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Abstract

Over the last decades, both force sensors and cameras have emerged as

useful sensors for different applications in robotics. This thesis considers

a number of dynamic visual tracking and control problems, as well as the

integration of these techniques with contact force control. Different topics

ranging from basic theory to system implementation and applications are

treated.

A new interface developed for external sensor control is presented, de-

signed by making non-intrusive extensions to a standard industrial robot

control system. The structure of these extensions are presented, the sys-

tem properties are modeled and experimentally verified, and results from

force-controlled stub grinding and deburring experiments are presented.

A novel system for force-controlled drilling using a standard industrial

robot is also demonstrated. The solution is based on the use of force feed-

back to control the contact forces and the sliding motions of the pressure

foot, which would otherwise occur during the drilling phase.

Basic methods for feature-based tracking and servoing are presented,

together with an extension for constrained motion estimation based on a

dual quaternion pose parametrization. A method for multi-camera real-

time rigid body tracking with time constraints is also presented, based

on an optimal selection of the measured features. The developed tracking

methods are used as the basis for two different approaches to vision/force
control, which are illustrated in experiments.

Intensity-based techniques for tracking and vision-based control are

also developed. A dynamic visual tracking technique based directly on the

image intensity measurements is presented, together with new stability-

based methods suitable for dynamic tracking and feedback problems. The

stability-based methods outperform the previous methods in many situa-

tions, as shown in simulations and experiments.
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Introduction

1.1 Motivation

Traditionally, industrial robot systems have been designed to achieve a

high level of performance in free-motion tasks, in which the environment

contacts are either non-existent or sufficiently soft to be neglected. Exam-

ples of tasks that fit this description are welding, gluing and sealing, as

well as many operations that involve tooling with built-in passive compli-

ance, such as Remote Center Compliance (RCC) devices in assembly. In
such tasks, the control objective can be formulated as a problem of motion

control, in which the goal is to track the desired path, as specified in the

user program, as quickly and accurately as possible. Although feedback is

necessary for achieving stability, and to compensate for modeling errors

and disturbances, a large part of the performance is gained by other means

than feedback. Examples in modern control systems include optimal tra-

jectory and feedforward generation, and improved absolute calibration for

better static positioning accuracy. In contrast, the feedback is customar-

ily solved using simple and easily tuned controllers and encoder/resolver
measurements of the motor positions. The performance and disturbance

sensitivity of this type of motion control is sufficient for a large class of

applications.

As examples of tasks which do not fit the above description, there ex-

ist numerous industrial tasks that require physical work to be performed

on an object or component. In some cases, part of the environment in

which the robot operates is unknown or non-stationary, and the interac-

tion problem becomes more complex. Unknown or dynamic environments

occur frequently in mobile, home and field robotics. In industrial robotics,

uncertain and dynamic/non-stationary systems occur in operations where
accurate fixturing can not be used, for operations on objects with (par-
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Chapter 1. Introduction

Figure 1.1 Stub grinding of castings using a force-controlled industrial robot sys-

tem. The force control is necessary for maintaining a specified force of interaction

between the robot and the casting, despite large uncertainties and variations in the

geometry of the workpiece.

tially) unknown geometry, and for systems of uncalibrated cooperating
robots. In general, these cases are more demanding from a control per-

spective, and may require high-bandwidth feedback. Depending on the

task, different properties of the interaction may need to be controlled,

such as the contact force magnitude or direction. For example, in grind-

ing, the normal force needs to be accurately controlled, or otherwise too

much (or too little) material is removed by the grinding tool. This is illus-
trated by Fig 1.1, in which a proper contact force should be maintained

while the rotating grinding tool sweeps across the surface. In assembly

and parts mating applications contact forces should also be controlled, as

uncontrolled stiff contact may cause breakage of delicate parts.

When machines, such as industrial robots, are employed in order to au-

tomate such tasks, the physical contact gives rise to contact forces which

act on both the robot and the manipulated workpiece. Thereby, a new

feedback loop is created, where the robot motion depends on the contact

force and vice versa. The nature of this feedback loop is determined by the

dynamical properties of both the robot and its environment. The dynamics

and feedback are also key issues in the similar problem of force-reflecting

teleoperation [Hannaford and Anderson, 1988], where the contact dynam-
ics and time delays represent some of the critical limiting factors for the

12



1.1 Motivation

performance in practical implementations. For soft contact tasks, the low-

gain environment feedback loop does not critically affect the stability or

performance, and the problem of interaction control becomes dynamically

similar to the motion control problem as described above. When the con-

tact is stiff, however, the entire dynamics will change significantly. In

general, the dynamic response of the robot to disturbances becomes more

important in interaction control than in the motion control problem. While

in simple cases the internal motion control may be reprogrammed to pro-

vide a softer and more compliant response in contact, this may conflict

with the demands for performance and positioning accuracy.

The most flexible solution to the interaction control problem involves

the use of external sensors and control loops. A primary example is the use

of wrist-mounted force/torque sensors, which make it possible to measure
and to directly control the contact forces. For reasons that will be de-

scribed in more detail later, the external control loops in industrial robots

are usually closed around the built-in velocity/position loops of the motion
control. One reason is that most tasks include specifications not only on

the force, but also on the motion trajectories of the robot. This has led

to the development of several different concepts for combined control of

force and motion, such as impedance control [Hogan, 1985] and hybrid po-
sition/force control [Raibert and Craig, 1981]. In addition, the properties
of the inner-loop motion control will naturally also affect the stability and

performance of the outer (external) control loops. Intuitively, the motion
commands from the outer loop should ideally be followed as accurately as

possible by the inner servo loop, even in the presence of disturbances. If

the inner loop is unable to provide the desired performance, strong dy-

namic couplings will affect the outer loop, even to the point of causing

instability. This illustrates the importance of considering also the motion

control problem, as well as its effect on the interaction control.

This thesis considers vision-based position/force control, in which the
motion control is complemented with camera feedback. Over the last two

decades, cameras have emerged as useful sensors for measuring the posi-

tions of objects. In robotics, the use of cameras has become widespread, in

the research community as well as in industry. Many commercial packages

for vision-based calibration, positioning and inspection have been devel-

oped, and vision sensors have become crucial components for mobile and

autonomous robot systems. Camera feedback makes it possible to handle

unknown and dynamic environments, and to improve the position control

and disturbance rejection of a robot. This makes the combination of force

and vision an attractive option for accurate control of contact tasks.

13



Chapter 1. Introduction

Problem Illustration

In order to better illustrate the somewhat abstract discussion in the previ-

ous section, a series of short examples are presented. In these examples it

is attempted to illustrate the dynamics, concepts and problems associated

with interaction control, as well as the role of motion control in the force

control problem. The examples contain highly idealized models in a single

degree of freedom, and ignore important effects and modeling assumptions

such as dynamically coupled, multi-dimensional robot dynamics, nonlin-

earities such as friction and backlash, sensor/actuator and environment
dynamics, as well as issues concerning robustness.

Position Control. The simplest possible robot model is given by the

linear or angular motion of a single unit mass/inertia with position or
angle x, actuated by applying forces or torques, where the total torque is

denoted τ tot. The equations of motion are given in the frequency domain
as the double integrator

x(s) =
1

s2
τ tot(s) (1.1)

Although the model (1.1) is very simple, rigid robot models have many
dynamic properties, such as energy conservation, in common with the

single-mass model. Furthermore, there exist feedback linearization tech-

niques that transform an ideal n-degree-of-freedom (n-DoF) rigid robot
model to a set of n decoupled double integrators [Khatib, 1987; Spong,
1989]. In the model (1.1), the input force contains both the control torque
and any forces applied by external sources, for example through interac-

tion with the environment. Hence, we decompose the total torque acting

on the robot according to

τ tot = τ + τ e (1.2)

into the control torque τ and the external/environment torque τ e. The
control torque is computed from the current position x by a position control

law with reference xr , which in this case is assumed to be a PID-type
1

controller given by

τ (s) = Kp

(
Kv + Ki

1

s

)
1

sTfilt + 1
xr(s)−

(
KpKv + Ki + KpKi

1

s
+ Kvs

)
x(s)

(1.3)

1The controller is often implemented as a cascaded structure of velocity/position control.
For instance, the PID-part of the controller (1.3) could be implemented as a combination
of an inner velocity PI-controller with parameters Kv and Ki with an outer position P-

controller with gain Kp. The advantages of such a structure include simplified controller

tuning, as well as the potential for straightforward modification to include velocity/torque
feedforward signals. This feedforward will be described in Chapter 3, where it is used in the

implementation of the force controllers.
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Figure 1.2 Step responses for the controlled rigid robot to position references (top
plot), force step disturbances (middle), and responses to position references (bottom
plot) when in contact with environments of stiffness of 0 N/m (solid), 500 N/m
(dashed), 5000 N/m (dash-dotted) and 50000 N/m (dotted).

where the controller parameters have been tuned to create a fast and

well-damped suppression of external disturbances. The feedforward low-

pass filter with parameter Tfilt, is used in this example to represent the

highly advanced model-based feedforward generation algorithms of mod-

ern industrial robots, can be used to obtain a suitable position reference

response. This response is shown in the the two upper plots of Fig. 1.2.

This response represents a typical response of an (unconstrained) robot
to raw reference changes, i.e. low-level references that have not passed

through the high-level trajectory generation system. This type of fast ref-

erence changes are the main method of actuation for the robot control

systems considered in this thesis.

When the robot comes into contact with an environment, the dynamics

15



Chapter 1. Introduction

of the problem changes, due to the new feedback loop from the robot motion

to the external force. In the case when the environment can be modeled as

a simple stiffness or linear spring, this contact feedback is characterized

by

τ e = −kx. (1.4)

In practice, the system may exhibit a switched behavior with jumps be-

tween contact and non-contact. If proper care is not taken in the design

of the mechanical structure and the controller, undesired limit cycles and

“bouncing” may occur in the contact transition zone, although such effects

will be neglected in this example. The bottom plot in Fig. 1.2 illustrates

how the behavior of the position control changes with the environment

stiffness. We see that the step responses become slower, while stability is

maintained. It can be shown, however, that there exist passive linear envi-

ronments for which the system would become unstable. In order to avoid

this, one must make sure that the robot end-point impedance relation from

external torque to end-point velocity is passive, in which case the manip-

ulator will be stable during contact with every possible linear passive

environment [Colgate and Hogan, 1989]. This is the fundamental concept
behind the technique of impedance control [Hogan, 1985], described in
more detail in Chapter 2. In the above example, the position control using

the PID-controller makes the end-point impedance non-passive, and thus

there exist passive environments that would destabilize the system.

In cases when τ e is measurable, for instance from a wrist-mounted
force/torque sensor, complete cancellation of the disturbance τ e can be
achieved through feedforward. This eliminates the environment feedback

loop, making the problem dynamically similar to a position control prob-

lem. While many force control methods rely on such feedforward, perfect

cancellation of τ e is possible only in case of perfect rigidity of the robot.
Unfortunately, the rigid model is a rather poor approximation of a stan-

dard serial manipulator. In practice, flexibilities in the transmission and

links will make the robot compliant, which complicates the control prob-

lem significantly. A flexible-joint robot can be modeled by two masses ma
and mm connected through a spring-damper of stiffness kr and damping

dr, as shown in Fig. 1.3. We use xm and xa to denote the positions of the

two masses, representing the motor and arm positions, respectively. Note

that the external torque τ e and the control torque τ are no longer acting
at the same point, i.e. the arm-side responses to τ e and τ are no longer of
the same form. The disturbance and the actuation are therefore said to

be dynamically non-collocated. The ratio of the masses mm and ma is an

important factor determining the achievable control performance of the

system. For a high ratio ma/mm it may be difficult to achieve a satisfac-
tory closed-loop bandwidth, while for low ma/mm it becomes very difficult

16



1.1 Motivation

kr

dr

mamm
τ eτ

Figure 1.3 Two-mass model of a compliant robot, as used in the introductory

example.

to control xa from measurements of xm only [Nordin and Gutman, 2002].
We modify our simple rigid robot model to include joint flexibility by

setting ma = mm = 0.5 and adding a compliance, creating a resonance
at 10 Hz with a relative damping of 0.3. The same PID controller as in

the rigid case is used, with feedback from the motor side position xm. In

Fig. 1.4 we can see how the step responses change compared to the rigid

case of Fig. 1.2. Due to the compliance and the motor-side feedback, ex-

ternal forces τ e will result in stationary positioning errors. In particular,
the system behavior changes when in contact with the environment, as

seen in the bottom plot in Fig. 1.4. Although a more sophisticated con-

troller, which would take the flexibility properly into account, could be

designed in order to improve the trajectory tracking during free motion, it

would be very difficult to achieve good rejection of the force disturbances

without some feedback from measurements taken on the arm side. Two

alternatives of such measurements would be to measure the contact force,

and to use feedforward to suppress the disturbances, or to measure and

control the position xa directly, using for instance a camera. However,

it is worth noting that the compliance of the robot also have favorable

effects on the system properties. For example, due to the dominance of

the mass-spring-damper dynamics on the end-point dynamics from τ e to
xa, the system impedance is now in fact passive, and the manipulator is

therefore guaranteed to be stable during contact with every linear pas-

sive environment [Colgate and Hogan, 1989]. When arm-side sensors are
used to control the robot, particular care must be taken to ensure that

the system remains stable also during contact. In Fig. 1.5 are shown two

responses to step force disturbances for the flexible robot, one using the

PID controller from the previous case, and the other for manually tuned

PID controller using arm-side position feedback. Although the arm side

control improves the asymptotic force rejection, the passivity property is

lost. A practical consequence of the loss of passivity is that the system

would become unstable when connected at its end-point to, for instance,

an environment mass-spring-damper system with mass m = 10 kg, a res-
onance frequency of 1 Hz and relative damping of 0.2.
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Figure 1.4 Step responses for the arm side position of the controlled flexible robot

to position references (top figure), force step disturbances (middle) and responses
to position references (bottom) when in contact with environments of stiffness of 0
N/m (solid), 500 N/m (dashed), 5000 N/m (dash-dotted) and 50000 N/m (dotted).

Force Control. The mechanical compliance of the robot may be insuf-

ficient for a given task in which contact is required, and small trajectory

errors may result in damage to the workpiece and manipulator. Rather

than artificially adding to the compliance, e.g. by using a passively com-

pliant end-effector as in [De Schutter et al., 1996; Robertsson et al., 2006],
force feedback provides a flexible way to design and control the interaction

properties through software. Often, a force controller used for maintain-

ing a desired contact force in some directions is combined with position

control in other degrees of freedom. A structure suitable for implementa-

tion on industrial robots is to use an inner motion controller in the loop

[De Schutter and Van Brussel, 1988b; Freund and Pesara, 1998; Siciliano
and Villani, 1999], as seen in Fig. 1.6. This structure achieves some de-
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Figure 1.5 Arm-side responses of the controlled flexible robot to force step dis-

turbances, with standard motor-side feedback controller (solid) and arm-side PID
control (dashed).

gree of separation between the position- and force control, while being

more robust than direct force control. This inner motion controller is used

to track the desired motion commanded by an outer-loop force controller.

In our case, we can achieve this by again using the PID controller from

Eq. (1.3), where the reference xr is obtained from the outer impedance
controller

(mis
2 + dis+ ki)(xr(s) − xdes(s)) = τ e(s), (1.5)

where xdes(s) is the nominal motion trajectory
2. The resulting linear sys-

tem can be represented on transfer function form as

xa(s) = Gc,p(s)xdes(s) + (Gc,p(s)Gi(s) + Gc, f (s))τ e(s) (1.6)

where Gc,p(s) and Gc, f (s) are the closed-loop transfer functions of the
position-controlled system from xr and τ e to xa, and

Gi(s) =
1

mis2 + dis+ ki
(1.7)

2If instead direct force control is desired, Eq. (1.5) can be modified with a force reference
and integral action, as will be done in Chapter 3.
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x
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+

Environment

Robot

Motion ctrl.

Force ctrl.

Figure 1.6 Illustration of typical structure used for force control with inner motion

control.

is the transfer function representation of the desired impedance relation.

As Gc,p( jω ) � 1 and Gc,p( jω )Gi( jω ) ≫ Gc, f ( jω ) for small frequencies ω ,
Eq. (1.6) will approximate the desired passive impedance relation Gi(s)
up to frequencies roughly corresponding to the bandwidth of the robot mo-

tion control. For high frequencies it holds approximately that Gc,p( jω ) � 0
and Gc,p( jω )Gi( jω ) ≪ Gc, f ( jω ), and the system impedance will approxi-
mate the impedance of the position-controlled robot. For a flexible robot,

this will in turn approximate the (passive) mechanical compliance of the
gear and arm dynamics, as described above. Therefore, the behavior of the

transfer function Gc,p(s)Gi(s) + Gc, f (s) does in general approximate the
behavior of passive systems at high and low frequencies. However, for fre-

quencies around the bandwidth of the system, the behavior is strongly in-

fluenced by the position controller response Gc,p(s), and the overall system
will in general not be passive. In effect, this limits the basic inner-motion

impedance control techniques to low and medium bandwidth implemen-

tations. In order to increase the bandwidth, it becomes necessary to take

all the dynamics of the robot, controller, and environment into account

in the design. The requirements on modeling of the full system dynamics

is a critical issue in practice, since detailed models of the environment

or even the controlled robot may be very difficult to obtain. Returning to

our example, Fig. 1.7 shows the relevant Bode diagram in the flexible-

joint case, where the desired impedance was defined as mi = 1, di = 10,
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Figure 1.7 Bode diagram of a compliant robot for the transfer functions from τ e
to xa. Solid: ideal (passive) impedance. Dashed: obtained closed-loop impedance us-
ing impedance control with inner position control. Dash-dotted: obtained closed-loop

impedance using impedance control with extra phase-lead added in the impedance

controller. Dotted: the obtained impedance under pure motion control as in Sec-

tion 1.1.

ki = 100. For the impedance controller, some additional phase advance
was added by manual tuning, in order to partially compensate for the

effects of the robot dynamics. As can be seen, the true impedance ap-

proximates the specified impedance only for frequencies up to 20 rad/s,
roughly the bandwidth of the robot motion control system.

Discussion. Despite the drawbacks concerning the difficulty of system

modeling and other limitations of the inner motion control approach, from

a practical point of view there are also a number of significant advantages

[Freund and Pesara, 1998]:

• The majority of industrial robot controllers do only provide an in-
terface to the position control, through position/velocity references.
Therefore, direct access to the driving torques is not possible.

• The availability of fast position controllers in robot systems signif-
icantly simplifies and speeds up the development of simple force

controllers. In addition, for more advanced control the development

of the position and force controllers can often be separated, which

simplifies the control design problem.
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• In most tasks, not all directions of the workspace are constrained.
In addition to the force control, position control is required in some

degrees of freedom. For a position-controlled manipulator, the com-

bination of force/position control is conceptually straightforward.

• If fast joint-level position feedback loops are available, the force con-
troller may be implemented at a significantly lower sampling rate

than what would otherwise be necessary. This is an important ad-

vantage, since the external sensor and control interfaces—and the

computationally expensive force control loops—would otherwise limit

the achievable sampling rates and introduce undesired dead-time.

Perhaps most important of all advantages is that inner high-gain

position/velocity feedback loops can be used, which is necessary, e.g.,
in order to achieve good rejection of disturbances and effects such as

Coulomb friction.

1.2 Outline, Contributions, and Related Publications

This section contains a brief outline of each chapter in the rest of the

thesis, with a description of the contents, contributions, and references to

related publications.

Chapter 2: Background

This chapter gives a short introduction to a number of subjects related

to industrial robotics and control. Particular emphasis is put on topics

related to visual sensing, visual estimation and visual servoing, force and

interaction control, and combined force/vision control. Brief presentations
of previous research in the relevant areas are given, together with discus-

sions of alternative approaches.

Chapter 3: Experimental Industrial Robot System

This chapter presents the new interface developed for external sensor con-

trol, designed by making non-intrusive extensions to a standard industrial

robot control system. The structure of these extensions are presented, and

the dynamics of the system with its new interface are modeled and experi-

mentally verified. Results from experiments, using the designed interface

for force-controlled grinding and deburring, are presented.

Publications.

Blomdell, A., G. Bolmsjö, T. Brogårdh, P. Cederberg, M. Isaksson, R. Jo-

hansson, M. Haage, K. Nilsson, M. Olsson, T. Olsson, A. Roberts-
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1.2 Outline, Contributions, and Related Publications

son, and J. Wang (2005): “Extending an industrial robot controller–
Implementation and applications of a fast open sensor interface.” IEEE
Robotics and Automation Magazine, 12:3, pp. 85–94.

Johansson, R., A. Robertsson, K. Nilsson, T. Brogårdh, P. Cederberg,

M. Olsson, T. Olsson, and G. Bolmsjö (2004): “Sensor integration in
task-level programming and industrial robotic task execution control.”

Industrial Robot: An International Journal, 31:3, pp. 284–296.

Robertsson, A., T. Olsson, B. Lauwers, K. Nilsson, T. Brogårdh,

A. Blomdell, H. De Baerdemaeker, M. Haage, R. Johansson, and

H. Brantmark (2006): “Implementation of industrial robot force
control—Case study: High power stub grinding and deburring.”

In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pp. 2743–2748. Beijing, China.

The interface described in this chapter is the result of the efforts

of several people. Anders Robertsson and Klas Nilsson were responsi-

ble for the design and implementation of the interface, supported by

Torgny Brogårdh and Mats Isaksson at ABB, and many others. Anders

Blomdell, among many other contributions, developed the software for

the Linux PowerPC platform on which the external controllers are run.

Mathias Haage and Klas Nilsson designed and implemented the force

control extensions to the robot programming language RAPID. J.J. Wang

provided most of the code for the kinematics library, as well as other soft-

ware. The dynamic models were developed by Tomas Olsson, who also

designed and implemented the force controllers used in the experiments.

Tomas Olsson, Klas Nilsson and Anders Robertsson carried out the grind-

ing/deburring experiments, with contributions from Mathias Haage and
Hans de Baerdemaeker.

Chapter 4: Feature-Based Visual Tracking and Force/Vision Control

In this chapter, the basic methods for visual- and force control, tracking

and servoing are presented, together with some improvements of the track-

ing aimed at better robustness and performance. We present methods for

real-time rigid body tracking with simultaneous calibration and tracking

of intrinsic parameters, based on a dual quaternion parametrization of

the object pose. It is shown that for a setup with a wrist-mounted camera,

referred to as an eye-in-hand system, the rigid connection between the

camera and the robot wrist can be expressed as two linear constraints.

These constraints can be used to reduce the number of estimated motion

parameters by two, resulting in improved robustness.

A method for multi-camera real-time rigid body tracking with time

constraints is also presented in this chapter. The proposed method ex-

ploits the trade-off in a tracking algorithm between computing time and
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the accuracy of the produced position/orientation estimates. An equation
for the covariance of the estimation error is calculated, and an efficient

algorithm for selection of a suitable subset of the available cameras is pre-

sented. This leads to a convex optimization problem for the distribution

of computational resources over a given subset of cameras. The suggested

strategy is compared to heuristic algorithms, and evaluated in simulations

capturing the real-time properties of the tracking algorithm, and the ef-

fects of the timing on the performance of vision-based control systems.

Based on the feature-based motion estimation algorithms, methods and

experiments using a position-based hybrid force/vision control algorithm
are presented. The visual tracker is used to estimate the states of a linear

system, and impedance control with inner motion control is used to obtain

compliant behavior in the force-controlled directions. An image-based vi-

sual servoing technique is used together with force feedback to perform

experiments with drawing on a planar surface, while the position of the

surface is simultaneously estimated using the available sensor data.

Publications.

Olsson, T., J. Bengtsson, R. Johansson, and H. Malm (2002): “Force control
and visual servoing using planar surface identification.” In IEEE Int.
Conf. on Robotics and Automation, pp. 4211–4216. Washington D.C.,
USA.

Olsson, T., R. Johansson, and A. Robertsson (2004): “Flexible force-vision
control for surface following using multiple cameras.” In Proc. of 2004
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 798–803.
Sendai, Japan.

Olsson, T., J. Bengtsson, A. Robertsson, and R. Johansson (2003):
“Visual position tracking using dual quaternions with hand-eye motion

constraints.” In IEEE Int. Conf. on Robotics and Automation, pp. 3491–
3496. Taipei, Taiwan.

Henriksson, D. and T. Olsson (2004): “Maximizing the use of compu-
tational resources in multi-camera feedback control.” In 10th IEEE
Real-Time and Embedded Technology and Applications Symposium
RTAS04, pp. 360–367. Toronto, Canada.

The modification of the feature-based tracker for use with dual quater-

nions was originally developed together with Johan Bengtsson in [Ols-
son et al., 2003]. The section on multi-camera tracking and resource con-
straints represents joint work with Dan Henriksson [Henriksson and Ols-
son, 2004]. Tomas Olsson developed the tracking algorithm and provided
the tools used for simulation of the vision system. Dan Henriksson con-

nected the vision simulation to the TrueTime tool [Henriksson et al.,
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2002], in order to perform the real-time simulations. The resource alloca-
tion algorithm was developed in collaboration between the two authors.

Chapter 5: Intensity-Based High-Speed Tracking and Control

In this chapter, intensity-based approaches for tracking and vision based

position control are presented. A dynamic visual tracking technique based

directly on the image intensity measurements is used to obtain state es-

timates at a very high rate, and with very short input-output latency.

Methods which take the stability of the resulting estimator explicitly into

account are developed, suitable for dynamic tracking and feedback. By re-

laxing the traditional least-squares optimal solutions, significant perfor-

mance improvements are demonstrated in several problems. It is shown

how the linearization procedure can be modified to take suppression of

measurement noise and illumination disturbances into account. The prac-

tical importance of the developments are illustrated in simulations and

experiments. Experiments with 250 Hz image-based visual servoing are

presented, as well as hybrid methods based on fusion of intensity/feature
measurements. Methods for control of a system, consisting of a manipula-

tor interacting with a poorly damped oscillatory environment using vision

and force feedback, are also presented.

Publications.

Olsson, T., R. Johansson, and A. Robertsson (2006): “High-speed visual
robot control using an optimal linearizing intensity-based filtering

approach.” In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pp. 1212–1217. Beijing, China.

Olsson, T., R. Johansson, and A. Robertsson (2005): “Force/vision based
active damping control of contact transition in dynamic environments.”

In Vidal et al., Eds., ICCV 2005 Workshop on Dynamical Vision, vol.
4358 of Lecture Notes in Computer Science. Springer.

Chapter 6: A Study on Force Control for Accurate Low-Cost Robot
Drilling

This chapter presents a novel system for force-controlled drilling using

a standard industrial robot. The solution presented is based on apply-

ing a constant pressure against the drilled surface with a pressure foot

attached to the drilling tool, and to use force feedback to detect and con-

trol the sliding motions, which would otherwise occur during the drilling

phase. Instead of controlling the position directly from arm-side position

measurements, the controller attempts to achieve this task by making

sure that the tangential interaction forces are always small enough to
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keep the contact in the stiction regime. The friction contact will damp

and suppress small disturbances, such as vibrations from the drill feed

and spindle. The critical factor in the drilling system is to keep the tool

stationary, so that no sliding occurs between the drilling tool and the sur-

face. This application is different from most other applications of force

control, where the force control is used to increase the compliance rather

than to improve the stiffness to force disturbances, as is the case in this

work. The force control and active sliding suppression takes care of large

disturbances at lower frequencies, such as the slower variations of the

cutting forces. Thereby, a system which is able to reject disturbances over

a wide frequency range is obtained, at a very low cost.

Publications.

Olsson, T., A. Robertsson, and R. Johansson (2007): “Flexible force control
for accurate low-cost robot drilling.” In IEEE Int. Conf. on Robotics and
Automation. Rome, Italy. To appear.

Appendix A: Vision System Modeling and Calibration Techniques

This appendix presents some technical details about the vision system

used in the experiments presented in the thesis, as well as a description

of the form of the pinhole camera projection model. The structure of the

camera system and the processing platform are described in some de-

tail. A multi-camera calibration algorithm and a simulation environment

for visual servoing, which have both been used in the experiments and

simulations, are presented. The multi-camera calibration procedure was

originally presented in the report listed below.

Publications.

Olsson, T. (2001): “Vision guided force control in robotics.” Master’s Thesis
ISRN LUTFD2/TFRT--5676--SE. Department of Automatic Control,
Lund University, Sweden.

Other Publications

Olsson, T. (2004): “Feedback control and sensor fusion of vision and
force.” Licentiate Thesis ISRN LUTFD2/TFRT--3235--SE. Department
of Automatic Control, Lund, Sweden.
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2

Background

2.1 Introduction

In this chapter, we present some background material relevant to the work

described in the rest of this thesis. The main part of the chapter concerns

topics relevant to the use of external sensors in feedback control, with

special focus on visual tracking and feedback, and combined vision/force
control. A brief outline of previous research and the state-of-the-art in the

relevant research areas is given, together with some presentation and dis-

cussion of alternative approaches and topics, that have not been treated in

detail in this work. Additionally, a short introduction to industrial robots

is given, with particular emphasis on the properties of current industrial

robots that are important from a perspective of external sensor control.

The description is focused on the class of non-redundant industrial arm-

like serial manipulators with built-in position/velocity control.

2.2 Industrial Robotics

The industries in which most robots can be found are in the domain

between small-scale short-series production and dedicated automation

technologies developed for large-volume manufacturing. The demands on

productivity in the latter type of automation requires costly and highly

complex systems in order to be satisfied, while in the former case robot

automation is not flexible enough to be able to provide a cost-efficient

alternative to manual labor. The majority of industrial robots have tradi-

tionally been working with simple repetitive tasks such as spot welding.

However, the domain of applications of industrial robots has grown to

include tasks such as material handling, grinding, deburring, polishing,
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gluing, and sealing. Currently, efforts are underway to introduce indus-

trial robots into small and medium enterprises (SMEs), where the lack of
flexibility and the high cost of training and deployment have previously

made robot automation too costly, considering the small series production

of typical such companies. This will increase the demands for concepts

of programming and sensing with low cost, high reliability, and flexible

usage.

Most current industrial robot systems are based on serial arm type

manipulators with a number of joints. The robot is actuated through the

use of a system consisting of a power supply and amplifiers, driving the

motors for each joint. The motors are connected to the joints through the

transmission or gearbox. The purpose of the gearbox is to reduce the high

speed and low torque on the motor side to a desired lower speed with

higher torque on the arm side. In addition, the use of gearboxes with high

gear ratio helps to decrease the dynamic couplings and nonlinear effects

from the moving links of the robot, simplifying the robot control problem.

However, effects such as bending of the gear teeth introduce a significant

flexibility which complicates the control, especially for control problems

involving non-collocated sensors, i.e. sensors mounted on the arm side

of the gears. Traditionally, the built-in motion control uses encoders or

resolvers measuring only the position of the motors (i.e. before the trans-
mission). These positions will differ from the arm side positions that are
desired to control, due to flexibility in the transmission. This difference

between measured and controlled positions is particularly important when

external forces are applied to the robot.

Motion Control

The motion control problem for an industrial robot, illustrated in the dia-

gram in Fig. 2.1, can be divided into motion/path planning and trajectory
generation, and trajectory tracking. The motion planning and trajectory

generation problem involves specifying a suitable path in the workspace,

and generating a trajectory that leads the robot to follow this path. The

motion planning is either specified by the robot operator using manual

teaching, or by using off-line programming tools. From the trajectory gen-

eration the reference inputs to the trajectory following are obtained as

timed trajectories of desired (joint-level) positions, velocities, and acceler-
ations or torque feedforward signals.

For the trajectory following problem, many robot control techniques

have been presented. In the disturbance-free case, using joint-level PD

controllers with feedforward it is possible to achieve exponential trajectory

tracking [Takegaki and Arimoto, 1981; Murray et al., 1994]. In practice,
extensions such as gravity compensation and integral action are usually

necessary. Feedback linearization techniques, usually referred to as in-
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Figure 2.1 Block diagram giving a somewhat simplified description of a motion

controller structure for an industrial robot system, with qa and qm representing

arm and motor positions, respectively.

verse dynamics or computed torque control, are also frequently used in

the literature [Craig, 1989; Murray et al., 1994; Spong and Vidyasagar,
1989]. However, in practice the multi-variable robot motion control prob-
lem is very complex, as the full dynamics includes many other effects that

need to be taken into account. Examples are the compliance in the trans-

mission and links, sensor and actuator dynamics, external forces on the

end-effector, and nonlinear effects such as friction and backlash. There-

fore, standard computed torque control is generally not used in current

industrial robot control systems. Instead, the control problem is divided

into joint-wise controllers in combination with a multi-variable part. In

this way, joint-level control problems such as motor torque control, and

nonlinearities and disturbances in the joint dynamics such as friction

and backlash, can all be handled locally in separate joint controllers. The

multi-variable controller, or arm control level is then implemented on top

of the joint-level motor control [Nilsson, 1996]. The joint-level controllers
are usually executed at a higher sampling rate than the more complex

arm controller. In addition, the control structure is often divided into a

feedforward- and feedback structure as shown in Fig. 2.1. The trajectories

obtained from the trajectory generation are used in the feedforward part of

the controller, which can for instance be designed using computed torque

methods. For improved performance, the feedforward generator may also

be augmented with a model of the robot flexibilities, for which the model

parameters may be found by system identification techniques [Wernholt,
2004]. As the feedforward part generally provides most of the performance,
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the feedback controllers are often implemented as simple PID- or cas-

caded velocity- and position controllers, where the remaining dynamical

couplings are treated as disturbances. More advanced methods based on

multi-variable models including flexibilities and dynamical couplings, can

be used to obtain improved feedback performance.

2.3 Robot Vision and Camera Feedback

Computer vision is the scientific discipline concerned with the design and

analysis of artificial systems that are able to extract information from

multi-dimensional data, usually two-dimensional images. In a robotics

context, the term robot vision is often used when computer vision tech-

niques are used in robotic applications. Cameras and robot vision tech-

niques can provide a cost-effective way to obtain powerful workspace sens-

ing capabilities. The location, structure and motion of objects in the en-

vironment of the robot can all be obtained using cameras, making vision

a very powerful sensing modality. Computer vision and image processing

techniques are frequently used in industry for monitoring and inspection

of parts, or as a measurement device for detection, recognition, and mea-

surement of objects to be manipulated. It is also possible to use vision for

determining the position of the robot itself, relative to other objects in the

environment. Making the robot act based on this information creates a

feedback loop, for instance if the measured position is used for navigation

in a mobile robot or for positioning of a robot arm. The field of visual

servoing is concerned with systems which use the information extracted

from vision systems for feedback control [Hutchinson et al., 1996]. Visual
servoing is strongly related to many other fields of computer vision. The

research on imaging and camera technology has resulted in the availabil-

ity of cheap and robust imaging devices of high quality. Systems for image

processing and image analysis [Gonzalez and Woods, 1992], for instance
for noise suppression, edge enhancement or color-space conversion, are

usually necessary in the first step in the information extraction process.

Methods from feature extraction are used for compressing the image data

to a smaller number of features, characterized by some geometric prop-

erty such as position, direction, or size. Scene reconstruction from images

may be necessary for world modeling, if the overall structure of the ob-

served scene and its objects is not known a priori. If the structure of the

objects of interest is known, but not their position in the scene, object

recognition and pose estimation techniques can be used [Trucco and Verri,
1998; Carceroni and Brown, 1998]. Camera calibration and other types of
calibration techniques are used to obtain better models of the image for-

mation process, for instance by obtaining the parameters describing the
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inner structure of the camera/lens system [Zhang, 1999], or the transfor-
mation between a robot-mounted camera and the robot hand [Tsai and
Lenz, 1989; Daniilidis, 1999]. Although a full review of all of these topics
is beyond the scope of this work, a short background to the components

of a vision-based control system is given below. The focus will be on top-

ics and systems relevant for the methods used and developed in following

chapters.

Imaging and Camera Technology

The function of a (digital) camera can be seen as taking the total light
energy in a given frequency band that falls onto each element (pixel)
of its light-sensitive sensor area during a certain integration time, and

transform it into one or several digital values representing the image in-

tensity (possibly at several different frequency bands or “colors”) at this
point. The light rays entering the camera are usually transmitted through

a lens system in order to be concentrated onto the useful area of the

small light-sensitive sensor. The intensity values for each pixel form a

two-dimensional grid, a digital image, which is then transmitted from the

camera using some type of data bus, into an image processing computer

system. Many modern cameras also include some on-board high-level or

low-level image processing, such as filtering or color conversion.

Most of the different steps of the image acquisition process described

above are important for proper understanding and modeling of a camera

system. The camera projective geometry, relating the directions of the

incoming light rays to coordinates in the image, is important in order

to relate positions of objects in the image to the corresponding positions

of the objects in the world. The geometry and calibration of the most

commonly used camera projection model, the perspective or pinhole camera

model, is described in Appendix A. The literature on projective geometry

in computer vision is huge, for practically oriented introductions to camera

geometry see for instance [Trucco and Verri, 1998] or [Ma et al., 2003].
The main types of light-sensitive sensor types for integration of the

image intensity are Charge-Coupled Device (CCD) and Complementary
Metal-Oxide Semiconductor (CMOS) sensors. Both sensors transform the
light energy striking each pixel into electrons, and read out the accumu-

lated charge from the light-sensitive area. In a CCD camera the charges

are transported directly across the chip before being read out, while in

a CMOS sensor transistors amplify and move the charge at each pixel.

CMOS provides a more flexible read-out procedure with better control,

where each pixel can be read individually. On the other hand, CCD cam-

eras traditionally produce better quality images with lower noise levels

than CMOS cameras. However, CMOS have a superior low power con-

sumption, are comparatively easy to manufacture and tend to be signifi-
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cantly less expensive compared to CCD sensors1. The image intensity can

be influenced by the size of the aperture and the length of the exposure

interval, determined by the shutter speed. The size of the aperture also

determines the focal depth, meaning the range of distances over which ob-

jects in the scene will be in focus. As industrial cameras and lens systems

do not in general have automatic focusing, there is often a trade-off to be

made at setup, between image intensity, shutter speed, and focus. Arti-

ficial lighting systems are often necessary in order to achieve acceptable

performance, especially if a fast shutter speed is required. Digital cameras

use electronic shuttering, which can be divided into two different types.

With a global shutter (also referred to as frame shutter), the shutter re-
sets all sensor elements simultaneously, and all sensor elements start and

stop accumulating charge at exactly the same time. Given a sufficiently

short exposure time, the image of a moving object will be undistorted,

as if frozen in time. With rolling shutter on the other hand, the sensor

elements do not collect light at the same time, but at slightly different

times for each row in the sensor grid. The resulting image of a moving

object will look distorted, as the top and bottom parts will represent the

position of the object at different times. Recently, methods have been sug-

gested that exploit this distortion for velocity estimation [Ait-Aider et al.,
2006]. Traditionally, the global shutter was used by CCD sensors while
CMOS sensors used a rolling shutter, although many modern CMOS cam-

eras, such as the Basler A602fc used in the experiments in this thesis,

use a global shutter.

Differently from consumer digital video (DV) cameras, special indus-
trial cameras use communication structures and protocols with the ability

to read images from the camera in real-time. Currently, the most common

interfaces for cameras are CameraLink [Scheiber, 2006] and IEEE-1394
(FireWire) [FireWire, 2006]. CameraLink is a parallel interface with very
high bandwidth, and is the more expensive solution due to the special

cables and frame grabber hardware needed. In addition, due to the lack

of a standard communication protocol, it is the most difficult solution to

integrate. IEEE-1394, described in more detail below, is a serial interface

which uses standardized hardware, software, and computer interfaces,

and is therefore available at a significantly lower cost. However, stan-

dard IEEE-1394 is limited to a 400 Mbits/s data rate, which is several
times slower than CameraLink interfaces, and cable length is limited to

around 5 meters. A newer version of the standard exists—the IEEE-1394b

specification—which avoids these drawbacks. An interesting alternative

1As an example, at the time of writing most commercial optical computer mice use a

CMOS camera as the optical sensor for determining movement. The sensor generally has a

resolution of approximately 30x30 pixels or less, with a sampling rate of 2.5 kHz or faster.
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Figure 2.2 Firewire camera Basler A602fc and standard 6-pin connector.

is presented by Gigabit Ethernet, which would provide a very high band-

width, the possibility for longer cables, and relatively low cost. A cam-

era interface standard for Gigabit Ethernet, called GigE Vision [Scheiber,
2006], is emerging as the de facto standard for machine vision cameras
using Gigabit Ethernet.

IEEE-1394 Camera Systems. IEEE-1394 is a serial communication

interface and bus standard, which has found many uses in consumer prod-

ucts such as camcorders, hard drives and networking. As IEEE-1394 cam-

eras are also still the most widely used type of industrial digital camera,

and since all experiments in this work are based on IEEE-1394 camera

systems, we will briefly describe the properties of a typical IEEE-1394

camera system. The description is based mainly on a Basler A602fc cam-

era connected to a Linux-based platform, corresponding to the system used

in most of the experiments. However, the functionality of other cameras

is very similar, thanks to the standardization of the IEEE-1394 hardware

and software interfaces.

The FireWire standard was invented by Apple Computer in the late

1980s, and adopted as the IEEE-1394 standard in 1995. Using FireWire

up to 63 peripheral devices can be connected, allowing peer-to-peer device

communication. This makes it possible for the communication to take

place without use of the CPU, and devices may communicate by direct

memory access enabling very high-speed and low-latency communication.
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Flexibility of connections is provided by the ability for plug-and-play and

hot swapping. Industrial IEEE-1394 cameras are connected to the host

computer using cables with 6-pin connectors for data transfer and power

supply, seen in Fig. 2.2. Data transfer rates up to 400 Mbit/s are speci-
fied and available in most cameras. Around 20% of the bandwidth is re-

served for asynchronous communication, such as register reads/writes for
camera status, control and command data. The IEEE-1394b amendment

introduced in 2002 allows a transfer rate of 800 Mbit/s, with possibilities
for future data rates up to 3.2 Gbit/s. IEEE-1394b uses a new 9-pin con-
nector, but is backwards compatible with the slower rates and standard

connectors used by IEEE-1394. It additionally supports optical connec-

tions up to 100 m in length. Digital cameras for the IEEE-1394b interface

have relatively recently become available on the market.

IEEE-1394 cameras for real-time vision applications are usually run in

isochronous (i.e. equidistant sampling) image capture mode, using direct
memory access, where exposure and image readout are handled automat-

ically by the camera. At the start of exposure, the light-sensitive elements

begin to accumulate charges. When the exposure stops, either by exter-

nal triggering or after a pre-programmed time, the accumulated charges

are read out and converted to voltages. On many cameras, such as the

Basler A602fc used in the experiments, the readout and voltage conver-

sion first transfers the data into separate pixel memories, so that expo-

sure of the next image can begin immediately, before the image has been

read out from the sensor. Data is then read out from the pixel memories

row-wise or column-wise using a data bus, amplified and analog-to-digital

converted, and transferred into a camera-internal frame buffer. From the

frame buffer, frame data is sent to a IEEE-1394 link layer controller which

divides the data into packets for the physical layer controller, which trans-

mits data to the IEEE-1394 card in the host computer. On the host com-

puter, images are transferred into a ring buffer of frame buffers. The

transfer is usually handled using direct memory access, thereby avoid-

ing using valuable CPU resources and allowing significant parallelism

between capture and processing.

The achievable frame rate and total delay is mainly limited by three

factors; exposure, readout and transmission. Additional rate limitations

are imposed by the time required for the image processing in the host com-

puter. The effective delay due to the finite exposure time is often taken to

be half the exposure time, although effects such as “smearing” and motion

blur makes this delay difficult to model accurately, see for instance [Chen
et al., 1996]. The frame readout time is the time required for reading out
image data from the sensor to the camera image buffer, and is roughly

proportional to the image height (or width). The transmission time is the
time required for all packets in a frame to be sent over the IEEE-1394 bus,
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and is proportional to the number of data packets transmitted (and there-
fore to the number of pixels). A small delay is also introduced between
the start of sensor readout and the start of IEEE-1394 transmission.

Calibration Methods for Camera Systems

As the properties of the camera and its environment frequently change

due to camera and lens system reconfigurations, calibration procedures

that are able to find reliable estimates of system parameters are essen-

tial for most vision systems. Although feedback methods are robust to

modeling errors, calibration is used as a first step also in many applica-

tions of vision based control. The most common examples of calibration

parameters are camera positions and internal camera parameters, often

referred to as the extrinsic and intrinsic camera parameters. The relevant

extrinsic parameters are related to some specific coordinate system. For

robot-mounted (eye-in-hand) cameras this coordinate system is attached
to the robot wrist, in which case the term hand-eye calibration is used.

Intrinsic Camera Parameters. The intrinsic (internal) camera pa-
rameters describe the internal structure of the camera and lens system.

For the pinhole camera, as described in Appendix A, the intrinsic cam-

era parameters are the focal length, skew, principal point, aspect ratio,

and coefficients of some function describing the radial- and tangential

distortion. The extrinsic (external) parameters describe the camera po-
sition/orientation with respect to the scene. Most methods for camera
calibration use a special calibration object with accurately known geome-

try, covered with special markers for accurate detection and localization.

Multiple images of the object are captured from several different positions

and orientations, from which the calibration parameters can be computed.

In [Zhang, 1999], a method is presented in which both intrinsic and ex-
trinsic camera parameters are estimated, using an algorithm consisting of

a linear initialization followed by a nonlinear least-squares optimization.

Multiple images of a planar target are used, which highly simplifies the

construction of accurate calibration objects. A detailed description of the

methods used for calibration in this thesis are presented in Appendix A.

Extrinsic Camera Parameters and Hand-Eye Calibration. In ad-

dition to the internal camera parameters, in vision-based control it is

necessary to establish the geometric relations between the sensor and ac-

tuator coordinate systems. The calculation of the relative position and ori-

entation between the robot end-effector and a camera, which is mounted

rigidly onto the end-effector, is referred to as hand-eye calibration. Find-

ing this relationship between the positions of the sensor- and actuator
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frames is a standard problem in vision guided robotics, and many differ-

ent solution methods exist. The problem is usually formulated as finding

the unknown transformation X from the hand-eye equation

AX = XB, (2.1)

which is a special case of the Sylvester equation (as noted in [Andreff et al.,
2001]), where A, B and the unknown X belong to the Special Euclidean
group SE(3) of rigid transformations. A = A−12 A1 and B = B2B

−1
1 are

given by measurements of the position and orientation of the robot hand,

and of the camera with respect to some object in the world, see Fig. 2.3.

Typically a number of movements are performed to get measurements of

different A and B, which are used in order to solve for X in Eq. (2.1). Both
linear [Tsai and Lenz, 1989; Daniilidis, 1999] and nonlinear methods [Ho-
raud and Dornaika, 1995] have been suggested. In [Tsai and Lenz, 1989],
it was shown that at least two motions with non-parallel rotation axes

are required, and the problem was solved by dividing Eq. (2.1) into two
separate equations for rotation and translation, respectively. The method

of [Daniilidis, 1999] uses a dual quaternion representation of A and B
to simultaneously solve for the rotation- and translation parts of X using

linear methods. In the multi-camera calibration algorithm developed in

Appendix A, a hand-eye calibration method is used to find the location of

a robot-mounted calibration target.

Image Processing and Feature extraction

The raw image data is usually obtained in several channels, each consist-

ing of an array of data of dimensions height�width. Processing the entire
image at a sufficiently fast sample rate may require very large compu-

tational resources, and the raw image data generated by the cameras

needs to be compressed into a more compact representation for the con-

troller. The first steps are the image processing and feature extraction,

where the image data is filtered and relevant image data is extracted

into a measurement vector y. Some classes of methods exist where no ex-

plicit feature extraction step is needed, such as methods based on optical

flow [Allen et al., 1991], or eigenspace methods [Schuurman and Capson,
2004; Deguchi and Noguchi, 1996]. To the class of feature-less methods can
also be referred the intensity-based methods of Chapter 5. However, most

methods operate by extracting the positions of image features, usually

parts of the image with sharp changes in intensity, such as edges, corners

or special markers. This class of methods is the focus of Chapter 4.

Feature Extraction. Edges and corners can be detected and localized

using convolution with suitably chosen kernels, such as Sobel and Prewitt
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Figure 2.3 Two different positions of the robot, with the frames relevant to hand-

eye calibration.

operators [Gonzalez and Woods, 1992]. In general, such methods detect
edges as optima of an approximation of the spatial first derivatives in the

image. A way to improve the robustness is to use a multi-scale approach,

where features are first robustly detected and localized at a coarse scale,

and then iteratively refined at finer scales, see Fig. 2.4 for an illustration.

Another frequently used method is the Canny edge detector, which com-

bines an optimal (with respect to a certain criterion) linear convolution
with elimination of non-maxima and weak edges [Canny, 1986; Trucco
and Verri, 1998], which makes it robust but time-consuming. The Harris
corner detector uses the Taylor expansion of the sum of squares difference

between image regions as a function of displacement, and an eigenvalue

test can be used to detect corners [Harris and Stephens, 1988]. Interpo-
lation can be used to achieve sub-pixel accuracy.

A different technique, which does not require the image derivatives

and that can be used for both one- and two-dimensional features, is the

SUSAN feature detector [Smith and Brady, 1997]. The method works by
comparing the brightness of each pixel within a mask to the center (nu-
cleus) of the mask. The size, centroid and second moments of the area with
similar brightness are then used in order to detect and localize edges and

corners. A method which similarly works by comparing the brightnesses
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Figure 2.4 Illustration of edge detection along the line marked in the top left

image. Intensity variations along the line can be seen in the top right figure. The

bottom left and bottom right plots show the intensity variations at two coarser

scales. The initial edge detection is performed faster and more reliably at coarser

scales, followed by accurate localization at successively finer scales.

of pixels in a mask is the FAST feature detector presented in [Rosten and
Drummond, 2005], which has been reported to give a significant improve-
ment in performance.

A different kind of particularly distinctive features are the SIFT fea-

tures introduced by [Lowe, 1999]. In SIFT, scale-space methods are used
for detection of extrema and selection of suitable key-points, for which

orientation assignment of gradients are used to compute 128-vector de-

scriptors. The invariance of the SIFT feature representation with respect

to image transformations, such as image rotation and scaling, has made

it a powerful and frequently used matching technique in stereo vision and

recognition problems.
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Robust data correspondence. Although robust feature detection al-

gorithms such as SIFT have been developed over the last decade, in all

visual processing systems there exists a risk for false matches. In such

cases, features are detected which do not correspond to the desired object

or image structures. This is often caused by background clutter, specular

highlights or other non-modeled effects. In order to minimize the num-

ber of such false matches, feature-based methods are often combined with

window-based tracking, in which features are followed through the image

sequence frame by frame. The position of the feature search windows can

be obtained from the predicted position, computed based on the object po-

sition in the previous sample. By searching for the feature only in a small

image window around the predicted position, the risk for false matches

is decreased. In order to eliminate the effects of remaining matching er-

rors, methods such as RANSAC (RANdom SAmpling Consensus) [Fischler
and Bolles, 1981] or ICP (Iterated Closest Point) [Besl and McKay, 1992]
can be used, as well as voting methods such as the Hough transform, see

[Gonzalez and Woods, 1992]. Such methods can often be used to match
features even in the presence of large numbers of outliers in the data

sets. RANSAC attempts to find a small set of data to which a model can

be fitted, by iteratively selecting a random subset of all data points. The

number of random tests required depends on the (expected) fraction of
outliers in the data set, and the desired probability of finding a match.

Other options for handling outliers are presented by statistical methods

such as M-estimators and iteratively re-weighted least-squares methods

[Drummond and Cipolla, 2002]. In these methods, the relative weight of
large errors is reduced as compared to standard least-squares methods,

thereby decreasing the influence of large outliers on the resulting output.

For a recent review and evaluation of a number of robust estimation tech-

niques useful for real-time robot vision, see [Malis and Marchand, 2006].

Motion and State Estimation

The measurement and analysis of motion from 2D images is an important

sub-field of computer vision. In the presence of motion it is possible to

extract information that could not be obtained from a single image, such

as the geometry of objects (structure from motion). However, this work is
focused on the case where the structure of the objects are known, and our

primary concern will be the estimation and control of the object motion. A

brief review of visual motion tracking methods is given in [Blake, 2006].
In general, visual tracking problems can be formulated as estimation of

the states in a discrete-time nonlinear system

x(k+ 1) = fd (x(k),u(k),v(k)) (2.2)

y(k) = hd (x(k),e(k)) (2.3)
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with state vector x, (image space) output y, control input u and affected
by the disturbance v and noise e. In systems with a large number of

degrees of freedom, the output space can often be reduced to a vector

of the most important modes, e.g., by eigenspace methods such as active

shape models [Hill et al., 1996]. Examples of such non-rigid applications
include tracking in medical images, and tracking of complex hand, lip and

facial motions.

The main difficulties in visual tracking problems are due to the nonlin-

earity of the system, and the complex disturbances with potentially large

amounts of outliers in the measurements. Various estimation methods

have been proposed in order to obtain better robustness to such distur-

bances.

Kalman Filtering. Traditionally, the most frequently used method for

nonlinear estimation in dynamic vision problems has been the Extended

Kalman Filter (EKF) [Gelb, 1974]. The EKF is obtained by using a stan-
dard Kalman Filter and by linearizing the process model around the cur-

rent estimates. The equations for the EKF are given by the equations

x̂(k+ 1�k) = fd(x̂(k),u(k),0) (2.4)

P(k+ 1�k) = AkP(k)A
T
k +WkQkW

T
k (2.5)

Kk = P(k�k−1)HTk (HkP(k�k−1)H
T
k +EkRkE

T
k )
−1 (2.6)

x̂(k) = x̂(k�k−1) +Kk(y(k) − hd(x̂(k�k−1),0)) (2.7)

P(k) = (I−KkHk)P(k�k−1) (2.8)

where Qk and Rk are the covariance matrices for v(k) and e(k), and where

Ak =
�fd
�x
(x̂(k),u(k),0) (2.9)

Wk =
�fd
�v
(x̂(k),u(k),0) (2.10)

Hk =
�hd
�x

(x̂(k),0) (2.11)

Ek =
�hd
�e
(x̂(k),0) (2.12)

are the Jacobians of fd and hd from the process model in (2.2)–(2.3).
Although the EKF works well in many vision applications, it has several

important problems. In addition to the well-known difficulty of proving

even local stability of the estimator, a practical problem is that in many

applications the measurement y ∈ R
n is a very high-dimensional vector.

The most computationally expensive part of the EKF computations is then
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the update of the Kalman gain Kk in Eq. (2.6), which will have a time
complexity of O(n3). In [Wunsch and Hirzinger, 1997] it was suggested
to use the EKF with the measurement defined in task space instead of

image space, thereby decreasing the dimension of y. For systems with

linear state dynamics but a nonlinear measurement equation h, it is often

possible to use a Kalman filter with complexity O(n) that linearizes only
the measurement equation and uses a covariance estimate (HTkHk)

−1σ 2,
as shown in Chapter 4.

The linearized and approximate nature of the EKF is also a prob-

lem in vision applications, where both the state dynamics and the mea-

surement equations are usually highly nonlinear. The so called unscented

transformation has been introduced as a method to propagate the mean

and covariance information through nonlinear transformations [Julier and
Uhlmann, 2004]. The resulting Unscented Kalman Filter (UKF) has been
reported to significantly outperform the EKF in many applications. The

results of a simulation comparison of 6-degree-of-freedom motion track-

ing, with strong nonlinear perspective effects in the observations, can be

seen in Fig. 2.5. In this simple example the UKF improves slightly on the

EKF performance, especially during fast motions when the effects of the

nonlinear camera projection are apparent. The UKF can be interpreted as

a special case of the so called Linear Regression Kalman Filter (LRKF),
in which the nonlinear process and measurement functions f and h are

linearized by statistical linear regression, see the note by [Lefebvre et al.,
2002].

Sequential Monte Carlo Methods (Particle Filtering). The under-

lying assumption of the Kalman filters, that the noise can be modeled as

uncorrelated and Gaussian, does not hold well for systems with large frac-

tions of measurement outliers and complex spatial correlations, properties

that characterize many vision-based systems. If a Kalman filter is to be

used in such situations, approximations and extra outlier-removal steps

should be employed. Particle filtering was presented in [Gordon et al.,
1993] as an alternative to the EKF. The key idea in particle filtering is to
use a sample-based representation of the conditional probability density

function p(xk�y1:k) of the state given the available measurements. This
pdf is represented by a set of random samples or particles with associated

weights, which are updated iteratively using the conditional probabilities

of the measurements and Bayes’ law. As the number of particles increases,

this characterization approaches that of the optimal Bayesian estimate

[Arulampalam et al., 2002].
The main advantage of particle filters is their ability to handle non-

Gaussian, nonlinear systems without explicit linearization. This makes

them suitable for problems in computer vision, where nonlinear motion

41



Chapter 2. Background

0 20 40 60 80 100 120 140 160 180 200
−1.5

−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100 120 140 160 180 200
0

0.02

0.04

0.06

0.08

sample #

sample #

p
o
si
ti
o
n

e
rr
o
r

Figure 2.5 Comparison between UKF and EKF for estimation of 6-degree-of-

freedom motion with camera measurements of 8 corner features, disturbed by Gaus-

sian white noise. Top plot: True states (solid), UKF estimate (dashed) and EKF es-
timate(dotted). Bottom plot: norm of the estimation error for UKF estimate (solid)
and EKF estimate(dashed).

models and complex state and position representations are common. Han-

dling multi-modal probability distributions is especially important for ro-

bustness in visual tracking. In many situations, severe background clutter

can easily cause Kalman filter based solutions to lose track, since the uni-

modal nature of the probability distributions makes the tracker “lock on”

to the wrong image structures [Isard and Blake, 1998]. A drawback is the
large computational power required, as the number of particles needed in

practice increases rapidly with the dimension of the state space. Fewer

particles may be used if particles are chosen according to some suitable

proposal distribution [Arulampalam et al., 2002]. Better proposal distri-
butions may be generated by combining the particle filter with Kalman

filters or unscented filters into a Kalman Particle Filter or Unscented Par-

ticle Filter, resulting in improved performance at the price of increased
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Figure 2.6 Comparison between UKF and Particle (SIR) filtering for estima-
tion of 6-degree-of-freedom motion with camera measurements of 8 corner features,

disturbed by Gaussian white noise. Top plot: True states (solid), UKF estimate
(dashed) and SIR estimate(dotted). Bottom plot: norm of the estimation error for
UKF estimate (solid) and SIR estimate(dashed).

computational complexity [Li et al., 2003].
The results of a comparison between a Sampling Importance Resam-

pling (SIR) or CONDENSATION-type particle filter [Isard and Blake,
1998; Arulampalam et al., 2002] and an UKF can be seen in Fig. 2.6, in a
simulated 6-degree-of-freedom (6-DoF) motion tracking experiment. The
comparatively low number N = 2000 of particles, in combination with the
six degrees of freedom of the motion, makes the SIR filter perform simi-

larly to the UKF in this case. It should be noted, however, that compared to

the UKF and EKF the particle filter is able to handle more general models

with non-Gaussian noise. The price is a significantly larger computational

cost, which will prevent real-time implementations at high frame rate, see

Fig. 2.7.
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Figure 2.7 Six degree-of-freedom tracking an object at 30 images/second, using
a Sampling Importance Resampling (SIR) particle filter. The object model is super-

imposed as a wireframe object, together with the positions of some of the particles.

More cluttered scenes can be tracked by using well-tuned models of system dynamics

and disturbances, or by increasing the number of particles.

Feedback Control and Visual Servoing

During the 1970s, it was realized that camera feedback could be used

to correct the trajectories of a robot, thereby increasing the task accu-

racy. The term visual servoing was introduced for the technique of using

cameras for feedback. In later years, the emergence of cheap, powerful

computing power has increased the potential of visual servoing systems

dramatically. A review of the research and history of visual servoing from

the start until the mid 1990s can be found in [Hutchinson et al., 1996].
In order to achieve both satisfactory performance and a manageable

system complexity, the overwhelming majority of practical visual servoing

controllers use a cascaded structure, with the vision-based feedback loop

closed around the existing inner motion control loop. The inner control

loop usually has a significantly higher bandwidth than the outer loop,

greatly simplifying the design of the visual servo controllers. In practice,

the inner loop is often modeled as a velocity control loop, providing ideal

velocity control, and the visual servo will close the outer position/vision
loop. An issue of great importance for the visual servo control design is
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whether the control objective, and therefore the controller, is defined in

task space or in image space. In the former case, referred to as position-

based visual servoing (PBVS), the task space coordinates of the robot are
estimated and controlled to their desired values, again defined in task

space. This reduces the design problem for the visual servo loop to the

problem of designing a standard position control with arm side measure-

ments. For image-based visual servoing (IBVS), no explicit pose estima-
tion is performed, and instead the errors are defined directly in (image)
feature space. This control problem is in general more difficult, since the

nonlinear camera projection function must be included in the model, and

the motions in different degrees of freedom in feature space are highly

dynamically coupled [Hutchinson et al., 1996]. As a simplification in stan-
dard image based techniques, the inner (velocity) dynamics is assumed to
be considerably faster than the closed-loop system. In this case, a model

ż = f(u) (2.13)

y = h (z) + e (2.14)

is often assumed, where z is the task space position, u is a commanded

velocity, and y is a vector containing the image-space output. In many

cases we can choose a model and transformation of u such that the model

holds with f as the identity function. A controller

u = KJ†(z) (yr − y) (2.15)

where the matrix J is the image Jacobian or interaction matrix [Hutchin-
son et al., 1996], and where K is a positive definite matrix, will in general
drive the system such that y → yr. This approach is often referred to as
resolved rate control. In the task function approach of [Espiau et al., 1992],
it is suggested to design the visual controllers to control an objective- or

task function to zero in order to achieve convergence to the desired posi-

tion, as well as to satisfy certain secondary objectives.

The advantage of image-based techniques is that the static position-

ing accuracy is independent of the calibration accuracy, especially if the

image-space reference trajectory has been defined in a teach-by-showing

approach [Hutchinson et al., 1996]. Therefore, image-based techniques are
suitable in situations where less information about the system parameters

and the environment is available. It should be noted however, that the im-

age Jacobian J(z) is in general a function of the task-space coordinates z,
specifically the depth (defined as the Z-coordinate as shown in Fig. A.1) of
the features with respect to the camera. Therefore, some task-space quan-

tities need to be estimated or approximated, just as for the position-based

methods described in the next section. Additionally, in more complex ser-

voing tasks the desired trajectories are often more naturally defined in
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Figure 2.8 Illustration of motion trajectories generated by image-based visual ser-

voing with a single set-point. The control system will attempt to impose trajectories

that are as close as possible to straight lines in the image.

task space. Image-based methods require more elaborate path planning

algorithms to be employed, in order to avoid image motions that corre-

spond to infeasible task space trajectories. Hybrid methods that attempt

to handle these issues by explicitly combining elements from image- and

position-based methods have been developed [Deguchi, 1998; Chaumette
and Malis, 2000; Corke and Hutchinson, 2001].
In Fig. 2.8, a simple case of image-based set-point control is illustrated.

The robot is commanded to align the end-effector with the virtual target

object to the left. The generated trajectories will correspond to almost

straight lines in the image, but very little control over task space motion

is provided.

In position-based techniques, the control signal is computed based on

a value of z, computed from the image data y by pose estimation. In some

situations, such as for a number n ≥ 3 of point features in a perspec-
tive camera, there exist analytic solutions to the pose estimation problem,

often based on solving polynomial equations of relatively low order. Re-

search on how to solve such analytical perspective-n-point problems have
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a history since at least the mid 1800s, although many new solutions were

developed in the computer vision field throughout the 80s and 90s. The

review in [Carceroni and Brown, 1998] describes a number of the most
frequently encountered analytical point- and line based pose estimation

methods. However, since modern computer vision problems often involve

hundreds or thousands of measurements with varying noise levels and

degrees of reliability, iterative numerical and optimization-based meth-

ods are more relevant than the simple analytical solutions. Usually, the

control algorithms are implemented in discrete time, and the pose es-

timation problem can be treated as a standard nonlinear optimization

problem [Lowe, 1991], where the estimated value of z from the previous
step may be used as a starting point for the iteration. In order to remove

the requirement of a good initial estimate, other classes of methods em-

ploy iterative refinements to the solution obtained from a simplified pose

estimation problem. Examples of such algorithms are the solutions based

on the weak perspective and para-perspective projection models in [De-
menthon and Davis, 1995; Horaud et al., 1997]. In these algorithms, the
system is initialized using the linear solution to the simplified problem,

and successively refined until the full perspective solution is obtained.

For control purposes, or if predictive capabilities are desired for in-

creased reliability of feature tracking, dynamic tracking approaches are

useful. Traditionally, such methods are based on Kalman filters, although

a vast number of different approaches have been proposed in the litera-

ture. The input to the estimator can be either the image-space measure-

ments, or the resulting position from the pose estimation algorithm. The

latter approach, although conservative in the general case, results in a

modular structure with some degree of separation between the projection

nonlinearity and the dynamics of the system.

The main advantage of position-based methods is that the reference

trajectory, the measured position, as well as the control signal, can all

be defined in task-space coordinates. This simplifies the control problem,

as the dynamic model is usually expressed in task space. In Fig. 2.9, set-

point control for position-based servoing is illustrated. Compared to IBVS,

using PBVS better control of the task space trajectories is obtained. The

main drawback of position-based control is a decrease in the robustness to

calibration errors. Errors in camera calibration parameters will lead to er-

rors in estimated pose, and consequent errors in trajectories [Hutchinson
et al., 1996].

Dynamical Effects in Visual Servoing. Attempts to improve perfor-

mance have led to different approaches in which the robot dynamics is

taken into account in the design and analysis of visual servo controllers.

Also when fast inner motion control loops are present, there are dynamic
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Figure 2.9 Illustration of motion trajectories generated by position-based visual

servoing with a single set-point. Compared to Fig. 2.8, the control system will instead

generate straight trajectories in task space, in this case parametrized using Euler

angles.

effects that should be considered in the design and analysis. Among the

most important dynamic effects of vision-based control systems are long

and time-varying time delays, caused by the image capture, sensor read-

out, image transfer, and image processing. Additionally, except for very

high-speed vision systems, the sampled-data nature of visual measure-

ments usually needs to be taken into account. It is also important to note

that measurements from cameras are non-collocated with respect to the

actuators. The effects of the non-collocation is a particularly crucial issue

in control of flexible robots, as it increases the risk for instabilities and

limit cycles [Nordin and Gutman, 2002]. However, using arm side mea-
surements can also improve the tracking performance on the arm side,

and makes it possible to obtain superior control performance.

In an early paper, [Corke and Good, 1992] analyzed the effects on closed
loop performance of time delays, mechanical compliance, and gain vari-

ations from the perspective camera mapping. The tracking performance

of visual servoing systems with inner velocity control was analyzed in
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[Vincze, 2000], with respect to different controllers and models of the
input-output latency from image capture and processing. It was recom-

mended that a parallel processing structure, in which image processing

and acquisition of the next frame are performed in parallel, should be

used in combination with a fast frame rate for the best performance. In

[Gangloff and de Mathelin, 2000] an approach based on Multi-Input-Multi-
Output Predictive Control was used to control a 6 degree-of-freedom in-

dustrial robot, showing significant improvement over classical controllers.

Predictive Control and H∞-control have been proposed and evaluated for

control of medical robots in surgical applications in [Cuvillon et al., 2005].
Some researchers have also considered direct visual control of (rigid)
robots without an inner motion control structure, see for example [Kelly,
1996; Deng et al., 2002].

2.4 Force- and Interaction Control

Although the majority of industrial and other robots operate under pure

position control, the problem of force control has drawn attention since the

early days of robotics. In industrial robotics, force control is a crucial com-

ponent in many industrial systems for polishing, deburring, stub grinding

(Fig. 2.10), flexible assembly, and many other applications requiring con-
trolled contact between the robot and its environment. In addition, force

control concepts are needed in order to open up new application areas in

non-standard environments such as in home, medical, and service robotics.

Despite the number of potential applications, as well as several decades

of research and successful laboratory experiments, successful industrial

implementations of force control have previously been very few. Standard

industrial robots have only recently been extended with functionality for

high-bandwidth force control [Born and Bunsendal, 2001; Blomdell et al.,
2005].
The most important basic approaches to force control are hybrid control

[Raibert and Craig, 1981] and impedance control [Hogan, 1985], although
there exist methods which are not easily classified into either group. Sur-

veys on methods and systems for robotic force control can be found in

[De Schutter et al., 1997; Chiaverini et al., 1999; Yoshikawa, 2000]. In
hybrid control, different directions are selected as either controlled by

position control or force control, and the robot is controlled in order to

simultaneously track both the desired position and the desired force. In

impedance control, feedback is used for adjusting the apparent mechan-

ical impedance of the robot tool with respect to external forces, such as

forces arising from environment contact. Impedance control has the ad-

vantage of not requiring switching control laws with different behavior in
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Figure 2.10 Force-controlled stub grinding using an ABB Irb 6400 industrial

robot.

contact and non-contact, or accurate models of environment geometry or

dynamics. The hybrid control framework on the other hand may be more

suitable if accurate control of forces and/or positions is necessary. For
both of the basic approaches, many applications require extensions in or-

der to take robot dynamics more rigorously into account. Examples of such

dynamical effects are the full rigid body dynamics of the manipulator, as

well as the dynamics of the motors and amplifiers. Mechanical flexibility,

as caused by bending of gear teeth or robot links, or by compliance in

force sensors and robot mountings, is another important issue. In addi-

tion, mechanically compliant end-effectors are sometimes used in order

soften the contacts and to decouple the robot dynamics from the interac-

tion dynamics with the environment [De Schutter et al., 1996]. Among the
compliances in the robot system, particularly dynamically non-collocated

modes such as transmission and link flexibility can cause serious per-

formance and stability problems, and limit the achievable performance

[Colgate and Hogan, 1989; Eppinger and Seering, 1992].
Within the literature on modeling and control of constrained systems,

there is also a large class of methods that describe contact situations by ge-

ometric constraints, that is, constraints on the robot configuration. From

a practical point of view, this would correspond to environments with
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infinite stiffness. In such systems it is possible to eliminate a number

of degrees of freedom, and instead work with a system of lower dimen-

sion. Most modeling methods for constrained robots take a Lagrangian

approach, using d’Alembert’s principle and Lagrangian multipliers to ex-

press the contact forces [Murray et al., 1994; Spong and Vidyasagar, 1989].

Impedance Control Techniques

Assuming a rigid robot model of the form

M(x)ẍ +N(x, ẋ) = u+ f, (2.16)

the classical dynamic impedance control can be used to give the robot a

desired passive impedance

MI ẍ+DIẋe +KIxe = f, (2.17)

with positive definite MI , DI and KI , and xe = x− xr the deviation from
the position reference xr. This will cause the manipulator to respond to ex-

ternal forces f like a passive mass-spring-damper combination. The control

law that achieves this behavior can be seen as an inner feedback lineariz-

ing control law, which makes the robot behave as a decoupled set of double

integrators, combined with an outer impedance control law [Spong, 1989].
From a practical point of view, the basic impedance controller suffers from

a number of problems. One problem is that a soft impedance also increases

the effect of disturbances and modeling errors on the motion tracking [Si-
ciliano and Villani, 1999]. Additionally, in industrial robots direct access
to the motor torques is generally not available, and the rigid model (2.16)
does not take important dynamic effects such as transmission compliance

into account [Freund and Pesara, 1998; Ferretti et al., 2004]. An alter-
native solution to the impedance control problem is to design an inner

position control for the robot, and set this motion controller to track a ref-

erence position provided by the outer impedance controller. The reference

position is given by an impedance relation such as Eq. (2.17). The inner
position controller can either be chosen as the built-in motion controller,

or a new motion controller could be designed for improved arm-side motion

tracking and end-point stiffness, as described in Chapter 6. Ideally, the

motion controller should make the response to motion commands as fast

as possible, and simultaneously suppress the effects of external forces as

quickly as possible, in order to make the robot behave as closely as possi-

ble to the desired impedance. In any real system, the range of achievable

impedances is always limited by the controller bandwidth and stiffness of

the robot, as well as by sensor noise and other disturbances.

Impedance control is a very general concept for control of interac-

tion, and is not limited to any specific implementation [Won et al., 1997].
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Many different types of control structures, manipulators and forms of the

impedance relation (2.17) can be used, such as the natural admittance
control of [Dohring and Newman, 2003]. The common factor is that all
impedance control methods attempt to control the dynamic behavior of

the manipulator at the point of interaction with the environment, in par-

ticular the response of the tool motion to external forces. It is this dynamic

behavior that determines the main properties of the interaction. For in-

stance, a manipulator with linear dynamics is stable in contact with arbi-

trary linear passive environments if and only if its impedance is passive

[Colgate and Hogan, 1988].

Direct Force Control and Hybrid Position/Force Control

In classical hybrid force/position control, different directions are desig-
nated for either position control or force control, and position and force

are controlled simultaneously. This formulation requires a detailed de-

scription of the geometry of the workpiece. For a rigid robot, one way to

implement the hybrid control is to design an inner feedback linearizing

control as for the basic impedance control described above, giving a de-

coupled set of double integrators [Khatib, 1987]. For the outer loop, force
control and position control laws are designed for each degree of freedom,

and division of the workspace directions into force and position control is

traditionally taken care of using special selection or weighting matrices

[Spong, 1989; De Schutter et al., 1997]. By using this inner/outer con-
troller structure, significant freedom is provided in the design of the outer

position and force control laws. Thanks to the linearization performed in

the inner loop, the outer controller can in some cases be designed using

linear methods. Similarly, by designing fast inner motion control loops,

outer-loop force controllers can be designed based on decoupled linear

models.

Another approach is the parallel force/position control approach, in
which the desired position is modified by a compliant position obtained

from the force controller, leading to a new reference position to be tracked

by the inner motion controller [Siciliano and Villani, 1999]. In general,
the force control is chosen to include integral action, in order to make the

force control action dominate the position control. One advantage of the

parallel formulation is that it provides some robustness to uncertainties,

and the control can be designed using simplified dynamical and geometric

models of the environment.

In the direct force control methods, the performance and force tracking

properties, and even the stability, are strongly influenced by the properties

of the environment, such as the stiffness. Improved force tracking can

be achieved by using the stiffness as a known parameter in the force

control design [Siciliano and Villani, 1999]. Since accurate models of the
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environment are rarely available, the environment dynamics is frequently

compensated for by inclusion of a variable gain, or other easily tunable

parameters. In [Natale et al., 2000], an automatic design procedure for
force controllers was presented, using a robot model of first order with

time delay and a rough estimate of the surface stiffness. Adaptive control

algorithms, such as the method of [Roy and Whitcomb, 2002], can be used
to find estimates of the stiffness and to adapt the control to unknown or

time-varying environment properties.

In addition to the force control itself, special care may need to be taken

in the transition between free motion and contact. Models of contact tran-

sition and impact, and studies of techniques for impact control, were dis-

cussed in [Wu et al., 1995] using simple Hertzian models of impact, and
in [Brogliato and Orhant, 1994] using models from distribution theory.
Calibration of contact impedance parameters was investigated in [Diolaiti
et al., 2005], and the geometry, kinematics, and dynamics of contact in
[Featherstone et al., 1999].

Force Control of Flexible Manipulators

The development to make industrial robots lighter, faster and cheaper

has increased the mechanical weakness of links and transmissions. For

most industrial robots, the most important source of mechanical flexi-

bility is the joint elasticity. The presence of joint elasticity introduces

a non-collocation between the wrist-mounted force sensor and the actua-

tion, which could seriously affect performance. In [Goldsmith et al., 1999],
it was shown that some common force control methods for rigid robots,

such as the resolved acceleration or operational space formulations of hy-

brid control [Khatib, 1987], are destabilized by joint flexibility. In [Spong,
1989], a singular perturbation model for a flexible joint robot was given,
and an inner control law which linearized the system restricted to an

(attractive) integral manifold was derived. This makes it, at least theo-
retically, possible to design the outer control in the same way as in the

rigid case.

For industrial robotics with built-in motion control, different tech-

niques for handling flexibility must be employed. The force control prob-

lem for such controlled robots has received significantly less attention in

the literature. The dynamic properties of a controlled robot are strongly

affected by the dynamics and structure of the motion controllers. Approx-

imations of the closed-loop transfer functions, and guidelines for selection

of parameters for an impedance controller, were discussed in [Ferretti
et al., 2004], although the discussion was limited to certain classes of
controllers and choices of parameters. In Chapter 6 a robot drilling appli-

cation is presented, in which proper modeling of the joint flexibility was

a crucial factor for the controller design.
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2.5 Sensor Fusion and Combined Force/Vision Control

In many classes of control and estimation problems, improved performance

can be achieved by combining information from several sensors. The com-

bination can sometimes be performed using sensors of a similar type, such

as in multi-camera systems, while in other cases the fusion is based on

sensors measuring very different types of physical quantities. Sensor fu-

sion, often referred to as multi-sensor (data) fusion or just data fusion,

concerns the combination of data from several different sensors in such

a way that the resulting information is “better” (in some sense) than the
information which could be extracted from the individual sensors. In ad-

dition to sensor data, fusion with other types of data sources, such as

databases and user input, may be included in the definition. The moti-

vations for using sensor fusion are many, for instance to achieve redun-

dancy and fault-tolerance of a sensory system, to cope with limited spatial

coverage as in the multi-camera system in Chapter 4, to achieve higher

temporal sampling rates [Schuurman and Capson, 2004], to obtain mea-
surements at several different frequency ranges, or to handle imprecision

in the sensor and uncertainty in the observed object. An introduction to

the terminology and concepts of sensor fusion is given in [Elmenreich,
2001].
One classification of fusion methods is based on the type and configura-

tion of the sensor [Durrant-Whyte, 1988; Elmenreich, 2001]. Complemen-
tary sensor configurations involve measurements of different, independent

quantities. In this case, fusion can be performed by simply appending the

data, in order to give a more complete picture of the observed phenomenon.

The fusion of visual and contact force measurements would in most cases

be considered to be complementary, since the sensors provide very differ-

ent information on the current state of the system. Competitive sensors

provide independent, redundant measurements of the same physical prop-

erty. An example is given by multiple cameras which are all measuring

the same degrees of freedom of the object motion. Cooperative sensors are

combined in order to obtain information that could not be obtained from

each individual sensor alone. Stereo cameras and multi-camera systems,

which are able to obtain depth information from an unmodeled scene,

are examples of this type of fusion. Obviously, the classification into com-

plementary, competitive and cooperative sensors systems is not exact. In

many systems aspects of more than one of the types can be found, such

as in the multi-camera system in Chapter 4 which contains elements of

both a competitive and a complementary nature.

Sensor fusion can be handled at several different levels, depending on

the application in question. On the low/medium level fusion is performed
on raw sensor data, while high-level or decision fusion involves decision
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systems based on statistical methods or fuzzy logic. Many of the exist-

ing techniques for low-level fusion are related to the previously described

state estimation techniques, such as Kalman filters, and sequential Monte

Carlo methods. For competitive sensors, the fusion itself can be performed

either directly on the raw data in a centralized fashion, or on the level

of the estimated state vectors from individual estimators. The latter ap-

proach may be more suitable if a distributed implementation is desired.

In addition to the estimation, separate preceding steps of data association

and correlation are generally necessary, in order to group the available

observations with respect to the different physical phenomena observed

(e.g. feature matching in a real-time vision system).

Force/Vision Control

A very natural approach to manipulation, in both natural, home and in-

dustrial environments, is to combine force sensing and control with high-

level guidance from a vision system. The potential advantage is that the

limited accuracy and slow speed of the vision system is complemented

with accurate force data upon contact with the environment. The desire

to combine force and vision leads to approaches based on feedback from

cameras and force sensors. The majority of research work presented on

the combination of vision and force control has used some variation of hy-

brid force/position control or impedance control. In most cases the focus
of this research has been on the vision systems, and how its geometry

and kinematics influences the properties of the feedback. The treatment

of the force control and dynamics problems are often less well developed,

with purely kinematic or simple rigid robot models often used in the de-

sign and analysis. Using these standard control structures, many results

and analysis tools from visual servoing and force control can be used and

adapted also to the case of force/vision control.
In [Nelson et al., 1995] three different basic strategies or control struc-

tures were presented, referred to as hybrid control, traded control and

shared control. An obvious extension of standard hybrid force/position
control, hybrid force/vision control divides the workspace into orthogonal
force- and vision-controlled directions. In traded control, each degree of

freedom is controlled by both force- and visual control, with switching be-

tween the sensors based on the sensor signals. Finally, in shared control

both sensors are used simultaneously in each degree of freedom. In this

case, the stability analysis must take coupling effects between the force

control and vision control actions into account.

In the last decade, a large number of different approaches to combined

force/vision control have been presented in the literature. The method
presented in [Baeten et al., 1999] used Mason’s task frame and a high
level task description to determine how to use each sensor in a structure
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similar to hybrid force/vision control. A hybrid and adaptive vision/force
control technique was developed in [Pichler and Jägersand, 2000]. The
paper of [Zhao et al., 2006] presented dynamic image-based control for
a constrained rigid robot actuated directly through the motor torques,

and Lyapunov stability proofs and conditions for the feedback gains were

given. [Hosoda et al., 1996] presented a shared adaptive technique, where
the image Jacobian and the slope of the constraint surface were estimated

online from sensor data. The method in [Pomares and Torres, 2005] used
a weighted shared strategy for fusing visual- and force information. The

weighting factors were determined based on an estimate of the current

tracking performance, obtained from a special filter for surface change de-

tection. The force controller part was a proportional controller with inner

velocity control, while the visual controller was an image-based controller

based on what was termed a movement flow vector field for improved

trajectory following. In [Dean-Leon et al., 2005] hybrid vision/force con-
trol for a constrained rigid manipulator model was described, together

with dynamic friction compensation based on the LuGre model [de Wit
et al., 1995]. Experimental results with a hybrid technique which takes the
robot dynamics into account were presented in [Xiao et al., 2000]. In [Leite
et al., 2006], another hybrid technique was developed, where the force con-
trol was used to reorient the robot end-effector based on direction of the

the measured normal force. The visual servoing law was an image-based

resolved-rate control law, with adaptation of the uncertain parameters

of the image Jacobian for a planar two-link robot. Hybrid position/force
control techniques were also used for planar contour following in [Chang,
2004], where the robot dynamics was assumed to be given by a simple
kinematic model with perfect velocity control. Similar assumptions on the

robot dynamics were made in [Morel et al., 1998; Malis et al., 2001], where
the use of visual servoing together with purely damping impedance control

was proposed and demonstrated in a peg-in-the-hole insertion task. The

target impedance was given by a pure damping, and it was shown that

under these assumptions a separation property holds, so that overall sta-

bility is guaranteed if the force- and impedance control systems are stable

separately. A similar technique using internal motion impedance control

was suggested in [Carelli et al., 2004], and used together with the con-
cept of “fictitious forces” in obstacle-avoidance tasks. In addition, control

structures for hybrid position/force control using vision were presented.
In [von Collani et al., 2000], a neuro-fuzzy force/vision control approach
based on eigenspace methods was used for aligning and fastening a screw

into a nut using collaborating robot arms. In [Lippiello et al., 2006], an
example of a position-based visual impedance control structure with inner

motion control was presented. The EKF-based pose estimation algorithm

was based on measurements of image features, joint positions and contact
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forces, and used in an experiment with 6-DoF impedance control.

A number of application-oriented articles on force/vision control have
been published in recent years. In [Zhou et al., 1998] an application
of image-based vision/force control in micro-manipulation was demon-
strated. A traded control law was used, which switched between propor-

tional force control and an image-based visual servoing control law, which

was based on optimal control techniques. In [Ferreira et al., 2004], another
switching force/vision controller for an automatic micro-assembly system
was presented. An application of position-based force and vision control

in flexible assembly was presented in [Jörg et al., 2000], with a demon-
stration of mating of moving parts. The pose estimation was based on line

features extracted with the Hough Transform [Trucco and Verri, 1998],
using a nonlinear Kalman filter for estimation of the circular motion of

the moving target. [Krupa et al., 2004] presented a system for hybrid force-
and visual feedback, to be used in laparoscopy. Traditional image-based

visual servoing was used together with proportional force control, in order

to track and guide a surgical instrument. The combination of force/vision
control is also a very natural approach for guidance of grasping systems

[Hashimoto et al., 2001].
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3

Experimental Industrial
Robot System

3.1 Introduction

In general, industrial robots are designed to handle repetitive tasks in

well-known, well-structured environments. There are many types of tasks

however, in which time-consuming calibration procedures or large work-

piece variations make it difficult for standard industrial robots to operate

efficiently. In particular, this is the case in tasks where well-defined and

accurate contact with the workpiece is required, as described in Chapter 2.

In addition to well-established force control applications such as assembly,

applications such as stub grinding (see Fig. 3.1), fettling1, and deburring
represent examples of such tasks, which would be very relevant to auto-

mate. Not only are manual fettling and finishing major cost elements in

the production process (representing up to 40% of total costs) which often
lead to inconsistency in quality and delivery delays, there are also severe

health aspects related to this process in the foundry industry.

For automation of these tasks using industrial robots, active force sens-

ing and feedback gives the possibility to accurately control the interaction

between the robot and the workpiece. Unfortunately, even relatively mod-

ern robot control systems provide no interfaces for external sensor feed-

back with sufficient performance. In order for an industrial robot to be

able to satisfy the requirements of processes such as stub grinding and

deburring, functionality for high-bandwidth contact force control needs to

1Fettling is the process of removing sand that is adhering to castings, and is traditionally

performed manually by hammering or blast finishing. It is also used to refer to the process

of removing excess material from the edges of a casting using fettling tools.
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Figure 3.1 Force-controlled stub grinding using an ABB Irb6400 industrial robot

with an extended ABB S4CPlus control system.

be implemented in current industrial robot systems. Robotic force control

can be carried out on two levels:

• Forces are controlled by a separate external tool, meaning that the

adaptation of the force occurs without intervention of the robot. The

robot executes a pre-programmed path, and the changes in the tool

position to achieve a constant force are carried out by the end-effector

integrated with some additional external axis.

• Forces are controlled by using the robot motion, corresponding to the

solution described in this chapter.

The advantages of the robot with integrated force control include the pos-

sibility of obtaining higher stiffness at a considerably lower weight, as

well as increased flexibility in mounting and accessibility due to the six

degrees of freedom available. The implementation of such flexible motion

control using external sensors is particularly difficult, since the user or

system integrator would need to influence the core real-time software

functions that are critical for the performance and safe operation of the

system. Therefore, techniques that permit real-time motion controllers to

be extended for new demanding application areas need to be developed. A

crucial issue is the achievable bandwidth for the external sensor feedback.
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In many applications, the effects of the bandwidth limitations are evident

in the form of longer duty cycles, whereas for some applications—for in-

stance when contact force control is used—stability problems and severe

performance degradation may result.

An examination of five major European robot brands (ABB, Comau,
Kuka, Reis, Stäubli) shows that they all, to some extent, provide support
for application-specific motion control. Some are fully open systems, but

only if all original safety and programming features are disabled. The

ABB S4CPlus used in this work is not an open system on the level of

built-in motion control, but its internal design provides some features for

development of open control. Systems and results similar to the system

described in this chapter have been reported also for other systems [Born
and Bunsendal, 2001].
In this chapter, the extension of an industrial robot system with func-

tionality for control using external sensors is described, using the ABB

S4CPlus controller as an example. The dynamic properties of the result-

ing robot system are described and analyzed. Results from experiments,

where the designed interface was used for force-controlled grinding and

deburring, are presented.

3.2 Structure of S4CPlus Extensions

In this section, a brief description of the structure of the extended ABB

S4CPlus control system is given. A more detailed description of the com-

plete system, together with a discussion of other issues considered in the

design and implementation, is given in [Blomdell et al., 2005].
The structure of the extended ABB S4CPlus control system is illus-

trated in Fig. 3.2. In standard S4CPlus, the high-level task description is

first converted into program code written in the robot programming lan-

guage RAPID. From the instructions in the RAPID program, the trajecto-

ries are generated for the internal arm-level and motor controllers respon-

sible for the low-level motion control of each joint. Although the standard

S4CPlus controller does not permit low-level external sensor feedback, on

a high level there is a possibility to read sensors via customer I/O, and
to influence the robot task according to instructions written in RAPID.

However, since the sampling frequency is limited to around 10 Hz, and

since significant time delays are introduced by the trajectory generation

step, the achievable bandwidth on the RAPID level is far too low for most

applications of force control.

In order to obtain a sufficient sampling bandwidth, the extensions were

instead implemented by modifying the references on the arm control level

with a 4 ms sampling interval, which gave a suitable trade-off between
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Figure 3.2 Extension of industrial robot controller with sensor interface and

support for external computations and synchronization, using a Motorola PPC-G4

PrPMC-800 processor board mounted on a Alpha-Data PMC-to-PCI carrier board

with a local PCI bus.

engineering effort, preserved safety, and performance. In order to accom-

plish interrupt-driven hard real-time execution, the force controller was

run as a Linux kernel module on an additional external Motorola PPC-

G4 processor board mounted on a PMC-to-PCI carrier board with a local

PCI bus. In each sample, the references and parameters necessary for the

external control were copied from the S4CPlus to the external controller

board over the PCI bus, using a shared memory interface between the the

built-in motion control and the external controller. The external controller

modified the references for position, velocity and torque according to sen-

sor data and the active control algorithm, and values were copied back to

the S4CPlus system where the built-in safety functions performed check-

ing of the updated references. The force controllers—represented by the

force control block in Fig. 3.2—were implemented as block diagrams in

Matlab/Simulink, and converted into C code using Real-Time Workshop.
The code was cross-compiled to the target computer and finally linked to

form the Linux kernel module.

On the user level, the RAPID program was extended with instructions

for the external control such as references, parameters, activation and de-

activation commands for the force controllers. The external instructions

were encoded as XML-style tags and added as comments to create the ex-
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MoveL C001, spd001, z40, grinder;

MoveL C002, spd002, z40, grinder;

!<sensor id="optidrive"

! type="force"

! interface="LTH+ABB S4C Extension">

!<force surfaceSearchDirection="1,0,0"

! forceDirection="1,0,0"

! buildForceFunc="upramp"

! buildForceTime="1000ms"

! buildForceFinalValue="150N"

! processForceFunc="constant 150N">

MoveL C003, spd003, z40, grinder;

!</force>

!</sensor>

MoveL C004, spd004, z40, grinder;

Figure 3.3 An example of an ExtRAPID program for a simple 1-DoF force control

task, the task consisting of establishing contact with a surface located in a specified

direction (relative to the tool frame). The extended language constructs are located
in RAPID comments and are modeled as XML tags in order to be easily modifi-

able. In addition, the nominal program can be executed in its standard form by the

ordinary S4CPlus system.

tended code in a defined format called ExtRAPID, see Fig. 3.3. The part

of the RAPID program without the extra instructions was then sent to

and interpreted by the S4CPlus system. The extended instructions were

processed by a Master PC, responsible for communication and for synchro-

nizing the execution of the external controller with the S4CPlus system.

Preserved Safety for External Sensor Feedback. Open systems re-

quire careful engineering not to exhibit unpredictable or even unsafe be-

havior when extended with novel features at the customer site, and con-

fronted with potentially inexperienced users. Installing third-party hard-

ware means that there is an additional risk for system failures, despite

high and ensured quality of the basic robot system. Importantly, sensor

failures are inevitable and have since long been an important obstacle

in applications. In cost-efficient production, solutions based on redundant

sensors are often unacceptable because of the extra cost and the increased

risk for system overload/failure. Instead, a combination of system struc-
ture, proper interface design, testing methodology, and well-defined fall-

back control is needed. Perhaps the most important part of safety is the

ability to keep the internal safety functions activated (possibly which ad-
justed tolerances) even during sensor-based motions. Although this prob-
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lem is possible to solve, the difficult part is to combine safety with per-

formance. In the design presented in this work, modifying the references

for the joint- or arm-level control causes the modified sensor-based ref-

erences to be subject to the same safety logic as ordinary trajectories,

thereby retaining a large part of the safety of the original system.

3.3 Programming, Control, and Modeling Issues

As mentioned previously, the fact that the extended control interface sys-

tem is designed as an extension to the standard S4CPlus robot system

makes it possible to reuse a large part of the user-level functionality.

An example is the programming of the nominal motion component of a

given task, which is still expressed in the standard RAPID language, the

instructions of which are executed by the standard robot system. This fa-

cilitates the use of available CAD and off-line programming tools for task

specification and programming. As the methodology for task specification

and programming are not the main focus of this work, these aspects are

not covered in detail here. For a more detailed discussion on these and re-

lated topics, see [Johansson et al., 2004; Blomdell et al., 2005; Robertsson
et al., 2006].
This reliance on the built-in robot functionality also puts a number of

constraints on the usage of the system. Most importantly, the above men-

tioned standard task specification methodology results in sensor-based

control actions which are modeled as corrections to the nominal, pro-

grammed path or trajectory2. The parameters determining the nature of

the sensor-based corrections, as given in the extensions in the ExtRAPID

language, describe a number of important issues:

Task-DoF selection. The specification for multi-DoF sensor-based cor-

rection, such as in 6-DoF force control, require careful consideration

of several aspects related to the geometry of the task [De Schutter
and Van Brussel, 1988a; De Schutter et al., 1997]. In the specifica-
tion, a task-related coordinate system is defined implicitly by spec-

ifying the directions in which force/torque control is to be applied,
with standard motion control assumed in the remaining directions.

In each direction specified, the velocity (or angular velocity) is al-
lowed to be controlled using external sensor feedback. The directions,

which are defined relative to the tool frame, may be updated online

according to some model-based description. In this way it is possible

2It should be noted that, for experimental purposes, the corrections are not restricted

by the system to be small, providing the possibility for unrestricted control of the robot

trajectories in for instance a visual servoing system.
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to handle complex scenarios where the orientation of the tool and

the sensor-controlled directions vary independently. One example is

force-controlled motion around a corner, where the desired force may

be applied perpendicularly to the surface, without reorientation of

the tool. This way of specifying the task geometry can be compared

to the well-known task frame formalism [Mason, 1981; Baeten et al.,
1999].

Controller parameters. Although parameters for general sensor-based

control could be included in the ExtRAPID specification, currently

only parameters for force control have been implemented. On the

ExtRAPID level, the desired behavior of the force controllers de-

scribed in Section 3.4 is specified as the impedance parameters

(mass/inertia, stiffness, and damping) in each force-controlled di-
rection.

Reference signals. This specification include all desired sensor values,

as well as their desired variations as a function of the coordinates

along the path. Currently, only force references which are affine

functions of the path coordinates are specified in the ExtRAPID

language, making it possible to change and ramp up the force in

a controlled manner.

Termination criteria. The criteria for termination of a phase are spec-

ified as upper/lower thresholds on a sensor value, or as a maximum
desired time allowed for the phase. This allows to handle smooth

transitions from a phase to another, as well as error handling (if,
for instance, a surface is not found within a given time by a search

in the specified direction).

CAD tools with partial support for automatic generation of the ExtRAPID-

level specifications have also been developed [Robertsson et al., 2006].
Such CAD tools provide support on the user level for the required geomet-

rical specifications. Potentially, such tools could also be used to simplify

the difficult problem of controller parameter selection by translation from

more task-oriented specifications, for instance as in [Natale et al., 2000].

Dynamic Modeling

For the purposes of simulation and model-based control design, a dynamic

model of the system responses to external forces and motion references is

required. In order to illustrate the expected properties of such a model, a

local model is assumed in the form

Map̈a +D1ṗa +Kpa = Kpm +D2ṗm + fe (3.1)

Mmp̈m +D3ṗm +Kpm = Kpa +D4ṗa + fc (3.2)
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where pm and pa are the motor and arm side positions in local Cartesian

coordinates, and fc and fe are the (transformed) control torque and ex-
ternal force on the tool, respectively. Ma and Mm represent the arm and

motor inertias, Di are damping matrices, and K represent elasticity in

the transmission and links. Together with a feedback/feedforward type
motion controller

fc = −ffb(pm, ṗm) + fff(pr, ṗr) + fI

(∫
pr − pmdt

)
(3.3)

this leads to a full model of the motion-controlled robot. The position

and velocity signals pr and ṗr, corresponding to the references for the

inner motion controllers, are the control inputs to be used by the external

control. In the presence of a constant external disturbance force fe = f0
and zero reference pr = 0, in stationarity we obtain the equilibrium

pm = 0 (3.4)

pa = K
−1f0. (3.5)

As the Cartesian stiffness matrix K will in general not be diagonal, this

means that the deflection in the tool position will not be in the direction of

the external force. An example of the consequences of this effect is given

by a drilling system, in which motion tangential to the surface will result

when axial cutting forces are applied to the drill. This would cause unde-

sired sliding of the drill tip on the surface, which needs to be controlled

as described in Chapter 6.

Model tuning and identification. The model in Eqs. (3.1)–(3.3) was
the basis for a tuned model used for control design. By exploiting the

special structures of Eqs. (3.1)–(3.3) and a typical robot motion controller,
models that captured the behavior of the controlled robot were obtained

from experimental data. A structure of the form

na∑
j=0

Ā jpa(k−j) = B̄pm(k−1) + B̄K
−1fe(k−1) (3.6)

nm∑
j=0

F̄ jpm(k−j)=

zm+1∑
i=1

Ḡipa(k−i) + H̄pr(k−1) (3.7)

was assumed for the tuned dynamic models. In order to obtain better re-

liability, the tuning procedure was divided into a static and a dynamic

step. In the first stage, an algorithm for static calibration was used to
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find the stiffness matrix K. The algorithm was based on the application

of known forces fe against a surface and measurements of the resulting

arm-side deformations, followed by a least-squares solution for the stiff-

ness matrix inverse K−1. In the second stage of the tuning, a dynamic

model including the motion-controlled rigid robot dynamics, resonances,

and dynamic couplings was tuned, given motion references pr as inputs.

A pseudo-random binary excitation signal was sent as a motion reference

to the unconstrained robot, and both motor and arm side positions were

measured. The small arm side motions were measured in 5 degrees of free-

dom, using two high-speed cameras. A discrete-time input-output model

of the arm side motion was found by minimizing the quadratic criterion

J(Ā, B̄, F̄, Ḡ, H̄) =

N∑
k=na

⎡
⎣ na∑
j=0

(
Ā jpa(k−j)

)
− B̄pm(k−1) +

+

nm∑
j=0

(
F̄ jpm(k−j)

)
−

zm+1∑
i=1

(
Ḡipa(k−i)

)
− H̄pr(k−1)

⎤
⎦2 (3.8)

subject to the constraints

B̄ =

na∑
j=0

Ā j ,

nm∑
j=0

F̄ j = H̄,

zm+1∑
j=1

Ḡ j = 0 (3.9)

stating the physical property that the system was statically decoupled by

the integral action, giving a system with unit static gain in each degree

of freedom. For validation of the obtained model, the true reference step

responses were compared to the step responses predicted by the obtained

model. The resulting reference step responses for a 3-degree-of-freedom

model of translation only can be seen in Fig. 3.4, and the true and simu-

lated arm side responses to an external force fe can be seen in Fig. 3.5. A

good fit was obtained both statically and around the resonance frequen-

cies.

3.4 Case Studies and Experiments

As a case study, the external control system was used in a stub grinding

application. Additionally, the system and software tools could be used for

other applications, such as deburring and polishing.
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Figure 3.4 True arm side (top) and motor side (bottom) reference step responses
(solid lines) in the z-direction, and the corresponding step responses of the model
obtained by the tuning procedure (dashed lines). A modified and aggressively tuned
velocity feedforward, in combination with the increased flexibility represented by

the drilling tool, gave a faster and more resonant response to motion references

than the built-in controllers.

Basic Force Control

In the applications considered in this chapter, only the motion perpendicu-

lar to the surface of the workpiece was required to be force-controlled, and

therefore a force/position control strategy was employed. Since the built-in
inner motion control in the robot control system was already available, this

type of control corresponded to a suitable update of the motion references

in the force-controlled directions. This reference update was performed by

the force controller, which used a dynamical relation between position and

external force to determine the motion in the force-controlled directions.

The geometry of the problem is illustrated in Fig. 3.6. The nominal path

was specified in the standard RAPID program, as the desired pose Tnom
of the TCP-frame relative to some fixed spatial coordinate system. The

figure illustrates the case where the orientation of the tool is fixed along
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Figure 3.5 True arm side external force responses (solid lines) in the x-, y- and
z-directions, and the corresponding responses of the model obtained by the tuning

procedure (dashed lines).

the trajectory, although in the general case the TCP-trajectory included

both the translation and the orientation of the tool. Additionally, a task

description frame Td was specified in the extended RAPID instructions
3 ,

together with information on which coordinate directions of Td were to

be force-controlled. By continuously rotating frame Td complex behaviors

could be achieved, such as force control along a curved surface without

physically reorienting the tool (see Fig. 3.6).
The compliant frame Tc, defining the position to be tracked by the

motion control, was defined relative to Tnom. The velocity vc and angular

3Since the origin of frame Td was arbitrary, only the orientation of the frame (or just the
force-controlled directions) needed to be specified in the ExtRAPID program.
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Environment

Nominal trajectory

Figure 3.6 Geometrical description of the functionality of the basic force con-

troller. The nominal path of the TCP-frame Tnom was specified as usual in the

standard RAPID program. The orientation of the task description frame Td was

specified relative to the TCP frame in the extended RAPID instructions, together

with a selection of which of its coordinate directions were to be force-controlled. The

compliant frame Tc, defined relative to Tnom, was computed through the specified

controller dynamics, given the measured contact force as input.

velocity ωc of frame Tc, expressed in Td-coordinates, were obtained from
the specified controller dynamics. This dynamic relation was described by

rotational and translational motion relations

MItrans
dvc

dt
+DItransvc = Strans(f− fr) −α (I− Strans)tc (3.10)

MIrot
dωc
dt

+DIrotωc = Srot(τ− τr) −α (I− Srot)rc (3.11)

where f and τ were the measured force and torque vectors acting at the
TCP point, expressed in Td-coordinates. The vectors fr and τr were the
corresponding reference force/torque vectors. The matrices MI and DI
of desired inertia and damping were chosen to be diagonal. By setting

the diagonal elements of the selection matrices Strans and Srot to one, the

corresponding degrees of freedom became force-controlled. The last terms
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of (3.10) and (3.11), with parameter α > 0, were used for dynamically
resetting the commanded motion in purely position-controlled directions

to the nominal trajectory. This was needed after a change in the selec-

tion matrices or when rotating Td, or otherwise positioning errors would

occur in the motion-controlled directions. The vectors tc and rc were the

translation and angle/axis representations of the relative pose Tc, also
expressed in Td-coordinates. At the beginning of each sample, the contact

force and torque were read from the force/torque sensor, and compen-
sated for the effects of gravity. The TCP-relative position and velocity of

the compliant frame were obtained from (3.10)–(3.11). The updated joint
servo position/velocity references were computed from the inverse kine-
matics function f−1k and manipulator Jacobian J(q), according to

q̇r = J
−1(q)

([
Rcdvc

Rcdωc

])
+ q̇nom (3.12)

qr = f
−1
k (TnomTc), (3.13)

where q̇nom was the vector of joint velocities corresponding to the nominal

trajectory, and the rotation matrix Rcd described the current orientation

of frame Td relative to Tc. In practice, the inverse kinematics f
−1
k was

computed using a linearization around the nominal trajectory, since the

deviations from this trajectory were assumed to be small.

Force-Controlled Stub Grinding

Final stub grinding experiments were performed in a specially developed

work cell. The cell consisted of the robot with end-effector, a flexible clamp-

ing unit for the workpieces, the control system, and the Master PC. For

the stub grinding process, a hydraulically driven end-effector developed

within the AUTOFETT project was used [Robertsson et al., 2006]. The
main components of the end-effector were the hydraulic motor includ-

ing the grinding stone (Fig. 3.7), and the force sensor consisting of a
spring with a displacement sensor. The stiffness of the spring was set

to 60 N/mm, the stroke being 20 mm. The natural system compliance
was sufficient to react on irregularities of the casting product and surface

roughness, which pass at high frequency. Bigger burrs, calibration errors

and slow changes of the contour were handled by the force control system.

An scheme based on CAD/CAM programming was used to generate the
nominal tool trajectories, since the small series and complex geometry of

the castings made traditional teach-in programming infeasible.

Images from the stub-grinding experiments, as well as finishing grind-

ing experiments on a propeller blade, are shown in Fig. 3.9. The result-

ing contact force from a typical stub grinding experiment with reference
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Figure 3.7 The compliant grinding tool (left) and cup stone (right) for the stub
grinding application.
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Figure 3.8 Contact force during grinding experiment with reference 150 N.

Fr = 150 N is shown in Fig. 3.8. The force remained close to the desired
value during the entire operation, despite surface irregularities.

Force-Controlled Deburring

Deburring of workpieces with complex geometry, as shown in Fig. 3.10, is

an example of the advantage of using six-degree-of-freedom force control.
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Figure 3.9 Stub grinding (left) and finishing on a propeller blade (right).

Figure 3.10 Removal of burrs for casted aluminum (car suspension) with milling
motion around corner without tool reorientation. A stiff milling tool was used to-

gether with a wrist mounted (stiff) force/torque sensor (JR3) for programmable
6-axis compliance/force-controlled motion.

By programming a dynamically changing compliance in the different di-

rections during the deburring process, extra flexibility was achieved in the

trajectory generation process. One example is allowing stable contact to

be maintained while moving across corners of the workpiece, without re-

orienting the tool. Another benefit is the possibility to do a rapid (rough)
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Figure 3.11 Contact force and during deburring experiment, with force reference

40 N.

teach-in procedure for a nominal trajectory along the surface. As long

as the true profile of the workpiece is within the safety-zone of the pro-

grammed trajectory, and the bandwidth of the force control is sufficient,

controlled contact will be maintained.

The experiments were performed using an Irb 2400 industrial robot

equipped with a stiff 6-DoF JR3 force/torque sensor. Fig. 3.11 shows the
achieved contact force during deburring of the workpiece in Fig. 3.10. An

approximate trajectory was programmed along the burrs on the surface

of the workpiece, and the force control was programmed to maintain a de-

sired contact force of 40 N in the normal direction of the surface. In order

to follow the trajectory, both the tool orientation and the force-controlled

direction had to be changed abruptly at certain points along the trajec-

tory. The re-orientations, together with the high stiffness of the contact

and the roughness of the surface on which the milling tool was rolling,

caused the variations in the measured contact force. Nevertheless, the

bearing roller of the milling tool maintained contact with the surface dur-

ing the whole constrained motion along the surface, and the burrs were

successfully removed from the casting.

3.5 Summary and Concluding Remarks

In this chapter an interface for external control has been described, de-

signed by extending an ABB S4CPlus industrial robot control system.

The system extensions make it possible to modify the references of the

internal motion control at a 4 ms sampling rate. To our knowledge, there

are no other systems that provide the same high sampling rate and low
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input-output latency together with all of the user-programming features,

preserved safety, and supervisory functions. Results from experiments,

where force- and impedance control were used for force-controlled grind-

ing and deburring, were presented. Suitable dynamic model structures

and tuning procedures for the extended robot system have been proposed.

This will be used for designing model-based controllers for the robotic

drilling system described in Chapter 6.
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4

Feature-Based
Visual Tracking and
Force/Vision Control

4.1 Introduction

The majority of visual tracking algorithms use a separate feature extrac-

tion step, where the image data is compressed into a smaller number of

image features. Image features are either structures with large intensity

gradients—such as corners, lines, or edges—or image areas that can be

distinguished by a similar color, intensity, or texture. The image features

are characterized by some feature-dependent geometric properties, such

as their image position, direction, or size. Following the feature extrac-

tion step, the motion is estimated from the extracted feature data. In the

following, we will refer to such methods as feature-based1, as opposed to

the direct intensity-based methods which will be the topic of Chapter 5.

From a perspective of feedback, feature-based methods make it possible

to avoid the complex nonlinear relationship between motion and changes

in image intensities. Instead, state-space modeling and control techniques

can be used, in which the measurement equation is given by the (much
less complicated) camera projection equation. Two fundamentally differ-
ent approaches to control of such systems are possible, referred to as

position-based and image-based visual servoing [Hutchinson et al., 1996].

1In the literature, the term feature-based tracking is sometimes used with a different

meaning, as a description for algorithms where the geometrical image feature itself, rather

than the workspace position, is the structure to be tracked. This particular definition will

not be used in this work.
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In position-based visual servoing, pose estimation is used together with a

feedback law defined in the workspace of the robot. In image-based visual

servoing, the control law is based directly on the image feature data, with-

out any explicit pose estimation. Image-based techniques are useful when

the calibration accuracy of the camera system is insufficient for reliable

pose estimation, or when the positioning task is specified more naturally

in image space.

In Section 4.2 the basic version of a motion tracker is presented, us-

ing measurements of points and edges. As this motion estimation method

suffers from a number of potential problems regarding robustness, we

address two different problems related to the robustness and reliability

of the edge-based tracker. In the first problem, a parametrization based

on dual quaternions is used to provide additional linear constraints on

the estimated state vector. This leads to improved robustness when track-

ing using a hand-eye camera, which is demonstrated in experiments with

simultaneous tracking of motion and changing intrinsic camera parame-

ters. In the second problem, a method for multi-camera visual tracking is

presented, which aims at maximizing the accuracy of the estimate given

a maximum allowed computation time. The suggested algorithm is eval-

uated in an extensive simulation study using a setup consisting of six

cameras, with respect to both estimation variance and the resulting con-

trol performance. Finally, two basic approaches to force/vision control are
presented. The first is a position-based technique, based on the edge-based

motion tracker previously described. The second method is an image-based

algorithm based on a hybrid force/vision control structure, where one de-
gree of freedom is force-controlled, and the remaining degrees of freedom

are controlled using a constrained visual servoing algorithm. The parame-

ters describing the constraint equations can be estimated recursively from

the sensor data.

4.2 Feature-Based Visual Tracking
A pose or motion estimator is a necessary component in any position-

based visual control system. As mentioned above, in feature-based track-

ing methods an intermediate feature extraction step is included, such that

the workspace position is estimated from the vector of feature coordinates.

Problem Formulation and State-of-the-Art. At least since the early

1980s, model-based visual tracking and estimation of the position of rigid

objects have been active research topics. Traditionally, methods using non-

linear minimization of the image-space errors [Lowe, 1991; Drummond
and Cipolla, 2002; Martin and Horaud, 2002] or Kalman filtering tech-
niques [Lippiello et al., 2002] are employed. Other methods make use of the
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geometrical structure of the problem, for instance by using a simplifica-

tion of the perspective projection to find an approximate solution, followed

by successive iterative refinements [Dementhon and Davis, 1995; Horaud
et al., 1997]. Such methods are applicable also in situations where no
reliable initial value for the iteration can be found.

The main objective of recent research has been to improve robust-

ness of tracking systems, with respect to error sources such as occlusions

and reflections, unpredicted motions, data outliers and feature match-

ing errors. Solutions include the use of data pre-processing with outlier

elimination [Fischler and Bolles, 1981], applying robust statistical meth-
ods to the image measurements [Drummond and Cipolla, 2002; Comport
et al., 2005; Malis and Marchand, 2006], data fusion with multiple cam-
eras [Martin and Horaud, 2002], and combining different types of im-
age measurements with complementary properties regarding robustness

and accuracy [Pressigout and Marchand, 2005; Rosten and Drummond,
2005; Kyrki and Kragic, 2006]. For motions described by dynamical sys-
tems, the robustness also depends strongly on the estimation algorithm.

Particularly in highly cluttered environments with non-Gaussian distur-

bances, stochastic estimators capable of handling multi-modal probability

distributions have proved useful. The primary examples are the CON-

DENSATION tracker and other types of Sequential Monte Carlo methods

[Isard and Blake, 1998; Li et al., 2003].
The question of real-time performance of visual tracking and servo-

ing has also been considered by several researchers, with development of

special-purpose hardware [Nakabo et al., 2000] as well as efficient algo-
rithms for feature extraction [Smith and Brady, 1997; Rosten and Drum-
mond, 2005] and feature selection [Davison, 2005]. Apart from the perfor-
mance and robustness issues, other researchers have focused on geometri-

cal and representation problems, such as formulations of pose estimation

problems using screw theory, geometric algebra [Rosenhahn et al., 2005],
or Lie algebra [Drummond and Cipolla, 2002]. The aim of such formula-
tions is to obtain a consistent way to mathematically describe the output

and state spaces, with respect to simplicity, compactness, and numerical

efficiency and conditioning.

In this section, we present the feature-based framework used in this

chapter. We present a singularity-free extension to the basic formulation,

based on a parametrization using dual quaternions. Further advantages

of the singularity-free representation include that the conditions of known

angle and pitch of a screw motion can be translated into linear constraints

on the state. This makes inclusion of the motion constraints in the esti-

mation straightforward, and can be used to effectively reduce the number

of estimated degrees of freedom by two.
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Modeling and Motion Estimation

Assume that M cameras are placed in fixed locations, viewing a target

object whose position and orientation with respect to some fixed (world)
coordinate system should be estimated. The output of the pose estimation,

i.e. the object position and orientation, can be parametrized in different

ways, such as roll-pitch-yaw angles [Lippiello et al., 2002], quaternions
or dual quaternions [Olsson et al., 2003]. We assume that the position
and orientation are parametrized as a vector z ∈ R

n, where typically

n = 6 or n = 7. The image data is compressed into a vector y ∈ R
N ,

usually representing the image space coordinates of corners, edges and

other features. If the geometry of the target is known, z and y are related

by the projection equations of the cameras

y = h(z) (4.1)

which is a nonlinear function, as described below. The task space position

z could be obtained from a pose estimation, conceptually expressed as

z = h−1(y), (4.2)

and used in a feedback control law in order to control the task space po-

sition. The pose estimation can be performed using some type of iterative

least-squares optimization algorithm such as Gauss-Newton or Levenberg-

Marquardt, using the previous position or prediction as a starting point

for the iteration. Since this position should ideally be close to the true

position, one or two iterations are usually sufficient in practice.

The most commonly used camera model is the homogeneous form pin-

hole camera projection equation, given by⎛
⎜⎝ ūiv̄i
wi

⎞
⎟⎠ = KTcwTwo(z)(Xi

1

)
(4.3)

yi =

(
ui

vi

)
=

(
ūi/wi

v̄i/wi

)
, i ∈ [1,N] (4.4)

where

K =

⎛
⎜⎝ f 0 u0 0

0 γ f v0 0

0 0 1 0

⎞
⎟⎠ (4.5)

is a matrix of intrinsic camera parameters as described in Appendix A,

Xi is an object point expressed in the coordinate system of the object,
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wi = wi(z) is the depth of the point in the camera, and Tcw and Two(z) are
the homogeneous coordinate transformation matrices between the world

coordinate system and the camera, and between the target object and

the world coordinate system, respectively. The parametrization z of Two
corresponds to the unknown position/orientation to be estimated, while
the camera position Tcw is assumed to be known. In practice, the relative

positions of the cameras need to be accurately calibrated, in order to be

able to relate measurements from the different cameras.

In order to linearize the projection equations (4.3)–(4.4), the image Ja-
cobian or interaction matrix—describing the relation between workspace

and feature velocities—must be computed. For many types of features, the

Jacobian may be computed analytically, see for instance [Espiau et al.,
1992; Hutchinson et al., 1996]. The Jacobian for a single point feature can
be calculated using the equations

(
u̇i

v̇i

)
=

⎛
⎝ f
wi(z)

0 − ui
wi(z)

−uivi
f

f 2+u2i
f

−v

0 f
wi(z)

− vi
wi(z)

−
f 2+v2i
f

uivi
f

−u

⎞
⎠

︸ ︷︷ ︸
J
(i)
f
(z)

(
voc

ωoc

)
(4.6)

(
voc

ωoc

)
= Jω (z)ż (4.7)

where f is the focal length of the corresponding camera2, and voc and

ωoc represent the velocity and angular velocity of the object with respect
to the camera coordinate system, and where the Jacobian Jω (z) relates
these velocities to the velocity in configuration coordinates z. This results

in the relation

ẏi =

(
u̇i

v̇i

)
= J

(i)
f (z)Jω (z)ż

def
= J(i)v (z)ż, (4.8)

and the full Jacobian Jv(z) can be obtained by computing and stacking

J
(i)
v (z) for each point i ∈ [1,N] in each camera as

ẏ =

⎛
⎜⎜⎝
J
(1)
v (z)

...

J
(N)
v (z)

⎞
⎟⎟⎠

︸ ︷︷ ︸
Jv(z)

ż. (4.9)

2In the equations, it is assumed that the camera coordinates have been normalized such

that the aspect ratio can be taken to be γ = 1. This simplification will be assumed throughout
this work, unless otherwise indicated.
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The Jacobian can be used to linearize the measurement equation Eq. (4.1)
according to

Δy = Jv(z)Δz. (4.10)

Near singular configurations where Jv(z) loses rank, the pose estimation
becomes very inaccurate. An example of such a situation is when the rela-

tive depth of the object points is small. In such cases a very accurate depth

estimation may be required for each point in order to obtain convergence

[Malis and Rives, 2003].
Instead of using measurements of the positions of point features [Lip-

piello et al., 2002], it is possible to use features such as lines [Wunsch
and Hirzinger, 1997] or edges [Drummond and Cipolla, 2002; Martin and
Horaud, 2002]. In many cases, edges are the only structures that can be
extracted reliably from the image data. Another major advantage of such

measurements is that exact matching of features is not required, but only

the error in the normal direction at a number of points on an edge [Drum-
mond and Cipolla, 2002; Martin and Horaud, 2002]. This requires only a
one-dimensional search for features (edges), which can be performed ex-
tremely quickly. However, this means that due to the so called aperture

problem, only local image motion normal to the edge is measurable, while

motion parallel to the edge becomes unobservable. This can be accounted

for by modifying Eq. (4.8) by projecting the motion onto the normal direc-
tion as

nTi (z)ẏi = n
T
i (z)J

(i)
v (z)ż (4.11)

where ni is an edge normal vector at point i along the edge [Drummond
and Cipolla, 2002; Martin and Horaud, 2002]. This gives an equation anal-
ogous to Eq. (4.10) given by

Δe � NT (z)Δy = NT (z)Jv(z)Δz
def
= Jv,N(z)Δz (4.12)

where N is a block diagonal matrix of the vectors ni, and Δe is the vec-

tor of measured normal distances between the measured and predicted

edges, see Fig. 4.1 for an illustration. The small error in (4.12) is caused
by approximating the measured normal distances with the edge normal

projections of the point-to-point errors (Fig. 4.1). The approximation can
be shown to result in an extra nearly quadratic error term in the estima-

tion error z̃. In most cases, this error term is negligible compared to the

higher-order error terms from the linearization, and using (4.12) works
well in practice. However, in some particular situations, such as for fast

image-plane rotations near singular configurations, the effects of the error

term become apparent. If the local orientations θ i of each measured edge
relative to the predicted edge are measurable, it is possible to directly
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Predicted edge

Δyi

Δyi+1

Δei

Δei+1

Approximation error = Δei − n
T
i Δyi

Figure 4.1 Edge detection in the normal direction of the predicted edges, illustrat-

ing the difference between the point-based measurements Δy and the edge-based

measurements Δe.

compensate for this error by modifying (4.12) to

Δe �
(
NT (z) +ΘTT (z)

)
Jv(z)Δz

def
= Jv,Θ(z)Δz, (4.13)

where Θ is a diagonal matrix of the image edge orientation angles. The
tangential projection matrix T is a block diagonal matrix of the same form

as N, but with its block-diagonals given by the tangential vectors at each

point along the predicted edge. The effects of the quadratic compensation

in (4.13) can be seen in Fig. 4.2, in which the measured edge distance
Δei for one measurement point is shown, for a simple setup of a planar
quadratic object rotating and translating in the image plane. In this case,

the compensation in (4.13) captures the nonlinear behavior for this partic-
ular measurement more accurately than the simple linearization (4.12).

Dynamic tracking. If we assume that the task space dynamics of

the motion-controlled manipulator can be modeled as a linear system, we

obtain the Wiener-type model⎧⎪⎨
⎪⎩
ẋ = Fx +Gu

z = Cx

y = h(z) + εεε

(4.14)
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Figure 4.2 Measured edge distance Δei (dashed) as a function of the workspace
estimation error z̃, together with the linearization Jv,N(z)z̃ (solid) of Eq. (4.12) and
the compensated linearization Jv,Θ(z)z̃ (dash-dotted) of Eq. (4.13).

where u is the input, x is the state vector, and εεε denotes a measure-

ment disturbance or noise sequence. For relatively low bandwidth sys-

tems, such as normal vision-based controllers, the approximation of the

complex closed loop robot dynamics with a linear system of relatively low

order may often be reasonable. A state estimator, using a correction term

Δz = J†vΔy obtained from the linearization, is given by

dx̂

dt
= Fx̂ +Gu+ K̄Δz

def.
= Fx̂+Gu+ K̄J†v(Cx̂)Δy, (4.15)

or equivalently for edge measurements

dx̂

dt
= Fx̂ +Gu+ K̄J†v,N(Cx̂)Δe, (4.16)

where J† is the pseudo inverse of J. The error dynamics is approximated

by the system

dx̃

dt
=
(
F− K̄C

)
x̃− K̄J†v(Cx̂)εεε, (4.17)
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with an equivalent expression in the edge-based case. In practice, the

estimator is implemented in discrete time as a Kalman filter

x̂(k) = x̂(k�k−1) +Kk J
†
v,N(Cdx̂(k�k−1)) Δe(k)︸ ︷︷ ︸

Δz(k)

(4.18)

x̂(k�k−1) = Φdx̂(k−1) + Γdu(k−1) (4.19)

Kk = P(k�k−1)C
T
d (CdP(k�k−1)C

T
d +R2(k))

−1 (4.20)

P(k+1�k) = Φd(I−KkCd)P(k�k−1)Φ
T
d +R1 (4.21)

where (Φd,Γd,Cd) are the system matrices of the corresponding discrete-
time system model, R2(k) is the time-varying covariance matrix of the
white (discrete-time) measurement noise εεεk, and R1 the covariance ma-

trix of a modeled input noise sequence. Due to the shape of the correction

term and Jacobian in (4.18), the accuracy of the estimation will improve
with the number of image measurements N. If we assume that the mea-

surement errors εεε can be modeled as Gaussian, spatially uncorrelated

white noise with variance σ 2, a useful approximation of the covariance
R2 of the effective measurement error J

†
vεεε can be obtained as

R2 = E[J
†
vεεε(J

†
vεεε)
T ] = (JTv Jv)

−1σ 2 = (

M∑
i=1

JTv,iJv,i)
−1σ 2 (4.22)

where the Jacobian has been partitioned into the individual Jacobians

for each of the M cameras as JTv = [J
T
v,1,J

T
v,2, ⋅ ⋅ ⋅JTv,M ]

T . In Section 4.3 a

method which attempts to minimize the measurement error covariance in

Eq. (4.22) by a proper selection of active cameras will be presented.

Robust Estimation and Implementation. In practice, the estima-

tor (4.15) or (4.16) suffers from problems with outliers in the data, due to
their similarity to least-squares approximation methods. The problem of

outliers is traditionally solved by removing the outliers using, for instance,

RANSAC [Fischler and Bolles, 1981], or by using other criteria than the
�2-norm in the minimization. Here, we use an algorithm based on itera-
tive re-weighted least-squares, similar to [Drummond and Cipolla, 2002].
In each sample two iterations are performed, where after the first iter-

ation the weights sσ (di) are applied to each measurement. The weights
(Fig. 4.3) are given by the Huber penalty function [Boyd and Vanden-
berghe, 2004], defined by the function

sσ (di) =

{
σ sgn(di)

di
, �di� > σ

1, �di� ≤ σ
(4.23)
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Figure 4.3 The weights sσ (di) (for σ = 1) used in the robust version of the
edge-based visual tracker, based on the Huber penalty function.

of the remaining image-space errors d. Mathematically, the procedure for

computing the correction term Δz can be described by

d = Δe− Jv,NJ
†
v,NΔe (4.24)

Δz = [Sσ (d)Jv,N]
†
Sσ (d)Δe (4.25)

where Sσ (d) is a diagonal matrix with the weights sσ (di) as diagonal
elements. The parameter σ is usually set to 1–3 pixels, depending on the
expected image noise level.

In order to be able to execute the tracker using a large number of fea-

tures at frame rate, while minimizing the input-output latency, a number

of issues related to the program structure must be considered. The basic

algorithm contains a number of steps to be carried out in sequence during

each sample k.

ALGORITHM 4.1—REAL-TIME DYNAMIC EDGE-BASED RIGID BODY TRACKING

1. Wait for the next set of images from the cameras. The capture is

performed in hardware with images being transferred to memory

through direct memory access, making complete overlap between

capture and processing possible.
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2. Perform image pre-processing, in the form of color-space conversion

and region-of-interest rescaling for the multi-scale edge detection

algorithm described below.

3. Based on the predicted position, measure distances Δe(k) between
the predicted edge positions and the image edges as illustrated in

Fig. 4.1. Remove measurements and rows of the Jacobians corre-

sponding to non-detected features.

4. Compute the correction term and the remaining errors d in (4.24).
Re-weight the measurements according to (4.23), and update the
state estimate by (4.18), using the correction term Δz from (4.25).

5. In case of feedback, compute the control signal and actuate the pro-

cess accordingly.

6. Compute the one-step prediction x̂(k+1�k) of the state from (4.19).

7. Using the state prediction, predict which features will be visible in

the next set of images. Using the predicted features, pre-calculate

Jacobians J†v,N(Cdx̂(k+1�k)) and other data for the next sample.

The visibility of individual features is determined based on the pre-

dicted object pose and a pre-generated Binary Search Partitioning (BSP)
tree description of the object [van Dam et al., 1991]. The BSP tree rep-
resentation can be computed off-line based on the object model, resulting

in fast online computations. See Fig. 4.4 for an illustration of the BSP

tree algorithm. Off-line the algorithm recursively arranges all polygons

in the object model into a binary tree according to which polygons are

“in front” and “behind”, starting with an arbitrary surface and viewpoint.

In this way, a perfect front-to-back ordering of the entire object model

is obtained. Online, a recursive inorder traversal of the BSP tree is per-

formed, with surfaces processed in front-to-back order with respect to the

current viewpoint. Each surface is clipped directly in the image against

all surfaces previously drawn, resulting in an extremely fast algorithm

for determining which edges and surface patches are visible. Along these

visible edges, the image edge measurements are then obtained from a one-

dimensional edge search at each point. The edges are found from a fast

convolution with a differentiated Gauss kernel at three different scales,

where the rough initial localization is iteratively refined at finer scales in

order to achieve a robust detection/localization.
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Figure 4.4 Object and corresponding BSP tree with respect to the given view-

point, with tree built given the polygon ordering and clipping shown. Quadrilaterals

number 3, 4 and 6 are automatically split during the construction of the BSP tree.

A front-to-back ordering given this viewpoint would correspond to the sequence of

polygons 5 → 6b → 4b → 1 → 6a → 3b → 2 → 4a → 3a. A different choice for

the numbering of the polygons would lead to a different BSP tree, with different

balancing properties and different quadrilaterals being split.

EKF Tracking Using Dual Quaternions

One issue of some practical importance concerns the choice of representa-

tion for the space of configurations. Representation singularities will oc-

cur in certain configurations when using a representation of SE(3) with
a number of parameters less than or equal to six, with the Euler angles

representation of orientation being a well-known example. Using a suit-
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able higher-order representation of the configuration space, the problem

can be avoided. A more serious problem is related to the singularities and

conditioning of the projection mapping itself. For certain configurations

and sets of visible features, the image Jacobian Jv loses rank or becomes

very poorly conditioned. In such configurations, the sensitivity to errors

is increased, frequently leading to breakdown and loss of tracking. The

tracking problem is particularly difficult when many parameters are un-

known, and therefore need to be estimated simultaneously. An example

was given by [Drummond and Cipolla, 2002], in which a method was pre-
sented to recursively estimate not only the position and orientation, but

also the (possibly varying) intrinsic parameters of the camera. The prob-
lem of simultaneously tracking position and intrinsic parameters is poorly

conditioned in situations where the relative depth of all feature points in

the image is small [Martin and Horaud, 2002]. In such cases, the only
solution may be to reduce the number of estimated parameters, by using

some extra information about the system.

One example of such information is if partial information about the

object motion is available. If the motion in one or several degrees of free-

dom can be measured by other devices, for instance by a laser tracker

or range sensor, the motion parameters for these degrees of freedom may

just be treated as known parameters in the estimation. This would reduce

the number of estimated motion parameters, increasing the accuracy and

robustness. Here, we consider the less straightforward case which occurs

if the object (or camera) is known to be rigidly attached to a robot hand,
the motion of which can be measured. This corresponds to the setup il-

lustrated in Fig. 2.3 of Chapter 2, repeated in Fig. 4.5 using a different

notation. Assume that the objective is to accurately position the camera

with respect to a stationary object in the world. The initial pose A(t0) of
the camera with respect to this object is assumed to be known. If the hand-

eye calibration parameters of the system were perfectly known, accurate

positioning of the camera could be achieved without camera feedback, in-

stead using the robot hand motion B(t) with X to compute the current
camera pose A(t). In practice, even small calibration errors in X would
cause unacceptable positioning errors, and measurements from the cam-

era would be needed in order to correct for these errors. At first view, it

may seem as if full 6-DoF tracking would be necessary for this compen-

sation, as there is no straightforward way to account for the effects of the

calibration errors. However, although the hand-eye calibration can not be

relied upon for positioning, some useful information can be obtained even

from a completely uncalibrated eye-in-hand camera system. This informa-

tion comes from the knowledge of the angle and pitch of the camera screw

motion, as shown in the following section. This allows the number of esti-

mated degrees of freedom to be decreased by two, thereby increasing the
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B(t0)

B(t)

A(t0)

A(t)

XX

Figure 4.5 Tracking and positioning of a robot-mounted camera with respect to

a stationary object, shown at two different times t0 and t.

robustness of the system.

A Comment on Notation. Due to the nature of the dual quaternion

representation used in this section, a detailed notational system is re-

quired. The notation for quantities related to quaternions and dual quater-

nions in this section follows the system described below.

q denotes a quaternion.

q̌ denotes a dual quantity, for example a dual number q̌, a dual vector �̌q
or dual quaternion q̌.

q0 denotes the scalar part of the quantity q, where q is a quaternion or

dual quaternion (in which case the scalar part is a dual number
denoted q̌0).

�q is used to denote a vector, or the vector part of a quaternion or dual
quaternion (in which case it is a dual vector denoted �̌q).

q′ denotes the dual part of the dual quantity q̌, and will be a (real) scalar
q′, a vector �q′, or a quaternion q′, depending on the context.

q̄ denotes the conjugate of q.
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Quaternions and Dual Quaternions. In this section we briefly in-

troduce the properties of dual quaternions used in this chapter. For a

more detailed description and introduction to the theory and properties

of quaternions and screws, see for instance [Murray et al., 1994; Daniilidis,
1999; Goddard, 1997].
Quaternions were first invented by Hamilton [Hamilton, 1853] as a

non-commutative extension to complex numbers. The usefulness of (unit)
quaternions in robotics comes from their use for representing and comput-

ing with rotations in three dimensions. Quaternions can be represented

as a pair q = (q0, �q), where q0 ∈ R and �q ∈ R
3, with the operations

q1 + q2 = (q
0
1 + q

0
2, �q1 + �q2) (4.26)

kq = (kq0, k�q) (4.27)

q1q2 = (q
0
1q
0
2 − �q

T
1 �q2, q

0
1�q2 + q

0
2�q1 + �q1 � �q2) (4.28)

where k ∈ R. A quaternion has a norm which is given by �q�2 = qq̄, where
q̄ = (q0, -�q) is the conjugate quaternion. It is well known that every rigid
rotation (element of the special orthogonal group SO(3)) with angle θ
about an axis �n with ��n� = 1 can be represented as a unit quaternion

q = (cos(θ/2), sin(θ/2)�n). (4.29)

The quaternion q rotates a vector �x ∈ R
3 to the vector represented by the

quaternion q(0, �x)q̄.
Similarly to real quaternions, dual quaternions are defined according

to q̌ = (q̌0, �̌q), where q̌0 = q0+εq′0 is a dual number3, and where �̌q = �q+ε�q′

is a dual vector. Analogously to ordinary quaternions, the dual quaternion

operations are

q̌1 + q̌2 = (q̌
0
1 + q̌

0
2, �̌q1 + �̌q2) (4.30)

kq̌ = (kq̌0, k�̌q) (4.31)

q̌1q̌2 = (q̌
0
1 q̌
0
2 − �̌q

T
1 �̌q2, q̌

0
1 �̌q2 + q̌

0
2 �̌q1 + �̌q1 � �̌q2). (4.32)

We will often write a dual quaternion as the sum of its real and dual

parts q + εq′. Its norm is given by �q̌�2 = q̌ ¯̌q with ¯̌q = q̄ + εq̄′, and the

unity conditions become

qq̄ = 1 (4.33)

q̄q′ + q̄′q = 0. (4.34)

3Dual numbers were invented by Clifford [Clifford, 1873]. Complementary to the complex
numbers, a dual number is defined as ž = a+ εb with a and b real numbers, and where the

dual element ε satisfies the property ε
2 = 0.
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Unit dual quaternions can be used to represent general rigid trans-

formations including translations, similarly to the way rotations can be

represented by real quaternions. The rigid transformation of a line passing

through the point �p, represented by its direction �n and moment �m = �p��n,
is given by q̌(n + εm) ¯̌q, where �n and �m are expressed as quaternions
n = (0, �n) andm = (0, �m), respectively [Daniilidis, 1999]. The dual quater-
nion itself may be expressed as q+εq′, where q is the quaternion describ-

ing the rotation, and where q′ = tq/2 with t = (0,�t) is the translation.
According to Chasles’ theorem, a general rigid transformation can be mod-

eled as a rotation about an axis (not necessarily through the origin) and
a translation along the same axis [Murray et al., 1994]. The parameters
of the screw are the direction �n and the moment �m of the screw axis line,
the rotation angle θ , and the translation (pitch) d along �n. Together with
the constraints �nT �n = 1 and �nT �m = 0 these parameters constitute the
six degrees of freedom of a rigid transformation. It can be shown that the

dual quaternion corresponding to the screw with parameters �n, �m, θ , and
d can be written as

q̌ = (cos(θ̌/2), sin(θ̌/2)�̌l), (4.35)

where the dual angle is θ̌ = θ + εd, and the line is given by �̌l = �n + ε �m.
Note the similarity between the representation of rigid transformations in

Eq. (4.35) to the case of rotations and ordinary quaternions in Eq. (4.29).
The hand-eye equation (2.1) can be written using dual quaternions as

q̌A = q̌X q̌B ¯̌qX (4.36)

where q̌A, q̌B and q̌X are dual quaternion representations of the rigid

transformations A(t)A(t0)
−1, B(t)−1B(t0) and X in Fig. 4.5, respectively.

A consequence of Eq. (4.36) is that the scalar parts of q̌A and q̌B are
equal, which follows directly from the equation [Daniilidis, 1999]

Sc(q̌A) =
1

2
(q̌A + ¯̌qA) =

1

2
(q̌X q̌B ¯̌qX + q̌X ¯̌qB ¯̌qX ) = (4.37)

=
1

2
q̌X (q̌B + ¯̌qB) ¯̌qX = Sc(q̌B)q̌X ¯̌qX = Sc(q̌B).

From the expression for the dual quaternion in Eq. (4.35), and using that
a continuous and differentiable function of a dual number can be rewritten

using Taylor expansion as

f (a + εb) = f (a) + εb f ′(a), (4.38)

we can write Eq. (4.37) as

cos
θa
2
− ε

da

2
sin

θa
2︸ ︷︷ ︸

cos(θ̌a/2)

= cos
θb
2
− ε

db

2
sin

θb
2︸ ︷︷ ︸

cos(θ̌b/2)

. (4.39)
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Figure 4.6 ABB Irb2000 industrial robot with robot-mounted digital camera used

in the experiments.

Dividing the equality in (4.39) into real and dual parts, we can see that
the angle and pitch of the camera screw and the robot end-effector screw

must be equal. This is known as the Screw Congruence Theorem, see

[Chen, 1991]. In the hand-eye calibration method of [Daniilidis, 1999],
this equality is used to rewrite the hand-eye equation using only the vec-

tor parts of q̌A and q̌B . Each motion of the robot and camera will provide

six linear equations in the unknowns qX and q
′
X , the real and dual parts

of the unknown hand-eye dual quaternion. A minimum of two motions to-

gether with the constraints from Eqs. (4.33)–(4.34) are generally enough
to solve for the eight unknowns. The solution is obtained by finding the

vectors spanning the null space of the linear system using SVD, and then

finding the particular linear combination which satisfies the unity condi-

tions (4.33)–(4.34), see [Daniilidis, 1999] for details.

Modeling and Assumptions. We assume a setup with a single camera,

viewing a stationary rigid object. The camera is attached to the hand

of a robot, as described by Fig. 4.5. The camera is modeled as a four

parameter pinhole camera as in Appendix A, where the parameters in

the camera model are assumed to be the focal length f , aspect ratio γ ,
and principal point coordinates u0, v0. The object geometry and the initial

rigid transformation between the object and the camera are assumed to
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Figure 4.7 Example of image with superimposed object model, where hidden ob-

ject edges have been removed.

be known. The object motion relative to the camera should be estimated,

together with the intrinsic camera parameters. The motion of the system

is assumed to be modeled as a nonlinear discrete-time dynamic system

xk+1 = f(xk) (4.40)

zk = Cxk (4.41)

yk = h(zk) (4.42)

with xk ∈ R
n the state of the system, zk ∈ R

8+nK containing the pose

expressed as a dual quaternion in addition to nK intrinsic camera pa-

rameters, and yk ∈ R
m a vector of measured outputs. The projection

function h relates the pose parameters to the output, as previously de-

scribed. As shown above, the state vector contains a parametrization of

the position/orientation of the tracked object given by q, q′ ∈ R
4. These

are the vector representations of the parameters of the dual quaternion

q̌ = q + εq′, which represents the rigid transformation A(t) in Fig. 4.5.
As before, the projection equation can be expressed on linearized form by

use of the image Jacobian for the dual quaternion parametrization. The

image Jacobian with respect to the pose and camera parameters

Jv(ẑk) =
�h

�z
(ẑk) (4.43)

can in this case be calculated directly by analytical differentiation of
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Eqs. (4.3)–(4.4) with respect to the elements of z. In order to express
the projection equation as a function of the dual quaternion parameters,

the rotation matrix can be calculated directly from the unit quaternion q,

and the translation vector can be obtained from q̌ as

t = 2q′q̄. (4.44)

Including the State Constraints. The Jacobian Jv in (4.43) con-
tains the differential relationship between the eight parameters of the

dual quaternion and the image-space error vector. Due to the constraint

that the dual quaternion should have unit norm, the two quadratic con-

straints (4.33)–(4.34) should also be included, thereby reducing the num-
ber of degrees of freedom to six. The price to pay for this reduction is that

special care is needed in order to handle the nonlinear constraints (4.33)–
(4.34). In contrast, inclusion of the hand-eye constraints from Eq. (4.39)
is considerably easier, and can be performed without approximation or

linearization. Consider the known dual quaternion q̌B , representing the

current measured pose of the robot hand relative to its initial pose. The

corresponding object-camera transformations are q̌(t0), corresponding to
the known initial pose, and q̌(t), which is the current pose to be tracked.
From the assumptions and Eq. (4.37), we know that the scalar parts of
q̌(t) ¯̌q(t0) and q̌B must be equal. Define the scalar part of q̌B as

q̌
(0)
B = q

(0)
B + εq

′(0)
B . (4.45)

The scalar part of q̌(t) ¯̌q(t0) can be seen from Eq. (4.32) to be

Sc
(
q̌(t) ¯̌q(t0)

)
= qT (t0)q(t) + ε(q′T (t0)q(t) + q

T (t0)q
′(t)), (4.46)

with the quaternions written on 4-vector form. Setting the scalar parts

equal provides two more linear equations in the states, given by

qT (t0)q(t) = q
(0)
B (4.47)

q′T (t0)q(t) + q
T (t0)q

′(t) = q
′(0)
B . (4.48)

The set of equations to be solved for the error Δzk can now be formulated
as

h(ẑk + Δzk) = yk (4.49)

a0Δzk = bk (4.50)

(ẑk + Δzk)
TQn(ẑk + Δzk) = 1. (4.51)
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where the matrices a0 and bk, containing the parameters of q̌(t0) and

q̌
(0)
B , represent the linear constraints of (4.47)–(4.48), and (4.51) corre-
spond to the quadratic norm constraints (4.33)–(4.34). The resulting equa-
tions (4.49)–(4.51) could either be solved directly, for instance by (itera-
tive) linearization as previously described, or be linearized and included
in a nonlinear estimator, such as an EKF. In either case, any number of

motion constraints of the type (4.50) could be added to the measurement
equation, with each measured q̌B providing two independent constraints.

This means that three known positions are sufficient to completely con-

strain the estimated pose. This can be compared to the problem of hand-

eye calibration, where two motions are necessary for the calculation of the

hand-eye transformation [Tsai and Lenz, 1989].

Dynamic Models for the State Estimation. We chose to investigate

two different versions of the function f in the state equation (4.40). First,
we assumed the dynamics

xk+1 = xk + εεεk, (4.52)

where εεεk was assumed to be an uncorrelated Gaussian noise sequence,

and where the state vector was

x =
(
q q′ f γ u0 v0

)T
. (4.53)

The second version was obtained by extending the state vector xk with

velocity �vk ∈ R
3 and angular velocity �ωk ∈ R

3 to second-order dynamics,

leading to the equations of motion

q̇ =
1

2
ωq =

1

2
(0, �ω)q (4.54)

q̇′ =
1

2
ṫq+

1

2
tq̇ =

1

2
vq+

1

4
tωq. (4.55)

By discretizing Eqs. (4.54) and (4.55) using sample time h, we obtained
the equation

⎛
⎜⎜⎜⎜⎜⎜⎝

qk+1

q′k+1

kk+1

�ωk+1

�vk+1

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

I 0 0 h
2
Qk 0

0 I 0 h
4
TkQk

h
2
Qk

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

qk

q′k

kk

�ωk

�vk

⎞
⎟⎟⎟⎟⎟⎟⎠ (4.56)
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where k = ( f ,γ ,u0,v0)
T
was a vector of intrinsic camera parameters, and

where the matrices

Qk =

⎛
⎜⎜⎜⎜⎝
−q1 −q2 −q3

q0 q3 −q2

−q3 q0 q1

q2 −q1 q0

⎞
⎟⎟⎟⎟⎠ (4.57)

and

Tk =

⎛
⎜⎜⎜⎜⎝
0 −tx −ty −tz

tx 0 −tz ty

ty tz 0 −tx

tz −ty tx 0

⎞
⎟⎟⎟⎟⎠ (4.58)

corresponded to the quaternion products with qk = (q0, q1, q2, q3) and
tk = (0, tx, ty, tz) = 2q

′
kq̄k in Eqs. (4.54) and (4.55). With noise, Eq. (4.56)

could be written as

xk+1 = Akxk + εεεk. (4.59)

The linearized system equations were used in an Extended Kalman Fil-

ter, together with the linearized measurement and constraint equations

obtained from (4.49)–(4.51). The constraint equations were linearized
around the predicted state, and included as (nearly) perfect measure-
ments.

Experiments

The edge-based tracking algorithm, based on an EKF for the system mod-

els described above, was evaluated in experiments using the image gen-

eration software described in Appendix A.4. The simulated camera was

mounted in an uncalibrated eye-in-hand configuration, viewing the sta-

tionary object. The object model consisted of a number of planar surfaces

connected at their edges, as shown in Fig. 4.7. At each time step, visible

object edges were selected using the BSP-tree algorithm and image edge

positions were measured.

A comparison study was performed to investigate the difference be-

tween estimators with and without the constraints of Eqs. (4.47)–(4.48).
The two cases are referred to as the constrained case and the uncon-

strained case, respectively.

Motion Tracking. Figures 4.8 and 4.9 show the results from a se-

quence, where tracking of the translation and orientation of the object

was performed. The difference between the constrained and the uncon-

strained methods are more clearly seen from Table 4.1, which shows the
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resulting estimation errors for a number of different cases. For Case 1

no extra noise was added to the measured output, apart from the natu-

rally occurring noise from the image processing. For Case 2 extra noise

δ ∈ N(0, 3) was added in order to investigate the effects of poor image
quality. Case 3 was the same as Case 1, but using the second-order dy-

namical model in Eq. (4.56) instead of the stationary model in Eq. (4.52).
Case 4 was the same as Case 2, but again using the model (4.56) instead of
model (4.52). The initial state covariance, P0, and state noise covariance,
Q, for Cases 1 and 2 were set to

P0 = diag(0.12 ⋅ 18, 50
2, 0.12, 402, 402)

Q = diag(0.12 ⋅ 18, 3
2, 0.012, 0.22, 0.22).

For Cases 3 and 4, the initial values were set to

P0 = diag(0.12 ⋅ 18, 50
2, 0.12, 402, 402,06)

Q = diag(08, 3
2, 0.012, 0.22, 0.22, 0.12 ⋅ 16).

The noise variance for the image measurements used in the EKF design

was set to E(δ 2k ) = I in Cases 1 and 3 and to E(δ
2
k ) = 9I in Cases 2 and 4.

As seen from Table 4.1, the variance of the estimation error was reduced

when using the constraints, due to the number of degrees of freedom being

effectively reduced to four.

The results from a simulation, where the focal length was varied lin-

early from 250 to 150 during the motion sequence, can be seen in Fig. 4.10.

Table 4.1 Comparison between the estimation errors obtained through con-

strained (C) and unconstrained (U) estimation, for the described four cases with
different dynamic models and measurement noise.

Case 1-C 1-U 2-C 2-U 3-C 4-C

Δθ z (○) 0.122 0.216 0.292 0.541 0.120 0.184

Δθ y (○) 0.317 0.313 0.529 0.632 0.335 0.346

Δθ x (○) 0.130 0.381 0.221 0.777 0.140 0.136

Δtx (mm) 2.105 3.406 2.434 3.310 2.456 2.086

Δty (mm) 2.390 2.093 2.322 2.878 2.456 1.867

Δtz (mm) 4.857 4.926 5.704 7.228 5.148 5.178

�Δθ� (○) 0.364 0.538 0.643 1.138 0.382 0.415

�Δt� (mm) 5.808 6.345 6.622 8.455 6.210 5.887
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Figure 4.8 Tracking of the orientation, illustrated using the Euler angles θ. The
diagram shows the real orientation (solid), estimated orientation using the con-
strained estimation (dashed), and estimated orientation without constraints (dot-
ted).

The figure illustrates the tracking of the varying focal length (due to
zoom), as well as the effect on the depth estimation. Using the constraints,
the average errors in the estimated focal length and z-position during the

motion sequence were reduced by more than 50%.

The use of the hand-eye constraints resulted in a small improvement

in the estimation of the parameters, even though the hand-eye transfor-

mation was unknown. Additionally, the extra constraints improved the

robustness of the tracking against other error sources, such as errors due

to the edge detector locking on to false edges. The system was also capa-

ble of performing a total calibration of all relevant parameters, based on

only rough initial values. The fact that accurate estimation of motion is

possible also during changes in the intrinsic parameters is an advantage

in vision-based control, since it allows the vision system to dynamically
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Figure 4.9 Tracking of the translation t. The diagram shows the real transla-

tion (solid), estimated translation using the constrained estimation (dashed), and
estimated translation without constraints (dotted).

change its field of view by zooming in and out, allowing a wider range of

motions.

Real World Experiments. Figure 4.11 shows the results of an experi-

ment using images from a Sony DFW-V300 640x480 pixels digital camera

mounted on an ABB Irb2000 industrial robot in an eye-in-hand config-

uration. The setup is shown in Fig. 4.6 and a camera image from the

experiment can be seen in Fig. 4.7. The top figures in Fig. 4.11 show the

estimated focal length and principal point, which should be compared to

the values f = 1020, u0 = 344 and v0 = 215 obtained from an accurate
off-line camera calibration. The lower figure shows the estimated position

of the camera, where the lines indicate the direction of the camera optical

axis.
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Figure 4.10 Experiment where the focal length f was varying between 250 and

150 during motion. True values are indicated by (dotted) lines, while estimated
values are shown as (solid) lines. The left two plots show the resulting depth (z-
motion) and focal length for the estimation without hand-eye constraints, and the
right two plots show the corresponding results for the constrained estimation.

4.3 Multi-Camera Tracking with Resource Constraints

If the purpose of the visual motion estimation is feedback control, the tim-

ing properties of the algorithm become important. For real-time control

applications in general, the importance of minimizing the input-output

latency—the delay from the reading of the sensors to the actuation of the

control output—is well-known. Unless compensated for, the input-output

latency will compromise the performance of the control system, even to

the point of causing instability. In most vision-based control systems the

latency is dominated by the time required for image processing and es-

timation. This delay is therefore important to minimize, by the use of

efficient algorithms as well as a proper choice of measurements.

Problem Formulation and State-of-the-Art. In many feature-based

tracking algorithms, the number and character of the measured features

are allowed to vary during the execution. The number of features used

at a given time can depend directly on the number of features available,

or be chosen freely by the algorithm itself. An example of the latter case
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Figure 4.11 Estimated focal length, principal point, and trajectory in the

real world experiment. A movie showing the camera motion can be found at

http://www.control.lth.se/database/publications/article.pike?artkey=ols07dis.

is the edge-based tracker described in Section 4.2, where any number

of edge searches can be performed along the edges of the object. This

class of visual tracking algorithms are examples of anytime algorithms or

imprecise computation algorithms [Henriksson, 2006]. In a visual tracking
context, the consequence is that the trade-off between computation time

and estimation accuracy may be influenced online, through some suitable

algorithm. As an example of a vision application, a schedulability problem

for a multi-camera system was treated in [Caccamo et al., 2000]. By using
several cameras with different settings and distance to the tracked target,

it was suggested that the likelihood of the object moving out of the tracking

region could be reduced. Another problem related to anytime algorithms,

is that of active search for suitable image measurements in [Davison,
2005]. Methods based on information theory were used to guide a vision
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system to the best point and edge features to measure, thereby tightly

integrating the pose estimation and the image processing.

In this section, we consider the problem of online resource allocation

for real-time tracking using several cameras. We consider the problem

of optimizing the accuracy of the estimation obtained from a system of

multiple cameras, given a maximum allowed computation time. This is

obtained by a proper choice of active cameras and distribution of the fea-

ture points between these cameras. The proposed algorithm is based on

the solution to a convex minimization problem, finding the optimal distri-

bution of image processing resources over a heuristically chosen subset of

all available cameras.

Estimation of Object Position and Orientation

We assume that M cameras are placed in fixed locations, viewing a target

object whose position and orientation with respect to some fixed (world)
coordinate system should be estimated. The pose is parametrized as an n-

vector z as in Section 4.2. The pose z and the image-space feature position

vector y are related by the projection equations of the cameras

y = h(z), (4.60)

in our case given by the homogeneous form pinhole camera projection

equations (4.3)–(4.4) for the cameras, which can be stacked to form the
projection equations for the multi-camera system. The measurement cor-

rection term Δzk at sample k is computed from the image-space errors

Δyk by

Δzk = J
†
v(ẑk�k−1)Δyk (4.61)

where ẑk�k−1 is the prediction from the previous sample, and the matrix

J†v = (JTv Jv)
−1JTv is the pseudo-inverse of the Jacobian Jv described in

Section 4.2. Since this work primarily concerns edge features, the modified

correction term becomes

Δzk = (N
TJv(ẑk�k−1))

†Δek = J
†
v,N(ẑk�k−1)Δek (4.62)

where Δek are the edge distance measurements, and N ∈ R
N�2N is a

sparse matrix of normal directions at the N different measurement points

along the edge, as illustrated in Fig. 4.1. When using edge features, there

is a significant freedom in how to choose which features to measure, since

any number of edge searches can be performed anywhere along any object

edge in each camera. Finding the ’best’ set of features to measure is a

very difficult problem, and some simplifying assumptions are needed in

order to solve the optimal feature selection problem in real-time.

103



Chapter 4. Feature-Based Visual Tracking and Force/Vision Control

Algorithm and Timing

The method for rigid body tracking from Section 4.2 was summarized

in Algorithm 4.1. The image pre-processing step involves all necessary

image conversions and spatial image filtering necessary for each camera.

Based on the previously predicted position, the errors in edge positions are

measured, and used together with the pre-calculated Jacobian to update

the state estimation according to the correction in Eq. (4.62). The position
for the next sample is predicted, and the predicted position is used to

determine where interesting image features will be visible in the next

sample. Visible features are determined, and a large number of search

points are divided between the cameras using the algorithm described

below, and placed along the predicted edges of the object. Finally, the

Jacobian for each camera is computed.

The total computation time required in each sample depends on the

number of cameras, M , and the total number of feature search points,

N. The time required for pre-processing all images is proportional to the

number of cameras used, whereas the total time for finding edges, placing

search points, updating the estimation and calculating the Jacobians, is

proportional to the total number of search points. The total time Ttot from

sampling the cameras until the new estimation is obtained can therefore

be modeled by the equation

Ttot = T0 + TcM + Tf N (4.63)

where T0 is a constant time required for image capture and image data

transfer. The values of the time coefficients depends on many factors, such

as camera sensor type and interface, camera shutter speed, platform, and

implementation.

The implications of the timing model are twofold. First, as the com-

putation time is deterministic, it can be compensated for by the control

algorithm. Second, the relation between Tc and Tf shows a potential of

gaining accuracy by switching off the processing of some cameras, thereby

allowing a larger total number of feature search points to be distributed

throughout the remaining active cameras. Assuming a desired computa-

tional delay Tcomp, and Mk active cameras at sample k, the number of

feature search points to distribute between the Mk cameras is given by

Nk =
Tcomp − To − TcMk

Tf
(4.64)

The delay Tcomp should be chosen in relation to the dynamics of the con-

trolled system and the closed-loop bandwidth. With a camera frame rate of

30 Hz, corresponding to a sample period of 0.033 s, simple rules-of-thumb
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Figure 4.12 Example of six images from the simulated cameras with wireframe

object superimposed, and search point locations indicated.

[Åström and Wittenmark, 1997] give that a realistic closed-loop bandwidth
should lie between 6 and 18 rad/s. A delay of 15 ms would in that case
correspond to a phase lag of 5–15 degrees, which can be compensated for

without too much performance degradation. Using the estimated camera

timing parameters in our implementation, Tcomp = 15 ms corresponds to
a total of 300 feature search points when using Mk = 6 active cameras,
and 800 points when using only one camera. Thus, depending on the com-

plexity of the scene and the dynamics of the control system, the relation

between computational delay and the number of feature search points can

be determined off-line.

Estimation Accuracy

In general, it is clear that the accuracy of the estimation will improve with

the number of image measurements N. The estimation error depends on

the current configuration and the distribution of the measurement errors

in a complicated way. However, when N is large, the estimation error has a

simpler, approximately Gaussian structure, as illustrated in Fig. 4.13. The

figure was generated by creating synthetic images of 1500 small motions

around a nominal position, and computing the errors in one rotational

degree of freedom for each motion. Apart from a small configuration-

dependent bias, caused by the image-processing, the non-biased Gaussian

approximation is accurate. Accordingly, by assuming that the errors on

the image measurements Δek are unbiased and can be modeled by Gaus-

sian, independent noise with variance σ 2, the covariance of the effective
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measurement error

ze = zk − ẑk�k−1 − Δzk (4.65)

can be approximated as in Section 4.2 by

E[zez
T
e ] = σ 2(JTv,NJv,N)

−1 = σ 2(

M∑
i=1

JTi Ji)
−1 (4.66)

where the Jacobian has been partitioned into M individual Jacobians for

each camera as JTv,N = [J
T
1 J

T
2 ⋅ ⋅ ⋅ JTM ]

T . The Jacobian for each camera is a

function of the current estimated position ẑ, and depends on the number

of search points Ni for that camera and their distribution in the image.

Empirically, it has been found that if search points are distributed evenly

along the visible edges of the object, the approximation

JTi Ji � NiΦi(ẑ) (4.67)

holds with good accuracy, where Φi is a positive semi-definite n� n ma-
trix independent of Ni. This is illustrated in Fig. 4.14, where the diagonal

elements of the resulting matrix JTJ have been plotted for different num-

bers N of features, evenly distributed along the edges of a cubic object.

Using (4.67) in (4.66) we get

E[zez
T
e ] = σ 2

(
M∑
i=1

NiΦi(ẑ)

)−1
(4.68)

which shows that the covariance of the measurement error is a function of

the number Ni of search points placed in each camera. As can be seen from

Eq. (4.68), the estimation error is also a function the estimated object po-
sition ẑ. In Eq. (4.68), the expression for the estimation accuracy has been
explicitly separated into the dependence on the number of search points

Ni, and the dependence on configuration dependant factors, as expressed

by the positive semi-definite matrices Φi(ẑ). For the single camera i, a
criterion for the accuracy that can be obtained is given by the smallest

eigenvalue λ(Φi) of Φi(ẑ), which should ideally be as large as possible.
In general, this is most likely to be true when many features of the ob-

ject are visible, and when the object is close to the camera. Conversely,

poorly conditioned situations occur when only part of the object is visi-

ble, or when the object is very far from the camera, when λ(Φi) becomes
small or zero. One example is when all visible image features lie on a

straight line, causing rotations of the object around this line to become

unobservable from the image feature data. Frequently, no single camera

provides sufficient information for a reliable estimate to be obtained, and

suitably chosen measurements from several cameras must be combined,

as described in the following sections.
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Figure 4.13 Histogram of the obtained effective measurement errors ze in one

degree of freedom, compared the histogram predicted by a Gaussian distribution

corresponding to Gaussian image measurement noise with a standard deviation of

1.35 pixels.

Resource Allocation

In addition to the requirements for tracking accuracy, cameras need to

be distributed to provide coverage of the entire workspace. Because of the

limited resolution and field of view of each camera, it is usually beneficial

to place the cameras so that each camera covers only a part of the avail-

able workspace. Some cameras may be positioned to cover a large part of

the workspace, providing rough information on the location of the object,

while other cameras cover only part of the workspace for a more accurate

localization. If the object is moving, different cameras will provide more

or less useful or accurate information at different times, depending on the

current object position.

In general, the most accurate estimation of the position is obtained

when using a subset of the available cameras. When timing is important,

for instance when the estimated position is to be used for feedback con-

trol, it would be an advantage to use only the ’best’ subset of cameras.

The reason is the extra processing time required for each camera due to

image pre-processing and other factors, giving less time for the feature ex-

traction and other operations. In addition, each edge detection takes time,
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Figure 4.14 Diagonal elements of the matrix JTJ as a function of N, with fea-

tures evenly distributed along the edges of cubic object. The approximately linear

dependence of the diagonal elements in the number of features N can be clearly

seen, and the linearity holds well also for the non-diagonal elements.

and therefore the edge search point should be distributed only among the

cameras in this ’optimal’ set {Ck}. Using the covariance of the estimation
error as a measure of the estimation accuracy, we see from Eq. (4.68) that
for a given estimated object position ẑ, we must choose the numbers of

feature search points Ni for each camera in the set {Ck} such that

E[zez
T
e ] = σ 2

⎛
⎝ ∑
i∈{Ck}

NiΦi(ẑ)

⎞
⎠−1

(4.69)

is minimized with respect to some criterion. In general, the covariance

decreases with increasing Ni, although finding the optimal camera set and

search point distribution from Eq. (4.69) is a non-trivial task. Heuristic
choices are possible—such as using the best individual camera or using

all cameras—but can be arbitrarily far from the optimum, or may not even

be feasible due to the timing constraints.
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Optimization Problem. The solution to the problem of achieving the

best possible measurement error covariance given a desired maximum

latency Ttot can be expressed as an optimization problem

minimize fo(r) = f̄o

⎛
⎜⎝
⎛
⎝ ∑
i∈{Ck}

riΦi

⎞
⎠−1

⎞
⎟⎠ (4.70)

subject to r ≥ 0 (4.71)

Tf1
Tr+ Tc1

Tθ(r) ≤ Ttot − T0 (4.72)

in the numbers r of feature points in each camera, where f̄o is a function

expressing the desired properties of the covariance matrix to be optimized.

θ(r) is the step function, defined element-wise by the property{
θ i(r) = 1, ri ≥ 0

θ i(r) = 0, ri < 0.
(4.73)

In the case when the function f̄o is the matrix 2-norm, the function

fo(r) =

∥∥∥∥∥∥∥
⎛
⎝ ∑
i∈{Ck}

riΦi)

⎞
⎠−1

∥∥∥∥∥∥∥ (4.74)

can be proved to be convex, that is, that for all x ≥ 0, y ≥ 0 and α ∈ [0, 1]
it holds that

fo(αx+ (1−α )y) ≤ α fo(x) + (1−α ) fo(y). (4.75)

The convexity can be proved by first defining the positive definite matrices

X =
∑
i∈{Ck}

xiΦi (4.76)

Y =
∑
i∈{Ck}

yiΦi (4.77)

which can be assumed to be positive definite. Then, the inequality in

Eq. (4.75) can be written∥∥∥(αX+ (1−α )Y))−1
∥∥∥ ≤ α

∥∥X−1∥∥+ (1−α )
∥∥Y−1∥∥ (4.78)
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and since for a positive definite matrix Z is holds that

∥∥Z−1∥∥ = 1

λ(Z)
(4.79)

with λ(Z) denoting the smallest eigenvalue of Z, Eq. (4.78) can be rewrit-
ten as the equivalent condition

λ (αX+ (1−α )Y)) ≥
1

α
λ(X) +

1−α
λ(Y)

=
λ(X)λ(Y)

α λ(Y) + (1−α )λ(X)
(4.80)

which can be proved by

λ (αX+ (1−α )Y)) ≥ α λ(X) + (1−α )λ(Y) =

=
(α λ(X) + (1−α )λ(Y))(α λ(Y) + (1−α )λ(X))

α λ(Y) + (1−α )λ(X)
=

=
α (1−α )(λ(X)2 + λ(Y)2 − 2λ(X)λ(Y)) + λ(X)λ(Y)

α λ(Y) + (1−α )λ(X)
=

=
α (1−α )(λ(X) − λ(Y))2 + λ(X)λ(Y)

α λ(Y) + (1−α )λ(X)
≥

≥
λ(X)λ(Y)

α λ(Y) + (1−α )λ(X)
. (4.81)

A small technical issue in the proof concerns the assumption of positive

definiteness of X and Y in Eq. (4.76)–(4.77), although each Φi is only
guaranteed to be positive semi-definite and xi ≥ 0. However, as long as
the camera set {Ck} is chosen such the full image Jacobian has full rank
(i.e., all motions can be observed from the image data), the problem can
be avoided by imposing the extra condition that xi ≥ xδ for all cameras
in {Ck}, for some small xδ > 0. The problem of finding such a set {Ck} of
cameras is discussed below.

Although the objective function fo(r) is convex, the presence of the non-
convex constraint function θ(r) makes the optimization problem given by
Eqs. (4.70)–(4.72) non-convex. A practical solution to the problem could
therefore be divided into two parts. In the first part, a suitable set of

active cameras is determined, based on the structure of the matrices Φi,
and knowledge of the individual image noise properties. When M is large,

a solution sufficiently close to the optimum can usually be found by only

considering active camera sets with a small number of cameras, which

sometimes makes it possible to find the active camera set by an exhaus-

tive search through all possible such combinations. An improved algorithm
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for finding the active camera set is described below. Once the set has been

found, the second problem corresponds to finding a distribution of features

between the cameras, which solves the resulting convex optimization prob-

lem. Since the camera set is given by the camera selection algorithm, the

exact value of the non-convex function θ(r) in Eq. (4.72) is known and can
be treated as a constant.

Algorithm for Real-Time Resource Allocation. Since timing is im-

portant, a fast algorithm for selecting a suitable camera set and fea-

ture distribution has been developed. The algorithm is outlined in Al-

gorithm 4.2.

ALGORITHM 4.2—REAL-TIME RESOURCE ALLOCATION

N_feat[N_cam] = number of edge detection points using N_cam cameras;

for i = all cameras

Φ[i] = transpose(J[i])*J[i]/N[i];

clear set sel of selected cameras and distribution of edge detection points;

set Φ_max = 0, best_val = inf, N_cam = 1, stop_flag = false;

while stop_flag == false {

for k = all cameras not in sel

find the α∈[0,1] minimizing new_val[k] = inv(α *Φ_max+(1-α )*Φ[k]);

set best_new_cam = the camera cam with smallest new_val[cam];

set best_new_ratio = the minimizing α for camera best_new_cam;

set Φ_new = best_new_ratio*Φ_max + (1-best_new_ratio)*Φ[best_new_cam];

if (inverse(N_feat[N_cam]*Φ_new) < best_val) {

add best_new_cam to sel;

redistribute edge detection points according to best_new_ratio;

set Φ_max = Φ_new, best_val = inv(N_feat[N_cam]*Φ_new);

set N_cam = N_cam + 1;

} else stop_flag = true;

}

Solve the convex optimization problem (4.70)–(4.72) for {Ck}=sel;

The algorithm updates the active set of cameras and the preliminary dis-

tribution of edge search points among the active cameras. This is done

by testing if it is possible to decrease the estimation error covariance by

adding a camera, and redistributing the search points between the cur-

rent active set and the added camera. If the covariance can be decreased4,

the active set and distributions are updated with the new camera, and the

4In the comparisons between covariance matrices, the criterion chosen for determining

which matrix is largest is the ordinary matrix 2-norm.
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algorithm tries to decrease the covariance iteratively by adding another

camera. If nothing can be gained by adding another camera to the ac-

tive camera set, the algorithm will find the final feature distribution by

solving the convex optimization problem in Eqs. (4.70)–(4.72). The opti-
mization is performed with {Ck} as the calculated active camera set, and
using the preliminary feature distribution as the starting point for the op-

timization. In practice, the preliminary active camera set and calculated

feature distribution from the camera selection algorithm can also be used

directly without the final optimization, which was the solution used in the

simulations.

The algorithm is very robust and easy to implement. It takes negligi-

ble time to execute, since all information about the relative accuracy of

the cameras is compressed into the small n � n-matrices Φi. Due to the
sub-optimal selection algorithm for the active camera set, the algorithm

is not guaranteed to achieve the optimal covariance. However, in the ma-

jority of cases it will find a small subset of cameras which results in a

significantly lower covariance than for the heuristic choices, as seen from

the experiments.

Simulations

The algorithm is evaluated in simulations using six cameras, using the

image generation software described in Appendix A.4. The object being

tracked is a textured box, which is moved around in front of a textured

background. Fig. 4.12 shows example images taken from an experiment

sequence. We have assumed the timing model of Eq. (4.63), the sampling
period h = 33 ms and a maximum desired control delay Tcomp = 15 ms.

Tracking Accuracy. The tracking accuracy using a stationary target

was evaluated by measuring the estimation error variance for different

image sequences, taken from different camera positions. Three different

algorithms for resource allocation between the cameras were investigated.

1. Choosing the best single camera, i.e., the camera i for which λ(Φi)
is largest.

2. Using all cameras, with an equal distribution of edge search points.

3. Choosing the best set of cameras, using the algorithm in Fig. 4.2.

The accuracy was measured for image sequences taken with several

different camera configurations as given by Table 4.2. The resulting stan-

dard deviations for the error in the estimated orientation and translation

is shown in Table 4.3. The estimation using the single-camera method did

not converge for Sequence 2, since the problem became very poorly con-

ditioned for any choice of a single camera. In Sequence 1, the minimum
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Figure 4.15 Simultaneous resource-optimal tracking of tool and workpiece,

using two Sony DFW-V300 and one Basler A602fc digital cameras. A

movie showing the motion, selected cameras, and features can be found at

http://www.control.lth.se/database/publications/article.pike?artkey=ols07dis.

translation error was obtained by using all cameras, but the price was a

significantly larger orientation error.

The algorithm was also tested in real-time on real image data from

three cameras, as seen in Fig. 4.15. Despite a somewhat cluttered scene

with multiple parallel edges, the tracking is successful.

Control Performance. The visual feedback was applied in a feedback

control setting, where the textured box was controlled one-dimensionally

along the y coordinate axis. The estimated y-position was used as feedback

information to the controller. The simulated dynamics was described by a

second order system, which after discretization with the sampling interval

Table 4.2 Camera configurations, with each row corresponding to one numbered

scenario. Shown are the distances z (in mm unless otherwise indicated) from camera
to target, and the rough percentage (%) of the object which was visible in each of
the six cameras.

# Camera 1 Camera 2 Camera 3 Camera 4 Camera 5 Camera 6

z % z % z % z % z % z %

1 840 100 840 100 880 100 890 100 870 100 910 100

2 320 20 4 m 100 4 m 100 445 20 5 m 100 4 m 100

3 510 100 4 m 100 5 m 100 500 0 6 m 100 7 m 100

4 550 30 360 10 330 5 450 10 380 5 280 5

5 600 100 600 100 400 0 600 100 1 m 0 1 m 0

6 650 100 280 30 450 0 700 0 900 0 940 0

7 300 30 330 35 500 70 700 0 1 m 0 1 m 0

8 400 30 350 30 280 20 400 40 370 15 300 25
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h = 33 ms was given by

xk+1 =

[
1 0.033

0 0.97

]
xk +

[
0.55

32.8

]
uk

zk = [ 1 0 ]xk

(4.82)

The controller was an LQG-controller, designed to maximize a continuous-

time cost function

J(u) =

∫ ∞

0

(
[xT (t) uT (t) ]Q

[
x(t)

u(t)

])
dt (4.83)

with

Q =

⎡
⎢⎣ 100 0 0

0 0.1 0

0 0 0.001

⎤
⎥⎦ (4.84)

As seen by the process model in Eq. (4.82), only the first state was mea-
surable. Therefore a Kalman filter was designed to reconstruct the state

vector. The state and output noise variances used in the design of the

Kalman filter were chosen asR1 = 10I andR2 = 0.01. The real-time simu-
lations of the control system were performed in MATLAB/Simulink using
the TrueTime simulator [Henriksson et al., 2002]. This simulator allows
for co-simulation of continuous plant dynamics and discrete controllers

Table 4.3 Tracking error standard deviations, orientation and translation, when

using the best single camera, all cameras and the best selection of cameras, respec-

tively.

# Orientation error [○] Translation error [mm]

Single All cam. Best sel. Single All cam. Best sel.

1 0.18 0.36 0.18 0.75 0.49 0.68

2 ∞ 0.49 0.17 ∞ 0.37 0.25

3 0.12 1.23 0.10 0.26 1.64 0.21

4 0.22 0.20 0.16 0.97 0.28 0.26

5 0.12 0.29 0.10 0.35 0.36 0.31

6 0.14 0.20 0.08 0.36 0.46 0.17

7 0.22 0.25 0.07 1.10 0.28 0.16

8 0.08 0.09 0.05 0.24 0.14 0.12
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Figure 4.16 Control signal using the three different tracking algorithms in sce-

nario #6 of Table 4.2.

implemented as tasks in a computer. The controller was implemented as

a periodic task with the sampling interval 33 ms. In the beginning of the

sample, only the images from the cameras in the active set were read

and processed. The position estimate was then fed into the LQG-control

algorithm, after which the computed control signal was actuated. A simu-

lation corresponding to the configuration on scenario #6 in Table 4.2 was

performed, and the objective of the control was steady-state regulation of

the position around z = 0, with no external load disturbances. Simulation
results are shown in Figs. 4.16–4.17, showing the control signal and the

controlled position. It is seen that the suggested resource allocation algo-

rithm results in better control performance than the heuristic choices for

this scenario. Similar results were obtained for other scenarios, although
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Figure 4.17 The controlled output using the three different tracking algorithms

in scenario #6 of Table 4.2.

in certain scenarios one of the heuristic methods came close to the perfor-

mance of the resource allocation, as indicated by the tracking accuracies

in Table 4.3.

Discussion. As can be seen from Table 4.3, the proposed method for

choosing the best camera set works well for all camera configurations in

Table 4.2. The heuristic selection of the best single camera works well in

situations where we can find a single camera that gives sufficient infor-

mation, but will fail in many common configurations such as the one in

Sequence 2. Using all cameras works well in many situations, but this is

rarely necessary and it may not even be feasible if there are a large num-

ber of available cameras. The best selection algorithm will find a small

camera set, typically consisting of 1–3 cameras, that will give sufficient

information to accurately and robustly estimate the position and orienta-
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tion.

The assumed model of the image noise as independent and Gaussian

is usually not realistic, since there is a spatial correlation between the

measurements, particularly for large Ni when the distance between search

points will be small. In addition, outliers are an inevitable result of the

image processing, and should be removed or re-weighted as discussed in

Section 4.2. Other approximations involve the timing model in Eq. (4.63)
and the approximation of the covariance given from Eq. (4.67). Despite
the presence of such phenomena, the resource allocation algorithm will

still generally outperform the heuristic methods.

4.4 Position-Based Force/Vision Control

By combining a version of the force controller described in Section 3.4

with feedback from the motion tracker in Section 4.2, a straightforward

way to implement a force/vision control was obtained. The block diagram
for the system under force/vision control was shown in Fig. 4.18. The
desired trajectory of the tool was defined relative to the target object,

whose position was estimated from the image data. The velocity-controlled

robot system from Chapter 3 was controlled using the hybrid control law

vc = SvL(xr − x̂) + S f [0 I ]xI , (4.85)

where vc was the Cartesian velocity reference to the built-in robot motion

control. Sv and S f were selection matrices for the force/vision control,
whose diagonal elements were set to 1 or 0. The state feedback L for the

reference following was designed as a stationary LQ controller. The force

controller dynamics were given by

dxI

dt
=

[
0 I

0 −M−1
I DI

]
xI +

[
0

M−1
I

]
S f (f− fr) =

= FIxI +GIS f (f − fr), (4.86)

with MI and DI the desired inertia and damping matrices. The state

estimate x̂ from the visual tracker was based on edge measurements and

a discretized decoupled dynamic model with system matrices

F =

[
0 I

0 −ωI

]
, G =

[
0

ωI

]
, C = [ I 0 ] . (4.87)

The estimator was designed as a Kalman filter, using a noise covariance

matrix of the form given by Eq. (4.22), with σ = 1 pixel.
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Figure 4.18 Block diagram showing the structure of the combined force/vision
control system. Inputs were the reference signals Δxr and fr and the noises εεεy and

εεε f . The motion of the target was estimated using a nonlinear least-squares estimator.

Experiments were performed using an ABB Irb2400 industrial robot

equipped with a rolling tool, in contact with a metal box with dimensions

40 � 40 � 10 cm. Experiments were first performed using only two Sony
DFW-V300 digital cameras, and later repeated with an additional cam-

era. The setup used was nearly identical to the experimental setup in

Section 4.3, illustrated in Fig. 4.15. In the experiments, the visual tracker

was sampled and executed at 33 ms, while the force controller in Eq. (4.86)
was discretized at a sampling period of 4 ms. The force controller was exe-

cuted on the external PowerPC G4 processor described in Chapter 3. The

image processing, and calculation and inversion of the image Jacobian

were handled by a separate 2 GHz Pentium 4 computer, which communi-

cated with the controller on the PowerPC using standard Ethernet. The

BSP tree hidden-line removal technique was used to predict locations of

visible edges in the next set of images, using an object model consisting

of a number of planar surfaces connected at their edges.
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Figure 4.19 Measured contact force during vision-guided force control. The force

reference was first changed from 15 N to 25 N in the x-direction, and finally to 15

N in the negative y-direction.

In the experiments, the robot made stable contact with the workpiece

under vision-guided impedance control. When contact had been estab-

lished, the system was switched to force/vision control where the tool was
programmed to move across the surface with a speed of 10 mm/s. The
resulting contact force can be seen in Fig. 4.19. At time t = 3 s the force
reference was immediately changed from 15 N to 25 N in the x-direction of

the tool. At time t = 17 s the tool reached the corner in the workpiece, and
the force reference changed to 15 N in the negative y-direction. The com-

bined stiffness of the robot and surface was approximately 10 N/mm, and
the controller parameters were chosen as MI = 0.1, DI = 1.5 and KI = 0.
Fig. 4.20 shows the estimated position of the tool in the target frame,

and Fig. 4.21 shows the corresponding estimated velocities. The system

was able to follow low-speed trajectories with an accuracy of around 1

mm, while accurately controlling the contact force. The force controller

achieved force tracking with rise times faster than 0.2 s, which meant

that the force controller could quickly compensate for deviations from the

nominal geometry.
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Figure 4.20 Estimated tool position (solid) and reference trajectory (dashed) dur-
ing vision-guided force control.

4.5 Image-Based Force/Vision Control

When removing the pose estimation step, and instead closing the feed-

back loop from the image features directly, an image-based force/vision
approach results. To this purpose, we assume a dynamic model for a

velocity-controlled robot

ż = f(u) (4.88)

y = h (z) + εεε (4.89)

where z is a parametrization of the robot end-effector position, u is a vector

of the desired translational and angular velocity (a velocity screw), and
y is a vector of image feature measurements. In an image-based visual

servo, the control error is defined directly in image space as yr−y, where
yr is the desired position of the image features. A simple control law that

would drive y→ yr is given by

u = kvJ f (z)
†(yr − y), (4.90)

where kv is a constant gain, and J f (z)
† is the pseudo-inverse of the stereo
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Figure 4.21 Estimated tool velocity during vision-guided force control, with re-

spect to the target frame.

image Jacobian computed from Eq. (4.6). This Jacobian relates the image-
space velocities ẏ to the corresponding end-effector velocity in Cartesian

space

ẏ = J f (z)u. (4.91)

From the form of Eq. (4.6) it can be seen that the image Jacobian is a
function of the Cartesian coordinates z, or more specifically the depth of

each point in the camera. The depth information could be obtained from

the stereo images. Some care needs to be taken however, as there are situ-

ations where the robustness to depth estimation errors becomes extremely

poor [Malis and Rives, 2003]. When using stereo (or multiple) cameras,
the combined Jacobian for the stereo system is obtained by stacking the

Jacobians for the individual cameras [Martinet and Cervera, 2001]

J f (z) =

[
J
(l)
f (z)Mbl

J
(r)
f (z)Mbr

]
(4.92)

where Mbl and Mbr are the transformation matrices for the velocity screw

to the respective camera coordinate systems, and J
(l)
f (z) and J

(r)
f (z) are

the Jacobians for the left and right cameras. The screw transformation

matrix for the cameras is given by

Mbi =

[
Rbi [tbi]�Rbi

03�3 Rbi

]
, i ∈ {l, r} (4.93)
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Figure 4.22 Pen trajectories in the image planes, during the approach and draw-

ing phases.

where rotation and translation Rbi and tbi represent the pose of camera

i in world coordinates, and [⋅]� denotes the skew-symmetric matrix corre-
sponding to the cross-product.

Example—Vision-Guided Drawing

As an example of image-based force/vision control, a simple and illustra-
tive task was chosen. Two objects were placed in the field of view of both

cameras, a pen and a white-board. The exact position and orientation of

the objects were unknown. On the white-board, a number of dots were

drawn in random positions. The objective of the control was to align the

end-effector with the pen and grasp it, and use it to connect the dots on

the white-board with lines as in Fig. 4.22. The force control was designed

to keep the contact force constant during the drawing phase. A propor-

tional force controller in the z-direction was combined with a 3-DoF visual

servoing controller for translation only, into the hybrid control law

u =

[
02�1

1

]
kF(Fr − F) + kvP [J f (z)P]

† (yr − y) (4.94)

where the matrix

P =

⎡
⎢⎣ 1 0

0 1

p1 p2

⎤
⎥⎦ (4.95)

depends on the constraint plane represented by the board. The parameters

p1 and p2 were estimated online from sensor data using a recursive least-

squares method, as described in [Olsson et al., 2002].
The experimental system consisted of a 6-DoF ABB Irb 2000 robot

equipped with a 6-DoF JR3 force/torque sensor, and two Sony DFW-V300
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Figure 4.23 Measured force F and reference Fr = 2 N during the vision/force-
controlled drawing experiment.

digital cameras working at a frame rate of 30 images/second. The cameras
sent image data through a 400 Mbit/s IEEE-1394 connection to a stan-
dard 450 Mhz Windows PC where the image processing was performed.

The feature point locations extracted were then sent to a Sun Ultra60

workstation running a Matlab/Simulink version of the force/vision con-
troller. The sampling period of the controller was 67 ms. The low-level

joint position control was handled by an open robot control system de-

scribed in [Nilsson, 1996], which obtained its motion references from the
Matlab/Simulink controller.
In Fig. 4.23 the measured force in the force-controlled direction can

be seen. The force control was switched on at t = 5.3 s, and contact was
achieved at t = 5.5 s. The total stiffness of the board and pen in the
experiment were 400 N/m. The disturbance at t < 3 s was caused by
the inertial forces during the acceleration in the approach phase. The

measured trajectory of the tip of the pen in Cartesian space can be seen

in Fig. 4.24, and the corresponding image-space trajectories in Fig. 4.22.
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Figure 4.24 Trajectory of the pen during the approach and drawing phases, as

shown in in Cartesian space.

4.6 Summary and Concluding Remarks

In this chapter, basic visual pose estimation and motion tracking algo-

rithms were presented. Real-time rigid body tracking with simultane-

ous tracking of intrinsic parameters was demonstrated, in which a dual

quaternion parametrization and linear hand-eye constraints help to re-

duce the tracking error. An extension to multi-camera visual tracking

was presented, which aims at achieving optimal accuracy of the estimate

given a maximum computation time, by distribution of image processing

resources over the available cameras. Further, two approaches to position-

based and image-based force/vision control were presented. Experiments
with 6-DoF position-based force/vision control and 3-DoF image-based
vision-guided drawing were used to validate the approaches.

For the problem of multi-camera based feedback control, it is shown

how the covariance of the position estimation error depends on the set of

cameras used, and the number of feature search points in each camera im-

age. These parameters in turn affect the timing properties of the tracking

algorithm. An experimentally verified timing model was used to quantify

the relation between the number of active cameras and the number of

possible features. Using this timing model, it was possible to distribute
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image processing resources between cameras to obtain a nearly constant

input-output latency of the control loop, which could then be compensated

for by the controller. The objective of the resource allocation algorithm

was to minimize the variance of the position estimate within the time

specified by this desired input-output latency. Real-time simulations were

performed in order to demonstrate the effectiveness of the algorithm.

The most important drawback of the edge-based tracker is the diffi-

culty in distinguishing the object edges from nearby parallel edges on the

object itself or in the background. Particle filters, such as the well known

CONDENSATION algorithm [Isard and Blake, 1998], have proved to be ef-
fective in cluttered scenes, due to their ability to incorporate multi-modal

probability distributions. However, the effectiveness of particle filters are

strongly dependant on the accuracy of the dynamic model. For tracking

of motions with several degrees of freedom, real-time implementation of

particle filters is problematic, because of the large number of particles re-

quired. Alternatively, combining several different types of features—such

as edges and point features—may improve robustness considerably [Ros-
ten and Drummond, 2005; Pressigout and Marchand, 2005; Kyrki and

Kragic, 2006]. Another method for combining different image measure-
ments will be presented in Chapter 5.
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5

Intensity-Based
High-Speed Tracking
and Control

5.1 Introduction

As in the feature-based method of the previous chapter, the research field

of dynamic vision is concerned with computer vision for analysis of dy-

namic scenes. The term dynamic in this context is often taken to mean

changing, as when the scene in question contains moving objects, observed

from an image sequence. Although many researchers have attempted to

improve robustness and performance of vision systems by exploiting dy-

namic models for this motion, such as the pioneering work of [Dickmanns,
1988] on dynamic vision for control of autonomous vehicles, many methods
referred to as dynamic vision do not make full use of such models. From

the point of view of control theory, the dynamic models are of course of

central importance. The properties of the feedback depend strongly on the

dynamics of the system, as well as on the dynamics of the system model

used for estimation of the controlled motion. In particular, dynamic mod-

els are important for the performance of high-speed vision systems, where

cameras are used to measure and estimate high-speed dynamic phenom-

ena such as robot motion.

In a state-space formulation, the majority of all solutions to dynam-

ical visual tracking and feedback problems share a common structure.
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Assuming a nonlinear system

⎧⎪⎨
⎪⎩
ẋ = f(x) + g(u)

z = Cx

Δy = h(z̃,z),

(5.1)

where Δy are the image-space errors between predictions and measure-

ments, the estimation of the state x is handled by including a correction

term in the estimator. The correction term is a function of the measured

error z̃ between the true and the predicted workspace positions, and the

estimator1 becomes
˙̂x = f(x̂) + g(u) + k(z̃, t), (5.2)

where the nonlinear and possible time-varying function k(z̃, t) is a func-
tion of the error z̃ = z− ẑ. As this error is not directly measurable, it must
be approximated from the image-space error Δy. Classical solutions, as

described in Chapter 4, are based on modular structures with pose es-

timation and output injection. In such structures, the function k(z̃, t) is
composed of a pose estimation, which can be seen as inverting the function

h to obtain z̃, and a time-varying (often linear) function of z̃ to inject the
system with the desired error dynamics. Similarly, many visual feedback

techniques use a control law of the form

u = l(z̃, t) (5.3)

with the control error z̃ = z− zr. In position-based methods, the function
l is again composed of a pose estimation and a control law expressed as a

function of z̃. In addition to the explicitly modular estimation and control

approaches, in many methods an implicit pose estimation or linearization

of the projection function h is performed. Examples are the inverse Jaco-

bian control laws of image-based visual servoing, and the linearization of

the projection equation used in an EKF, as described in Chapter 4.

A radically different approach is to exclude the pose estimation step,

and instead include the structure of the function h directly in the feedback

or correction term. In principle, by composition with a function K, it would

be possible to synthesize a correction/feedback term k(z̃, t) or l(z̃, t) of the
form

k(z̃, t) = K(h(z̃,z)), (5.4)

1Given the sampled-data nature of image data, the estimators are almost always im-

plemented in discrete time. However, as the work in this chapter is focused on high-speed

algorithms, we will assume that the sampling rates are sufficiently fast to make the sampled-

data systems possible to approximate by continuous-time models.
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designed to satisfy the desired properties with respect to stability and

disturbance sensitivity. Then, the correction term in Eq. (5.2) or the feed-
back in Eq. (5.3) could be computed directly from the image-space errors
as K(Δy). The solution to the problem of how to best design the function
K in Eq. (5.4), however, is not obvious in the general case. Instead, it de-
pends on the type of image measurements, and thereby on the structure

of the function h.

Problem Formulation and State-of-the-Art. The class of intensity-

based visual tracking algorithms, where no explicit geometric feature ex-

traction step is performed, represents one of the traditional methods for

visual tracking. One early example is the image registration (or optical
flow) method of [Lucas and Kanade, 1981], which used the image intensity
gradients directly to update a position estimate by (local) least-squares op-
timization. More recently, other intensity/color-based methods have been
developed for object tracking, such as themean shift tracker of [Comaniciu
et al., 2000]. In this chapter we are considering the general class of meth-
ods represented by the works of [Gleicher, 1997; Hager and Belhumeur,
1998; Jurie and Dhome, 2001; Malis and Benhimane, 2006]. Such meth-
ods are also very closely related to the active blobs approach of [Sclaroff
and Isidoro, 2003] and the active appearance model described in [Cootes
et al., 2001]. The common factor in all such methods is that they attempt
to minimize, with respect to a number of configuration parameters, the

difference between the intensities in some part of the current image and a

stored reference image. This approach has been frequently used in visual

tracking and the closely related field of image registration, using differ-

ent optimization methods and expressions of the relationship between the

intensities and the configuration parameters.

In [Hager and Belhumeur, 1998], it was suggested to (locally) linearize
the relationship between task space motions and the corresponding inten-

sity variations, through a numerical Jacobian computation. The lineariza-

tion was used to find the position in each image using least-squares opti-

mization. In order to avoid time-consuming online computation of the im-

age gradients, the Jacobian was decomposed into a product of a constant

matrix of image gradients at the linearization point, and a configuration-

dependent matrix accounting for the image deformation caused by the

motion. Illumination variations were modeled by a reduced-order model

for illumination of Lambertian surfaces, where the basis functions of the

illumination model were computed off-line from training data. However,

direct linearization based on the image gradients is not applicable for

tracking of fast motions, since the linear approximation will only be accu-

rate in a very narrow region around the linearization point. Higher-order

approximations, such as the second-order optimization of [Malis and Ben-
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himane, 2006], have been proposed as a way to extend this region, but are
unable to extend beyond local convergence.

A very interesting solution to this problem, especially in light of (5.4),
is given by the methods of [Gleicher, 1997; Jurie and Dhome, 2001]. In
[Gleicher, 1997], it was suggested to generate the correction term from
a decomposition of the measured intensity error into a sum of differ-

ence templates (basis functions). The relation of these templates to the
configuration error could be computed off-line. The number of difference

templates was implicitly assumed to be “small”, although it was pointed

out that the number of templates (and thereby the computational com-
plexity) could be increased in order to improve the approximation. As an
extension to the method of difference templates, the paper by [Jurie and
Dhome, 2001] showed that the performance and region of attraction of the
optimization could be increased significantly by using a larger number

of templates, and computing off-line a least-squares optimal gain matrix

from the intensity error to the applied correction term. This corresponds

to composition with a linear function in Eq. (5.4). Real-time tracking of
the full pose of a rigid object was demonstrated, using a model-based pose

estimation technique for compensation of the image deformations caused

by the perspective effects.

A major advantage of the approaches of [Gleicher, 1997; Jurie and
Dhome, 2001] is that the complex relationship between motion and in-
tensity variations can be compressed off-line into a comparatively small

matrix. The online computations are then essentially reduced to a matrix

multiplication performed at each sample. This, in combination with the

very fast direct measurements of image intensities, makes the algorithm

possible to run at extremely high frame rates. The purpose of this chapter

is to generalize and formalize the above mentioned methods of intensity-

based tracking. While the focus of previous work has been on achieving

optimal approximation quality for an accurate (static) pose estimation in
each time step, the methods in this chapter are focused on problems rel-

evant for dynamic tracking and feedback. In principle, this is achieved

by designing the function K in Eq. (5.4) to give the resulting dynamic
system the desired properties with respect to stability, performance and

disturbance sensitivity. The capabilities of the methods are illustrated in

experiments with 6-DoF tracking and high-speed planar visual servoing at

250 Hz frame rate. Another application of high-speed vision is force/vision
control in situations where the most important dynamics is the dynamics

of the environment itself. In the final example, methods for force/vision
control of a rigid manipulator interacting with a compliant and poorly

damped environment are presented, and illustrated in simulations.
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Modeling and Basic Intensity-Based Tracking

In visual tracking, a general form of the motion dynamics is given by a

nonlinear system of differential equations as in Eq. (5.1). Although the
methods of this chapter are applicable for a broader class of systems, we

will assume that the motion is governed by a linear dynamical system of

the form

ẋ = Ax+Bu (5.5)

z = Cx (5.6)

where the position z represents the current pose or general configuration

of the target in some well-defined coordinate system. In the following, for

a given object point X these coordinates will be assumed to be related to

the camera image coordinates i by a known transformation

i = f(z,X), (5.7)

which could, for instance, represent the projection equation of a pinhole

camera. Further, we define a set of N object points X o = {X1,X2, ⋅ ⋅ ⋅ ,XN},
located on the visible parts of the object surface. Assume a time-varying

intensity image I (i,z), where the dependence of the image intensity on
the object position has been made explicit. Then, the vector of measured

image intensities in these points at time t is given by

I(z, ẑ) = [I (f(ẑ,X1),z) , ⋅ ⋅ ⋅ , I (f(ẑ,XN),z)] (5.8)

where I(z, ẑ) ∈ R
ncN with nc denoting the number of image data chan-

nels. The objective is to recursively update the current state and position

estimate, based on a reference vector I(z0,z0) computed with the object
in a known initial position z0 = z(t0) at time t0, and I(z(t), ẑ) measured
at the estimated position ẑ in the current image.

Previous Approaches. In the previous work of [Gleicher, 1997; Hager
and Belhumeur, 1998; Jurie and Dhome, 2001], the dynamics generat-
ing the motion were not considered explicitly, and the tracking was ex-

pressed in discrete time as iterative corrections to the position estimate.

In [Hager and Belhumeur, 1998], the corrections were generated by using
a linearized representation of the relationship between motion and the

corresponding change in the image intensity at a number of points in the

image. By Taylor expansion it can be found that for a small position error

z̃ = z(t + h) − ẑ(t) and sampling interval h, it holds that

I(z(t + h),z(t+ h)) = I(z(t), ẑ(t)) + Iẑ(z(t), ẑ(t))z̃+ It(z(t), ẑ(t))h+

+ h.o.t. (5.9)
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where Iẑ and It denote partial derivatives of I with respect to estimated

position and time, respectively. In order to reduce this expression further,

three assumptions are necessary:

1. It(z(t), ẑ)h = I(z(t+ h), ẑ) − I(z(t), ẑ)

2. I(z(t+ h),z(t+ h)) = I(z0,z0)

3. The higher order terms can be neglected.

The first assumption is reasonable as long as the sampling time h is short,

which is the case in the high-speed vision applications considered in this

chapter. The second assumption expresses the so called image brightness

constancy assumption, which is in practice only satisfied approximately

due to effects such as specular (direction-dependant) reflections and time-
variation of light source intensities. Due to the linearization, as expressed

by Iẑ, the third assumption is unfortunately only approximately valid for

small z̃, and extending the approximation to hold in larger regions of the

state space is necessary if tracking of high-speed motion is desired. Still,

given the assumptions it is possible to rewrite Eq. (5.9) as

I(z0,z0) − I(z(t+ h), ẑ(t)) = Iẑ(z(t), ẑ(t))z̃ (5.10)

which represents a linear relationship between the position error z̃ and

the intensity difference, i.e. the difference between the stored reference

intensity vector measured at the initial position z0, and the measured

intensity given by I(z(t + h), ẑ(t)). The numerically computed Jacobian
matrix Iẑ(z(t), ẑ(t)) could be used directly to update the current position
estimate as in [Hager and Belhumeur, 1998]

ẑ(t+ h) = ẑ(t) + I†ẑ(z(t), ẑ(t))h(z̃,z(t+ h)) (5.11)

where in accordance with Eq. (5.1) we have defined h and the output error
Δy according to

Δy = h(z̃,z) = I(z,z) − I(z,z − z̃︸ ︷︷ ︸
ẑ

) = I(z0,z0) − I(z,z− z̃). (5.12)

The accuracy and the region of convergence when using the linear ap-

proximation are strongly dependant on the shape and texture of the object

around the points of measurement. Using the update equation (5.11) and

denoting I†ẑ = Kh, a nonlinear error term

Δ(z̃,z) = z̃−Khh(z̃,z) (5.13)
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is introduced, for which bounds can usually not be given due to the complex

and irregular form of the texture dependency. In [Gleicher, 1997; Jurie
and Dhome, 2001], it was proposed to directly estimate a matrix Kh to be

used instead of I†ẑ in Eq. (5.11), a technique referred to as a hyperplane
representation in [Jurie and Dhome, 2001] or a difference decomposition
in [Gleicher, 1997]. The matrix Kh was chosen such that it minimized the
differences

Δ(z̃i,z0) = z̃i −Khh(z̃i,z0) (5.14)

in the least-squares sense for some set of training data, consisting of a

number of motions z̃i = z0 − ẑi and the corresponding measured inten-
sity changes Δyi = h(z̃i,z0) around some linearization position z0. It is
important to note that no physical motions of the object need to be per-

formed in the linearization, since the intensity changes for a number of

different estimated positions ẑi can be calculated from a single image. If

the training data matrices are defined as

Z = [ z̃1 z̃2 ⋅ ⋅ ⋅ z̃Nm ] (5.15)

and

Y = [Δy1 Δy2 ⋅ ⋅ ⋅ ΔyNm ] (5.16)

where Nm > N is the number of sample perturbations in the training set,
Kh could be found by taking

Kh = ZY
T (YYT )−1. (5.17)

As h is a function of z, the matrix Kh will depend on the choice of lin-

earization position z0, and the relationship z̃ = KhΔy can therefore only be

guaranteed to provide a good approximation for motions around z0. Rather

than recomputing Kh at each new position using the time-consuming

computations involved in Eq. (5.17), it is possible to compensate for the
changes in configuration and viewpoint by pose estimation techniques

[Jurie and Dhome, 2001]. In [Hager and Belhumeur, 1998], the Jacobian
Iẑ is updated using a decomposition into configuration-independent and

configuration-dependent factors. Another related technique for updating

Kh will be presented later in this chapter.

Graphical Illustration

The multiplication of the measured intensity errors at N points with a

matrix Kh represents a linear combination (in each degree of freedom) of
N highly nonlinear functions

hj(z̃)
def.
= I (f(z0,X j),z0) − I (f(z0 − z̃,X j),z0) (5.18)
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Figure 5.1 A total of N = 10 functions hj (dashed lines) and the linear combina-
tion (solid line) of these N functions, corresponding to the least-squares solution of
Eq. (5.17).

of z̃, where each function hj corresponds to one element of the vector-

valued function h(z̃,z0). The linearization corresponds to finding the lin-
ear combination which “best” approximates the linear function z̃ inside

the relevant region, according to a chosen criterion. In the previously

described solution, a least-squares criterion was used. In this approxima-

tion problem, the basis functions hj are sampled at Nm points through

the creation of the training data set. If we have exactly N = Nm (linearly
independent) basis functions, the obtained approximation will be exact (at
the sampling points). If N > Nm, extra conditions on Kh must be added
in order to obtain a unique solution to the least-squares problem, such as

minimum norm. For most practical cases we will have N < Nm, and the
obtained solution will only be approximate at the sampling points. As N

increases, more basis functions will become available, and the approxima-

tion error converges to zero.

The approximation of a linear function is illustrated in Fig. 5.1, which

shows N = 10 nonlinear functions hj and the “optimal” z̃-approximating
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Figure 5.2 Approximations for different numbers of intensity measurement points

N, with fixed Nm = 120. Shown are N = 100 (solid line), N = 15 (dashed line),
N = 5 (dash-dotted line) and N = 2 (dotted line).

linear combination of these N functions. Despite the low number N of

measurement points, the approximation quality is reasonable over the

entire region of linearization. Increasing N, the quality can be improved

significantly as illustrated in Fig. 5.2. The linearization approximation

works well also for multi-dimensional problems, as is shown for a 2-DoF

system in Fig. 5.3.

A more critical point, related to the approximation quality, is the num-

ber Nm of perturbations used to build the training set. This number de-

termines how densely in z̃ the continuous functions hj(z̃) are sampled,
and thereby how well the training set approximates the true behavior

around the relevant point. Using too sparse spatial sampling, the approx-

imation between the sampling points may become very poor, as illustrated

in Fig. 5.4. This effect becomes even more critical as the number of degrees

of freedom increases, and a very large Nm may then be necessary. The re-

quired number Nm may be decreased significantly by using a multi-scale

approximation technique, as described later in this chapter.
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Figure 5.3 Approximation for 2-DoF system using N = 100 intensity measure-
ment points, with Nm = 300. The approximation is accurate inside the entire region
considered in the linearization, with some small errors occurring mainly near the

boundaries of the linearization region.

A final important point to note is that the approximation quality de-

pends strongly on the size of the region of approximation, i.e., the region

in which the points z̃i of the learning data set are distributed. Intuitively,

it is reasonable to assume that it is easier to obtain a good approximation

for only small z̃, for which the functions hj can be expected to be nearly

linear in z̃, than it is to obtain good behavior for a very wide range of

errors z̃. This is illustrated for a 1-DoF problem in Fig. 5.5, which shows

the structure of the functions hj and the obtained approximations for

three different scales, corresponding to rotations of up to 2○, 10○, and 50○

around the optical axis. The resulting approximations for both the least-

squares approximation of Eq. (5.17) and the local linearization of [Hager
and Belhumeur, 1998] are shown for comparison. The local linearization
gives acceptable local results, but breaks down outside the region where

hj are nearly linear, while the least-squares approximation works well for

a large range of errors. As the dimension n of the problem increases, this

range will become smaller. For problems such as 6-DoF rigid body track-

ing, the basic least-squares approximation of Eq. (5.17) will frequently
break down, due to effects such as weak textures, large motions, reflec-

tions, and noisy images.

5.2 Approximation-Based Approach

In the solution presented above, the goal is to design Kh to obtain an

approximation of z̃ which is as close as possible, in the least-squares sense.

In the dynamic case, this Kh can also be used in a continuous-time state
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Figure 5.4 Approximations for different numbers of test perturbations Nm in the

training set, with N = 30 intensity measurement points. Shown are the cases (top
to bottom, left to right) Nm = 6, Nm = 11, Nm = 21 and Nm = 42.

estimator

dx̂

dt
= Ax̂ +Bu+KKh (I(z0,z0) − I(z(t), ẑ)) =

= Ax̂ +Bu+KKhh(z̃(t),z(t)). (5.19)

Using Eq. (5.13), the estimation error x̃ = x− x̂ is given by the nonlinear
system {

˙̃x = (A−KC)x̃+KΔ(z̃,z)

z̃ = Cx̃
(5.20)

where the stability now depends on the nonlinear function Δ(z̃,z) defined
in (5.13). The assumption in this design is that the error term Δ(z̃,z)
is sufficiently small to be neglected. In the general case, however, this

may not be true, and the effect of the error term on performance and

stability must be analyzed. Such methods could for instance be based on

establishing bounds2 for the gain of the nonlinearity Δ(z̃,z), seen as a

2In order to establish such bounds from the sampled training data, it is helpful to note

that the image intensity can be considered a continuous function of image coordinates. The

reason is the image is usually low-pass filtered during pre-processing of the image.
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Figure 5.5 Left, top to bottom: A total of N = 18 functions hj shown at three
different scales. Right, top to bottom: Approximations obtained at these scales, for

the least-squares solution of Eq. (5.17) (solid) and the local linearization as in [Hager
and Belhumeur, 1998] (dashed).

function of the position estimation error z̃. However, such bounds are not

explicitly considered or derived by the optimization process, and the real

bounds may in certain cases be very poor.

Another problem is the sensitivity of the intensity measurements to

illumination changes and reflections. Although it is possible to cope with

a small number of outliers in the measured intensities, for improved per-

formance the intensity disturbances should be compensated for by model-

based disturbance rejection. To this purpose, the model is augmented with

a disturbance term Iε(t) in the intensity measurement. The estimation er-
ror of Eq. (5.20) becomes

˙̃x = (A−KC)x̃+KΔ(z̃,z) +KKhIε(t) (5.21)

which indicates that the choice of Kh will strongly influence the distur-

bance sensitivity of the system. If Iε is zero-mean white noise with covari-

ance Rε, the covariance of the noise KhIε in Eq. (5.21) will be equal to
KhRεK

T
h . For spatially uncorrelated noise with Rε = I, making the covari-
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ance small corresponds to making the sum-of-squares of the elements of

the matrix Kh small. Similarly, by different choices of Rε it is possible to

model the effects of certain spatially correlated disturbances. For exam-

ple, a global additive disturbance can be modeled by using Rε = ÎεÎ
T
ε
with

Îε = 1N , and the disturbance can be completely suppressed by imposing
the constraint

KhÎε = 0. (5.22)

This would be useful for suppression of varying global illumination or

rapidly time-varying artificial lighting. Another condition on Kh, which

could be used to ensure local stability, would be to impose that

�

�z̃
Δ(0,z0) = I−Kh

�

�ẑ
I(z0,z0) = 0 (5.23)

at z̃ = 0, which is the condition for exact local linearization. A new so-
lution, which attempts to satisfy each of these requirements, is given by

minimization of a quadratic cost function in Kh of the form

J(Kh) =

Nm∑
i=1

�z̃i −KhΔyi�
2 + γ 2trace(KhK

T
h ) (5.24)

subject to the linear constraints{
Kh

�
�ẑ I(z0,z0) − I = 0

KhÎ
( j)
ε = 0, j = 1, ⋅ ⋅ ⋅ ,Nc

(5.25)

where Î
( j)
ε represent vectors or patterns of the illumination disturbances

to be suppressed. The constant weight γ can be used to tune the relative
importance of data fitting and noise sensitivity.

Multi-Scale Approximation. The accuracy, as well as the stability and

region of convergence, can be improved dramatically by using a multi-scale

approach, in which a series of matrices K
( j)
h
, j = 1, ⋅ ⋅ ⋅ ,Ns are found by

linearization using consecutively larger motions. This makes it possible

to create a series of approximations at different scales, making it possible

to obtain good accuracy both for small and large inter-frame motions.

Similar hierarchical solutions with approximation at consecutively finer

scales and less blurred images are frequently used in image registration

[Gleicher, 1997]. The state estimator in Eq. (5.19) is modified to

dx̂

dt
= Ax̂ +Bu+Kk0(z̃,z) (5.26)
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where the function k0(z̃,z) is given recursively by

k j−1(z̃,z) = K
( j)
h (I(z0,z0) − I(z, ẑ + k j(z̃,z))) + k j(z̃,z) (5.27)

kNs(z̃,z) = 0 (5.28)

where each step gives a successively better approximation k j−1(z̃,z) of the
output error z̃ = z − ẑ. The advantage of using the multi-scale approach
is most easily seen by analyzing the norm of the resulting nonlinear term

Δ(z̃,z). If the linearization in each step provides a norm bound

�Δ j−1(z̃,z)�
def.
= �z̃− k j−1(z̃,z)� ≤ k̄j�z̃− k j(z̃,z)� (5.29)

on each nonlinearity Δ j , the total norm bound of the resulting nonlinearity
Δ(z̃,z) = Δ0(z̃,z) is given by

�Δ(z̃,z)� ≤

Ns∏
j=1

k̄j�z̃�. (5.30)

The tightening of the bounds described by Eq. (5.30) gives a significantly
improved performance compared to the single-scale case. The price is an

increase in the time complexity of the algorithm, since the image measure-

ment step is repeated Ns times. In many cases, this increase is negligible

compared to the time for image capture, transfer and pre-processing.

Compensation for Changes in Configuration. The dependence of

h(z̃,z) on the current configuration z causes the linearization to be valid
only around z0. In order for the linearization to be usable in larger regions

of the configuration space, it is necessary to compensate for configuration-

dependent deformations of the images. We make the assumption that

there exists a function T(z,z0), such that for all positions z and all z̃

I(z,z) − I(z,z− T(z,z0)z̃) = I(z0,z0) − I(z0,z0 − z̃) (5.31)

T(z0,z0) = I (5.32)

�T(z,z0)� ⋅ �T−1(z,z0)� < T̄ (5.33)

where the matrix T(z,z0) is invertible for all z. The defined function
T(z,z0) describes how the relationship between motion and image inten-
sities changes when the surface patches around each measurement point

are deformed, through the change in viewpoint associated with the motion

from z to z0. There are many simple cases in which Eq. (5.31) holds with
T(z,z0) as the identity, in which case any bounds for Δ(z̃,z) established
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around the initial position z0, would hold also around any other position z.

This removes the configuration dependency of the error term, and Δ(z̃,z)
becomes a function of the error z̃ only, given by

Δ(z̃,z) = z̃−Kh (I(z0,z0) − I(z0,z0 − z̃)) . (5.34)

An important example where this is true is when the object undergoes only

pure image plane translations or rotations. For more general motions, it

is possible to recompute Kh based on the measured position z = ẑ+ z̃ as

Kh(z) = T(z,z0)Kh(z0) (5.35)

where Kh = Kh(z0) corresponds to the original matrix calculated at the
linearization position. Using the recomputed Kh(z) in the estimator in
Eq. (5.19) and using assumption (5.31), the estimation error can be writ-
ten and simplified as

˙̃x = Ax̃−KT(z,z0)Kh(I(z0,z0) − I(z, ẑ)) =

= Ax̃−KT(z,z0)Kh(I(z,z) − I(z,z− z̃)) =

= Ax̃−KT(z,z0)Kh(I(z0,z0) − I(z0,z0 − T(z,z0)
−1z̃)) =

= Ax̃−KT(z,z0)(T(z,z0)
−1z̃− Δ(T(z,z0)

−1z̃,z0)) =

= (A−KC)x̃+KT(z,z0)Δ(T(z,z0)
−1z̃,z0). (5.36)

The form of Eq. (5.36) is equivalent to Eq. (5.20), except that the error
term Δ(z̃,z) is transformed by T(z,z0). Together with the bounds (5.33),
this can be used to find stability bounds that hold in a larger region of

the configuration space3.

The form of the function T(z,z0) can be very complex, and the com-
putation of T(z,z0) can be handled in different ways, either explicitly or
implicitly. In [Hager and Belhumeur, 1998], the effects of changing config-
uration were explicitly separated from the factors dependant on the local

texture at the measurement points, and used to recompute Kh. In [Jurie
and Dhome, 2001], an implicit viewpoint correction of Kh was proposed,
based on standard pose estimation techniques. However, in real-time high-

speed applications, the viewpoint compensation algorithms should have a

low time complexity, and the computations involved must be possible to

distribute over several consecutive samples. In our proposed solution, we

choose to update Kh using the image Jacobian Jv of image feature mo-

tion with respect to position z. The updated matrix Kh at any estimated

position ẑ is calculated from the original Kh at position z0 as

Kh(ẑ) = T(ẑ,z0)Kh(z0) = Jt(ẑ)
†Jt(z0)Kh(z0) (5.37)

3For instance, if it is known that �Δ(z̃,z0)� ≤ k̄�z̃�, from (5.33) it follows that the trans-
formed nonlinearity satisfies T(z,z0)Δ(T(z,z0)

−1z̃,z0) ≤ k̄T̄�z̃�.
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where T(ẑ,z0) has been approximated by the linearization Jt(ẑ)
†Jt(z0).

The Jacobian Jt relates infinitesimal motions of the object to the corre-

sponding infinitesimal motion of the projection of all measurement points

onto the object surface, using a pinhole camera with focal length f . The

surface motion is expressed in a local 2D coordinate system attached to a

point (xo, yo, zo)
T , with basis vectors (x1, y1, z1)

T and (x2, y2, z2)
T tangen-

tial to the surface. Jt can be computed efficiently from the Jacobian Jv(z)
of the projection equation using the equation

Jt(z) = diag(Mt,1, ⋅ ⋅ ⋅Mt,N)Jv(z) (5.38)

where the matrices Mt are matrices in the form

Mt =
1

f

[
(x1zo − z1xo)/z

2
o (x2zo − z2xo)/z

2
o

(y1zo − z1yo)/z
2
o (y2zo − z2yo)/z

2
o

]−1
. (5.39)

As the update is based on a local linearization, in practice the approxi-

mation is most accurate for nearly flat surfaces and motions where the

perspective effects are moderate.

5.3 Stability-Based Approach

Apart from the modular, approximation-based approach of Section 5.2,

many other approaches to the design of the correction or feedback terms

in (5.2)–(5.3) are possible. For systems with linear dynamics, Eq. (5.2)
reduces to

dx̂

dt
= Ax̂ +Bu+ k(z̃, t), (5.40)

where the stability and other properties of the system are determined by

both the system matrices and the term k(z̃, t). The method for analyzing
stability outlined in Section 5.2 can be seen as performing a loop transfor-

mation with gain K to achieve a nominally stable system, and establishing

a bound for the norm of the resulting nonlinear term Δ(z̃,z). Stability can
then be analyzed using standard methods from robust control, such as the

small-gain theorem [Khalil, 1996; Zhou and Doyle, 1998]. The problem is
that no such bounds are explicitly considered by the optimization process,

and in practice the bounds obtained may be arbitrarily poor.

A more general view of properties of the system in Eq. (5.40), is
achieved by analyzing the nonlinear part in terms of a sector condition4

(k(z̃, t) −Kminz̃)
T(k(z̃, t) −Kmaxz̃) ≤ 0 (5.41)

4Note that this formulation includes the previous case of gain bounds, since the sector

condition on k(z̃, t) with Kmin = K − k̄I and Kmax = K + k̄I can be transformed into an
equivalent gain condition k̄ on the nonlinearity k(z̃, t) −Kz̃.
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for some real matrices Kmax and Kmin with Kmax−Kmin > 0 [Khalil, 1996].
Usually, the controller design or system structure will impose known sec-

tor conditions that the linearization must satisfy, which leads to extra

constraints in the problem. Assuming that k(z̃, t) is composed as before of
a linear function of Δy = h(z̃,z) as

k(z̃, t) = Khh(z̃,z), (5.42)

a general formulation for this case is given by the minimization of the

convex cost function (based on the Frobenius norm �Kh�F)

J(Kh) = trace(KhK
T
h ) = �Kh�

2
F (5.43)

with respect to the unknown Kh, subject to the linear and convex quadratic

constraints{
(KhΔyi −Kminz̃i)

T(KhΔyi −Kmaxz̃i) ≤ 0, i = 1, ⋅ ⋅ ⋅ ,Nm

KhÎ
( j)
ε = 0, j = 1, ⋅ ⋅ ⋅ ,Nc.

(5.44)

For some practically important classes of problems, the quadratic con-

straints (5.44) can be reformulated into linear constraints. For such prob-
lems (possibly conservative or sub-optimal) solutions can be found by
quadratic programming [Boyd and Vandenberghe, 2004], for which very
effective algorithms and software exist. Two such classes of problems are

described in the following sections.

General Sector Conditions. In the case of general sector conditions,

in order to avoid solving the quadratically constrained problem defined

by (5.43)–(5.44), sub-optimal solutions must be sought. The new solution
is based on rewriting the sector condition with matrices Kmin = K−D and
Kmax = K+D, with D positive definite, as an equivalent norm condition

�Khh(z̃,z) −Kz̃�2 ≤ �Dz̃�2. (5.45)

To proceed, a straightforward solution is to instead use the standard ma-

trix ∞-norm, and to replace the norm condition in Eq. (5.45) with

�Khh(z̃,z) −Kz̃�∞ ≤ n
−1/2�Dz̃�∞ (5.46)

where n = dim(z). Due to the properties of the∞-norm, condition (5.45) is
satisfied if (5.46) holds. The opposite is not true, a fact that leads to some
degree of conservatism in the solution. Using the condition of Eq. (5.46),
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it is possible to formulate a quadratic program (QP), which optimizes the
cost

J(Kh) = trace(KhK
T
h ) (5.47)

subject to the linear constraints5

⎧⎪⎨
⎪⎩
−n−1/2�Dz̃i�∞ � KhΔyi −Kz̃i � n

−1/2�Dz̃i�∞, i = 1, ⋅ ⋅ ⋅ ,Nm

Kh
�
�ẑ I(z0,z0) −K = 0

KhÎ
( j)
ε = 0, j = 1, ⋅ ⋅ ⋅ ,Nc

(5.48)

where the criterion is minimized subject to the constraint that all motions

and corresponding intensity variations in the test set satisfy the desired

sector bound. For certain classes of sector conditions, such as the previ-

ously discussed gain conditions where D = k̄I, “optimal” bounds may be
found by considering k̄ as a parameter to be included in the criterion to

be optimized, rather than as a known constant.

When the number of degrees of freedom is large, a very large number

of test motions Nm is required, or otherwise the approximation may not

satisfy the sector condition between the sampling points. In practice, the

solution to the quadratic program (5.47)–(5.48) may still give improved
stability, due to the better approximation of the nonlinearity around the

origin. The drawback is that the accuracy is in general decreased when

tracking faster motions. This drawback is avoided by using a multi-scale

estimator structure as in Section 5.3.

EXAMPLE 5.1—SINGLE-DOF SYSTEM

A planar textured object, with a single rotational degree of freedom around

the camera optical axis, was placed in the linearization position shown

in Fig. 5.6. On the planar surface, N = 20 positions for the intensity
measurements were placed in a rectangular grid. The solution to a prob-

lem with Kmin = (1 − k̄j)I and Kmax = (1 + k̄j)I was computed from the
quadratic program (5.47)–(5.48) for Nm = 200 reference motions, where
the optimization criterion (5.47) was modified to include a quadratic term
in the parameter k̄j . Fig. 5.7 shows the resulting Δ(z̃,z0) and the obtained
sectors corresponding to k̄j . The linearization was computed at three dif-

ferent scales, corresponding to maximum rotations of 30○, 8○, and 2○,

respectively. The final resulting approximation error for the multi-scale

method is also shown, indicating the significant improvement of the multi-

scale algorithm.

5In Eq. (5.48), � is used to denote element-wise inequality.
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Figure 5.6 The object used in Example 5.1 shown in the linearization position,

with the stars marking the N = 20 intensity measurement positions. In the example,
a smoothed gray-scale version of the image was used.

EXAMPLE 5.2—MULTI-DOF SYSTEM

As an example of a system with multiple degrees of freedom, the system

in Example 5.1 was extended to a 3-DoF system with rotation and trans-

lation in a plane parallel to the image plane. A total of N = 100 intensity
measurement points were placed in a rectangular grid on the planar sur-

face, and the quadratic program (5.47)–(5.48) was solved for Nm = 1000
reference motions. The results can be seen in Fig. 5.8, where �Δ(z̃,z0)�
is plotted against �z̃� for all points in a large validation data set6. Due
to the spatial sampling introduced by the finite number of test motions,

the computed bounds did not hold exactly, and a larger Nm would be nec-

essary to provide more accurate bounds. As a comparison, the results for

the least-squares solution of Eqs. (5.24)–(5.25) can be seen in Fig. 5.9.
The parameter γ was tuned such that the norms of Kh were comparable
for the two solutions. While the least-squares solution provided a slightly

better overall approximation of the nonlinearity, it could not guarantee

any bounds on the norm of the error term Δ(z̃,z0), as for the sector-based
solution. For both types of solutions, significantly better approximations

were obtained with a multi-scale approach, as shown in the bottom plots

of Figs. 5.8–5.9.

6More specifically, rather than showing each point in the (large) validation data set, the
figure displays a computed upper bounding curve for all points in the set.
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Figure 5.7 Estimation error nonlinearities Δ(z̃,z0) and computed sector/norm
bounds for 1-DoF rotational example. Top left, top right, bottom left: Approximation

errors and computed bounds k̄j at three consecutively finer scales of 30
○, 8○, 2○ ro-

tation, respectively. Bottom right: Resulting approximation error for the multi-scale

method, with the sector for the finest scale approximation shown as comparison.

Comparison between top left and bottom right shows an improvement in the accu-

racy and computed bounds with a factor of over 25000.

Upper/Lower Sector Bounds. An important case which can be han-

dled without introducing conservatism in the solution, is when the control

design imposes a single-sided (lower) sector bound in the form

(k(z̃, t) −Kminz̃)
T z̃ ≥ 0. (5.49)

Such bounds occur, for instance, when trying to estimate the state of a

(stable or unstable) linear system with first-order dynamics. The condition
in Eq. (5.49) can be imposed by solving the QP given by minimizing

J(Kh) = trace(KhK
T
h ) (5.50)

subject to the linear constraints{
z̃Ti KhΔyi ≥ z̃

T
i Kminz̃i, i = 1, ⋅ ⋅ ⋅ ,Nm

KhÎ
( j)
ε = 0, j = 1, ⋅ ⋅ ⋅ ,Nc

(5.51)
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Figure 5.8 Norm �Δ(z̃,z0)�2 of estimation error nonlinearities Δ(z̃,z0) and com-
puted norm bounds for 3-DoF example, given by solution to quadratic program

(5.47)–(5.48). Top 3 plots: Errors and computed bounds k̄j at three consecutively
coarser scales. Bottom plot: Resulting error for the multi-scale method (almost equal
to zero everywhere).

where Kmin is assumed to be part of the given specification. The equa-

tions for the case in which an upper bound Kmax is desired are completely

analogous.

EXAMPLE 5.3—SINGLE-SIDED SECTOR CONDITION

Using the same one-dimensional problem as in Example 5.1, Fig. 5.10

illustrates the advantage of exploiting the extra freedom of the asymmet-

rical sector condition approach over the approximation-based approach

represented by the least-squares solution of Eqs. (5.24)–(5.25). The noise
sensitivity of the improved solution, as measured by �Kh�F , was decreased
by a factor of 14, while also improving the robustness and providing guar-

antees of stability. While in the least-squares case the parameter γ could
be tuned for a better trade-off between approximation error and noise
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Figure 5.9 Norm �Δ(z̃,z0)�2 of estimation error nonlinearities Δ(z̃,z0) for 3-DoF
example, given by least-squares problem from Eqs. (5.24)–(5.25). Top 3 plots: Errors
at three consecutively coarser scales. The best possible norm bounds k̄j obtained

from (5.47)–(5.48) are shown for comparison. Bottom plot: Resulting error for the
multi-scale method (almost equal to zero everywhere).

sensitivity, the improved QP-solution of the problem in Eqs. (5.50)–(5.51)
would directly provide the solution with the best noise sensitivity among

those satisfying the specified bounds.

EXAMPLE 5.4—GENERALIZED INTENSITY-BASED IBVS/PBVS

Another example in which techniques similar to Example 5.3 can be used,

is provided by a generalization of the simple visual servoing dynamic

model Eq. (2.13)–(2.14). We assume that a 1-DoF system is given by

ż = f (z) + u (5.52)

Δy = I(z, z0) − I(z0, z0)
def
= h(z) (5.53)
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Figure 5.10 Function k(z̃, t0) = Khh(z̃,z0) and desired (lower) sector bound for
the 1-DoF system in Example 5.3. Top plot: Least-squares solution given by solving

the problem in Eqs. (5.24)–(5.25). Bottom plot: The solution given by the quadratic
program (5.50)–(5.51). Compared to the least-squares solution, the norm of the
linearization matrix Kh was reduced by a factor of 14.

where f (z) is a scalar nonlinear function with f (0) = 0, and the mea-
surement/intensity vector I(z, z0) is always taken at measurement points
corresponding to the fixed location z0 = 0. As before, the dependence of
the image and output intensity change Δy on z has been made explicit

through the function h(z). Assuming a control law u = K (Δy) and using
a quadratic Lyapunov function V (z) = z2, the system can be shown to be
asymptotically stable if and only if the condition

f (z)z+ K (h(z))︸ ︷︷ ︸
l(z)

z < 0, ∀z �= 0 (5.54)

holds. If the control law is chosen to be linear in the measured intensities

u = l(z) = KhΔy = Khh(z), (5.55)
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a suitable controller gain is found by minimizing

J(Kh) = trace(KhK
T
h ) (5.56)

as before, subject to the constraints{
zi ( f (zi) + kminzi +Khh(zi)) ≤ 0, i = 1, ⋅ ⋅ ⋅ ,Nm

KhÎ
( j)
ε = 0, j = 1, ⋅ ⋅ ⋅ ,Nc

(5.57)

where kmin > 0 characterizes an optional sector condition, used to ob-
tain exponential stability. In Fig. 5.11 we can see the results of using a

controller (5.55), compared to an approximately linearizing controller

u = − f
(
K
(a)
h Δy

)
− kminΔy (5.58)

where K
(a)
h was computed using Eqs. (5.24)–(5.25), by tuning the pa-

rameter γ in order to provide a suitable trade-off between approxima-

tion z � K
(a)
h h(z) and noise rejection. The controller (5.58) represents a

position-based visual servoing control law, where the feedback contains

an explicit computation of the work-space position z, while Eq. (5.55)
corresponds to purely image-based visual servoing. As can be seen in

Fig. 5.11, the image-based controller (5.55) resulted in both faster con-
vergence and improved noise sensitivity. In fact, the system controlled

using the position-based controller (5.58) had multiple stable equilibria
near z0, as indicated by the behavior in the top plot of Fig. 5.11. Using

the image-based controller, exponential convergence to the single stable

equilibrium z0 was obtained.

EXAMPLE 5.5—MULTI-DOF IBVS AND DYNAMIC PBVS

As a direct multi-DoF extension to the IBVS controller in Example 5.4,

we designed a controller for the decoupled 3-DoF integrator system

ż = u (5.59)

Δy = I(z,z0) − I(z0,z0)
def
= h(z), (5.60)

where z was a vector of the rotation angles of a textured cubic object

around position z0, as shown in Fig. 5.12. Using Nm = 300 test motions,
with N = 90 measurement points, and designing a control law

u = l(z) = KhΔy = Khh(z), (5.61)
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Figure 5.11 Top plot: Convergence of simulated IBVS in Example 5.4, using the

image-based controller (5.55) (solid) and the linearizing controller (5.58) (dashed).
Bottom plot: function f (z) (dash-dotted) and resulting right hand side f (z) + l(z)

when using the one-sided criterion (solid) and approximately linearizing controller
(dashed). The approximately linearizing controller gives several local equilibria
f (z) + l(z) = 0 near the origin.

by solving the optimization problem of Eqs. (5.50)–(5.51) for a sector con-
dition (5.49) with Kmin = 20I, a control resulting in exponential stability
of z0 was found, as seen in Fig. 5.13.

As an alternative approach, the exact same matrix Kh was used for

dynamic position-based visual servoing, by using a state estimator and

controller structure in the form

˙̂z = u+ L1Kh(I(z0,z0) − I(z, ẑ)) (5.62)

u = L2(z0 − ẑ), (5.63)

where L1 and L2 were linear gains, used to obtain the desired dynamic

properties. The results, using the same setup as before with L1 = 2.5I and
L2 = 20I, can be seen in Figs. 5.14–5.15. A comparison with Figs. 5.12–5.13
shows that the convergence in the position-based case was smoother and
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Figure 5.12 Convergence in image-space for the simulated 3-DoF IBVS in Exam-

ple 5.5.

more controlled, thanks to the fast state estimator which would effectively

“linearize” the system, decreasing the effect of the nonlinearity h(z) on
the output.

EXAMPLE 5.6—CONTROL OF A MECHANICAL SYSTEM

We consider the (rigid) mechanical dynamics in the form

ẋ1 = x2 (5.64)

ẋ2 = −f1(x1) − f2(x2) + u (5.65)

z = x1 (5.66)

Δy = I(z,z0) − I(z0,z0)
def
= h(z) (5.67)

where x1 and x2 correspond to position and velocity, f1(x1) with f1(0) = 0
is a potential vector field, and f2(x2) represents the natural dissipation of
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Figure 5.13 Convergence of simulated 3-DoF IBVS in Example 5.5, shown as the

control error z in the rotation angles around the z-axis (solid), y-axis (dashed) and
x-axis (dash-dotted), respectively.

the system, with xT2 f2(x2) ≥ 0. Using a control law in the form

u = −u1(z) −
d

dt
[u2(z)] (5.68)

with the nonlinear functions ui

ui(z) = Kh,iΔy = Kh,ih(z), (5.69)

the stability could be analyzed using energy-based Lyapunov functions. As

an example, we take the control of a one-link planar robot or pendulum

given by

ẋ1 = x2 (5.70)

ẋ2 = − f1(x1) − f2(x2) + u = ω 20 sin(x1) − dx2 + u (5.71)

z = x1 (5.72)

Δy = I(z, z0) − I(z0, z0)
def
= h(z) (5.73)
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Figure 5.14 Convergence in image-space for the simulated 3-DoF PBVS in Exam-

ple 5.5.

around the unstable upper equilibrium, corresponding to x1 = z0 = 0. The
control signal u was the normalized torque applied to the arm, d > 0 was
a damping coefficient, and ω 20 = m�l/I depended on the mass m, effective
length l and moment of inertia I of the arm. Using the control law

u = −u1(z) −
d

dt
[u2(z)] = −Kh,1h(z) −

d

dt
[Kh,2h(z)] (5.74)

together with the total mechanical energy

V (x1, x2) =

∫ x1
0

f1(x) + u1(x)dx +
1

2
xT2 x2. (5.75)

as a Lyapunov equation, we obtained

V̇ = −x2 f2(x2) −
du2

dx1
(x1)x

2
2. (5.76)

154



5.3 Stability-Based Approach

0 0.05 0.1 0.15 0.2 0.25

−60

−50

−40

−30

0 0.05 0.1 0.15 0.2 0.25

−30

−25

−20

0 0.05 0.1 0.15 0.2 0.25

140

145

150

t [s]

φ
z
[d
e
g
]

φ
y
[d
e
g
]

φ
x
[d
e
g
]

Figure 5.15 Convergence of simulated 3-DoF PBVS in Example 5.5, shown as the

true position z (solid) and estimated position error ẑ (dashed) for rotations around
the x,y, and z-axes respectively.

Negative semi-definiteness of V̇ and positive definiteness of V was as-

sured by imposing the conditions

du2

dx1
(x1) > 0, ∀x1 (5.77)

x1( f1(x1) + u1(x1)) > 0, ∀x1 �= 0, (5.78)

which led to a convex problem equivalent to (5.56)–(5.57) for Kh,1. The
matrix Kh,2 was given by minimizing a criterion

J(Kh,2) = trace(Kh,2K
T
h,2) (5.79)

subject to the constraints{
Kh,2

�
�zh(zi) ≥ d2, i = 1, ⋅ ⋅ ⋅ ,Nm

Kh,2Î
( j)
ε = 0, j = 1, ⋅ ⋅ ⋅ ,Nc

(5.80)
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Figure 5.16 Top plot: Potential energy as a function of position z for the original

system (dashed) and the stabilized, reshaped system (solid). Bottom plot: Simula-
tion results for the stabilized system.

for some finite d2 > 0 used to increase the damping in the system. The
approach described above can be seen as a variation of the energy shaping

plus damping injection approach [Takegaki and Arimoto, 1981; Santibanez
and Kelly, 1997]. The potential energy of the system, as a function of
x1, was reshaped by the feedback in order to obtain a unique minimum

at the desired equilibrium position, while extra damping was injected

through the velocity feedback term −u̇2. In Fig. 5.16 we can see the results
of a simulation using such a controller, as well as the potential energy

functions for the uncontrolled and the stabilized systems. The system and

controller parameters were set to ω 0 = 10, d = 2 and d2 = 18, and the
lower sector bound for u1 was given by kmin = 14. The controller was
sampled at a 4 ms rate, and Gaussian noise with a standard deviation

of 5% of the full dynamic intensity range was added to the synthetic

images. In practice, the direct differentiation of u2 in the control law could

be replaced by the corresponding approximate (“dirty”) derivatives, as is
often done in control of elastic joint robots [Kelly et al., 1994].
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5.4 Experiments and Simulations

In order to validate the intensity-based approach, and to illustrate some

possible applications of high-speed visual motion estimation, we have per-

formed a number of experiments and simulations. The examples presented

are a simulation study on rigid-body tracking and visual servoing, exper-

iments with hybrid intensity/feature-based tracking, high-speed image-
based visual servoing for an industrial manipulator, and an active damp-

ing control approach for poorly damped dynamic environments.

Tracking and Servoing of 6-DoF Rigid Motion. The difficulty in

obtaining a useful approximation for large motions increases rapidly with

the number of degrees of freedom. The reason is that a high-quality ap-

proximation in multi-DoF problems requires a very dense sampling of the

output space, through the computation and measurement of a very large

number of learning data z̃i and Δyi. However, the relatively slow varia-

tions of the image intensity variations with z̃ makes the intensity-based

methods feasible also for relatively sparse sampling. In addition, when

a multi-scale approach is used, the required number of sampling points

is decreased further. In order to investigate the capability to handle full

6-DoF rigid body tracking, a series of simulations were performed. Syn-

thetic 512�400 pixels camera images were generated from virtual stereo
cameras. The motion of a cubic box was controlled in 6 DoF as described

in Example 5.5, using the controller (5.62)–(5.63) with the same parame-
ters as the example. In all simulations, the total number of measurement

points were set to N = 72. Measurement noise, implemented as Gaus-
sian, spatially uncorrelated white noise with an amplitude of 10% of the

full image intensity range, was added to the images. The convergence and

performance of the tracking was investigated with respect to a number of

parameters:

• The number Nm of motions z̃i in the learning data set.

• The maximum of �z̃i� for the uniformly randomly generated sam-
pling of the output space in the learning data, illustrating the effect

of the size of the desired region of convergence.

• The fraction of (random) outliers in the intensity measurements,
representing occlusions or specular reflections. It was assumed that

each outlier could be represented as a missing measurement, i.e.,

that elements of Δy corresponding to outliers were replaced with

zeros.

• The algorithm used for computing Kh, represented by the stability-

based solution of (5.50)–(5.51) or the approximation-based solution

157



Chapter 5. Intensity-Based High-Speed Tracking and Control

of (5.24)–(5.25). To facilitate comparisons between the solutions, in
the latter case the parameter γ was tuned such that the same value
(within 5 %) of �Kh�F was achieved as for the stability-based solu-
tion.

To this purpose, a nominal set of parameters was defined. The nominal

case was defined by using the stability-based solution with a learning

set of Nm = 1200 motions, a maximum for �z̃i� of 7
○ and 7 mm, and no

measurement outliers. The result of a simulation for the nominal case

can be seen in Figs. 5.17–5.18. For the nominal values, the solution of the

quadratic optimization problem for Kh could be computed in 1.6 seconds,

using the Matlab Optimization Toolbox on a 1.7 GHz computer. For applied

variations to the nominal parameters, the following observations could be

made:

• For the given value of max(�z̃i�) = 7, the servoing converged for all
starting points with �z̃� < 7, even when Nm was decreased as low
as Nm = 48. However, for convergence when max(�z̃i�) = 15 it was
necessary to increase the number of sampling points to Nm > 400
for convergence.

• With all other parameters as in the nominal case, max(�z̃i�) could
be increased to as high as 15○ and 15 mm, while guaranteeing con-

vergence for all starting points with �z̃� < 15. For max(�z̃i�) > 20
the estimator became unstable due to the poor behavior for small

�z̃�, and instability could not be avoided even by increasing Nm to
5000.

• For the nominal case, the fraction of random measurement outliers

could be increased to approximately 25-30 % before the estimation

error diverged. For constant outliers, i.e., outliers affecting the same

elements of Δy during each sample, the maximum acceptable frac-

tion was even lower, at roughly 20 %.

• A comparison between the convergence of the estimation errors for

the stability-based and the approximation-based solutions can be

seen in Fig. 5.19. The stability-based solution results in a both faster

and smoother convergence, and is also less sensitive to disturbances.

The advantages of the approximation-based solution, on the other

hand, are related to its simplicity and low computational complex-

ity. Since the solution of (5.24)–(5.25) requires only the solution of a
standard least-squares problem, much larger problems can be solved

efficiently than for the stability-based solutions. In the example dis-

cussed above, both the number of measurements N and learning

motions Nm could be increased by a factor of 5, while giving the

same total computation time as for the stability-based solution.
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Figure 5.17 Estimated position (dashed) and true position (solid) in 6-DoF visual
servoing simulation, expressed as translations and Euler angles.

Discrete-Time and Hybrid Intensity/Feature-Based Tracking

In many practical situations, relying purely on intensity-based methods

may lead to errors, since slow variations in the illumination conditions

may introduce undesired drift in the estimates. The feature-based meth-

ods of Chapter 4, on the other hand, are known to provide long-term

stable estimates [Rosten and Drummond, 2005]. However, many feature-
based methods suffer from short-term robustness problems, due to outliers

caused by failures in the feature matching process. This is a particularly

serious problem for methods using edges or lines, in which nearby and al-

most parallel edges frequently lead to failures in feature matching, often

with loss of tracking as a consequence. Using a combination of intensity-

based methods with edge based methods, many of these drawbacks may be

avoided [Rosten and Drummond, 2005; Pressigout and Marchand, 2005].
In this way, the robustness and short-term predictive capability of the
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Figure 5.18 Convergence in image-space for the simulated 6-DoF visual servoing

in the first and second camera, respectively.

intensity-based method is combined with the drift-free accuracy of feature-

based methods. Using a feature-based measurement Δek as in Chapter 4

in addition to the intensity-based measurement Δyk, a discrete-time esti-

mator which approximates the behavior of the optimal stationary Kalman

filter for the system

xk+1 = Φxk + Γuk (5.81)

zk = Cxk (5.82)

is given by

x̂k�k−1 = Φx̂k−1�k−1 + Γuk−1 (5.83)

x̄k�k = x̂k�k−1 +KIKhΔyk (5.84)

x̂k�k = x̄k�k +KF
(
h−1e (Δek,Cx̄k�k) +Cx̄k�k −Cx̂k�k−1

)
(5.85)

where the feature-based measurement Δek is related to zk and the pre-
diction by

Δek = he(zk−z̄k�k, z̄k�k) (5.86)

is a vector of measured normal distances between the image edges and

the predicted edges at position z̄k�k = Cx̄k�k. As in Chapter 4, the function

h−1e (Δek,Cx̄k�k) = zk − z̄k�k (5.87)

can be computed efficiently from the linearization

h−1e (Δek, z̄k�k) � J
−1
v,N(z̄k�k)Δek, (5.88)
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Figure 5.19 Estimation error in the visual servoing simulation, for the

approximation-based solution (top plot) and stability-based solution (bottom plot),
respectively.

using the analytically computed Jacobian J−1v,N(z̄k�k). Because of the com-
paratively low algorithmic complexity of the intensity-based method pre-

sented above, which requires just N simple direct measurements in the

image followed by a matrix multiplication, it is ideal for use in a multi-

rate estimator. An object tracked using such a multi-rate Kalman filter

can be seen in Fig. 5.20, where motion in six degrees of freedom of a three-

dimensional target was tracked at 250 images/second. The feature-based
correction/measurement update step was executed at a lower rate of 50
Hz. With this estimator it was possible to track edges translating and

rotating up to 25 pixels and 7○ per frame, even for sequences of irregular

motions. For this particular motion sequence, this was roughly twice as

fast as what could be achieved using an edge-based tracker.
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Figure 5.20 Two images from an image sequence showing a weakly textured

moving object tracked at a frame rate of 250 frames/second using a hybrid
multi-rate tracker. A full video of the sequence can be found at the address

http://www.control.lth.se/database/publications/article.pike?artkey=ols07dis.

High-Speed Image-Based Visual Servoing

As an illustration of multiple-DoF control, a setup for a 3-DoF image-based

visual servoing experiment was created. A textured planar quadratic ob-

ject with 13 cm side was attached to the end-effector of an ABB Irb 2400

industrial robot. The Basler A602fc digital camera used in the experi-

ments was intrinsically uncalibrated, and the camera- and robot tool co-

ordinate systems were slightly misaligned, causing a model error which

meant that visual feedback was required. A typical image from the camera

can be seen in Fig. 5.21.

The robot system was equipped with the external sensor interface

described in Chapter 3, and actuated by updating the position/velocity
references. A sampled implementation of the continuous-time state esti-

mator (5.19) was used to obtain estimates of the image coordinates of
the center point and the image-plane rotation angle of the planar tar-

get. The estimator was designed using the approximation-based approach

in (5.24)–(5.25), using a multi-scale structure at three different scales.
The dynamic model used in the tracker was given by a simple decoupled

integrator model from velocity reference to position output, as is com-

monly assumed in image-based visual servoing systems. The output from

the estimator was filtered through a notch filter, in order to remove small

remaining effects of the 50 Hz frequency of the indoor illumination. The

estimated position was used in an outer 250 Hz proportional visual servo

controller, designed to follow a linear trajectory through a number of pre-

defined positions. The results of the image trajectory tracking can be seen

in Fig. 5.22. In stationarity, the standard deviation of the noise in the es-

timated position corresponded to 10–15 μm and 0.01○ in Cartesian space,
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Figure 5.21 Example of an image used for feedback in the image-based vi-

sual servoing experiment, with the current reference position superimposed on

the image. The full video showing the experiment can be found at the address

http://www.control.lth.se/database/publications/article.pike?artkey=ols07dis.

which was 5–7 times more accurate than the guaranteed repeatability of

the ABB Irb 2400 robot used in the experiment.

Dynamic Force/Vision Control

Most force control methods focus on the robot dynamics, assuming that the

environment can be modeled by ideal constraints, or as simple mass-less

(linear or nonlinear) spring-damper systems [Diolaiti et al., 2005]. How-
ever, there exist force control applications where more detailed models of

dynamic environments are required [Vukobratovic et al., 2004]. Typically,
this would be the case when the environment compliance is significantly

greater than that of the manipulator, while the inertia or general dynam-

ics of the environment are also non-negligible. Examples from industrial

applications are different types of compliant devices, which are mounted

between a rigid workpiece and the fixture, serving as an extra mechanical

compliance in polishing, grinding and other contact tasks. Other examples

are cooperating interacting robots, and control of other types of “weak” me-

chanical structures with low-frequency resonances. The interaction con-

trol problem in dynamic environments is in general more complex than for

traditional force control. The manipulator and environment dynamics are

coupled through the forces of interaction, which affects the stability and

performance of the system in a complex way. A purely force/impedance-
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Figure 5.22 Position (solid) and position reference (dashed) in the image-based
visual servoing experiment. The units of translation (px and py) and rotation (θ)
correspond roughly to 1 mm and 1○, respectively.

based approach may not be sufficient for efficient control, since the range

of achievable impedances is always limited by force sensor noise and trans-

mission elasticity, and the natural damping of the environment may not

be sufficient. Therefore, the dynamic state of the environment must also

be included in the modeling and controller design. In the following exam-

ple, we illustrate the combination of high-speed vision and force control

in a simple setup, where it is attempted to actively damp the oscillations

of a poorly damped mass-spring-damper system.

Modeling and Controller Design. We assume the setup shown in

Fig. 5.23. A robot, considered to be completely rigid in comparison with the

environment stiffness, is in contact with a dynamic environment, where

the interaction is modeled by contact forces in the surface normal direction

at the contact points. To illustrate the main idea, and to simplify the

presentation, we will consider the force control problem in each degree

of freedom separately. We assume that the robot is internally motion-

controlled, where the motion in the direction considered is approximated

by a second-order system, with the states being the position z3 and velocity

z4. The environment dynamics in one direction is modeled as a stable

linear second order system with position z1 and velocity z2, and we can
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Figure 5.23 Setup with multiple point contacts between robot and environment.

Local coordinates (x
(i)
c , y

(i)
c , z

(i)
c ) are attached to the workpiece at each contact point,

while the dynamics of the environment is modeled by a linear mass-spring-damper

system.

write the coupled dynamics of the robot and environment as

ż1 = z2 (5.89)

ż2 = −kz1 − dz2 +Ψ(z3 − z1) (5.90)

ż3 = z4 (5.91)

ż4 = u− kpz3 − kdz4 (5.92)

where the scalar contact force is

fc = Ψ(δ )
def
= K (δ )δ , (5.93)

where for convenience we have defined

δ
def
= z3 − z1, (5.94)

and where the contact stiffness K (δ ) is assumed to be a differentiable
function of δ , satisfying the properties

K (δ ) ≥ 0, ∀δ (5.95)

K (δ ) = 0, δ < 0 (5.96)

K ′(δ )δ + K (δ ) > 0, δ > 0. (5.97)
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Eq. (5.93) together with properties (5.95)–(5.97) can be used as an ap-
proximate global model for a linear spring mechanism, or a local model for

a higher-order (e.g. cubic or Hertzian) contact model. The final inequal-
ity (5.97) expresses the physically reasonable assumption that the contact
force fc = K (δ )δ increases with an increasing deformation δ . Mathemat-
ically, this implies that the “inverse” Ψ̂−1( fc) of Ψ(δ ), as defined by

Ψ̂−1( fc) = Ψ−1( fc), fc > 0 (5.98)

Ψ̂−1( fc) = 0, fc = 0 (5.99)

is well-defined. This implies that the contact stiffness function K (δ ) and
its derivative can (with some abuse of notation) be expressed as

K ( fc)
def
= K

(
Ψ̂−1( fc)

)
� K (δ ) (5.100)

K ′( fc)
def
= K ′

(
Ψ̂−1( fc)

)
� K ′(δ ) (5.101)

which are defined for all fc. These functions will be required for the im-

plementation of the controller.

The aim of the controller is to obtain a sufficiently damped impact

transition, which can be achieved by controlling the interaction forces

suitably. The form of the system in Eq. (5.89)–(5.92) is similar to the
so called strict feedback form (or triangular form) [Krstić et al., 1995].
For such systems, the backstepping design method can be used to find

a control law and a Lyapunov function in a recursive fashion. If direct

control of the interaction force fc was possible, we could introduce extra

damping into the environment by choosing a “virtual” control signal of the

form

fc = K (α 1(z1, z2) − z1) ⋅ (α 1(z1, z2) − z1) (5.102)

with

α 1(z1, z2) = z1 + h(z2) (5.103)

where the damping function h(z2) is twice continuously differentiable and
chosen to satisfy the properties

h(z2) ≥ 0, ∀z2 (5.104)

h(z2) = 0, z2 > 0. (5.105)

In this way, extra damping is introduced by a suitable dissipation of energy

by application of a contact force in the opposite direction of motion during

the part of the motion when the contact point velocity z2 < 0. This can be
seen by introducing the energy-based Lyapunov function

V1(z1, z2) =
1

2
kz21 +

1

2
z22 (5.106)
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which gives

V̇1 = kz1z2 + z2(−kz1 − dz2 + K (δ ) (ε3 + h(z2)) =

= −dz22 + z2K (δ )h(z2)︸ ︷︷ ︸
def
=−W(z2,ε3)≤0

+z2K (δ )ε3 (5.107)

where the term z2K (δ )h(z2) ≤ 0 introduces extra damping due to prop-
erties (5.95), (5.104)–(5.105), and where

ε3 = z3 −α 1(z1, z2) = z3 − z1 − h(z2), (5.108)

is interpreted as the error between the tool tip position corresponding to

the “virtual” control signal and the true position. By defining

f2(z1, z2, ε3)
def
= −kz1 − dz2 + K (δ )h(z2) + K (δ )ε3 (5.109)

and augmenting V1 as

V2(z1, z2, ε3) = V1(z1, z2) +
1

2
p3ε
2
3, p3 > 0 (5.110)

with a quadratic term in ε3, we obtain

V̇2 = −W(z2, ε3) − p3k3ε
2
3 + p3ε3ε4 (5.111)

with k3 > 0 and the new error signal ε4 given by

ε4 = z4 − z2 − h
′(z2) f2(z1, z2, ε3) + k3ε3 + p

−1
3 K (δ )z2. (5.112)

We now augment V2 with a quadratic term in the error ε4

V3(z1, z2, ε3, ε4) = V2(z1, z2, ε3) +
1

2
p4ε
2
4, p4 > 0, (5.113)

and choose the control signal

u = uffw − (k3 + k4)ε4 + k
2
3ε3 + k3p

−1
3 K ( fc)z2 − p

−1
3 (K ( fc) f2(z, ε3)+

+K ′( fc)
(
−k3ε3 + ε4 − p

−1
3 K ( fc)z2 + h

′(z2) f2(z1, z2, ε3)
)
z2
)

(5.114)

with k4 > 0 and the acceleration feedforward term according to

uffw = f2(z, ε3) + h
′′(z2) f2(z, ε3)

2 + kpz3 + kdz4+ (5.115)

+ h′(z2) (−kz2 − d f2(z, ε3) + (K
′( fc)(ε3 + h(z2)) + K ( fc)) f3(z, ε))
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where we have used the function

f3(z, ε)
def
= −k3ε3 + ε4 − p

−1
3 K ( fc)z2, (5.116)

to obtain

V̇3 = −W(z2, ε3) − k3p3ε
2
3 − k4p4ε

2
4 + p3ε3ε4. (5.117)

This expression can be made negative semi-definite since p4 can be chosen

arbitrarily. Asymptotic stability of the origin z1 = z2 = ε3 = ε4 = 0 follows
from LaSalle’s theorem [Krstić et al., 1995], and the fact that the largest
invariant set in {(z, ε)�V̇3 = 0} is the origin.
The control law in Eqs. (5.114)–(5.115) requires state feedback, not

only from the robot states, but also from the position/velocity of the envi-
ronment. The multi-scale version of the high-speed intensity-based track-

ing method was used to provide measurements with sufficient accuracy

through

ẑ1(tk+1) = ẑ1(tk) + k0(z̃1(tk), z1(tk)) (5.118)

ẑ2(tk+1) = (ẑ1(tk+1) − ẑ1(tk))/(tk+1 − tk) (5.119)

with the functions kj defined recursively according to

kj−1(z̃1(tk), z1(tk)) = K
( j)
h (I(z0, z0) − I(ẑ1(tk) + kj(z̃1(tk), z1(tk)))) +

+ kj(z̃1(tk), z1(tk)) (5.120)

kNs(z̃1(tk), z1(tk)) = 0. (5.121)

Each K
( j)
h was found by solution of the quadratic program (5.47)–(5.48),

in order to make sure that the resulting nonlinear error terms Δ were

norm-bounded.

Simulation. In the experiments, the environment dynamics was given

by a poorly damped mass-spring-damper system with mass 20 kg, stiff-

ness 4000 N/m, and linear damping of 20 N/(m/s). The contact stiffness
K (δ ) was set to 40000 N/m. The damping function h(ẑ2) was composed of
piecewise second order polynomials, as shown in Fig. 5.24, and chosen to

correspond roughly to a damping of dactive = 400 N/(m/s) in order to ob-
tain a critically damped response. An additional constant term was added

to the control signal to obtain a contact force fc = 100 N in stationarity.
The intensity-based filter was set to track the translation of the work-

piece, using measurements on one of its planar surfaces, from synthetic

320�240 pixels camera images generated with the image generation soft-
ware described in Appendix A.4. Both the controller and the tracker were
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Figure 5.24 Damping function h(ẑ2) composed of piecewise second order polyno-
mials, as used in the simulations.

sampled at 4 ms, and an unmodeled time delay of 8 ms for image capture

and transmission was added to the simulation. The controller parameters

were set to to k3 = k4 = 20, p3 = 50000, giving a trade-off between fast
convergence and robustness. The robustness was assured by iteratively

tuning the parameters such that the controller for the nominal case was

able to cope with parameter variations within a certain range, without any

serious performance degradation. The range of variations was assumed to

be between 50%–200% of the nominal value for the contact stiffness K (δ ),
80%–120% in the environment stiffness k, and 30%–300% in the damping

d. Additional image noise with a standard deviation corresponding to 5%

of the total intensity range was added to the synthetic images, and white

noise of standard deviation 2 N was added to the measured force.

The environment oscillation mode was excited, and at time t = 1 s
the damping controller was started. Fig. 5.25 shows the resulting robot-

and environment positions, while Fig. 5.26 shows the resulting contact

force, and the corresponding control signal can be seen in Fig. 5.27. As

can be seen, the force during the damping phase in Fig. 5.26 was reduced

when the controller was started, while the initial oscillations were damped

quickly.
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Figure 5.25 Top: The estimated environment position ẑ1 (dashed line) and robot
tool tip position z3 (solid line). Bottom: True (dashed line) and estimated (solid line)
environment velocities z2 and ẑ2. The controller was switched on at time t = 1 s.

5.5 Summary and Concluding Remarks

In this chapter a dynamic visual tracking technique based directly on im-

age intensity measurements was developed and investigated. The use of

such methods could be used to obtain state estimates at a very high rate

and with very short input-output latency. Such high-speed vision tech-

niques is an interesting approach for real-time measurements and feed-

back control of complex motions in multiple degrees of freedom. The main

advantages of the intensity-based approach are the low time complexity

of the online part of the computations, and that robust tracking is possi-

ble also when a sufficient number of well-defined and localizable features

can not be found in the scene. The drawbacks come from the reliance on

the image brightness constancy assumption, although greatly improved

performance can be achieved by compensating for simple disturbances in

the design.

The methods are based on sampling the motion-intensity relationship

in order to build a test set of data, for which the desired properties are

enforced in the form of convex optimization criteria and constraints. As
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Figure 5.26 Contact force fc during simulated contact transition and active damp-

ing. The controller was switched on at time t = 1 s.
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Figure 5.27 Control signal u during simulated contact transition and active

damping. The controller was switched on at time t = 1 s.

an extension to the standard least-squares solutions, methods for explic-

itly considering and optimizing suitable stability bounds—such as norm

bounds and sector conditions for the approximation errors—have been

presented. Such methods frequently outperform the least-squares solu-

tions in dynamic tracking and control problems, such as visual servoing.

Better approximations can be achieved using a multi-scale implementa-

tion, in which a number of linear approximations of the motion-intensity

relationship are computed at consecutively finer scales. This results in a
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potentially very accurate approximation over a wide range of motions.

The usefulness of the intensity-based tracking approach, and the im-

provements presented in this chapter, have been demonstrated in a num-

ber of experiments, such as high-speed hybrid intensity/feature-based 6-
DoF motion tracking, and 250 Hz image-based visual servoing. Further,

a method for force/vision control of contact with poorly damped environ-
ments has been presented.
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6

A Study on Force Control
for Accurate Low-Cost
Robot Drilling

6.1 Introduction

Systems for automatic drilling have a long history both in industry and

in the research community. In particular, the use of industrial robots for

drilling is interesting due to their flexible programming and the com-

paratively low cost of industrial robot systems. However, robot drilling

is a very challenging task due to the poor mechanical stiffness of the

typical serial industrial robots in use today. This compliance makes the

robot deflect due to the cutting forces, with poor hole quality as a result.

Nevertheless, a number of industrial robot systems for drilling exist. Tra-

ditionally, such systems have been based on mechanical solutions, using

large-size robots and customized, high-cost drilling end-effectors. In addi-

tion, different devices for rigidly attaching the drilling tool to the surface

are commercially available, for instance, based on vacuum suction or elec-

tromagnetic devices. In many situation, such devices provide very robust

solutions, although somewhat inflexible.

In many drilling tasks, for example in aircraft assembly, components

consisting of several layers of material are drilled. In such cases, it is

important to simultaneously apply pressure to the surface in order to

make sure that no chips or other material from the drilling are lodged

between the layers, in which case the entire structure would have to be

manually disassembled and cleaned. The pressure force which is applied

must therefore be controlled during the entire drilling phase, which makes
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Figure 6.1 Robot, drilling tool and tripod, with JR3 force sensor mounted on the

drilling tool. As seen in the figure, the axial direction is denoted z, while the x and

y-directions are tangential to the surface during drilling.

high-bandwidth feedback techniques an attractive alternative to mechan-

ical solutions. Research and development on force-controlled drilling has

not received as much attention as many other applications of industrial

force control, such as assembly, deburring, milling, or polishing. The rea-

son is probably the difficulties involved in robotic drilling, as well as the

lack of available industrial robot systems with capacity for sufficiently

high-bandwidth force control. Some results on force control for special

drilling machines have been reported in [Kawaji et al., 2001]. Experimen-
tal systems for force-controlled robot drilling have been presented in [Alici,
1999], where a force controller with inner-loop position control was used
for the drilling thrust force control, and in [Lee and Shih, 2006], where an
application to bone drilling in orthopedic surgery was presented. In addi-

tion, numerous research papers and patents related to robot drilling exist,

which are based on mechanical solutions or special-purpose end-effectors

rather than force control.

Problem Description

The purpose of this chapter is to develop and evaluate techniques for

force control using an industrial robot setup, shown in Fig. 6.1. The setup

consisted of a robot holding a pneumatic drilling tool with a linear feed

mechanism. A pressure foot in the form of a tripod was mounted on the

drilling tool, as shown in the right part of the figure. The goal was to ap-

ply a constant normal force to the drilled surface with the tripod prior to

drilling, and to keep the tangential forces small enough to avoid sliding of

the drilling tool on the surface during drilling. The undesired sliding was
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due to the compliance in the robot transmission, links and environment,

and could be up to several millimeters without compensation, seriously

degrading both quality and positioning of drilled holes. The proposed so-

lution was based on a combination of high-bandwidth control of the axial

forces applied to the workpiece, and active suppression of the sliding forces

through a model-based force control scheme. The forces were measured

using a stiff six-axis force/torque sensor, mounted directly between the
drilling machine and the tripod, see Fig. 6.1. A separate, pneumatically

driven axis of the drilling machine was feeding the drill along the tripod

central axis and into the material. The feasibility of the proposed method

was demonstrated in drilling experiments using an industrial robot sys-

tem.

6.2 Modeling and Control

The force control structure was based on the extended robot systems pre-

sented in Chapter 3. In order to use the extended robot system in appli-

cations requiring model-based control techniques, a dynamic model of the

system responses to external forces and motion references was needed. For

these purposes, the modeling and tuning techniques in Section 3.3 was

used, resulting in a model for the robot motion responses to both control

actions and external forces.

Environment properties

During stiction contact between the tripod and the drilled component, the

contact behavior was similar to a very stiff and poorly damped spring, as

predicted by many friction models such as the LuGre model [Canudas de
Wit et al., 1995]. When the tangential forces became larger than the break-
away forces of the stiction, the tripod started to slide across the surface,

with poor hole quality and positioning as a result. Therefore, it was im-

portant both to control the tangential forces so that sliding was avoided,

and to control the moments to keep the tripod in contact with the sur-

face at each of the three contact points. Once such a contact had been

achieved, the dependence of the contact force fe on the tool position pa was

expressed through the environmental dynamics. The resulting high-gain

feedback loop affected the stability and performance of the manipulator.

For a point contact, the environment dynamics can often be approximated

by a local stiffness, or as a (nonlinear) spring-damper [Diolaiti et al.,
2005]. For the tripod contact of the drilling tool used in this work, it was
necessary to take also the geometry of the contact into account. The con-

tact was considered as a combination of three-point contacts, where the
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force acting at each point contributed to the effective force and moment

acting at the robot TCP point. General frameworks for multi-contact sit-

uations have previously been demonstrated, e.g., in [Park and Khatib,
2005] using an operational space formulation. In the drilling application,
using a position/velocity-controlled robot, the contact properties of the
small tripod could be expressed as a (non-diagonal) stiffness matrix. For
the model of the 5-DoF system used in the experiments, the tool position

pa = [ t
T
a ϕa,x ϕa,y ]

T
was represented by the three translations ta and

the two rotation angles ϕa,x and ϕa,y around the x and y-axes (see Fig. 6.1),
expressed in a fixed coordinate system which was taken to coincide with

the initial position of the tool, pa = 0. The coordinates X
w
i of each contact

point in the world coordinate system were related to pa by

Xwi = Rx(ϕa,x)Ry(ϕa,y)X
TCP
i + ta �

�

⎡
⎢⎣ 1 0 0 0 zTCPi

0 1 0 −zTCPi 0

0 0 1 yTCPi −xTCPi

⎤
⎥⎦pa def.= X ipa (6.1)

where XTCPi = [xTCPi yTCPi zTCPi ] described the TCP-coordinates of the
contact points of the tripod. Assuming a linear stiffness fi = KiX

w
i at each

contact point, the full contact stiffness model was given by

fe =

3∑
i=1

([
KiX i[

XTCPi

]
�
KiX i

])
pa

def.
= Kepa. (6.2)

For the setup described in this work, where the contact points were placed

symmetrically on a circle in the xy-plane with radius r around the origin,

and where each point stiffness matrix Ki = diag(kx, ky, kz) was assumed
to be completely decoupled, the contact model was also decoupled with

stiffness matrix

Ke = diag(3kx, 3ky, 3kz, 1.5r
2kz, 1.5r

2kz). (6.3)

The contact model in Eq. (6.2) provided a useful local approximation dur-
ing stiction, and the objective of the control was to keep the system in

this stiction regime. This resulted in a multi-DoF force control problem

in a stiff environment, which is known to be a very challenging problem

[Colgate and Hogan, 1989; De Schutter and Van Brussel, 1988b; Siciliano
and Villani, 1999].
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Control Design

In the control design it is necessary to take both robot dynamics and envi-

ronment properties into account. Therefore, in addition to the model-based

control, the option to tune controllers manually in order to account for

poorly modeled or varying environment parameters is desired. Automatic

design procedures for force controllers have previously been presented [Na-
tale et al., 2000], but they are not suitable for the drilling application due
to the significantly higher contact stiffness and special control objectives.

Instead, we propose a control strategy based on an easily tunable force

controller using an inner motion controller with model-based disturbance

rejection and decoupling. In inner-motion force control, the measured con-

tact force and force reference are used as inputs to a motion- or impedance

equation. This relation is often chosen as a passive second-order system in

order to emulate the behavior of a passive mass-spring-damper. The robot

motion controller is set to track the output position from the impedance

equation. Because of the limited bandwidth of the motion control system

and the deformations of the robot caused by external forces, the tracking

of the desired motion may be poor when the robot is in contact with a stiff

environment.

In order to improve the tracking performance, the inner motion control

should be redesigned to include external force compensation. This can be

seen as trying to increase the “stiffness” of the robot as seen from the tool,

which improves the ability to control contact forces and moments. To this

purpose, a controller structure which includes this inner loop compensa-

tion as in Fig. 6.2 was used. In order to track the desired position obtained

by integrating the impedance relation, the inner motion controller should

have both a fast arm side response to motion commands, and good sup-

pression of external forces up to the desired bandwidth of the system. In

addition to force sensors, which can be used to obtain improved distur-

bance suppression through feedforward, feedback from arm side position

measurements could be used in the inner controller to improve the accu-

racy of the positioning. Such measurements could be obtained from, e.g.,

cameras or laser trackers. Here, force measurements and an H∞-optimal

inner controller were used to give a faster and more decoupled response

in contact. The discrete-time robot model obtained in Chapter 3, together

with a force sensor low-pass filter, can be written in input-output form

according to

pa(z) = Gar(z)pr(z) +Ga f (z)fe(z) (6.4)

pm(z) = Gmr(z)pr(z) +Gm f (z)fe(z) (6.5)

fe, f (z) = GLP(z)fe(z). (6.6)
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Figure 6.2 Simplified structure of the control system for drilling, with an outer

force control loop and inner-loop disturbance compensation.

Using the controller

pr(z) = r(z) − (Cm(z)pm(z) +C f (z)fe, f (z))︸ ︷︷ ︸
v(z)

(6.7)

the model of the inner loop system was given by

v = (I+CmGmr)
−1(CmGm fW f fe +C fGLPW f fe+

+CmWdmem +C fWd fe f )
Δ
= Gv [ f

T
e eTm eTf ]

T (6.8)

pa = Ga fW f fe −Garv
Δ
= Ga [ f

T
e eTm eTf ]

T (6.9)

where e f and em modeled measurement noise, and the weighting transfer

functions Wi were chosen to give a proper suppression of disturbances fe
at the arm side position pa, for frequencies up to approximately 25% of

the mechanical bandwidth. This lead to the optimization problem

min
Cm ,C f

∥∥∥∥
[
WvGv

WaGa

]∥∥∥∥
∞

(6.10)
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which was solved to give the controller transfer functions Cm(z) and C f (z),
using standard H∞-optimization methods [Zhou and Doyle, 1998]. In order
to simplify real-time implementation, the high-order controllers obtained

were reduced to order 15 using balanced model reduction [Zhou and Doyle,
1998].
The force controller was designed by manual tuning of the parameters

in a desired decoupled impedance in the form

MI
d2

dt2
Δp+DI

d

dt
Δp = fe, f − fr (6.11)

r = pre f +KdcΔp (6.12)

with MI and DI diagonal matrices. Since the inner loop design was based

on a 3-DoF model with translation only, a static decoupling matrixKdc was

included for improved decoupling between the control of xy-torques and xy-

forces. A proper choice for Kdc could be found from the static calibration

data in Section 3.3. Here, Kdc was chosen such that for all unit basis

vectors ei
Δpm,i = Kdc(e

T
i Δpm,i)ei (6.13)

where Δpm,i was the motor side motion required for a force change Δ feei
in stationarity. The arm side response of the full system to external forces

in Fig. 6.2 was described by the transfer matrix

Gtot(z) = Gc,a f (z) +Gc,ar(z)GI(z) (6.14)

where Gc,a f (z) and Gc,ar(z) were the responses in the tool position pa of
the closed inner loop to forces fe and motion references r, and GI(z) repre-
sented the discretized dynamics in Eqs. (6.11)–(6.12) from applied force to
r. The stability of the resulting system could be analyzed by considering

a system with Gtot(z) connected to the environment dynamics in a simple
feedback loop.

6.3 Experiments

The drilling experiments were carried out on an ABB Irb 2400 industrial

robot using the external sensor interface described in Chapter 3. The robot

was equipped with a pneumatic Atlas Copco LBL25 drilling machine with

4 mm drill diameter. A number of experiments were performed using

different robot configurations. The contact forces were measured using a

JR3 force/torque sensor, and the workpiece was a 3.5 mm thick plate of
high-strength aluminum.
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Figure 6.3 The forces during a drilling experiment using the built-in motion con-

trollers for the inner-loop control, with no control of the sliding forces. Top: Sliding

forces in the x-direction (solid) and in the y-direction (dashed), and normal (axial)
forces (dash-dotted). Bottom: Contact moments acting on the TCP point around the

x-axis (solid) and y-axis (dashed). In this case, large tangential forces were built
up in the uncontrolled x-direction. For purposes of illustration, the signals have

been filtered by a narrow-band notch filter in order to remove the effect of the drill

rotation at a frequency of 2100 RPM.

3-Degree-of-Freedom Control

In the first set of experiments, the built-in motion control of the robot was

used without force compensation in the inner loop. The axial environment

stiffness was approximately 150 N/mm. The approximate stiffness of the
robot and tool, with respect to forces applied at the drill tip, was 160 N/mm
in the axial z-direction, and 100 N/mm and 50 N/mm in the tangential
x and y-directions. There was also a significant static coupling, resulting

in a tangential deflection when axial forces were applied to the drill. In

Figs. 6.3–6.4 the results from one of the drilling experiments with 3-

DoF force/torque control is shown. The axial z-force and the moments
around the x and y-axes were controlled such that a stable contact was

achieved with a total axial force of 200 N. However, although the axial

180



6.3 Experiments

0 5 10 15 20 25 30

−1.5

−1

−0.5

0

0.5

t [s]

p
a
,x
y
[m
m
]

Figure 6.4 The linear motion of the tool in the x and y-directions during a drilling

experiment using the built-in motion controllers for the inner-loop control, with no

control of the sliding forces. Time t = 4 s corresponded to the start of the force build-
up phase, and the start and end times of the drilling phase occurred at t = 12 s
and t = 16 s. Undesired sliding of approximately 1.6 mm occurred in the tangential
x-direction, caused by the variations in the axial pressure forces.

force in Fig. 6.3 was accurately controlled to the desired value, the friction

forces between the tripod and the surface were not sufficient to be able

to suppress the sliding motion of the tool. This can be seen in Fig. 6.4, as

sliding occurred primarily in the x-direction, both during the application

of the pressure foot onto the surface, and when the cutting forces were

applied during the drilling. When forces were applied, the tripod contact

switched from stiction to slip and back again several times. This behavior

is also indicated in Fig. 6.3, which shows the presence of large x-forces

with discontinuities at transitions between stiction and slip. The total

deflection in the experiment was approximately 1.6 mm, of which 0.8 mm

occurred during the drilling phase. Both the positioning and quality of

the resulting holes were unsatisfactory.

5-Degree-of-Freedom Control

In the next set of experiments a 5-DoF force/torque control with an inner-
loop force compensation was used, in which the forces in the x- and y-

181



Chapter 6. A Study on Force Control for Accurate Low-Cost Robot Drilling

0 5 10 15 20 25 30
−250

−200

−150

−100

−50

0

50

100

150

0 5 10 15 20 25 30
−2

−1

0

1

2

3

t [s]

t [s]

f e
[N
]

τ
c
[N
m
]

Figure 6.5 The forces during a drilling experiment using using an inner-loop

controller with compensation for the robot compliance, and with active control of

the sliding forces. Top: Sliding forces in the x-direction (solid) and in the y-direction
(dashed), and normal (axial) forces (dash-dotted). Bottom: Contact moments acting
on the TCP point around the x-axis (solid) and y-axis (dashed). The tangential
forces were controlled to keep the friction contact in the stiction regime.

directions were controlled in order to suppress sliding. Figs. 6.5–6.6 show

the results of a drilling experiment where this controller was used. Ex-

cept for this change of controller, all other parameters were identical to

the previous set of experiments. In Fig. 6.6 it can be seen that the tool de-

flection when forces were applied during the force build-up was reduced to

approximately 0.1 mm, and sliding during the drilling phase was reduced

to 0.1 mm. A spectrogram plot of the forces can be seen in Fig. 6.7, show-

ing the spectral characteristics of the disturbance forces from the drill.

Having performed a number of experiments in different configurations,

the model-based force controller was always able to control the sliding

forces so that the tripod contact remained in the stiction regime during

the entire drilling operation, and the tangential deformation was reduced

significantly.
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Figure 6.6 The linear motion of the tool in the x and y-directions during a drilling

experiment using an inner-loop controller with compensation for the robot compli-

ance, and with active control of the sliding forces. The drill sliding was reduced in

the critical drilling phase by a factor of five as compared to the previous case.

In order to more accurately evaluate the motion during application of

contact forces and drilling, measurements were also performed using a

3-DoF Leica laser tracker. The reflector prism of the tracker system was

attached to the pressure foot, approximately 25 mm above the point of con-

tact between the surface and the drill (Fig. 6.8). The resulting measured
tool sliding can be seen in Fig. 6.9, where it can be seen that the maximum

deflection was well below 0.2 mm, confirming the previous measurements.

6.4 Summary and Concluding Remarks

The experiments indicate that force control of the pressure forces is fea-

sible for drilling tasks. The full 5-DoF force/torque control resulted in
greatly improved mechanical stiffness and vibration suppression, leading

to significant improvements in hole quality and positioning. The use of an

industrial robot and a small tripod also provides good dexterity and flexi-

ble usage, making the system operable in a large workspace and complex

structures. The use of a tripod limits the system to drilling perpendicu-
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Figure 6.7 Spectrogram plot of the axial forces during a drilling experiment using

an inner-loop controller with compensation for the robot compliance. Note the broad-

band impact phenomenon when the drill feed is started at t = 9 s, and the harmonics
exhibited during the drill phase.

larly to the surface, but together with the torque control also helps obtain

good normality of the drilled holes.

As an alternative to controlling the position using arm-side position

feedback, the controller attempts to achieve sliding suppression by ensur-

ing that the tangential interaction forces are always small enough to keep

the interaction in the stiction regime. In practice, the achievable band-

width of the force control is limited by the mechanical bandwidth of the

robot, as well as by the bandwidth of the inner motion control. Instead,

high-frequency disturbances are damped out by the tripod high-friction

contact, providing extra mechanical stiffness against disturbances such

as vibrations from the feeding and rotation of the drilling tool. The force

control and active sliding suppression takes care of large disturbances

at lower frequencies, such as the slower variations of the cutting forces.

Thereby, a system which is able to reject disturbances over a wide fre-

quency range is obtained, at a very low cost.

The drilling force control system differs from most other applications of

force control, such as polishing, grinding, and assembly, where the force
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Figure 6.8 Drilling tool with attached reflector prism, used for measurement

with the Leica laser tracker. The prism was attached to the tripod, giving accurate

measurements of the translations at the drill tip.

control is used to increase the compliance rather than to improve the

stiffness to force disturbances. In the drilling system, the model-based

inner-loop compensation improves the stiffness, using one or several local

models of the robot stiffness and dynamics. In order to experimentally

obtain and tune such models, arm side position measurements must be

available. In cases when such measurements are not available, similar

results can in some configurations be obtained without inner loop com-

pensation, using proper tuning of the outer force controller. However, the

couplings between different degrees of freedom may lead to poor perfor-

mance, and attempts to increase the bandwidth result in limit cycles and

oscillations in the contact force.

The use of industrial robots in automatic drilling applications has been

limited, mainly due to the presence of rapidly varying interaction forces

in combination with compliance in gear boxes and links. Functionality for

high-bandwidth force control in modern industrial robot control systems

could potentially lead to robotic drilling systems with significantly im-

proved performance, without the use of costly hardware modifications and

calibration procedures. In this chapter, we have presented methods and

systems for force-controlled robot drilling. Using a 6-DoF force/torque sen-
sor, an outer force control loop and a model-based inner-loop disturbance

compensation scheme have been designed, and used to control the axial
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Figure 6.9 (Top plot:) Filtered contact forces during a drilling experiment using
an inner-loop controller with compensation for the robot compliance, and with active

control of the sliding forces. (Bottom plot:) Unfiltered linear deflection of the drilling
tool in the x (solid) and y-directions (dashed), as measured by the Leica laser
tracker.

contact force and suppress the sliding of a tripod contact while the drilling

is performed. The advantage of the proposed controller is demonstrated in

reproducible drilling experiments using a medium-sized industrial robot

system.
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Conclusion

7.1 Summary

This thesis has dealt with questions related to feedback from two very dif-

ferent types of sensors: digital cameras and force/torque sensors. Apart
from a number of topics related to visual motion estimation and imple-

mentation of force control, several different approaches to combination

of these two types of sensors have been considered. In the treatment of

the vision-related topics it has been attempted to take a control-oriented

approach, rather than a more vision-oriented approach based on for in-

stance projective and epipolar geometry. In general, vision-oriented ap-

proaches are relevant in control problems where a modular structure of

visual estimation and control is used, such as the position-based algorithm

in Chapter 4. On the other hand, a good example of the advantages of a

control-oriented approach is provided by the stability-oriented versions of

the intensity-based tracking presented in Chapter 5. In such problems,

exploiting the dynamic nature of the tracking problem makes it possible

to relax the requirement of least-squares optimality of the approximation,

thereby obtaining systems exhibiting greatly improved tracking perfor-

mance, both in theory and in practice.

As a summary, the work, contributions and conclusions drawn can

roughly be divided into the following categories.

Robot System Sensor Interface and Applications

A new interface for external sensor control for a standard industrial robot

control system, designed at Lund University, has been used to demon-

strate control using external sensors in several different applications.

Questions related to geometry and force control task specification have

been discussed. The dynamical properties of the system with its new in-
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terface have been modeled and verified. Industrial applications of force

control, such as grinding, deburring and drilling, have all been demon-

strated. Additionally, the system has been used successfully as an exper-

imental platform for high-speed visual servoing and force/vision control.
Robotic force control can be carried out on two levels, either with forces

controlled by a separate external tool, or by integrating the force control

with the control of the robot motion. The advantages of the robot with in-

tegrated force control include the possibility of obtaining higher stiffness

at a considerably lower weight, as well as increased flexibility in mounting

and accessibility, due to the six degrees of freedom available. As an ex-

ample, as illustrated in Chapter 6, functionality for high-bandwidth force

control in modern industrial robot control systems could potentially lead

to usable robotic drilling systems, without the use of expensive special-

purpose drilling end-effectors or calibration procedures.

Feature-Based Methods for Visual Tracking and Control

Most visual tracking algorithms use a separate feature extraction step,

where the image data is compressed into a smaller number of image fea-

tures, from which the motion is estimated. Methods such as [Drummond
and Cipolla, 2002; Martin and Horaud, 2002] have been extended and re-
formulated to the case of dynamic tracking. For tasks where task-space

specifications exist, methods using position-based hybrid force/vision con-
trol algorithms have been developed, using the motion estimator together

with inner-motion impedance control to obtain compliant behavior in the

force-controlled directions. For tasks defined directly in image space, an

image-based technique for vision/force control has been presented, and
used to perform drawing on a surface. Issues concerning robustness and

real-time performance of the feature-based trackers have also been con-

sidered. Motion estimation for uncalibrated hand/eye camera systems has
been demonstrated, where a dual quaternion representation of the pose

is used to obtain linear constraints on the estimated parameters, thereby

reducing the dimensionality of the problem. Further, a novel method for

online minimization of the measurement error covariance for a multi-

camera setup has been presented. The suggested strategy was compared

to heuristic algorithms, and evaluated in simulations capturing the real-

time properties and effects on a vision-based control system.

Feature-based methods in general suffer from problems relating to the

feature matching step. If the matching step is always possible to perform

reliably, the solution to the pose/motion estimation problem is generally
more robust to illumination variations, occlusions and other disturbances

and imperfections in the modeling. Satisfying the demands for reliable

matching in a real-time context may be very challenging in the general

case. In practice, it is necessary to integrate the tracking and match-
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ing steps, such that information from the tracking is propagated to the

matching algorithm, and vice versa. Examples of this integration are the

tracking windows commonly used for the matching of features in image

sequences, and the possibility for the estimation algorithm to modify the

relative weight of different features depending on matching confidence.

Intensity-Based Methods for Visual Tracking and Control

Intensity-based approaches for tracking and vision based position con-

trol have also been presented. Dynamical visual tracking based directly

on image intensity measurements results in very high processing rate,

good accuracy and short input-output latency. This has been illustrated

in several tracking and visual servoing experiments, using sampling rates

of up to 250 Hz. In the experiments, the tracking frame rates were lim-

ited only by the capability of the camera and the IEEE-1394 bus, as the

tracking algorithm itself consumed less than 10% of the CPU time on a

2.4 GHz computer. By focusing on problems related to stability and dis-

turbance sensitivity in feedback systems, it was shown to be possible to

relax previous approximation-oriented solutions, where an optimal least-

squares fit resulting in high-gain feedback was required. In situations

where this sub-optimal structure with pose estimation and feedback can

be avoided, it is possible to improve performance several orders of mag-

nitude in many problems. This was illustrated by simulations of visual

servoing and control of simple mechanical systems. The effect of distur-

bances can be suppressed by modifying the state estimator to take the

disturbance characteristics into account in the linearization.

The intensity-based methods are not limited only to simple tracking

problems with few degrees of freedom, but are fully capable of tracking

rigid motions in well-structured environments, in particular when using

multi-scale techniques. Although illumination variations can be partially

compensated for, the inherent sensitivity to the illumination conditions

make robust implementation in natural environments a challenging topic

for future research. Hybrid methods, in which the intensity-based methods

are complemented by standard feature measurements for drift compensa-

tion, represent one possible extension to the basic methods.
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A

Vision System Modeling and
Calibration Techniques

In this appendix, some details on camera modeling are covered, as well

as the details of the calibration techniques used. An introduction is given

to the different coordinate systems, representations and notations which

are used throughout this thesis. Some details on the hardware and soft-

ware used for the experiments and simulations of real-time vision are also

presented.

A.1 Frames, Poses and Notation

Models of robotic systems, and robotic vision systems in general, contain

a large number of different coordinate systems. Coordinate systems are

regularly attached to the robot base, wrist/flange and the tool held by
the robot (at the so called Tool Center Point, TCP), to each camera, and
to each object in the workcell/environment. Many methods, for instance
in kinematics and visual pose estimation, introduce new, intermediate

coordinate system on each robot link and on the image plane of each

camera. The pose of each frame1 (coordinate system) is described relative
to another frame, often as an orthogonal rotation matrix R with det(R) =
1 and a translation vector t. Rotation/translation Rab and tab describe the
pose of frame a relative to another frame b. Given a point in space with

coordinates Xa and Xb in frame a and b, respectively, we can use

Xa = RabXb + tab (A.1)

1When in this thesis we talk about the pose (position/orientation) of an object, what
is actually referred to is always the pose of its coordinate system relative to some other

coordinate system.
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Figure A.1 The pinhole camera model, showing the coordinate system and optical

Z-axis, the image plane π , focal length f , and principal point o.

to transfer the point coordinates from b to a. Geometrically, the columns

of Rab and the vector tab represent the three basis vectors and the origin

of b, all expressed in the coordinates of frame a. Expression (A.1) is often
written using homogeneous coordinates as[

Xa

1

]
=

[
Rab tab

0 0 0 1

] [
Xb

1

]
def.
= Tab

[
Xb

1

]
(A.2)

using the 4�4-matrix Tab. This matrix representation of the pose is highly
over-parametrized, since 12 parameters are used to describe the six de-

grees of freedom of a rigid transformation. For purposes of calibration

and motion estimation, in which the rigid transformation is calculated by

solving a parameter optimization problem, representations using a lower

number of parameters are required. Euler angles, angle/axis or quater-
nion parametrizations are the most frequently used pose representations

for such purposes.

A.2 Camera Modeling

The most common camera model is the pinhole or perspective camera. For

more information about other camera models, such as the weak perspec-

tive and orthographic approximations, see for instance [Trucco and Verri,
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1998]. The perspective camera model consists of a point O, the center
of projection, and a plane π , the image plane. The origin of the camera-
centered coordinate system is located at O, see Fig. A.1. The distance

between O and π is called the focal length, f . The line perpendicular to
π that passes through O is the optical axis, and the intersection of this
line with π is the origin o of the image coordinate system, the principal
point. The projection equations for a point (X Y Z)T in Cartesian space
in the perspective camera are given by

x = f
X

Z
(A.3)

y= f
Y

Z
. (A.4)

This can be written using homogeneous coordinates as

λ

⎡
⎢⎣ xy
1

⎤
⎥⎦ =

⎡
⎢⎣ f 0 0 0

0 f 0 0

0 0 1 0

⎤
⎥⎦
⎡
⎢⎢⎢⎣
X

Y

Z

1

⎤
⎥⎥⎥⎦ (A.5)

where λ = Z is the depth of the imaged point in the camera. To further
model the internal geometric properties of the camera optics and sensor, it

is convenient to introduce a number of intrinsic camera parameters. These

parameters allow us to describe non-quadratic pixels (aspect ratio�=1),
skewed sensor pixel arrays, and translation of the principal point from

the origin in the pixel grid. A camera model including these effects is

given by

λ

⎡
⎢⎣uv
1

⎤
⎥⎦ =

⎡
⎢⎣ f s u0 0

0 γ f v0 0

0 0 1 0

⎤
⎥⎦
⎡
⎢⎢⎢⎣
X

Y

Z

1

⎤
⎥⎥⎥⎦ =

=

⎡
⎢⎣ f s u0

0 γ f v0

0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
K

⎡
⎢⎣ 1 0 0 0

0 1 0 0

0 0 1 0

⎤
⎥⎦

︸ ︷︷ ︸
R3�4

⎡
⎢⎢⎢⎣
X

Y

Z

1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
X

. (A.6)

The matrix K is the intrinsic camera matrix, and R3�4 is the extrinsic

camera matrix. The intrinsic parameters f and γ describe the focal length
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and aspect ratio, s is the skew (usually close to 0 in modern cameras), and
(u0 v0)

T is the position of the principal point in the image. The matrix

R3�4 can be used to change coordinate system in the world, usually to a

coordinate system attached to some object in the scene

λ

⎡
⎢⎣uv
1

⎤
⎥⎦ = K [R t ]Xo (A.7)

where R and t are the orthogonal rotation matrix and the vector describ-

ing the pose of the object with respect to the camera. Xo describes the

object model in a local object coordinate system. In addition to these pa-

rameters, it is often necessary to model distortions in the camera and lens

system. A commonly used technique is to use polynomial models for radial

and tangential distortion [Zhang, 1999], in the form⎡
⎢⎣uv
1

⎤
⎥⎦ = K

⎡
⎣ pr(r2)

[
x

y

]
+ pt(r

2, x, y)

1

⎤
⎦ (A.8)

with x = X /Z and y = Y/Z from Eqs. (A.3)–(A.4) (assuming f = 1)
and r2 = x2 + y2, and K the intrinsic camera matrix in Eq. (A.6). The
radial distortion function pr(r

2) is usually a polynomial with pr(0) = 1.
In practice, using high-order polynomials to model radial distortion is only

necessary when using wide-angle lenses. The tangential distortion vector

pt(r
2, x, y), modeling imperfect centering of the lens system by low-order

polynomials, can often be neglected for modern lens systems.

The general camera model including distortion contains a large num-

ber of parameters, which makes reliable calibration difficult when only

a few calibration images are available. Therefore, in most calibrations

performed within this work only a first order symmetric radial distortion

model was used. Another advantage is that this distortion model is easy to

invert, which makes real-time distortion correction possible to implement

without any significant decrease in performance. Distortion compensation

was performed directly on the image data, thereby making it possible to

use the distortion-free camera models for modeling of image projections.

Additionally, the image skew parameter s was always assumed to be equal

to zero, as is customary in modern calibration software. Another simplifi-

cation, which was sometimes used, was to reject the principal point from

the optimization. The reason is that the principal point is often very dif-

ficult to estimate accurately, and that good approximations can often be

obtained by assuming that it is located at the center of the pixel grid.
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Figure A.2 The most important frames and transformations. Shown are the

frames attached to the tool/gripper g, the calibration target t, cameras c1 and c2,
and the robot base b.

A.3 Multi-Camera Calibration Algorithm

When a multi-camera system is used, both the intrinsic camera param-

eters and the relative positions of the sensors need to be determined.

When the cameras are fixed in the workspace, as depicted in Fig. A.2

for the two-camera case, the calibration object can be attached to the

robot end-effector. The measured joint positions and the kinematics of

the robot provide accurate information on the (relative) movement of the
end-effector between the images in the sequence. Therefore, the extrinsic

parameters are partially known, and this information was used in the al-

gorithm below in order to decrease the number of parameters that need

to be estimated. In order to find all the geometric parameters illustrated

in Fig. A.2, a calibration procedure in three steps was used:

1. Individual estimation of intrinsic and extrinsic camera parameters

for each camera, using standard calibration algorithms without use

of the robot position measurements.

2. Analytical computation of Tt� from calibration data and robot kine-

matics.
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3. Nonlinear least-squares optimization of all parameters simultane-

ously.

The calibration procedure used in Step 1 was based on the method of

[Zhang, 1999], although the final optimization step was not required in
this step of the algorithm. The problem in Step 2 is mathematically equiv-

alent to a standard hand-eye calibration problem. This is seen if we note

that for two different end-effector positions, denoted by numbers p and q,

and for each camera ck, it holds that

Tckt(q)
−1 Tckt(p)Tt� = Tt� T�b(q)T�b(p)

−1 (A.9)

which can be solved for the unknown constant Tt�. Many different solu-

tions to the hand-eye calibration problem exist, in this work the classical

method of [Tsai and Lenz, 1989] was used. The final optimization in Step
3 was used to minimize, for all cameras, the errors between the m mea-

sured and reprojected image points in each of the n images. For a total

number of cameras q, this error becomes

n∑
i=1

m∑
j=1

q∑
k=1

(yi jk − ŷi jk(K1, ⋅ ⋅ ⋅ ,Kq,Tt�,Tc1c2 ,Tc1b))
2 (A.10)

where the reprojected image coordinates ŷi jk was given by the projection

equations{
λ i jkŷi jk = KkTc1bT�b(i)

−1(Tt�)
−1X j , k = 1

λ i jkŷi jk = Kk(Tc1ck)
−1Tc1bT�b(i)

−1(Tt�)
−1X j , k ≥ 2

(A.11)

where X j were the model points of the calibration object in its local coor-

dinate system, and Kk were the matrices of intrinsic camera parameters.

The minimization was performed with respect to the parameters of Kk,

Tc1b, Tc1c2 and Tt�.

A.4 Simulated Real-Time Vision

In order to facilitate real-time simulations of robot vision algorithms, a

simulation tool using the graphics API OpenGL was developed and used

extensively in the simulations. In the program, the geometry of a scene can

be specified and controlled from Matlab/Simulink, with object geometries
specified either directly in Matlab or in XML files. The communication is

handled through TCP/IP sockets and a shared memory interface for fast
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Figure A.3 Image from calibration experiment using the virtual camera/robot
simulation tool.

readout of images. Using mid-end graphics hardware, simulated visual

servoing at frame rates of several hundred Hz can be performed in real-

time. The simulation tool makes it possible to perform rapid prototyping

and testing of vision algorithms, using practically important effects and

disturbance sources such as surfaces with irregular textures, background

clutter, reflections, and varying illumination.

In order to use the tool for evaluation of estimation accuracy, the exact

geometrical and image transformations of the graphics engine must be

known exactly. A camera calibration was performed, using a distortion-

free virtual camera with a specified camera matrix

K =

⎡
⎢⎣ f s u0

0 γ f v0

0 0 1

⎤
⎥⎦ =

⎡
⎢⎣ 500 0 320

0 500 240

0 0 1

⎤
⎥⎦ (A.12)

and a planar quadratic calibration pattern as shown in Fig. A.3. Using 6

images and the calibration algorithm in A.3 for a single camera with four

intrinsic parameters (focal length, aspect ratio, and principal point), the
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Figure A.4 Results from calibration. Top left: standard deviation of the repro-

jected image error after each iteration in the final Levenberg-Marquardt optimiza-

tion step. Top right: the reprojected image errors at the optimum. Bottom left: the

norm of the translation error in Tc1b after each iteration. Bottom right: the norm of

the translation error in T�t after each iteration.

estimated camera matrix was

K̂ =

⎡
⎢⎣ 499.93 0.0 320.34

0 499.92 240.60

0 0 1.0000

⎤
⎥⎦ , (A.13)

indicating that the projection equations of the simulation correspond well

to the specified parameters. The results are illustrated in Fig. A.4, where

the convergence of the errors in the reprojected image points and param-

eters are shown, as well as the reprojected 2D-errors in the images.

A.5 Experimental Vision System

The communication with IEEE-1394 cameras is in general handled using

one of a number of available APIs, such as the Linux version of the dc1394
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API [DC1394, 2006] used in this thesis. The APIs make it possible to
control the setup by accessing the camera control registers over the IEEE-

1394 bus, and to obtain image data from the camera. For IEEE-1394

cameras, exposure start and image readout can be handled automatically

by the camera. The frame rate and exposure time are then set directly

by writing suitable values to the camera control registers using the API,

and the camera is started in isochronous (i.e. equidistant sampling) image
capture mode. The camera will then start to capture and transfer images

at equidistant capture times. Many cameras also include the possibility

to control exposure start and stop by the use of an external trigger signal,

providing the ability to synchronize the exposure of several cameras.

The vision system used in the experiments in this thesis was based on

a number of Basler A602fc and Sony DFW-V300 digital cameras, con-

nected to a Linux platform via standard IEEE-1394 connections. The

Sony cameras have support for standard video modes with VGA reso-

lution and frame rates of up to 60 images/second. The Basler cameras
are CMOS cameras supporting global shuttering, making them suitable

for high-speed vision applications. The Basler cameras additionally sup-

port non-standard region-of-interest based video modes, where the frame

rates are limited only by shutter speed, image read-out and transfer de-

lays. Full VGA resolution single-channel images can be obtained at 100

images/second, while at the external robot controller sampling frequency
of 250 Hz, the maximum resolution is 512�256 pixels. Some low-level im-
age processing and graphics operations were performed using the OpenCV

library [Bradski, 2000]. Most non-real-time algorithms were implemented
in Matlab, while real-time code such as visual trackers were implemented

entirely in C/C++.
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