtgärder för fotgängarna .. 69
 4.4 Fortsatta studier ... 70

5. Referenser .. 71

Appendix I: Tabell Bussolyckor
Appendix II: Tabellunderlag till figurer
Appendix III: Trafikskadejournal
Appendix IV: Följebrev
Appendix V: Enkät
Appendix VI: Begrepp och definitioner
Sammanfattning

Enligt en studie av Vaa (1993) är risken vid gångförflyttningsen till/från hållplats ca 100 gånger större än risken när man befinner sig i bussen. Antalet singelolyckor vid gångförflyttningsen är ca 9 gånger fler än kollisionsolyckorna.

Syfte och avgränsning
Denna studie har två syften:

- Belysa den totala olycksbilden vid bussresor och orsaken till olyckorna
- Jämföra risken för en trafikant som åker buss respektive kör eller åker bil

Metod och material

Exponeringsdata för busstrafiken har tagits fram genom att studera linjenätet och tidtabeller i de aktuella städerna. Härur har vagnkilometerproduktionen beräknats. Beläggningen har erhållits från Skånetrafiken.

Olyckor i samband med bilresor i Malmö har beräknats in för samma år via STRADA-sjukvård. Data om biltrafiken i Malmö har hämtats från en prognosköring.

Resultat

Två typer av resultat redovisas, dels en bild av hur olyckorna vid bussresor ser ut, dels risken i samband med bussresor respektive bilresor.

Olyckor i samband med bussresor

Antalet som skadas i olika trafikantroller visas i Figur 1 nedan. Som framgår av figuren är det främst som fotgängare och som resenär i bussen som man skadas. Figuren visar också att för dessa kategorier är bortfallet i polisens rapportering mycket stor. Fotgängare skadade i singelolyckor ingår inte i den officiella statistiken över vägtrafikolyckor.

Figur 1. Antal skadade i bussrelaterade olyckor i tre källor i några skånska kommuner under åren 2006-2009 fördelade per trafikantslag
Som nämnts ovan utgör singelolyckorna en väsentlig del av alla registrerade olyckor, se Figur 2 nedan. Av figuren framgår också att singelolyckorna i stort sett inte alls förekommer i polisregistret.

![Figur 2. Antal skadade i bussrelaterade olyckor i tre källor i några skånska kommuner under åren 2006-2009 fördelade per olyckstyp](image)

Figur 2. Antal skadade i bussrelaterade olyckor i tre källor i några skånska kommuner under åren 2006-2009 fördelade per olyckstyp

Om vi tittar på skadorna vid själva bussresan, så dominerar skadorna i själva bussen. En del uppstår dock även vid av- och påstigningen, se Figur 3.

![Figur 3. Antal skadade busspassagerare i singelolyckor som svarat på enkätundersökningen (n=239) i några skånska kommuner under åren 2006-2009 fördelade per förflyttning före olyckshändelsen](image)

Figur 3. Antal skadade busspassagerare i singelolyckor som svarat på enkätundersökningen (n=239) i några skånska kommuner under åren 2006-2009 fördelade per förflyttning före olyckshändelsen

Olyckorna i bussen beror främst på snabba inbromsningar och accelerationer, se Figur 4 nästa sida.
Hur säker är bussen?

Figur 4. Antal skadade passagerare som fallit i bussen och svarat på enkätundersökningen (n=159) i några skånska kommuner under åren 2006-2009 fördelade per orsak till fall i buss.

Olyckorna på väg till bussen sker främst i riktningen mot hållplatsen, se Figur 5. Man kan anta att det beror på att man då har mer bråttom. Ungefär lika många olyckor sker på väg från hållplatsen som vid själva hållplatsen.

Figur 5. Antal skadade fotgängare i bussrelaterade singelolyckor som svarat på enkätundersökningen (n=280) i några skånska kommuner under åren 2006-2009 fördelade per typ av förflyttning före olyckshändelsen.

Figur 6. Antal skadade fotgängare i bussrelaterade singelolyckor som svarat på enkätundersökningen (n=280) i några skånska kommuner under åren 2006-2009 fördelade per tillståndet på underlaget vid olyckshändelsen.
Orsakerna till olyckor på väg till/från hållplats framgår av Figur 6 på föregående sida. Vi ser att det främst är is/snö och ojämnheter i gångbanan som leder till olyckor. För många olyckor framgår dock inte orsaken i registret.

Risk i samband med buss- och bilresor

Bussresor

När det gäller bussresor består den helt dominerande delen av risken av den som resenärerna utsätts för och gångförflyttningarna till/från hållplats utgör en stor del av dessa, se Figur 7. Om man beräknar den samhällesekonomiska skadekostnaden per resa visar det sig att den ligger mellan ca 3,50 kr och 4,50 kr i de olika undersökta städerna, högst för Malmö. Detta är en betydande kostnad jämfört med t.ex. biljettpriset.

Figur 7. Skaderisk per personkilometer, grupperad döda + svårt skadade (D+SS) och lindrigt skadade (LS). Totalt för de 4 orterna innebär det 1,1 skadade per miljoner personkm

Jämförelse av risk mellan bussresa och bilresa

Vi skiljer här på två olika risktal. Först diskuteras den risk som resenären utsätts för när denne förflyttar sig med buss respektive bil. Därefter redovisas den samlade risken för resenären och andra trafikanter som blir påkörda av en buss respektive en bil. Det första risktalet är ju relevant
när resenären skall välja färddemedel. Det andra är mest relevant för samhället när man diskuterar
effekter av olika färddmedelsfördelningar.

Risk för resenären

I Figur 8 visas risken för resenären i tätort. Det större gångavståndet till bussen leder till en
kraftigt ökad risk jämfört med bilresa. Att välja bussen istället för bilen ökar alltså risken att
skadas i samband med resan med ca 75 %.

![Figur 8](image.png)

Figur 8. Antal skadade per miljoner personkilometer för resa med buss respektive bil, Malmö.

Risken ur ett samhällsperspektiv

Biltrafiken orsakar till skillnad från bussen betydande säkerhetsrisker för andra trafikanter, inte
minst oskyddade, vilket totalt leder till att antal skadade är 12 % högre (per miljoner
personkilometer) för bil jämfört med buss, se Figur 9. Antalet skadade i Malmö pga. biltrafik
under hela undersökningsperioden uppgår till 3046. Motsvarande siffra för busstrafik är 752.

![Figur 9](image.png)

Hur säker är bussen?

Slutsatser

Det är svårt att jämföra våra resultat med andra studier som inventerats. De flesta studierna skiljer sig i olika avseenden från vår. Några är baserade på polisrapporter, några på sjukhusregistreringar, några avser olyckor per resa, andra per fordonskm respektive per personkm.

Några få studier innefattar även gångförflyttnings till/från hållplats. När det gäller dessa finns inte alltid singelolyckorna med. Trots dessa olikheter kan man notera vissa gemensamma iakttagelser.

Vår studie visar en total risk med buss på 1,1 skadade och dödade per miljon personkm, medan Vaa(1993) kommer fram till ca 0,6 skadade och dödade per miljon personkm. Om man jämför med tidigare studier som baseras på polisrapporterade olyckor och där inte singelolyckor ingår, så föreligger mycket stor skillnad mellan å ena sidan vår och Vaas och å andra sidan de som baseras på polisrapportering. Enligt vår studie är risken för bussresenären ca 1,1 skadade och dödade per miljon personkm jämfört med ca 0,6 för bil.

Rekommendationer

När det gäller insamlande av olycksdata har det tydligt framgått ovan att det är nödvändigt att utgå från sjukhusregisteringar för att få en fullständig bild av säkerheten vid bussresor.

Åtgärder för busspassagerarna

En översyn av tidtabellerna är troligen på kort sikt ett av de viktigaste leden i förbättringsarbete. De som ansvarar för tidtabellsutformningen måste beakta säkerhets- och komforteffekter utöver driftoptimering, enkelhet och regularitet. Ingår tidtabellsutformning i upphandlingen behöver det framgå att tidtabellen skall utformas så att den minskar stressen för förare och passagerare. Servicen till resenärerna kan förbättras genom att förarna får tillgång till servicemanualer och ges
Hur säker är bussen?

målassen att tillämpa dem. Vid upphandling av nya bussar bör utrustningen och inredningen av bussarna granskas kritiskt med avseende på både säkerhet, bekvämlighet och skötsel.

Ätgärder för fotgängarna

Utformningen av stadens gator, gång- och cykelbanor samt busshållplatser är viktiga för alla dess invånare och inte minst också för busspassagerarna. Även skötseln och driften av dessa anläggningar har stor betydelse. Mer resurser bör kanaliseras till underhåll och vinterväghållning av gång- och cykelbanorna än vad som sker idag.

Fortsatta studier

Fortsatt forskning och utveckling bör fokusera på:

- Utformning och (vinter)underhåll av gångmiljön för ökad säkerhet och användbarhet (singelolyckor)
- Hållplatser och terminalers samverkan med fordon och övrig urban infrastruktur i syfte att skapa attraktiva, tydliga och säkra bytespunkter (singel- och kollisionsolyckor)
- Tidtabellseffekter och förarbeteende, då många skadas ombord (singelolyckor)
- Utveckling och tillämpning av kvalitetssäkringssystem för erfarenhetsåterföring; incitament skall finnas, dvs. det skall löna sig att rapportera avvikelser och personskador upp i organisationen.
- Säkerhetsaspekter av framkomlighetsåtgärder: kan kortare körtider pga. ökad prioritet även öka säkerheten? Minskade accelerations-, retardationsnivå och ryckighet? Kan säkerhetseffekter i så fall få betydelse i CBA?
- Fordonsutformning: hur kan fordonsinterior, stödutrustning, säteskonfiguration, golvkonstruktion/-material samt övrigt materialval bidra till ökad säkerhet (minskad skadeincidens och -konsekvens)?
Summary
There are many possible measures for reducing traffic accidents at the same time as complying with the Swedish transport policy goals. One such measure is to stimulate the use of public transport; in Sweden this would normally imply the use of buses in built-up areas. An added incentive is that an increased use of public transport would be more environmentally friendly.

Studies that assess the safety of travelling by bus show large differences in results, with the risk measure differing by as much as a factor of 100. Some studies use police reports of accidents, while others use hospital registers. However, police reports of accidents do not connect pedestrian movement to and from the bus stop with buses as the mode of transport. They do not include single accidents either. As will be shown below, single accidents constitute a large percentage of all bus-related accidents.

According to a study by Vaa (1993), the risk incurred during pedestrian movement to and from bus stops is approx 100 times greater than the risk of travelling in a bus. The number of single accidents involving pedestrian movement is about 9 times higher than that of collision accidents.

Several studies have compared the risks associated with different transport modes. Jørgensen (1996) has calculated the risks of travelling by car, bus and train in central Copenhagen as well as its outer areas. He notes that travelling by train is safest, followed by buses and then cars. The difference between bus and car travel is largest in the outer areas, since the risk associated with pedestrian movement is less there than in central Copenhagen.

A comparison of cars and trains by Evans and Addison (2009) reveals that trains are about twice as safe as cars. Here, too, the risk on the way to and from the station is the more dominant, making the risk comparison dependent on distance to the station as well as the total length of the journey. Hedelin et al. (2002) compare buses and trams and show that buses are considerably safer than trams in Gothenburg, but do not include accidents on the way to and from the station.

Aims and scope
This study has two aims:

- To illustrate the total accident picture of travelling by bus and the reasons for the accidents
- To compare the risk of a road user who travels by bus with one who drives, or is a passenger in, a car

Accident data has been obtained from hospitals in the Scanian cities Helsingborg, Kristianstad, Lund and Malmö, and therefore mainly concern conditions in urban areas. Since the literature survey indicates that accidents in rural conditions are fewer but more serious, the results of our study cannot be generalised to rural conditions.
Method and materials

Two types of data are used for the study: accident data and exposure data. Accident data for buses has been taken from STRADA-polis (police-reported data) och STRADA-sjukvård (hospital-based data) for the period 2006-2009; these two sources are matched with each other. To sort out the bus-related accidents from STRADA-sjukvård, the emergency departments of hospitals in Helsingborg, Lund, Kristianstad and Malmö have noted whether the injury is sustained in connection with a bus journey. We sent out questionnaires to the people involved in these cases, asking them e.g. where, when and how the accident took place, as well as personal details of the injured person. In addition, we asked them to make a suggestion on how the accident may have been avoided. A total of 1681 injury cases have been used for this study. Accidents in connection with car journeys in Malmö have been collected for the same period via STRADA-polis.

Exposure data for bus travel is based on the bus network and timetables of the cities in question. The vehicle mileage has been calculated from this data. The passenger load factor has been provided by Skånetrafiken, and data on car traffic in Malmö has been arrived at by means of forecasts.

Results

Two types of results are reported: an accident-picture of bus trips, and the risk of bus travel compared to car travel.

Accidents related to bus travel

The number of injured in different traffic-user roles is shown in Figure 1 below. The figure shows that the injured consist mainly of pedestrians and bus passengers, and that the number of unreported cases in the police reports is very large for these categories.

Figure 1. Number of injured in bus-related accidents according to three sources in some Scanian municipalities for the period 2006-2009 divided into type of traffic user.

As stated above, single accidents comprise a substantial proportion of all registered accidents (see Figure 2). The figure shows that single accidents are largely lacking in the police registers.
Hur säker är bussen?

Figure 2. Number of injured in bus-related accidents according to three sources in some Scanian municipalities for the period 2006-2009 divided into accident type

If we look at the injuries during the bus trips, injuries in the buses are predominant, with a considerable number occurring while getting on or off the bus, see Figure 3. Accidents in the bus are due mainly to hard braking and acceleration, see Figure 4

Figure 3. Number of bus passengers injured in single accidents who responded to the questionnaire (n=239) in some Scanian municipalities for the period 2006-2009 divided into type of movement before the accident

Figure 4. Number of passengers who fell in the bus and who answered the questionnaire (n=159) in some Scanian municipalities for the period 2006-2009 divided into reasons for falling
Accidents occur mainly on the way to the bus stop, see Figure 5, which may be due to the fact that the passenger is in more of a hurry then. Almost the same number of accidents takes place on the way from the bus stop as at the bus stop itself.

Figure 5. Number of injured pedestrians in bus-related single accidents who responded to the questionnaire (n=280) in some Scanian municipalities for the period 2006-2009 divided into type of movement before the accident.

Figure 6. Number of injured pedestrians in bus-related single accidents who responded to the questionnaire (n=280) in some Scanian municipalities for the period 2006-2009 divided according to the conditions at time of accident.

The reasons for accidents on the way to and from the bus stop are shown in Figure 6, previous page. We see that ice/snow and unevenness of the pavement are the principal causes of accidents. However, the causes of many of the accidents are not given in the register.

Risks related to bus and car trips

We have been able to use a total of 1290 injury cases in our analyses. We distinguish between two risk measures: the one is the **risk that bus passengers and car drivers/passengers are exposed to**, and the other **includes the risk of other road users** being run over by a bus or car.

Bus trips

When it comes to bus journeys, the overwhelmingly dominant proportion of the risk is run by the bus passengers themselves, and the pedestrian movements to and from the bus stop constitute
Hur säker är bussen?

a large part of it, see Figure 7. The socio-economic injury cost per trip is calculated to be between 3.5 and 4.5 SEK in the three cities, with Malmö being the highest. This is a substantial cost compared to e.g. the price of a ticket.

Figure 7. Injury risk per person-kilometres for buses, grouped into fatal + serious injuries (F+SI) and minor injuries (MI). The risk for the 4 areas is 1.1 injured per million person-kilometres

Risk comparisons, bus and car travel

In this case the car data is based on police-reported accidents and the bus data is obtained from previous reports. The risk of pedestrian movements to and from the parking area is based on information from hospital registers, which implies that the number of accidents in connection with car journeys may be somewhat underestimated. On the other hand, the risk of pedestrian movements to and from the parking area may be overestimated since the age distribution of bus and car travellers differs. Bus passengers consist of a larger proportion of younger and older people with higher risks.

We distinguish between two risk measures. First, the risk that the respective travellers incur when travelling by bus and by car; second, the collective risk, for travellers and other traffic users, of being run over by a bus or car. The first risk measure is relevant when the traveller chooses the transport mode. The second is most relevant for society when the effects of different transport mode distributions are discussed.

Risk, user perspective

Figure 8 shows the risk for the traveller. A longer walking distance to the bus leads to a highly increased risk compared to car journeys. Choosing a bus over a car thus increases the risk of injury in connection with the journey by about 40%.
Hur säker är bussen?

Risk, societal perspective

In contrast to buses, cars cause substantial safety risks for other traffic users, not least unprotected traffic users, which leads to the number of injured being 12 % higher (per million person-kilometres) for cars compared to buses, see figure 9. The number of injured due to car traffic in Malmö over the whole period of investigation is 3046. The corresponding figure for bus traffic is 752.

Figure 8. Comparison bus-car, number injured travellers per million person-kilometres, Malmö 2006-2009.

Figure 9. The number of injured per million person-kilometres resulting from the respective modes of transport, Malmö, 2006-2009.
Conclusions

It is difficult to compare our results with the other studies that have been surveyed, especially since most of them differ in various respects from ours. Some are based on police reports, some on hospital registers, some refer to accidents per journey, and some per vehicle-kilometres or per person-kilometres. A few studies include pedestrian movements to and from bus stops, but do not An important conclusion is that movements to and from bus stops increase the risk for the whole journey significantly. This is especially marked in cases when single accidents involving pedestrians are considered. According to our study, about 85% of pedestrian accidents are single accidents, which corresponds almost exactly with the figure of 86% given by Vaa (1993).

Our study shows a total risk for bus passengers of 1.1 injured and killed per million person-kilometres, while Vaa (1993) calculates it at approx. 0.6 per million person-kilometres. If these are compared with earlier studies based on police-reported accidents and where single accidents are not included, there is a very large difference between, on the one hand, our study and Vaa’s study, and, on the other hand, studies based on police reports. Compared with e.g. Albertsson och Falkmer (2005), the risk measure differs by a factor of 100.

When it comes to comparison of buses with other modes of transport, it is notable that studies based on police reports grossly underestimate the risk associated with bus journeys. According to our study, the risk for bus passengers is approx. 1.1 injured or killed per million person-kilometres compared to 0.6 for car drivers and passengers. Evans and Addison (2009) show that the risk of car journeys compared to train journeys is about twice as large. Hedelin et al (2002) investigate the risk for buses and trams in Gothenburg, and find that the risk for the latter is almost 4 times higher than for the former. The majority of the injured in this study were unprotected traffic users who were run over by buses or trams. Movement to and from bus stops were not included.

Recommendations

When it comes to collection of accident data, it is clear from the above that it is necessary to use hospital registers in order to obtain a complete picture of the safety of bus journeys.

Measures for bus passengers

A review of the production of timetables is, in a short perspective, probably the most important aspect of improvement. PT authorities must recognize safety and comfort aspects, as well as effective production and regularity and simplicity. In contract negotiations, it should be made clear that the timetables have to be designed to lower stress for drivers and passengers. The service provided to travellers can also be improved by giving drivers access to service manuals and the possibility of using them. When procuring new buses, the equipment and fittings of the buses should be examined critically with regard to safety, convenience and management.
Measures for pedestrians

The design of the city streets, pedestrian and cycle paths and bus stops is important for all the residents in general, and for bus passengers in particular. The management and operation of these facilities are of great importance, and resources should be channelled into more maintenance, especially winter maintenance of pedestrian and cycle paths, than is the case today.

Further studies

Further research and development should focus on:

- The design and (winter)maintenance of pedestrian paths and footways for enhanced safety and usability (single accidents)
- Bus stops and terminals: fit and interaction with bus vehicles and other infrastructure elements, towards more attractive, safe and self-explaining interchange hubs (single and collision accidents)
- Time table effects as well as driver behaviour and performance: many accidents occur during on-board non-collision events (single accidents)
- Development and application of quality assurance systems: enhanced safety culture with rewarding feed-back systems will guide and prioritize among measures
- Safety aspects of priority solutions (e.g. bus lanes): can increased mean speed also have positive safety effects? Lower levels of acceleration, deceleration and jerks? Are these effects relevant enough to be included in CBA?
- Vehicle design: in which ways could improved interior design, stanchions and handles, seating configuration, flooring material and other materials/surfaces/items enhance on-board bus safety (reduce incidence and injury consequence).
1. Inledning

1.1 Bakgrund

Varje år dör över 1 miljoner människor i trafiken globalt, och mellan 20 och 50 miljoner skadas (WHO, 2009). Detta innebär att olyckorna i transportsystemet leder till betydande folkhälsoproblem, särskilt i utvecklingsländer. Sverige är i sammanhanget förskonat, dels beroende på vår utvecklingsstatus och geografiska struktur, dels pga. en historisk och målmedveten satsning på ökad trafiksäkerhet. Biltrafiken genererar de flesta trafikolyckorna (Figur 1.1), medan risken som trafikant är betydligt större om man färdas oskyddad (Figur 1.2).

Många typer av åtgärder är möjliga för att reducera trafikolyckorna i enlighet med de svenska transportpolitiska målen. En sådan är att stimulera resandet med kollektiva färdmedel. I tätorter i Sverige är det främst aktuellt att använda buss. Dessutom skulle ett ökat användande av kollektivtrafik på väg även främja miljön.

Andra studier, som istället lyfter fram transportarbete som mått har då visat betydligt mindre skillnader i risk än vad antalet olyckor skulle indikera. Evans (1994) angav t ex att antalet dödsolyckor per 100 miljoner personkm är 6-7 ggr fler för bil än för buss. Den officiella statistiken visar att olycksrisken vid färd med buss är väsentligt mindre än för bil och i ännu högre grad för gång, se Tabell 1.1 nedan. Risken att skadas eller dödas om man åker buss är ca 8 gånger lägre än om man åker bil och drygt 50 gånger lägre än om man går. Detta gäller under färden i bussen respektive bilen. Beaktas endast trafikdödade ökar risken väsentligt för fotgängare, medan den minskar något för bilister.

Tabell 1.1. Dödade och allvarligt skadade per miljon passagerarkilometer för olika färdmedel.

<table>
<thead>
<tr>
<th>Färdmedel</th>
<th>Dödade * per 100 miljoner personkm</th>
<th>Dödade ** per 100 miljoner personkm</th>
<th>Dödade och skadade *** per 100 miljoner personkm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gång</td>
<td>7,0</td>
<td>7,4</td>
<td>21,5</td>
</tr>
<tr>
<td>Bil</td>
<td>0,4</td>
<td>0,91</td>
<td>3,1</td>
</tr>
<tr>
<td>Buss</td>
<td>0,06</td>
<td>0,02</td>
<td>0,4</td>
</tr>
</tbody>
</table>

* Bearbetning efter Evans (1994); ** bearbetning efter Lajunen (1993); *** bearbetning efter Albertsson och Falkmer (2005)

Bilden av den säkra bussresan blir dock en annan om man beaktar hela resan från dörr till dörr där även gångförflyttningarna till och från hållplats ingår, eftersom risken vid gångförflyttningarna är så hög. Detsamma gäller även i de fall man tar cykeln till och från hållplats.

Oskyddade trafikanter är utsatta, då de saknar "skyddande skal" mot yttre krockvåld. Det måste dock understrykas att singelolyckor är mycket vanliga.

Thulin och Niska (2008) visade via STRADA-data att den dominerande olyckstypen bland cyklister är just singelolyckan, och den ligger bakom 72 % av skadefallen. 17 % utgörs av olyckor motorfordon-cyklist och 8 % cyklist-cyklist. Anledningen tycks främst vara dåligt väggrepp (snö, is, lösgräs), men även trottoarkanter, ojämna vägar och lösa föremål bidrar till singelolyckor bland cyklister.

Den vanligaste orsaken till gående-singel var fall i samma plan. Bland dessa var ”halkning, snavning, snubbling” vanligast. Antal dödade eller svårt skadade per 100 000 invånare varierar mellan 3 och 11 beroende på åldersklass och år under perioden 2003-2007 (Larsson, 2009).

1.2 Bussäkerhet
I flertalet fall när olyckor med buss nämns så baseras uppgifterna på polisrapporterade olyckor. Det innebär att olyckor på vägen till/från hållplats inte inkluderas. Det föreligger också en underrapportering av olyckorna ombord på bussen.

En studie av Vaa (1993) visade att av det totala antalet skadade vid bussresor i tre norska städer sker enbart 13 % i själva bussen, 75 % är singelolyckor på väg till/från hållplats som fotgängare och 12 % är trafikolyckor vid gångförflyttning. Han har gjort en noggrann genomgång av olyckor och risker i samband med bussresor i tre norska städer baserat på sjukhusdata. Han har därigenom täckt även gångförflyttningarna till och från hållplats, olyckor vid på- och avstigning av bussen samt olyckor ombord på bussen. Den täcker även gångförflyttningarna till och från hållplats. En sammanfattning av resultaten från hans studie visas i Tabell 1.2.

Risken när man färdas i bussen uppgår till 0,094 olyckor per miljon personkm, medan risken vid gångförflyttning uppgår till 10,606, dvs över 100 gånger så stor som risken i bussen. Det framgår också att det största antalet gångolyckor är singelolyckor. Dessa finns, som tidigare nämnts, inte med i den officiella trafiksäkerhetsstatistiken.

Vaa konkluderar med att risken för en bussresa även räknat per personkm i hög grad är beroende av gångavståndet till hållplats. Risken att färdas med bil jämfört med buss dörr till dörr beror alltså på resans längd och gångavståndet till hållplats respektive parkeringsplats.

Tabell 1.2. Skadade och dödade, antal och risk (risktal per miljon personkm), efter Vaa (1993, s. 57).

<table>
<thead>
<tr>
<th>Skadade</th>
<th>Antal</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport i fordon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vid trafikolyckor</td>
<td>241 (±97)</td>
<td>0,057 (±0,023)</td>
</tr>
<tr>
<td>Vid andra olyckor</td>
<td>156 (±72)</td>
<td>0,037 (±0,017)</td>
</tr>
<tr>
<td>Transport i buss - totalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>397 (±139)</td>
<td>0,094 (±0,033)</td>
</tr>
<tr>
<td>Till/från fordon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vid trafikolyckor</td>
<td>391 (±105)</td>
<td>1,192 (±0,322)</td>
</tr>
<tr>
<td>Vid singelolyckor</td>
<td>2 389 (±597)</td>
<td>9,414 (±2,354)</td>
</tr>
<tr>
<td>Under gång - totalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 780 (±695)</td>
<td>10,606 (±2,652)</td>
</tr>
<tr>
<td>Totalt under bussresa dörr-till-dörr</td>
<td>3 177 (±794)</td>
<td>0,565* -</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dödade</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vid transport i buss</td>
<td>0 -</td>
<td>0,0008 -</td>
</tr>
<tr>
<td>Vid trafikolyckor</td>
<td>12 (±4)</td>
<td>0,028 (±0,0088)</td>
</tr>
<tr>
<td>Vid singelolyckor</td>
<td>okänt -</td>
<td>okänt -</td>
</tr>
</tbody>
</table>

*Tvåårsrapport 1985-86

1.3 Jämförelse mellan olika färdmedel

Som nämnats ovan har ofta antalet olyckor vid bussresor undervärderats därför att gångförflyttningarna till/från hållplats inte inkluderats samt att även olyckor ombord på bussen undervärderats.

Resultaten indikerar att för resor i centrala Köpenhamn är risken vid en bussresa dörr till dörr ungefär lika stor som risken vid en bilresa. Vid resa till/från en förort är däremot risken vid en bussresa endast ca 1/3 av den vid en bilresa. Fler resultat visas i Figur 1.3-1.6.
Hur säker är bussen?

Figur 1.3. Skaderisk vid olika färdsätt, minst en del av resan i Köpenhamns ytterområden (Jørgensen, 1996).

Figur 1.4. Dödsrisk vid olika färdsätt, minst en del av resan i Köpenhamns ytterområden (Jørgensen, 1996).

Figur 1.5. Skaderisk vid olika färdsätt, endast centrala Köpenhamn (Jørgensen, 1996).
Hur säker är bussen?

Figur 1.6. Dödsrisk vid olika färdsätt, endast centrala Köpenhamn (Jörgensen, 1996).

Hur säker är bussen?

Tabell 1.3. Dödsrisk per resa - effekten av att byta från järnväg till bil som huvudsakligt färdmedel, efter Evans och Addison (2009, s. 51).

<table>
<thead>
<tr>
<th></th>
<th>Dödade per miljarder resor</th>
<th>Dödade och allvarligt skadade* per miljarder resor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resenär</td>
<td>Andra</td>
</tr>
<tr>
<td>Järnväg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under färd</td>
<td>12,47</td>
<td>20,40</td>
</tr>
<tr>
<td></td>
<td>45,95</td>
<td>3,19</td>
</tr>
<tr>
<td>Till och från</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>58,42</td>
<td>23,59</td>
</tr>
<tr>
<td>Järnväg, totalt</td>
<td>135,82</td>
<td>44,07</td>
</tr>
<tr>
<td>Bil, totalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+77,40</td>
<td>+20,48</td>
</tr>
<tr>
<td>Riskförändring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olyckskvot, bil/tåg</td>
<td>2,32</td>
<td>1,87</td>
</tr>
</tbody>
</table>

* Allvarligt skadade viktade efter samhällsekonomisk kostnad.

1.4 Andra säkerhetsstudier

Hur säker är bussen?

risken högst bland män i åldrarna 30-49. Tre fjärdedelar av de skadade blev skadade vid hållplatser eller vid övergångsställen (buss och spårvagn totalt). En tredjedel av spårvagnsolyckorna och en fjärdedel av bussolyckorna skedde i mörker. Tabell 1.4 visar risknivåer per färdmedel.

<table>
<thead>
<tr>
<th></th>
<th>Spårvagn</th>
<th>Buss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dödade</td>
<td>2,1</td>
<td>0,2</td>
</tr>
<tr>
<td>Skadade</td>
<td>28,9</td>
<td>7,6</td>
</tr>
<tr>
<td>Totalt</td>
<td>31,0</td>
<td>7,8</td>
</tr>
</tbody>
</table>

Larsson (2008) har bearbetat ett treårigt STRADA-material med betoning på barnens situation. Jämför man åldrarna 6-16 år och 25-64 år är det i båda fallen drygt 40 % som skadas/dödas som bussresenär. Den huvudsakliga skillnaden ligger i att drygt 30 % bland barnen skadas/dödas som gående, medan siffran endast är 10 % för den andra gruppen. Riskmåtten är enligt denna studie 11,1 skadade och dödade per 100 000 invånare för gruppen 25-64 år, 12,7 för gruppen 6-16 år samt 16,8 för gruppen 17-24 år.

förlängningen risk för allvarliga skador. De rekommenderar utökad förarutbildning som omfattar förståelse av att ryckig körning kan leda till personskador bland passagerarna.

1.5 Syfte och avgränsning
Sammantaget finns det tydliga indikationer på att säkerheten i samband med bussresa inte speglas till fullo av officiell olycksstatistik. I den officiella statistiken ingår inte singelolyckorna bland fotgängare, och rapporteringsgraden är låg bland cyklister. Detta bidrar därmed till en skev bild av risken vid bussresor. Vidare är det troligen en stor underrapportering av de lindriga fotgängarolyckorna. Detsamma gäller även olyckorna vid av- och påstigning samt olyckor i bussen.

Vid beräkningar av överföringseffekter måste man dessutom ta hänsyn till andra trafikanter som skadas av de olika färdmedlen.

Denna studie har därför flera syften:

- Belysa den totala olycksbilden vid bussresor och orsaken till olyckorna
- Jämföra risken för en trafikant som åker buss respektive kör eller åker bil

2. Metod

2.1 Skadedata

Inom sjukvården är en bredare definition av ”skadade i samband med en bussresa” möjlig. Utöver skador som uppkommer i en buss eller i kollision med en buss kan även skador under förflyttningar till och från busshållplatsen samt på busshållplatsen inkluderas. Uppgifter om de senare kan oftast inte kopplas till en bussresa i den officiella statistiken alternativt ingår inte i definitionen av skadad i en vägtrafikolycka, t.ex. fotgängarnas fallolyckor. Men även sjukvårdsregister kan drabbas av tillkortakommande då ”buss” måste framkomma i beskrivningen av olyckshändelsen för att de skadade skall kunna komma ifråga för ett urval.

År 1999 initierade Vägverket en pilotstudie för ett nationellt skaderegister inom sjukvården för skadade i trafikmiljö vid några svenska akutmottagningar. Motiven var bl.a. att i högre utsträckning än tidigare nå information om cyklister som skadats i omkullkörningar, fotgängare som skadats i fallolyckor vid halka och ojämn beläggning samt att erhålla bättre medicinskt kännedom om de verkliga skadorna i trafikmiljön.

Samtliga åtta skånska akutsjukhus deltog i pilotstudien (Berntman & Modén, 2000) och har sedan dess lämnat uppgifter till STRADAs sjukvårdregistrering (Swedish Traffic Accident Data Acquisition). Akutmottagningar i Helsingborg, Kristianstad, Lund och Malmö har medverkat från starten. I denna undersökning har deras uppgift varit, utöver den ordinarie skaderegistreringen, att ansvara för en enkätundersökning bland patienter som skadats i en bussrelaterad olycka.

Hur säker är bussen?

Datauppgifter om den skadade i en bussresa och olyckan
rapporterade av **polis** och registrerade på **akutmottagningar**

![Diagram](image-url)

Figur 2.1. Tre utvalda datakällor för insamling av uppgifter om personer som skadats i en bussolycka

Trafikskadejournalen som används på akutmottagningarna i Skåne har fått en särskild tilläggsruta på de fyra sjukhusen där inskrivande personal på akutmottagningen markerar om skadan har uppkommit i samband med en bussresa (Appendix III). Kontrollfrågan till patienterna resulterade i att ytterligare skadade blev kända och därmed kan ingå i studien. Denna information används senare som urvalskriterium för att skicka ut en enkät (Appendix V) med följebrev (Appendix IV) till patienten. Syftet med frågeformuläret är att det skall bidra till ytterligare kunskaper om de skadade och deras bussresa. Om inget svar har kommit in inom tre veckor har en påminnelse skickats ut till de utvalda skadade. Under det sista halvåret 2009 prövades en mindre premie för att öka motivationen att svara på frågeformuläret bland de skadade. Frågeformuläret innehåller uppgifter om:

- personen som skadats
- när olyckan inträffat
- om olyckan inträffat i samband med en bussresa
- var olyckan skett och i vilken typ av ärende som resan företagits
- start-/målpunkter för resan samt uppskattad tidsåtgång och längd på den planerade resan
- beskrivning av olyckan där skadan uppkommit
- ev. förslag till hur olyckan skulle kunnat undvikas
- allmänna synpunkter

Några frågor återkommer från trafikskadejournalen som kontroll. Enkätstudien tillkom för att komplettera STRADA-sjukvård då beskrivningen av olyckshändelsen för skadade fotgängare i
Hur säker är bussen?

fallolyckor men även cyklister och mopeder i omkullkörningar oftast är kortfattade och sällan
innehåller detaljerade uppgifter om var den skadade var på väg.

Under hela registreringsperioden har representanterna i nätverket för STRADA-sjukvård i Skåne
varit kontaktpersoner på de fyra sjukhusen. De har informerat den berörda personalen på
akutmottagningarna, samlat in underlaget för enkätundersökningen samt skickat ut till och
samlat in enkäterna från de skadade. Bearbetningen och analysen av de insamlade uppgifterna har
genomförts på LTH. Före detta arbete har skadematerialet aidentifikert på sjukhusen.

Sedan starten av skaderegistreringen på de åtta akutmottagningarna i Skåne sker en uppföljning
på veckobasis av kvaliteten för att nå de trafikskadade som söker vård. Resultaten redovisas på
nätverksmöden vilka genomförts varje månad. Rutinerna beskrivs i uppföljningen av pilotförsöket
med STRADA 1999 i Skåne (Berntman & Modén, 2000). Ett särskilt skaderegister som ligger
inom det administrativa systemet för besöks- och diagnosregistrering (PASIS) används som ”facit”
i arbetet då det är lättillgängligt och förhållandevis stabilt. Det bör dock noteras att även detta
system har vissa brister i basregistreringen. De medverkande fyra sjukhusen har något olika kvalitet
i basregistreringen. Helsingborg, Kristianstad och Lund har hög täckningsgrad, mer än 95 % under
de hår redovisade åren medan täckningsgraden i Malmö är betydligt lägre, med ca 75 %. I
Malmö varierar även täckningsgraden mellan åren och då speciellt bland de oskyddade
trafikanterna. Dessa något olika förutsättningar bör beaktas när de insamlade uppgifterna
analyseras.

Enkätundersökningen startade den 1 januari 2006 på de fyra akutmottagningarna i Skåne och
avslutades den 31 december 2009. Undersökningsen vänder sig till patienter som skadats i
samband med en bussresa. Skadan skall ha uppkommit i Skåne men är inte enbart begränsad till
de kommuner som akutmottagningarna ligger i då sjukhusens upptagningsområden är betydligt
större och kan oftast ha definierats från tiden med indelning i sjukvårdsdistrikt.

I resultatavsnittet redovisas skadade i STRADA-sjukvård som sökt vård vid de medverkande
akutmottagningarna. Vid bearbetningen av data framkommer strax över ett tiotal bussolyckor
med flera skadade och/eller dödade. De ingår i undersökningen och kommenteras kortfattat
eftersom de påtagligt påverkar statistiken. Ett mindre antal skadade trafikanter i Köpenhamn och
i Blekinge ingår däremot inte.

Vid matchningen av de skadade i de tre källorna ingår även skadade i STRADA-polis, d.v.s. den
officiella statistiken. Polisrapporterade skadade i kommunerna Hässleholm, Trelleborg, Ystad och
Ångelholm har dock exkluderats. Ytterligare ett mindre antal skadade från STRADA-polis har
exkluderats då de skadats i kommuner där de boende oftast söker vård vid akutmottagningarna i
Hässleholm, Trelleborg, Ystad och Ängelholm.

Först matchades skadade i STRADA-sjukvård med de skadade som svarat ja på att de skadats
under en bussresa vid besöket på akutmottagningen. Matchningen har genomförts manuellt och
baseras på olycksdatum, ålder och kön på de skadade. I något fall har även olycksplatsen ingått i underlaget. Sedan har de skadade i denna gemensamma sjukvårdsgrupp matchats med trafikanterna i STRADA-polis med samma matchningskriterier som används inom sjukvårdsgruppen. Bearbetningen har resulterat i en gemensam datafil som redovisas i resultatkapitlet som ”alla skadade i en bussrelaterad olycka” (Alla). Dessa jämförs och kommenteras med de skadade i den officiella statistiken (fortsättningsvis kallad STRADAp) respektive de sjukhusregistrerade skadade (fortsättningsvis kallad STRADAs).

2.2 Risk och exponering

Svårigheten med att göra riskberäkningar baserat på trafikskadedata är att man har begränsade möjligheter till att göra bra skattningar av resandet och trafikarbetet. Dessa variabler skall gälla just det område inom vilka olyckor och personskador uppstått. Man får göra mer eller mindre grova förenklingar. Följande avsnitt redogör för hur vi gjort i denna studie.

2.2.1 Orterna

Tabell 2.1 Översikt, tätorter ingående i studien (Källa: SCB; Skånetrafiken; Resvanor Syd)

<table>
<thead>
<tr>
<th>Ort</th>
<th>Invånare</th>
<th>Antal busslinjer</th>
<th>Gångavstånd (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Stads-bustrafik</td>
<td>Region-bustrafik</td>
</tr>
<tr>
<td>Malmö</td>
<td>275 299</td>
<td>8(20)*</td>
<td>23</td>
</tr>
<tr>
<td>Lund</td>
<td>80 434</td>
<td>6(11)*</td>
<td>21</td>
</tr>
<tr>
<td>Helsingborg</td>
<td>95 350</td>
<td>7(18)*</td>
<td>9</td>
</tr>
<tr>
<td>Kristianstad</td>
<td>35 124</td>
<td>4(6)*</td>
<td>15</td>
</tr>
</tbody>
</table>

* Huvudlinjer, totalt utbud inom parentes

Tabell 2.2 Resande och transportarbete, stadsbuss (källa: Skånetrafiken).

<table>
<thead>
<tr>
<th>Ort</th>
<th>År</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>antal resor</td>
<td>27 150 000</td>
<td>28 960 000</td>
<td>30 600 000</td>
<td>30 600 000</td>
</tr>
<tr>
<td></td>
<td>medelresa, km</td>
<td>3,6</td>
<td>3,6</td>
<td>3,6</td>
<td>3,6</td>
</tr>
<tr>
<td></td>
<td>personkm</td>
<td>97 740 000</td>
<td>104 256 000</td>
<td>110 160 000</td>
<td>110 160 000</td>
</tr>
<tr>
<td>Malmö</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>antal resor</td>
<td>6 710 000</td>
<td>6 930 000</td>
<td>6 970 000</td>
<td>6 970 000</td>
</tr>
<tr>
<td></td>
<td>medelresa, km</td>
<td>3,6</td>
<td>3,6</td>
<td>3,6</td>
<td>3,6</td>
</tr>
<tr>
<td></td>
<td>personkm</td>
<td>24 156 000</td>
<td>24 948 000</td>
<td>25 092 000</td>
<td>25 092 000</td>
</tr>
<tr>
<td>Lund</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>antal resor</td>
<td>9 450 000</td>
<td>10 140 000</td>
<td>10 580 000</td>
<td>10 580 000</td>
</tr>
<tr>
<td></td>
<td>medelresa, km</td>
<td>4,0</td>
<td>4,0</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td></td>
<td>personkm</td>
<td>37 800 000</td>
<td>40 560 000</td>
<td>42 320 000</td>
<td>42 320 000</td>
</tr>
<tr>
<td>Helsingborg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>antal resor</td>
<td>2 560 000</td>
<td>2 630 000</td>
<td>2 700 000</td>
<td>2 700 000</td>
</tr>
<tr>
<td></td>
<td>medelresa, km</td>
<td>3,8</td>
<td>3,8</td>
<td>3,8</td>
<td>3,8</td>
</tr>
<tr>
<td></td>
<td>personkm</td>
<td>9 728 000</td>
<td>9 994 000</td>
<td>10 260 000</td>
<td>10 260 000</td>
</tr>
<tr>
<td>Kristianstad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell 2.3 Beräknad stadsbussproduktion (Källa: Skånetrafiken)

<table>
<thead>
<tr>
<th></th>
<th>Malmö</th>
<th>Lund</th>
<th>Helsingborg</th>
<th>Kristianstad</th>
</tr>
</thead>
<tbody>
<tr>
<td>vkm/år</td>
<td>11 500 000</td>
<td>3 000 000</td>
<td>4 000 000</td>
<td>1 000 000</td>
</tr>
<tr>
<td>högtrafik</td>
<td>3 833 333</td>
<td>1 000 000</td>
<td>1 333 333</td>
<td>333 333</td>
</tr>
<tr>
<td>lågtrafik</td>
<td>7 666 667</td>
<td>2 000 000</td>
<td>2 666 667</td>
<td>666 667</td>
</tr>
</tbody>
</table>

För stadsbusstrafiken kan vi hävda att siffrorna är rimligt bra skattnings, även om det framgår via antalet värdesiffror att det finns viss avrundning. Vad gäller regionbuss är det betydligt svårare att göra en bedömning. Data baseras på siffror från 2007 och 2008 (Skånetrafiken), där resor summerats i sträck in mot tätorterna per vardagsdygn. Dessa har sedan räknats upp till årsvärden (300 vardagsdygn). Produktionen och trafikarbetet har beräknats med avseende på det som sker inom tätortsgränser. Schematiska skisser visas i Figur 2.2-2.3. För att ta reda på trafikarbetet har resorna fördelats per linje. Via linjelängden inom tätortsgränser, beräknade tidtabellskilometer och
antagen medelbeläggning per fordon har trafikarbetet i fordonskilometer och personkilometer beräknats. Sammanfattningsvis visas resor och produktion i Tabell 2.4.

![Tabell 2.4. Skattning av resor och produktion per år för både stadsbuss och regionbuss](image)

2.2.2 Olycksdata

Eftersom vi har valt att bara räkna med tätortsolyckor, reduceras antalet något. Bortsorteringen har skett manuellt, och olyckor utanför tätorterna (eller mera korrekt: stadsbussarnas influensområde) finns ej med. Totalt handlar det om 1290 skadefall som används i
riskberäkningarna. Dessa är också klassificerade som singel- respektive kollisionsolyckor, varvid 842 st utgör singelolyckor och 448 kollisionsolyckor.

Tabell 2.5 Skadeurval för riskberäkning

<table>
<thead>
<tr>
<th>Trafiktyp</th>
<th>Ort</th>
<th>Malmö</th>
<th>Lund</th>
<th>Helsingborg</th>
<th>Kristianstad</th>
<th>Totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fotgängare</td>
<td></td>
<td>298</td>
<td>93</td>
<td>121</td>
<td>33</td>
<td>545</td>
</tr>
<tr>
<td>Cyklist</td>
<td></td>
<td>62</td>
<td>36</td>
<td>12</td>
<td>2</td>
<td>112</td>
</tr>
<tr>
<td>Moped/MC</td>
<td></td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Pb-förare</td>
<td></td>
<td>57</td>
<td>13</td>
<td>22</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>Pb-passagerare</td>
<td></td>
<td>28</td>
<td>11</td>
<td>8</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>Busspassagerare</td>
<td></td>
<td>286</td>
<td>38</td>
<td>84</td>
<td>28</td>
<td>436</td>
</tr>
<tr>
<td>Bussförare</td>
<td></td>
<td>13</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>Lb-förare</td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Lb-passagerare</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Totalt</td>
<td></td>
<td>752</td>
<td>203</td>
<td>259</td>
<td>76</td>
<td>1290</td>
</tr>
</tbody>
</table>

För att göra förenklingar har endast tre grupper redovisats i riskberäkningarna. Mera finmaskiga uppdelningar i situationstyp leder pga de totalt sett förhållandevis få skadefallen till allt för stor osäkerhet i skattningarna. Därför redovisas endast ”resa” (på/avstigning+färd), ”till/från fordon” samt ”övrigt”. Under rubriken övrigt hamnar t ex andra trafikslag.

Tabell 2.6 Fördelningstal för klassning enligt tregradig skala för skadegrad. Olyckskostnad per skadegrad.

<table>
<thead>
<tr>
<th>ISS-intervall</th>
<th>Osk</th>
<th>LS</th>
<th>SS</th>
<th>Totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-</td>
<td>0%</td>
<td>35%</td>
<td>65%</td>
<td>100%</td>
</tr>
<tr>
<td>4-8</td>
<td>1%</td>
<td>71%</td>
<td>28%</td>
<td>100%</td>
</tr>
<tr>
<td>1-3</td>
<td>4%</td>
<td>88%</td>
<td>8%</td>
<td>100%</td>
</tr>
<tr>
<td>0</td>
<td>9%</td>
<td>82%</td>
<td>8%</td>
<td>100%</td>
</tr>
<tr>
<td>Totalt</td>
<td>4%</td>
<td>81%</td>
<td>14%</td>
<td>100%</td>
</tr>
</tbody>
</table>

2.2.3 Bilresor

För att göra jämförelser av risken för bussresor med bilresor i tätortstrafik, användes ett 4-årsmaterial i Malmö (2006-2009), se Tabell 2.7.
Från Malmö Stad inhämtades uppgifter om trafikarbetet inom tätortsområdet (summerat över aktuella länkar). Dessa uppgifter är modellkörningar, och osäkerheten är naturligtvis kopplad till detta. Totalt för år 2009 handlar det om ca 679 miljoner fordonskilometer. I syfte att översätta detta till personkilometer, har en beläggningsgrad på 1,2 personer per fordon använts vilket blir ca 815 miljoner personkilometer.

<table>
<thead>
<tr>
<th>2006-2009</th>
<th>Personbilspassagerare eller Övriga i konflikt med personbil</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>9</td>
</tr>
<tr>
<td>SS</td>
<td>126</td>
</tr>
<tr>
<td>LS</td>
<td>998</td>
</tr>
<tr>
<td>OSK</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>1178</td>
</tr>
</tbody>
</table>
3. Resultat

3.1 Olycks- och skadedata

3.1.1 Tre källor

Den officiella statistiken, STRADAp, är utgångspunkten för resultatredovisningen. Samtliga utvalda variabler i detta avsnitt redovisar därför resultatet från de två delmängderna STRADAp respektive STRADAs samt totalmängden ”Alla” vilken är resultatet av matchningen av de två delmängderna.

Anledningen till detta är att de två källorna polis och sjukvård ofta ger olika storlek och karaktär på det studerade problemet och båda behövs för att öka förståelsen för trafiksäkerhetsproblemen i samband med en bussresa.

Antal skadade

Matchningen av STRADAp och STRADAs, inklusive de skadade som enbart kommit fram genom enkätundersökningen (eES), resulterar i 1 681 skadade i bussrelaterade resor i Skåne under de fyra åren.

Flest skadade, 639, identifieras av både STRADAs (Ss) och enkätundersökningen (ES). Enbart enkätundersökningen (eES) bidrar med 276 skadade. Dessa skadade finns i STRADAs men har inte kunnat identifieras som skadade i en bussrelaterad resa.

Enbart STRADAs (eSs) bidrar med 315 skadade, där hälften har skadats i kollisionsolyckor med motornfordon. Skadade i buss - motornfordonsolyckor har dock getts låg prioritet i enkätundersökningen då informationen om dem förväntades vara bra i det ordinarie sjukhusregistret eller i den officiella statistiken. Vissa skadade i denna delmängd är dock en effekt av mörkertalet i enkätundersökningen. Bara ett mindre antal, 51 skadade, är kända i samtliga tre källor.
Hur säker är bussen?

Figur 3.1 Antal skadade i bussrelateradeolyckor i tre källor i några skånska kommuner under åren 2006-2009. Beteckningar: eSp = enbart i STRADAp, gSsESSp = gemensamt i STRADAs, enkätundersökningen och STRADAp, gSsSp = gemensamt i STRADAs och STRADAp, eES = enbart i enkätundersökningen, gSsES = gemensamt i STRADAs och enkätundersökningen samt eSs = enbart i STRADAs.

I denna undersökning nås 3,3 gånger så många skadade via STRADA-sjukvård än vad som återfinns i den officiella statistiken. Dessutom identifieras andra skadade trafikanter och olyckssterper än bland de polisrapporterade skadade som endast utgör ca 25 % av totala antalet skadade i denna undersökning. I figur 3.2 redovisas antal skadade som registrerats på de respektive sjukhusen fördelade på olika källor som bidragit med uppgifter.

Figur 3.2 Antal skadade i bussrelaterade olyckor i STRADAs insamla på akutmottagningarna vid fyra sjukhusen i Skåne under åren 2006-2009. Beteckningar: gSsESSp = gemensamt i STRADAs, enkätundersökningen och STRADAp, gSsSp = gemensamt i STRADAs och STRADAp, eES = enbart i enkätundersökningen, gSsES = gemensamt i STRADAs och enkätundersökningen samt eSs = enbart i STRADAs.

Vid akutmottagningen i Malmö återfinns ca hälften av samtliga sjukvårdsregisterade skadade i samband med en busssresa. I genomsnitt motsvarar detta ca 190 registrerade skadade per år. De registrerade i Helsingborg och i Lund är ganska lika till antalet, 77 respektive 80 årligen, medan antalet skadade är betydligt lägre i Kristianstad, ca 30. De nya kunskaper som sjukhusen bidrar med har stor betydelse för att belysa storleken men också karaktären på trafiksäkerhetsproblemen i samband med en busssresa då hela resekedjans perspektiv har använts.
Vem skadas?

I den officiella statistiken dominerar skadade i buss som förare eller passagerare (Bussfp) med i genomsnitt ca 40 personer årligen. Flertalet är passagerare. Skadade förare och passagerare i personbil (Pbefp) i kollision med buss är genomsnitt strax över 30 per år varav två tredjedelar är förare. Bland de oskyddade trafikanterna är fotgängarna (Fotg) mest utsatta i kollisioner med buss med strax under 20 skadade per år.

![Diagram](image1)

Figur 3.3 Antal skadade i bussrelaterade olyckor i tre källor samt i cirkeldiagrammet till höger andel av alla skadade i några skånska kommuner under åren 2006-2009 fördelade per trafikantslag

Sjukvårdsregistreringen bidrar framförallt med kunskap om ett stort antal fotgängare i fall- och halkolyckor samt uppgifter om ytterligare skadade busspassagerare som inte återfinns i den officiella statistiken. Betraktas samtliga kända skadade i samband med en bussresa så framstår fotgängarnas trafiksäkerhetsproblem väl så stort som busspassagernas, i genomsnitt 150 respektive 140 skadade per år. Tillsammans utgör de ca 75 % av samtliga registrerade skadade i denna undersökning.

![Diagram](image2)

Figur 3.4 Antal skadade i bussrelaterade olyckor i tre källor samt i cirkeldiagrammet till höger andel av alla skadade i några skånska kommuner under åren 2006-2009 fördelade per åldersintervall
I den officiella statistiken dominerar de skadade i åldrarna 15-24 år med i genomsnitt 25 skadade per år. Säkerhetsproblemen under en bussresa framstår däremot inte särskilt stora bland äldre personer (65 år och äldre) med i genomsnitt ca 15 skadade årligen i den officiella statistiken. Denna problembild förändras med kunskap om vilka som omhändertas på akutmottagningarna. I sjukhusmaterialet, STRADAs, är de äldre och ungdomarna mest utsatta med i genomsnitt 123 respektive 59 skadade årligen under de fyra åren. En kvinnlig 95-årig busspassagerare är den äldsta skadade i gruppen 75 år och äldre.

Figur 3.5 Antal skadade i busstrafikrelaterade olyckor i tre källor samt i cirkeldiagrammet till höger andel av alla skadade i några skånska kommuner under åren 2006-2009 fördelade per kön

I den officiella statistiken skadas män nästan lika ofta som kvinnor i busstrafikrelaterade olyckor, strax över 50 respektive 60 skadade årligen. I sjukvården registreras fler skadade kvinnor och i de matchade uppgifterna förändrar skadebilden så att fler än två av tre skadade är kvinnor. Särskilt bland de äldre skadade dominerar kvinnorna.

När inträffar olyckan?

Sammanlagt har 451 skadade rapporterats i STRADAp, dvs. i genomsnitt ca 110 per år.

Figur 3.6 Antal skadade i bussrelaterade olyckor i tre källor samt i cirkeldiagrammet till höger inom perioden 2006-2009 fördelade per år
I offentliga statistik kommer en viss variation i antal skadade per år. En förklaring kan vara att det sker något fler olyckor med många skadade under åren 2006 och 2008 än under övriga år. Dessa olyckor får stort genomslag i statistiken när de skadade kan uppgå till 25% av samtliga skadade under året. Mer detaljer återfinns i Tabell 3.1 om dessa skadade. Med tillgång till uppgifter från både STRADAs, STRADAp och enkätundersökningen ökar antalet skadade per år till i genomsnitt ca 420 per år. Även totalmaterialet uppvisar en viss variation i antal skadade per år. I genomsnitt skadas strax under tio personer per månad och år i bussrelaterade olyckor enligt den officiella statistiken. Fördelningen av skadade per månad påverkas i viss mån av antalet olyckor med många skadade. Dessa olyckor kan t.ex. delvis förklara varför april och juni har ett högt antal skadade per månad.

I de sammanställda skadematerialet, STRADAs, STRADAp och enkätundersökningen, skadas i genomsnitt 35 personer per månad och år. Olyckorna med många skadade framgår inte lika tydligt bland de skadade i STRADAs som i STRADAp. Antalet skadade per månad beror mer på säsongsvariationer i bussresandet alternativt av väglaget på trottoarer och busshållplatser. Det senare framgår av figur 3.8.

Figur 3.7 Antal skadade i bussrelaterade olyckor i tre källor i några skånska kommuner under åren 2006-2009 fördelade per månad.
Hur säker är bussen?

Figur 3.8 Antal skadade fotgängare och busspassagerare i bussrelaterade singelolyckor i tre källor i några skånska kommuner under åren 2006-2009 fördelade per månad och år

Figur 3.9 Antal skadade i bussrelaterade olyckor i tre källor samt i cirkeldiagrammet till höger andel av alla skadade i några skånska kommuner under åren 2006-2009 fördelade per tidsintervall

Enligt den officiella statistiken skadas ungefär lika många trafikanter mellan kl. 09.00 och kl.14.59 som mellan kl. 15.00 och kl. 18.59 i bussrelaterade olyckor under de studerade fyra åren. STRADAs bidrar med mer kunskaper. Tendens i STRADAs är likartade med den i STRADAp, dvs. att de ovan nämnda tidsintervallen har flest skadade, 145 respektive 110 skadade årligen. Efter matchning av de skadade i de två registren ökar antalet ytterligare i dessa två grupper till, 160 respektive 125 årligen.
Hur säker är bussen?

Tabell 3.1 Antal skadade i medeltal per timme i respektive tidsintervall i bussrelaterade olyckor i de tre källorna i några skånska kommuner under vart och ett av åren 2006-2009

<table>
<thead>
<tr>
<th>Tidsintervall</th>
<th>STRADAp</th>
<th>STRADAs</th>
<th>Alla</th>
</tr>
</thead>
<tbody>
<tr>
<td>00.00-06.59 (7)</td>
<td>1,7</td>
<td>3,9</td>
<td>4,6</td>
</tr>
<tr>
<td>07.00-08.59 (2)</td>
<td>5,6</td>
<td>23,3</td>
<td>25,3</td>
</tr>
<tr>
<td>09.00-14.59 (6)</td>
<td>6,4</td>
<td>24,2</td>
<td>26,9</td>
</tr>
<tr>
<td>15.00-18.59 (4)</td>
<td>9,1</td>
<td>27,9</td>
<td>31,8</td>
</tr>
<tr>
<td>19.00-23.59 (5)</td>
<td>3,0</td>
<td>9,1</td>
<td>9,9</td>
</tr>
<tr>
<td>Medelvärde</td>
<td>4,7</td>
<td>15,6</td>
<td>17,5</td>
</tr>
</tbody>
</table>

I Tabell 3.1 redovisas antal skadade i medeltal per timme i respektive tidsintervall. Högtrafiken under morgon och eftermiddag/kväll representeras av olika intervallängder, 2 respektive 4 timmar. Flest skadas per timme mellan kl. 15.00 och 18.59 oavsett källa. Tillgången till uppgifter från sjukhusregistret ökar antalet skadade från 9 per timme och år i den officiella statistiken till 32 per timme och år.

Var sker skadan?

Majoriteten, ca 80 % av de skadade i STRADAp respektive ca 90 % av de skadade i STRADAs, har skadats i tätorter i samband med en resa med en lokalbuss eller en regionbuss. I figur 3.10 illustreras storleksordning på antal skadade samt upptagningsområden för skadade, dels för de polisrapporterade i STRADAp, dels för de sjukhusregisterade i STRADAs.

Upptagningsområdena för de fyra akutmottagningarna i Malmö, Helsingborg, Lund och Kristianstad är betydligt större än den egna hemkommunen. I de bussrelaterade olyckorna dominerar skadade i de fyra städerna men även många skadade från olycksplatser i närliggande kommuner behandlas på de fyra akutmottagningarna.
Hur säker är bussen?

Figur 3.11 Antal skadade i bussrelaterade olyckor i tre källor samt i cirkeldiagrammet till höger andel av alla skadade i några skånska kommuner under åren 2006-2009 fördelade per olycksplats

Enligt den officiella statistiken sker mer än hälften av de bussrelaterade olyckorna på sträckor. Framförallt busspassagerare är utsatta men även i viss mån oskyddade trafikanter, främst fotgängare. Av de olyckor som sker i korsningar skadas oftast bilister och busspassagerare/förare. I det sammanslagna skadematerialet, STRADAs, STRADAp och enkätundersökningen, sker en av tre olyckor på sträckor. Olyckorna på busshållplatser samt på gångbanor är ungefär i samma storleksordning som de som inträffar i korsningar.
Hur säker är bussen?

I vilka typer av olyckshändelser uppkommer skadan?

Under de fyra åren har sammanlagt 70 personer skadats i singelolyckor i den officiella statistiken. Flertalet är busspassagerare, men också några bussförare. Ett mindre antal andra trafikanter har skadats när de har valt att undvika att bli påkörda av bussen och istället t.ex. kört av vägen. De skadade i kollisionsolyckor, 95 per år, dominerar i STRADAp. Den stora mängden kollisionsolyckor kan sannolikt ses som en konsekvens av den valda definitionen av en vägtrafikolycka samt vilken typ av olyckor där behovet är störst att utreda skuldfrågan.

Figur 3.12 Antal skadade i bussrelaterade olyckor i tre källor samt i cirkeldiagrammet till höger andel av alla skadade i några skånska kommuner under åren 2006-2009 fördelade per olyckstyp

I det matchade materialet skadas nästan två av tre i singelolyckor, i genomsnitt ca 260 årligen. De flesta är fotgängare i fall- och halkolyckor och busspassagerare vid t.ex. kraftiga inbromsningar eller accelerationer men även ett mindre antal cyklister kör omkull på väg till bussen. Liksom personbilsförare drabbas busspassagerare och fotgängarna även av skador i kollisionsolyckor, ca 30 till 35 skadade per år.

I figur 3.13 redovisas antal skadade med olika motparter i kollisionsolyckan. Enligt den officiella statistiken dominerar bussen som motpart i kollisionsolyckor. I dessa olyckor skadas i genomsnitt 22 personbilsförare och 17 fotgängare samt ca ett femtantal cyklister årligen. Även ca tio busspassagerare skadas i kollisioner mellan buss och personbilar per år. Något färre är busspassagerarna som skadas i kollisioner med lastbil.

I det sammantagna materialet från STRADAp och STRADAs samt enkätundersökningen framgår att bussen varit motpart i fler kollisionsolyckor. Av de i genomsnitt ca 90 skadade årligen är personbilsförarna mest utsatta, följt av fotgängare och cyklister. Sjukvårdskällan bidrar med kunskaper om fler skadade i kollisioner mellan buss och personbil än som återfinns i den officiella statistiken. Så sker även med kollisioner mellan buss och lastbil. I de senare olyckorna ökar de skadade busspassagerarna till i genomsnitt ca tio per år. Nya är också vissa uppgifter om fotgängare som skadas när de springer över gatan på väg till bussen samt de som kommer med buss och blir påkörda av personbilar när de går över gatan, sammantaget ett tiotal per år. Även ett mindre antal förare och passagerare i personbilar skadas när omgivande bilar bromsar eller stannar.
Hur säker är bussen?

för en buss som t ex skall in eller ut från en hållplats. I gruppen övrigt ingår också fotgängare och cyklister som registreras i konflikt med varandra på hållplatser eller när de springer till bussen.

Figur 3.13 Antal skadade i bussrelaterade olyckor i tre källor samt i cirkeldiagrammet till höger andel av alla skadade i några skånska kommuner under åren 2006-2009 fördelade per motpart i kollisionsolyckan

Hur svåra är skadorna? Av vilken typ är skadorna?

Figur 3.14 Antal skadade i bussrelaterade olyckor i STRADAp (vänstra diagrammet) respektive i STRADAs (högra diagrammet) i några skånska kommuner under åren 2006-2009 fördelade per skadegrad respektive ISS-intervall. Beteckningar: D = död, SS = svårt skadad, LS = lindrigt skadad. ISS 9 - = svår skada, ISS 4-8 måttliga skada, ISS 1-3 = lätt skada, ISS 0 = oskadad.

Enligt den officiella statistiken har totalt femton personer avlidit i bussrelaterade olyckor under de fyra åren samt i genomsnitt blir tio svårt skadade per år. Flertalet är lindrigt skadade. Av personerna med inte angiven svårhetsgrad är många inblandade i en omfattande bussolycka 2006, se Appendix I.
Bland de registrerade i STRADAs är fem döda vid ankomsten till sjukhuset och tre personer avlider på sjukhus. Nästan var femte skadad vårdas inlagda. Majoriteten lämnar sjukhuset efter behandlingen på akutmottagningen. De skadade i bussrelaterade olyckor skiljer sig inte från skadade i andra trafikmiljörer ur vårdsynpunkt. Enligt den medicinska bedömningen skadas årligen strax över ett trettiotal personer svårt, medan i genomsnitt 90 personer får måttliga skador i bussrelaterade olyckor. Ett mindre antal patienter, flest bussförare och bilister, som söker vård för inblandning i bussrelaterade olyckor uppvisar inga somatiska skador vid undersökningen på akutmottagningen.

Bland de svårt skadade är många fotgängare och busspassagerare. Flertalet har skadats i singelolyckor. Särskilt bland de måttligt skadade dominerar fotgängarna i singelolyckor. Busspassagerna är flest bland de med lätta skador.

Figur 3.15 Antal skadade i bussrelaterade olyckor i STRADAs i några skånska kommuner under åren 2006 - 2009 fördelade per ISS-intervall för utvalda trafikanter, fotgängare och busspassagerare, i singelolyckor (S) och kollisionsolyckor (K). Beteckningar: Fotg S= fotgängare skadade i singelolyckor, Fotg K= fotgängare skadade i kollisionsolyckor, Bussp S= busspassagerare skadade i singelolyckor, Bussp K= busspassagerare skadade i kollisionsolyckor samt övriga se
Hur säker är bussen?

Fotgängare skadade i singelolyckor har i genomsnitt 1,5 skador. Hälften av de skadade drabbas av frakturer och ca tio skadade per år får dessutom en svår fraktur. Kross- och klämskador förekommer också ofta bland fotgängare, särskilt bland fotgängare som skadats i kollisionsolyckor. Den senare gruppen också har i genomsnitt fler skador, 2,5 per person.

Busspassagerarna har i genomsnitt 1,6 skador oavsett typ av olycka. Bland dessa uppträder flest kross- och klämskador men även en del frakturer och sårskador.

Fyra olyckor är singelolyckor. Av polisrapporterna framgår att i åtminstone tre av dessa har bussen välty efter att ha kört av vägen. Majoriteten är dock kollisionsolyckor. Tunga lastbilar har varit motpart i två olyckor med många skadade, en upphinnande olycka och en med korsande kurser. I övriga kollisionsolyckor är en minibuss eller personbilar motpart.

Ett varierande antal skadade har registrerats i STRADAp respektive STRADAs. I några fall rapporterar polisen fler skadade i olyckorna än sjukhusen. Vid omhändertagandet på akutmottagningen framgår dock att vissa som skadats enligt polisen inte alltid har någon kroppsiktig skada.

I olyckan den 13 juni 2006 har 25 skadade behandlats på sjukhus, 15 i Malmö och tio i Lund. Tre av dessa har svåra skador enligt den medicinska skadebedömningen. Vid denna olycka har polisen endast bedömt en person som svårt skadad, medan övriga saknar uppgift om skadegraden. Förklaringen kan vara att olyckan inträffat på Yttre Ringvägen med stora störningar som följd för omgivande trafikanter och att polisen har koncentrerat sina resurser till att lösa denna uppgift.

I den andra omfattande bussolyckan i april år 2008 med en tung lastbil som motpart kan inte de medicinska konsekvenserna överblickas helt då, utöver de sex behandlade i Lund, Kristianstad och Malmö, ytterligare fem patienter har gått till Ångelholms lasarett för omhändertagande. Inga detaljuppgifter om dessa patienter ingår i denna undersökning.

Det är svårt att hitta några gemensamma nämnare för de inträffade mer omfattande bussolyckorna, varken när det gäller hastighetsbegränsningar, typ av olycka, motpart eller omgivande bebyggelse. Detta påverkar möjligheterna att dra mer långtgående slutsatser om hur de skall kunna förhindras eller begränsas i en framtid. I de mer omfattande olyckorna har också ofta fler än ett sjukhus tagit emot skadade för behandling och vård vilket försvårar en fullständig uppföljning.
3.1.2 Enkätundersökningen
Urvalet för att delta i enkätundersökningen baseras på att personalen på akutmottagningarna tillfrågat de vårdöknande om de skadats i samband med en bussresa, t.ex. på väg till/från bussen, på en bussstation eller i bussen. Vid inskrivningen på akutmottagningarna i Malmö, Lund, Helsingborg och Kristianstad registrerades 966 patienter som skadade i bussrelaterade olyckor under bearbetningsperioden 2006-2009. Till samtliga dessa skickades ett följebrev (Appendix IV) samt en enkät om bussolyckan de varit inblandade i, se Appendix V.

Strax över hälften av de skadade som nås av enkäten är fotgängare och något mer än 40 % är bussresenär/förare. En majoritet av dessa, 80-85 %, skadas i olika typer av singelolyckor i samband med bussresor.

![Figur 3.17](image)

Figur 3.17 Antal skadade i bussrelaterade olyckor i utskick och svar från enkätundersökningen samt i cirkeldiagrammet till höger andel av skadade bland de som svarat i några skånska kommuner under åren 2006-2009 fördelade per trafikantslag

I fortsättningen koncentreras presentationen till att belyska karaktären på problemen för fotgängarna och busspassagerarna i singelolyckor. Övriga skadade trafikanter är förhållandevis få och därför inte meningsfullt att redovisa i separata bearbetningar.
Hur säker är bussen?

Figur 3.18 Antal skadade i bussrelaterade singelolyckor i utskick och svar från enkätsöknings samt i cirkeldiagrammet till höger andel av skadade bland de som svarat i några skånska kommuner under åren 2006-2009 fördelade per trafikantslag

Under åren 2006-2009 har 280 fotgängare och 239 busspassagerare skadats i singelolyckor och svarat på enkätsöknings. De skadade fotgängarna i singelolyckor har något lägre svarsfrekvens än de bland busspassagerarna.

Redovisningen sker separat för fotgängare respektive busspassagerare. Den är huvudsakligen kvantitativ för att beskriva karaktären på problemen men även kvalitativ i den meningen att några av de skadades berättelser av olycksändelsen refereras. En del förslag redovisas också av hur den inträffade olyckan kan undvikas i framtiden.

Skadade fotgängare i bussrelaterade singelolyckor

Medelålders (45-64 år) och äldre (65 år och äldre) registreras som skadade ungefär lika ofta om hänsyn tas till storleken på åldersintervallen. Kvinnor är betydligt mer utsatta än män. Förklaringen är troligen att de har sämre tillgång till olika transportmedel samtidigt som deras medellivslängd är längre än männen.

Figur 3.19 Skadade fotgängare i bussrelaterade singelolyckor som svarat på enkätsöknings (n=280) i några skånska kommuner under åren 2006-2008 procentuellt fördelade per åldersgrupp respektive per kön
Hur säker är bussen?

Figur 3.20 Antal skadade fotgängare i bussrelaterade singelolyckor som svarat på enkätundersökningen (n=280) i några skånska kommuner under åren 2006-2009 fördelade per typ av ärende

Figur 3.21 Antal skadade fotgängare i bussrelaterade singelolyckor som svarat på enkätundersökningen (n=280) i några skånska kommuner under åren 2006-2009 fördelade per typ av förflyttning före olyckshändelse

Många fotgängare skadas på väg till bussen. Ganska många av dessa faller när de springer eller skyndar till bussen. Även de allra äldsta uppger att de i några fall har sprungit. Tolkningen av hur nära man är busshållplatsen vid en olyckshändelse som sker till/från bussen är oklar då inte så få uppger att olyckan faktiskt skett på busshållplatsen. Stora flertalet skadas emellertid på trottoarer och gångbanor eller vid passager av gata på väg till och från bussen.
Hur säker är bussen?

Figur 3.22 Antal skadade fotgängare i bussrelaterade singelolyckor som svarat på enkätundersökningen (n=280) i några skånska kommuner under åren 2006-2009 fördelade per tillståndet på underlaget vid olyckshändelsen

Tillståndet på underlaget baseras på uppgifter från trafikskadejournalen i STRADAs som enbart registrerar orsaker som anses bidra till olyckshändelsen. Detta kan förklara att uppgifterna om tillståndet på underlaget saknas för fler än var fjärde skadad. I en del fall finns dock uppgifter om t ex halka i beskrivningen av olyckshändelsen och de ingår då i detta material. Is och snö är också den vanligaste orsaken till olyckshändelsen, särskilt under januari och februari men även under mars månad. Det är vanligare att skadas på trottoarer och gångbanor vid halka än på busshållplatsen. Men andelen som skadade vid halka är lika stor på busshållplatsen som på gångbanan. Många av de här skadade vid halktillfällen är fotgängare i 45-64 års ålder vilket kanske inte är helt väntat.

Det är vanligare att fotgängare skadas när de faller på ojämna beläggningar, uppstickande plattor, i hål eller gropar än att de snubblar på kantsstenar och trädrötter eller halkar på löv. Höjden på kantsstenarna tycks framförallt vara ett problem för de allra äldsta fotgängarna. De skadade fotgängarna har ombetts uppskatta längden och tidsåtgången för hela resan där bussen ingick som en del av transporten. Tidsåtgången har skattats av 216 skadade (ca 75 %), medan något färre, 181 av de skadade, har gjort försök att skatta resans längd (ca 65 %).

Medelvärdet för restiden för de som lämnat en uppgift är 37 min, medan motsvarande medelvärdet för reslängden är 28 km. Rimligheten på lämnade uppgifter har bedömts när start- och målpunkter för resa har funnits tillgängliga tillsammans med en beskrivning av tänkta transportmedel.

Ca var fjärde fotgängare som skadas i en singelolycka i samband med en bussresa transporteras till akutmottagningen med ambulans. Ca var femte fotgängare behandlas inlagda på sjukhus efter akutbesöket. Bland de skadade fotgängarna i singelolyckor har förhållandevis många drabbats av svåra eller måttliga skador, ca åtta respektive 30 patienter årligen under de fyra studerade åren 2006-2009. De svåra skadorna uppträder redan bland 45-64 åringarna där de till och med är något vanligare än i de två äldregrupperna.
Tabell 3.2 Skattad restid respektive reslängd bland skadade fotgängare i bussrelaterade singelolyckor som svarat på enkätundersökningen (n=280) i några skånska kommuner under åren 2006-2009

<table>
<thead>
<tr>
<th>Resttid (min)</th>
<th>Antal</th>
<th>Andel %</th>
<th>Reslängd (km)</th>
<th>Antal</th>
<th>Andel %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 15</td>
<td>58</td>
<td>20,7</td>
<td>1 - 5</td>
<td>67</td>
<td>23,9</td>
</tr>
<tr>
<td>16 - 45</td>
<td>111</td>
<td>39,6</td>
<td>6 - 10</td>
<td>36</td>
<td>12,9</td>
</tr>
<tr>
<td>46 -</td>
<td>47</td>
<td>16,8</td>
<td>11 - 20</td>
<td>32</td>
<td>11,4</td>
</tr>
<tr>
<td>Okänd</td>
<td>64</td>
<td>22,9</td>
<td>21 -</td>
<td>46</td>
<td>16,3</td>
</tr>
<tr>
<td>Total</td>
<td>280</td>
<td></td>
<td>Okänd</td>
<td>99</td>
<td>35,4</td>
</tr>
</tbody>
</table>

Figur 3.23 Antal skadade fotgängare i bussrelaterade singelolyckor som svarat på enkätundersökningen (n=280) i några skånska kommuner under åren 2006-2009 fördelade per ISS-intervall

Beskrivning av hur olika skador har uppkommit bland fotgängare

Skador: Fraktur näsa. ISS 1
Man, 45-64 år, skadas vid Centralstationen i Lund, på väg till busshållplatsen under fritid.
"Är på väg till Kristianstad. När jag sneddar över gatan snubblar jag. Det är breda mellanrum mellan gatstenar och fyllningen i fogarna är borta. Min fot kom ner i ett sådant mellanrum. Faller och slår ansiktet i gatstenen."

Skador: Fraktur handled. ISS 4
Kvinna, 45-64 år, skadas på Gustav Adolfs torg, Malmö en tidig morgon under senvintern, på väg från bostad till busshållplatsen för att ta sig till arbetet.
"Nyfallen snö, is under. Hela oförberedd. Ramlar på stjärten och får höger hand under mig. Dagen slutar illa redan tidigt på morgonen"
Skador: Kontusion på skuldra och huvud. Fraktur handlov. ISS 5
Kvinna, 65-74 år, skadas i Oxie centrum, på väg till busshållplatsen för att senare handla.

Skador: Fraktur lårben. ISS 9
Kvinna, 75 år -, skadas i centrala Helsingborg, på väg från busshållplatsen till sjukhuset.
"Går över gatan. När fram till trottoaren. Snubblar troligen över kantstenen. Allt gick så fort!"

Skadade fotgängare – ytterligare kvalitativa analyser
Nedanstående kvalitativa data är hämtade från fritextfält i studiens enkätundersökning.

Förekommande olyckstyper
Utöver vad som tidigare visats, att man som fotgängare oftare skadas på vägen till busshållplats än på vägen från, framgår att personer även skadat sig i samband med bussbyte. Dessa ingår i skadorna ”på hållplats” i tidigare avsnitt. I Tabell 3.3 finns orsaker och omständigheter angivna singelolyckor i samband med bussresa, grupperat i ”till buss”, ”från buss” och ”bussbyte”.

Tabell 3.3. Fotgängares singelolyckor i samband med bussresa, orsaker och omständigheter rangordnat efter frekvens i det kvalitativa materialet

<table>
<thead>
<tr>
<th>Till buss</th>
<th>Från buss</th>
<th>Bussbyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skyndar</td>
<td>Is/snö/halka</td>
<td>Skyndar</td>
</tr>
<tr>
<td>Ojämn yta</td>
<td>Ojämn yta</td>
<td>Trottoarkant</td>
</tr>
<tr>
<td>Is/snö/halka</td>
<td>Löst föremål</td>
<td>Is/snö/halka</td>
</tr>
<tr>
<td>Löst föremål</td>
<td>Skyndar</td>
<td>Ojämn yta</td>
</tr>
<tr>
<td>Trottoarkant</td>
<td>Trottoarkant</td>
<td></td>
</tr>
</tbody>
</table>

Omfångs och åtgärder ska enligt respondenten skyndat. Omständigheten skyndar är således ett element som kan förenas med samtliga orsaker. Enbart med hjälp av enkätsvaren är det svårt att avgöra i vilken utsträckning respondenten skyndat, det vill säga om man bara gått fort eller om man sprungit. Det har dock funnits ett element av stress
Hur säker är bussen?

eeller tidsnöd i beskrivningen av hur olyckan gick till, vanligtvis i form av att man på håll sett bussen komma och därför sprungit till hållplatsen.

I kategorin olyckor som inträffat på väg från bussen (Tabell 3.3, kolumn 2) ingår samtliga som avslutat sin bussresa, det vill säga gått av bussen för att sedan ta sig vidare. Denna grupp är mindre än de som skadats på väg till bussen. Att olyckan på väg från bussen har sin orsak i halka till följd av vinterväglag eller på grund av ojämnt underlag är däremot vanligt. De som faller på lösa föremål eller på en trottoarkant utgör även i denna grupp en mindre andel.

De som berättat att de skadats vid bussbyte (Tabell 3.3, kolumn 3) har fått bilda en egen kategori, främst därför att vid ett bussbyte är respondenten både på väg till och från en buss. Att olyckan inträffade i samband med bussbyte bör således vara den bästa beskrivningen.

Gruppen som skadats vid bussbyte utgör en mindre andel av totala antalet fotgängare som skadats i samband med bussresor. Vårt att notera är att skyndar är en vanlig kategorisering samt att man de fallit på en trottoarkant, vilket kan orsakas av att byten ofta medför förflyttningar från trottoar till gata/busskörfält och att dessa är förhöjda för att underlätta påstigningen.

Slutligen, en intressant observation är att de som på något vis angivit att de skyndat när olyckan inträffade sällan förekommer i situationen från bussen.

Fotgångarnas förslag till förbättring

Mer än hälften av fotgångarna har lämnat egna förslag på hur olyckan kunde ha undvikits. Ytbeläggningens ojämnhet förekommer ofta. Man önskar helt enkelt jämnare och bättre underhållen ytbeläggning, till exempel önskas att uppstickande gatstenar jämnas till eller att ojämn asfaltering åtgärdas. Påpekanden om ojämn ytbeläggning handlar i regel om väg/gångväg/trottoar snarare än själva hållplatsen eller dess omedelbara närhet. Då många olyckor inträffar vid snö eller is-halka får förekommer önskemål om att vinterväghållningen skall förbättras. Man riktar direkt kritik mot respektive kommun och/eller kommunens tekniska förvaltning samt i en del fall fastighetsägare, som man anser bär ansvaret för den undermåliga snöröjningen.

Tabell 3.4. Fotgängares förslag till förbättringar för ökad säkerhet i samband med bussresa

<table>
<thead>
<tr>
<th>Kategori, förbättring</th>
<th>Till/från buss</th>
<th>Hållplats</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jämnare ytbeläggning</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Bättre vinterväghållning</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Förändrat eget beteende</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Färre lösa föremål/skräp</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bättre tidtabellsanpassning, trafikutbud</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mer uppmärksamma bussförare</td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

Några anser att deras olycka hade kunnat undvikas om bussförarna var mer uppmärksamma. Rimligen borde dock bussförarnas möjliga inflytande vara begränsat, då dessa olyckor inträffat till
eller från bussen. Slutligen är det också värt att notera att man ibland anser att det var ens eget fel att olyckan inträffade. Förklaringen kan vara uppmärksamhet eller omotiverad stress som orsak till olyckan.

Ytterligare exempel på åsikter om och förslag till hur olyckan hade kunnat undvikas visas nedan:

| Kvinna, ålder 35-45 år: |
| "Om halkbekämpning och skottning av gångbanan gjorts tidigare hade olyckan troligtvis inte skett." |

| Kvinna, ålder okänd: |
| "Jag skulle föreslå att gator och torg skulle vara så jämnna som möjligt" |

| Man, ålder 75-85 år: |
| "Jag skulle inte sprungit utan gått lugnt och säkert" |

| Kvinna, ålder 55-65 år: |
| "Gör vid på Värnhemstorget så där är någorlunda slätt, kanske det behöver ses över i hela Malmö" |

Skadade busspassagerare i singelolyckor

![Pie chart showing age distribution of buss passengers involved in single accidents](image)

Figur 3.24 Skadade busspassagerare i singelolyckor som deltagit i enkätundersökningen (n=239) i några skånska kommuner under åren 2006-2009 procentuellt fördelade per åldersgrupp respektive per kön
Hur säker är bussen?

Figur 3.25 Antal skadade busspassagerare i singelolyckor som svarat på enkätundersökningen (n=239) i några skånska kommuner under åren 2006-2009 fördelade per typ av ärende

Figur 3.26 Antal skadade busspassagerare i singelolyckor som svarat på enkätundersökningen (n=239) i några skånska kommuner under åren 2006-2009 fördelade per förflyttning före olyckshändelsen

Majoriteten, två av tre bussresenärer befinner sig i bussen vid olyckstillfället. Nästan hälften av de som skadas inne i bussen är 75 år eller äldre. Av dessa har många en rollator med sig som skall manövreras ombord.

Skadorna på busspassagerarna uppkommer oftare vid häftiga inbromsningar när passagerarna står eller är på väg att resa sig för att gå av vid nästa hållplats än under acceleration från hållplatsen då
resenärerna ännu inte hunnit sätta sig. Inte så få träffar i fallet olika delar av inredningen som stolpar, kanter, glasväggar och säten eller snubblar på nivåskillnader innan de landar på golvet.

Figur 3.27 Antal skadade passagerare som fallit i bussen och svarat på enkätundersökningen (n=159) i några skånska kommuner under åren 2006-2009 fördelade per orsak till fall i buss

Tabell 3.5 Skattad restid respektive reslängd bland skadade busspassagerare i singelolyckor som svarat på enkätundersökningen (n=239) i några skånska kommuner under åren 2006-2009

<table>
<thead>
<tr>
<th>Restid (min)</th>
<th>Antal</th>
<th>Andel %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 15</td>
<td>100</td>
<td>41,8</td>
</tr>
<tr>
<td>16 - 45</td>
<td>100</td>
<td>41,8</td>
</tr>
<tr>
<td>46 -</td>
<td>10</td>
<td>4,2</td>
</tr>
<tr>
<td>Okänd</td>
<td>29</td>
<td>12,1</td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reslängd (km)</th>
<th>Antal</th>
<th>Andel %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 5</td>
<td>90</td>
<td>37,7</td>
</tr>
<tr>
<td>6 - 10</td>
<td>37</td>
<td>15,5</td>
</tr>
<tr>
<td>11 - 20</td>
<td>15</td>
<td>6,3</td>
</tr>
<tr>
<td>21 -</td>
<td>16</td>
<td>6,7</td>
</tr>
<tr>
<td>Okänd</td>
<td>81</td>
<td>33,9</td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
<td></td>
</tr>
</tbody>
</table>

Medelvärdet för restiden bland bussresenärerna är 27 min. Motsvarande medelvärdet för reslängden är 14 km Frågan som ställts till samtliga skadade var hur lång tid hela den bussrelaterade resan förväntades ta samt hur lång sträcka som man planerat att förflytta sig. De erhållna svaren är nog snarare enbart bussresans tid och längd, vilket sannolikt är enklast att ge svar på.

Ca två av fem resenärer som skadas i en buss eller vid av- och påstigning av bussen transporteras till akutmottagningen med ambulans. Det är en högre andel än bland fotgängarna i singelolyckor men kanske naturligt då bussförare eller medpassagerare sannolikt tar initiativet att ringa efter ambulansen. Däremot är det i få fall som det upptäcks att polisen har varit på plats. Ca var femte
Hur säker är bussen?

busspassagerare behandlas inlagda på sjukhus efter akutbesöket, dvs. samma andel som för de skadade fotgängarna.

Figur 3.28 Antal skadade busspassagerare i singelolyckor som svarat på enkätundersökningen (n=239) i några skånska kommuner under åren 2006-2009 fördelade per ISS-intervall

Omhändertagandet och vården bör ställas i perspektivet att antalet svårt skadade är nästan lika många bland bussresenärerna som bland fotgängarna medan antalet måttligt skadade är något mindre än hälften. Å andra sidan drabbas fler av de allra äldsta bussresenärerna av dessa skador.

Några skadade busspassagerares beskrivning av olyckshändelsen

Skador: Kontusion skuldra och överarm. ISS 1
Man, 45-64 år, skadas efter påstigning vid Knutpunkten i Helsingborg, i bussen på väg till arbetet

"Stiger på bussen och är på väg att sätta mig i bakre delen bussen. Vid nästa hållplats bromsar föraren mycket kraftigt, då han håller på att köra förbi en resenär som väntar på bussen. Har inte hunnit sätta mig utan flyger baklänges mot mitten av bussen. Faller raklång på rygg. Slår i axeln i en stolpe."

Skador: Fraktur handlov. ISS 4
Kvinna, 65-74 år, skadas på Nydalatorget i Malmö, på väg att stiga av bussen efter ett konsertbesök

57
Hur säker är bussen?

Kvinna, 75 år, skadas underresa till Resecentrum i Kristianstad, i bussen på väg till vårcentralen "Stiger in i bussen och går max tre steg. Bussen startar och jag stöter foten mot en rollator. Den är parkerad i gängen med hjulen utåt. Faller olyckligt på sidan och kan inte röra mig. En dam i bussen ringer efter ambulans som hämtar vid framkomsten till Resecentrum."

Skadade busspassagerare – ytterligare kvalitativa analyser
Nedanstående kvalitativa data är hämtade från fritextfält i studiens enkätundersökning.

Förekommande olyckstyper och fördelning
Som tidigare visats uppkommer fler skador ombord under färd än i samband med på-/avstigning. Det kan handla om att bussen kör innan resenären har satt sig eller funnit en säker ståplats. Företrädesvis äldre är drabbade, och särskilt personer 75 år eller äldre har svårt att hinna sätta sig innan bussen kör. En annan olyckstyp är fall vid inbromsning. Detta drabbar i högre grad stående än sittande resenärer, men det är vält att notera att även sittande resenärer kan skadas i sådana situationer. Dels kan man slå sig på inredningen (stolpar, glasväggar, såten), och dels falla från sätet mot golvet. Andra mindre vanliga olyckskategorier är fall på grund av nivåskillnad inuti bussen samt fall då resenären rest sig innan bussen stannat vid hållplats.

Tabell 3.6. Busspassagerares singelolyckor, orsaker och omständigheter rangordnat efter frekvens i det kvalitativa materialet

<table>
<thead>
<tr>
<th>På-/avstigning</th>
<th>Står, går eller sitter ombord</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivåskillnad buss/hållplats</td>
<td>Fallar vid inbromsning</td>
</tr>
<tr>
<td>Snö och halka</td>
<td>Fallar vid acceleration</td>
</tr>
</tbody>
</table>

Busspassagerarnas förslag till förbättring
Mer än hälften av busspassagerarna har lämnat egna förslag på hur olyckan kunde ha undvikits.

Ofta handlar det om hur man kunnat undvika fallolyckan i samband med att bussen kör innan alla satt sig ner; att bussen inte kör förrän allä sitter ner. Ett annat tema berör bussförarens agerande; mer uppmärksamma förare. Faktum är att de fem vanligaste förslagen till hur olyckan hade kunnat undvikas handlar om bussföraren och dennes beteende i någon mening.
Hur säker är bussen?

Vidare kan det noteras att några efterfrågar bättre service från trafikföretaget vid olyckor. Det har även framkommit att bussföraren uppträtt närmast likgiltigt efter en olycka och erbjudit knapphändigt stöd eller i vissa fall ingen hjälp alls. Andra förslag berör införandet av mobiltelefonförbud för bussförare under körning samt krav på säkerhetsbälte i samtliga bussar.

Tabell 3.7. Fotgängares förslag till förbättringar för ökad säkerhet i samband med bussresa

<table>
<thead>
<tr>
<th>Kategori, förbättring</th>
<th>Förare</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man skall hinna sätta sig</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Ökad uppmärksamhet</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Mindre stress</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Mjukare körstil</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Bättre angöring till hållplats</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bättre stöd i samband med olycka</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Förbud mot mobiltelefon, förare</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Införa bälteskrav</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Ytterligare exempel på åsikter om och förslag till hur olyckan hade kunnat undvikas visas nedan:

Kvinna, 75 år eller äldre:
"Om chauffören hade väntat tills jag hade hunnit sätta mig hade jag inte ramlat"

Man, 55-65 år:
"Det är många buschaufförer som pratar i mobiltelefon när de kör och även skickar sms. Det skulle vara totalförbudet…"

Kvinna, 45-55 år:
"Om chauffören hade hållit rätt hastighet hade inbromsningen inte blivit så kraftig"
3.2 Resultat, risk

3.2.1 Exponering, hela resan
I genomsnitt för de fyra orterna skadas 4,6 personer per miljon resor. Tar man hänsyn till reslängd, skadas i genomsnitt 1,1 personer per miljoner personkilometer. Vidare skadas i genomsnitt 12,9 personer per miljoner vagnkilometer buss. Figur 3.29 visar fördelningen per ort. Av dessa resultat att döma kan slutsatsen dras att de är förhållandevis stabila. Malmö ligger något högre, vilket får bedömas som rimligt pga. att den är mer än dubbelt så stor som de övriga städerna. Något förvånande ligger Lund i nivå med Kristianstad, som har mindre än hälften så stor befolkning som Lund.

![Diagram](image)

Figur 3.29 Skadade i tätort per ort, resa, personkilometer och vagnkilometer buss

Som visats i föregående avsnitt dominerar de lindrigt skadade. Påfallande nog utgör personer som skadas i samband med påstigning och under färd en betydande andel av totalt antal skadade (Figur 3.30). Tidigare resultat har indikerat att det endast är om man skulle ta hänsyn till transport till och från bussen som skaderisken skulle bli markant. Istället ses att det i stort sett blir en fördubblad risk om händelser utanför själva färdmomenten tas med.

Om man beskriver skaderisk per resa per situation, samt redovisar resultaten per ort framgår något tydligare att till/från hållplats ändå dominerar (Figur 3.31). Personer i Lund tycks resa betydligt säkrare i samband med bussfård. Om detta är en effekt av datainsamlingen eller om det är ett reellt faktum är högst osäkert. En hypotes är att det sker en betydande inpendling med regionbuss i Lund, och att denna inpendling i hög grad utgörs av gymnasieelever och studenter. Det skulle kunna vara så att denna åldersfördelning också påverkar skadeutfallet. Dock tycks inte detta påverka de övriga skadesituationerna.
Hur säker är bussen?

Figur 3.30 Skaderisk per resa, grupperad döda + svårt skadade (DD+SS) och lindrigt skadade (LS). Totalt 4,6 skadade per miljoner resor.

![Skadegradsgrupperad diagram](image)

Figur 3.31 Skaderisk per resa, per ort och situation.

![Skadetyp, situation och tätort diagram](image)

Ett vanligt exponeringsmått är antal skadade per reslängd eller trafikarbete. Detta visas i Figur 3.32. Vidare redovisas antal skador per invånare i Figur 3.33, fördelat på de olika situationerna. I genomsnitt skadas 3,4 personer till och från bussen, 2,4 personer i samband med på/avstigning och färd, samt 0,9 personer i andra situationer per 10 000 invånare. Totalt innebär detta 6,6 skadade personer i samband med busstrafik per 10 000 invånare per år.
Hur säker är bussen?

Figur 3.32 Skaderisk per personkilometer, grupperad döda + svårt skadade (DD+SS) och lindrigt skadade (LS). Totalt för de 4 orterna innebär det 1,1 skadade per miljoner personkm.

Figur 3.33 Skaderisk per invånare, per ort och situation.

Om man beaktar de samhällskostnader som uppstår i samband med olyckor i busstrafik (ASEK-värden, se metodavsnitt), kan man säga att det handlar om en tredjedel till en fjärdedel av biljettpriset per resa. Antar vi att kostnadstäckningen är ca 50 %, vilket är relativt högt räknat i stadstrafik, utgör skadekostnaden ca hälften av det offentliga tillskottet i kollektivtrafiken. Kostnad per resa ligger i spannet 3,50-5,00 kr. Räknat per invånare uppgår skadekostnaden till ca 600 kr per år.
Figur 3.34 Skadekostnad per ort och resa, totalt alla skadetyper

Figur 3.35 Skadekostnad per ort och år, totalt alla skadetyper

Storleksordningen indikerar att det bör finnas stora samhällsvinster i ökad säkerhet för busstrafiken. Visserligen är de flesta skador lindriga, men genom den olycksvärdering som görs av svåra skador och dödsfall, utgör deras kostnader mer än 80 % av total skadekostnad. Detta implicerar också att skadekostnaderna kan variera kraftigt år från år, om t ex en serie allvarliga olyckor med dödlig utgång sker.
3.2.2 Jämförelse buss - bil

Risk för resenären
Nedan visas jämförelser mellan dels bussresa och bilresa samt totala antalet skadade som resultat av trafikarbete med respektive färdmedel.

Risk för resenären och andra trafikanter

Som framgår av Figur 3.37 leder det större gångavståndet till bussen till en kraftigt ökad risk jämfört med bilresa. Att välja bussen istället för bilen ökar risken att skadas i samband med resan.

Däremot orsakar biltrafiken betydande säkerhetsproblem under färd, vilket totalt leder till att antal skadade är 12 % högre (per miljoner personkilometer) för bil jämfört med buss (Figur 3.38). Antalet skadade i Malmö pga biltrafik under hela undersökningsperioden uppgår till 3046. Motsvarande siffra för busstrafik är 752.

Bussrelaterade skador är enligt tidigare redovisad insamlingsmetod, medan uppgifter om bilrelaterade skador endast härrör sig från STRADAs, varför de kan anses som något underskattade. För fullständig jämförelse, hade en matchning av polisrapporterade och sjukhusrapporterade skador krävts. Bilrelaterade skadedata är hämtade från Tabell 2.6.

Det bör påpekas att osäkerheten i dessa skattningar är betydande, se vidare nedan.

3.2.3 Risk, orsak och konsekvens

Med hjälp av logistisk regression har en prediktionsmodell skattats. Ett begränsat antal variabler har introducerats som oberoende modellvariabler, se nedan i Tabell 3.8. Resultaten i Tabell 3.9 skall tolkas på följande sätt. Exp(B) utgör förändringen i odds, på så sätt att om prediktions-
variabeln ändras (ökande) förändras oddsens (ökande). Det bör understrykas att den skattade modellens "korrelationskoefﬁcienter" är relativt låga, samt att förklaringsgraden ligger under 70 %. Dock ger resultaten några intressanta indikationer.

Tabell 3.8 Modellparametrar, värden och antal observationer

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Värde</th>
<th>Antal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trafikintensitet</td>
<td>Högtrafik</td>
<td>530</td>
</tr>
<tr>
<td></td>
<td>Lågtrafik</td>
<td>742</td>
</tr>
<tr>
<td>Trafikantkategori</td>
<td>Oskyddade</td>
<td>743</td>
</tr>
<tr>
<td></td>
<td>Busspassagerare</td>
<td>529</td>
</tr>
<tr>
<td>Åldersgrupp</td>
<td>Yngre, -64</td>
<td>797</td>
</tr>
<tr>
<td></td>
<td>Äldre, 65+</td>
<td>475</td>
</tr>
<tr>
<td>Kön</td>
<td>Man</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>Kvinna</td>
<td>924</td>
</tr>
<tr>
<td>Olyckstyp</td>
<td>Singel</td>
<td>1007</td>
</tr>
<tr>
<td></td>
<td>Kollision</td>
<td>265</td>
</tr>
</tbody>
</table>

Tabell 3.9 Regressionsmodell, oddskvoter för prediktion av måttliga och allvarliga skador

<table>
<thead>
<tr>
<th>Variabel</th>
<th>95 % konfidentsintervall för Exp(B)</th>
<th>"Odds", korr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>S.E.</td>
</tr>
<tr>
<td>Trafikintensitet, X_1</td>
<td>-0,216</td>
<td>0,126</td>
</tr>
<tr>
<td>Trafikantkategori, X_2</td>
<td>0,907 ***</td>
<td>0,130</td>
</tr>
<tr>
<td>Åldersgrupp, X_3</td>
<td>-0,924 ***</td>
<td>0,148</td>
</tr>
<tr>
<td>Kön, X_4</td>
<td>-0,705 **</td>
<td>0,253</td>
</tr>
<tr>
<td>KönÅldersgrupp, X_4X_3</td>
<td>0,865 **</td>
<td>0,303</td>
</tr>
<tr>
<td>Olyckstyp, X_5</td>
<td>0,429 **</td>
<td>0,163</td>
</tr>
<tr>
<td>Konstant</td>
<td>-0,808 ***</td>
<td>0,207</td>
</tr>
</tbody>
</table>

*** p<0,001, ** p<0,01;
p = sannolikhet för skada; log(p/1-p) = -0,808-0,216*X1+0,907*X2-0,924*X3-0,705*X4+0,865*X4*X3+0,429*X5

Enligt Tabell 3.9 är det mer än dubbelt (2,5 ggr) så stor risk att oskyddade trafikanter utanför bussen skadas allvarligt (eller måttligt) än busspassagerare. Äldre löper mer än dubbelt så stor risk att skadas allvarligt när en olycka sker. Kvinnor löper totalt sett dubbelt så stor risk att skadas allvarligt. Dock upptäcker här en interaktionseffekt. Bland yngre löper män något större risk att skadas allvarligt, medan äldre kvinnor drabbas nästan lika ofta av lindriga som allvarliga skador. Slutligen är det 50 % större risk att man skadas allvarligt vid singelolyckor jämfört vid kollisionsolyckor i bussen.
3.2.4 Osäkerheter i materialet och skattningarna

Vid beräkningarna har två typer av datamaterial använts, dels olycksdata, dels exponeringsdata.

En osäkerhet i olycksmaterialet är rapporteringsgraden vid de inblandade sjukhusen. I Helsingborg, Kristianstad och Lund har man en mycket hög rapporteringsgrad, mer än 95 %. I Malmö är däremot rapporteringsgraden lägre ca 75 %. Några av sjukhusen har ett separat barnakutintag. Dessa har i mycket begränsad utsträckning deltagit i datainsamlingen. Det innebär att vi kan ha en underrapportering för barn.

Vid skattningen av risken för bil har endast STRADA sjukvård använts vilket innebär en viss underskattning av risken. När det gäller risken vid gångförflyttningar till/från parkering har risktalen hämtats från busstudien. Eftersom bussresenärerna i högre grad är äldre och yngre än bilresenärer har troligen risken överskattats. Om bilister övergår till buss är troligen risken vid gångförflyttningarna lägre än vad vi räknat med.

Skattningarna av exponeringen vid gångförflyttningar har skett med hjälp av Resvanor Syd (Indebetou och Quester, 2008; Skånetrafikens bearbetning) och får nog betraktas som någorlunda goda med tanke på studiens stora material. Beräkningen av antalet vagnkilometer och personkilometer med buss har gjorts manuellt med utgångspunkt från linjenät, tidtabeller och resandedata från Skånetrafiken. Även detta material bedöms ha relativt hög noggrannhet.

Exponeringsdata för biltrafiken i Malmö har hämtats från prognosmodeller. Här är det svårt att bedöma noggrannheten.
4. Slutsatser och rekommendationer

4.1 Diskussion

Det är svårt att jämföra våra resultat med de andra studier som redovisas under kapitel 1. De flesta studierna skiljer sig i olika avseenden från vår. Några är baserade på polisrapportering, några på sjukhusregistreringar, några avser olyckor per resa, andra per fordonskm respektive per personkm. Några få studier innefattar även gångförflyttningar till/från hållplats. När det gäller dessa finns inte alltid singelolyckorna med.

Trots dessa olikheter kan man notera vissa gemensamma ickttagelser.

En viktig slutsats är att gångförflyttningarna till/från hållplats ökar risken för hela resan högst väsentligt. Detta blir speciellt påtagligt om även singelolyckor för gående beaktas. Enligt Vaa (1993) är risken per personkm vid gångförflyttningen till/från hållplats 100 gånger större än risken vid färd i bussen. Enligt vårt studie domineras den totala skaderisken per personkm av gångförflyttningarna, ca hälften samt av- och påstigningen som står för ytterligare ca 25 %.

Enligt vår studie är ca 85 % av fotgängarolyckorna singelolyckor. Det stämmer nästan exakt med den siffra som Vaa(1993) anger, 86 %.

Vår studie visar en total risk med buss på 1,1 skadade och dödade per miljon personkm, medan Vaa (1993) kommer fram till ca 0,6 skadade och dödade per miljon personkm. Om man jämför med tidigare studier som baseras på polisrapporterade olyckor och där inte singelolyckor ingår, så föreligger mycket stor skillnad. Om man t.ex. jämför med Albertsson och Falkmer (2005), see tabell 1.1, så skiljer sig risktalen med en faktor 100 jämfört med vår och Vaas.

4.2 Åtgärder för busspassagerarna

Dagens tidtabeller är tidsmässigt nämnt satta. Efter upphandlingen bör utförare och beställare gemensamt besluta om utformningen av tidtabellerna. Före varje upphandling bör tidigare tidtabellerna utvärderas hur de fungerat under den gångna perioden. Bussförarna måste uppmnas ta mer hänsyn till passagerarna, särskilt de äldre; t ex inte börja köra före samtliga passagerare sitter ner, att köra mjukt, ge passagerarna möjlighet att stiga av bussen innan dörrarna stängs, att köra tätt in till kantstegen vid busshållplatsen. Inredningen av bussarna bör granskas ingående så att
Hur säker är bussen?

placeringen av stolpar, glasskivor, kanter, golvmaterial och nivåskillnader m. m. inte förvärrar de skador som kan uppkomma i en buss vid fall.

En översyn av tidtabellerna är troligen på kort sikt det viktigast ledet i förbättringsarbetet. I upphandlingen behöver det framgå att tidtabellen skall utformas så att den minskar stressen för förare och passagerare. Vid upphandling av nya bussar bör utrustningen och inredningen av bussarna granskas kritiskt med avseende på både säkerhet, bekvämlighet och skötsel.

4.3 Åtgärder för fotgängarna

Utformningen av stadens gator, gång- och cykelbanor samt busshållplatser är viktiga för dess invånare. Utformningen kring hållplatser och terminaler är viktig för alla fortgångares säkerhet. Även skötseln och driften av dessa anläggningar har betydelse. Mer resurser bör kanaleras till underhåll och vinterväghållning av gång- och cykelbanorna än vad som sker idag. Det senare föreslås bli en kommunal angelägenhet som t ex kan finansieras via avgifter.

Några förslag baserade på kommentarer från de skadade till hur olyckor kan undvikas i framtiden TILL OCH FRÅN HÅLLPLATS

- Bättre sandning/saltning och snöröjning av trottoarer och busshållplatser
- Tidigare halkbekämpning än vad som sker nu
- Bättre underhåll av gator och trottoarer. Se till att beläggningen är jämn och har god friktion
- Mindre blandning av olika beläggningsmaterial. Idag onödigt många material på gångbanorna; platror, smågatssten och granithällar. Särskilt om tunga fordon kan tänkas använda ytor för trafikering
- Bättre underhåll av plattatra ytor. Återkommande översyn för att undvika uppstörande platror
- Kontrollera fogarna. Utveckla sopmaskinerna så att de inte tömmer fogarna på fogsand
Hur säker är bussen?

Några förslag baserade på kommentarer från de skadade om hur olyckor kan undvikas i framtiden VID PÅ-/AVSTIGNING OCH UNDER RESA

- Bättre underhåll. Busshållplatserna får inte ha hål där man kan snubbla
- Bussarna är höga att kliva av på vid vissa hållplatser. Bussen måste då stanna nära trottoaren med mellanrum mellan buss och trottoar. Äldre personer kan oftast inte ta långa steg utan att tappa balansen
- Bussföraren skall köra försiktigt och omtänksam. Alla passagerare måste hinna sätta sig innan bussen kör. Det går inte med nuvarande tidtabeller
- Bussföraren får inte gör häftiga inbromsningar vid ut- eller inkörningar vid busshållplatsen. Särskilt inte om passagerarna står eller är på väg att resa sig
- Bussföraren måste se till att avstigande passagerare kommer av innan dörrarna stängs
- Bättre uppsikt från förarens sida både när det gäller personer som stiger på och de som väntar på hållplatserna
- Ge bussförarna rimliga och bättre arbetsförhållanden genom att justera tidtabellerna. De är inte realistiska och resulterar bara i hets i trafiken. De som genomför upphandlingarna bör alltid följa upp och utvärdera om tidtabellerna är möjliga att hålla
- Bättre organisation av trafikrörelser på terminalerna, t ex så att bussar till och från hållplatser inte korsar varandras köriktning.
- Anpassa placeringen av övergångsställen i anslutning av busshållplatser med hänsyn till hur fotgängare, bussresenärer och biltrafik rör sig

4.4 Fortsatta studier

Fortsatt forskning och utveckling bör fokusera på:

- Utformning och (vinter)underhåll av gångmiljön för ökad säkerhet och användbarhet (singelolyckor)
- Hållplatser och terminalers samverkan med fordon och övrig urban infrastruktur i syfte att skapa attraktiva, tydliga och säkra bytespunkter (singel- och kollisionsolyckor)
- Tideffekter och förarbeteende, då många skadas ombord (singelolyckor)
- Utveckling och tillämpning av kvalitetssäkringssystem för erfarenhetsåterföring; incitament skall finnas, dvs. det skall löna sig att rapportera avvikelse och personskador upp i organisationen.
- Säkerhetsaspekter av framkomlighetsåtgärder: kan kortare körtider pga. ökad prioritet även öka säkerheten? Minskade accelerations-, retardationsnivå och ryckighet? Kan säkerhetseffekter i så fall få betydelse i CBA?
- Fordonsutformning: hur kan fordonsinteriör, stödutrustning, säteskonfiguration, golvkonstruktion/-material samt övrigt materialval bidra till ökad säkerhet (minskad skadeincidens och -konsekvens)?
5. Referenser

Evans, A.W., Addison, J.D. (2009). Interactions between rail and road safety in Great Britain. Accident Analysis & Prevention 41 (1), 48-56

Hur säker är bussen?

Appendix 1
Polisrapporterade och/eller sjukhusregistrerade bussolyckor med fem skadade eller fler i Skåne under åren 2006-2009
<table>
<thead>
<tr>
<th>Datum</th>
<th>Inblandade fordon</th>
<th>Antal skadade</th>
<th>Olycksplats</th>
<th>Skadegrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 juni 2006</td>
<td>Buss - tung lastbil. Upphinnande olycka. Lastbilen kör in i bussen bakifrån.</td>
<td>Polis:17; 1 lbf, 1 bf, 15 bp. Sjukhus: 25; 1 lbf, 1 bf, 23 bp.</td>
<td>Yttre Ringvägen, 600 m öster tfl Petersborg.</td>
<td>Polis: 1 SS, övriga 16 saknar uppgift. Sjukhus: 4 ISS 0, 16 ISS 1-3, 2 ISS 4-8, 3 ISS 9-15 UMAS, 10 USiL.</td>
</tr>
<tr>
<td>Datum</td>
<td>Inblandade fordon</td>
<td>Antal skadade</td>
<td>Olycksplats</td>
<td>Skadegrad</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------------------</td>
<td>---------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>10 april 2009</td>
<td>Buss – personbil. Mötesolycka.</td>
<td>Polis: 10; 1 bf, 6 bp, 1 pbp, 2 pbp. Sjukhus: 9; 8 bp, 1 pbf.</td>
<td>Lr 108, 600 m söder cpl Dalbyv/Flinteväg, Staffanstorp.</td>
<td>Polis: 3 D, 1 SS, 6 LS. Sjukhus: 4 ISS0, 3 ISS 1-3, 1 ISS 9-15, 1 ISS 25-. 9 USiL.</td>
</tr>
</tbody>
</table>

Appendix 2
Tabellunderlag för figurer.
Tabell A2.1 Antal och andel skadade i bussrelaterade olyckor i tre källor i utvalda skånska kommuner under åren 2006-2009
(Underlag figur 3.1)

<table>
<thead>
<tr>
<th>Delkälla</th>
<th>STRADAp</th>
<th>STRADAs</th>
<th>Alla</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antal</td>
<td>Andel</td>
<td>Antal</td>
</tr>
<tr>
<td>eSs</td>
<td>315</td>
<td>21,0</td>
<td>315</td>
</tr>
<tr>
<td>gSsES</td>
<td>639</td>
<td>42,5</td>
<td>639</td>
</tr>
<tr>
<td>eES</td>
<td>276</td>
<td>18,4</td>
<td>276</td>
</tr>
<tr>
<td>gSsSp</td>
<td>221</td>
<td>49,0</td>
<td>221</td>
</tr>
<tr>
<td>gSsESSp</td>
<td>51</td>
<td>11,3</td>
<td>51</td>
</tr>
<tr>
<td>eSp</td>
<td>179</td>
<td>39,7</td>
<td>179</td>
</tr>
<tr>
<td>Totalt</td>
<td>451</td>
<td>1502</td>
<td>1681</td>
</tr>
</tbody>
</table>

Beteckningar:
esS= enbart i STRADAs, gSsES= gemensamt i STRADAs och enkätundersökningen, eES= enbart i enkätundersökningen, gSsSp= gemensamt i STRADAs och STRADAp, gSsESSp= gemensamt i STRADAs, enkätundersökningen och STRADAp samt eSp= enbart i STRADAp.

Tabell A2.2 Antal och andel skadade i bussrelaterade olyckor i STRADAs insamlade på akutmottagningarna vid fyra sjukhusen i Skåne under åren 2006-2009
(Underlag figur 3.2)

<table>
<thead>
<tr>
<th>Delkälla</th>
<th>Malmö</th>
<th>Helsingborg</th>
<th>Lund</th>
<th>Kristianstad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antal</td>
<td>Andel</td>
<td>Antal</td>
<td>Andel</td>
</tr>
<tr>
<td>eSs</td>
<td>109</td>
<td>14,4</td>
<td>93</td>
<td>30,1</td>
</tr>
<tr>
<td>gSsES</td>
<td>388</td>
<td>51,3</td>
<td>105</td>
<td>34,0</td>
</tr>
<tr>
<td>eES</td>
<td>149</td>
<td>19,7</td>
<td>48</td>
<td>15,5</td>
</tr>
<tr>
<td>gSsSp</td>
<td>83</td>
<td>11,0</td>
<td>51</td>
<td>16,5</td>
</tr>
<tr>
<td>gSsESSp</td>
<td>28</td>
<td>3,7</td>
<td>12</td>
<td>3,9</td>
</tr>
<tr>
<td>Totalt</td>
<td>757</td>
<td>309</td>
<td>321</td>
<td>115</td>
</tr>
</tbody>
</table>

Beteckningar:
esS= enbart i STRADAs, gSsES= gemensamt i STRADAs och enkätundersökningen, eES= enbart i enkätundersökningen, gSsSp= gemensamt i STRADAs och STRADAp samt gSsESSp= gemensamt i STRADAs, enkätundersökningen och STRADAp.

Tabell A2.3 Antal och andel skadade i bussrelaterade olyckor i tre källor i några skånska kommuner under åren 2006-2009 fördelade per trafikantslag
(Underlag figur 3.3)

<table>
<thead>
<tr>
<th>Trafikant</th>
<th>STRADAp</th>
<th>STRADAs</th>
<th>Alla</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antal</td>
<td>Andel</td>
<td>Antal</td>
</tr>
<tr>
<td>Fotgängare</td>
<td>69</td>
<td>15,3</td>
<td>603</td>
</tr>
<tr>
<td>Cyklist</td>
<td>61</td>
<td>13,5</td>
<td>118</td>
</tr>
<tr>
<td>Personbilsf/p</td>
<td>133</td>
<td>29,5</td>
<td>188</td>
</tr>
<tr>
<td>Bussf/p</td>
<td>158</td>
<td>35,0</td>
<td>559</td>
</tr>
<tr>
<td>Övriga</td>
<td>30</td>
<td>6,7</td>
<td>34</td>
</tr>
<tr>
<td>Totalt</td>
<td>451</td>
<td></td>
<td>1502</td>
</tr>
</tbody>
</table>

Beteckningar:
Personbilsf/p= personbilsförare och personbilspassagerare, Bussf/p= bussförare och busspassagerare.
Tabell A2.4 Antal och andel skadade i bussrelaterade olyckor i tre källor i några skånska kommuner under åren 2006-2009 fördelade per åldersintervall
(Underlag figur 3.4)

<table>
<thead>
<tr>
<th>Åldersintervall</th>
<th>STRADAp Antal</th>
<th>STRADAp Andel</th>
<th>STRADAs Antal</th>
<th>STRADAs Andel</th>
<th>Alla Antal</th>
<th>Alla Andel</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-14</td>
<td>40</td>
<td>8,9</td>
<td>91</td>
<td>6,0</td>
<td>104</td>
<td>6,2</td>
</tr>
<tr>
<td>15-24</td>
<td>99</td>
<td>22,0</td>
<td>235</td>
<td>15,6</td>
<td>279</td>
<td>16,6</td>
</tr>
<tr>
<td>25-44</td>
<td>127</td>
<td>28,3</td>
<td>289</td>
<td>19,2</td>
<td>342</td>
<td>20,4</td>
</tr>
<tr>
<td>45-64</td>
<td>126</td>
<td>28,1</td>
<td>395</td>
<td>26,3</td>
<td>445</td>
<td>26,5</td>
</tr>
<tr>
<td>65-74</td>
<td>34</td>
<td>7,6</td>
<td>177</td>
<td>11,8</td>
<td>188</td>
<td>11,2</td>
</tr>
<tr>
<td>75+</td>
<td>23</td>
<td>5,1</td>
<td>315</td>
<td>21,0</td>
<td>321</td>
<td>19,1</td>
</tr>
<tr>
<td>Totalt</td>
<td>449</td>
<td>1502</td>
<td>1679</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell A2.5 Antal och andel skadade i bussrelaterade olyckor i tre källor i några skånska kommuner under åren 2006-2009 fördelade per kön
(Underlag figur 3.5)

<table>
<thead>
<tr>
<th>Kön</th>
<th>STRADAp Antal</th>
<th>STRADAp Andel</th>
<th>STRADAs Antal</th>
<th>STRADAs Andel</th>
<th>Alla Antal</th>
<th>Alla Andel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>213</td>
<td>47,2</td>
<td>468</td>
<td>31,2</td>
<td>558</td>
<td>33,2</td>
</tr>
<tr>
<td>Kvinna</td>
<td>238</td>
<td>52,8</td>
<td>1034</td>
<td>68,8</td>
<td>1123</td>
<td>66,8</td>
</tr>
<tr>
<td>Totalt</td>
<td>451</td>
<td>1502</td>
<td>1681</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell A2.6 Antal och andel skadade i bussrelaterade olyckor i tre källor i några skånska kommuner under åren 2006-2009 fördelade per år
(Underlag figur 3.6)

<table>
<thead>
<tr>
<th>År</th>
<th>STRADAp Antal</th>
<th>STRADAp Andel</th>
<th>STRADAs Antal</th>
<th>STRADAs Andel</th>
<th>Alla Antal</th>
<th>Alla Andel</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>124</td>
<td>27,5</td>
<td>426</td>
<td>28,4</td>
<td>468</td>
<td>27,8</td>
</tr>
<tr>
<td>2007</td>
<td>97</td>
<td>21,5</td>
<td>334</td>
<td>22,2</td>
<td>369</td>
<td>22,0</td>
</tr>
<tr>
<td>2008</td>
<td>109</td>
<td>24,2</td>
<td>373</td>
<td>24,8</td>
<td>424</td>
<td>25,2</td>
</tr>
<tr>
<td>2009</td>
<td>121</td>
<td>26,8</td>
<td>369</td>
<td>24,6</td>
<td>420</td>
<td>25,0</td>
</tr>
<tr>
<td>Totalt</td>
<td>451</td>
<td>1502</td>
<td>1681</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell A2.7 Antal och andel skadade i bussrelaterade olyckor i tre källor i några skånska kommuner under åren 2006-2009 fördelade per månad
(Underlag figur 3.7)

<table>
<thead>
<tr>
<th>Månad</th>
<th>STRADAp Antal</th>
<th>STRADAp Andel</th>
<th>STRADAs Antal</th>
<th>STRADAs Andel</th>
<th>Alla Antal</th>
<th>Alla Andel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Januari</td>
<td>26</td>
<td>5,8</td>
<td>153</td>
<td>10,2</td>
<td>169</td>
<td>10,1</td>
</tr>
<tr>
<td>Februari</td>
<td>31</td>
<td>6,9</td>
<td>140</td>
<td>9,3</td>
<td>155</td>
<td>9,2</td>
</tr>
<tr>
<td>Mars</td>
<td>20</td>
<td>4,4</td>
<td>144</td>
<td>9,6</td>
<td>151</td>
<td>9,0</td>
</tr>
<tr>
<td>April</td>
<td>46</td>
<td>10,2</td>
<td>128</td>
<td>8,5</td>
<td>146</td>
<td>8,7</td>
</tr>
<tr>
<td>Maj</td>
<td>33</td>
<td>7,3</td>
<td>117</td>
<td>7,8</td>
<td>129</td>
<td>7,7</td>
</tr>
<tr>
<td>Juni</td>
<td>51</td>
<td>11,3</td>
<td>103</td>
<td>6,9</td>
<td>121</td>
<td>7,2</td>
</tr>
<tr>
<td>Juli</td>
<td>30</td>
<td>6,7</td>
<td>91</td>
<td>6,1</td>
<td>99</td>
<td>5,9</td>
</tr>
<tr>
<td>Augusti</td>
<td>33</td>
<td>7,3</td>
<td>86</td>
<td>5,7</td>
<td>99</td>
<td>5,9</td>
</tr>
<tr>
<td>September</td>
<td>45</td>
<td>10,0</td>
<td>138</td>
<td>9,2</td>
<td>160</td>
<td>9,5</td>
</tr>
<tr>
<td>Oktober</td>
<td>59</td>
<td>13,1</td>
<td>140</td>
<td>9,3</td>
<td>163</td>
<td>9,7</td>
</tr>
<tr>
<td>November</td>
<td>48</td>
<td>10,6</td>
<td>127</td>
<td>8,5</td>
<td>143</td>
<td>8,5</td>
</tr>
<tr>
<td>December</td>
<td>29</td>
<td>6,4</td>
<td>135</td>
<td>9,0</td>
<td>146</td>
<td>8,7</td>
</tr>
<tr>
<td>Totalt</td>
<td>451</td>
<td>1502</td>
<td>1681</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabell A2.8 Antal och andel skadade i bussrelaterade olyckor i tre källor i några skånska kommuner under åren 2006-2009 fördelade per tidsintervall
(Underlag figur 3.9)

<table>
<thead>
<tr>
<th>Tidsintervall</th>
<th>STRADAp Antal</th>
<th>Andel</th>
<th>STRADAs Antal</th>
<th>Andel</th>
<th>Alla Antal</th>
<th>Andel</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-06.59</td>
<td>48</td>
<td>10,6</td>
<td>109</td>
<td>7,3</td>
<td>128</td>
<td>7,6</td>
</tr>
<tr>
<td>07-08.59</td>
<td>45</td>
<td>10,0</td>
<td>186</td>
<td>12,4</td>
<td>202</td>
<td>12,0</td>
</tr>
<tr>
<td>09-14.59</td>
<td>154</td>
<td>34,1</td>
<td>580</td>
<td>38,6</td>
<td>645</td>
<td>38,4</td>
</tr>
<tr>
<td>15-18.59</td>
<td>145</td>
<td>32,2</td>
<td>446</td>
<td>29,7</td>
<td>509</td>
<td>30,3</td>
</tr>
<tr>
<td>19-23.59</td>
<td>59</td>
<td>13,1</td>
<td>181</td>
<td>12,1</td>
<td>197</td>
<td>11,7</td>
</tr>
<tr>
<td>Totalt</td>
<td>451</td>
<td></td>
<td>1502</td>
<td></td>
<td>1681</td>
<td></td>
</tr>
</tbody>
</table>

Tabell A2.9 Antal skadade i bussrelaterade olyckor i skånska kommuner i STRADAp respektive i STRADAs som behandlats på akutmottagningarna i Malmö, Helsingborg, Lund och Kristianstad under åren 2006-2009 (Underlag figur 3.10)

<table>
<thead>
<tr>
<th>Kommuner</th>
<th>STRADAp Antal</th>
<th>Andel</th>
<th>STRADAs Antal</th>
<th>Andel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bjuv</td>
<td>2</td>
<td>0,4</td>
<td>6</td>
<td>0,4</td>
</tr>
<tr>
<td>Bromölla</td>
<td>1</td>
<td>0,2</td>
<td>4</td>
<td>0,3</td>
</tr>
<tr>
<td>Burlöv</td>
<td>5</td>
<td>1,1</td>
<td>10</td>
<td>0,7</td>
</tr>
<tr>
<td>Bästad</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td>Eslov</td>
<td>6</td>
<td>1,3</td>
<td>15</td>
<td>1,0</td>
</tr>
<tr>
<td>Helsingborg</td>
<td>58</td>
<td>12,9</td>
<td>260</td>
<td>17,3</td>
</tr>
<tr>
<td>Hässleholm</td>
<td>7</td>
<td>1,6</td>
<td>14</td>
<td>0,9</td>
</tr>
<tr>
<td>Höganan</td>
<td>6</td>
<td>1,3</td>
<td>14</td>
<td>1,2</td>
</tr>
<tr>
<td>Hörby</td>
<td>2</td>
<td>0,4</td>
<td>7</td>
<td>0,5</td>
</tr>
<tr>
<td>Höör</td>
<td>1</td>
<td>0,2</td>
<td>5</td>
<td>0,3</td>
</tr>
<tr>
<td>Klippan</td>
<td>6</td>
<td>1,3</td>
<td>6</td>
<td>0,4</td>
</tr>
<tr>
<td>Kristianstad</td>
<td>16</td>
<td>3,5</td>
<td>76</td>
<td>5,1</td>
</tr>
<tr>
<td>Kävlinge</td>
<td>4</td>
<td>0,9</td>
<td>5</td>
<td>0,3</td>
</tr>
<tr>
<td>Landskrona</td>
<td>13</td>
<td>2,5</td>
<td>17</td>
<td>1,1</td>
</tr>
<tr>
<td>Lomma</td>
<td>4</td>
<td>0,9</td>
<td>17</td>
<td>1,1</td>
</tr>
<tr>
<td>Lund</td>
<td>85</td>
<td>18,8</td>
<td>188</td>
<td>12,5</td>
</tr>
<tr>
<td>Malmö</td>
<td>187</td>
<td>41,5</td>
<td>718</td>
<td>47,8</td>
</tr>
<tr>
<td>Osby</td>
<td>1</td>
<td>0,2</td>
<td>2</td>
<td>0,1</td>
</tr>
<tr>
<td>Perstorp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Simrishamn</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td>Sjöbo</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Skurup</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td>Staffanstorp</td>
<td>16</td>
<td>3,5</td>
<td>21</td>
<td>1,4</td>
</tr>
<tr>
<td>Svalöv</td>
<td>10</td>
<td>2,2</td>
<td>13</td>
<td>0,9</td>
</tr>
<tr>
<td>Svedala</td>
<td>2</td>
<td>0,4</td>
<td>6</td>
<td>0,4</td>
</tr>
<tr>
<td>Tomelilla</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0,1</td>
</tr>
<tr>
<td>Trelleborg</td>
<td>5</td>
<td>1,1</td>
<td>10</td>
<td>0,7</td>
</tr>
<tr>
<td>Vellinge</td>
<td>1</td>
<td>0,2</td>
<td>14</td>
<td>0,9</td>
</tr>
<tr>
<td>Üstad</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0,1</td>
</tr>
<tr>
<td>Astorp</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0,2</td>
</tr>
<tr>
<td>Angelholm</td>
<td>8</td>
<td>1,8</td>
<td>17</td>
<td>1,1</td>
</tr>
<tr>
<td>Orkelljunga</td>
<td>1</td>
<td>0,2</td>
<td>2</td>
<td>0,1</td>
</tr>
<tr>
<td>Ö. Göinge</td>
<td>4</td>
<td>0,9</td>
<td>13</td>
<td>0,9</td>
</tr>
<tr>
<td>Skånne</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>2,1</td>
</tr>
<tr>
<td>Totalt</td>
<td>451</td>
<td></td>
<td>1501</td>
<td></td>
</tr>
</tbody>
</table>
Tabell A2.10 Antal och andel skadade i bussrelaterade olyckor i tre källor i några skånska kommuner under åren 2006-2009 fördelade per olycksplats
(Underlag figur 3.11)

<table>
<thead>
<tr>
<th>Olycksplats</th>
<th>STRADAp Antal</th>
<th>Andel</th>
<th>STRADAs Antal</th>
<th>Andel</th>
<th>Alla Antal</th>
<th>Andel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sträcka</td>
<td>232</td>
<td>51,8</td>
<td>512</td>
<td>35,8</td>
<td>610</td>
<td>37,9</td>
</tr>
<tr>
<td>Korning</td>
<td>175</td>
<td>39,1</td>
<td>258</td>
<td>18,1</td>
<td>325</td>
<td>20,2</td>
</tr>
<tr>
<td>GC-bana</td>
<td>11</td>
<td>2,5</td>
<td>281</td>
<td>19,7</td>
<td>283</td>
<td>17,6</td>
</tr>
<tr>
<td>Busshållplats</td>
<td>25</td>
<td>5,6</td>
<td>345</td>
<td>24,1</td>
<td>354</td>
<td>22,0</td>
</tr>
<tr>
<td>Övriga</td>
<td>5</td>
<td>1,1</td>
<td>33</td>
<td>2,3</td>
<td>36</td>
<td>2,2</td>
</tr>
<tr>
<td>Totalt</td>
<td>448</td>
<td></td>
<td>1429</td>
<td></td>
<td>1608</td>
<td></td>
</tr>
</tbody>
</table>

Tabell A2.11 Antal och andel skadade i bussrelaterade olyckor i tre källor i några skånska kommuner under åren 2006-2009 fördelade per olyckstyp
(Underlag figur 3.12)

<table>
<thead>
<tr>
<th>Olyckstyp</th>
<th>STRADAp Antal</th>
<th>Andel</th>
<th>STRADAs Antal</th>
<th>Andel</th>
<th>Alla Antal</th>
<th>Andel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singel</td>
<td>70</td>
<td>15,5</td>
<td>1032</td>
<td>68,7</td>
<td>1045</td>
<td>62,2</td>
</tr>
<tr>
<td>Kollision</td>
<td>381</td>
<td>84,5</td>
<td>470</td>
<td>31,3</td>
<td>636</td>
<td>37,8</td>
</tr>
<tr>
<td>Totalt</td>
<td>451</td>
<td></td>
<td>1502</td>
<td></td>
<td>1681</td>
<td></td>
</tr>
</tbody>
</table>

Tabell A2.12 Antal och andel skadade i bussrelaterade olyckor i tre källor i några skånska kommuner under åren 2006-2009 fördelade per motpart i kollisionsolyckan
(Underlag figur 3.13)

<table>
<thead>
<tr>
<th>Motpart</th>
<th>STRADAp Antal</th>
<th>Andel</th>
<th>STRADAs Antal</th>
<th>Andel</th>
<th>Alla Antal</th>
<th>Andel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personbil</td>
<td>57</td>
<td>15,2</td>
<td>147</td>
<td>31,3</td>
<td>175</td>
<td>27,8</td>
</tr>
<tr>
<td>Buss</td>
<td>282</td>
<td>75,0</td>
<td>248</td>
<td>52,9</td>
<td>372</td>
<td>59,0</td>
</tr>
<tr>
<td>Lastbil</td>
<td>32</td>
<td>8,5</td>
<td>43</td>
<td>9,2</td>
<td>49</td>
<td>7,8</td>
</tr>
<tr>
<td>Övriga</td>
<td>5</td>
<td>1,3</td>
<td>31</td>
<td>6,6</td>
<td>34</td>
<td>5,4</td>
</tr>
<tr>
<td>Totalt</td>
<td>376</td>
<td></td>
<td>469</td>
<td></td>
<td>630</td>
<td></td>
</tr>
</tbody>
</table>

Tabell A2.13 Antal och andel skadade i bussrelaterade olyckor i STRADAp (till vänster i tabellen) respektive i STRADAs (till höger i tabellen) i några skånska kommuner under åren 2006-2009 fördelade per skadegrad respektive ISS-intervall
(Underlag figur 3.14)

<table>
<thead>
<tr>
<th>Skadegrad</th>
<th>STRADAp Antal</th>
<th>Andel</th>
<th>ISS-intervall</th>
<th>STRADAs Antal</th>
<th>Andel</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>15</td>
<td>3,3</td>
<td>9-</td>
<td>127</td>
<td>8,5</td>
</tr>
<tr>
<td>SS</td>
<td>39</td>
<td>8,6</td>
<td>4-8</td>
<td>359</td>
<td>23,9</td>
</tr>
<tr>
<td>LS</td>
<td>374</td>
<td>82,9</td>
<td>1,3</td>
<td>929</td>
<td>61,9</td>
</tr>
<tr>
<td>Okänd</td>
<td>23</td>
<td>5,1</td>
<td>0</td>
<td>87</td>
<td>5,8</td>
</tr>
<tr>
<td>Totalt</td>
<td>451</td>
<td></td>
<td></td>
<td>1502</td>
<td></td>
</tr>
</tbody>
</table>

Beteckningar: D = död, SS = svårt skadad, LS = lindrigt skadad.
ISS 9- = svår skada, ISS 4-8 måttliga skada, ISS 1-3 = lätt skada, ISS 0 = oskadad.
Tabell A2.14 Antal och andel skadade i bussrelaterade olyckor i STRADAs i några skånska kommuner under åren 2006-2009 fördelade per ISS-intervall för några trafikanter, fotgängare och busspassagerare, i singelolyckor (S) och kollisionsolyckor (K)
(Underlag figur 3.15)

<table>
<thead>
<tr>
<th>ISS-intervall</th>
<th>Fotg S</th>
<th>Fotg K</th>
<th>Bussp S</th>
<th>Bussp K</th>
<th>Övriga</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antal</td>
<td>Antal</td>
<td>Antal</td>
<td>Antal</td>
<td>Antal</td>
</tr>
<tr>
<td>9-</td>
<td>45</td>
<td>9,2</td>
<td>14</td>
<td>12,3</td>
<td>38</td>
</tr>
<tr>
<td>4-8</td>
<td>191</td>
<td>39,1</td>
<td>22</td>
<td>19,3</td>
<td>92</td>
</tr>
<tr>
<td>1-3</td>
<td>245</td>
<td>50,1</td>
<td>74</td>
<td>64,9</td>
<td>308</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>1,6</td>
<td>4</td>
<td>3,5</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>489</td>
<td>114</td>
<td>450</td>
<td>79</td>
<td>370</td>
</tr>
</tbody>
</table>

Beteckningar: Fotg S= fotgängare skadade i singelolyckor, Fotg K= fotgängare skadade i kollisionsolyckor, Bussp S= busspassagerare skadade i singelolyckor, Bussp K= busspassagerare skadade i kollisionsolyckor

Tabell A2.15 Skadade fotgängare och busspassagerare i bussrelaterade singel- och kollisionsolyckor i STRADAs i några skånska kommuner under åren 2006-2009 fördelade per typ av skada i procent
(Underlag figur 3.16)

<table>
<thead>
<tr>
<th>Diagnosgrupp</th>
<th>Fotg S</th>
<th>Fotg K</th>
<th>Bussp S</th>
<th>Bussp K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dist/ruxation</td>
<td>22,0</td>
<td>11,1</td>
<td>12,5</td>
<td>25,0</td>
</tr>
<tr>
<td>Fraktur</td>
<td>51,0</td>
<td>55,6</td>
<td>33,6</td>
<td>27,9</td>
</tr>
<tr>
<td>Inre organ</td>
<td>2,7</td>
<td>23,3</td>
<td>8,2</td>
<td>13,2</td>
</tr>
<tr>
<td>Kross/klämskada</td>
<td>44,3</td>
<td>94,4</td>
<td>78,7</td>
<td>66,2</td>
</tr>
<tr>
<td>Sår</td>
<td>24,3</td>
<td>53,3</td>
<td>26,1</td>
<td>26,5</td>
</tr>
<tr>
<td>Övr.</td>
<td>1,0</td>
<td>7,8</td>
<td>3,1</td>
<td>4,4</td>
</tr>
<tr>
<td>Antal diagnoser per 100 skadade</td>
<td>145,3</td>
<td>245,6</td>
<td>162,1</td>
<td>163,2</td>
</tr>
</tbody>
</table>

Tabell A2.16 Antal och andel skadade i bussrelaterade olyckor i utskick och svar från enkätundersökningsn in i några skånska kommuner under åren 2006-2009 fördelade per trafikantslag
(Underlag figur 3.17)

<table>
<thead>
<tr>
<th>Trafikant</th>
<th>I ES utskick</th>
<th>Med ES svar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antal</td>
<td>Andel</td>
</tr>
<tr>
<td>Fotgängare</td>
<td>518</td>
<td>53,6</td>
</tr>
<tr>
<td>Cyklist</td>
<td>52</td>
<td>5,4</td>
</tr>
<tr>
<td>Personbils/f/p</td>
<td>6</td>
<td>0,6</td>
</tr>
<tr>
<td>Busf/p</td>
<td>383</td>
<td>39,6</td>
</tr>
<tr>
<td>Övriga</td>
<td>10</td>
<td>0,7</td>
</tr>
<tr>
<td>Total</td>
<td>966</td>
<td></td>
</tr>
</tbody>
</table>

Beteckningar: Personbils/f=p= personbilsförare och personbilspassagerare, Busf/p= bussförare och busspassagerare
Tabell A2.17 Antal och andel skadade i bussrelaterade singelolyckor i utskick och svar från enkätundersökningen i några skånska kommuner under åren 2006-2009 fördelade per trafikantslag
(Underlag figur 3.18)

<table>
<thead>
<tr>
<th>Trafikant</th>
<th>I ES utskick</th>
<th>Med ES svar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antal</td>
<td>Andel</td>
</tr>
<tr>
<td>Fotgängare</td>
<td>451</td>
<td>52,3</td>
</tr>
<tr>
<td>Cyklist</td>
<td>39</td>
<td>4,5</td>
</tr>
<tr>
<td>Personbilsf/p</td>
<td>2</td>
<td>0,2</td>
</tr>
<tr>
<td>Bussf/p</td>
<td>365</td>
<td>42,3</td>
</tr>
<tr>
<td>Övriga</td>
<td>6</td>
<td>0,7</td>
</tr>
<tr>
<td>Totalt</td>
<td>863</td>
<td></td>
</tr>
</tbody>
</table>

Beteckningar: Personbilsf/p= personbilsförare och personbilspassagerare, Bussf/p= bussförare och busspassagerare

Tabell A2.18 Antal och andel skadade fotgängare (n=280) respektive skadade busspassagerare (n=239) i bussrelaterade singelolyckor som svarat på enkätundersökningen i några skånska kommuner under åren 2006-2009 fördelade per åldersgrupp
(Underlag figur 3.19, vänster och figur 3.24, vänster)

<table>
<thead>
<tr>
<th>Ålder</th>
<th>Fotgängare, S</th>
<th>Busspassagerare, S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antal</td>
<td>Andel</td>
</tr>
<tr>
<td>0-14 år</td>
<td>5</td>
<td>1,8</td>
</tr>
<tr>
<td>15-24 år</td>
<td>18</td>
<td>6,4</td>
</tr>
<tr>
<td>25-44 år</td>
<td>24</td>
<td>8,6</td>
</tr>
<tr>
<td>45-64 år</td>
<td>93</td>
<td>33,2</td>
</tr>
<tr>
<td>65-74 år</td>
<td>52</td>
<td>18,6</td>
</tr>
<tr>
<td>75-år</td>
<td>88</td>
<td>31,4</td>
</tr>
<tr>
<td>Totalt</td>
<td>280</td>
<td></td>
</tr>
</tbody>
</table>

Tabell A2.19 Antal och andel skadade fotgängare (n=280) respektive skadade busspassagerare (n=239) i bussrelaterade singelolyckor som svarat på enkätundersökningen i några skånska kommuner under åren 2006-2009 fördelade per kön
(Underlag figur 3.19, höger och figur 3.24, höger)

<table>
<thead>
<tr>
<th>Kön</th>
<th>Fotgängare, S</th>
<th>Busspassagerare, S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antal</td>
<td>Andel</td>
</tr>
<tr>
<td>Man</td>
<td>45</td>
<td>16,1</td>
</tr>
<tr>
<td>Kvinna</td>
<td>235</td>
<td>83,9</td>
</tr>
<tr>
<td>Totalt</td>
<td>280</td>
<td></td>
</tr>
</tbody>
</table>
Tabell A2.20 Antal och andel skadade fotgängare (n=280) respektive busspassagerare (n=239) i bussrelaterade singelolyckor som svarat på enkätundersökningen i några skånska kommuner under åren 2006-2009 fördelade per typ av ärende
(Underlag figur 3.20 och figur 3.25)

<table>
<thead>
<tr>
<th>Typ av resa</th>
<th>Fotgängare, S</th>
<th>Busspassagerare, S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antal</td>
<td>Andel</td>
</tr>
<tr>
<td>Till/från arbete</td>
<td>81</td>
<td>28,9</td>
</tr>
<tr>
<td>I arbete</td>
<td>4</td>
<td>1,4</td>
</tr>
<tr>
<td>Till/från skola</td>
<td>8</td>
<td>2,9</td>
</tr>
<tr>
<td>Till/från inköp</td>
<td>51</td>
<td>18,2</td>
</tr>
<tr>
<td>Till/från service</td>
<td>43</td>
<td>15,4</td>
</tr>
<tr>
<td>Under fritid</td>
<td>84</td>
<td>30,0</td>
</tr>
<tr>
<td>Okänd</td>
<td>9</td>
<td>3,2</td>
</tr>
<tr>
<td>Totalt</td>
<td>280</td>
<td></td>
</tr>
</tbody>
</table>

Tabell A2.21 Antal och andel skadade fotgängare i bussrelaterade singelolyckor som svarat på enkätundersökningen (n=280) i några skånska kommuner under åren 2006-2009 fördelade per förflyttning före olyckshändelsen
(Underlag figur 3.21)

<table>
<thead>
<tr>
<th>Förflyttning</th>
<th>Antal</th>
<th>Andel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Till busshållplatsen</td>
<td>165</td>
<td>58,9</td>
</tr>
<tr>
<td>Från busshållplatsen</td>
<td>60</td>
<td>21,4</td>
</tr>
<tr>
<td>På busshållplatsen</td>
<td>49</td>
<td>17,5</td>
</tr>
<tr>
<td>Annat</td>
<td>6</td>
<td>2,1</td>
</tr>
<tr>
<td>Totalt</td>
<td>280</td>
<td></td>
</tr>
</tbody>
</table>

Tabell A2.22 Antal och andel skadade fotgängare i bussrelaterade singelolyckor som svarat på enkätundersökningen (n=280) i några skånska kommuner under åren 2006-2009 fördelade per tillståndet på underlaget vid olyckshändelsen
(Underlag figur 3.22)

<table>
<thead>
<tr>
<th>Tillstånd på underlaget</th>
<th>Antal</th>
<th>Andel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is/snö</td>
<td>77</td>
<td>27,5</td>
</tr>
<tr>
<td>Ojämn beläggning</td>
<td>56</td>
<td>20,0</td>
</tr>
<tr>
<td>Kantsten</td>
<td>33</td>
<td>11,8</td>
</tr>
<tr>
<td>Föremål; sten, grus, löv, trädrotter, plastband</td>
<td>26</td>
<td>9,3</td>
</tr>
<tr>
<td>Övriga</td>
<td>9</td>
<td>3,3</td>
</tr>
<tr>
<td>Okänt</td>
<td>79</td>
<td>28,2</td>
</tr>
<tr>
<td>Totalt</td>
<td>280</td>
<td></td>
</tr>
</tbody>
</table>
Tabell A2.23 Antal och andel skadade fotgängare (n=280) respektive busspassagerare (n=239) i bussrelaterade singelolyckor som svarat på enkätundersökningen i några skånska kommuner under åren 2006-2009 fördelade per ISS-intervall
(Underlag figur 3.23 och figur 3.28)

<table>
<thead>
<tr>
<th>ISS-intervall</th>
<th>Fotgängare, S</th>
<th></th>
<th>Busspassagerare, S</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antal</td>
<td>Andel</td>
<td>Antal</td>
<td>Andel</td>
</tr>
<tr>
<td>9-</td>
<td>30</td>
<td>10,7</td>
<td>25</td>
<td>10,5</td>
</tr>
<tr>
<td>4-8</td>
<td>118</td>
<td>42,1</td>
<td>50</td>
<td>20,9</td>
</tr>
<tr>
<td>1-3</td>
<td>129</td>
<td>46,1</td>
<td>162</td>
<td>67,8</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>1,1</td>
<td>2</td>
<td>0,8</td>
</tr>
<tr>
<td>Totalt</td>
<td>280</td>
<td></td>
<td>239</td>
<td></td>
</tr>
</tbody>
</table>

Tabell A2.24 Antal skadade busspassagerare i singelolyckor som svarat på enkätundersökningen (n=239) i några skånska kommuner under åren 2006-2009 fördelade per förflyttning före olyckshändelsen
(Underlag figur 3.26)

<table>
<thead>
<tr>
<th>Förflyttning</th>
<th>Antal</th>
<th>Andel</th>
</tr>
</thead>
<tbody>
<tr>
<td>På/av buss</td>
<td>79</td>
<td>33,2</td>
</tr>
<tr>
<td>I buss</td>
<td>159</td>
<td>66,8</td>
</tr>
<tr>
<td>Totalt</td>
<td>238</td>
<td></td>
</tr>
</tbody>
</table>

Tabell A2.25 Antal skadade passagerare som fallit i bussen och svarat på enkätundersökningen (n=159) i några skånska kommuner under åren 2006-2009 fördelade per orsak till fall i buss
(Underlag figur 3.27)

<table>
<thead>
<tr>
<th>Orsak till fall i buss</th>
<th>Antal</th>
<th>Andel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbromsning</td>
<td>101</td>
<td>63,5</td>
</tr>
<tr>
<td>Acceleration</td>
<td>35</td>
<td>22,0</td>
</tr>
<tr>
<td>Svängande rörelse/bussen välter</td>
<td>5</td>
<td>3,1</td>
</tr>
<tr>
<td>Okänd</td>
<td>18</td>
<td>11,3</td>
</tr>
<tr>
<td>Totalt</td>
<td>159</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 3 Trafikskadejournal

Trafikskadejournal för Region Skåne

<table>
<thead>
<tr>
<th>Jag kom till akutmottagningen/journalcentralen</th>
<th>10-uppgifter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum (d/m/a)</td>
<td>Hjälpställ:</td>
</tr>
<tr>
<td>//___</td>
<td>//___</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Olyckan inträffade</th>
<th>PlatsTyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum (d/m/a)</td>
<td>Gatuadress</td>
</tr>
<tr>
<td>//___</td>
<td>__________</td>
</tr>
</tbody>
</table>

Beskrivning av olycksplats

- **Ort:**
- **Väg/gata 1:**
- **Väg/gata 2:**
- **Olyckan inträffade i tätbebyggd område:** Ja [] Nej []

Skriv och berätta hur olyckan gick till och var den inträffade

T.ex. olyckor och händelseknapp, eller på vilket tillfåll olyckor en hel tids.

Vid olyckan var jag

- [] Fotgängare
- [] På cykel
- [] På moped
- [] På mo
- [] I lastbil
- [] I personbil
- [] I bus
- [] Annat:

Jag kolliderade med

- [] Fotgängare
- [] Cykel
- [] Moped
- [] MC
- [] Personbil
- [] Lastbil
- [] Buss
- [] Annat, t.ex. trädp, torp, p-plats

Skyddsutrustning

- [] Ingen
- [] Hjälm
- [] Bälte
- [] Trikotskudde
- [] Airbag utkast
- [] MC-ställ
- [] Belysning/reflex
- [] Annat:

Och jag var

- [] förare
- [] passagerare med placering (fram, bak, höger, vänster, stående):

Vägomständigheter (som har betydelse för olyckan)

- [] Över att håga/bryta snööver
- [] Över att håga/lyckebanan var hal pga snööver
- [] Över att håga/lyckebanan var hal pga snööver
- [] Över att håga/lyckebanan var hal pga annat
- [] Över att håga/lyckebanan var ojämn
- [] Över att håga/lyckebanan hade hål och gropar
- [] Över att håga/lyckebanan hade röst gns
- [] Över att håga/lyckebanan har spärrvågs-
 - [] Annat:
 - [] Ej relevant för skadehändelsen

Jag kom in med ambulans

- [] Ja
- [] Nej

Polis har varit på olycksplatsen

- [] Ja
- [] Nej

Får kontakta per telefon för komplettering

- [] Ja
- [] Nej

Patientens underskrift

- [] Upptäcktes av alla databaser och handa ser enligt
- [] Deler i patienten och personuppgifterarna

SE INFORMATION PÅ BAKSIDAN >>
Varför ska Du fylla i en trafikskadejournal?

Du som har varit inblandad i en olycka i trafiken är den enda som kan beskriva hur olyckan gick till. Genom Din berättelse kan de som arbetar med att öka säkerheten i trafiken få mer och bättre information om förhållandena kring just Din olycka. Dina uppgifter kan t.ex. användas för att lokalisera platser som är farliga för trafikanter och därmed bidra till att åtgärder vidtas för att förhindra liknande olyckor i framtiden.

De uppgifter som Du lämnar om Din olycka kommer, efter bearbetning och komplettering med Dina skador, att föras in i databasen STRADA där uppgifter om samtliga trafikolyckor i Sverige med personskada registreras. Genom att samla all information om trafikskador kan erfarenheter och kunskapen inom området öka vilket ligger till grund för åtgärder och förbättringar i trafiken.

Din medverkan är frivillig och de uppgifter som Du lämnar är skyddade enligt personuppgiftslagen och sekretesslagen. Detta innebär att ingen utomstående kan spåra den information som berör Ditt fall.

Genom att ta Dig tid att noggrant fylla i skadejournalen medverkar Du till att göra trafiken säkrare och därmed minska antalet skadade personer i trafiken.

Om Du angett att Ditt olycksfall inträffat i anslutning till en bussresa, kommer Du att få en särskild enkät inträffat i anslutning till en bussresa, kommer Per post.
Undersökning av olyckor i samband med en bussresa

Lunds tekniska högskola har i samverkan med Vägverket påbörjat en undersökning av olyckor som sker i samband med en bussresa eller på väg till/från en busshållplats. Syftet är dels att ta reda på hur vanliga dessa olyckor är, dels att finna åtgärder som kan förhindra denna typ av olyckor.

Om Du har frågor angående ifyllandet av formuläret eller om forskningsprojektet kontakta gärna Gunilla Palmberg eller Christina Hagström på Universitetssjukhuset i Lund 046-176504 (receptionen) eller Monica Berntman på Teknik och samhälle, Lunds Tekniska Högskola (LTH) 046-2229133 alternativt skicka e-post till gunilla.palmberg@skane.se, christina.hagstrom@skane.se eller monica.berntman@tft.lth.se.

Tack för din hjälp! Vi hoppas att på detta sätt kunna förhindra en del olyckor i framtiden.

Med vänlig hälsning

Bengt Holmberg
Professor
LTH

Monica Berntman
Lektor
LTH

Hans Belfrage
Medicinsk enhetschef
Akutmottagningen
Universitetssjukhuset i Lund
Frågeformulär för forskningsprojektet:
Ökat och säkrare bussresande.
Ifylls av patienter som söker vård på akutmottagningarna på sjukhusen i Helsingborg, Kristianstad, Lund och Malmö för skador som uppkommit i samband med olyckor under en bussresa.

Löpnr (ifyllt på sjukhuset) ……………………

1. Några personuppgifter: Kön □ Kvinna □ Man Födelseår…………………………

2. När inträffade olyckan (år, månad, dag, tidpunkt)?………………………………………

3. Hände olyckan i samband med en bussresa?
 Ja. Om ja, ber vi Dig fortsätta att besvara frågorna i formuläret.
 Nej. Om Nej, ber vi Dig ändå skicka in formuläret.

4. Beskriv vilka färdmedel som skulle ingått i Din resa?
 ……
 ……

5. Vid olyckan var Du:
 Fotgängare
 Cyklist
 Mopedist
 Bussresenär
 Annat. Ange vad………………………

6. Var skedde olyckan?
 På väg till hållplatsen
 På väg från hållplatsen
 På hållplatsen
 I samband med på- eller avstigning av bussen
 I bussen
 På annat sätt. Ange vad………………………
7. I vilket sammanhang skedde resan?
 På väg till/från arbetet
 I arbetet
 På väg till/från skolan
 På väg till/från inköp
 Under fritid
 Annat. Ange vad..............................

8. Var började resan (gata, ort)? ...

9. Var skulle resan ha slutat (gata, ort)? ...

10. Kan Du uppskatta längden på resan från start till mål (i km)?

11. Kan Du uppskatta tidsåtgången för resan från start till mål (i min)?

12. Beskriv så ingående som möjligt hur olyckan gick till samt var den inträffade
 (gata, ort och ev. annan närmare beskrivning av platsen):
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
13. Har Du några förslag till hur olyckan skulle kunnat undvikas?

………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………

14. Övriga synpunkter:

………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………

Tack för Du ställde upp och besvarade enkäten!
Appendix VI - Begrepp och definitioner

Dödad:

Såsom dödad vid en trafikolycka räknas person, som avlidit inom 30 dagar till följd av olyckan.

Denna definition överensstämmer med av ECE antagen definition.

Svårt skadad:

Denna definition överensstämmer med av ECE antagen definition.
Hur säker är bussen?
Skador och risker i samband med bussresor i tätort.

Monica Berntman, Bengt Holmberg och Anders Wretstrand

2012