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If in other sciences we should arrive at certainty without doubt and
truth without error, it behooves us to place the foundations of knowledge
in mathematics.

Roger Bacon (1214-1294)

“Opus Majus”, Book 1, Chapter 4





Abstract

Physical processes are often modeled as input-output systems. Many such systems
obey passivity, which means that power is dissipated in the process. This thesis
deals with the inevitable constraints imposed on physical systems due to passivity.
A general approach to derive sum rules and physical limitations on passive systems
is presented. The sum rules relate the dynamical behaviour of a system to its
static and/or high-frequency properties. This is beneficial, since static properties
are in general easier to determine. The physical limitations indicate what can,
and what can not, be expected from certain passive systems. At the core of the
general approach is a set of integral identities for Herglotz functions, a function
class intimately related to the transfer functions of passive systems.

In this thesis, the general approach is also applied to a specific problem: the
scattering and absorption of electromagnetic vector spherical waves by various ob-
jects. Physical limitations are derived, which limit the absorption of power from
each individual spherical wave. They are particularly useful for electrically small
scatterers. The results can be used in many fields where an understanding of the
interaction between electromagnetic waves and matter is vital. One interesting ap-
plication is within antenna theory, where the limitations are helpful from a designer’s
viewpoint; they can give an understanding as to what factors limit performance, and
also indicate if there is room for improvement or not.
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Sammanfattning (in Swedish)

Fysikaliska processer modelleras ofta som insignal-utsignalsystem. Många s̊adana
system är passiva, vilket betyder att effekt g̊ar förlorad i processen. Den här avhan-
dlingen behandlar de ofr̊ankomliga begränsningar som passivitet sätter p̊a fysikaliska
system. Ett allmänt angreppssätt för att härleda summeringsregler och fysikaliska
begränsningar p̊a passiva system presenteras. Summeringsreglerna relaterar ett sys-
tems dynamiska uppträdande till statiska egenskaper och/eller högfrekvensegenskaper.
Detta är ofta fördelaktigt, eftersom statiska egenskaper i allmänhet är lättare att
bestämma. De fysikaliska begränsningarna antyder vad som kan, och vad som inte
kan, förväntas fr̊an vissa passiva system. Kärnan i det allmänna angreppssättet
är en samling integralidentiteter för Herglotzfunktioner, en funktionsklass som är
intimt förknippad med passiva systems överföringsfunktioner.

I den här avhandlingen tillämpas även det allmänna angreppssättet p̊a ett speci-
fikt problem: diverse objekts spridning och absorbtion av elektromagnetiska sfäriska
vektorv̊agor. Fysikaliska begränsningar, vilka begränsar absorptionen av effekt fr̊an
varje enskild sfärisk v̊ag, härleds. De är särskilt användbara för elektriskt små
spridare. Resultaten kan användas inom många fält där det är viktigt att först̊a
samspelet mellan elektromagnetiska v̊agor och materia. En intressant tillämpning
är inom antennteori, där begränsningarna är behjälpliga ur en utvecklares perspek-
tiv; de kan ge en först̊aelse för vilka faktorer som begränsar prestanda, och även
antyda om det finns möjligheter till förbättring eller inte.

vi
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1 Introduction 3

1 Introduction

In physical sciences, there is an ambition to model various aspects of nature. Many
physical processes are modeled as input-output systems; there is a cause (the input)
and an action (the output). For example, the electric voltage over a resistor causes
a current to flow in it, a force applied to an elastic body produces a deformation,
and an increase in the temperature of a confined gas results in a higher pressure.
The input and output are commonly functions of time, t (with unit seconds, s).
But in many applications, it is more convenient to analyse physical systems in the
frequency domain, where the input and output are instead functions of the angular
frequency ω (with unit Hertz, Hz).

Many physical systems obey passivity; that is, they cannot produce energy. If
they do not consume energy either, they are called lossless. Passivity poses severe
constraints on a system. As a result, dispersion relations may be derived, effectively
describing realisable frequency dependencies of physical systems. This is a conse-
quence of a classical result that states that the transfer functions of passive systems
are related to the well studied class of Herglotz functions, see e.g., [54, 56, 58]. In
some cases, a set of sum rules follow the dispersion relations; in essence, they relate
the dynamical behaviour of a system to its static and/or high-frequency properties.
This is beneficial, since static properties are in general easier to determine. The
sum rules can also be used to derive physical limitations, or constraints, indicating
what can and cannot be expected from the system. In Section 2 of this General
Introduction, the concept of input output systems in general, and those on convo-
lution form in particular, are discussed. Furthermore, three different approaches to
derive dispersion relations are considered. A general approach to derive sum rules
and physical limitations on passive systems put forth in Paper I is also reviewed
briefly.

In the second part of the thesis (Paper II), the results of Paper I are applied
to a specific problem: the scattering and absorption of electromagnetic waves by
various objects. Physical limitations for this interaction are derived in Paper II.
They quantify the intuitively obvious statement that objects that are small com-
pared to the wavelength can only absorb a limited amount of power. Understanding
electromagnetic wave interaction with matter is vital in many applications, from
classical optics to stealth technology. Recently, much attention have been devoted
to so called metamaterials, synthetic materials designed to have extra-ordinary elec-
tromagnetic properties. The results of Paper II can potentially be used within all
the mentioned fields.

Another interesting application is within antenna theory. This is discussed in
Section 3 of this General Introduction, where also previous approaches to find phys-
ical limitations on antenna performance are reviewed. The physical limitations can
be very helpful from a designer point of view, both to understand what factors limit
performance, but also to determine if there is room for improvement.



4 General Introduction

2 Dispersion relations, sum rules and physical lim-

itations

This section discusses general models of physical processes as input output systems.
In particular, systems on convolution form, i.e., systems that satisfy the basic as-
sumptions of linearity, time-translational invariance and continuity, are considered.
These systems are fully described by their impulse responses in the time domain, or
equivalently by their transfer functions in the frequency domain.

One way to study these systems are to derive so called dispersion relations,
quantifying their frequency dependence. This requires some extra assumptions on
the system. Three approaches to derive dispersion relations, relying on somewhat
different assumptions, are described briefly in Section 2.2. One of them relies on
the assumption that the system is passive. From the dispersion relations, sum rules
and physical limitations can sometimes be derived. This is described for passive
systems in Paper I, and the procedure is outlined in Section 2.3. For a discussion on
dispersion relations, see also the General Introducion in Sohl’s doctoral thesis [50]
and references therein.

An early example of dispersion relations are the Kramer-Kronig relations, relat-
ing the real and imaginary part of the electric permittivity ε(ω) to each other. They
were derived independently by Kramers in [34] and Kronig in [11], see e.g., [35] for
a review of their results. The Kramers-Kronig relations can be used to derive sum
rules as well. Classic examples of sum rules and physical limitations used within
electromagnetic theory are Fano’s matching equations, presented in [14]. There are
more recent examples as well, see e.g., [6, 18, 20, 21, 23, 43, 48]. There are also sum
rules within quantum mechanical scattering, see e.g., [52].

2.1 Systems on convolution form

Systems on convolution form are discussed in this section, inspired by the book
[58] by Zemanian. See also the books [45–47] by Schwartz. As mentioned in the
introduction, many physical systems are modeled as rules assigning an output signal
u(t) to every input signal v(t):

u(t) = Rv(t), (2.1)

where R is an operator. The system may be though of as a “black box”, see
Figure 1. Here the signals are functions of time, t. It is desirable to allow u and v
to be generalised functions, or distributions1, i.e., the domain D(R) of the operator
R is some subset of D′. This allows the modeling of functions having point support,
i.e., signals delivering non-zero amounts of energy in a single moment. Furthermore,
the distributional setting works well when moving between the time and frequency
domains, as discussed below.

1An introduction to distribution theory can be found in the books [47], [17] and [51]. More
thorough treatises are e.g., [12, 30, 45, 46, 58].
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Figure 1: The physical system (2.1) relates the input signal v(t) to the output
signal u(t).

A completely arbitrary system can of course relate the input signal to the output
signal in a completely arbitrary way. However, many physical systems satisfy some
basic assumptions:

Linearity: The system (2.1) is linear if

R(C1v1 + C2v2)(t) = C1Rv1(t) + C2Rv2(t),

for all scalars C1, C2 and all admissible input signals v1, v2 ∈ D(R). Intuitively,
linearity means that “if you double the input, you double the output”.

Time-translational invariance: The system (2.1) is time-translational invariant
if R maps v(t−T ) to u(t−T ), for all T ∈ R, whenever it maps v(t) to u(t). In
other words, delaying the input signal simply delays the output signal. A time-
translational invariant system is “non-aging”, meaning that an experiment
yields the same result regardless of the time when it is conducted.

Continuity: An operator is continuous if

lim
j→∞

vj = v ⇒ lim
j→∞

Rvj = Rv,

where {vj}∞1 is a sequence of input signals in D(R). Here the limits must be
interpreted in the correct sense and depend on the input vj and output Rvj,
respectively [58]. An interpretation of continuity is that a small change in the
input signal only leads to a small change in the output signal.

It can be shown that a system satisfies these assumptions if and only if it is on
convolution form, (cf., Theorem 5.8-2 in [58] and pages 134–140 in [47]):

u(t) = w ∗ v(t) =

∫
R

w(t′)v(t − t′) dt′, (2.2)

where the second equality holds if v and w are integrable functions. Otherwise,
convolution is defined in a more general way, see Chapter 5 in [58]. The generalised
function w is called the impulse response of the system, and it contains a complete
description on the systems properties. It is clear now that the three assumptions
of linearity, time-translational invariance and continuity can be replaced by one
assumption: the assumption that the system is on convolution form.
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In many applications, it is desirable to study physical systems in the frequency
domain, i.e., the Fourier transform2 is applied to equation (2.2). In general, the
Fourier transform f̃(ω) = (Ff)(ω) measures the frequency dependence of a system.
For example, if f(t) is a representation of a sound wave, f̃(ω) states which frequencies
(or tones) that are present in the sound.

The Fourier transform of (2.2) is

ũ(ω) = w̃(ω)ṽ(ω), (2.3)

where the transfer function is the transformed impulse response,

w̃(ω) = (Fw)(ω),

and ṽ = Fv and ũ = Fu are the transformed input and output signals, respectively.3

Equation (2.3) reveals one reason to study systems in the frequency domain; multi-
plication is in general preferable over convolution.

2.2 Causality and dispersion relations

As seen in the previous section, the impulse response w(t) of a system contains a com-
plete description of the systems behaviour. This is evidently also true for the transfer
function w̃(ω). Scrutiny of one of these two functions is therefore a reasonable way
to study a given physical system. A physical system with a frequency dependent
transfer function w̃(ω) (as opposed to a constant transfer function w̃(ω) ≡ C) is of-
ten called dispersive. Relations for this frequency dependency for systems satisfying
certain assumptions are called dispersion relations. In this section, possible candi-
dates for these assumptions are discussed. Three sets of assumptions are presented,
which lead to three distinct approaches to derive dispersion relations.

One critical assumption on a physical system is:

Causality: The system (2.1) is causal if

v1(t) = v2(t), for t < t0 ⇒ Rv1(t) = Rv2(t), for t < t0.

For systems on the convolution form (2.2), causality is equivalent to

w(t) = 0, for t < 0.

2Here the Fourier transform of an integrable function f(t) is defined as

f̃(ω) = (Ff)(ω) =
∫

R

f(t)eiωt dt.

For references concerning Fourier transforms of more general functions or distributions, see foot-
note 1.

3When both w and v are integrable functions, their Fourier transform are well defined and (2.3)
applies. But it should be mentioned that some extra assumptions on w and v are needed in the case
they are distributions. The Fourier transform of a distribution f(t) ∈ S ′ ⊆ D′, where S ′ denotes
distributions of slow growth, is well defined and also a distribution f̃(ω) in S ′. If in addition w
or v e.g., have compact support, the system (2.2) is mapped to (2.3) under the Fourier transform.
See the references of footnote 1.
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Causality means that the output can only depend on previous values of the
input. In other words, the system cannot predict the future.

For many physical systems it is obvious that causality holds; the action cannot
precede the cause. However, it turns out that causality in itself is often not enough
to obtain dispersion relations; more assumptions are required, and one candidate is

Rational transfer function: The transfer function w̃(ω) in (2.3) is a rational
function if it is the quotient of two polynomials:

w̃(ω) =
cnω

n + cn−1ω
n−1 + . . . + c1ω + c0

dmωm + dm−1ωm−1 + . . . + d1ω + d0

. (2.4)

For example, impedance functions Z(ω) realisable with a finite number of
lumped circuit elements are rational functions.

If a system is causal with a rational transfer function, then the transfer function
w̃(z) is holomorphic in the upper half-plane C

+ = {z : Im z > 0}. Throughout this
General introduction, z denotes a complex number, with ω = Re z and y = Im z. A
holomorphic function (sometimes referred to as an analytic function) is a function
of the complex variable z ∈ C that is complex-differentiable. As a result, very
powerful tools from complex analysis can be employed to derive dispersion relations.4

However, even the electric engineer encounters non-rational transfer functions; one
situation is if a time delay eiωt0 is introduced, for example by a transmission line.
Also, the scattering of electromagnetic waves is in general modeled with non-rational
transfer functions.

There is another candidate that can replace the assumption of a rational transfer
function, namely:

Square-integrable transfer function: The transfer function in (2.3) is square-
integrable (w̃ ∈ L2) if it is a regular function and∫

R

|w̃(ω)|2 dω < ∞.

For square-integrable functions, the following theorem applies [32, 41]:

Theorem 2.1 (Titchmarsh’s theorem). Let f̃(ω) be a square-integrable function on
the real line. If f̃(ω) satisfies one of the four conditions below, then it fulfills all four
of them and f̃(ω) is called a causal transform.

1. Its inverse Fourier transform f(t) vanishes for t < 0.

2. The real and imaginary parts of f̃ satisfy the first Plemelj formula:

Re f̃(ω) = − 1

π
lim
ε→0

∫
|ω−ξ|>ε

Im f̃(ξ)

ω − ξ
dξ. (2.5)

4For an introduction to complex analysis, see e.g., [1, 16].
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3. The real and imaginary parts of f̃ satisfy the second Plemelj formula:

Im f̃(ω) =
1

π
lim
ε→0

∫
|ω−ξ|>ε

Re f̃(ξ)

ω − ξ
dξ. (2.6)

4. The function f̃(z) is a holomorphic function in the open upper half-plane C
+ =

{z : Im z > 0}. Furthermore, it holds that

f̃(ω) = lim
y→0+

f̃(ω + iy), for almost all ω ∈ R,

and ∫
R

|f̃(ω + iy)|2 dω < ∞, for y > 0.

If f̃ = w̃ is the transfer function of a causal system, the two Plemelj formulae
(2.5)–(2.6) directly give dispersion relations for the system by relating the real and
imaginary parts to each other. More relations can be derived by exploiting the
holomorphic properties of w̃(z) in the open upper half-plane due to point 4 in the
theorem.

The Plemelj formulae closely resembles the Hilbert transform, H, which is defined
for functions F (x) on R that are e.g., square-integrable and locally integrable, as:

HF (x) =
1

π
lim
ε→0

∫
|x−ξ|>ε

F (ξ)

x − ξ
dξ, (2.7)

see e.g., [32, 37]. Its inverse, under the above assumptions on F , is

F (x) = − 1

π
lim
ε→0

∫
|x−ξ|>ε

HF (ξ)

x − ξ
dξ. (2.8)

The functions F (x) and HF (x) in (2.7)–(2.8) constitute a Hilbert transform pair,
and it is evident from Tichmarsh’s theorem that the real and imaginary parts of
a causal transform w̃ constitute such a pair. Properties of the well-studied Hilbert
Transform can thus be used to derive dispersion relations for physical systems. For
a summary of integral relations connected to this approach, see e.g., [32, 33, 36] and
references therein.

It is in place here to discuss the meaning of the assumption that w̃ is square-
integrable (in L2). A square-integrable function can be interpreted as a function of
finite energy. Therefore, the input and output signals are frequently assumed to be
in L2. The transfer function, on the other hand, need in general not be in L2.

The Titchmarsh/Hibert transform approach to derive dispersion relations can
be generalised to much larger classes of transfer functions, see [32, 33, 36, 41] and
references therein. However, there is an alternative approach, that makes use of
another fundamental property of many physical systems: passivity. Passivity means
that the system cannot produce energy, and hence the energy content of the output
signal is limited to that of the input. Depending on how the power and energy
is modeled, the definition of passivity comes in different forms. The two forms
considered here have names borrowed from electric circuit theory:
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Figure 2: Here the input v(t) is the electric voltage over the load, and the output
u(t) is the electric current running through it. They are related by the admittance
operator of the load.

Admittance-passivity: The system (2.2) is admittance-passive if the energy ex-
pression

eadm(T ) = Re

∫ T

−∞
u∗(t)v(t) dt (2.9)

is non-negative for all T ∈ R and v ∈ D(R).

Scatter-passivity: The system (2.2) is scatter-passive if the energy expression

escat(T ) =

∫ T

−∞
|v(t)|2 − |u(t)|2 dt (2.10)

is non-negative for all T ∈ R and v ∈ D(R).

Here the superscript ∗ denotes the complex conjugate. Only smooth input signals of
compact support, v ∈ D, are considered in order for the integrals to be well-defined.
However, this is often enough to ensure that the corresponding energy expressions
are non-negative for other admissible input signals v ∈ D(R). The above definition
of scatter-passivity was introduced by Youla et al. in [56], while the definition of
admittance-passivity was introduced by Zemanian in [57]. The connection between
them is discussed by Wohlers and Beltrami in [54]. Both passivity concepts have
been generalised to a Hilbert space setting, see [59] and references therein.

If the input signal v(t) is the electric voltage over a load and the output signal
u(t) is the electric current running through it, then the operator R is the so called
admittance operator. See Figure 2. In this case, the electric energy absorbed by
the load until time T is given by (2.9). Thus, the admittance operator of a passive
circuit elements is an admittance-passive operator, as the name suggests. Note that
admittance-passivity might as well have been called impedance-passivity, since the
current could have been the input and the voltage the output in the example.

Consider now a transmission line ended in a load. Let v(t) be the amplitude
of the voltage wave traveling towards the load (measured by the load), and let the
output u(t) be the amplitude of the reflected wave, as in Figure 3. In this case the
electric energy absorbed until time T is given by (2.10). Hence, passive reflection
operators (or scatter operators) are scatter-passive.

In the remainder of this General Introduction, a system or operator that is either
admittance-passive or scatter-passive is simply referred to as passive. Passivity has
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Figure 3: In this case, the input v(t) and output u(t) are the amplitudes (measured
by the load) of the voltage waves traveling along the transmission line towards and
from the load, respectively. They are related by the reflection operator, also called
the scattering operator.

far-reaching implications on the physically realisable behaviour of a system. One
consequence is that passive systems must also be causal. Another is that the impulse
response w must be in S ′, and thus it is Fourier transformable in the distributional
sense (see footnote 3). Combined, it guarantees that the transfer function w̃(z) is
well-defined also for z in the open upper half-plane C

+ = {z : Im z > 0}, and that it
is holomorphic there. Furthermore, the transfer function w̃adm(z) of an admittance-
passive system satisfies Re w̃adm(z) � 0 in C

+, while |w̃scat(z)| � 1 in C
+ when

w̃scat(z) is the transfer function of a scatter-passive system. See e.g., [54, 56, 58].
These properties of the transfer functions imply that they can be related to Herglotz
functions, as described in the next section. Properties of the well-studied Herglotz
functions is the starting point to derive dispersion relations for such systems. In
Paper I, sum rules and physical limitations on passive systems are derived from
there.

Summing up, the three approaches to derive dispersion relations for systems on
convolution form discussed in this section are:

1. The rational function approach: This approach relies e.g., on the assump-
tion that the system is causal and that the transfer function is rational. It
derives dispersion relations using straightforward complex analysis.

2. The Titchmarsh’s theorem/Hilbert transform approach: It employs
Titchmarsh’s theorem or the Hilbert transform, and requires that the system
is causal and that the transfer function is e.g., square-integrable. It can be
generalised to larger classes of transfer functions.

3. The passive systems approach: This approach assumes that the system
is passive (and thereby causal). It relates the transfer functions to Herglotz
functions, and derives dispersion relations from there.

Note here that the concept of causality is crucial to all three approaches. It should
be stressed that since the approaches rely on different assumptions, they are comple-
mentary rather than in competition. For all the approaches, sum rules and physical
limitations can sometimes be derived from the dispersion relations. This is described
in more detail for the passive systems approach in the next section.
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2.3 Passive systems and Herglotz functions

In this sections, Herglotz functions are presented, and their relation to the trans-
fer functions of passive systems is clarified. Following a well-known representation
theorem, Herglotz functions are represented by positive measures on the real line.
This representation can be interpreted as a dispersion relation for passive systems.
Furthermore, a set of integral identities for Herlotz functions are derived in Paper I
from this representation. For physical systems, these are referred to as sum rules,
relating dynamical behaviour to static and/or high frequency properties. One way
to make use of the sum rules is to derive physical limitations by estimating the
integrals.

The class of Herglotz functions is now introduced. Start with the definition:

Definition 2.1. A Herglotz function is defined as a holomorphic function h : C
+ →

C
+ ∪ R where C

+ = {z : Im z > 0}.
In other words, they are complex differentiable mappings of the open upper half-

plane to the closed upper half-plane plane. Herglotz functions are sometimes referred
to as Nevanlinna [27], Pick [12], or R-functions [31]. They are closely related to pos-
itive harmonic functions and the Hardy space H∞(C+) [13, 37], and appear within
the theory of continued fractions and the problem of moments [2, 28], but also within
functional analysis and spectral theory for self-adjoint operators [3, 27]. Because of
this, they have been thoroughly studied. The aforementioned representation theo-
rem is commonly attributed to Nevanlinna’s paper [39], but it was presented in its
final form by Cauer in [7]. See also [3] for a proof and discussion.

Theorem 2.2. A necessary and sufficient condition for a function h to be a Herglotz
function is that

h(z) = βz + α +

∫
R

(
1

ξ − z
− ξ

1 + ξ2

)
dμ(ξ), Im z > 0, (2.11)

where β � 0, α ∈ R and μ is a positive Borel measure such that
∫

R
dμ(ξ)/(1+ ξ2) <

∞.

Note the resemblance of (2.11) to the Hilbert transform (2.7). The representa-
tion theorem follows from a similar representation theorem for positive harmonic
functions on the unit disk due to Herglotz [29], hence the name Herglotz functions.
A photograph of Gustav Herglotz is shown in Figure 4.

The Lebesque integral over the measure μ in (2.11) is a generalisation of the
Riemann integral. The Lebesgue integral is more complete in a sense, and thus often
appears in representation theorems such as Theorem 2.2. The interested reader can
find an introduction to measure and integration theory in the book [4] by Berezansky
et al., and the book [44] by Rudin.

Since the transfer function w̃(z) of an admittance-passive system is holomorphic
and has a non-negative real part for z ∈ C

+, a Herglotz function is given by

h(z) = iw̃(z). (2.12)
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Figure 4: The german mathematician Gustav Herglotz (1881–1953) in the year
1930. The photograph is courtesy of Konrad Jacobs, reproduced here under license
http://creativecommons.org/licenses/by-sa/3.0/de/deed.en.

For a scatter-passive system, a Herglotz function can be constructed by applying the
inverse Cayley transform z �→ (iz + i)/(1 − z) to w̃(z). Alternatively, the complex
logarithm may be used, see Paper I. For clarity, only admittance-passive systems are
considered in this section. Following (2.12), a Herglotz function can be thought of
as a generalised admittance, or impedance, function. The difference is that it is not
necessarily rational, and thus can not in general be realised with a finite number of
lumped circuit elements. The connection between the transfer functions of passive
systems and Herglotz functions is well known, see e.g., [54, 56, 58]. Note that some
authors prefer the Laplace transform and the related function class of Positive Real
(PR) functions over the Fourier transform and Herglotz functions.

The representation (2.11) is in a sense a dispersion relation. The reason is that
the measure μ can be interpreted as the imaginary part of h, see Lemma 4.1 in
Paper 1 and the discussion following the lemma. For example, when the measure
is given by a continuous function μ′(ξ), i.e., dμ(ξ) = μ′(ξ) dξ, then limy→0+ h(x +
iy) = μ′(x) for almost all x ∈ R. Additional dispersion relations can be derived by
composing Herglotz functions with each other.

From the representation, it also follows that all Herglotz functions have low- and
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Figure 5: The Stoltz domain, {z : θ � arg z � π − θ} for some θ ∈ (0, π/2].

high-frequency asymptotic expansions of the forms:

h(z) =
2N−1∑
n=−1

anz
n + o(z2N−1), as z→̂0, (2.13)

h(z) =
m=1∑

1−2M

bmzm + o(z1−2M), as z→̂∞, (2.14)

where all an, bm ∈ R and N, M � 0. Here z→̂0 is a short-hand notation for |z| → 0
in the Stoltz domain θ � arg z � π−θ for any θ ∈ (0, π/2], see Figure 5, and likewise
for z→̂∞. The Stoltz domain ensures that the low-frequency asymptotic expansion
only depends on the behaviour of the physical system for arbitrarily large times.
Similarly, the high-frequency asymptotic expansion is determined by the response
of the physical system for arbitrarily short times, cf., Section 3 of Paper I.

The main results of Paper I are the following integral identities for a Herglotz
function h:

lim
ε→0+

lim
y→0+

1

π

∫
ε<|ω|<ε−1

Im h(ω + iy)

ωp
dω = ap−1−bp−1, p = 2−2M, 3−2M, . . . , 2N.

(2.15)
The left-hand side of (2.15) is the integral of Im h(ω)/ωp in the distributional sense,
i.e., contributions from possible singularities in the interval (0,∞) are included,
cf., the discussion in Paper I. The derivation of the integral identities (2.15) for
p = 2, 3, . . . , 2N rely on two results; the first (Corollary 4.1 of Paper 1) relates the
left-hand sides to moments of the measure μ, while the other (Lemma 4.2) relates
the convergence and explicit values of these moments to the expansion (2.13). A
change of variables in the left-hand side of (2.15) enables a proof for p = 2−2M, 3−
2M, . . . , 1. If the Herglotz function is a rational function, the identities (2.15) follow
from the Cauchy integral formula. This derivation can be found in [49].

When the Herglotz function h is given by (2.12), the integral identities (2.15)
constitute a set of sum rules for w̃(ω). A sum rule relates a sum of the dynamical be-
haviour of the system (the left-hand side in (2.15)) to its low- and/or high-frequency
properties (the coefficients an and bn in the right-hand side)5. As mentioned in the

5This is the meaning of the term “sum rule” adopted in this thesis. Elsewhere, the term can
have a wider meaning, where the trademark of a sum rule is that one of its sides is a sum or integral
(generalised sum).
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introduction, this is very beneficial, since static properties are in general easier to
determine than dynamical behaviour.

One property that many physical systems obey has not yet been discussed:

Reality: The system (2.1) is real if it maps real input v to real output u.

For many physical systems, this is taken for granted. Reality implies that the
impulse response w(t) is real, which in turn implies the symmetry h(z) = −h∗(−z∗)
when h(z) is given by (2.12). This restricts the identities (2.15) to even powers and
simplifies them to

lim
ε→0+

lim
y→0+

2

π

∫ ε−1

ε

Im h(ω + iy)

ω2p̂
dω = a2p̂−1 − b2p̂−1, p̂ = 1 − M, . . . , N. (2.16)

The identities (2.16) are the starting points to derive physical limitations on
a system. Since the integrands are non-negative and the integrals over the whole
real line are equal to the right-hand sides, the integrals over any subset of the
real line must be bounded by the right-hand sides. Let the frequency band be
B = [ω0(1−B/2), ω0(1 + B/2)], with center frequency ω0 and fractional bandwidth
B. Then the following physical limitations may be derived from (2.16):

2ω1−2p̂
0 B

π
inf
B

Im h(ω) � a2p̂−1 − b2p̂−1, p̂ = max(1 − M, 0), 2, 3 . . . , N. (2.17)

(For p = 1 − M, 2 − M, . . . ,−1 the bounds have a slightly different appearance.)
The bounds state that the imaginary part of h cannot be arbitrarily large over a
frequency band. Often, the imaginary part of h models the losses of the physical
system; for an impedance w̃(ω) = Z(ω) in (2.12), the imaginary part of h is the
real part of Z. The concept of sum rules and physical limitations is illustrated
schematically in Figure 6.

3 Physical limitations in antenna theory

In the second part of this thesis, Paper II, the results of Paper I is employed in
order to find physical limitations on the scattering of electromagnetic waves by var-
ious objects. Electromagnetic waves can be expanded in a sum of orthogonal vector
spherical waves, also referred to as partial waves, (electric and magnetic) multi-
poles, or (TM and TE) modes. In Paper II, physical limitations on the scattering
and absorption on the individual waves are derived. Other physical limitations on
electromagnetic scattering have been derived recently by Sohl et al. [48]; instead
of considering spherical waves, Sohl et al. derives limitations on the total scatter-
ing and absorption of an electromagnetic wave. The limitations on electromagnetic
scattering presented in Paper II and [48] are particularly useful for electrically small
scatterers, and are therefore well suited to small structures designed to be resonant
in one or more frequency bands.

One example of a resonating structure is an antenna. The results of [48] have
been applied to antenna theory in [20]. The implications of the limitations of Paper II
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Figure 6: Illustration of the sum rules (2.16) and physical limitations (2.17). The
integrals of Im h(ω)/ω2p̂ in the left-hand sides of (2.16) are determined by the low-
frequency coefficients a2p̂−1 and/or high-frequency coefficients b2p̂−1. In an analogy
to the calculus of residues, this can be interpreted as contributions from residues at
the origin and infinity in the complex z-plane (green in the figure). Since the total
integrals (blue) are equal to these residues, the curves have to intersect the boxes
with the same area (red). This gives the physical limitations (2.17). Also shown in
the figure is an unattainable curve of Im h(ω)/ω2p̂ (dashed).

on antenna performance is discussed briefly in Example 5.2 in Paper II. There are
also numerous other publications addressing limitations on antenna performance;
many of these fall into one of the following two categories: Either they are based
on the pioneering paper [8] by Chu, or they use Fano’s theory of optimal wideband
matching presented in [14].

It is in general difficult to describe common properties of antennas; since differ-
ent antennas are designed for completely different purposes, the behaviour of two
antennas can differ radically. Furthermore, in many applications, the antennas are
influenced by other objects nearby. For example, in a mobile phone the antenna
must co-exist with the batteries, speaker, camera and so forth, see Figure 7. The
physical limitations is one way to quantify some properties that all antennas satisfy
by stating what can, and what can not, be achieved in terms of performance under
certain constraints. One significant constraint that limits antenna performance is
the size; this is intuitively reasonable, since objects that are small compared to the
wavelength can only provide a limited interaction with electromagnetic waves. This
section briefly summarizes the four mentioned approaches to find limitations on an-
tenna performance: the approach based on Chu’s paper in Section 3.1, limitations
due to Fano’s matching theory in Section 3.2, and the results due to Sohl et al.
in Section 3.3. Finally, the spherical wave approach due to Paper II is covered in
Section 3.4, and its connection to multiple-input multiple-output (MIMO) systems
is discussed.
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Figure 7: The back of a Sony Ericsson K800 mobile phone. The author thanks
Anders Sunesson for the photograph.

Figure 8: In Chu’s paper [8] as well as in Paper II, the antenna is contained in
a hypothetical sphere of radius a. Outside this sphere, the electric and magnetic
fields are expanded in outgoing (u

(1)
ν ) and incoming (u

(2)
ν ) vector spherical waves,

or modes, with index ν.

3.1 Chu (1948)

In his paper [8], Chu laid the foundation for much of the coming work on funda-
mental limitations on antenna performance. He circumscribed the antenna with a
hypothetical sphere of radius a, and expanded the electric and magnetic fields into
orthogonal vector spherical waves, or modes, see Figure 8. Furthermore, Chu de-
rived lumped element circuit-equivalents of the respective modes; they take the form
of ladders, where the length of the ladder (and hence the complexity of the circuit)
is increased for higher order modes.

A radiating antenna is surrounded by electric and magnetic fields, the so called
near-field. Chu considered the radiated power Prad compared to the stored electric
and magnetic energy, We and Wm, of the near field. He defined the quality factor,
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Q, as [8, 26]

Q(ω) = 2ω
max(We(ω), Wm(ω))

Prad(ω)
.

At the resonance frequency ω0 of the antenna, there are equal amounts of stored
electric and magnetic energy:

Q(ω0) = 2ω0
We(ω0)

Prad(ω0)
. (3.1)

It is clear that a high quality factor is disadvantageous; large amounts of energy in
the near field is in general coupled to high losses. In fact, if Q(ω0) is high, its recipro-
cal can be interpreted as the half power bandwidth of the antenna impedance [26]. If
it is low, its an indication of a broadband antenna, i.e., an antenna that can operate
over a wide frequency band.

Chu considered linearly polarized omnidirectional antennas, and stated that an
antenna radiating like an electric dipole (i.e., only the lowest order TM-modes are
present) yields a minimum Q. He determined this minimum QTM,min as:

QTM,min =
1

k3
0a

3
+

1

k0a
(3.2)

where a is the radius of the circumscribing sphere, k0 = ω0/c the resonant wavenum-
ber, and c the speed of light in free space. This equation is not stated explicitly
in [8], but a direct consequence of the results presented there, see e.g., [38]. Collin
and Rothschild derived closed form expressions for the minimum Q for all modes
and circular polarisation in [9]. McLean re-derived the minimum Q of circularly
polarized antennas:

Qmin =
1

2k3
0a

3
+

1

k0a
.

Yaghjian and Best [55] propose an alternative quality factor QZ expressed in the
antenna impedance Z(ω):

QZ(ω0) =
ω0

2R
|Z ′(ω0)|. (3.3)

Here R = Z(ω0) is the real-valued impedance at the resonance frequeny, and a
prime (′) denotes differentiation with respect to the argument. For many antennas,
QZ(ω0) ≈ Q(ω0), but this is not generally applicable [22]. One advantage of QZ

over Q is that (3.3) is often easier to evaluate for real antennas than (3.1).
Harrington [26], as well as Geyi [15], discusses limitations on directivity and

quality factor. Directivity is the quotient of the power radiated in the desired direc-
tion to the total power radiated. Notwithstanding the references cited above, there
have been numerous other publications addressing limitations on antennas based on
the original paper [8] by Chu. A summary of some important results can be found
in Hansen’s book [24].
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Figure 9: The matching problem as described by Fano in [14]. The internal
resistance of the source as well as the resistance stemming from the representation
of the load Z can be normalised to 1.

3.2 Fano (1950)

Fano is perhaps most known for his work within information theory, but his doctoral
dissertation is concerned with electrical networks. This work has also been published
in [14]. More specifically, he studied the problem of matching a source to a load
over a frequency band. When a source is connected to a load, some, or all, of the
power delivered by the source will be rejected by the load:

Prejected = |Γ |2Psource.

Here Γ denotes the reflection coefficient. This is of course undesirable, since it
diminishes efficiency. Furthermore, it may cause non-linearities and damage the
source.

A given source may be matched perfectly to a load at one specific frequency.
But if the matching network must be lossless (i.e., neither producing nor consuming
power), the source and load can not be matched over a whole frequency band. To
investigate the limits, Fano used a representation presented by Darlington in [10],
stating that a load may be represented as a lossless network terminated in a pure
resistance, see Figure 9.

Fano only considered lumped circuit elements, and thus the impedance Z(ω) of
the load, as well as the reflection coefficient Γ (ω), were rational. He could therefore
derive sum rules for ln |Γ (ω)| with the Cauchy integral formula. The sum rules
are known under the name Fano’s matching equations. They can also be obtained
using the integral identities (2.15) for Herglotz functions, as done in Example 5.3
in Paper I. From the sum rules, Fano derived physical limitations on the reflection
coefficient Γ . The limitations are sometimes referred to as the Bode-Fano limits,
due to similar work by Bode in [5]. Fano also addressed the problem how the lossless
matching network should be designed in order to obtain optimal matching.

To use Fano’s equations for antenna matching, a model for the antenna impedance
is required. The impedance Z(ω) of many antennas can be approximated by the
resonance circuit in Figure 10 close to the resonance frequency ω0. Using Fano’s
limitations, it is straightforward to show that

B

π
min
B

ln |Γ (ω)|−1 � 1

QZ(ω0)

(
1 − B2

4

)
,
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Figure 10: For many antennas, the impedance Zres(ω) of the resonance circuit
is a good approximation for the antenna impedance Z(ω) close to its resonance
frequency ω0 [22]. The quality factor QZ(ω0) is given by (3.3).

Figure 11: Sohl et al. consider a plane wave impinging in the k̂ direction on an
arbitrary scatterer in [48], and on an antenna in [20].

where the frequency band is B = [ω0(1−B/2), ω0(1+B/2)] with center frequency ω0

and fractional bandwidth B. This is treated in detail by Gustafsson and Nordebo in
[22], where also the validity of the approximation by resonance circuits is discussed.
Fano matching can be combined with the limits on Q in Section 3.1 to yield Chu-Fano
limitations, see [20]. Fano matching of antennas is also considered in e.g., [25, 53].

3.3 Sohl et al. (2007)

A different approach to find limitations on antennas is adopted by Sohl et al. In
[48], they consider electromagnetic plane waves impinging on an antenna or other
scatterer, see Figure 11. The absorption cross section σa is a measure on the total
power absorbed from the wave. Some power will also be scattered, and the amount
is measured by the scattering cross section σs. The sum of the absorption and
scattering cross sections is the extinction cross section,

σe = σa + σs.

Using the optical theorem (see e.g., [40]) and Cauchy integrals, they derive the
following sum rule for the extinction cross section when the incoming wave is linearly
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polarized: ∫ ∞

0

σe(k, k̂, ê)

k2
dk =

π

2

(
ê · γe · ê + (k̂ × ê) · γm · (k̂ × ê)

)
, (3.4)

where k = ω/c is the wavenumber. Here ê is the electric polarization of the incoming
plane wave, and k̂ the direction of propagation for the wave, see Figure 11. The
electric and magnetic polarizability dyadics, γe and γm, quantify how much the
scatterer responds to static electric and magnetic fields. Closed form expressions for
the polarizability dyadics exists for homogeneous spheroidal scatterers, see [48]. For
heterogeneous scatterers and other geometries, the right-hand side of (3.4) can be
bounded. Thus, limitations of the form (2.17) can be derived where the right-hand
side is only dependent on the geometry circumscribing the scatterer. If the scatterer
is non-magnetic, the term (k̂ × ê) · γm · (k̂ × ê) in the right-hand side of (3.4) is
zero, which yields a sharper bound.

Many small scatterers absorb roughly the same amount of energy as they scat-
ter, i.e., σa ≈ σs. This fact can be used to find sharp limits on the absorption cross
section, since in that case σa ≈ σe/2. This means that the results of [48] are well
suited to limit antennas performance; a receiving antenna should ideally absorb the
power of an incoming wave transmitted from some other antenna. By reciprocity,
most antennas behave similarly whether they are acting as receivers or transmitters;
therefore, limiting receiving antenna performance also limits transmitting antenna
performance. The physical limitations on scattering derived by Sohl et al. are ap-
plied to antennas in [20]. They are comparable to the bounds based on Chu’s paper
for a circumscribing sphere, but sharper for non-spherical circumscribing geometries,
see Figure 12. In [20], only linearly polarized antennas are considered. Elliptically
polarized antennas are treated in [19]. Finally, it should be mentioned that the
results in [48] of course can be used within other applications of electromagnetic
scattering as well, and not only in antenna theory.

3.4 Spherical wave scattering and MIMO

In Paper II, the scattering of orthogonal vector spherical waves are considered.
Therefore, the scatterer, or antenna, is inscribed in a sphere of radius a, see Figure 8.
Outside this sphere, the electric and magnetic fields are expanded in incoming (u

(2)
ν )

and outgoing (u
(1)
ν ) vector spherical waves with index ν. The infinite dimensional

scattering matrix S̃S(ω) of the scatterer relates the amplitudes of the outgoing waves

(b̃
(1)
ν (ω)) to the amplitudes of the incoming waves (b̃

(2)
ν (ω)):

b̃(1)
ν (ω) =

∑
ν′

S̃ν,ν′(ω)b̃
(2)
ν′ (ω).

By considering the expressions for the vector spherical waves in the time domain, it
is shown rigorously that the elements Sν,ν′(t− 2a/c) of the scattering matrix in the
time domain are the impulse responses of scatter-passive systems. The time delay
−2a/c is due to the fact that the incoming waves u

(2)
ν does not have to reach the

center of the sphere to interact with the scatterer and produce outgoing waves u
(1)
ν .
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Figure 12: The physical limitations on directivity D over quality factor Q derived
in [20]. All antennas inscribed in the cylinder are bounded by the curve labeled
η = 1. If they scatter as much as they absorb, they are bounded by the curve
labeled η = 1/2. For comparison, some sample antennas and the Chu-limit (3.2)
with maximum directivity D = 3/2 are included.

The general approach to find sum rules and limitations on passive systems pre-
sented in Paper I can be used; two sum rules are derived, of which the following
physical limitation is a consequence:

B infB ln |S̃ν,ν′(ω)|−1

π
� k0a − 3

√
ι + ζ + 3

√
ι − ζ (3.5)

=

(
1

3
+ ρν,ν

)(
k3

0a
3 − k5

0a
5
)

+ O(k7
0), as k0 → 0,

where the frequency interval as before is defined as B = [(1 − B/2)ω0, (1 + B/2)ω0]
with center frequency ω0, center wavenumber k0 = ω0/c, and fractional bandwidth
B. In the bound (3.5), the material and geometry of the scatterer is contained in
ζ = 3k0a(1 − ρν,νk

2
0a

2)/2 and ι =
√

1 + ζ2 where

ρν,ν =
1

6πa3

⎧⎨⎩
γe,nn, if ν is the index of an electric dipole
γm,nn, if ν is the index of a magnetic dipole
0, for higher order modes.

(3.6)

Here γe,nn is a diagonal element of the electric polarizability dyadic and γm,nn is a
diagonal element of the magnetic polarizability dyadic. From (3.6) it follows that the
material parameter ρν,ν is bounded by 2/3 for all modes if the scatterer is contained
in sphere. If the scatterer is contained in a non-spherical geometry, ρ is bounded
by a smaller constant. Furthermore, if the scatterer is non-magnetic, the elements
of the magnetic polarizability dyadic γm are zero, which yields a sharper bound for
the magnetic dipoles.

The power of the incoming mode ν that is rejected by the scatterer is

Pν,rejected � |S̃ν,ν |2Pν,incoming,
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Figure 13: The bound (3.5) interpreted as a bound on the quality factor Q of
an antenna. The bounds are plotted for ρν,ν = 2/3 and ρν,ν = 0, respectively. For
comparison, the Chu-bound (3.2) is included, as well as the quality factor QZ(ω0)
of four sample antennas plotted at their respective resonance wavenumbers. Also,
the bound on the material parameter ρν,ν for the four antennas are stated.

with approximate equality for small scatterers. Thus the bound (3.5) places a limit
on the maximal power that an antenna can absorb from each individual incoming
mode. It can be interpreted as a bound on the quality factor of an antenna for each
mode (see Example 5.2 in Paper II), and it is compared to the Chu-bound (3.2) in
Figure 13. It deserves mentioning that the results of Paper II can be applied within
other applications of electromagnetic scattering as well, just like the results in [48].

The bounds derived in Paper II are not as sharp as those derived in [20], since
the expansion in vector spherical waves requires the antenna to be inscribed in
a hypothetical sphere. One reason to still consider spherical wave scattering is
multiple-input multiple-output (MIMO) systems [42]. A MIMO system employs
several antennas, and transmits and receives several signals at once. Each signal
must be sent over an orthogonal communication channel, and, if the circumstances
are correct, it follows that [42]

Capacity ∝ N ln (1 + SNR) . (3.7)

Here capacity is a measure on the amount of information that can be transmitted,
N denotes the number of transmitted signals, and SNR is the signal to noise ratio.
Transmitting and receiving several signals simultaneously is thus a good way of in-
creasing capacity. But in order for (3.7) to apply, the N signals must be carried
over an orthogonal set of spherical waves. In other words, there must be N orthog-
onal communication channels available. Otherwise, the individual signals can not
be separated from each other. The bound (3.5) states that there are only six domi-
nant modes available when the geometry circumscribing the antennas is small, and
only three if the antennas are non-magnetic. Therefore, increasing the number of
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transmitted signals N above three for a small geometry and non-magnetic antennas
might not give the desired capacity gain. The bounds (3.5) on the non-dominant
modes are only a factor of a third lower than the bounds on the dominant modes,
however.

Intuitively, one might expect that there is in fact only two dominant modes if the
non-magnetic antennas are circumscribed by a flat geometry, like a mobile phone.
That is one open challenge for the future. Furthermore, it is likely that the bound
for the non-dominant modes is sharper than (3.5) suggests. This supposition should
be investigated in the future as well.

4 Concluding remarks

In the first paper of this thesis, a general approach to derive sum rules and physical
limitations on passive physical systems is presented. The sum rules relate dynamical
behaviour to static and/or high frequency properties. This is helpful, since static
properties are often easier to determine. The physical limitations indicate what
can, and what can not, be expected from the physical system. Since many physical
systems obey passivity, the general approach of Paper I shows great potential; it may
be applied to a wide range of problems, not only within electromagnetic theory.

Even though physical limitations on antenna performance have been discussed
by researchers at least since Chu published his pioneering paper [8] in 1948, there is
still much to be discovered in this area. The results of Paper I open up promising
new ways to investigate this field of research, as indicated by the results of Paper II
as well as by the recent work of Sohl et al. in [48] and [20].
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Abstract

A passive system is one that cannot produce energy, a property that nat-
urally poses constraints on the system. A system on convolution form is fully
described by its transfer function, and the class of Herglotz functions, holo-
morphic functions mapping the open upper half plane to the closed upper half
plane, is closely related to the transfer functions of passive systems. Following
a well-known representation theorem, Herglotz functions can be represented
by means of positive measures on the real line. This fact is exploited in
this paper in order to rigorously prove a set of integral identities for Her-
glotz functions that relate weighted integrals of the function to its asymptotic
expansions at the origin and infinity.

The integral identities are the core of a general approach introduced here to
derive sum rules and physical limitations on various passive physical systems.
Although similar approaches have previously been applied to a wide range of
specific applications, this paper is the first to deliver a general procedure to-
gether with the necessary proofs. This procedure is described thoroughly, and
exemplified with examples from electromagnetic theory; one revisits Fano’s
matching equations, while another makes a link to the Kramers-Kronig dis-
persion relations and discusses physical limitations on metamaterials.

1 Introduction

The concept of passivity is fundamental in many applications. Intuitively, a passive
system is one that does not in itself produce energy (if the system does not consume
energy either, it is called lossless); hence the energy-content of the output signal is
limited to that of the input. Passivity poses severe constraints, or physical limita-
tions, on a system. The aim of this paper is to investigate these constraints. In
particular, a general approach to derive physical limitations is presented.

A system on convolution form is fully described by its impulse response, w. The
convolution form is intimately related to the assumptions of linearity, continuity
and time-translational invariance. With the added assumptions of causality and
passivity, the Fourier transform of w is related to a Herglotz function [20] (sometimes
referred to as a Nevanlinna [14], Pick [6], or R-function [16]). The Laplace transform
and the related function class of positive real (PR) functions are commonly preferred
in system theory [9, 27].

As holomorphic mappings between half-planes, Herglotz functions are closely re-
lated to positive harmonic functions and the Hardy space H∞(C+) via the Cayley
transform [7, 19]. Herglotz functions appear in literature concerning continued frac-
tions and the problem of moments [1, 15], but also within functional analysis and
spectral theory for self-adjoint operators [2, 14]. There is a powerful representation
theorem for Herglotz functions, relating them to positive measures on R. Under
certain assumptions on a Herglotz function h it is possible to derive a set of integral
identities, relating weighted integrals of h over infinite intervals to its expansion
coefficients at the origin and infinity.
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In physical applications the integral identities are often called sum rules, effec-
tively relating dynamic behaviour to static and/or high-frequency properties. This
is very beneficial, since static properties are often easier to determine than dynam-
ical behaviour in various applications. The representation in itself can also pro-
vide information on a system in the form of dispersion relations; consider e.g., the
Kramers-Kronig relations [18] discussed in Example 5.4. One way to take advantage
of the sum rules is to derive constraints, or physical limitations, by considering finite
frequency intervals. In essence, the physical limitations indicate what can and can-
not be expected from a system. Some examples of applications in electromagnetic
theory are in the analysis of bandwidth versus mismatch for matching networks [8],
temporal dispersion for metameterials [10], broadband electromagnetic interaction
with objects [24], bandwidth and directivity for antennas of certain sizes [11], extra
ordinary transmission through sub-wavelength apertures [12], thickness influence on
performance of radar absorbers [21] and high-impedance surfaces [4], and impact of
inter element coupling on frequency selective surfaces [13]. The physical limitations
can be very helpful, both from a theoretical point of view where one wishes to un-
derstand what factors limit the performance, but also from a designer view-point
where the physical limitations can signal if there is room for improvement or not.

As the examples show, similar methods to the one presented in this paper have
been widely used to derive sum rules for systems on convolution form. They rely
on somewhat different assumptions, and therefore does not apply to all the same
problems. One approach, presented in [8, 25], relies on the Cauchy integral formula
and is valid e.g., if the transfer function is rational. Another assumes e.g., that
the transfer function is square-integrable, and derives sum rules from the Hilbert
transform [17]. For square-integrable transfer functions, a theorem by Titchmarsh
can also be used to find dispersion relations [20], which in some cases yield sum
rules. As mentioned above, the crucial assumptions for the approach presented in
this paper are that the system is causal and passive, and there does not seem to be a
previous account on an approach to derive sum rules for causal and passive systems
together with the rigorous proofs required.

This paper is divided into a number of distinct parts: First, the class of Herglotz
functions along with some of its important properties are reviewed in order to pave
the way for the integral identities, which constitute the core of the paper. After this
section there is a discussion about passive systems and the possibility to constrain
these. The proof of the integral identities comes next, and after that follow some
examples which serve to illuminate the theory. Last come some concluding remarks.

2 Herglotz functions and integral identities

The aim of this section is to introduce the class of Herglotz functions and recall
some well known properties of this class. This naturally leads to the introduction
of the main results of the paper, namely the integral identities. They are presented
in the end of the section. Start with the definition of a Herglotz function:
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Definition 2.1. A Herglotz function is defined as a holomorphic function h : C
+ →

C
+ ∪ R where C

+ = {z : Im z > 0}.
There is a powerful representation theorem for the set of Herglotz functions H

due to Nevanlinna [2]:

Theorem 2.1. A necessary and sufficient condition for a function h to be a Herglotz
function is that

h(z) = βz + α +

∫
R

(
1

ξ − z
− ξ

1 + ξ2

)
dμ(ξ), Im z > 0, (2.1)

where β � 0, α ∈ R and μ is a positive Borel measure such that
∫

R
dμ(ξ)/(1+ ξ2) <

∞.1

Note the resemblance of (2.1) to the Hilbert transform [17, 19]. The proof of the
representation theorem is not included here (it can be found in [2]), but in order to
make it believable, (2.1) is cast into the slightly different form

h(z) = βz + α +

∫
R

1 + ξz

ξ − z
dν(ξ), Im z > 0, (2.2)

where dν(ξ) = dμ(ξ)/(1+ξ2) is a positive and finite measure. The function F (ξ, z) =
(1+ξz)/(ξ−z) is a Herglotz function in z for all ξ ∈ R∪{∞}, and sums of Herglotz
functions are Herglotz functions. The constant β may be interpreted as ν({∞}) (the
point mass of ν at the point ∞ of the extended real line R∪{∞}), since F (ξ, z) → z
as |ξ| → ∞. A real constant α may also be added to a Herglotz function, so the
function given by (2.2) is a Herglotz function. That (2.1) exhausts the set H follows
e.g., from a representation theorem for positive harmonic functions on the unit disk
due to Herglotz. This representation theorem relies on the Riesz representation
theorem for continuous, linear functionals on a compact metric space. Note that the
only way in which a Herglotz function can be real-valued in C

+ is if h ≡ α for some
α ∈ R.

From the representation (2.1) it follows that h(z)/z → β, as z→̂∞, where z→̂∞
is a short-hand notation for |z| → ∞ in the Stoltz domain θ � arg z � π − θ for
any θ ∈ (0, π/2] (see Appendix A.1). Hence it makes sense to consider Herglotz
functions with the asymptotic expansion

h(z) =
m=1∑

1−2M

bmzm + o(z1−2M), as z→̂∞, (2.3)

where bm ∈ R. Since b1 = β, this expansion is always possible for some integer
M � 0. It will simplify notation to define bm = 0 for m > 1. The representation

1The following notation is adopted throughout this paper (cf., [3, 22]): If μ is a positive measure
on the Borel subsets E of R and E ∈ E , denote μ(E) =

∫
E

dμ(ξ). The measure is referred to as
μ or dμ. The Lebesgue integral of f with respect to μ is denoted

∫
R

f(ξ) dμ(ξ) whenever f is a
complex-valued measurable function on R. The measure that maps E to

∫
E

u(ξ) dμ(ξ) for some
non-negative measurable function u on R is denoted u dμ.
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also implies that zh(z) → −μ({0}), as z→̂0 (once more, see Appendix A.1), and so
an asymptotic expansion

h(z) =
2N−1∑
n=−1

anz
n + o(z2N−1), as z→̂0, (2.4)

where a−1 = −μ({0}) and all an are real, is available for some integer N � 0. The
coefficients an are defined to be zero for n < −1. It will turn out that it suffices to
consider the asymptotic expansions along the imaginary axis, i.e., for arg z = π/2
(see Lemma 4.2).

The main results of this paper are the identities:

lim
ε→0+

lim
y→0+

1

π

∫
ε<|x|<ε−1

Im h(x + iy)

xp
dx = ap−1 − bp−1, p = 2− 2M, 3− 2M, . . . , 2N.

(2.5)
Throughout this paper i denotes the imaginary unit (i2 = −1), and x = Re z and
y = Im z are implicit. Note that the origin is no more special than any other point
on the real line; a Herglotz function shifted to the left or right is still a Herglotz
function. Compositions of Herglotz functions with each other yields new Herglotz
functions (barring the trivial case when h ≡ α), a property that may be exploited
to determine a family of sum rules. See the examples 5.1 and 5.4.

One more point deserves a discussion here: In physical applications it is often
desirable to interpret the left-hand side of (2.5) as an integral over the real line. In
that case the integral must be interpreted in the distributional sense; the generalised
function h(x) = limy→0+ h(x+iy), where the right hand side is interpreted as a limit
of distributions, is a distribution of slow growth. In a discussion following Lemma 4.1
it is shown that, for almost all x ∈ R, the limit limy→0+ Im h(x+iy) exists as a finite
number. The left-hand side of (2.5) is precisely the integral over the finite part of
the limit plus possible contributions from singularities in {x : 0 < |x| < ∞}, cf.,
(4.3), Example 5.1 and Example 5.2.

In some special cases the integral identities follow directly from the Cauchy
integral formula [8, 25]. This requires some extra assumptions, e.g., that the Herglotz
function is the restriction to C

+ of a rational function. An alternative approach to
obtain integral identities from the Hilbert transform is adopted by King [17].

3 Sum rules for passive systems

The integral identities (2.5) offer an approach to construct sum rules and associated
physical limitations on various systems. The first step is to ensure that the system
can be modelled with a Herglotz function. Secondly, the asymptotic expansions (2.3)
and (2.4), here referred to as the high- and low-frequency asymptotic expansions,
have to be determined. This step commonly uses physical arguments, and is specific
to each application. Finally, the integrals in (2.5) are bounded to construct the
physical limitations.
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In [26] and [27], Zemanian shows that Herglotz functions appear in the context of
linear, time translational invariant, continuous, causal and passive systems. These
treatises are in the context of distributions, while a study in a more general setting
is given in [28]. A short summary of some important results are given in this section.
See also the book [20] by Nussenzveig.

Let D′ denote the space of distributions of one variable, and let D′
0 denote dis-

tributions with compact support [27]. Consider an operator R : D(R) ⊆ D′ → D′.
It is a convolution operator if and only if it is linear, time translational invariant,
and continuous [27, Theorem 5.8-2]:

u(t) = Rv(t) = w ∗ v(t), (3.1)

where t denotes time, ∗ denotes temporal convolution and w ∈ D′ is the impulse
response. The exact definitions of linearity, time translational invariance and conti-
nuity can be found in [27]. The output signal u is given by (3.1) at least for all input
signals v ∈ D′ so that convolution with w is defined in the sense of Theorems 5.4-1
and 5.7-1 in [27]. Since w ∈ D′, u = w ∗ v at least for all v ∈ D′

0. If, for example, w
is in S ′, then u = w ∗ v for all v ∈ S. Here S ′ denotes distributions of slow growth
and S denotes smooth functions of rapid descent [27].

The operator is causal if w is not supported in t < 0, i.e., supp w ⊆ [0,∞).
The last crucial property of the operator is that of passivity, which is considered in
two different forms. The terminology is borrowed from electric circuit theory. Let v
correspond to the electric voltage over some port, and let u correspond to the current
into said port. Assume that the voltage and current are almost time-harmonic with
an amplitude varying over a timescale much larger than the dominating frequency,
so that u and v are complex valued distributions. The power absorbed by the system
at the time t is Re u∗(t)v(t) (if u and v are regular functions), where the superscript
∗ denotes the complex conjugate. The operator R defined by u = Rv is called the
admittance operator. If instead the input signal is q = (v + u)/2 and the output is
r = Wq = (v − u)/2, the corresponding operator W is the scattering operator, and
the absorbed power is |q(t)|2 − |r(t)|2. Let D denote the space of smooth functions
with compact support and make the following definition [27, 28]:

Definition 3.1. Let R be a convolution operator with input v and output u = Rv.
Define the energy expressions

eadm(T ) = Re

∫ T

−∞
u∗(t)v(t) dt

and

escat(T ) =

∫ T

−∞
|v(t)|2 − |u(t)|2 dt.

The operator is admittance-passive (scatter-passive) if eadm(T ) (escat(T )) is non-
negative for all T ∈ R and v ∈ D.

Note that admittance-passive might as well have been called impedance-passive,
if the electric current was assumed to be input and the voltage output in the example
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from which the name stems. Reference [26] and [27] only treat admittance-passivity,
and furthermore assume that w is real. The results referenced below are formulated
only for real operators, but the proofs do not make use of this. Reference [28] deals
with both admittance- and scatter-passive operators, but in a general Hilbert space
setting. The results for scatter-passive operators may also be proved in a distribu-
tional context in a similar manner as the results for admittance-passive operators,
see also [20].

An operator which is admittance-passive or scatter-passive is called passive in
this paper. As it turns out, passivity implies causality for operators on convolution
form. Furthermore, in this case the impulse response w must be a distribution of
slow growth, i.e., w ∈ S ′, and thus (3.1) is defined for smooth input signals of rapid
descent, v ∈ S. Note that (3.1) is also defined for all input signals v with support
bounded on the left, since supp w ⊆ [0,∞) [27, 28].

Since the impulse response is in S ′, its Fourier transform may be defined as

〈Fw, ϕ〉 = 〈w,Fϕ〉 , for all ϕ ∈ S,

where 〈f, ϕ〉 is the value in C that f ∈ S ′ assigns to ϕ ∈ S [27]. The Fourier
transform of ϕ is defined as

Fϕ(ω) =

∫
R

ϕ(t)eiωt dt.

The Fourier transform of w is the transfer function w̃ of the system, viz.,

w̃(ω) = Fw(ω). (3.2)

The convolution in (3.1) is mapped to multiplication if e.g., v ∈ D′
0 or v ∈ S. In

that case the frequency domain system is modeled by

ũ(ω) = w̃(ω)ṽ(ω),

where ṽ = Fv and ũ = Fu are the input and output signals, respectively.
The transfer function w̃(ω) is in S ′ for real ω, but since the support of w is

bounded on the left the region of convergence for w̃ contains C
+ and w̃ is holomor-

phic there. The Laplace transform is commonly used in system theory, generating
the corresponding transfer function w̃Laplace(s) = w̃(is). Scrutinising the transfer
function, the following theorem is proved (cf., Theorem 10.4-1 in [27] and Theo-
rems 7.4-3 and 8.12-1 in [28]):

Theorem 3.1. Let R = w∗ be a convolution operator and let w̃ be given by (3.2). If
R is admittance-passive, then Re w̃(ω) � 0 for all ω ∈ C

+. If R is scatter-passive,
then |w̃(ω)| � 1 for all ω ∈ C

+. In both cases w̃ is holomorphic in C
+.

The converse statement to the theorem can also be made, i.e., that every transfer
function on one of the forms described in the theorem generates an admittance-
passive or scatter-passive operator, respectively [27, Theorem 10.6-1], [28, Theorems
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7.5-1 and 8.12-1]. Therefore the generalised function h(x) = limy→0+ h(x + iy) is a
distribution of slow growth for all Herglotz functions h.

Evidently, the transfer function of an admittance-passive operator multiplied
with the imaginary unit is a Herglotz function, h = iw̃. For scatter-passive operators
a Herglotz function can be constructed from w̃ via the inverse Cayley transform
z �→ (iz + i)/(1 − z). Alternatively, factorize w̃(ω) = H(ω)B(ω), where H(ω) is a
zero free holomorphic function such that |H(ω)| � 1 for all ω ∈ C

+ and

B(ω) =

(
ω − i

ω + i

)k ∏
ωn �=i

|ω2
n + 1|

ω2
n + 1

ω − ωn
ω − ω∗

n

(3.3)

is a Blaschke product [7, 19]. Here the zeros ωn of w̃ are repeated according to
their multiplicity and k � 0 is the order of the possible zero at ω = i. The conver-
gence factors |ω2

n + 1|/(ω2
n + 1) may be omitted if all |ωn| are bounded by the same

constant or if w̃ satisfies the symmetry (3.7) discussed below. Since w̃ belongs to
the Hardy space H∞(C+), this factorization is always possible due to a theorem of
F. Riesz [7, 19]. Moving on, the function H may be represented as H(ω) = eih(ω)

since it is holomorphic and zero-free on the simply connected domain C
+. Here the

holomorphic function h must have a non-negative imaginary part. Note that the
converse to the factorization also holds; a function w̃ is holomorphic and bounded
in magnitude by one in C

+ if and only if it is of the form

w̃(ω) = B(ω)eih(ω), (3.4)

where B is a Blaschke product given by (3.3) and h is a Herglotz function.
The formula (3.4) may be inverted:

h(ω) = −i log

(
w̃(ω)

B(ω)

)
,

if the logarithm is defined as

log H(z) = ln |H(z0)| + i arg H(z0) +

∫
γz

z0

dH/ dζ

H(ζ)
dζ. (3.5)

Here γzz0 is any piecewise C1 curve from z0 to z in C
+. The left-hand side of (2.5)

takes the form

lim
ε→0+

lim
y→0+

∫
ε<|x|<ε−1

Im h(x + iy)

xp
dx

= lim
ε→0+

lim
y→0+

∫
ε<|x|<ε−1

− ln |w̃(x + iy)/B(x + iy)|
xp

dx.

The modulus |B(z)| tends to 1 as z→̂x for almost all x ∈ R (the exceptions are
the x which are accumulation points of the zeros of w̃ [19]). If the origin is not an
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accumulation point of the zeros of w̃, the low-frequency asymptotic expansion of h
is

h(ω) = −i log w̃(ω) − arg B(0) + i
∞∑
m=1

ωm

m

∑
ωn

ω−m
n − ω∗−m

n , as ω→̂0. (3.6)

A similar argument may be applied to the high-frequency asymptotic expansion.
The asymptotic expansions of log w̃ must be found by physical arguments, see Ex-
ample 5.3.

For operators R mapping real input to real output, the impulse response w has
to be real. This implies the symmetry

w̃(ω) = w̃∗(−ω∗), (3.7)

which is transferred to the Herglotz function as

h(ω) = −h∗(−ω∗) (3.8)

if it is defined by h = iw̃(ω) (for admittance-passive systems) or by the inverse
Cayley transform of ±w̃ (for scatter-passive systems). The Herglotz function h in
(3.4) must be of the form h = h1 + α, where h1(ω) = −h∗

1(−ω∗), and α ∈ R is the
argument of eih(ω) for purely imaginary ω. The symmetry restricts the identities (2.5)
to even powers and simplifies them to

lim
ε→0+

lim
y→0+

2

π

∫ ε−1

ε

Im h(x + iy)

x2p̂
dx = a2p̂−1 − b2p̂−1, p̂ = 1 − M, . . . , N. (3.9)

In general, the integral identities (2.5) for even p are the starting point to derive
constraints on the system as the non-negative integrand can be bounded by a finite
frequency interval.

Summing up, there are three essentially equivalent ways to evaluate if a system
can be modeled with a Herglotz function and potentially be constrained according
to (2.5): First, just based on a priori knowledge of linearity, time-translational
invariance, continuity, and passivity. Secondly, the time-domain characterization
given by the convolution form (3.1) together with passivity. These approaches can
often be applied directly to various physical systems. The third, frequency domain
case is often more involved and requires direct verification that h(ω) is holomorphic
and Im h(ω) � 0 for Im ω > 0. In many fields of physics it is common to consider
time-harmonic signals as approximations of physically realisable signals. It becomes
clear here that this could have inspired assumptions too severe; one could easily
have been lead to the assumption that the transfer function needs to be defined
pointwise for real frequencies.

The high-frequency expansions (2.3) are sometimes hard to evaluate for physical
systems. The high-frequency behaviours of w̃(ω) and h(ω) are determined by the
behaviour of w(t) for arbitrarily short times. To see this, first assume that w is a
regular, integrable function. Then w̃ is defined as

w̃(ω) =

∫ ∞

0

w(t)eiωt dt =

∫ ε

0

w(t)eiωt dt +

∫ ∞

ε

w(t)eiωt dt.



4 Proof of the integral identities 39

The second term in the right hand side goes to zero as ω→̂∞ (but not as |ω| → ∞
on the real line) for any ε > 0. This verifies the statement for w ∈ L1. For a general
w ∈ S ′, consider the equivalent definition of w̃(ω) for Im ω > 0 [27]:

w̃(ω) =
〈
w(t), λ(t)eiωt

〉
=
〈
w(t), λ1(t)e

iωt
〉

+
〈
w(t), λ2(t)e

iωt
〉
.

Here λ(t) is a smooth function with support bounded on the left, and such that
λ(t) ≡ 1 for t � 0. It is decomposed into two non-negative smooth functions,
λ = λ1 + λ2, where λ2 ≡ 0 for t � ε for some ε > 0. The second term in the
right hand side vanishes as ω→̂∞. A similar argument may be carried out for the
low-frequency expansion (2.3), essentially relating it to the behaviour of w(t) for
arbitrarily large t.

4 Proof of the integral identities

The main theorem (Theorem 4.1) of this paper contains the integral identities (2.5).
For p = 2, 3, . . . , 2N they rely on two results: The first (Corollary 4.1) states that
the left-hand side of (2.5) is equal to moments of the measure dμ(ξ). The second
(Lemma 4.2) relates the convergence and explicit value of these moments to the
expansion (2.4). A change of variables in the left-hand side of (2.5) enables a proof
for p = 2 − 2M, 3 − 2M, . . . , 1.

A Herglotz function h(z) is in general not defined pointwise for Im z = 0, but
integrals of the type limy→0+

∫
R

ϕ(x) Im h(x + iy) dx are well defined under certain
conditions on ϕ. The following lemma gives such sufficient conditions. They are
stronger than needed, but weak enough to lead to the needed Corollary 4.1. This is
a well known result, see e.g., Theorem 11.9 in [19] and Lemma S1.2.1 in [16]. The
lemma and proof are included here for clarity.

Lemma 4.1. Let h denote a Herglotz function. Suppose that the function ϕ : R → R

is piecewise C1, and that there is a constant D � 0 such that |ϕ(x)| � D/(1 + x2)
for all x ∈ R. Then it follows that

lim
y→0+

1

π

∫
R

ϕ(x) Im h(x + iy) dx =

∫
R

ϕ̌(ξ) dμ(ξ), (4.1)

where μ(ξ) is the measure in the representation (2.1) of h, and

ϕ̌(ξ) =

{
ϕ(ξ), if ϕ is continuous at ξ
ϕ(ξ−)+ϕ(ξ+)

2
, otherwise.

(4.2)

Here ϕ(ξ±) = limζ→ξ± ϕ(ζ).

The proof can be found in Appendix A.2. It is readily shown that the limit
may be replaced by any non-tangential limit, i.e., the left-hand side of (4.1) may be
replaced by limu→̂0

∫
R

ϕ(x) Im h(x + u) dx.
Note that the lemma is in some sense an inversion formula; whereas the represen-

tation (2.1) gives the Herglotz function h from the measure μ, (4.1) makes possible
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the retrieval of μ when h is known. The inversion is clarified by decomposing the
measure as μ = μa + μs, where μa is absolutely continuous with respect to the
Lebesgue measure dξ and μs is singular in the same sense [3]. Recall that E denotes
the set of Borel subsets of R. Then

μa(E) =

∫
E

μ′
a(ξ) dξ, for all E ∈ E ,

where the Radon-Nikodym derivative μ′
a of μa with respect to dx is a finite, inte-

grable function and for almost all x ∈ R uniquely defined as [3]

μ′
a(x) = lim

s→0

μa([x − s, x + s])

2s
.

“Almost all” is with respect to dx. Furthermore,

lim
s→0

μs([x − s, x + s])

2s
= 0 for almost all x ∈ R.

Hence Lemma 4.1 implies that

lim
z→̂x

1

π
Im h(z) = lim

s→0

μ([x − s, x + s])

2s
, for almost all x ∈ R.

See also [19].
In physical applications it is often desirable to move the limit inside the integral

in the left-hand side of (4.1). Clearly, this is possible if μ = μa. Otherwise set
h = ha + hs, where ha (hs) is represented by μa (μs), to get

lim
y→0+

1

π

∫
R

ϕ(x) Im h(x + iy) dx

=
1

π

∫
R

ϕ(x) Im ha(x) dx + lim
y→0+

1

π

∫
R

ϕ(x) Im hs(x + iy) dx, (4.3)

where Im ha(x) = limy→0+ Im h(x + iy) whenever the limit exists finitely. Equiva-
lently, the left-hand side of (4.1) may be interpreted as an integral over the real line
in the distributional sense. Recall that the generalised function h(x) is a distribution
of slow growth.

The first result needed for the main theorem is this corollary to Lemma 4.1:

Corollary 4.1. For all Herglotz functions h given by (2.1) it holds that

lim
ε→0+

lim
ε̆→0+

lim
y→0+

1

π

∫ −ε

−ε̆−1

Im h(x + iy)

xp
dx + lim

ε→0+
lim
ε̆→0+

lim
y→0+

1

π

∫ ε̆−1

ε

Im h(x + iy)

xp
dx

=

∫
R

dμ0(ξ)

ξp
, p = 0,±1,±2, . . .

Here μ0 = μ− μ({0})δ0, i.e., the measure in the representation (2.1) with the point
mass in the origin removed. The terms in the left-hand side are not necessarily finite.
The right-hand side is not defined in the case the left-hand side equals −∞ + ∞.
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The proof can be found in Appendix A.3.
Before presenting the second result needed for the main theorem, it is noted that

h may be decomposed as

h(z) = βz + α − μ({0})
z

+

∫
R

(
1

ξ − z
− ξ

1 + ξ2

)
dμ0(ξ), (4.4)

where once again μ0 = μ − μ({0})δ0. This decomposition follows directly from the
fact that zh(z) → −μ({0}) as z→̂0.

Lemma 4.2. Let h be a Herglotz function given by (2.1) and N � 0 an integer.
Then the following statements are equivalent:

1. The function h has the asymptotic expansion (2.4), i.e.,

h(z) =
2N−1∑
n=−1

anz
n + o(z2N−1), as |z| → 0,

for z in the Stoltz domain θ � arg z � π − θ for any θ ∈ (0, π/2]. Here all an
are real.

2. Statement 1 is true for θ = π/2.

3. The measure μ0 = μ − μ({0})δ0 satisfies∫
R

dμ0(ξ)

ξ2N(1 + ξ2)
< ∞.

The expansion coefficients in (2.4) equal:

a0 = α +

∫
R

dμ0(ξ)

ξ(1 + ξ2)
, (4.5)

ap−1 = δp,2β +

∫
R

dμ0(ξ)

ξp
, p = 2, 3, . . . , 2N, (4.6)

where δi,j denotes the Kronecker delta.

A similar result is a well-known theorem due to Hamburger and Nevanlinna [1,
Theorem 3.2.1]. See also Lemma 6.1 in [14]. Note that the case N = 0 is trivial, since
then all three statements are true for all Herglotz functions. The proof for N � 1
can be found in Appendix A.4. The convergence of

∫
R

dμ0(ξ)/(|ξ2N+1|(1+ ξ2)) does
guarantee an expansion with real coefficients up to o(z2N), but the converse is not
true. A counterexample for N = 0 is given by the measure dμ0(ξ) = μ′

0(ξ) dξ where
μ′

0(ξ) = −(ln |ξ|)−1 when ξ < 1 and μ′
0(ξ) = 0 otherwise.

The integral identities for p = 2, 3, . . . 2N follow directly from Corollary 4.1 and
Lemma 4.2 (recall that b1 = β and that bp−1 = 0 for p = 3, 4, . . .). To prove

the identities for p = 2 − 2M, 3 − 2M, . . . , 1, consider the Herglotz function h̆(z) =
h(−1/z). With obvious notation, its high- and low-frequency asymptotic expansions
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are related to those of h as b̆n = (−1)na−n and ăn = (−1)nb−n. Evidently, M̆ = N
and N̆ = M applies. Following (4.4), h̆ admits the representation

h̆(z) =
−β

z
+ α + μ({0})z +

∫
R

1 + ξz−1

1 + ξ2
dν0(ξ), Im z > 0,

where dν0(ξ) = dμ0(ξ)/(1+ ξ2). It would be desirable to make a change of variables
ξ �→ −1/ξ in the integral. Therefore, consider the continuous bijection j : R\{0} →
R\{0} defined by jξ = −1/ξ. It is its own inverse, i.e., j2ξ = ξ. Furthermore, it
maps Borel sets to Borel sets, which makes the following a valid definition:

Definition 4.1. Let j : R\{0} → R\{0} be the mapping that takes ξ to −1/ξ.
Let E(R\{0}) be the Borel sets of R\{0} and M(R\{0}) be the set of measures on
E(R\{0}). Define the mapping J : M(R\{0}) → M(R\{0}) through

Jσ(E) = σ(jE),

for all σ ∈ M(R\{0}) and E ∈ E(R\{0}).
From this definition it is clear that J2σ = σ and moreover∫

R\{0}
f(ξ) dσ(ξ) =

∫
R\{0}

f(jξ) d (Jσ)(ξ)

for all measurable functions f on R\{0}, since it holds if f is a simple measurable
function [22]. The representation of h̆ can now be rewritten:

h̆(z) =
−β

z
+ α + μ({0})z +

∫
R

1 − ξz

1 + ξ2
d (Jν0)(ξ), Im z > 0.

The function h̆ is thus represented by the measure dν̆0 = d (Jν0), or equivalently
dμ̆0 = ξ2 d (Jμ0). Therefore

lim
y→0+

1

π

∫ ε̆−1

ε

Im h(x + iy)

xp
dx =

∫
R

ϕ̌p,ε,ε̆(ξ) dμ0(ξ) =

∫
R

ϕ̌p,ε,ε̆(−1/ξ)
dμ̆0(ξ)

ξ2

= lim
y→0+

(−1)p
1

π

∫ −ε̆

−ε−1

Im h̆(x + iy)

x2−p dx, for p = 0,±1,±2, . . . and 0 < ε < ε̆−1,

(4.7)

and likewise for the corresponding integral over (−ε̆−1,−ε). Here ϕ̌p,ε,ε̆ is given by
(A.2) and (4.2). The proof of the integral identities (2.5) for p = 2−2M, 3−2M, . . . , 0
have now been returned to the case p = 2, 3, . . . , 2N . Here at last is the sought for
theorem:

Theorem 4.1 (Main Theorem). Let h be a Herglotz function. Then it has the
asymptotic expansions (2.3) and (2.4) if and only if the corresponding left-hand
sides in (2.5) are absolutely convergent. In this case the integral identities (2.5)
apply.

The proof can be found in Appendix A.5. The integrals in the left-hand side
of (2.5) may be taken over the set {x : ε < |x| < ∞} when p = 2, 3, . . . , 2N and
{x : 0 < |x| < ε−1} when p = 2 − 2M, 3 − 2M, . . . , 0, see Appendix A.3. In this
case there is an extra term −δp,0 a−1 in the right-hand side. This fact is used in the
examples below to obtain neater expressions.
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5 Examples

5.1 Elementary Herglotz functions

Examples of elementary Herglotz functions are

βz, C,
−β

z
,

√
z, log(z), i log(1 − iz),

with β � 0, Im C � 0, and appropriate branch cuts for
√

and log.

Herglotz functions are related to the unit ball of the Hardy space H∞(C+) via
the Cayley transform. An example is eiz which shows that

he(z) =
ieiz + i

1 − eiz

is a Herglotz function. Therefore tan z = −1/he(2z) is a Herglotz function as well.
It satisfies the symmetry (3.8) and its asymptotic expansions are tan z = i + o(1),
as z→̂∞, and

tan z = z +
z3

3
+

2z5

15
+ . . . , as z → 0,

respectively. Note that the integer-order terms in the low-frequency asymptotic
expansion are infinite in number since tan z is holomorphic in a neighbourhood of
the origin. Thus there are identities (3.9) for p̂ = 1, 2, . . .:

lim
ε→0+

lim
y→0

2

π

∫ ∞

ε

Im tan(x + iy)

x2p̂
dx =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 for p̂ = 1

1/3 for p̂ = 2

2/15 for p̂ = 3.
...

On the real axis except for x = nπ, where n = 0,±1,±2, . . ., tan(x) is C∞ and
Im tan(x) = 0. It is not locally integrable around x = nπ, where tan z has simple
poles. There is an essential singularity at ∞, and the limit as x → ∞ of tan(x)/x2p̂

is not defined for any p̂. This is thus an illustration of a case where it is difficult to
use Cauchy integrals or Hilbert transform techniques to derive integral identities of
the form (2.5).

If h1 and h2 are Herglotz functions, then so is the composition h2 ◦ h1 (unless
h1 ≡ α ∈ R). This may be used to derive families of integral identities. Continue
the example with h1 = tan z and construct the new Herglotz function

i log(1 − i tan z) =

{
z + O(1), as z → 0

O(1), as z→̂∞,

yielding an identity of the type (3.9):

lim
ε→0+

lim
y→0+

2

π

∫ ∞

ε

ln |1 − i tan(x + iy)|
x2

dx = 1.
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Figure 1: The lossless resonance circuit of Example 5.2.

It is also illustrative to consider a case with odd weighting factors in (2.5). The
function ln(1 + tan(z)) has the asymptotic expansions

ln(1 + tan(z)) =

{
z − z2/2 + 2z3/3 + . . . , as z → 0

O(1), as z→̂∞.

This gives the (2.5)-identities

lim
ε→0+

lim
y→0+

1

π

∫
|x|>ε

arg(1 + tan(x + iy))

xp
dx =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 for p = 2

−1/2 for p = 3

2/3 for p = 4
...

where it is observed that the negative part of the integrand dominates for p = 3.
There are other manipulations of Herglotz functions that generate new Herglotz
functions as well, e.g., h1 + h2 and

√
h1h2.

5.2 Lossless resonance circuit

Consider a parallel resonance circuit consisting of a lumped inductance, L, and a
lumped capacitance, C, see Figure 1. This is an example of an admittance-passive
system, where the impedance Z(s) = sL/(1+s2LC) is the Laplace-transfer function
of the system in which the electric current over Z is the input and the voltage is the
output. Therefore the transfer function given by (3.2) multiplied by i is a Herglotz
function:

h(ω) = iZ(−iω) = −ω2
0L

2

(
1

ω − ω0

+
1

ω + ω0

)
=

⎧⎨⎩
√

L
C

∑∞
n=0

ω2n+1

ω2n+1
0

, as ω → 0

−
√

L
C

∑∞
n=0

ω2n+1
0

ω2n+1 , as ω → ∞,

where ω0 = 1/
√

LC is the resonance frequency of the LC circuit. In general,
the imaginary part of h(ω) = iZ(−iω) corresponds to the power absorbed by the
impedance Z.

Use of the identities (3.9) gives the sum rules

lim
ε→0+

lim
ω′′→0+

2

π

∫ ε−1

ε

Im h(ω′ + iω′′)
ω′2p dω′ =

√
L

C
ω−2p+1

0 , for p = 0,±1,±2, . . . (5.1)
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Figure 2: The voltage waves traveling along the transmission line has the ampli-
tudes v(t) and u(t), respectively, measured by the load.

Note that on the real axis Im h(ω′) = 0 for ω′ �= ±ω0. All of the contribution to
the integral comes from the singularity, which becomes clear if the left-hand side
of (5.1) is calculated explicitly. A physical interpretation is that even though the
circuit is lossless for any frequency ω′ �= ω0, input signals of frequency ω′ = ω0 are
“trapped” in its resonance and thus absorbed by Z.

5.3 Reflection coefficient (Fano’s matching equations revis-
ited)

Consider a transmission line ended in a load impedance. The transmission line is
assumed to be distortionless, i.e., its characteristic impedance is not a function of
frequency. Normalise so that the characteristic impedance of the transmission line is
1 and the lumped impedance is Z(s), where s = −iω denotes the Laplace parameter.
The load impedance is assumed to be realisable with a finite number of linear passive
elements (but otherwise arbitrary), so Z is a rational function.

The reflection coefficient ρ(s) = (Z(s) − 1)/(Z(s) + 1) is of interest, since it
determines the power rejected by the load. It is the Laplace-transfer function of
the system where the input v and output u are the amplitudes of the voltage waves
travelling along the transmission line toward or from the load, respectively. See
Figure 2. The Fourier transfer function is w̃(ω) = ρ(−iω), satisfying (3.7). This is
clearly a scatter-passive system, so w̃(ω) is holomorphic and bounded in magnitude
by one in C

+.
Assume the asymptotic expansion

−i log(w̃(ω)) = arg w̃(0) + c1ω + c3ω
3 + . . . + c2N−1ω

2N−1 + o(ω2N−1), as ω → 0,
(5.2)

where arg w̃(0) = limω→̂0 arg w̃(ω) and all ci are real. This is the case e.g., if
the impedance Z can be represented as a lossless network terminated in another
impedance, Z2 (cf., Figure 3), and the network has a transmission zero of order N
at ω = 0 [8]. The low-frequency asymptotic expansion of the Herglotz-function in
(3.4) is

h(ω) = arg w̃(0) + c1ω + c3ω
3 + . . . + c2N−1ω

2N−1 + o(ω2N−1)

− arg B(0) − 2
∞∑

m=1,3,...

ωm

m

∑
ωn

Im ω−m
n , as ω → 0,
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Figure 3: The matching problem as described in [8].

according to (3.6). In this case only odd terms appear in the sum originating from
the Blaschke product due to the symmetry (3.7). The high-frequency asymptotic
expansion of h is o(ω) since w̃ is a rational function. This implies the (3.9)-identities

lim
ε→0+

lim
ω′′→0+

2

π

∫ ∞

ε

− ln |w̃(ω′ + iω′′)|
ω′2p̂ dω′

= c2p̂−1 − 2

2p̂ − 1

∑
ωn

Im ω1−2p̂
n , for p̂ = 1, 2, . . . , N.

If ρ has no zeros at the imaginary axis, the limit as ω′′ → 0+ may be moved inside the
integral. These are the original Fano matching equations, derived with the Cauchy
integral formula in [8]. In said paper they are used to derive the best possible
match of a source to a load over an open frequency interval, and how the lossless
matching network should be constructed to obtain this best match. See Figure 3.
When ρ is not a rational function (consider e.g., the scattering of electromagnetic
waves by a permittive object), the Cauchy integral formula-approach falls short.
Theorem 4.1 guarantees integral identities as long as asymptotic expansions of the
type (5.2) are valid as ω→̂0 and/or ω→̂∞, respectively. It should be mentioned
that Fano’s results have been treated more generally in e.g., [5], which however only
covers rational reflection coefficients ρ.

5.4 Kramers-Kronig relations and ε near-zero materials

Suppose there is an isotropic constitutive relation on convolution form relating the
electric field E = Eê to the electric displacement D = Dê [18]:

D(t) = ε0χ ∗ E(t).

The permittivity of free space is denoted ε0, and a possible instantaneous response is
included in χ(t) as a term ε∞δ(t), where ε∞ � 0. Let the input be v(t) = ε0E(t) and
the output be u(t) = ∂D/∂t. The impulse response of this system is w(t) = ∂χ/∂t.
The system is admittance-passive if the material is passive, since that means that
the energy expression [18]

e(T ) =

∫ T

−∞
E(t)

∂D

∂t
dt
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is non-negative for all E ∈ D and T ∈ R. The Herglotz function given by h = iw̃
is h(ω) = ωε(ω), where ε(ω) = Fχ(ω). It satisfies the symmetry (3.8), since w(t) is
assumed to be real.

Lemma 4.1 may be applied to the representation (2.1), since |1/(ξ − z)− ξ/(1 +
ξ2)| � Dz/(1 + ξ2) for any fixed z ∈ C

+. This gives

ωε(ω) = ωε∞+ lim
ψ→0+

1

π

∫
R

[
1

ξ − ω
− ξ

1 + ξ2

][
ψ Re ε(ξ+iψ)+ξ Im ε(ξ+iψ)

]
dξ, (5.3)

for Im ω > 0. This is one of the two Kramers-Kronig relations [17, 18] in a general
form, where no assumptions other than those of convolution form and passivity has
been made for the constitutive relation in the time-domain. It may be simplified if
ε(ω′) = limω′′→0+ ε(ω′+iω′′) is sufficiently well-behaved. Here the notation ω′ = Re ω
and ω′′ = Im ω has been used. If for instance ε(ω′) is a continuous and bounded
function, the limit may be moved inside the integral in (5.3):

ωε(ω) = ωε∞ +
1

π

∫
R

[
1

ξ − ω
− ξ

1 + ξ2

]
ξ Im ε(ξ) dξ, Im ω > 0.

Employing the fact that Im ε(ξ) is odd gives (after division with ω)

ε(ω) = ε∞ +
1

π

∫
R

1

ξ − ω
Im ε(ξ) dξ, Im ω > 0.

Letting ω′′ → 0 and using the distributional limit limω′′→0(ξ − ω′ − iω′′)−1 = P(ξ −
ω′)−1 + iπδ(ξ − ω′), where P is the Cauchy principal value, yields

ε(ω′) = ε∞ + lim
ε→0

1

π

∫
|ξ−ω′|>ε

Im ε(ξ)

ξ − ω′ dξ + i Im ε(ω′).

The real part of this equation is the Kramers-Kronig relation (5.3) as presented in
e.g., [18]:

Re ε(ω′) = ε∞ + lim
ε→0

1

π

∫
|ξ−ω′|>ε

Im ε(ξ)

ξ − ω′ dξ.

The assumption that ε(ω′) is continuous rules out the possibility of static conduc-
tivity, which however can be included with a small modification of the arguments.
Assuming that h(ω) = ωε(0) + o(ω), as ω→̂0, there is a sum rule of the type (3.9)
for p̂ = 1 (also presented in e.g., [18]):

lim
ε→0+

2

π

∫ ∞

ε

Im ε(ω′)
ω′ dω′ = ε(0) − ε∞.

It shows that the losses are related to the difference between the static and instan-
taneous responses of the medium.

In applications such as high-impedance surfaces and waveguides, it is desirable to
have so called ε near-zero materials [23], i.e., materials with ε(ω′) ≈ 0 in a frequency
interval around some center frequency ω0. Define the Herglotz function

h1(ω) =
ω

ω0

ε(ω) =

{
o(ω−1), as ω→̂0
ω
ω0

ε∞ + o(ω), as ω→̂∞.
(5.4)
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Figure 4: The function hΔ(x + iy) given by (5.5) illustrated by its limit as y → 0
to the left and the contours of Im hΔ(x + iy) to the right.

Compositions of Herglotz functions may be used to derive limitations different from
those that h1 would produce on its own. In the present case the area of interest is
the frequency region where h1(ω) ≈ 0. A promising function is

hΔ(z) =
1

π

∫ Δ

−Δ

1

ξ − z
dξ =

1

π
ln

z − Δ

z + Δ
=

{
i + o(1), as ω → 0
−2Δ
πz

+ o(z−1), as ω → ∞,
(5.5)

designed such that Im hΔ(z) ≈ 1 for Im z ≈ 0 and |Re z| � Δ, see Figure 4. Here
the logarithm has its branch cut along the negative imaginary axis. The asymptotic
expansions of the composition are

hΔ(h1(ω)) =

{
O(1), as ω→̂0
−2ω0Δ
ωπε∞ + o(ω−1), as ω→̂∞,

yielding the following sum rule for p̂ = 0:

lim
ε→0+

lim
ω′′→0+

∫ ε−1

0

Im hΔ(h1(ω
′ + iω′′)) dω′

= lim
ε→0+

lim
ω′′→0+

∫ ε−1

0

arg

(
(ω′ + iω′′)ε∞ − Δω0

(ω′ + iω′′)ε∞ − Δω0

)
dω′ =

ω0Δ

ε∞
. (5.6)

An illustration of limω′′→0 Im hΔ(h1(ω
′+iω′′)) for a permittivity function ε described

by a Drude model can be found in Figure 5.
Let the frequency interval be B = [ω0(1−BF/2), ω0(1+BF/2)], where BF denotes

the fractional bandwidth. Assume that h1(ω
′) = limω′′→0+ h1(ω

′+iω′′) exists finitely
in this interval and let Δ = supω′∈B |h1(ω

′)|. Then infω′∈B limω′′→0+ Im hΔ(h1(ω
′ +

iω′′)) � 1/2 which yields the bound

sup
ω′∈B

|h1(ω
′)| � BF

2
ε∞

or

sup
ω′∈B

|ε(ω′)| � BF

2 + BF

ε∞.

This shows that ε near-zero materials are dispersive and that the deviation from
zero is proportional to the fractional bandwidth when BF � 1.
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Figure 5: The left figure depicts the real and imaginary part of h1(ω
′) =

limω′′→0 h1(ω
′ + iω′′), where h1 is given by (5.4) and the permittivity is described

by the Drude model ε(ω) = 1 − (ω/ω0 (ω/ω0 − 0.01i))−1. The right figure depicts
the integrand Im hΔ(h1(ω

′)) = limω′′→0 Im hΔ(h1(ω
′ + iω′′)) in (5.6) for this choice

of ε(ω) and Δ = 1/2.

6 Conclusions

Many physical systems are modeled as a rule that assigns an output signal to every
input signal. It is often natural to let the space of admissible input signals be some
subset of the space of distributions, since generalised functions such as the delta
function should be allowed. Under the general assumptions of linearity, continuity
and time-translational invariance, such a system is on convolution form, and thus
fully described by its impulse response. The assumption of passivity (and thereby
causality, as described in Section 3), imply that the transfer function is related to a
Herglotz function, h [20, 27, 28]. In many areas it is convenient to analyse systems
in the frequency domain, where the transfer function plays the role of the impulse
response.

The main result of this paper is a set of integral identities for Herglotz functions,
showing that weighted integrals of the function h over infinite intervals are deter-
mined by its high- and low-frequency asymptotic expansions. The identities rely
on a well-known representation theorem for Herglotz functions [2], and furthermore
makes use of results from the classical problem of moments [1].

The integral identities make possible a general approach to derive sum rules for
passive systems. The first step is to use the assumptions listed above to assure that
the transfer function w̃ is related to a Hergloz function. No additional assumptions,
like w̃ being square-integrable, are needed. The sum rules effectively relate dynamic
behaviour to static and/or high frequency properties, which must be found by phys-
ical arguments. However, since static properties are often easier to determine than
dynamical behaviour in various applications, this is beneficial. One way to make
use of the sum rules is to derive physical limitations, which indicate what can and
cannot be expected from certain physical systems.

Sum rules, or more general dispersion relations, and physical limitations, have
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been widely used in e.g., electromagnetics. Two famous examples are the Kramers-
Kronig relations for the frequency dependence of the electric permittivity [18], dis-
cussed in Example 5.4, and Fano’s matching equations [8], considered in Exam-
ple 5.3. There are more recent examples as well, see e.g., [4, 10–13, 21, 24]. For ex-
ample, the physical limitations may answer questions like what the maximal broad-
band electromagnetic interaction for an object is [24], how “well” an antenna can
perform over a prescribed frequency band [11], or how close the electric permittivity
can come to a specific value over a frequency interval [10]. This can be very helpful,
both as a means to understand what factors that constrain performance, but also
to determine if there is room for improvement.

The present paper seems to be the first to describe and rigorously prove a general
approach to obtain sum rules for systems under the assumptions of convolution form
and passivity. There are alternative approaches to derive sum rules for systems on
convolution form, relying on somewhat different assumptions. Many previous papers
use the Cauchy integral formula, see e.g., [8, 25]. This approach demands e.g., that
the transfer function w̃ is rational. Another approach assumes e.g., that w̃ is square-
integrable, and derives sum rules from the Hilbert transform [17]. Alternatively,
Titchmarsh’s theorem may be used to find dispersion relations and in some cases
sum-rules when w̃ is square-integrable [20]. It should be stressed that since the three
approaches listed here works under different assumptions, they are complementary
rather than in competition. It should also be pointed out that both the rational
function and square-integrable function approach can be generalised to larger classes
of impulse responses. One advantage of the Herglotz function-approach presented
in this paper is that a wide range of physical systems obey passivity. Another
advantage is that it gives an insight into how compositions of Herglotz functions
may be used to derive new physical limitations, see Example 5.4.
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Appendix A Proofs

A.1 Calculation of the limits limz→̂∞ h(z)/z and limz→̂0 zh(z)

For all z in the Stoltz domain θ � arg z � π − θ, |ξ − z| is greater than or equal to
both |z| sin θ and |ξ| sin θ. See Figure 6. Thus

|1 + ξz|
|z(ξ − z)| � 1 + 1/|z|2

sin θ
,
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Figure 6: The Stoltz domain, {z : θ � arg z � π − θ} for some θ ∈ (0, π/2].

and (2.2) implies that

lim
z→̂∞

h(z)

z
= β + lim

z→̂∞

∫
R

1 + ξz

z(ξ − z)
dν(ξ) = β,

where Theorem A.2 has been used to move the limit inside the integral. Likewise,
|z(1 + ξz)|/|ξ − z| � (1 + |z|2)/ sin θ, which together with Theorem A.2 gives

lim
z→̂0

zh(z) = lim
z→̂0

∫
R

z(1 + ξz)

ξ − z
dν(ξ) = −ν({0}) = −μ({0}).

A.2 Proof of Lemma 4.1

The left-hand side of (4.1) is

lim
y→0+

∫
R

ϕ(x)

(
βy +

∫
R

y

(x − ξ)2 + y2
dμ(ξ)

)
dx

= lim
y→0+

∫
R

∫
R

ϕ(x)
y

(x − ξ)2 + y2
dx dμ(ξ).

Here Fubini’s Theorem [22, pp. 164–165] has been used to change the order of
integration.

Theorem A.2 is used to show that the order of the limit and the integrals may
be interchanged. First set

fy(ξ) =

∫
R

ϕ(x)
y

(x − ξ)2 + y2
dx.

To find an integrable majorant g ∈ L1(μ) such that |fy(ξ)| � g(ξ) for all ξ ∈ R and
y � 0, handle the cases |ξ| < 2 and |ξ| � 2 separately. For |ξ| < 2, the boundedness
of ϕ guarantees that

|fy(ξ)| �
∫

R

D
y

(x − ξ)2 + y2
dx = Dπ.
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For |ξ| � 2, divide the integral into |x − ξ| < 1 and |x − ξ| � 1:∣∣∣∣∫|x−ξ|<1

ϕ(x)
y

(x − ξ)2 + y2
dx

∣∣∣∣ � 2D

ξ2 + 1

∫
R

y

(x − ξ)2 + y2
dx =

2πD

ξ2 + 1

and∣∣∣∣∫|x−ξ|�1

ϕ(x)
y

(x − ξ)2 + y2
dx

∣∣∣∣ �
∫
|x−ξ|�1

D

1 + x2

y

(x − ξ)2
dx

= Dy

[
ξ

(ξ2 + 1)2
ln

∣∣∣∣(ξ − 1)2 + 1

(ξ + 1)2 + 1

∣∣∣∣+
2

1 + ξ2
+

ξ2 − 1

(ξ2 + 1)2

π

2

]
� D1y

ξ2 + 1
.

Summing up, for all y less than some arbitrary constant there is a constant D2 � 0
such that

|fy(ξ)| � g(ξ) =
D2

ξ2 + 1
,

which is an integrable majorant. Since limy→0+ fy(ξ) exists for all ξ ∈ R (shown
below), the conditions of Theorem A.2 are fulfilled, and the limit may be moved
inside the first integral.

Now let
fy,ξ(x) = (ϕ(x) − ϕ(ξ))

y

(x − ξ)2 + y2
.

First suppose that ξ is not a point of discontinuity for ϕ(ξ), so that there is some
K > 0 such that ϕ(x) is continuous for x ∈ [ξ − K, ξ + K]. The constant K may
be chosen so that ϕ is continuously differentiable in said interval, except possibly at
the point x = ξ. For x ∈ [ξ − K, ξ + K],

|fy,ξ(x)| � max
|ζ−ξ|�K

|ϕ′(ζ)||x − ξ| y

(x − ξ)2 + y2
� D3,

for some constant D3 � 0. Here it has been used that |ϕ′(x)| is bounded in [ξ −
K, ξ + K], and that |sy/(s2 + y2)| is bounded. An integrable majorant for fy,ξ(x) is

|fy,ξ(x)| � gξ(x) =

{
D3, for |x − ξ| � K

2D
(x−ξ)2 , otherwise,

for all y � 1.

Furthermore, the limit limy→0+ fy,ξ(x) exists and is zero for all x ∈ R. Thus Theo-
rem A.2 applies and states that

lim
y→0+

∫
R

(ϕ(x) − ϕ(ξ))
y

(x − ξ)2 + y2
dx = 0,

which is equivalent to

lim
y→0+

∫
R

ϕ(x)
y

(x − ξ)2 + y2
dx = πϕ(ξ).

This proves the lemma for continuous ϕ.
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Now suppose that ξ is a point where ϕ(ξ) has a discontinuity. Divide ϕ(x) into
two parts:

ϕ(x) =
1

2
(ϕ(x) + ϕ(2ξ − x))︸ ︷︷ ︸

ϕeven(x)

+
1

2
(ϕ(x) − ϕ(2ξ − x))︸ ︷︷ ︸

ϕodd(x)

,

where ϕeven is even in x with respect to an origin at the point x = ξ, and likewise
ϕodd is odd in the same sense. Therefore∫

R

ϕodd(x)
y

(x − ξ)2 + y2
dx = 0, for all y � 0. (A.1)

Since the discontinuities of ϕ are isolated points, ϕeven is continuous in a neigh-
bourhood of ξ and continuously differentiable except possibly at the point x = ξ.
Furthermore, ϕeven(ξ) = ϕ̌(ξ). The same reasoning as for continuous ϕ results in

lim
y→0+

∫
R

ϕeven(x)
y

(x − ξ)2 + y2
dx = πϕ̌(ξ).

Together with (A.1) this concludes the proof of the lemma for ϕ that are not con-
tinuous everywhere.

A.3 Proof of Corollary 4.1

Let p = 0,±1,±2, . . . and set

ϕp,ε,ε̆(x) =

⎧⎨⎩
0, x < ε
x−p, ε < x < ε̆−1

0, x > ε̆−1.
(A.2)

This function satisfies the conditions of Lemma 4.1 for each fixed pair ε > 0, ε̆ > 0.
Thus

lim
y→0+

1

π

∫ ε̆−1

ε

Im h(x + iy)

xp
dx =

∫
R

ϕ̌p,ε,ε̆(ξ) dμ(ξ),

where ϕ̌p,ε,ε̆(ξ) is given by (4.2). The function ϕ̌p,ε,ε̆ is monotonically increasing as
ε → 0+ and/or ε̆ → 0+. The limit is:

lim
ε→0+

lim
ε̆→0+

ϕ̌p,ε,ε̆(ξ) =

{
0, ξ � 0
ξ−p, ξ > 0.

Implement Theorem A.1 to get

lim
ε→0+

lim
ε̆→0+

∫
R

ϕ̌p,ε,ε̆(ξ) dμ(ξ) =

∫
ξ>0

dμ(ξ)

ξp
, p = 0,±1,±2, . . .

The integral over (−ε̆−1,−ε) is treated in the same manner. This proves the lemma,
seeing that ∫

ξ<0

dμ(ξ)

ξp
+

∫
ξ>0

dμ(ξ)

ξp
=

∫
R

dμ0(ξ)

ξp
,
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unless the left-hand side is −∞+∞. In this case the right-hand side is not defined.
For p = 2, 3, . . ., the order of the limits ε̆ → 0+ and y → 0+ may be inter-

changed. Likewise, for p = 0,−1,−2, . . . the order of the limits ε → 0+ and y → 0+

may be interchanged. In that case there is an extra term δp,0 μ({0}) in the right-
hand side. This is readily proved by considering the functions limε̆→0+ ϕp,ε,ε̆(x) and
limε→0+ ϕp,ε,ε̆(x), respectively.

A.4 Proof of Lemma 4.2

Evidently, statement 1 always implies 2. Here it will be shown that 2 implies 3 and
that 3 implies 1. Start with the case N = 1 and assume that 3 holds. Consider the
Herglotz function h0(z) = h(z) + μ{0}/z, represented by the measure μ0. Set

a0 = lim
z→̂0

h0(z) = α + lim
z→̂0

∫
R

1 + ξz

(ξ − z)(1 + ξ2)
dμ0(ξ) = α +

∫
R

1

ξ(1 + ξ2)
dμ0(ξ).

Here Theorem A.2 could be used to move the limit under the integral sign, since for
z restricted to the Stoltz domain θ � arg z � π − θ it holds that |ξ − z| � |ξ| sin θ
(see Appendix A.1) and

∫
R

ξ−2 dμ0(ξ) is finite by assumption. Use this expression
for a0:

lim
z→̂0

h0(z) − a0

z
= β + lim

z→̂0

∫
R

dμ0(ξ)

(ξ − z)ξ
= β +

∫
R

dμ0(ξ)

ξ2
= a1,

where Theorem A.2 was used once more. Summing up, statement 1 is true.
Now assume that statement 2 is valid (still N = 1), i.e.,

h0(iy) = a0 + a1iy + o(y), as y → 0+,

where a0, a1 ∈ R. From this condition it follows that

lim
y→0+

h0(iy) − h∗
0(iy)

2iy
= lim

y→0+

(
a1 +

o(y)

iy

)
= a1.

But on the other hand,

lim
y→0+

h0(iy) − h∗
0(iy)

2iy
= β + lim

y→0+

∫
R

dμ0(ξ)

ξ2 + y2
= β +

∫
R

dμ0(ξ)

ξ2
.

The exchange of the limit and integral is motivated by Theorem A.1. Ergo,∫
R

dμ0(ξ)

ξ2
= a1 − β < ∞,

and thus statement 3 is true.
The equivalence of the statements for all N = 0, 1, 2, . . . is proved by induction.

For this reason, suppose that the equivalence has been proven for some N � 1, and
that statement 3 holds for N + 1:∫

R

dμ0(ξ)

ξ2N+2
< ∞.
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Consider the function

h1(z) =
h0(z) − a0 − a1z

z2
.

This function may be expressed as:

h1(z) =
1

z2

[
βz + α +

∫
R

(
1

ξ − z
− ξ

1 + ξ2

)
dμ0(ξ)

−
(

α +

∫
R

dμ0(ξ)

ξ(1 + ξ2)

)
− z

(
β +

∫
R

dμ0(ξ)

ξ2

)]
=

∫
R

dμ1(ξ)

ξ − z
,

where dμ1(ξ) = dμ0(ξ)/ξ
2. Hence h1 is a Herglotz function, and furthermore∫

R

dμ1(ξ)

ξ2N
< ∞,

so h1 has the asymptotic expansion

h1(z) =
2N−1∑
n=0

an+2z
n + o(z2N−1) as z→̂0,

where all an are real. This proves statement 1 for N + 1.
On the other hand, assume that statement 2 holds for N + 1, where N � 1.

Consider the function h1 once more. The induction assumption ensures that∫
R

dμ1(ξ)

ξ2N
=

∫
R

dμ0(ξ)

ξ2N+2
< ∞,

which proves that statement 3 is true for N + 1.
Finally, note that from the representation of h1 it is clear that

a3 =

∫
R

dμ1(ξ)

ξ2
=

∫
R

dμ0(ξ)

ξ4
.

Furthermore,

a2 = lim
z→̂0

h1(z) =

∫
R

dμ1(ξ)

ξ
=

∫
R

dμ0(ξ)

ξ3
.

This procedure may be continued for a4, a5, . . . , a2N−1 to prove (4.6), concluding the
proof of the lemma.

A.5 Proof of Theorem 4.1

The theorem for p = 2, 3, . . . 2N follows directly from Corollary 4.1 and Lemma 4.2.
For p = 2 − 2M, 3 − 2M, . . . , 0 it also requires (4.7) and the relation between the
asymptotic expansions of h and h̆.
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The case p = 1 is special as it requires both high- and low-frequency expansions.
Assume that the asymptotic expansions (2.3) and (2.4) are valid for N = M = 1
and use equation (4.5) for h and h̆:

a0 − b0 = (a0 − α) − (ă0 − ᾰ) =

∫
R

dμ0(ξ)

ξ(1 + ξ2)
−
∫

R

dμ̆0(ξ)

ξ(1 + ξ2)

=

∫
R

dμ0(ξ)

ξ(1 + ξ2)
−
∫

R

ξ dμ0(ξ)

1 + ξ2
=

∫
R

dμ0(ξ)

ξ

= lim
ε→0+

lim
ε̆→0+

lim
y→0+

∫
ε<|x|<ε̆−1

Im h(x + iy)

x
dx.

Here all integrals are absolutely convergent. If on the other hand the left-hand sides
of (2.5) are absolutely convergent for p = 0, 1, 2, then the asymptotic expansions
(2.3) and (2.4) clearly hold for N = 1 and M = 1, respectively.

A.6 Auxiliary theorems

The following theorem can be found in e.g., [22], page 21:

Theorem A.1 (Lebesgue’s Monotone Convergence Theorem). Let {fn} be a se-
quence of real-valued measurable functions on X, and suppose that

0 � f1(x) � f2(x) � . . . � ∞, for all x ∈ X

and
fn(x) → f(x), as n → ∞ for all x ∈ X.

Then f is measurable, and

lim
n→∞

∫
X

fn(x) dμ(x) =

∫
X

f(x) dμ(x).

The next theorem is also available in e.g., [22], page 26:

Theorem A.2 (Lebesgue’s Dominated Convergence Theorem). Suppose {fn} is a
sequence of complex-valued measurable functions on X such that

f(x) = lim
n→∞

fn(x)

exists for every x ∈ X. If there is a function g ∈ L1(μ) such that

|fn(x)| � g(x), for all n = 1, 2, . . . and x ∈ X,

then f ∈ L1(μ),

lim
n→∞

∫
X

|fn(x) − f(x)| dμ(x) = 0

and

lim
n→∞

∫
X

fn(x) dμ(x) =

∫
X

f(x) dμ(x).
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[16] I. S. Kac and M. G. Krěın. R-functions — analytic functions mapping the
upper halfplane into itself. Amer. Math. Soc. Transl.(2), 103, 1–18, 1974.



58 Paper I: Sum Rules and Constraints on Passive Systems

[17] F. W. King. Hilbert Transforms, Volume 2. Cambridge University Press, 2009.

[18] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskĭı. Electrodynamics of Contin-
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Abstract

Understanding the interaction between electromagnetic waves and matter
is vital in applications ranging from classical optics to antenna theory. This
paper derives physical limitations on the scattering of electromagnetic vector
spherical waves. The assumptions made are that the heterogeneous scatterer
is passive, and has constitutive relations which are on convolution form in the
time domain and anisotropic in the static limit. The resulting bounds limit the
reflection coefficient of the modes over a frequency interval, and can thus be
interpreted as limitations on the absorption of power from a single mode. They
can be used within a wide range of applications, and are particularly useful
for electrically small scatterers. The derivation follows a general approach to
derive sum rules and physical limitations on passive systems on convolution
form. The time domain versions of the vector spherical waves are used to
describe the passivity of the scatterer, and a set of integral identities for
Herglotz functions are applied to derive sum rules from which the physical
limitations follow.

1 Introduction

Understanding how electromagnetic fields interact with matter is vital in classical
science, like optics and scattering theory, but also in modern applications like wire-
less communication, cloaking and metamaterials. When interacting with various
objects, electromagnetic waves may be scattered and/or absorbed. If the objects
are small compared to the wavelength, this interaction is limited. An early paper
addressing these limits is Purcell’s [16], discussing radiation emission and absorption
by interstellar dust. Results similar to Purcell’s can also be found in [3]. Limita-
tions on antenna performance where introduced by Chu in [5]. Sohl et al. derives
limitations on the extinction cross sections of arbitrary heterogeneous, anisotropic
objects in [20], results that are directly applicable to antenna theory [7].

Electromagnetic fields can be decomposed into orthogonal vector spherical waves
[10], also referred to as partial waves, (electric and magnetic) multipoles, or (TM
and TE) modes. Such a decomposition is very beneficial in scattering theory. In
wireless communication, these orthogonal modes are closely related to the orthogonal
communication channels of multiple-input multiple-output (MIMO) systems.

The present paper seems to be the first to derive physical limitations on the
scattering and absorption of electromagnetic vector spherical waves. To do so, a
general approach to obtain sum rules and physical limitations for passive systems
on convolution form put forth in [2] is used. At the core of this approach is a set
of integral identities for Herglotz functions, a class of functions that is intimately
linked to the transfer functions of passive systems.

The main results of this paper are physical limitations on the reflection coeffi-
cients of the modes for arbitrary heterogeneous, passive scatterers with constitutive
relations on convolution form, and anisotropic in the static limit. The bounds state
that the reflection coefficient cannot be arbitrarily small over a frequency interval
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of non-zero length; how small it can be depends upon the smallest sphere circum-
scribing the scatterer, its static material properties and the fractional bandwidth.
An interpretation of the bounds on the reflection coefficients is as bounds on the
maximum absorption of power from a single mode. The bounds are particularly
useful for electrically small scatterers, and so they are well suited to analyse sub-
wavelength particles designed to be resonant in one or more frequency bands, like
antennas and metamaterials.

This paper is divided into sections as follows: First, in Section 2, the general
approach to derive sum rules and physical limitations for passive systems presented
in [2] is reviewed. In order to obtain the bounds in this paper, expressions for the
vector spherical waves in the time domain are needed. This is the topic of Section 3.
In Section 4, the scattering matrix is introduced, and the physical limitations are
derived. After this comes two examples in Section 5, one which discusses absorption
of power in metallic nano-shells with dielectric cores, and another which consid-
ers limitations on antenna performance. Last come some concluding remarks in
Section 6.

2 A general approach to obtain sum rules and

physical limitations on passive systems

The derivation of the physical limitations on scattering of vector spherical waves in
this paper follows a general approach to obtain sum rules and physical limitations
for passive systems on convolution form presented in [2]. This section summarises
this general approach in order to put the derivations of the limitations on scattering
in the right context.

There are three major steps in the approach [2] to obtain sum rules for a physical
system: First, the transfer function of the system is related to a Herglotz function
h. Secondly, the low-frequency asymptotic expansion of the transfer function is
determined. This step commonly uses physical arguments, and is specific to each
application. Then a set of integral identities for Herglotz functions, relating weighted
integrals of h to its low-frequency asymptotic expansion, is used. Essentially, this
relates the dynamical behaviour of the physical system to its static properties. In the
third step, physical limitations are derived by estimating the integral. Variational
principles can sometimes be applied to the static parameters if they are unknown.

The general approach is described more thoroughly in [2], where all the necessary
proofs can be found. For a discussion on passive and causal systems, see also the
books [22] and [23] by Zemanian and [14] by Nussenzveig and references therein.

2.1 Herglotz functions and integral identities

Here the class of Herglotz functions is reviewed briefly, and the integral identities
used to obtain sum rules for passive systems are presented. A Herglotz function h
is defined as a function holomorphic in C

+ = {z, Im z > 0}, satisfying Im h(z) � 0
there. Furthermore, many Herglotz functions appearing in various applications are
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Figure 1: The cone {ω : ϑ � arg ω � π − ϑ} for some ϑ ∈ (0, π/2].

of the form h(ω) = α + h1(ω), where h1 exhibits the symmetry h1(ω) = −h∗
1(−ω∗)

and α ∈ R [2]. Such a function h is called symmetric in this paper, and it satisfies
the low-frequency expansion

h(ω) = α +
N∑
n=0

A2n−1ω
2n−1 + o(ω2N−1), as ω→̂0, (2.1)

for some integer N � 0. Here A−1 � 0 and all An are real. The limit ω→̂0 is
a short-hand notation for |ω| → 0 for ω in the cone ϑ � arg ω � π − ϑ for any
ϑ ∈ (0, π/2], see Figure 1. The asymptotic expansion (2.1) is clearly valid as ω → 0
for any argument in the case h is holomorphic in a neighbourhood of the origin.

There is a set of integral identities for a symmetric Herglotz function h:

lim
ε→0+

lim
ω′′→0+

2

π

∫ ∞

ε

Im h(ω′ + iω′′)
ω′2p dω′ = A2p−1 − δp,1β, p = 1, 2 . . . , N. (2.2)

Here δp,q denotes the Kronecker delta and β = limω→̂∞ h(ω)/ω � 0, which always
exists finitely. The Herglotz function h is not necessarily holomorphic in a neigh-

bourhood of the real line, but the distributional limit limω′′→0+ h(ω′ + iω′′) def
= h(ω′)

exists. The notation ω′ = Re ω and ω′′ = Im ω is used throughout this paper. The
left-hand side of (2.2) is the integral of Im h(ω′)/ω′2p in the distributional sense, i.e.,
contributions from possible singularities in the interval (0,∞) are included [2].

2.2 Sum rules for passive systems.

Having introduced Herglotz functions, it remains to discuss the link between this
class of functions and the transfer functions of passive systems on convolution form,
i.e., the first step of the general approach. This is done here. How the integral
identities (2.2) can be used to derive sum rules for such systems once the low-
frequency asymptotic behaviour of the transfer function has been determined is also
explained here.

Consider a general mathematical model of a physical system in the time domain,
u(t) = Rv(t), where v and u are the input and output signals, respectively, related
to each other by the operator R. The context of distributions is natural, since
generalised functions such as the delta function should be allowed; hence, the domain
D(R) of the operator R is assumed to be some subset of the space of distributions
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D′. The assumptions of linearity, continuity, and time-translational invariance imply
that the operator is on convolution form [22], i.e.,

u(t) = Rv(t) = w ∗ v(t). (2.3)

Such a system is fully described by its impulse response w. Many physical systems
obey causality, which intuitively means that the output cannot precede the input.
For the mathematical model (2.3) it means that suppw ⊆ [0,∞).

Another crucial assumption is that of passivity; if the power of the input (output)
signal at the time t is |v(t)|2 (|u(t)|2), the power absorbed by the system is |v(t)|2 −
|u(t)|2. In this paper, a system is defined to be passive if the energy expression

e(T ) =

∫ T

−∞
|v(t)|2 − |u(t)|2 dt (2.4)

is non-negative for all T ∈ R and v ∈ D, where D denotes smooth functions of com-
pact support [23].1 Only input signals v ∈ D are considered in order for the integral
to be well-defined. However, this is often enough to ensure that the corresponding
energy expressions are non-negative for other admissible input signals v ∈ D(R).

One might expect that passive systems must be causal, and it turns out that
this expectation is correct for operators on convolution form [23]. Also, passivity
implies that the impulse response is a distribution of slow growth, w ∈ S ′ and hence
Fourier transformable in the distributional sense [23]. In this paper, the Fourier
transform for all such distributions f is defined through 〈Ff, ϕ〉 = 〈f,Fϕ〉 for all
ϕ ∈ S. Here S denotes the set of smooth functions of rapid descent, 〈f, ϕ〉 is the
value in C that f ∈ S ′ assigns to ϕ ∈ S [22], and the Fourier transform of ϕ is
defined as Fϕ(ω) =

∫
R

ϕ(t)eiωt dt. The frequency domain version of (2.3) is

ũ(t) = w̃(ω)ṽ(ω),

where the transfer function of the system is given by

w̃(ω) = (Fw)(ω),

and ṽ = Fv and ũ = Fu are the input and output signals, respectively [2].
Passivity implies that the region of convergence for w̃ contains C

+ and w̃ is holo-
morphic there. Furthermore, the transfer-function w̃(ω) is bounded in magnitude
by one for ω ∈ C

+ [23]. The transfer function w̃ is not necessarily holomorphic in a
neighbourhood of the real axis, but w̃(ω′) = limω′′→0 w̃(ω′ + iω′′) is well-defined for
almost all ω′ ∈ R and bounded in magnitude by one [13].

One more assumption on the physical system is convenient (but not necessary):
It is assumed that it maps real-valued input signals to real-valued output, which
means that w is real. This implies the symmetry

w̃(ω) = w̃∗(−ω∗), Im ω > 0, (2.5)

1This is not the only way to classify passive systems, see [2, 23].
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where the superscript ∗ is used to denote the complex conjugate.
The assumption of passivity assures that the transfer function w̃ is holomorphic

and bounded in magnitude by one in C
+. A Herglotz function can be constructed

from w̃ in two ways, either with the inverse Cayley transform of ±w̃, or by taking
the complex logarithm of w̃ [2]. The latter way is chosen here. It requires that
the zeros of w̃ are removed, which is done with a Blaschke-product. The Herglotz
function is therefore

h(ω) = −i log

(
w̃(ω)

B(ω)

)
, (2.6)

where

B(ω) =
∏
ωn

1 − ω/ωn
1 − ω/ω∗

n

(2.7)

is a Blaschke product [13], repeating the possible zeros ωn of w̃ in C
+ according to

their multiplicity. The logarithm is defined in [2]. The symmetry (2.5) implies that
h(ω) is symmetric in the sense discussed in Section 2.1, with α = arg w̃(iω′′).

The integral identities (2.2) applied to the function in (2.6) yield

lim
ε→0+

lim
ω′′→0+

2

π

∫ ∞

ε

1

ω′2p ln
1

|w̃(ω′ + iω′′)| dω′ = A2p−1 − δp,1β, p = 1, 2 . . . , N, (2.8)

where it has been used that |B(ω′ +iω′′)| → 1 as ω′′ → 0 for almost all ω′ ∈ R [13].2

The low-frequency asymptotic expansion in (2.1) may be related to the behaviour
of w̃(ω) as ω→̂0, where as before ω→̂0 is short-hand notation for |ω| → 0 for ω
in the cone ϑ � arg ω � π − ϑ for any ϑ ∈ (0, π/2]. The cone assures that the
low-frequency limit is only dependent on the behaviour of w(t) for arbitrarily large
times t [2]. If, however, w̃(ω) is holomorphic in a neighbourhood of the origin,
the low frequency limit is identical whatever the argument of ω. The asymptotic
behaviour of w̃(ω) as ω→̂0 must be found by physical arguments specific to each
application, and constitutes the second step of the general three-step approach [2].
In the third step, physical limitations may be derived by considering integrals over
finite frequency intervals, since the integrand in (2.8) is non-negative. In some cases,
variational principles are used to bound the expansion coefficients Ap of h when they
are unknown.

2It might be that w̃(ω) has an accumulation point of zeros for one or more ωj ∈ R, in which
case B(ωj + iω′′) does not tend to 1 as ω′′ → 0. Then the Blaschke product must be included for
the left-hand side to make sense, i.e., (2.8) reads [2]:

lim
ε→0+

lim
ω′′→0+

2
π

∫ ∞

ε

1
ω′2p

ln
|B(ω′ + iω′′)|
|w̃(ω′ + iω′′)| dω′ = A2p−1 − δp,1β, p = 1, 2 . . . , N. (2.9)

Equation (2.8) is understood to be replaced by (2.9) whenever necessary throughout this paper.
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Figure 2: The scatterer is contained in a sphere of radius a centered at the origin.
Outside this sphere, the electric and magnetic fields are expanded in outgoing and
incoming vector spherical waves, u

(1)
ν and u

(2)
ν , with index ν.

3 Vector spherical waves in the time and frequency

domains

Expansions of the electric and magnetic fields in vector spherical waves are widely
employed in the frequency domain, see e.g., [10]. Their counterparts in the time
domain have been treated by Shlivinski and Heyman [17, 18]. Both the frequency
and time domain vector spherical waves are considered in this section, to be able to
later derive sum rules and physical limitations on the scattering of these by following
the approach presented in Section 2. A tilde (̃ ) is used in the remainder of this paper
to denote functions in the frequency domain, and it is also convenient to employ the
wavenumber k = ω/c, so that f̃(k) = Ff(ω). Here c is the speed of light in free
space.

Consider an object in free space, and let a be the radius of a sphere (centered
at the origin) containing the object, see Figure 2. Outside this sphere, the electric

field is expanded in outgoing and incoming vector spherical waves, denoted u
(1)
ν and

u
(2)
ν , respectively:

Ẽ(r, k) = k
√

η0

∑
ν

il+2−τ b̃(1)
ν (k)u(1)

ν (kr) + il+2−τ b̃(2)
ν (k)u(2)

ν (kr). (3.1)

Here η0 is the wave impedance in free space. The spatial coordinate is denoted
r, and in the rest of the paper the notation r = |r| and r̂ = r/r is employed.
For a definition of the vector spherical waves, see Appendix A.1. The multi-index
ν = {τ, s, m, l} is introduced to simplify the notation, and the factors k

√
η0i

l+2−τ

are included for consistency with the time domain expansion described below. The
corresponding magnetic field is

H̃(r, k) =
k√
η0

∑
ν

il+1−τ b̃(1)
ν (k)u

(1)
ν̄ (kr) + il+1−τ b̃(2)

ν (k)u
(2)
ν̄ (kr), (3.2)

where the dual multi-index ν̄ = {τ̄ , s, m, l} with τ̄ = 3 − τ has been introduced.
The time domain versions of (3.1) and (3.2) are helpful in order to make the

assumptions on the scatterer of convolution form and passivity. Outgoing vector
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spherical waves in the time domain are described thoroughly in [17, 18]. A short
description, also covering incoming waves, is included here for clarity. Assuming
that the fields vanish as t → −∞, the inverse Laplace transform may be applied
to (3.1)–(3.2) with k = is/c and the integration curve over s sufficiently far into the
right half-plane. Using the explicit expressions (A.1) for the vector spherical waves
yields the transverse electric field ẼT = Ẽ − r̂(r̂ · Ẽ):

ẼT(r, k) =

√
η0

r

∑
ν

[
b̃(1)
ν (k)e−sr/cR(1)

τ,l (sr/c) + b̃(2)
ν (k)esr/cR

(2)
τ,l (sr/c)

]
Aν(r̂), (3.3)

where

R
(1)
1,l (s) =

l∑
n=0

Dn,ls
−n

R
(2)
1,l (s) = (−1)l−1R

(1)
1,l (−s)

R
(j)
2,l (s) = R

(j)
1,l−1(s) +

l

s
R

(j)
1,l (s), j = 1, 2,

and Dn,l = (l + n)!/(2nn!(l − n)!) according to (A.8)–(A.9). The vector spherical
harmonics Aν are defined in Appendix A.1. Applying the inverse Laplace transform
yields

ET(r, t) =

√
η0

r

∑
ν

[
R(1)
τ,l b

(1)
ν (t − r/c) + R(2)

τ,l b
(2)
ν (t + r/c)

]
Aν(r̂).

Here the operators R(j)
τ,l : D → D in the time domain are defined by

R(j)
1,l f(t) = (±1)l−1

l∑
n=0

Dn,l

(
±c

r
d−1
t

)n
f(t)

R(j)
2,l f(t) = R(j)

1,l−1f(t) ± l
c

r
d−1
t R(j)

1,l f(t),

where the upper (lower) signs are for j = 1 (j = 2). The inverse to differentiation d−1
t

is chosen so that d−1
t f(t) is the distributional primitive to f that vanishes at t = −∞,

i.e., d−1
t f(t) =

∫ t
−∞ f(t′) dt′ for regular functions f . A similar representation is used

for the magnetic field, giving

HT(r, t) =
1

r
√

η0

∑
ν

[
R(1)
τ̄ ,l b

(1)
ν (t − r/c) + R(2)

τ̄ ,l b
(2)
ν (t + r/c)

]
(−1)τ−1Aν̄(r̂).

Recall that b
(j)
ν (t) are assumed to be distributions in general. In the case they

are regular functions, the electromagnetic power passing in the negative r-direction
through a spherical shell of radius r at the time t is

P (r, t) =

∫
Ωr̂

r2 (−r̂)·[ET(r, t)×HT(r, t)] dΩr̂ = −
∫

Ωr̂

r2 ET(r, t)·[HT(r, t)×r̂] dΩr̂

= −
∫

Ωr̂

[∑
ν

2∑
j=1

R(j)
τ,l b

(j)
ν (t ∓ r/c)Aν(r̂)

]
·
[∑

ν

2∑
j=1

R(j)
τ̄ ,lb

(j)
ν (t ∓ r/c)Aν(r̂)

]
dΩr̂,
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where Ωr̂ = {(θ, φ) : 0 � θ � π, 0 � φ � 2π} is the unit sphere and dΩr̂ =
sin θ dθ dφ. Here (A.2) has been employed, and the upper (lower) signs are for j = 1
(j = 2). The orthogonality relation (A.3) ensures that the two sums over ν may be
replaced by one. Also, all cross-terms in j cancel each other:

P (r, t) = −
∑
ν

2∑
j=1

[
R(j)
τ,l b

(j)
ν (t ∓ r/c)

] [
R(j)
τ̄ ,lb

(j)
ν (t ∓ r/c)

]
.

The power P (r, t) may be divided into one radiating part, and another part apper-
taining to the reactive near-field:

P (r, t) = Prad(r, t) + Preact(r, t), (3.4)

where
Prad(r, t) =

∑
ν

|b(2)
ν (t + r/c)|2 − |b(1)

ν (t − r/c)|2 (3.5)

is only dependent on r via t ∓ r/c. The reactive power Preact(r, t) tends to zero as
r → ∞, and furthermore it has a zero mean for all r � a, i.e.,∫ ∞

−∞
Preact(r, t) dt = 0. (3.6)

This result is derived in [18], where also Prad and Preact are described in more detail.
An illustration of the radiative and reactive power flow for TM-modes of orders l = 2
and l = 5 can be found in Figure 1 and Figure 2 in [18]. It is made clear there that
the reactive power becomes larger for higher order modes if the radiative power is
the same.

4 The scattering matrix S̃S

This section introduces the scattering matrix S̃S, which for a given scatterer relates
the outgoing wave amplitudes b̃

(1)
ν (k) to the incoming b̃

(2)
ν (k). The equivalent to

the scattering matrix in the time domain is also covered. The elements of the
scattering matrix are related to passive systems (as described in Section 2.2) in case
the scatterer is passive. This is described in more detail below. Herglotz functions
corresponding to (2.6) and their low-frequency expansions of the type (2.1) are
derived next. In the end of the section all this is used to obtain sum rules and
physical bounds on the diagonal elements of S̃S.

Assume that the scatterer is linear, continuous, and time-translational invariant,
i.e., that the constitutive relations relating the electric and magnetic flux densities
D(t) and B(t) to the electric and magnetic fields E(t) and H(t) are on convolution
form, as discussed in Section 2.2. In this case the relation between the outgoing and
incoming amplitudes b

(1)
ν (t) and b

(2)
ν (t) must also be on convolution form, b

(1)
ν (t) =∑

ν′ Sν,ν′ ∗ b
(2)
ν′ (t). With matrix notation,

b(1)(t) = SS ∗ b(2)(t), (4.1)



4 The scattering matrix S̃S 69

where b(1) = [b
(1)
1 b

(1)
2 . . .]T and b(2) is defined analogously. The order of the multi-

index is specified in Appendix A.1. In the frequency domain, (4.1) reads

b̃
(1)

(k) = S̃S(k)b̃
(2)

(k), (4.2)

where S̃S(k) is the infinite dimensional scattering matrix.

4.1 Implications of passivity on S̃S

It is now shown that the elements of SS(t−2a/c) are the impulse responses of passive
systems in case the scatterer is passive; in this case the total radiative power that
has passed through a sphere of radius r � a before the time T must be non-negative.
This means∫ T

−∞
Prad(r, t) dt =

∫ T

−∞

∑
ν

|b(2)
ν (t + r/c)|2 − |b(1)

ν (t − r/c)|2 dt � 0,

for all T ∈ R and r � a, where (3.5) has been used. Recall that it is only necessary

to consider smooth, compactly supported incoming wave amplitudes b
(2)
ν ∈ D, as

discussed in Section 2.2. Using (4.1) and letting the incoming field consist of only
one vector spherical wave give∫ T

−∞
Prad,ν′(r, t) dt =

∫ T

−∞
b
(2)
ν′ (t + r/c) −

∑
ν

|Sν,ν′ ∗ b
(2)
ν′ (t − r/c)|2 dt � 0,

for all T ∈ R, r � a and ν ′. Note that the above energy expression closely resembles
that in (2.4), except for the time shifts −2r/c in the outgoing waves. Hence Sν,ν′(t−
2a/c) is the impulse response of a passive operator for all ν, ν ′, and so its Fourier-
transform ei2kaS̃ν,ν′(k) is holomorphic and bounded in magnitude by one for k ∈ C

+,
see Section 2.2 and [2, 23]. Furthermore, ei2kaS̃ν,ν′(k) satisfies the symmetry (2.5).

The time shift −2a/c can be understood intuitively in the sense that the outgoing
wave can appear at r = a as soon as the incoming wavefront has reached r = a, see
Figure 3. This is discussed from a somewhat different perspective in [14].

4.2 Low-frequency asymptotic behaviour of S̃S

To derive equalities of the type (2.8), the low-frequency asymptotic expansion of the
S̃S-matrix is required. For this reason, consider the alternative decomposition of the
electric field in outgoing and regular vector spherical waves:

Ẽ(r, k) = k
√

η0

∑
ν

il+2−τ d̃(1)
ν (k)u(1)

ν (kr) + il+2−τ d̃(2)
ν (k)vν(kr). (4.3)

Here vν(kr) denotes regular vector spherical waves, defined as vν(kr) = (u
(1)
ν (kr)+

u
(2)
ν (kr))/2 (see Appendix A.1). The relation corresponding to (4.2) is d̃

(1)
(k) =
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Figure 3: An incoming spherical wave b
(2)
ν′ (t + r/c): a) impinges on the scatterer,

b) interacts with the scatterer, and c) creates outgoing waves
∑

ν Sν,ν′ ∗ b
(2)
ν′ (t−r/c).

Note that the picture is over-simplified, but it makes it believable that Sν,ν′(t−2a/c)
is the impulse response of a passive operator for all ν and ν ′.

T̃(k)d̃
(2)

(k), where T̃ is the so called transition, or T−, matrix. Evidently, S̃S =
2T̃ + I, where I is the infinite dimensional identity matrix.

The advantage of a decomposition in regular and outgoing waves is that a plane
wave Ẽi impinging on the scatterer is regular everywhere, while the produced scat-
tered field Ẽs has to satisfy the radiation condition. Accordingly, in this situation
Ẽi equals the sum over vν , while Ẽs is the sum over u

(1)
ν . Consider a plane wave

E0(t − r · k̂/c) propagating in the k̂-direction, corresponding to eir·kẼ0(k) in the
frequency domain. Here k = kk̂ and as usual Ẽ0(k) = (FE0)(ω) with k = ω/c.

The radiating part of the scattered field is described by the far-field amplitude
F , viz.,

Es(t, r) =
F (t − r/c, r̂)

r
+O(r−2), Ẽs(k, r) =

eikrF̃ (k, r̂)

r
+O(r−2), as r → ∞.

(4.4)
Due to the assumption of convolution form for the constitutive relations, a scattering
dyadic S̃ may be defined:

F (t, r̂) = S(·, r̂, k̂) ∗ E0(t), F̃ (k, r̂) = S̃(k, r̂, k̂) · Ẽ0(k). (4.5)

The elements of the T -matrix can be deduced from the scattering dyadic:

T̃ν,ν′(k) =
ik

4π

∫ ∫
Aν(r̂) · S̃(k; r̂, k̂) · Aν′(k̂) dΩr̂ dΩk̂. (4.6)

See Appendix A.2 for details.
Assume that the medium of the scatterer is anisotropic in the static limit (k = 0),

so that the constitutive relations are

D̃(0, r) = ε0ε(0, r) · Ẽ(0, r)

B̃(0, r) = μ0μ(0, r) · H̃(0, r).
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Here D̃(k, r) denotes the electric flux density and B̃(k, r) the magnetic flux den-
sity at the point r and wavenumber k. The relative permittivity and permeability
dyadics are denoted ε(k, r) and μ(k, r), respectively, and ε0 and μ0 are the permit-
tivity and permeability of free space, respectively. The low frequency expansion of
S̃(k, r̂, k̂) is then

S̃(k, r̂, k̂) ·E =
k2

4π

[
r̂ ×

(
(γe · E) × r̂

)
+
(
γm · (k̂ × E)

)
× r̂

]
+O(k3), as k → 0,

(4.7)
where E is a constant vector. The electric polarizability dyadic γe relates the electric
dipole moment induced in the scatterer to an applied static homogeneous electric
field Ẽ(0), viz., p = ε0γe · Ẽ(0). Similarly, the magnetic dipole moment induced by
an applied static homogeneous magnetic field H̃(0) is given by m = γe · H̃(0). The
polarizability dyadics are thoroughly discussed in [12] and [20]. Now let E = Aν′(k̂).
From (4.6) and (4.7) it follows that

S̃ν,ν′(k) = δν,ν′ + i2ρν,ν′k
3a3 + O(k4), as k → 0, (4.8)

where

ρν,ν′ =
1

16π2a3

∫∫
Aν(r̂) · γe · Aν′(k̂) + (−1)τ+τ

′
Aν̄(r̂) · γm · Aν̄′(k̂) dΩr̂ dΩk̂.

Here (A.2) was used, and the dual multi-index is still defined as ν̄ = {τ̄ , s, m, l} with
τ̄ = 3 − τ .

Let γe,xx = x̂·γe ·x̂, γe,xy = x̂·γe ·ŷ and so on, and use the identities (A.5)–(A.7).
This gives explicit expressions for ρν,ν′ :

ρν,ν′ =
1

6πa3
δl,1δl′,1δτ,τ ′γ{m/e},nn′ , (4.9)

where m (e) should be chosen for τ = 1 (τ = 2) and

n =

⎧⎪⎨⎪⎩
x, for s = 1, m = 1

y, for s = 2, m = 1

z, for s = 1, m = 0,

and similarly for n′. Note that ρν,ν′ = 0 for non-dipole modes (l � 2 or l′ � 2), and
that ρν,ν′ = 0 for τ = 1 (τ = 2) when the scatterer is non-magnetic (non-electric).

4.3 The polarizability dyadics and bounds on ρν,ν

It is clear now that the polarizability dyadics are of vital importance. Until now,
the only assumptions made on the constitutive relations of the scatterer is that they
are on convolution form in the time domain and passive, and furthermore anistropic
in the static limit. If the scatterer is heterogeneous, these assumptions are made for
all points r within the scatterer. It is common to assume that the permittivity and
permeability dyadics are symmetric in the static limit, i.e., ε(0, r) = ε(0, r)T and
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μ(0, r) = μ(0, r)T. This implies that the polarizability dyadics are also symmet-
ric [20], and hence diagonal for a suitable choice of coordinates. Closed form expres-
sions for the polarizability dyadics exists for anisotropic homogeneous spheroidal
scatterers, see [20] and references therein. For the simple case of an isotropic sphere
of radius a, they are

γe = 4πa3 ε(0) − 1

ε(0) + 2
I

γm = 4πa3 μ(0) − 1

μ(0) + 2
I,

where I is the identity dyadic.
Furthermore, under the assumption of symmetry it can be shown that γe and γm

are nondereasing as functions of ε(0, r) and μ(0, r) [19]. More specifically, consider
two objects with permittivity ε(0, r) and ε′(0, r), respectively. If ε′(0, r) − ε(0, r)
is a positive semidefinite dyadic for all r in the object, then γ ′

e − γe is positive
semidefinite as well. The same holds for γm, with ε(0, r) replaced by μ(0, r). The
diagonal elements of γe and γm for any scatterer (satisfying the aforementioned
assumptions) contained in the sphere of radius a are therefore bounded by 4πa3 for
the high contrast sphere. Following (4.9), the parameters ρν,ν are nondecreasing as
functions of ε(0, r) and μ(0, r), and thus bounded from above by ρν,ν = 2/3.

If the scatterer is contained within a non-spherical geometry, the diagonal ele-
ments of γe and γm are bounded by the largest eigenvalue γ1 � 4πa3 of the high-
contrast polariability dyadic γ∞ of that geometry. Therefore a sharper bound on
ρν,ν , given by ρν,ν � γ1/(6πa3) � 2/3, can be determined. The high-contrast po-
lariability dyadics γ∞ of many geometries can be calculated numerically, see [9] for
some examples.

A widely used material model is the perfect electric conductor (PEC). For a
PEC inclusion, ε(0) = ∞ and μ(0) = 0. Consequently, γe (γm) is nondecreasing
(nonincreasing) as the volume of the PEC inclusion increases [19].

4.4 Sum rules and physical limitations on S̃S

Now it has been shown that ei2kaS̃ν,ν′(k) is a holomorphic function bounded in mag-
nitude by one in C

+ for all ν and ν ′, due to the passivity assumption. Furthermore,
its low frequency asymptotic expansion has been determined in (4.8) and (4.9). It
remains to define a Herglotz function and derive sum rules of the type (2.8). The
Herglotz function corresponding to (2.6) is

hν,ν′(k) = −i log

(
ei2kaS̃ν,ν′(k)

Bν,ν′(k)

)
.

Here Bν,ν′ is a Blaschke products of the form (2.7) for each pair (ν, ν ′). Since
ei2kaS̃ν,ν(k) → 1 as k → 0 when S̃ν,ν is a diagonal element of the scattering matrix,
the low-frequency expansion may be calculated separately for that factor and the
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Blaschke product (cf., [2]):

hν,ν(k) = 2ka + 2ρν,νk
3a3 + 2

∑
n

∞∑
q=1,3,...

kq

q
Im

1

kqn
+ O(k4), as k → 0. (4.10)

This is not necessarily possible for the off diagonal terms hν,ν′ , where ν �= ν ′, since
then S̃ν,ν′(k) tends to zero as k → 0. Only terms with odd q appear in (4.10) due
to the symmetry (2.5).

Note that the low-frequency asymptotic expansions (4.7) and (4.10) are valid
as k → 0 for all arguments of k, and especially as k→̂0. With the notation of
Section 2.1, N = 2 and hence two sum rules of the type (2.8) (using p = 1, 2) can
be deduced:

lim
ε→0+

lim
k′′→0+

1

π

∫ ∞

ε

1

k′2 ln
1

|S̃ν,ν(k′ + ik′′)| dk′ = a − βν,ν
2

+
∑
n

Im
1

kn
(4.11)

and

lim
ε→0+

lim
k′′→0+

1

π

∫ ∞

ε

1

k′4 ln
1

|S̃ν,ν(k′ + ik′′)| dk′ = a3ρν,ν +
1

3

∑
n

Im
1

k3
n

. (4.12)

Here k′ = Re k and k′′ = Im k, in consistency with previous notation. As discussed in
Section 2.1, the left-hand sides may be interpreted as integrals of − ln |S̃ν,ν(k′)|/k′2p

in the distributional sense, i.e., contributions from possible singularities in the in-
terval (0,∞) should be included.

Both sum rules incorporate the radius a of the circumscribing sphere, and the
second depends on the material and shape of the scatterer via ρν,ν given by (4.9).
The parameter βν,ν = limk→̂∞ hν,ν(k)/k is greater than or equal to zero. Evidently,
βν,ν > 0 applies if the chosen circumscribing sphere is larger than the smallest
circumscribing sphere, but it is expected that βν,ν = 0 if a is chosen as small as
possible. This is true for isotropic spherical scatterers with material described by
e.g., the Debye or Lorentz models. It is hard to prove this statement for an arbitrary
scatterer, so it is assumed that βν,ν can be larger than zero.

In order to derive physical limitations, consider a finite wavenumber interval, K =
[k0(1−BK/2), k0(1 +BK/2)], with center wavenumber k0 and fractional bandwidth
BK < 2. Letting S0 = supk′∈K |S̃ν,ν(k′)|, it follows that3

BK ln S−1
0

π
� k0a +

∑
n

Im
k0

kn
(4.13)

and
BK ln S−1

0

π
� k3

0a
3ρν,ν +

1

3

∑
n

Im
k3

0

k3
n

. (4.14)

3Here S0 = supk′∈K |S̃ν,ν(k′)| should be interpreted as the supremum over those k′ ∈ K such
that S̃ν,ν(k′) is well-defined (recall that it is well-defined for almost all k′ ∈ R). Also note here
that the inequalities (4.13)–(4.14) are valid even if (4.11)–(4.12) must be interpreted as (2.9).
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Figure 4: Interpretation of the bound (4.15). In the figure, bounds for a given cen-
ter wavenumber k0 are depicted for two different values of S0 (and thus two different
values of BK). The bound states that the magnitude of all reflection coefficients
Sν,ν have to intersect the boxes, when the scatterer satisfies the aforementioned as-
sumptions; also shown in the figure is one attainable and one unattainable reflection
coefficient.

Here it has been used that k2p−1
0

∫
K 1/k2p dk � BK for p = 0, 1, . . . Note also that

k2p−1
0

∫
K 1/k2p dk ≈ BK when BK � 1.

The sum in the right-hand side of (4.13) is non-positive (since Im kn > 0 for all
kn), and so

BK ln S−1
0

π
� k0a.

An alternative bound not containing the sum over all zeros can also be derived (see
Appendix A.3):

BK ln S−1
0

π
� k0a − 3

√
ι + ζ + 3

√
ι − ζ (4.15)

=

(
1

3
+ ρν,ν

)(
k3

0a
3 − k5

0a
5
)

+ O(k7
0), as k0 → 0.

Here the material and geometry of the scatterer are contained in ρν,ν via ζ =

3k0a(1−ρν,νk
2
0a

2)/2 and ι =
√

1 + ζ2. The term k3
0a

3/3 in the bound stems from the
circumscribing sphere. The bound (4.15) states that, somewhere on the wavenumber
interval K, the reflection coefficient S̃ν,ν(k

′) for mode ν must be larger in magnitude
than some value prescribed by the fractional bandwidth BK , the radius of the small-
est circumscribing sphere a, and the material properties of the scatterer via ρν,ν , see
Figure 4.

An interpretation of the bound is as a limitation on the absorption of a vector
spherical wave over a bandwidth. To see this, consider the total energy e(∞) ab-
sorbed by the scatterer when the incoming field consists of only the mode ν, and
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b
(2)
ν (t) is assumed to be in L2. By (3.4)–(3.6), it is (with r � a)

e(∞) =

∫ ∞

−∞
P (r, t) dt =

∫ ∞

−∞
Prad(r, t) dt =

∫ ∞

−∞
|b(2)
ν (t)|2 −

∑
ν′

|Sν′,ν ∗ b(2)
ν (t)|2 dt.

The expression for e(∞) may be rewritten with Parseval’s equation:

e(∞) =
1

2πc

∫ ∞

−∞
|b̃(2)
ν (k′)|2

(
1 −

∑
ν′

|S̃ν′,ν(k′)|2
)

dk′.

Hence 1 −∑
ν′ |S̃ν′,ν(k′)|2 is the normalised energy of the incoming mode ν that is

absorbed by the scatterer at wavenumber k′; all of the incoming energy is absorbed
if
∑

ν′ |S̃ν′,ν(k′)|2 = 0, while no energy is absorbed in the case
∑

ν′ |S̃ν′,ν(k′)|2 = 1.
The absorbed normalised energy is obviously less than or equal to 1 − |S̃ν,ν(k′)|2.
Also recall that S̃ν′,ν(k

′) → 0, as k′ → 0, when ν ′ �= ν, due to (4.8).

5 Examples

5.1 Absorbing spherical nanoshells

A nanoshell is a dielectric core covered by a thin coat of metal. By varying the
core radius, shell thickness, and materials, they can be constructed to scatter or
absorb large parts of incoming electromagnetic waves in the visible light and near-
infrared (NIR) spectra. Applications include e.g., biomedical imaging and treatment
of tumours.

In cancer treatment, the nanoshells are shuttled into the tumour using a so called
“Trojan horse”-method [4]. Hereafter they are illuminated by laser light, causing
most of the cancer cells to die, see Figure 1 in [4]. It is thus desirable to design
nanoshells that absorb large parts of the laser energy. In [4, 15], the nanoshells are
spherical cores of silicon dioxide (SiO2) covered with gold. The radius of the core is
typically around 60 nm, and the gold shell is 5−20 nm thick. The bound in (4.15) is
well suited to study this problem, since the normalised absorbed energy from mode
ν is bounded by 1− |S̃ν,ν |2 as discussed in Section 4.4. An illustration can be found
in Figure 5.

5.2 Physical limitations on antennas

As discussed in Section 4.4, (4.15) places a bound on the absorption of a spherical
wave over a bandwidth, which makes it a good candidate to find limits on the
performance of antennas. It is unusual to compute the S̃S-matrix elements of an
antenna. Instead, consider the setup depicted in Figure 6. The antenna is fed the
power Pin(k) by a transmission line, and a matching network is employed in order
to minimise the reflection coefficient Γ (k). The power rejected due to mismatch is
|Γ (k)|2Pin(k), and obviously the radiated power is bounded as

Prad(k) � (1 − |Γ (k)|2)Pin(k),
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Figure 5: The reflection coefficient S̃ν,ν of the electric dipole modes (τ = 2, l = 1)
for a spherical silicon dioxide core of radius 65 nm covered by a layer of gold of
thickness 10 nm. Here λ denotes the wavelength. The bound is (4.15) with ρν,ν =
2/3, and it states that the curve has to intersect the box. The reflection coefficient
S̃ν,ν was calculated from the closed form expression, using a Matlab-script for a
Lorentz-Drude model for gold by Ung et al. [21]. Silicon dioxide has negligible
losses and refractive index n ≈ 1.5 for wavelengths 400–1100 nm [11].

Figure 6: The antenna and matching network considered in Example 5.2.
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Figure 7: For many antennas, the impedance Zres(k) of the resonance circuit is
a good approximation for the antenna input impedance Z(k) close to its resonance
wavenumber k0 [8]. The quality factor Q is given by (5.1).

with equality if there are no ohmic losses in the antenna.
Many antennas can be modeled by the resonance circuit in Figure 7 in a frequency

interval close to their respective resonance frequencies [8]. Here the quality factor is

Q = k0c
Z ′(k0)

2R
, (5.1)

where k0 is the resonance wavenumber of the antenna, Z its input impedance, and
R = Z(k0) the (real-valued) input impedance at the resonance. A prime denotes
differentiation with respect to the argument. Using Fano’s bounds on optimal match-
ing [6], it is straightforward to show that [8]

BK ln Γ−1
0

π
� 1

Q
, (5.2)

applies whatever the matching network is. Here Γ0 = maxk∈K |Γ (k)|. The wavenum-
ber interval is K = [k0(1 − BK/2), k0(1 + BK/2)], with center wavenumber k0 and
fractional bandwidth BK .

The input impedance Z(k) of an antenna, and hence also the quality factor Q in
(5.1), may be calculated numerically. Equation (5.2) provides a means to compare
the bound (4.15) to the quality factor of an antenna; since 1 − |Γ |2 places a bound
on the radiated power in terms of the input power, and 1−|Sν,ν | limits the absorbed
power from a single mode ν, Γ and Sν,ν are on equal footing. In Figure 8, the bound
in (4.15) is compared to the inverse of the numerically determined quality factor Q
of four wire antennas.

6 Conclusions

Electromagnetic waves may be scattered and/or absorbed when they interact with
various objects. Understanding this interaction between electromagnetic waves and
matter is vital in many applications, from classical optics to antenna theory. One
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Figure 8: The lines are the bound (4.15) for ρ = 2/3 and ρ = 0, respec-
tively. Four wire antennas were used in the example, with wires modeled as perfect
electric conductors of diameter 2 mm. The radii of the loops are 60 mm (giving
a = 62 mm), and the heights of the umbrellas are 100 mm (so that a = 52 mm).
Here a is the radius of the smallest circumscribing sphere. The loop with resonance
at k0a ≈ 0.46 is in series with a 100 F capacitance, causing it to radiate much like a
pure magnetic dipole close to the resonance. The input impedances and resonance
wavenumbers for the antennas were calculated using the commercial software E-
Field (http://www.efieldsolutions.com). The inverse of Q given by (5.1) is depicted
for the four antennas at their respective resonance wavenumbers k0. The electric
polarizability dyadics γe were calculated using a Method of Moments code, and from
them the bounds on ρν,ν shown in the figure could be determined.
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way to analyse the interaction is to apply physical limitations to it; in essence, the
physical limitations state what cannot be expected from a certain physical system.

There are several publications addressing physical limitations in scattering and
antenna theory, see e.g., [3, 5, 7, 16, 20]. However, the present paper seems to be
the first to derive physical limitations on the scattering of electromagnetic vector
spherical waves. The vector spherical waves constitute a means to expand a given
electromagnetic wave in orthogonal waves, and are commonly used [10]. In wire-
less communication, they are intimately linked to the orthogonal communication
channels of multiple-input multiple-output (MIMO) systems.

The derivation makes use of a general approach to obtain sum rules and physical
limitations on passive physical systems on convolution form presented in [2]. The
limitations in this paper are valid for all heterogeneous passive scatterers with con-
stitutive relations on convolution form in the time domain, and anisotropic in the
static limit. They state that the reflection coefficients cannot be arbitrarily small
over a whole wavenumber interval; how small is determined by the center wavenum-
ber and fractional bandwidth, the radius of the smallest sphere circumscribing the
scatterer, and its static material properties.

The bounds can be interpreted as limits on the absorption of power from the
respective modes. They are particularly useful for the electrically small scatterers,
and can therefore be employed to analyse sub-wavelength structures designed to
be resonant in one or more frequency bands. Two examples are nanoshells and
antennas, discussed in the examples in this paper.
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Appendix A Definitions and derivations

A.1 Definition of vector spherical waves

The incoming (j = 2) and outgoing (j = 1) vector spherical waves [10] are defined
as {

u
(j)
1sml(kr) = h

(j)
l (kr)A1sml(r̂)

u
(j)
2sml(kr) =

(krh
(j)
l (kr))′

kr
A2sml(r̂) +

√
l(l + 1)

h
(j)
l (kr)

kr
A3sml(r̂).

(A.1)

Here h
(j)
l denotes the spherical Hankel function of the j:th kind and order l, and a

prime denotes differentiation with respect to the argument kr. The regular vector
spherical waves vν are almost identical; for them the spherical Hankel functions have
been replaced by spherical Bessel functions jl = (h

(1)
l +h

(2)
l )/2. The vector spherical
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harmonics Aτsml are defined by⎧⎪⎪⎨⎪⎪⎩
A1sml(r̂) = 1√

l(l+1)
∇× (rYsml(r̂))

A2sml(r̂) = 1√
l(l+1)

r∇Ysml(r̂)

A3sml(r̂) = r̂Ysml(r̂).

Here Ysml are the (scalar) spherical harmonics

Ysml(θ, φ) = −
√

2 − δm0

2π

√
2l + 1

2

(l − m)!

(l + m)!
Pm
l (cos θ)

{
cos mφ
sin mφ

}
and Pm

l are associated Legendre polynomials [1]. The polar angle is denoted θ while
φ is the azimuth angle. The upper (lower) expression is for s = 1 (s = 2), and the
range of the indices are l = 1, 2, . . . , m = 0, 1, . . . , l, τ = 1, 2, s = 1 when m = 0
and s = 1, 2 otherwise. The multi-index ν = {τ, s, m, l} is introduced to simplify
the notation. It is ordered such that ν = 2(l2 + l − 1 + (−1)sm) + τ .

Note that {
r̂ · A1sml(r̂) = r̂ · A2sml(r̂) = 0

r̂ × A3sml(r̂) = 0,

for which reason τ = 1 (odd ν) identifies a TE mode (magnetic 2l-pole) while τ = 2
(even ν) identifies a TM mode (electric 2l-pole) when the electric and magnetic fields
are defined by (3.1) and (3.2), respectively. Furthermore,{

A1sml(r̂) = A2sml(r̂) × r̂

A2sml(r̂) = r̂ × A1sml(r̂).
(A.2)

The vector spherical harmonics are orthonormal on the unit sphere. More specif-
ically, they satisfy ∫

Ωr̂

Aν(r̂) · Aν′(r̂) dΩr̂ = δν,ν′ , (A.3)

where Ωr̂ = {(θ, φ) : 0 � θ � π, 0 � φ � 2π} is the unit sphere and dΩr̂ =
sin θ dθ dφ. Define the L2-norm || · || for vector-valued functions on Ωr̂:

||G||2 =

∫
Ωr̂

G(r̂) · G∗(r̂) dΩr̂.

If the norm of G is finite, it may be expanded in vector spherical harmonics:

G(r̂) =
∑
ν

cνAν(r̂), (A.4)

where the coefficients cν are given by

cν =

∫
Ωr̂

G(r̂) · Aν(r̂) dΩr̂,
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and the sum in the right hand side of (A.4) converges in the norm || · ||.
The following expressions for the Cartesian unit vectors are used in (4.9):

x̂ =

√
4π

3
A3e11(r̂) +

√
8π

3
A2e11(r̂) (A.5)

ŷ =

√
4π

3
A3o11(r̂) +

√
8π

3
A2o11(r̂) (A.6)

ẑ =

√
4π

3
A3e01(r̂) +

√
8π

3
A2e01(r̂). (A.7)

There are expansions for the Hankel functions, used to determine the polynomials
R

(j)
τ,l in (3.3):

h
(1)
l (z) =

eiz

il+1z

l∑
n=1

(l + n)!

n!(l − n)!
(−2iz)−k (A.8)

h
(2)
l (z) =

il+1e−iz

z

l∑
n=1

(l + n)!

n!(l − n)!
(2iz)−k. (A.9)

A.2 Derivation of (4.6)

The scattered field Ẽs is the sum over u
(1)
ν in (4.3), viz.,

Ẽs(k, r) =
√

η0

∑
ν

d̃(1)
ν (k)Aν(r̂)

eikr

r

(
1 + O(r−1)

)
, as r → ∞,

where (A.1) and (A.8) have been used. From the above equation it is clear that the
far-field amplitude F̃ (k, r̂) in (4.4) is given by

F̃ (k, r̂) =
√

η0

∑
ν

d̃(1)
ν (k)Aν(r̂).

Using (4.5), multiplying with Aν′(r̂) and integrating over the unit sphere yield∫
Aν′(r̂) · S̃(k, r̂, k̂) · Ẽ0(k) dΩr̂ =

√
η0d̃

(1)
ν′ (k), (A.10)

due to (A.3).

The coefficients d̃
(1)
ν′ (k) are given by

√
η0d̃

(1)
ν′ (k) =

√
η0

∑
ν′′

T̃ν′,ν′′(k)d̃
(2)
ν′′ (k) =

4π

ik

∑
ν′′

T̃ν′,ν′′(k)Ẽ0(k) · Aν′′(k̂),

where the expansion coefficients d̃
(2)
ν′′ (k) of a plane wave eir·kẼ0(k) have been used.

Inserting this into (A.10) gives∫
Aν′(r̂) · S̃(k, r̂, k̂) · Ẽ0(k) dΩr̂ =

4π

ik

∑
ν′′

T̃ν′,ν′′(k)Ẽ0(k) · Aν′′(k̂),
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which must be valid for all k̂ and Ẽ0. Letting Ẽ0(k, k̂) = Aν′′′(k̂)ϕ(k) for some
ϕ ∈ S and integrating once more over the unit sphere leads to∫ ∫

Aν′(r̂) · S̃(k, r̂, k̂) · Aν′′′(k̂)ϕ(k) dΩr̂ dΩk̂ =
4π

ik
T̃ν′,ν′′′(k)ϕ(k),

and (4.6) is proven.

A.3 Derivation of (4.15)

First set k0/kn = θ′n− iθ′′n, where θ′n ∈ R and θ′′n > 0. With θ0 =
∑

n θ′′n, (4.13) takes
the form

BK ln S−1
0

π
� k0a − θ0. (A.11)

Furthermore, it follows that
∑

n Im k3
0/k

3
n �

∑
n θ′′3n � θ3

0, since

Im
k3

0

k3
n

=
k3

0

|kn|6
[
(Im kn)

3 − (Re kn)
2 Im kn

]
� k3

0

|kn|6 (Im kn)
3 = θ′′3n .

Hence (4.14) becomes
BK ln S−1

0

π
� k3

0a
3ρν,ν +

θ3
0

3
. (A.12)

Combining (A.11) and (A.12) yields

BK ln S−1
0

π
� k3

0a
3ρν,ν +

1

3

(
k0a − BK ln S−1

0

π

)3

,

with solution (4.15).
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