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Impact of Non-orthogonal Training on
Performance of Downlink Base Station

Cooperative Transmission
Xueying Hou, Student Member, IEEE, Chenyang Yang, Senior Member, IEEE,

and Buon Kiong Lau, Senior Member, IEEE

Abstract—Base station (BS) cooperative transmission is
a promising technique to improve spectral efficiency of
cellular systems, using which the channels become asym-
metric in average gain. In this paper, we study the impact
of the asymmetric channel gains on the performance of
coherent cooperative transmission systems, when minimum
mean square error (MMSE) and least square (LS) channel
estimators are applied for jointly estimating the channel
state information (CSI) under non-orthogonal training. We
first derive an upper bound of rate loss caused by both
channel estimation errors and CSI delay. We then analyze
the mean square errors of the MMSE and LS estimators
under both orthogonal and non-orthogonal training, which
finally reveals the impact of different kinds of training on
the precoding performance. It is shown that non-orthogonal
training for the users in different cells leads to minor
performance degradation for the MMSE channel estimator
assisted downlink precoding. The performance degradation
induced by channel estimation errors is almost independent of
the user’s location. By contrast, the performance loss caused
by CSI delay is more severe for users located at the cell center
than that for users located at the cell edge. Our analysis is
verified via simulation results.

Index Terms—Base station cooperative transmission, chan-
nel estimation, channel asymmetry, non-orthogonal training.

I. INTRODUCTION

Coherent base station (BS) cooperative transmission,
which is a popular form of coordinated multi-point trans-
mission (CoMP), can provide high spectral efficiency for
cellular systems when both data and channel state infor-
mation (CSI) are available at a central unit (CU) [1–4].
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To facilitate downlink (DL) precoding in such CoMP
systems, both local and cross channels, i.e., the channels
between the cooperative BSs and mobile stations (MSs)
which are in the same cell and in different cells, need to
be estimated. In time division duplexing (TDD) systems,
the required CSI can be estimated through uplink (UL)
training by exploiting channel reciprocity. When training
signals for all MSs are orthogonal, conventional estimators
such as that proposed in [5] can be directly applied with
good performance. However, in current cellular systems,
such as those complying with the Long Term Evolution
(LTE) standard [6], the training sequences of MSs in
the same cell are orthogonal but those for the MSs in
different cells are not. Moreover, the independent UL
frequency scheduling among cells may lead to partially-
overlapped training sequences for the MSs in different
cells, which results in high cross-correlation of training
sequences. To improve channel estimation performance,
we can simply apply orthogonal training sequences for the
MSs in different cells. However, this not only introduces
large overhead which occupies expensive UL resources
[7], but also demands inter-cell signalling and protocol to
coordinate the training sequences and uplink scheduling
among multiple cells [8]. Such a burden will become
more noticeable when the cooperative clusters are formed
dynamically [4]. From the viewpoint of system compat-
ibility, scalability and complexity, the training sequences
of MSs in different cells are highly preferred to be non-
orthogonal. Nonetheless, it is not known whether non-
orthogonal training can provide acceptable performance
or not. In fact, even if we employ orthogonal training,
the cross channels which experience severe attenuation
seem to be hard to estimate due to the limited transmit
power of MS. On the other hand, when the channel is
time-varying, the CSI employed by CoMP transmission
will become outdated due to the delay between uplink
channel estimation and downlink data transmission. Such a
channel distortion will inevitably lead to the deterioration
of DL transmission performance. Therefore, the extent to
which the channel distortion degrades the performance of
DL CoMP precoding is of great interest.
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In this paper, we study the impact of non-orthogonal
training and CSI delay on the performance of DL CoMP
transmission. A CoMP channel is an aggregation of mul-
tiple single-cell channels and is inherently asymmetric,
i.e., the average channel gains from different BSs to
one MS and those from MSs in different cells to one
BS are different. Such an asymmetric channel feature is
fundamental in CoMP systems, since the difference of the
average channel gains cannot be compensated by a power
control mechanism. Specifically, if the MSs in different
cells compensate their average channel gain differences
towards one BS by power control, their receive signal
energy differences towards other BSs will increase. This
is analogous to the interference asynchrony feature, which
cannot be dealt with by time-advanced techniques [3].

We consider coherent CoMP multi-user multiple an-
tenna orthogonal frequency-division multiplexing (OFDM)
systems. To show the connection of the performance
between DL transmission and channel distortion caused by
channel estimation and CSI delay, we first derive a lower
bound of the achievable per-user rate of CoMP system
using zero forcing beamforming (ZFBF). The impact of
channel estimation errors on DL CoMP transmission has
been studied in [7, 8]. In [7], the authors considered DL
channel estimation for feedback, but they did not address
the impact of the channel asymmetry and non-orthogonal
training. In [8], the authors assume that the cooperative
BSs only serve one user on each subcarrier, which is
different from our analysis for the multi-user case. The
impact of CSI delay on DL CoMP systems has been
investigated in [9], in the context of non-coherent CoMP
with no data sharing among the BSs.

We then analyze the performance of minimum mean
square error (MMSE) and least square (LS) channel esti-
mators, which are widely applied and have been studied
extensively in single-cell systems (see [10] and references
therein). In multi-cell systems, the authors in [11] showed
that when the MSs in different cells use identical sequences
for uplink training, the estimation performance of the de-
sired channels will be severely degraded when traditional
channel estimator is used, where only the local channel is
estimated and the received signals of the cross channels are
treated as interference. Considering the channel asymmetry
and by jointly estimating the local and cross channels,
we will show that the MMSE estimator is robust to the
non-orthogonality of training sequences in different cells,
whereas the LS estimator is quite sensitive to them. More-
over, our analysis shows that although the cross channels
are weak, their estimation errors induce even less rate loss
than that of the local channel. In fact, we find that the
average per-user rate loss caused by channel estimation
errors is nearly independent of the MS’s location when the
MMSE estimator is applied under inter-cell non-orthogonal
training. By contrast, the performance loss caused by CSI

delay is more severe for MSs located at cell center than
that for MSs located at cell edge.

The rest of the paper is organized as follows. Section
II introduces the system models. Section III analyzes the
impact of non-orthogonal training and CSI delay on the
performance of DL precoding. Simulation and numerical
results are provided in Section IV, and conclusions are
given in Section V.

Notations: (X)T , (X)∗ and (X)H denote the transpose,
the conjugate, and the conjugate transpose of X. vec(X) is
the column vector obtained by stacking the columns of X,
X(i, i) and X(:, i) represent the (i, i)th element and the
ith column of matrix X. ∥·∥ represents the two-norm, ⊗ is
the Kronecker product, and diag{·} is a diagonal matrix.
E{·} is the expectation operator. IN denotes the identity
matrix of size N , and 0 is the matrix of zeros.

II. SYSTEM MODELS

Consider a coherent CoMP-OFDM system, where B
BSs each equipped with Nt antennas cooperatively serve
M single-antenna MSs using multi-cell ZFBF.

We consider TDD systems, where the CSI is estimated
through UL training by exploiting channel reciprocity.
Time-varying block fading channel is considered, where
the channel remains constant for an OFDM symbol du-
ration and changes from symbol to symbol. During the
uplink training period, all MSs send training sequences
and each BS estimates the CSI between it and all MSs.
Then the CU collects the estimated CSI from each BS
and computes the precoders based on the estimated CSI.
Finally, the CU sends the DL data and precoders to each
BS and all BSs serve MSs cooperatively using multi-cell
precoding.

We denote the delay between uplink channel estimation
and downlink data transmission as D symbols. Denote the
number of subcarriers as K and the number of resolvable
paths of channel impulse response (CIR) as L. To simplify
the notations and for the sake of clarity, we assume the
number of resolvable paths to be 1, with no loss of
generality. Under this assumption, the channel frequency
responses (CFR) over all sub-carriers are identical. We
will verify in Section IV that the following analysis based
on the flat-fading assumption also holds for frequency-
selective fading channels. In the following, we will omit
the index of subcarrier for brevity.

Denote the composite channel vector between BSb

and MSm at the nth discrete-time instant as hm,b[n] =
αm,bgm,b[n], where αm,b is the large scale fading coeffi-
cient including both path loss and shadowing, gm,b[n] ∈
CNt×1 is the small scale fading channel vector, whose
entries are assumed to be independent and identically
distributed (i.i.d.) unit variance complex Gaussian vari-
ables. The first order Gauss-Markov model is considered
to characterize the time-varying property of small-scale
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fading channels, by which the current and delayed small
scale fading channel vectors are related as

gm,b[n] = ρgm,b[n−D] +
√
1− ρ2em,b[n], (1)

where em,b[n] ∈ CNt×1 is the channel error vector whose
entries are i.i.d. unit variance complex Gaussian variables,
em,b[n] is uncorrelated with gm,b[n − D] and gm,b[n],
and ρ ∈ [0, 1] is the fading correlation coefficient that
characterizes the extent of time variation.

The DL global channel of MSm at time n is the
aggregation of B single-cell channel vectors, which is

hm[n] =[αm,1g
T
m,1[n], . . . , αm,Bg

T
m,B [n]]

T

=ρ[αm,1g
T
m,1[n−D], . . . , αm,Bg

T
m,B [n−D]]T

+
√
1− ρ2[αm,1e

T
m,1[n], . . . , αm,Be

T
m,B [n]]

T

=ρhm[n−D] +
√
1− ρ2em[n], (2)

where hm[n−D] , [αm,1g
T
m,1[n−D], . . . , αm,Bg

T
m,B [n−

D]]T is the DL global channel of MSm at time (n−D), and
em[n] , [αm,1e

T
m,1[n], . . . , αm,Be

T
m,B [n]]

T is the channel
error vector of the DL global channel caused by the delay
of CSI.

A. Uplink Training

During the uplink training period, each BS needs to
estimate the CSI between itself and all MSs. We consider
that all the MSs send training sequences at the (n−D)th
discrete-time instant. Assume that the transmit power is
the same for all the MSs, and it is denoted as pu.
Denote the frequency domain training sequence of MSm

as sm ∈ CK×1. Then, the received signal matrix at BSb

during the uplink training phase can be expressed as

Yb[n−D] =
√
puHb[n−D]ST +N[n−D], (3)

where Yb[n−D] = [y1
b [n−D], . . . ,yK

b [n−D]] ∈ CNt×K ,
yk
b [n−D] ∈ CNt×1 is the received signal vector of BSb at

the kth subcarrier, Hb[n−D] = [h1,b[n−D], . . . ,hM,b[n−
D]] ∈ CNt×M is the channel matrix between BSb and all
MSs at the (n−D)th discrete-time instant when channels
are estimated, S = [s1, . . . , sM ] ∈ CK×M is the training
matrix formed by the training sequences of all MSs,
N[n−D] ∈ CNt×K is the additive white Gaussian noise
(AWGN) matrix, whose elements are random variables
with zero mean and covariance σ2

n.
By vectorizing the received signal in (3) and apply-

ing vec(ABC) = (CT ⊗ A)vec(B), we can obtain
the vectorization of Yb[n − D] as vec(Yb[n − D]) =√
puS̃vec(Hb[n−D])+vec(N[n−D]), where S̃ = S⊗INt .

Then Hb[n−D] can be estimated as

vec(Ĥb[n−D]) =

(
S̃H S̃+ µ · σ

2
n

pu
R−1

b

)−1

·

S̃Hvec(Yb[n−D]), (4)

where Rb = E{vec(Hb[n − D])vec(Hb[n − D])H} is
the correlation matrix of the vectorized channel matrix
Hb[n − D]. We assume that the channels from multiple
MSs to BSb are uncorrelated, and the separation distance
of antennas at each BS are large enough that the channels
from multiple antennas of one BS to one MS are spatially
uncorrelated. Then we have Rb = Λb ⊗ INt , where
Λb = diag{[α2

1,b, . . . , α
2
M,b]}. The estimator in (4) is the

MMSE estimator when µ = 1 and LS estimator when
µ = 0.

B. Downlink Transmission

The CU collects the estimated CSI from each BS to
calculate the multi-cell precoders. Denote the estimated
downlink channel matrix from all cooperative BSs to all
MSs as Ĥ[n − D] = [ĤT

1 [n − D], . . . , ĤT
B [n − D]],

then a multicell ZFBF is V = ĤH [n − D](Ĥ[n −
D]ĤH [n − D])−1. Denote dm[n] and pd(m) as the data
and power allocated for MSm. For simplicity, we assume
that E{d∗m[n]dm[n]} = 1 and the transmit power is equally
allocated to each MS, i.e., pd(m) = pd. Then the received
signal of MSm is

ym[n] =
∑M

j=1

√
pdh

H
m[n]vj [n]dj [n] + zm[n], (5)

where vj [n] = V[n](:, j)/∥V[n](:, j)∥ is the precoding
vector for MSj , and zm[n] is the AWGN with zero mean
and covariance σ2

z .
For CoMP transmission, the ZFBF precoder should

be designed under per-BS power constraint [1], but its
performance is hard to analyze. In this paper, we consider
a suboptimal but more tractable power constraint, which is
the per-user power constraint as in [3]. It has been shown
that the ZFBF with different power constraints perform
closely when the number of users in each cell is large
[12].

III. IMPACT OF DELAYED NON-ORTHOGONAL
TRAINING ON COOPERATIVE TRANSMISSION

In this section, we first show the connection between
the performance of DL transmission and the distortion of
the global composite channel, which is caused by both
channel estimation and CSI delay. Then we derive the
mean square error (MSE) of the MMSE estimator and
LS estimator under both orthogonal and non-orthogonal
training, and analyze the impact of the resulting channel
estimation errors on the performance of multi-cell ZFBF.

A. Relationship between Precoding Performance and
Channel Distortion

We analyze the average per-user rate loss of CoMP
transmission using ZFBF caused by both channel estima-
tion errors and CSI delay.
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The average rate of MSm achieved by ZFBF with
delayed estimation of CSI is obtained as E{Rm[n]}, where
Rm[n] is the data rate of MSm at the nth time interval.

Using similar techniques as in [13], we can derive the
upper bound of the rate loss of MSm caused by both
channel estimation errors and CSI delay, which yields

E{∆Rm[n]} = E{RIdeal
m [n]} − E{Rm[n]}

< log2

(
1 +

pd
σ2
z

E{Im[n]}
)

, ∆R̄UB
m , (6)

where E{RIdeal
m [n]} is the average rate achieved under

perfect CSI, Im[n] =
∑M

j=1,j ̸=m |hH
m[n]vj [n]|2 is the

interference power experienced by MSm caused by channel
estimation errors and CSI delay.

Denote the estimation of DL channel vector for MSk as
ĥm[n−D] and its estimation error as

h̃m[n−D] , hm[n−D]− ĥm[n−D]

= [h̃m,1[n−D]T , . . . , h̃m,B [n−D]T ]T , (7)

where h̃m,b[n−D] = [h̃m,b,1[n−D], . . . , h̃m,b,Nt[n−D]]T

is the estimation error vector of the composite channel
between MSm and BSb. Denote the MSE of the channel
estimate between MSm and the ath antenna of BSb as
ε2m,b,a = E{|h̃m,b,a[n − D]|2}. Since the MSEs of the
CSI estimate between different antennas of BSb and MSm

are equal, we define ε2m,b,1 = · · · = ε2m,b,Nt
, ε2m,b.

When the MMSE estimator is used, the channel estimation
errors are independent of the channel estimates. Since
the precoders are functions of the channel estimates, the
channel estimation errors h̃m[n − D] and the precoders
vj [n], j = 1, . . . ,K, are mutually independent. Then the
average interference power can be derived as follows,

E{Im[n]} =E
{∑M

j=1,j ̸=m

∣∣hH
m[n]vj [n]

∣∣2}
(a)
=

M∑
j=1,j ̸=m

E
{∣∣∣ρh̃H

m[n−D]vj [n]

+
√
1− ρ2eHm[n]vj [n]

∣∣∣2}
(b)
=

B∑
b=1

M∑
j=1,j ̸=m

E
{
ρ2

∣∣∣h̃H
m,b[n−D]vj,b[n]

∣∣∣2
+ (1− ρ2)α2

m,b

∣∣eHm,b[n]vj,b[n]
∣∣2}

(c)
=

(∑B

b=1

[
ρ2ε2m,b + (1− ρ2)α2

m,b

])
·(∑M

j=1,j ̸=m
E
{
∥vj,b[n]∥2

})
(d)

≤ρ2(M − 1)
∑B

b=1
ε2m,b

+ (1− ρ2)(M − 1)
∑B

b=1
α2
m,b, (8)

where (a) follows because hm[n] = ρhm[n − D] +√
1− ρ2em[n] = ρĥm[n − D] + ρh̃m[n − D] +√
1− ρ2em[n] and ĥm[n − D] is orthogonal to vj [n]

due to ZFBF, (b) comes by the definitions of em[n] and
h̃m[n−D] in (2) and (7), (c) is obtained by averaging over
h̃m[n −D] and em,b[n], in which the statistical property
of mutual independence among channel estimation errors
h̃m[n−D], the channel error caused by CSI delay em[n],
and the precoder vectors vj [n], j = 1, . . . ,M , is used,
and (d) comes from the assumption of per-user power con-
straint, which leads to ∥vj,b[n]∥2 ≤

∑B
i=1 ∥vj,i[n]∥2 = 1.

Then the upper bound of the rate loss is

∆R̄UB
m =log2

[
1 + ρ2(M − 1)

pd
σ2
z

∑B

b=1
ε2m,b︸ ︷︷ ︸

ICEE
m

+ (M − 1)(1− ρ2)
pd
σ2
z

∑B

b=1
α2
m,b︸ ︷︷ ︸

IDelay
m

]
, (9)

where the term ICEE
m reflects the impact of channel estima-

tion errors, and the term IDelay
m indicates the performance

degradation caused by CSI delay. Then a lower bound
of the average rate achieved by MSm is E{RLB

m [n]} =
E{RIdeal

m [n]} −∆R̄UB
m .

It is worth to note that the analysis in [13] is for
single-cell systems and is based on the assumption of i.i.d.
channel. By contrast, we analyze the rate loss for CoMP
transmission. Since the global composite channel is not
i.i.d. except for the case when the MSs are located at cell
edge, and the cell-edge MSs perform the worst among all
the MSs, (9) can serve as a pessimistic rate loss upper
bound. Nonetheless, this does not affect our latter results.
Remark 1: The rate loss caused by CSI delay depends
on the sum of average channel gains of the local and
cross channels. When a MS moves from the cell center
to the cell edge, the path loss of its local channel increase
exponentially. Though the path losses of its cross channels
reduce exponentially, the sum of average channel gains
of a cell-center MS exceeds that of a cell-edge MS. This
implies that the impact of CSI delay on CoMP transmission
is larger for the MSs located at the cell center than for the
MSs located at cell edge.

It is shown from (9) that the impact of channel estima-
tion on the upper bound of rate loss depends on the sum
of MSEs of the composite local and cross channels, which
is independent of the CSI delay. In the following, we will
analyze the MSE of the composite CSI estimates under
both orthogonal and non-orthogonal training.

B. Impact of Non-orthogonal Training on DL CoMP
Transmission

Here, we strive to derive an explicit and unified expres-
sion of the MSE for both kinds of training. Then, we
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can understand how non-orthogonal training performs in
CoMP system by comparing with orthogonal training.

1) MSEs of the MMSE and LS estimators: The covari-
ance matrix of channel estimation error vector, vec(H̃b[n−
D]) = vec(Hb[n−D]− Ĥb[n−D]), can be derived from
(4) as

Cb , E{vec(H̃b[n−D])vec(H̃b[n−D])H}

=

(
µR−1

b +
pu
σ2
n

S̃H S̃

)−1

=

[
µ(Λb ⊗ INt)

−1 +
pu
σ2
n

(S⊗ INt)
H(S⊗ INt)

]−1

=

[
µΛ−1

b ⊗ INt +
pu
σ2
n

(SHS)⊗ INt

]−1

=

[
(µΛ−1

b +
pu
σ2
n

SHS)⊗ INt

]−1

=

(
µΛ−1

b +
pu
σ2
n

SHS

)−1

⊗ INt . (10)

Then, the MSE of the estimated CSI between MSm and the
ath antenna of BSb, i.e., ε2m,b,a, is the ((m−1)Nt+a)th di-
agonal element of Cb. Define Bb , (µΛ−1

b + pu

σ2
n
SHS)−1.

The MSE of the estimated channel coefficient between
any antenna of BSb and MSm is the same, which is the
(m,m)th element of Bb, i.e., ε2m,b,1 = · · · = ε2m,b,Nt

=
ε2m,b = Bb(m,m). Due to the matrix inverse operation in
Bb, it is nontrivial to derive an explicit general expression
of ε2m,b. For mathematical tractability, we consider a simple
but fundamental scenario, where B BSs cooperatively
serve two MSs.

Then, it is not hard to respectively derive the MSEs of
the MMSE and LS estimators, as follows,

ε2
MMSE

m,b = ηMMSE
m,b

σ2
n

pu

1

K

1

1− βbλ
, m = 1, 2, (11)

ε2
LS

m,b =
σ2
n

pu

1

K

1

1− λ
, m = 1, 2, (12)

where ηMMSE
m,b = 1/(1 +

σ2
n

α2
m,bpu

1
K ), βb = 1/

∏2
j=1(1 +

σ2
n

α2
j,bpu

1
K ) and λ =

|sH1 s2|2
∥s1∥2∥s2∥2 =

|sH1 s2|2
K2 represents the

cross-correlation between the training sequences of MS1

and MS2.
For the MMSE estimator, it is shown that the MSE of the

composite CSI depends on α2
m,b, which is the large scale

fading gain of hm,b. If MSm is in the same cell with BScm ,
then hm,cm is the local composite channel for MSm and
hm,b for b ̸= cm are its cross composite channels. Since
in general α2

m,cm ≥ α2
m,b, b ̸= cm, we can observe that

the MSEs of the weak cross channels are even less than
that of the strong local channel. For the LS estimator, the
MSEs of local and cross composite channels are identical.

At the first glance, the results for both the LS and

MMSE estimators may appear inconsistent with intuition,
where the MSEs of the estimates of the cross channels
should exceed that of the local channel. However, this is
true only for estimating small scale fading channels with
unit average energy. To see this, we normalize the MSE of
hm,b by α2

m,b to obtain a normalized MSE (NMSE), which
is actually the MSE for estimating the small scale fading
channel ĝm,b. The NMSE for LS and MMSE estimators
can be expressed as

NMSEMMSE
m,b ,

ε2
MMSE

m,b

α2
m,b

=
1

1 + 1
γm,b

1
K

1

γm,b

1

K

1

1− βbλ
,

NMSELS
m,b ,

ε2
LS

m,b

α2
m,b

=
1

γm,b

1

K

1

1− λ
, m = 1, 2, (13)

where γm,b =
α2

m,bpu

σ2
n

is in fact the average UL receive
SNR when estimating the small scale fading channel vector
gm,b. Thus, the NMSE for estimating a small scale fading
channel with low SNR exceeds that with high SNR.

2) Impact of the Training Sequences: When the train-
ing sequences for the two MSs are orthogonal, we have
λ = 0. Then both MMSE and LS estimators achieve their
minimal MSEs, which are ε2

MMSE

m,b = 1
1+ 1

K (1/γm,b)

σ2
n

pu

1
K

and ε2
LS

m,b =
σ2
n

pu

1
K , respectively. In typical cellular OFDM

systems, the receive SNR of the link from MSm to BSb,
γm,b, is larger than 0 dB and the value of 1/K is usually
small. Consequently, ε2

MMSE

m,b ≈ ε2
LS

m,b.
When the training sequences of MSs in different cells

are not orthogonal, we have λ ̸= 0.
For the LS estimator, if λ is close to 1, the value

of ε2
LS

m,b will be extremely large, which means that the
estimation performance will severely degrade. Therefore,
the LS estimator is quite sensitive to the non-orthogonality
of training sequences no matter where the MSs are located.

For the MMSE estimator, λ is weighted by βb in the
expression of MSE, where βb < 1 and its value is related
to the large scale fading gains between the two MSs and
the BSb. This indicates that the MSE of MMSE estimator
depends on the location of the MSs.

If the two MSs are within the same cell with BSb, both
α2
1,b and α2

2,b are large, then βb ≈ 1 and ηMMSE
m,b ≈ 1. As a

result, ε2
MMSE

m,b ≈ ε2
LS

m,b. This implies that if the MSs in the
same cell use non-orthogonal training sequences, MMSE
estimator is also quite sensitive to the non-orthogonality
of training sequences.

If the two MSs are in different cells, on the other hand,
no matter where both MSs are located, βb will be small
hence ε2

MMSE

m,b ≈ 1
1+ 1

γm,b

1
K

σ2
n

pu

1
K << ε2

LS

m,b. This is because

if both MSs are at the cell edge, their average channel
energies are small thereby both values of 1

γm,b

1
K ,m = 1, 2,

are large. If at least one MS is at the cell center, thanks
to the severe energy attenuation of the channels from this
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MS to its non-serving BSs, at least one of the 1
γm,b

1
K is

large. This indicates that the MMSE estimator is robust to
the inter-cell non-orthogonal training.

Substituting the expression of ε2
MMSE

m,b in (11) into (9),
the upper bound of the rate loss becomes

∆R̄UB
m = log2

[
1 + (M − 1)

pd
σ2
z

B∑
b=1

(1− ρ2)α2
m,b+

ρ2(M − 1)
pd
σ2
z

B∑
b=1

1

1 + 1
γm,b

1
K

σ2
n

pu

1

K

1

1− βbλ

]
(14)

≈ log2

[
1 + (1− ρ2)(M − 1)

pd
σ2
z

∑B

b=1
α2
m,b︸ ︷︷ ︸

IDelay
m

+ ρ2B(M − 1)
pd
σ2
z

σ2
n

pu

1

K︸ ︷︷ ︸
ICEE
m

]
, (15)

where the approximation of (15) is obtained when the
values of both 1

γm,b

1
K and βbλ approach 0. When the

number of subcarriers K is large, the value of 1
γm,b

1
K will

be close to 0. Regarding to βbλ, as we have analyzed,
its value approaches 0 when the training signals are all
orthogonal, or when the training signals are non-orthogonal
but the MSs are in different cells.
Remark 2: Since the MSEs of the weak cross composite
channels are usually smaller than that of the local com-
posite channel, it is shown from (14) that the channel
estimation errors of cross channels have less contribution
to the rate loss than that of local channel. Moreover, if the
training signals for MSs within each cell are orthogonal
whereas those for the MSs in different cells are non-
orthogonal, the average interference part ICEE

m caused by
channel estimation errors in (15) will be a constant no
matter where the MSs are located.

IV. SIMULATION AND NUMERICAL RESULTS

In this section, we verify our previous analysis via
simulations. We consider a CoMP system of B BSs, each
with four omnidirectional antennas. Considering that the
DL transmit power is usually larger than the UL transmit
power, we set pd = pu + 5 dB. K = 128. Recall that in
the derivations we assume flat-fading channels mainly for
simplicity of notations and clarity of presentation. Similar
derivations can likewise be made for frequency-selective
channels, which are appropriate for new generation of
broadband cellular systems. Hence, the channels used in
the simulations are frequency-selective, the CIR of which
is a tapped-delay line with independent Rayleigh fading
coefficients and an exponential power delay profile with
attenuation factor 1.4, L = 20. These parameters are the
same as those in SCME channels [6]. Though a permissive
time-varying channel model is employed in the previous

Fig. 1. An example of coherent CoMP system, where the locations of
MSs are symmetrical to the line connecting the two BSs or to the cell
edge. The cell radius r = 250 m, d3 = r

2
. When all MSs move from the

cell edge to the cell center simultaneously, their UL average local receive
SNRs γm,cm ,m = 1, . . . , 4 increase. Given d1, we can get the value of
d2 and vise versa. Assume that the DL receive SNR of the cell edge MS,
SNRedge, is 10dB. The average receive SNR of a MS from a BS with
distance d is computed as SNR(d) = SNRedge + 3.76 · 10 log10( rd ).

derivation of rate loss for mathematical tractability, in
simulations we consider a more realistic channel mode,
Jakes’ Model, which is a widely accepted channel model
by various standardization organizations. Its temporal cor-
relation function is Rt(τ) = J0(2πfdDTs), J0(·) is the
zeroth order Bessel function of the first kind, fd is the
Doppler spread and Ts is the symbol duration. The carrier
frequency is 2 GHz, the OFDM symbol duration is 1 ms
and the speed of the MSs is 3 km/h.

The training sequences are constructed from the Con-
stant Amplitude Zero Autocorrelation Code (CAZAC) as

t(k) = e
−jc

πnk(nk+1)

NZC , k = 0, . . . ,K − 1 [6], where
NZC = 127, nk = mod(k,NZC). The training sequences
for MSs may be orthogonal or non-orthogonal. For orthog-
onal training, the training sequences for all MSs are the
cyclic shift version of one CAZAC. For non-orthogonal
training, the CAZACs used by MSs are of different c’s.

A. Impact of the Training Sequence Orthogonality on the
NMSEs of Different Estimators

To observe the robustness of different estimators to the
non-orthogonal training, we consider a cooperative cluster
of two BSs. Though our analytical results are derived
for the case of two MSs, we consider four MSs in the
simulation to demonstrate that the analysis is also valid
for more general cases. We assume that the four MSs are
symmetrically located as shown in Fig. 1. Then, all MSs
achieve the same performance and we only need to show
the performance of one MS.

To be consistent with the traditional understanding, we
show the NMSE of the composite CIR, which is defined in
(13) and is actually the MSE for estimating the small scale
fading channel. In Fig. 2, the NMSEs of the MMSE and LS
estimators under orthogonal and non-orthogonal training
versus the UL local SNR for both the local and cross
channels are shown. The UL local SNR is the UL average
receive SNR of the local link, which is γm,cm =

α2
m,cm

pu

σ2
n

for MSm, where MSm and BScm are in the same cell. As
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Fig. 2. NMSEs of MMSE and LS estimators for both local and
cross channels versus the UL average receive SNR of the local link,
γm,cm = α2

m,cm
pu/σ2

n,m = 1, . . . , 4. When the MSs are located
at the exact cell edge, γm,cm = 5 dB. For non-orthogonal training,
the ZACACs used by MSs in two cells are constructed from c1 = 1
and c2 = 7 respectively, which leads to moderate cross correlation.
The NMSEs are obtained by averaging over 1000 realizations of small
scale fading channels. When γm,cm increases, the large scale fading
gains of the cross channels decrease, which leads to large NMSE of the
cross channels. For the local channels, the NMSE of the estimators are
overlapped under orthogonal training. The legend ’Intra-O & Inter-O’
means that the training sequences both for MSs within a cell and for
MSs in different cells are orthogonal, and vise visa. The legend ’Intra-O
& Inter-NO’ means that the training sequences for MSs within a cell are
orthogonal while those for MSs in different cells are non-orthogonal, and
vise visa.

we have analyzed, only when both the training sequences
for MSs within a cell and for MSs in different cells are
orthogonal, the LS estimator achieves good performance,
which is only slightly inferior to that of the MMSE
estimator. On the other hand, when the MMSE estimator is
used and when the training sequences for the MSs within a
cell are orthogonal but those for MSs in different cells are
non-orthogonal, the performance of both cross and local
channel degrades slightly. By contrast, when the training
sequences for the MSs within a cell and for the MSs in
different cells are both non-orthogonal, the performance
of the local channel degrades severely especially when the
MSs are located at cell center, whereas the performance
of the cross channels only degrades a little since their
channel estimation is noise-limited. This agrees well with
our previous analysis, i.e., the MMSE estimator is robust
to the non-orthogonality of the training signals for the MSs
in different cells owing to the channel asymmetry.

B. Impact of Training Sequence Orthogonality and CSI
delay on the DL Average Per-User Rate

To observe the impact of different estimates and CSI
delay on the performance of CoMP transmission, we first
consider a case where the settings are the same as that in
the previous subsection.
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Fig. 3. The average rate achieved by each MS obtained via simulation
and its lower bound calculated from (15) when the MMSE estimator and
orthogonal training are considered for all the four MSs. The per-MS rate
of CoMP transmission with perfect CSI is also provided for reference.

Figure 3 shows the tightness of the per-user rate lower
bound derived in Section III-A. The simulated per-user rate
under perfect ZFBF and that with MMSE estimator under
orthogonal training and different delays are plotted, togeth-
er with the lower bound of the achievable rate derived from
(15). It shows that the derived lower bound based on i.i.d.
channel assumption is indeed a lower bound and is not
very tight, which is due to the overestimated interference
induced by the imperfect CSI for the CoMP channel. When
no delay is introduced, i.e., D = 0, the performance
degradation caused by only channel estimation errors are
almost independent of the location of MS. By contrast, the
per-user average rate loss of MS caused by the CSI delay
is more severe for MS with high local SNR than that for
MS with low local SNR. When the delay is large, the per-
user average rate will arrive at a ceiling at high local SNR.
These results agree well with our previous analysis.

The simulation results for the DL average rate of each
MS with different estimators are shown in Fig. 4, where
the average rate under non-CoMP transmission is also pre-
sented as a reference. To highlight the impact of different
estimators and different training sequences, no CSI delay is
considered. It is shown that under orthogonal training, the
per-user rates with different estimators are close. Moreover,
for both the LS and MMSE estimators, the performance
gaps from the perfect CSI-based ZFBF are almost indepen-
dent of the location of MS. When the training sequences of
MSs in different cells are not orthogonal, the performance
degradation is minor when using the MMSE estimator. On
the contrary, the performance degradation is severe when
the LS estimator is used, and the rate is even lower than
the non-CoMP transmission. We can also observe that the
performance of the CoMP transmission reduces more by
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Fig. 4. Achievable rate of each MS when LS and MMSE estimators are
used under both orthogonal (the training sequences for all the four MSs
are orthogonal) and inter-cell non-orthogonal (the training sequences for
the MSs within the same cell are orthogonal but those for MSs in different
cells are non-orthogonal) training. For the Non-CoMP transmission with
estimated CSI, the CSI for DL precoding is estimated by single-user
MMSE estimator [5], where only local channels are estimated and inter-
cell interference exists when estimating the channels.

imperfect CSI than that of non-CoMP transmission. This is
no surprise because the rate loss of the CoMP transmission
is induced by the sum of the estimation errors of multiple
single-cell channel components, i.e., the channel estimation
errors are larger in the CoMP system, given the same
single-cell training resources with the non-CoMP system.
Furthermore, the non-CoMP transmission is interference-
limited, hence imperfect CSI leads to relatively less per-
formance loss.

Finally, we simulate a more realistic setting, where
B = 3 and each cell contains two MSs. The 3 BSs
cooperatively serve all the 6 MSs without scheduling. With
better scheduling algorithms such as those considering sum
rate maximizing or fairness among MSs, both CoMP and
Non-CoMP systems will perform better. All the MSs are
randomly distributed in a ’cell-edge region’. In particular,
the ratio of the large scale fading gain of the local channel
to the sum of those of the cross channels of the MSs
in this region, e.g., α2

m,cm/
∑B

b=1,b̸=cm
α2
m,b for MSm, is

less than a pre-defined value. The CSI delay is set as
4 symbols. In Fig. 5, we present the average cell-edge
region throughput, which is the average sum rate of two
MSs in the cell-edge region of each cell. We can see that
the same conclusion can be drawn as before no matter
how small the ’cell-edge region’ is, where the channels
are not very asymmetric. When the MSs are randomly
located in the whole cell region, CoMP only outperforms
Non-CoMP slightly. This result seems to be pessimistic.
However, it is worth to note that only channel estimation
is considered here. In practical systems, various channel
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Fig. 5. Average cell-edge region throughput when LS and MMSE
channel estimators are used. The legend with (Orthogonal) means that
the training sequences for all the six MSs are orthogonal. The legend
with (Non-orthogonal) means that the training sequences for the MSs
within the same cell are orthogonal but those for MSs in different cells
are non-orthogonal. For non-orthogonal training, the CAZACs used by the
MSs in three cells are constructed from c1 = 1, c2 = 7 and c3 = 14,
respectively. The results are averaged over 1000 random drops. As a
baseline, the results of Non-CoMP transmission are also provided.

prediction methods can be applied to alleviate the impact
of CSI delay and enhance the performance of CoMP, which
is out of the scope of this paper. We also simulate the
throughputs when regularized ZFBF [14] is used for the
DL CoMP transmission, but the results overlapped with
those of ZFBF, which are not shown to make the figures
clearer. This is because the regularized ZFBF outperforms
ZFBF at low SNR, but in CoMP systems, the SNR is
high. Furthermore, the analysis based on the simulated
channels is successfully verified using recently measured
CoMP channels with three BS sites [15].

V. CONCLUSION

In this paper, we analyzed the performance of LS and
MMSE channel estimators under non-orthogonal training
and the impact of both channel estimation errors and CSI
delay on the CoMP transmission. Our analysis showed that
the LS estimator is quite sensitive to the non-orthogonal
training, but the MMSE estimator is robust to the inter-
cell non-orthogonal training owing to the unique feature
of CoMP channels. When using the MMSE channel es-
timator, the estimation errors of the weak cross channels
contribute even less to the average per-user rate loss for
multi-cell precoding than those of local channels. The
performance loss caused by channel estimation errors
almost does not depend on the MS’s location, whereas
the impact of CSI delay on CoMP transmission is larger
for the MSs located at the cell center than for the MSs
located at the cell edge. The simulation results show that
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CoMP transmission performs fairly well without inter-cell
orthogonal training. This means that the cumbersome inter-
cell signalling for coordinating the training resources may
not be necessary.
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