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Abstract—IEEE 1687 (IJTAG) has been developed to enable
flexible and automated access to the increasing number of embed-
ded instruments in today’s integrated circuits. These instruments
enable efficient post-silicon validation, debugging, wafer sort,
package test, burn-in, bring-up and manufacturing test of printed
circuit board assemblies, power-on self-test, and in-field test. Cur-
rent paper presents an overview of challenges as well as selected
examples in the following topics around IEEE 1687 networks:
(1) design to efficiently access the embedded instruments, (2)
verification to ensure correctness, and (3) fault management at
functions performed in-field through the product’s life time.

Keywords—IEEE 1687 (IJTAG); on-chip instruments; robustness;
access time; network design; verification; fault management

I. INTRODUCTION

Integrated circuits (ICs) are equipped with a considerable
number of features for test, debugging, configuration, and
monitoring. These embedded features are commonly referred
to as on-chip instruments. IEEE 1687 (IJTAG) [1] standardizes
the access to the instruments, mainly through the JTAG test
access port (TAP) [2], by specifying an architecture and a set
of description languages.

The aim of IEEE 1687 is to facilitate automation and
reuse of on-chip instruments throughout the life cycle of an
electronic product from design and characterization to in-field
test and monitoring. The idea is to describe the operation
of each instrument at its terminals by using a high-level
description language, and let a retargeting tool translate these
instrument-level commands to human- or machine-readable
commands at higher levels of the design hierarchy.

The flexibility proposed by IEEE 1687 makes it a challenge
to create an instrument access infrastructure (1687 network)
which is efficient in terms of access time and hardware
overhead. There is a need of EDA tools for design automation,
verification, and validation. In this work, we will discuss some
of the challenges in the development of 1687-related tools
with an emphasis on network design (Section III), verification
(Section IV) and fault management (Section V).

II. BACKGROUND

A. Instrument Access Infrastructure (Network)

A strong feature in IEEE 1687 networks is the possibility
of dynamic reconfiguration, which allows for reduction of
instrument access time by varying the length of the scan-path
to include only those instruments in the path which are needed
for current session. To enable variable-length scan-paths, 1687
introduces two components: a Segment Insertion Bit (SIB) and
a ScanMux control bit.

SIB is used to include or to exclude a scan-chain from
the active scan-path. Fig. 1 shows a simplified schematic of a
possible implementation of a SIB, as well as a symbol which
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Fig. 2. ScanMux control register (SCB)

we will use through the rest of this paper. Fig. 1(a) shows
only as few components and terminals as are needed to explain
the operation of a SIB: a one-bit shift-update register, and a
mux. A complete schematic would contain more components
(such as logic gates for gating control signals, keeper muxes
for the registers, and delay elements to avoid race condition)
and terminals (such as selection and control signals used to
enable shift and update operations). A ScanMux control bit
is a shift-update register that can be placed anywhere on
the scan-path to configure one or more scan multiplexers
(ScanMux components). Fig. 2(a) shows a two-bit ScanMux
control register used to configure a network of two instruments.
In this work, we consider one-bit ScanMux control registers
(referred to as SCB in this work) to control two-input muxes
which bypass instrument shift registers in, e.g., daisy-chained
architectures. We will use the symbol in Fig. 2(b) to represent
an SCB in the rest of this paper.

Both SIBs and SCBs must be configured to have correct
value every time the scan-path they are on is accessed. Such
configuration data results in a time overhead since it is not
part of instrument data.

To access the network of instruments from the chip bound-
ary, 1687 specifies the JTAG TAP as the primary interface.
Interfacing is performed by connecting the first level (SIBs)
of the 1687 network as a custom TDR to the JTAG circuitry.
This TDR is referred to as the Gateway. As an example, Fig. 3
illustrates a small 1687 network consisting of three instruments
(namely a DFT instrument, a sensor, and a debugging feature)
and four SIBs. The instruments are interfaced to the scan-
path through shift-registers with parallel I/O. Initially, the SIBs
are closed and the scan-path consists of the two SIBs which
form the Gateway TDR. To access the instruments, SIBs must
be programmed to include corresponding shift-registers into
the scan-path. In this paper, access is defined as (1) shifting
input bits into the instrument’s shift-register (shift phase), (2)



DFT

T
A
P

TCK

TMS

TDI

TDO

Gateway
SIB1 SIB2

SIB3 SIB4

Sensor DebuggingShift register 

with parallel I/O

Fig. 3. A 1687 network with three instruments inside a chip

latching the contents of the shift-register to be applied to
the internal circuitry of the instrument (update phase), (3)
capturing the output of the instrument into the shift-register
(capture phase), and (4) shifting the captured values out (shift
phase). The shifting out of the instrument outputs can overlap
in time with shifting in the input bits for the next access. The
number of clock cycles it takes to perform the update and
capture phases and go back to the shift phase is referred to as
Cycle of Update and Capture (CUC) [3].

B. Description Languages and Retargeting

1687 introduces two description languages, namely Instru-
ment Connectivity Language (ICL) and Procedural Description
Language (PDL). ICL is used to describe the network, that is,
how the instruments are connected to the JTAG TAP. PDL is
used to describe the operation of instruments at their terminals.
PDL commands allow to perform read/write operations on the
instrument shift-registers and configurable components, as well
as to wait for an instrument (such as a BIST engine) to finish
its operation.

Given the PDL of each instrument, a retargeting tool gen-
erates scan vectors to configure the network and transport the
required data bits from the JTAG TAP to/from the instruments’
shift-registers. A retargeting tool relieves the designer from
dealing with network configuration (i.e., writing the PDL to
configure SIBs and SCBs directly). For example, assuming
that the goal is to read the value from the sensor instrument
in Fig. 3, the PDL developer might simply use a write
command to activate the sensor, a wait command to wait for
the sensor to capture the value, and a read command to read
the captured value out. It is then the task of the retargeting tool
to generate one scan vector to open SIB2, one vector to open
SIB3, one vector to write to the enable bit in the sensor’s
shift-register, a wait cycle of enough length, and finally one
vector to scan the captured value out.

III. ANALYSIS AND DESIGN

In this section, we discuss how to design a 1687 network
that is robust against late changes in how instruments are
accessed.

A. The Need for Methodology

The flexibility in 1687 networks brings two types of
freedom: freedom to construct the network in a multitude
of different ways, and freedom to schedule the access to
the instruments in a variety of ways according to the given
constraints (e.g., resource conflicts and power budget). As an
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Fig. 4. Three different ways to create a network for the same instruments

example (Fig. 4), consider three instruments with the interface
shift-register length of four, five and three flip-flops, which
are to be accessed ten, four and five times, respectively. Fig. 4
shows three different ways to connect these three instruments
as 1687 networks. The network in Fig. 4(b) uses less hardware
components (i.e., SIBs in this example) compared to the other
two networks. It is interesting to compare these networks w.r.t.
the overall access time (OAT), which is the time it takes to
transfer instrument data (i.e., perform the required read/write
operations on the instruments), plus the network configuration
time [3]. Regarding OAT, although the instrument data is the
same for all networks, the network in Fig. 4(a) shows less OAT
in comparison with the networks in Fig. 4(b) and Fig. 4(c).
Moreover, for each of the networks shown in Fig. 4, the access
to the instruments can be scheduled in a variety of ways, each
way potentially resulting in a different OAT number [4].

The above example shows that there is a need for methods
to design optimized 1687 networks (in terms of instrument
access time, hardware overhead, etc.). Development of such
methods, in turn, requires an exact analysis of different trade-
offs (e.g., time overhead vs. hardware overhead). The follow-
ing works have partially addressed these needs. Access time
analysis for SIB-based 1687 networks, under sequential and
concurrent access schedules, is presented in [3]. Optimized
SIB-based network construction is presented in [5] for con-
current and sequential schedules. The work in [4] presents an
access time calculation method for general schedules, as well
as optimized power- and resource-constrained test scheduling,
for SIB-based 1687 networks. The assumption in the above
works is that instruments are always accessed in the same
way. In practice, however, instruments might be accessed
differently under diverse circumstances (referred to as usage
scenarios). Therefore, a network optimized for one scenario
is not necessarily good for other scenarios. Below, we study
robustness of 1687 networks with respect to the changes
in access scenario (i.e., change in the number of accesses
and the access schedule), and compare seven network design
approaches regarding OAT, hardware overhead, and robustness.
The complete study can be found in [6].

B. Study of Robustness

Embedded instruments are used to enable post-silicon
validation, debugging, wafer sort, package test, burn-in, printed
circuit board (PCB) bring-up, PCB assembly manufacturing
test, power-on self-test, and in-field test. For each of these
scenarios, it is of interest to access some but not all of the
instruments [7]. As an example, a memory built-in-self-test
(MBIST) instrument might be accessed (1) during yield learn-
ing for a new process to choose the most suitable algorithms,
(2) during wafer sort and package test to detect defective
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devices and perform repair, (3) in the burn-in process to
cause activity in the chip and to detect infant mortality [8],
[9], (4) during PCB bring-up [10], (5) during PCB assembly
manufacturing test [10], and (6) during power-on self-test
and in-field tests. Also, the number of accesses to a given
instrument typically varies between different scenarios. For
example, during yield learning, an embedded memory might
be tested several times by running multiple BIST algorithms.
Another example is reading out the memory contents for
diagnostic purposes [11]. In both examples many accesses
might be needed. In contrast, during manufacturing tests, an
embedded memory might be tested only by accessing the
associated MBIST engine a few times to setup the algorithm,
start the BIST, check for its completion, and read the results.

Furthermore, at design time it is difficult to foresee all
needed scenarios and how many times an instrument will be
accessed at each of the scenarios. The number of needed
scenarios and the number of accesses might be affected by
late design changes, adding/excluding tests, or change of
constraints, such as power consumption. Some changes may
only be known after manufacturing.

Considering the above and that a network optimized for a
scenario, might not be optimal when the number of accesses
or the access schedule changes, we study the robustness of
seven approaches for designing 1687 networks, and examine
their efficiency, in respect to OAT and hardware overhead.
Intuitively, a robust approach should introduce as little time
overhead as possible into OAT regardless of the scenario. That
is, considering that OAT consists of both instrument data and
overhead (i.e., clock cycles spent on network configuration
and CUC), an approach is said to be robust if the ratio
of OAT to instrument data does not change dramatically
between scenarios. Therefore, we calculate the ratio of OAT to
instrument data for each scenario that a given approach is used
in, and we consider the standard deviation of the calculated
ratios as the metric for robustness of that approach. The smaller
the metric value is, the more robust the approach will be.

The studied network design approaches are (1) a flat
network, (2) a single hierarchical network, and (3) multiple
networks each optimized for a given scenario, as well as a
daisy-chained counterpart for each of these three. In addition
to the six enumerated approaches, we study one more approach
in which two separate JTAG test data registers (TDRs) are used
for the instrument access network: one to configure the access
network, and one to access the instruments. In the following,
the studied design approaches are briefly explained.

1) Flat Network: To construct a flat network, each in-
strument’s shift-register is connected through a SIB (Fig. 5).
To access each of the instruments, the corresponding SIB
is programmed to include that instrument in the scan-path.
The hardware overhead is minimal. For time overhead, since
the SIBs are always on the scan-path, they contribute to the
overhead for every access.
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2) Hierarchical Network: In a hierarchical network, in ad-
dition to the SIBs dedicated to switching the instruments’ shift-
registers on and off the scan-path, some SIBs are used to switch
a network segment (including other SIBs and shift-registers)
on and off the scan-path. An example of a hierarchical network
is shown in Fig. 3 where the DFT feature is placed in the first
level, and the sensor and debugging instruments are placed
in the second level. Such hierarchical approach allows for
reduction of OAT by excluding the SIBs themselves from the
scan-path (when the segment they belong to is not used in
the current access). That is, when the sensor and debugging
instruments are not needed, their corresponding shift-registers
and dedicated SIBs are excluded by programming SIB2 to
be closed. To construct a hierarchical network optimized for
multiple scenarios, [6] uses an adaptation of the method in [5]
(which was proposed for a single scenario with sequential
access schedule).

3) Multiple Networks: In this approach, a dedicated net-
work is designed and optimized for each scenario. Each net-
work is then connected to the JTAG TAP through a dedicated
TDR. The instruments whose interface shift-register is to be
accessed through multiple scenarios (i.e., multiple TDRs) can
be shared among the corresponding networks by using, for
example, a scheme similar to the one shown in Fig. 6. In the
presented scheme, tristate buffers are used to control to which
network the shared instrument shift-register is connected. The
enable signals in this scheme (i.e., En1 and En2) are applied
from the TAP circuitry. For the design of each network for
its given scenario, the algorithms in [5] can be used. For each
network and its given scenario, access time is calculated by
using the algorithms proposed in [3].

4) Daisy-chained: The daisy-chaining approach for 1687 is
illustrated in Fig. 7. To switch the instrument shift-registers on
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and off the scan-path, multiplexers are used. These multiplex-
ers are controlled by SCBs placed on a separate branch of the
scan-path. To select between the two branches, SCB0 is used.
To avoid long combinational paths, bypass registers are used in
place of an excluded shift-register. Fig. 8 shows a hierarchical
daisy-chained network, which can be seen as a counterpart for
the hierarchical SIB-based network in Fig. 3, in the sense that
one instrument is placed at the first level of hierarchy while
the other two are placed at the second level. This way, it is
possible to create a daisy-chained counterpart for each of the
SIB-based flat and hierarchical networks discussed in previous
sections. In the same way, for the multiple networks approach,
a daisy-chained counterpart can be constructed for each of the
networks.

5) Separate Control and Data TDRs: In this approach,
there is one TDR for SCBs and one TDR for instruments
(Fig. 9). When the scan-path is needed to be reconfigured, the
TDR with control bits is accessed (i.e., TDR-2). Then, after
the scan-path is reconfigured, the TDR with the instruments
(i.e., TDR-1) is selected in order to access the instruments. In
this architecture, since SCBs are not on the same scan-path as
the instruments, it is possible to pipeline the instrument data
through the bypass registers, and therefore effectively reduce
the time wasted in the bypass registers.

To compare the studied network design approaches, two
sets of experiments were performed. In the first set, 100 instru-
ments and eight scenarios for accessing them were considered,
and OAT achieved under each scenario was calculated and
summed up for each of the above-mentioned seven approaches.
This experiment was performed for three cases where (A)
only one scenario (out of eight) is known at chip design time,
(B) five out of eight scenarios are known at design time, (C)
all scenarios are known at design time. The chart in Fig. 10
presents the results for the first set of experiments. The second
set of experiments studied robustness against change of con-
currency in a given scenario. Fig. 11 shows the results of this
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experiment in which for one of the given scenarios, the number
of concurrently active instruments is gradually increased from
one active instrument to 100 concurrently active instruments.

The experimental results for both sets of experiments
showed that the “separate control and data TDR” approach
results in the least sum of OAT among the seven considered
approaches, has relatively low hardware overhead, and is the
most robust among the studied approaches. In this approach,
network configuration registers (SCBs) are placed in a TDR
separate from the instrument shift-registers TDR (see Fig. 9).

IV. VERIFICATION AND VALIDATION

Efficient verification and optimization of reconfigurable
1687 networks is one of the key necessities to enable broad
application of IEEE 1687. In this section, several examples are
presented to show future verification and validation challenges
of 1687 networks. Specifically, the challenge of extracting
combinational invariants as well as temporal invariants of a
given 1687 network are discussed. Extracting these functional
invariants is crucial in order to evaluate the possibilities to
retarget sets of PDL commands onto a given 1687 network,
as well as evaluating 1687 networks with respect to different
performance properties.

State-of-the-art approaches offer solutions to solve verifi-
cation and retargeting challenges. In [12] the authors proposed
a first approach to model 1687 networks in order to retarget
PDL commands. In [13] the authors extend the earlier proposed
method by pseudo-Boolean optimization in order to minimize
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the number of scan access operations and hence the time to
perform PDL commands on the 1687 network.

The 1687 network, depicted in Fig. 12(a), consists of
three multiplexers M0, . . . ,M2, five instruments I0, . . . , I4 and
two SCBs denoted SCB0 and SCB1. In order to perform
reasoning on a 1687 network, the authors in [12] propose to
generate a graph representation G = (V,E), where G is a
directed graph, and the sets V and E ⊆ V ×V denote the set of
vertices and the set of connecting edges, respectively. A vertex
v ∈ V represents test data inputs (TDIs), test data outputs
(TDOs), scan elements, instruments as well as multiplexer or
fan-outs within the modeled 1687 network. Every edge e ∈ E
represents a real connection between the components. The
graph corresponding to the 1687 network shown in Fig. 12(a) is
depicted in part (b) of the same figure. The colored vertices in
the graph correspond to control elements of the 1687 network.

To compute a complete scan-path from some TDI to some
TDO, every vertex v ∈ V is activated by a corresponding
select signal sel(v), where sel(v) is represented by a predicate
function evaluating to true, iff the corresponding predicate
functions of the predecessor p ∈ V and the successor s ∈ V
of v evaluate to true, sel(v) = sel(p) ∧ sel(s). When there
exist several paths {sn, . . . , sm} branching out of a vertex
towards TDO, e.g., a fan-out f ∈ V , the corresponding
predicate function sel(f) is the disjunction of the predicate
functions of all successors of f , i.e., si, sel(f) =

∨
∀i
sel(si).

Similarly, when multiple paths enter a vertex, e.g., through
a multiplexer, the corresponding predicate function is the
disjunction of all predicate functions of all predecessors of
that multiplexer. To keep the discussion simple, we skip the
additional formulas needed to ensure that at most one out of
multiple paths from a fan-out (or to a multiplexer) is active
at a given time. If the successor of some vertex v ∈ V
is a multiplexer, then the predicate function must fulfill the
conditions to activate the corresponding path. The predicate
functions of every instrument I0, . . . , I4 are depicted next to
the corresponding instrument. For example, instrument I0 in
Fig. 12 can only be part a complete scan-path if SCB0 = 0 ,
sel(I0) = SCB0.

The necessity to extract combinational invariants on 1687
networks can be easily demonstrated on the given 1687 net-

work. It is easy to see that concurrent access of instruments
I0 and I1 is not possible since the corresponding predicate
functions sel(I0) and sel(I1) are mutually exclusive. This
property can be discovered by simple structural methods.
However, that the activation of instrument I3 is impossible
in the given network, is not solvable by structural approaches.
In order to generate a complete scan-path containing I3 the
multiplexers M1 and M2 need to be configured appropriately.
The path from I3 to M1 is activated, if SCB0 = ’1’ and
SCB1 = ’1’ and the path from M1 to M2 is activated if
SCB0 = ’0’. The conditions for activating both paths are
incompatible, (SCB0 ∧ SCB1)∧ SCB0 = false. Hence there
exists no valid scan-path containing instrument I3 in the
described network. Revealing this property is only possible by
functional reasoning approaches. In general, these methods are
based on Boolean satisfiability [14], [15] or Binary Decision
Diagrams (BDDs) [16].

An even more complex problem is the extraction of tem-
poral invariants. For example, if instruments I2 and I4 are
required to be accessed in two consecutive shift-and-update
cycles, then the applied reasoning approach needs to take
several time frames into account. Such sequential reason-
ing approaches, for example BDD-based sequential model
checking [17] or SAT-based bounded model checking [18],
are significantly more complex than combinational reasoning
approaches. Assume that instrument I2 is part of the cur-
rently activated scan-path, hence the logic values in SCB0

and SCB1 are ’0’ during the first shift-and-update cycle. In
order to access instrument I4, which implies that the logic
values in SCB0 and SCB1 are required to be ’0’ and ’1’,
respectively, at least one intermediate shift-and-update cycle
is required. Since SCB0 is contained in every valid scan-path
obtaining a logic ’0’ is trivial. However obtaining a logic ’1’ in
SCB1 requires an additional shift-and-update cycle, where the
shift-and-update cycle enables a scan-path containing SCB1

in order to load the required logic ’1’. As mentioned at
the beginning of this section, the above described temporal
property has a major impact on access time for specific PDL
commands.

The third major challenge is to prove the functional equiva-
lence between a 1687 network description provided in ICL and
any other system description, for example VHDL or Verilog.
Sequential equivalence checking has been one of the most
challenging tasks in EDA during the last decades [19], [20].
In order to prove functional equivalence of two systems in
a worst-case scenario, it is required to generate and com-
pare a complete representation of the state space of both
systems, which is known to be exponential with respect to
number of memory elements contained in the systems. Once
nonequivalence is proved, the challenge is to analyze and
debug functional differences in order to extract relevant design
differences and to correct the presumed bug in the design or
the corresponding ICL description [21].

Finding the root cause for an unsuccessful retargeting of a
set of PDL commands onto some ICL network is similar to the
problem of logic debugging [22]. In SAT-based logic debug-
ging, the verified system S is expressed in Conjunctive Normal
Form (CNF), denoted CS . CNF is a conjunction of clauses
where each clause is a disjunction of a set of literals, and a
literal represents a Boolean variable or its negation. A given



CNF is satisfied, if some assignment of the Boolean variables
is found, which satisfies each of the contained clauses; a clause
is satisfied if it contains at least one literal, which evaluates
to one under the current variable assignment. Assuming that
system S is designed in order to satisfy a certain property
P and this property is also modeled as a Boolean function
in form of a CNF, denoted as CP , then a satisfying variable
assignment for the conjunction of CS and CP represents
one possible scenario under which property P is realized on
system S. However, if there exists no satisfying solution for
CS∧CP , then system S cannot comply with property P under
any circumstance. State-of-the-art debugging methods add an
infrastructure to the system representation which enables the
injection of arbitrary error candidates or certain modifications
of the 1687 network in order to modify the system behavior
until the SAT instance becomes satisfiable. In order to finally
deduce the actual design error, the above process iteratively
injects several error candidates or network modifications into
the system model S. The performed analysis is refined by using
intermediate results obtained during previous iterations. The
final goal is to pin-point to one or several design errors causing
the deviation from the initially intended system behavior or
network properties which prevent a successful retargeting.

The debugging approach for a non-successful PDL-
retargeting could follow the same procedure. Let us re-apply
the above example, where the instruments I2 and I4 should
be accessed in two consecutive shift-and-update cycles. As
described earlier, at least one intermediate shift-and-update
cycle is needed between the two instrument accesses. The
reason for this obstacle is that SCB1 can only be accessed if
SCB0=’1’, which is not possible if instrument I2 is accessed.
By applying the discussed debugging concept, for example it
would be possible to apply a modification of the 1687 network,
where SCB1 is moved between SCB0 and the fan-out denoted
f1 in Fig. 12(a). Applying this modification would enable a
successful retargeting of the above set of consequtive PDL
commands. Hence the position of SCB1 is recognized as one
root cause to the unsuccessful PDL retargeting on the original
network.

V. APPLICATION IN FAULT MANAGEMENT

It has been shown that IEEE 1687 standard infrastructure
can also be successfully and efficiently used or reused later in
the field during the product’s life cycle. One such application
is fault management [23]—the usage that was hardly foreseen
by the IJTAG standard development action group. IEEE 1687
standard allows to create an efficient and regular network for
continuously handling fault detection information as well as
to manage test and system resources as a system-wide back-
ground process during the system operation. The IJTAG frame-
work matches especially well the requirements for supporting
graceful degradation of the silicon under pressure of aging, the
problem that has been recently reported by the ITRS among
a few most important research challenges today [24]. This
section describes the way the IEEE 1687 infrastructure can
be efficiently extended to support fast emergency signaling for
online-fault detection and localization as a background process
in a running system. The extension for on-line diagnostics is
based on two main components:

1) Hierarchy of status flag registers (IJTAG-compliant);
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2) Asynchronous emergency network (non-IJTAG com-
pliant).

A. Aging Failure Resilience and Fault Management

The aging failure resilience framework that we describe
is based on fault tolerance and system health monitoring
but goes beyond by localizing and classifying faults into
different categories that should be handled differently: e.g.
transient vs. permanent faults and critical vs. low-priority
ones [23]. Aged blocks with permanent faults are then either
fully isolated or marked as reduced-capacity ones, which is
registered in the system health map. Fig. 13 reflects the top
abstraction level of the whole concept. We assume that the
fault management framework operates on the same SoC as the
target system itself and that the target system contains plenty
of heterogeneous or identical resources (or IP cores) capable
of fully or partially replacing one another, hence providing
a room for graceful degradation by proper task scheduling.
The tasks are scheduled by the operating system (OS), which
takes into account the System Health Map status provided
and maintained by the Fault Manager (FM). FM receives
interrupts and collects service/diagnostic information from the
IEEE 1687-based Diagnostic Instrumentation Network (DIN)
that is implemented on the same SoC as the target system itself.
The actual error detection is taking place in-situ by embedded
instruments/monitors. The DIN should then immediately pass
an emergency signal from the monitor to the OS so that the
latter could reschedule the failed task immediately to another
available resource. After detecting the fault, the failure has
to be diagnosed and analyzed in order to update the system
health map and isolate the resource in case of permanent
fault detection. IEEE 1687 instrumentation network operates
independently from the rest of the system (on the background),
which is another very important feature due to the two follow-
ing reasons. First, the DIN must be functioning even if the
system’s main communication channels are out of order and
second, during maintenance, the service actions should not
interfere with the functional tasks performed by the system.
In general, the DIN should be simple enough to achieve better
levels of reliability than the rest of the system. In context of
aging, the service infrastructure should degrade slower than
the functional part. This agrees very well with comparatively
seldom background on-demand operation of the IEEE 1687
based DIN.
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B. Automation and Scalability Aspects

Given that SoC components, both IP cores and instruments,
are usually provided by different vendors, the DIN has to be
automatically composed during the system integration phase.
Hence, the possibility of design automation, reuse, and shar-
ing provided by a standard-driven approach for infrastructure
design is very important. In addition to the normal IEEE
1687 requirements, the DIN needs to be based on unified
interfaces to instrument clusters coming from different vendors
as a part of IP cores. This fact directly affects the two exten-
sions proposed: status flags and asynchronous signaling. The
next subsection details respective requirements (design rules),
which enables automatic seamless integration of heterogeneous
diagnostic resources into a single homogeneous system-wide
DIN. Thanks to these rules and the IEEE 1687 standard, the
DIN can be constructed in a way that allows creation of a
single very small controller (instrument manager - IM) that
handles all faulty resource localization tasks and instrument
control for the whole SoC independently of its size [23].
Scalability of IJTAG networks is already good by its nature, but
following the concept of hierarchical instrumentation clusters
(or segments) allows keeping the active scan chain length
within linear or even logarithmic relation with respect to the
number of instruments in the SoC [23]. The same hierarchical
concept matches the SoC composition principles; hence the
IJTAG overhead in general can be kept under a good control.

The main overhead from the adaptation of the IJTAG
infrastructure for the fault management purposes is generated
by adding status flag registers and the asynchronous signaling.
The complexity of both is linear to the number of existing SIBs
in the network. The former components could be implemented
as a part of SIB, while the asynchronous signals can be easily
routed along and together with the main scan chains (no
routing overhead). As the result, the extended infrastructure
of a relatively modest overhead is capable of fulfilling the first
priority requirements for an effective fault management sys-
tem, such as low error detection latency, high faulty resource
localization speed, as well as good reliability and scalability
of the service infrastructure itself.

C. Architectural Implementation Details

Fig. 14 demonstrates an example of a DIN implementation
in a many-core SoC, which is described in more detail in [25].
The flag-based error reporting system where each block or a
sub-module is provided with a dedicated Status Flag Register
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FCX (F: failure, C: corrected, X: mask), whereas all registers
are collectively forming a hierarchical asynchronous error indi-
cation and propagation structure tied with IEEE 1687 network
has been detailed in [25]. As it was mentioned, error detection
appears in instruments. As soon as an error is detected, the
corresponding local fault flag F of a particular instrument,
resource or core is set to 1. If the error was corrected (e.g.
by ECC) the correction flag C is also set to 1. Status flags
are propagated to the top-level loop appearing in the top-
level FCX register. The 4-bit long top-level loop (FTOP,
CTOP, XTOP and SIB) is being repeatedly polled by the IM,
which in general takes 4 TCK cycles (plus cycles required for
TAP state transitions). In case of an error, (when FTOP = 1,
CTOP = 0 condition met) the IM sends an interrupt request
(IRQ) to the FM and traces down the faulty resource by
reading the corresponding F flags next to each SIB. At each
hierarchical level, the IM activates only the segment marked
with active F flag while keeping all other segments inactive.
The process continues until the IM reaches the faulty resource
and reports its location (or ID) to the FM. IM can also receive
commands from the FM and transports requested data between
registers/instruments and FM. When FM works with resource-
specific registers, IM continues to poll the top-level Status
Register. The purpose and functionality of the FM is detailed
in [26]. The meaning of the FCX Status Register flags at SIB
i is summarized below.

• Fi = 1, Ci = 0 – error detected but not corrected

• Fi = 1, Ci = 1 – error detected and corrected

• Fi = 0, Ci = 1 – default value during normal
operation

• Fi = 0, Ci = 0 – malfunction of the error detection
network

• Xi – is a mask bit, which can be set in order to ignore
a particular Status Register, e.g. if the corresponding
resource is dead or not used.

When FTOP = 1, CTOP = 1 condition met (error detected
and corrected), the FM updates the error detection statistics
without sending IRQ. The error rate statistics is collected on
the background per resource. FM periodically checks error rate
statistics and takes actions if needed. As it was mentioned the
status bits are being propagated from the instruments towards



the top level loop’s status register through the asynchronous
network that is essentially a combinational circuit (see Fig. 14)
characterized by the following rules:

• ∀i, Fi = 1⇒ FTOP = 1;

• ∀i, Ci = 0⇒ CTOP = 0;

Hence the flag propagation delay from the leaves to the
root of the network tree, is proportional to the lengths of
the corresponding combinational path (logic depths) in this
combinational circuit. The latter parameter can be kept of
the logarithmic complexity with respect to the number of
instruments in the system. The faulty resource (or IP core)
localization speed (see Fig. 15) follows the same logarithmic
trend. See [23] for details.

D. Summary

The hardware side of the system under test is equipped with
embedded test instrumentation. The software side includes FM
that maintains the system health map by analyzing diagnostic
data from instruments. IM represents a very simple component
that takes care of the regular instrumentation network and
unified status flag registers FCX, while FM is dealing with
core-specific registers/instruments.

Assuming that error detection inside the resources is per-
formed by dedicated monitors, checkers, sensors, etc. col-
lectively called instruments; the new emerging IEEE 1687
standard seems to be a proper choice for the fault manage-
ment task. The efficiency of the IEEE 1687 instrumentation
infrastructure used for fault management has been recently
demonstrated in [23] and characterized by a very small error
detection latency (practically immediate fault detection) and
logarithmic time to localize the faulty resource.

VI. CONCLUSION

In this work, we briefly surveyed the research done so far
on IEEE 1687, with regards to the design and verification of
1687-compatible networks, and presented and discussed some
of the challenges to be addressed in these areas. Moreover,
we presented an application of IEEE 1687 in a fault-tolerant
design.
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