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1

Introduction

1.1 Background

As soon as we get up in the morning we start using products produced
in large factories. The sugar in our coffee was refined in a sugar mill.
The paper that the morning paper was printed on was manufactured
in a paper mill. The electricity for the toaster was produced in a power
plant. And it goes on like that all day long. The factories that produce
the products that we are all dependent on are to a large extent auto-
mated. It increases their effectiveness and capacity, and great effort is
put into making them even more automated. Over the years a lot of dif-
ferent control structures have been developed both in academia and in
the industry. Some of them are very complicated and others are quite
simple. But in spite of all the advances the old PID controller is still the
most widely used controller, at least in the process industry. The PID
controller has a fixed structure with only three parameters and is thus
easy to tune manually without detailed knowledge of the process to be
controlled. Nevertheless, many of the PID controllers that are used
to control processes in the industries are poorly tuned [Bialkowski,
1993]1. This results in a loss of performance in the processes and thus
a loss of economical benefit for the industry. Consequently, methods
for automatic tuning of PID controllers are valuable. Automatic tun-

1This reference is rather old but the author’s experience is that the point of it is still
valid.
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1.2 The Problem

ing involves both identification and controller design. There are also
some practical aspects to be treated, but the algorithm must always
contain an automatic design method. There has been a lot of research
in the area of automatic PID design for several years and during very
recent years some good results have been obtained for SISO (Single In-
put Single Output) systems [Skogestad, 2001], [Åström and Hägglund,
2005]. Attempts have also been made to find results for multi-variable
systems [Åström et al., 2002], [Wang et al., 2000], [Wang and Yang,
2002], [Wang et al., 2002], [Wang et al., 2003]. None of these attempts
have been successful which means that finding such results is an open
problem. This thesis is part of an attempt to solve that problem for
systems with two input signals and two output signals.

1.2 The Problem

Automation in the process industry are in many cases performed by
hundreds of different controllers. Each controller tries to make a pro-
cess property follow a certain reference value, and it is often inde-
pendently tuned. The fact that control circuits may affect each other
presents a problem. Suppose, for example, that temperature and pres-
sure in a vessel are controlled by different controllers. Then the control
circuits will, of course, affect each other. When separate controllers are
used in this way the cross couplings in the process may result in poor
performance. A solution to this problem is to design a multi-variable
controller that takes the interactions in the process into account. There
are different theoretical solutions of that kind available in the litera-
ture. Some of them use a decoupler that deals with the cross cou-
plings, and SISO controllers to control each decoupled loop (for exam-
ple [Åström et al., 2002], [Wang et al., 2000]). Some of them handle
the process in a more direct way [Zhou and Doyle, 1998], [Åström and
Wittenmark, 1990].
Systems with two input signals and two output signals are impor-

tant kind of systems that may have cross couplings. They are often
called TITO systems (Two Input Two Output). A lot of the TITO sys-
tems found in the process industry have an additional property apart
from being TITO systems. They are close to being linear square stable
non-singular systems as defined in Definition 1.1.

9



Chapter 1. Introduction

DEFINITION 1.1—LINEAR SQUARE STABLE NON-SINGULAR SYSTEMS
A linear square stable non-singular system is stable and has the same
number of input signals and output signals. It is linear and can be
represented by a linear square stable non-singular transfer-function
matrix. That the transfer-function matrix is non-singular means here
that it is not singular for any positive finite frequency on the real axis.

The work presented in this thesis is focused on TITO systems. When
they are mentioned in the text it is assumed that they have the prop-
erties stated in Assumption 1.1.

ASSUMPTION 1.1—TITO SYSTEMS
It is assumed that the treated TITO systems are linear square stable
non-singular systems with two input signals and two output signals.

Systems that are non-linear have to be linearized.
The work presented in this thesis is part of a project that aims to

find an algorithm for automatic design and tuning of PID controllers
for TITO systems. The objective of the project is stated in Objective 1.1.
A clear understanding of the project’s objective is crucial to an under-
standing of the theory presented in this thesis.

OBJECTIVE 1.1—THE OBJECTIVE OF THE PROJECT
The objective of the project is to find a suitable controller structure
and an automatic design and tuning procedure for the controller.

The specific objective of the work presented in this thesis is to pro-
vide methods that can make up the core of a solution that satisfies
Objective 1.1.
The first step of this work was to find a suitable control structure.

Today, TITO systems in the process industry are often controlled by
two PID controllers and with no special structure for treatment of cross
couplings. This control structure is depicted in the block diagram of
Figure 1.1. If oscillations occur due to cross couplings it is often dealt
with by slowing down one of the loops. This is an effective way of
reducing the oscillations, but it may result in slow control.
In the control structure depicted in Figure 1.1 there is no part

specially designed to deal with cross couplings. Each input signal is

10



1.2 The Problem

PID

PID

TITO system

−1

−1

∑

∑

Figure 1.1 Block diagram of a common control structure for TITO systems in
the process industry

paired with one of the output signals and the controllers are tuned
(often manually) as well as possible. This is not satisfactory. The cross
couplings may cause oscillations or other unwanted behavior in the
closed loops since they are not properly treated. Here, the use of an-
other control structure is proposed. Keeping the PID controllers in the
structure is motivated because the PID controller is common in the
process industry and recognized by the operators.
The structure depicted in Figure 1.2 is sometimes used for control

of TITO systems but no satisfying decoupler design method, and no
satisfying PID design method for decoupled loops, have been found
before (see Chapter 3 and Chapter 4).
The use of decoupling is not a new idea. It has been used several

times before (see Chapter 3). However, it is generally not used in the
process industry. The reason is that the existing decoupler design meth-
ods are hard for an operator to use, hard to automate, or do not give
a decoupler with good performance. There are some special require-
ments of an automatic method that are not fulfilled by these methods
(see Chapter 2 and Chapter 3). A new decoupler design method that

11



Chapter 1. Introduction

TITO system

PID

PID

Decoupler

−1
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∑

∑

Figure 1.2 Block diagram of the proposed control structure for TITO systems
in the process industry

fulfills these requirements and gives good performance is proposed in
Chapter 3.
There are a lot of PID design methods that were developed for the

process industry. But it turns out that none of them works satisfactorily
for decoupled systems (see Chapter 4). This is due to the fact that they
rely on simple models. It is true that simple process models can often
be used in the process industry. But this simplicity is destroyed by
decoupling. Thus a new PID design method is proposed in this thesis
(see Chapter 4).
The work is aimed at TITO systems. The reason is that TITO sys-

tems are the next step in complexity above SISO systems and that they
are quite common in the process industry.
With the structure depicted in Figure 1.2 the control problem is

separated into two parts, one part that concerns decoupling and a
second part that concerns control of decoupled loops. It turns out that
it is possible to find automatic design methods for these two parts. The
main contribution of this thesis is that it provides such methods.

12



1.3 Outline

1.3 Outline

Chapter 2 contains a discussion of specifications in design methods
and special requirements of automatic tuning methods. Chapter 3 con-
tains a description of a decoupling method. The results of Chapter 3
are of both general theoretical interest and practical interest when it
comes to automatic design and PID controller tuning for TITO sys-
tems. Chapter 5 contains a description of how knowledge of the decou-
pler structure can be used to tune the decoupler and to improve the
models to be used in the PID design procedure. Chapter 4 contains
a description of a PID design method that was developed to work for
decoupled systems. Chapter 6 contains a description of how the meth-
ods described in Chapter 3 and Chapter 4 can be combined to form a
core in an algorithm for automatic design and PID controller tuning
for TITO systems. It also contains some simulated examples. Chap-
ter 7 contains a description of a project where the developed methods
were tested on a process at Stora Enso Publication Paper, Hylte Mill
in Sweden.

13



2

General Requirements

In Chapter 1 it was established that the main objective of the work
presented in this thesis is to find methods that can be used in an
algorithm for automatic design and PID controller tuning for TITO
systems. In this chapter specifications and some general requirements
of such methods are described.

2.1 Specifications

One of the first steps of controller design is to find out what speci-
fications the closed loop system should satisfy. In some applications
the specifications are given and easy to understand. They could, for
example, be specifications of the maximum deviation from a reference
trajectory. In other applications the specifications can be vague. For
example it could be that a step load disturbance should be attenuated
fast and that the system should be robust, and not overly sensitive to
measurement disturbances. It can then be hard to tell what fast means
and how the trade off between fastness and robustness (a trade off like
that is common) should be done. In the case of automatic controller
design and tuning it is important to find out if it is possible to find
general specifications that are reasonable for the class of system for
which the controller is to be used.

14



2.1 Specifications
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Figure 2.1 Block diagram of the closed loop system with relevant disturbances

General Disturbances in the Process Industry

In the process industry (for which this work is aimed) robustness
and disturbance attenuation are often the primary objective of con-
trol, and this should be reflected in the specifications on which the
design method is based. Below is a general description of what distur-
bances we should expect on a process in the process industry, and a
short discussion.
The feedback system with input signal, output signal and distur-

bances is depicted in Figure 2.1. A similar figure and a discussion of
specifications are present in [Zhou and Doyle, 1998].
The load disturbance (or process-input disturbance) l is generally

a low-frequency disturbance and process output disturbances n and
measurement disturbances m are often high-frequency disturbances.
It is undesirable to have high-frequency disturbances amplified in

the control signal u since it may damage the actuator and/or give a
high energy consumption. Thus, the transfer functions from n and m
to u

Gnu = −C (I + GC)
−1

Gmu = −C (I + GC)
−1

should have low high-frequency gain. Since these two transfer functions
are identical they can be treated as one.

15



Chapter 2. General Requirements

Ideally all disturbances in the output signal y should be attenuated.
Thus, the transfer functions from n, m, and l to y

Gny = (I + GC)
−1

Gmy = −GC (I + GC)
−1

Gly = (I + GC)
−1
G

should be small or at least bounded.
The transfer function Gny is often called the output sensitivity func-

tion S and the transfer function Gmy is often called the output comple-
mentary sensitivity function T [Zhou and Doyle, 1998].

Stability and a Stability Margin

Stability of the closed loop system is, of course, necessary but it is also
necessary that the system be robust enough not to be pushed over to
instability by small modeling errors or small nonlinearities. It is thus
necessary to have a measure of the system stability margin, a measure
of how far it is from instability. Theorem 2.1 concerns SISO systems
and is called the Nyquist criterion. It is well known and documented
in the literature (see for example [Goodwin et al., 2001]).

THEOREM 2.1—THE NYQUIST CRITERION
If the system is open-loop stable, then, for the closed loop to be in-
ternally stable, it is necessary and sufficient that no unstable cancel-
lations occur and that the Nyquist plot of GC not encircle the point
(−1, 0).

In the case where the prerequisites of Theorem 2.1 are fulfilled and the
closed loop system is stable, the shortest distance of the Nyquist curve
to the critical point (−1, 0) is a good measure of the system stability
margin. Stability and the need for good stability margins should be
reflected in the specifications.

Special Demands on Automatic Methods

Different controller design methods have different ways of optimizing
more or less relevant criteria. The specification that the method should

16



2.2 Optimization Criteria

work as an automatic method gives rise to some special demands. If
a design method or a decoupling method is to be used for automatic
tuning it must be simple. In this context this means that the method
should not require qualitative choices to be made by the user. It is,
for example, not good if approximations that depend on the process
model structure have to be done. It is not a problem if the method
requires complicated computations, as long as these can be performed
by a computer in a numerically stable way without qualitative choices
and in a limited amount of time. If the method requires parameter
tuning by an operator, there must be default values that always work
fairly well.
In this thesis, methods that can be used for automatic decoupling

and tuning of PID controllers for TITO systems are developed. During
the work with these methods the special requirements for automatic
methods were taken into account. These requirements are summarized
in Summary 2.1.

SUMMARY 2.1—SPECIAL REQUIREMENTS FOR AN AUTOMATIC METHOD
The method should not require that qualitative choices be made by the
user. If the method requires parameter tuning by the user, there must
be default values that always work fairly well.

2.2 Optimization Criteria

An automatic design method has to perform some kind of optimization
in the search for the controller structure and/or controller parameters.
It is very important that the specifications are reflected in the chosen
optimization criteria. If the specifications don’t capture all important
properties of the closed loop system, or if the optimization criteria are
not carefully chosen, the designed controller might of course be bad,
even though it is optimal with respect to the specifications and the
optimization criteria.

17



Chapter 2. General Requirements

2.3 Conclusion

This chapter contains a discussion of specifications and general re-
quirements of design methods. It serves as a background for the fol-
lowing chapters where such methods are proposed.

18



3

Decoupling

3.1 Introduction

A decoupler design method for linear square stable non-singular sys-
tems is presented in this chapter. The method is used in decoupler
design for TITO systems in later chapters (see Chapter 6 and Chap-
ter 7).

Structure

In Figure 1.2 a suitable control structure for a TITO system is shown.
In this chapter the theory of decoupling for more general multi-variable
systems is explained. It is assumed that the systems are linear square
stable non-singular systems as defined in Definition 1.1. Systems that
are non-linear have to be linearized.
As explained in Chapter 1 TITO systems belong to the class of lin-

ear square stable non-singular systems, which means that the method
proposed here is also valid for TITO systems. Figure 3.1 shows the
general structure of the closed loop. G is the linear square stable non-
singular transfer-function matrix of the process. D is the linear square
stable non-singular transfer-function matrix of the decoupler. C is the
diagonal transfer-function matrix with SISO PID controller transfer-
functions on the diagonal. Structures similar to the one depicted in
Figure 3.1 have been used in the context of decoupling before (see the
references in Section 3.1 and Section 3.4).

19



Chapter 3. Decoupling

GD

−1

C
∑

Figure 3.1 Block diagram of the closed loop system

Why Decouple?

It is important to ask what the purpose of the decoupler is before the
theory of decoupler design is developed. That question is answered with
the statement of a decoupler design objective in Objective 3.1.

OBJECTIVE 3.1—THE DECOUPLER OBJECTIVE
The decoupler objective is to diagonalize the considered system, adding
a minimal amount of dynamics and a minimal amount of time delay
to the system. It is also important that the decoupler is not of high-
pass character. Furthermore, the decoupler design method should ful-
fill the special requirements of an automatic design method (see Sum-
mary 2.1). In this context diagonalizing the considered system means
choosing the transfer function D in such a way that the product GD
is a diagonal transfer-function matrix.

Below is a motivation for the decoupler objective.
The decoupler should diagonalize the system because it is then pos-

sible to use SISO controllers and SISO controller design methods for
the decoupled loops. Furthermore, it is easy to make the output signals
follow independent setpoint changes.
It is of course obvious that it is advantageous to add as little time

delay as possible to the system by the decoupler.
The decoupler is used together with the controller and they are

implemented in the same system. PID controllers are often low-pass
filtered by a second order filter. This is done because it gives the
controller low-pass character, which is necessary to give good high-
frequency noise attenuation. The product of the decoupler and the

20



3.1 Introduction

controller DC should be of low-pass character for the same reason.
Thus, it is reasonable to require that the decoupler not be of high-pass
character.
Objective 3.1 is not the only possible decoupler objective. In the

work presented in this thesis PID controllers are used to control the
decoupled system but it is also perfectly possible to add extra dynam-
ics to the decoupler using the decoupler for both decoupling and loop
shaping. This is obvious from the structure of the decoupler described
in Section 3.2. The reason why loop shaping is not included in Objec-
tive 3.1 is that it would be hard to automate it and the work presented
here aims for automatic design and tuning. Since loop shaping is not
included in the design objective, it is reasonable to state that the de-
coupler should contain as little dynamics as possible.
The last sentence of Objective 3.1 states that the decoupler design

method should fulfill the special requirements of an automatic method.
The first and most obvious reason for that is that the method can then
be used for automatic design. Another reason is that a method that
fulfills these requirements is easy to start with even if the method
does not have to be automatic.
Objective 3.1 is reasonable in many cases, but even in cases where

a different decoupler objective is stated the theory developed in this
chapter may be of interest.

Brief History and Contributions

Many textbooks and papers have treated decoupling in the past, includ-
ing those by [Maciejowski, 1989], [Goodwin et al., 2001], [Wang et al.,
2000], [Wang and Yang, 2002] , [Wang et al., 2003] , [Wang et al.,
2002]. The sources that have been of special importance for the work
presented here are treated more carefully in Section 3.4.
The existing decoupler design methods did not satisfy the decou-

pler objective, Objective 3.1. A new method for decoupler design is pre-
sented in this chapter. The contributions are that a clear expression
for the whole space of possible decouplers for a linear square stable
non-singular system is provided, and that very simple rules of how to
choose a decoupler among those are developed. The proposed decoupler
satisfies Objective 3.1.
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Chapter 3. Decoupling

3.2 The Decoupler Design Method

The structure of the closed loop system is depicted in Figure 3.1. A
design method for the decoupler is described in this section. The de-
coupler D should satisfy Objective 3.1. This means that the product
GD should be diagonal, that the decoupler should not be of high-pass
character, that it should contain as little dynamics and time delay as
possible, and that the decoupler design method should fulfill the spe-
cial requirements of automatic methods. Below follows a matrix theory
description of the problem and an answer to the question of how the
decoupler should be chosen.
Definition 3.1 and Proposition 3.1 are well known and documented

in the literature (see for example [Lancaster, 1969]).

DEFINITION 3.1
The adjoint of a matrix A, denoted adj(A), is the transposed matrix
of cofactors of A

(adj(A))i j = A ji,

where A ji are the cofactors of A.

PROPOSITION 3.1

A ⋅ adj(A) = adj(A) ⋅ A = det(A) ⋅ I.

The first step in the search for a decoupler design method is to find
an expression for the whole space of possible decouplers, from which
a suitable one could be chosen. Proposition 3.2 gives an expression for
this space.

PROPOSITION 3.2
All matrices D that make the system GD diagonal can be factorized
as the adjoint of G times a diagonal matrix K . D is then given by

D = adj(G) ⋅ K .
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3.2 The Decoupler Design Method

Proof The proposition follows directly from Proposition 3.1.

Proposition 3.2 may seem trivial but it is important because it shows
the whole space of possible decouplers.
In Objective 3.1 the decoupler objective is stated. The question is

how K should be designed to satisfy the requirements stated there.
All real processes attenuate sufficiently high frequencies and should

thus be represented by models of low-pass character. This means that
every component of the transfer function matrix of the process is of low-
pass character. This, in turn implies that all cofactors of the transfer
function matrix and thus the adjoint of the process transfer function
matrix is of low-pass character. Thus it is not of high-pass character,
which is one of the properties that Objective 3.1 states that the decou-
pler should have. Below K = I and thus D = adj(G) is taken as a
starting point in the search for a D that fulfills the requirements of
Objective 3.1.
The decoupler objective states that the decoupler should contain as

little time delay as possible. This can be achieved by a modification
of K . It is obvious from Proposition 3.2 that a common factor of the
elements of a decoupler column can be canceled out by putting its
inverse as a factor in the corresponding diagonal element of K . Since
it is D = adj(G) ⋅ K that eventually is implemented it is not a problem
if K contains non-implementable elements (like inverted time-delays)
as long as D does not. This means that a time delay corresponding to
the shortest time delay among the column elements can be removed
from each element by multiplying the corresponding diagonal element
of K with the inverse of this time delay.
In the same way as time delay is removed from the decoupler above,

poles and zeroes can be removed from the decoupler columns. When
poles are removed from the decoupler it might also be necessary to
put extra low-pass filters into K . Otherwise D might get a high-pass
character.
The decoupler design method is summarized in Method 3.1

METHOD 3.1—THE DECOUPLER DESIGN METHOD
1. Start with K = I, then D = adj(G).

2. Remove the largest common time delay of each decoupler column
by multiplying the corresponding diagonal elements of K by in-
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verted time delays.

3. Remove common poles and zeros of the decoupler columns by
multiplying the corresponding diagonal elements of K by the in-
verse of the poles and zeros, possibly also multiplying diagonal
elements of K by low-pass filters to avoid giving the decoupler
high-pass character.

All the steps of Method 3.1 are easy to automate which makes the
method very suitable in an algorithm for automatic tuning.
In an implementation it may be advantageous to normalize the

columns of the decoupler, but it is not done here.
The proposed decoupler design method is illustrated in Example 3.1

EXAMPLE 3.1—DECOUPLER DESIGN
The decoupler design method described above is illustrated in this ex-
ample.
Consider the process

G =







s+ 4
s2 + 11s+ 10

e−2.6s
−(s+ 4)
s2 + 6s+ 5

e−2.8s

−(s+ 10)
s2 + 7s+ 10

e−1.3s
s+ 10

s2 + 17s+ 30
e−1.3s






.

If K is chosen as the identity matrix I, the decoupler D becomes
the adjoint adj(G) of the process transfer function. It is then described
by

D =







s+ 10
s2 + 17s+ 30

e−1.3s
s+ 4

s2 + 6s+ 5
e−2.8s

s+ 10
s2 + 7s+ 10

e−1.3s
s+ 4

s2 + 11s+ 10
e−2.6






.

If K then is modified to be

K =

(

e1.3s 0

0 e2.6s

)

,

the decoupler D becomes
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3.2 The Decoupler Design Method

D =







s+ 10
s2 + 17s+ 30

s+ 4
s2 + 6s+ 5

e−0.2s

s+ 10
s2 + 7s+ 10

s+ 4
s2 + 11s+ 10






,

which obviously is an improvement since it then contains less time
delay.
Further, if K is modified to be

K =







s+ 2
s+ 10

e1.3s 0

0
s+ 1
s+ 4

e2.6s






,

the decoupler D becomes

D =







1
s+ 15

1
s+ 5

e−0.2s

1
s+ 5

1
s+ 10






,

which obviously contains less dynamics.
The decoupled loop then becomes

GD =

(

�d11 0

0 �d22

)

,

where

�d11 =
s+ 4

s3 + 26s2 + 175s+ 150
e−2.6s −

s+ 4
s3 + 11s2 + 35s+ 25

e−2.8s

�d22 =
−(s+ 10)

s3 + 12s2 + 45s+ 50
e−1.5s +

1
s2 + 17s+ 30

e−1.3s.

The dynamics of the diagonal elements of the transfer-function ma-
trix are quite complicated. Hence, PID controller design methods that
rely on simple dynamics can not be used. A new PID tuning method
that was developed to work in this situation is presented in Chapter 4.
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3.3 Approximate Decoupler Design Method

In this section it is assumed that the transfer function matrix elements
can be approximated with first order plus dead-time models.

G(s) =







k11

T11s+ 1
e−sL11

k12

T12s+ 1
e−sL12

k21

T21s+ 1
e−sL21

k22

T22s+ 1
e−sL22







It is motivated to look at this case because the use of first order
plus dead-time models is very common in the process industry.
The adjoint of G is

adj(G(s)) =







k22

T22s+ 1
e−sL22 −

k12

T12s+ 1
e−sL12

−
k21

T21s+ 1
e−sL21

k11

T11s+ 1
e−sL11






.

Common time delays of the model adjoint columns are removed during
decoupler design, according to the method proposed above. Common
poles are also removed according to the proposed method. The number
of common column poles can be increased if a certain approximation is
used. Each decoupler column element has a pole with a time constant
Ti j . The shortest of these in each column is called Ts and the longest is
called Tl . The elements with the long time constants are approximated
with second order transfer functions using the approximation

1
Tls+ 1

(
1

(Tss+ 1)((Tl − Ts)s+ 1)
.

Then the pole
1

(Tss+ 1)

can be removed from the column.
The approximate design method is summarized in Method 3.2.
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METHOD 3.2—APPROXIMATE DECOUPLER DESIGN METHOD
1. Create a first order plus dead-time model of the process.

2. Start with K = I, then D = adj(G).

3. Remove the largest common time delay of each decoupler column
by multiplying the corresponding diagonal element of K by the
inverse of that time delay.

4. Use the approximation

1
Tls+ 1

(
1

(Tss+ 1)((Tl − Ts)s+ 1)

on the element with the longest time constant in each column.

5. Remove the common pole of each decoupler column by multiplying
the corresponding diagonal element of K by the inverse of that
pole.

The method is demonstrated in Example 3.2.

EXAMPLE 3.2—APPROXIMATE DECOUPLER DESIGN
Consider the process

G =







3
9s+ 1

e−3s
2

6s+ 1
e−2s

1
5s+ 1

e−4s
2

7s+ 1
e−4s






.

If K is chosen as the identity matrix I, the decoupler D becomes
the adjoint adj(G) of the process transfer function. It is then described
by

D =







2
7s+ 1

e−4s
−2
6s+ 1

e−2s

−1
5s+ 1

e−4s
3

9s+ 1
e−3s






.

If K then is modified to be
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K =

(

e4s 0

0 e2s

)

,

the decoupler D becomes

D =







2
7s+ 1

−2
6s+ 1

−1
5s+ 1

3
9s+ 1

e−s






,

which obviously is an improvement since it then contains less time
delay.
Further, if D is approximated to be

D =









2
(5s+ 1)(2s+ 1)

−2
6s+ 1

−1
5s+ 1

3
(6s+ 1)(3s+ 1)

e−s









,

and K is modified to be

K =

(

(5s+ 1)e4s 0

0 (6s+ 1)e2s

)

,

the decoupler D becomes

D =







2
2s+ 1

−2

−1
3

3s+ 1
e−s






,

which obviously contains less dynamics.
Since the decoupler design method used in this example is approx-

imate the system is not completely decoupled by the decoupler. Fig-
ure 3.2 shows the step response of the open loop system GD.
The Figure shows that the cross couplings are reduced to an ac-

ceptable level.
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Figure 3.2 The step response of the system GD. ui − yj is the step response
of the j:th output signal to the i:th input signal.

3.4 Previous Results

Over the years decoupling has been addressed several times. Some ap-
proaches have been static [Åström et al., 2002], and others dynamic
[Wang et al., 2000], [Wang and Yang, 2002], [Wang et al., 2003], [Wang
et al., 2002]. Static decoupling (see for example [Åström et al., 2002])
has some drawbacks. A static decoupler guarantees complete decou-
pling only for low frequencies. This might not be enough to achieve
good performance. Further, cross couplings at other frequencies must
be handled in some way during controller design. This is hard to auto-
mate. Thus, the static decoupler does not fulfill the decoupler objective.
The decoupling method described in the last chapter was developed

as a continuation and generalization of previous work done by others.
A decoupler D has the following property. If D diagonalizes GD then
the same is true for DK , where K is a diagonal matrix. This was used
in the theory of decoupling described above, and has been used before
[Wang and Yang, 2002].
Different structures of D have been proposed before. Some of them

are interpreted here as different choices of K (see Section 3.2 for a
description of K ).
Some methods have special importance for the work done here and
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are briefly described below.
In [Wang et al., 2000] G is assumed to be on the form:

G(s) =

(

�11 �12

�21 �22

)

where �i j = pi j e−li j s and pi j are rational transfer functions. K is chosen
for a two times two system as

K =

(

−1/p22 0

0 −1/p11

)

In addition to this, common time delays of the column elements of D
are removed as described in the previous section. This choice of K has
an obvious drawback compared to the one proposed in this chapter.
There is no guarantee that the decoupler does not get high-pass char-
acter. Thus, this decoupler does not fulfill the decoupler objective (see
Objective 3.1).
In [Wang et al., 2003] a decoupling controller that corresponds to a

choice of K as

kji =
qrii

pG(s)p

is proposed. The decoupler D is then approximated with a low order
transfer-function matrix with elements that are rational transfer func-
tions plus possible time delay. When this controller is possible to use
without approximations it gives the ith open-loop transfer functions
qrii. However, the fact that there is a determinant of G in the denomi-
nator makes it likely that approximations have to be done. This is not
desirable because approximations may result in a non-diagonalizing
decoupler. Further, approximations of this kind are hard to automate,
which means that the decoupler method does not fulfill the special re-
quirements of an automatic method stated in Summary 2.1. Thus, the
decoupler does not fulfill the decoupler objective (see Objective 3.1). A
similar approach to decoupling is also taken in [Wang et al., 2002].
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3.5 Conclusion

3.5 Conclusion

A decoupler objective (Objective 3.1) was stated in the beginning of this
chapter. Later in the chapter a decoupler design method that fulfills
the objective was presented. An approximate method to be used on
processes with simple models was also proposed.
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4

PID Design Method

In chapter 3 a decoupling method was proposed. It fulfills Objective 3.1
and is suitable for an automatic design algorithm. In this chapter a
PID controller design method is proposed. The method is suited for
controller design for both systems with simple dynamics and systems
with more complex dynamics. The decoupling method and the PID
design method can be combined to form a core in an algorithm for
automatic PID tuning and design for TITO systems.

4.1 The Problem

There are many PID design methods [Skogestad, 2001], [Åström and
Hägglund, 2005]. These methods are normally based on the idea of
first approximating the process dynamics with a simple model, and
then basing the design on this model. This approach works well on
SISO systems in the process industry, since these systems are often
well described by simple models. An example of that is methods that
use step responses for tuning [Ziegler and Nichols, 1942], [Hägglund
and Åström, 2002], [Hägglund and Åström, 2004].
When PID controllers are to be used for multi-variable control of

processes with strong cross couplings the situation is different. In many
cases the system has to be decoupled. Even if the elements of the
system have simple dynamics, decoupling may result in complicated
diagonal elements consisting of parallel coupled processes that might
have different signs and different time delays. An example of such a
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Figure 4.1 Step response of the process (4.1).

diagonal element is

G =
1.2

(0.5s+ 1)(0.7s+ 1)
e−4s −

1
(3s+ 1)(2s+ 1)

e−1s. (4.1)

The step response of this process is shown in Figure 4.1.
If PID controllers are used to control a system with diagonal ele-

ments like this, methods that rely on simple process dynamics, like step
response methods, are not appropriate. Because of that, a PID design
method that does not rely on simple process dynamics was developed
and is presented in this chapter.

4.2 The Design Procedure

The Controller

The PID controller is described by

C = K

(

1+
1
Tis

+ Tds

)

, (4.2)
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where K is the proportional gain, Ti is the integral time and Td is
the derivative time. A pure PID controller would have infinite high-
frequency gain. It is both undesirable and impossible to realize such
a controller. Therefore a low-pass filter would be required. A second
order low-pass filter

F =
1

(sTf + 1)
2

is used here.

The Optimization Criteria

The chosen optimization criteria is to minimize the integrated absolute
error

IAE =

∫ ∞

0
pe(t)pdt, (4.3)

where e(t) is the control error at step load disturbances, subject to
bounds on the sensitivity function and the complementary sensitivity
function. The bounds on the sensitivity functions can be interpreted
as two circles in the complex plane that the Nyquist curve of the open
loop system has to stay outside. A larger circle that encircles these two
are constructed and called the M -circle [Åström and Hägglund, 2005].
The bounds on the sensitivity functions then means that the Nyquist
curve should stay outside the M -circle.
The optimization criteria was motivated and used before [Åström

and Hägglund, 2005] but a short motivation is in place anyway. The
general requirements of a design method for the process industry were
described in Chapter 2, and below is a description of how these re-
quirements are reflected in the optimization criteria.
Figure 3.1 shows the general disturbances l, n and m. The bound

on the sensitivity functions bounds the transfer functions Gny and Gmy
from n and m to the output signal y.
The second order low-pass filter gives the controller low high-frequency

gain. Together with the bounds on the sensitivity functions this gives
the high-frequency region of the transfer functions Gnu and Gmu from
n and m to the control signal u low gain. This is important since n and
m are high-frequency disturbances. Furthermore the transfer function
Gly from the low-frequency disturbance l to the output signal y is small
since the effect of this disturbance is minimized.
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4.2 The Design Procedure

Good stability margin is given by the fact that the Nyquist curve is
kept at a distance from the critical point −1 by the M -circle.
The design objective is to minimize the integrated absolute error,

IAE, at step load disturbances subject to the bounds on the sensitivity
functions. Previously the integrated error

IE =

∫ ∞

0
e(t)dt

together with bounds on the sensitivity functions and other constraints
has been used to approximate the IAE [Åström and Hägglund, 2005].
Furthermore, it has previously been shown that the IE of a step load
disturbance is directly proportional to the inverse of the integral gain
of the controller, which makes minimization of the IE easier than direct
minimization of the IAE. However, if the control error e(t) shifts signs,
it is not good enough to calculate the IE.

The Design Method

An upper bound on the sensitivity functions is specified. The space
of possible controllers is discretized in the parameters Ti, Td, and K .
For each combination of Ti and Td, a K is found, that puts the Nyquist
curve of the open loop system on the edge of the M -circle in such a way
that the Nyquist curve does not encircle the −1 point, if possible. For
each controller a step load disturbance is simulated and the integrated
absolute error, IAE, is calculated. The controller that gives the smallest
IAE is chosen.

The Sign

Since the algorithm should be able to handle processes with different
signs, a sign is added to the PID controller. The output of the process
after a step change of the control signal is simulated. If the output goes
to a positive value or towards plus infinity the sign is chosen positive.
If the output goes to a negative value or towards minus infinity the
sign is chosen negative. In either case the controller is connected to
the process using negative feedback.

Parameters Td and Ti

The controller has one pole in the origin, two filter poles and two zeros.
The zeros are located in:
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z = −
1
2Td

±

√

1
4T2d

−
1
TiTd

(4.4)

If Ti is less than 4Td the zeros are complex conjugated with a real
part a = −1/2Td. The imaginary part will increase with decreasing Ti.
If Ti is greater than 4Td, the zeros will be real and centered around
a = −1/2Td.
1/2Td is swept over the frequency region of interest. This region

could, for example, be 0.001Hz to 1000Hz with the grid points spread
in a logarithmic fashion. In this way many processes can be covered.
For each value of Td, Ti is swept over a reasonable region. In most

cases it is not interesting to get a controller with zeros that have very
large imaginary parts or a controller with zeros at frequencies far below
or above the non-integrator poles and the zeros of the process, so this
region is limited.

Parameter K

For every pair of Td and Ti, a K that gives the system the prespecified
maximum values of the sensitivity functions, without making the sys-
tem unstable has to be found. For stable processes this corresponds to
finding a K that puts the Nyquist curve on the edge of the M -circle
without making it encircle the point −1. An algorithm that checks if
the −1 point is encircled has to be used.
A large K , Kmax is chosen as a starting value. K is decreased until

the point −1 is not encircled and the Nyquist curve is outside the Ms
circle. If K is lowered under a certain bound Kmin, without making
the system satisfy these specifications, the conclusion is drawn that no
stable closed loop system exists for the present combination of Ti and
Td. Subsequently K is gently increased until the Nyquist plot is close
to the edge of the M circle. Kmax and Kmin works as upper and lower
bounds on K . This is necessary for the method algorithm to work but
it is also a natural thing to have some bounds on the controller gain.

IAE

The integrated absolute error IAE (see 4.3) is calculated by integra-
tion of a simulation of a step load disturbance response. The controller
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with the smallest IAE is then chosen. To improve the accuracy the algo-
rithm can be repeated with the intervals of Td and Ti centered around
the Td and Ti values of the first controller and with a narrower grid.

4.3 Algorithm Complexity

The optimization is performed by means of exhaustive search. The most
obvious risk of exhaustive search is that the complexity of the optimiza-
tion algorithm becomes too high, so that it takes an unreasonably long
time to do the optimization.
The design time was about a minute in tested examples (see Sec-

tion 4.4), which is acceptable since the optimization is performed off-
line. Other applications may, however, have hard time constraints or
require other implementations with greater values of some of the al-
gorithm variables. Then the possibility of shortening the design time
may have to be considered, and a natural starting step in that proce-
dure is to find a time-complexity function Tc for the algorithm. It is
probably also possible to reduce the computation time by using a more
time-efficient programming environment than Matlab/Simulink.
It is interesting to look at a time-complexity function even if the

design time is acceptable since it may give an extra understanding
of the algorithm. The first step in finding this function is to look at
the algorithm. Appendix A contains a Matlab implementation of the
algorithm and Summary 4.1 contains a summary of the algorithm. It
is recommended that the reader look at both the code in the appendix
and the summary for better understanding.

SUMMARY 4.1—THE ALGORITHM
1. Do some necessary one-time operations like loading the process
model, calculating center and radius of the M-circle, initializing
constants, calculating the complex frequency-function vector, and
determining the sign of the process.

The number of frequency-function vector points is called nw. A
simulation time t is also set in this part of the code. These are
mentioned since they affect the complexity of the method algo-
rithm.
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2. The outer loop.
In the inner loops Ti and Td are gridded and K is found. This is
repeated twice by the outer loop. It is first done in a sparse grid
to find the interesting region and then in a narrower grid in that
region to find the final values for the parameters. It is of course
possible to repeat the outer loop more than twice to improve the
accuracy but it has been found to be unnecessary in examples.
The number of times that the outer loop is repeated is called no.
The complexity of the method algorithm depends linearly on this
number.

3. It is reasonable to discretize the two parameters Td and Ti in the
same number of points. This number of points is called n. Td is
gridded in an outer loop and Ti in an inner loop. The complexity
of the method algorithm depends quadratically on n.

4. A value of K that satisfies the optimization demands is found.
The demand is that it should place the Nyquist plot of the process
transfer function on the edge of the M -circle in such a way that it
does not encircle the −1 critical point. This is done by starting out
with a large K and decreasing it exponentially until the Nyquist
curve does not encircle the critical point and the Nyquist plot
is outside the M -circle. Then K is gently increased exponentially
(for example by one percent in each step) until it puts the Nyquist
plot on the edge of the M -circle (in practice, until the distance is
smaller than an error bound).
The search for K depends in a logarithmic fashion on Kmax/Kmin
and of Kopt/Kmin, where Kopt is the K that puts the Nyquist
curve on the edge of the M -circle. Furthermore, for each K some
operations that depend linearly on nw have to be performed (like
stability test and determination of the shortest distance between
the Nyquist curve and the M -circle).

5. The closed loop system is simulated and IAE calculated. This step
depends linearly on the number of time steps in the simulation.
In the worst case this is t/dt, where dt is the minimum time step
size of the simulation.

6. If the simulation gives the lowest IAE so far, the parameters of
the controller and the grid point are saved.
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It is easy to determine the approximate complexity of the algorithm
after a look at Summary 4.1. The time-complexity function is

Tc ( non
2
(

c1nw

(

c2 log
Kmax

Kmin
+ c3 log

Kopt

Kmin

)

+ c4
t

dt

)

,

where ci is a real constant.
The time-complexity function gives a good idea of which parame-

ters are expensive to increase. Clearly it would be most expensive to
increase the parameter n since the time-complexity function depends
quadratically on it. The parameters no, nw, Kmax, Kmin, t, dt and the
constants are somewhat less expensive to increase. In an application
where the time must be shortened a careful analysis of the constants
and required values of the parameters may help.

4.4 Examples

In this section the proposed design method is illustrated in three ex-
amples.

EXAMPLE 4.1—PROCESS WITH SIMPLE DYNAMICS
Another algorithm that tries to minimize the load disturbance step
response was presented in [Panagopoulos et al., 2002], [Hägglund and
Åström, 2004]. That algorithm (called MIGO tuning) works well on a
large class of processes but fails when it comes to more complicated
processes like two parallel coupled processes with different time delays
and different signs.
The proposed algorithm was compared in an example with the

MIGO tuning algorithm. A simple process that both algorithms could
handle was used

G =
1

(s+ 1)4
. (4.5)

The grid used in the proposed design method was the following:
1/2Td was first divided into 12 grid points between 0.001 and 10000
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Figure 4.2 Nyquist diagram of the process (4.5).

Hz in a logarithmic fashion. The best controller for these values was
calculated as described above. Subsequently 1/2Td was again divided
into 12 grid points with the best value of the first round in the middle.
The calculations were done in Matlab (R14) and Simulink on a 2.66
GHz Pentium 4. It took 78s to find the controller.
The design method proposed in this chapter can be illustrated in

the Nyquist plot of the open loop system. Figure 4.2 shows a Nyquist
plot of the process (4.5). The controller tries to find a way to bend
the Nyquist plot to the edge of the M -circle and at the same time to
minimize the impact of load disturbances on the closed-loop system.

The controllers

The MIGO tuning algorithm tries to minimize the integrated area er-
ror by minimization of the integrated error IE subject to a constraint
on the sensitivity function and some additional constraints. The MIGO
tuning with an Ms value of 1.4 and an Mp value of 1.4 gave the param-
eters K = 1.19, Ti = 2.22 and Td = 1.20 [Hägglund and Åström, 2004].
The controller was filtered by a low-pass filter with poles in p = −20.8.
This moved the Nyquist curve slightly to the edge of an M -circle with
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Figure 4.3 Nyquist diagram of the loop transfer functions in Example 4.1.
The controllers were designed by MIGO (dot-dashed line) and the design method
proposed in this chapter (solid line).

Ms and Mp values of 1.46.
The design method proposed in this chapter with Ms and Mp values

of 1.46 gave the parameters K = 1.22, Ti = 2.30 and Td = 1.25. The
low-pass filter used had two poles in p = −20.0. Figure 4.3 shows
the Nyquist curves of the loop transfer functions together with the
M -circle.
The step load disturbance responses y and the control signals u are

shown in Figure 4.4.
The integrated area error of the MIGO controlled system was cal-

culated to:

IAE = 2.40

The integrated area error of the system controlled by the controller
that the proposed design method resulted in was calculated to:

IAE = 2.35
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Figure 4.4 Step load disturbance response of the closed loop systems in Ex-
ample 4.1. The controllers were designed by MIGO (dot-dashed line) and the
design method proposed in this chapter (solid line).

Conclusions from the Example

The proposed method was developed to be used in automatic design for
systems that may have either complicated or simple dynamics. Thus,
it must work for both kinds. In this example it was compared with
another method for a process with simple dynamics, and the designed
controllers worked equally well.

EXAMPLE 4.2—PROCESS WITH COMPLEX DYNAMICS
The proposed algorithm was used to determine a controller for an ex-
ample of two parallel coupled processes with different dead-time and
different signs, see (4.1). This is a kind of process that is expected to
appear at diagonal elements of a decoupled two times two system in the
process industry. A Nyquist plot of the process is shown in Figure 4.5.
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Figure 4.5 Nyquist diagram of the process (4.1).

The Ms and Mp values were 1.4. The same grid as in Example 1 was
used. The calculations were done in Matlab (R14) and Simulink on a
2.66 GHz Pentium 4. It took 95s to find the controller. The proposed
design method gave the controller parameters K = 0.172, Ti = 0.888,
Td = 2.01. The controller low-pass filter had its poles in p = −12.5. Fig-
ure 4.6 shows a Nyquist plot of the loop transfer function together with
the M -circle. It is easy to see that the specification that the Nyquist
plot should touch the edge of the M -circle holds. Further, we know
that the algorithm has compared a lot of different PID controllers that
fulfill this specification and chosen the one that gives the smallest IAE
of a step load disturbance response.
Figure 4.7 shows a step load disturbance response of the process y

controlled by the controller and the control signal u. The sign of the
step response changes, indicating that a minimum of the IE would not
be a good approximation of the IAE in this case.
The integrated area error of the controlled system was calculated

to:
IAE = 6.25
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Figure 4.6 Nyquist diagram of the loop transfer function in Example 4.2.
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Figure 4.7 Step load disturbance response of the closed loop system in Ex-
ample 4.2.
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Conclusions from the Example

This example shows that the proposed design method is able to handle
processes that are quite complicated, in this case a process that is
expected to appear among the cases that the method has to cope with.

EXAMPLE 4.3—HIGHER ORDER PROCESS
In Example 5 of [Skogestad, 2001] several controllers for the process
(4.6) were tuned with different methods. The best one was a SIMC-PID
controller. This controller was given on cascade form [Skogestad, 2001]
but was converted to the form in (4.2).

G =
1

(s+ 1)(0.2s+ 1)(0.04s+ 1)(0.008s+ 1)
(4.6)

A controller determined with the design method proposed in this chap-
ter was compared with the SIMC-PID controller. The tuning was done
under the same prerequisites as in Example 1 and Example 2. The
tuning time was 79s.
Figure 4.8 shows a Nyquist plot of the process (4.6).

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

Figure 4.8 Nyquist plot of the process (4.6).
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Figure 4.9 Nyquist diagram of the loop transfer functions in Example 4.3.
The controllers were SIMC-PID (dot-dashed line) and a controller produced by
the design method proposed in this chapter (solid line).

The Controllers

The SIMC-PID controller had the recommended parameters K = 21.8,
Ti = 1.22 and Td = 0.180 [Skogestad, 2001]. It was filtered by a low-
pass filter. The poles of the low-pass filter were put in p = −153. The
design method proposed in this chapter with Ms = 2.21 and Mp = 2.21
gave the parameters K = 27.3, Ti = 0.200 and Td = 0.127. The low-
pass filter used had two poles in p = −197. Figure 4.9 shows the
Nyquist curve of the loop transfer functions together with the M -circle.
The step load responses y and the control signals u are shown in

Figure 4.10.
The integrated absolute error of the SIMC-PID controlled system

was calculated to:
IAE = 0.0559

The integrated area error of the system controlled by the controller
that the proposed design method resulted in was calculated to:

IAE = 0.0107
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Figure 4.10 Step load disturbance response of the closed loop systems in Ex-
ample 4.3. The controllers were SIMC-PID (dot-dashed line) and a controller
determined by the design method proposed in this chapter (solid line).

Conclusions from the Example

The tuning method proposed in this chapter resulted in a controller
that has considerably better load disturbance attenuation properties
than the controller proposed in [Skogestad, 2001].

4.5 Conclusion

A design method for PID controllers has been proposed. The aim is to
find controllers that minimize the impact of load disturbances subject
to bounds on the sensitivity functions. The method has been shown in
an example to work as well as another method with the same design
objectives for a process with simple dynamics. Further, the method has
been shown to work in an example in the difficult case of two parallel-
coupled processes with different time delays and signs. It has also been
compared in an example for a higher order process with a controller
proposed in [Skogestad, 2001].
The proposed method requires more computations to be done than

the average PID controller design method, but it works as well as or
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better then previous methods and it can handle processes with compli-
cated dynamics.
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5

Decoupler Tuning

5.1 Introduction

In this chapter two methods that can be used to reduce the effects of
model mismatch are presented.
In previous chapters methods for automatic decoupling and PID

controller tuning for multi-variable systems were proposed. It was as-
sumed that a model of the process was known. Furthermore it was
assumed that the model didn’t suffer from model mismatch. In prac-
tice it is, of course, unrealistic to assume that a perfect model is at
hand. Thus it is important to find ways of coping with model mis-
match. In this chapter an approach for reducing the effects of model
mismatch is presented. The decoupler will have a special structure,
which is due to the fact that it is designed to decouple the process.
In the presence of model mismatch the decoupler will not decouple the
process completely, but the structure can be used to find ways of tuning
the decoupler.
When the process is satisfactorily decoupled by the decoupler PID

controllers are tuned for the decoupled process. In the tuning proce-
dure it is important to have good models of the decoupled loops. It is
advantageous if these models can be identified after the decoupling
by experiments performed on the decoupled loops themselves. This is
advantageous since there will be no steps between the identification
and the tuning in which errors can enter or be amplified. In this chap-
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ter a method of simplifying the identification of the decoupled loops is
presented.

5.2 Background

Consider the system

G(s) =

(

�11 �12

�21 �22

)

,

where �i j = pi j e−li j s and pi j are rational transfer functions. Let the
decoupler be

D =

(

d11 d12

d21 d22

)

.

The open loop decoupled system GD is described by

GD =

(

�11d11 + �12d21 �11d12 + �12d22

�21d11 + �22d21 �21d12 + �22d22

)

.

The open loop system GD is decoupled if the following equations are
satisfied [Wang et al., 2000]

p11e
−l11s $ d12 + p12e

−l12s $ d22 = 0 (5.1)

p21e
−l21s $ d11 + p22e

−l22s $ d21 = 0. (5.2)

In Chapter 3 it was concluded that a good solution to the decoupling
problem is the adjoint of the process. Some modifications are done to
avoid introducing unnecessary dynamics and time delay. The adjoint
of G(s) is

adj(G) =

(

p22e
−l22s −p12e

−l12s

−p21e
−l21s p11e

−l11s

)

.

It is important to recognize that the purpose of the decoupler is to
remove the effects of process cross couplings. It is no problem to alter
decoupler elements to make the decoupler elements less disturbing if
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a way of doing that is found. It is also important to note that if the
decoupled system is controlled by a diagonal controller

C(s) =

(

c11 0

0 c22

)

,

then the open loop system becomes

GDC =

(

(�11d11 + �12d21) c11 (�11d12 + �12d22) c22

(�21d11 + �22d21) c11 (�21d12 + �22d22) c22

)

. (5.3)

5.3 Tuning the Decoupler

In Chapter 3 the decoupling problem is solved when the model de-
scribes the process perfectly. The method proposed here is useful when
there is model mismatch. The decoupler is determined in several steps.
The algorithm is summarized at the end of this section.
The first step of the procedure is to get a starting decoupler D1.

This is done with the automatic decoupling method (see Chapter 3).
When model mismatch is present it is likely that the decoupler D1
does not decouple the process completely. The second step is to compute
step responses. The step responses of the left-hand side of (5.1) and
(5.2) is zero when the system is decoupled. They both consist of a
sum of two step responses. Ideally (when the system is completely
decoupled) these two step responses are equal but with a different
sign. In the presence of model mismatch they are not equal. In the
proposed method the cross couplings of the approximate (approximate
because of model mismatch) decoupled system are treated in the same
way. Consequently it is enough to describe the procedure for one of
them. One of them is described by the left-hand side of (5.1).
The starting decoupler is determined as if the model did not suffer

from model mismatch. It is assumed that the signs of each element of
the model are correct. The left-hand side of the (5.1) consists of two
transfer functions T1 = p11e−l11s$d12 and T2 = p12e−l12s$d22. The step
responses of T1 and T2 are recorded and called y1 and y2. This can be
done by first setting all decoupler elements to zero except for d12 and
recording the response of the first output signal to a step in the second
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input signal. Then all decoupler elements are set to zero except for d22
and the response of the first output signal is again recorded to a step
in the second input signal. It is easy to set the decoupler elements to
zero in practice because they are implemented in the software. Each
step response has a sign si. If the step ends at a positive value si is
positive; otherwise it is negative. It is easy to see that one of the signs
is positive and the other is negative. The time delays l1 and l2, the
static gains k1 and k2 and the rise times rt1 and rt2 of T1 and T2 are
determined from y1 and y2. This can be done in different ways. It is
beyond of the scope of this chapter to choose between different methods
of system identification. Either d12 or d22 is changed so that T1 and T2
has the same static gain. It is easy to see that this is possible.
The time delay of either d12 or d22 is changed so that T1 and T2 have

the same time delays without making any of them negative. Then the
smallest time delay of d12 and d22 is set to zero and the largest delay
is decreased the same amount as was needed to achieve this. In that
way no necessary delay is added to the decoupled process through the
decoupler.
The rise times rt1 and rt2 are made equal by moving one of the

poles of the di2 that corresponds to the fastest rise time.
The tuning algorithm can be summarized as follows:

1. Determine a starting decoupler D1. This is done with the auto-
matic decoupling method (see Chapter 3). The following steps will
then be carried out for each cross coupling, though it is described
here for the left-hand side of (5.1) only.

2. Record step responses y1 and y2 of T1 and T2.

3. Determine the signs s1 and s2, the time delays l1 and l2, the static
gains k1 and k2 and the rise times rt1 and rt2 of T1 and T2 from
y1 and y2.

4. Change the static gain of either d12 or d22 so that the static gain
of T1 and T2 becomes equal.

5. Change the time delay of either d12 or d22 so that T1 and T2 get
the same time delays. Reduce both time delays of d12 or d22 so
that the smallest of them becomes zero.
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6. Move one pole of either d12 or d22 so that rt1 and rt2 become
equal.

Comments on the Tuning Algorithm

In step five of the algorithm the static gain of either d12 or d22 is
changed. The purpose of this is to give T1 and T2 the same static gain.
Changing the static gains of both d12 and d22 with a common factor
will have no effect on the open loop because the inverse of that gain
will be a factor of c22 if a reasonable PID tuning algorithm is used, for
example the one presented in Chapter 4. This is due to the fact that the
common factor of T1 and T2 will also be a factor of the second diagonal
element of (5.3). The property described above implies that it does not
matter if it is the gain of d12 or the gain of d22 that is changed as long
as the involved gains do not get so big or small that they give rise to
numerical problems. The same is true for the other cross coupling.
In step six of the algorithm one pole of either d12 or d22 is moved.

The di2 that corresponds to the fastest Ti is made slower. If that di2 con-
tains more than one pole it isn’t obvious which pole should be moved.
It would also be possible to move more than one pole in that case. In
the example below, the slowest pole is the one that is moved.

5.4 Identification of Diagonal Elements

In the presence of modeling errors no true model of the diagonal ele-
ments of the decoupled system is given, even though the decoupler is
known. Consequently it might be good to find a model of the diagonal
elements of the decoupled system. The diagonal elements consist of
sums of two processes with, perhaps, different time delays. It is pos-
sible to identify a high order discrete time model that describes such
an element well, but it is hard to automate a high order identification
procedure in a safe way. One possible solution to the identification
problem is to record step responses of the terms of each sum in the
same way that it was done for the cross couplings of the decoupled
system above and identify models for them. These models can then be
combined to form models of the diagonal elements. The diagonal ele-
ments are described by the following expressions
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p11e
−l11s $ d11 + p12e

−l12s $ d21
p21e

−l21s $ d12 + p22e
−l22s $ d22.

Each expression consists of a sum of two transfer functions. It is
easy to see that step responses of each transfer functions of each ex-
pression can be recorded in four experiments. Then low order models
of each transfer function are identified and combined to models of the
diagonal elements. Low order identification can be performed in many
ways and no specific method is recommended here. Here the dead-time,
the rise time, and the static gain are determined and a second order
model is produced. The model consists of a double pole, a time delay,
and static gain. A second order model is preferred because it is unlikely
that the transfer functions are of lower order. This is due to the fact
that they consists of a product of a decoupler element and a process
element that are both generally of at least order one.

Comments on the Identification Procedure

In the algorithm above four step responses are recorded and some de-
coupler elements may be altered. Only one of the output signals is
needed for each step, but if the other output signal is also recorded it
may be used in the identification algorithm. The step responses corre-
sponding to decoupler elements that are not altered can be used, and
the number of experiments that have to be performed during identifi-
cation is reduced.

5.5 Example

The methods were implemented and tested on a TITO system. The
system elements all consist of transfer functions with two damped poles
and time delay. Uncertainty is introduced as parameter uncertainty.
The process was

Gtrue(s) =









0.8e−s

(1.7s+ 1)(2.7s+ 1)
−1.9e−9s

(2s+ 1)(1.3s+ 1)

2.6e−7s

(1.9s+ 1)(0.9s+ 1)
−1.9e−3s

(1.4s+ 1)(1.4s+ 1)









,
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and the model of the process was

G(s) =









1.8e−7s

(1.7s+ 1)(0.6s+ 1)
−1.9e−4s

(s+ 1)(1.5s+ 1)

1.6e−4s

(1.9s+ 1)(0.7s+ 1)
−1.4e−11s

(4.4s+ 1)(2.4s+ 1)









.

The Decoupler Tuning

It is obvious that the model is quite different from the process. A sig-
nificant model mismatch has been introduced in order to make the
results as visible as possible. Thus the starting decoupler D1 is based
on a model that is quite different from the process itself. The starting
decoupler is calculated as in Chapter 3

D1(s) =









−1.4e−7s

(4.4s+ 1)(2.4s+ 1)
1.9

(s+ 1)(1.5s+ 1)

−1.6
(1.9s+ 1)(0.7s+ 1)

1.8e−3s

(1.7s+ 1)(0.6s+ 1)









.

The decoupler tuning algorithm alters the elements of the decoupler
to achieve better decoupling. After the tuning has been performed the
decoupler is

D(s) =









−1.4
(4.4s+ 1)(2.4s+ 1)

1.9e−7.4s

(s+ 1)(1.5s+ 1)

−1.92e−4.2s

(5.9s+ 1)(0.7s+ 1)
0.8

(2.5s+ 1)(0.6s+ 1)









.

Figure 5.1 and Figure 5.2 show step responses of T1 and T2 of
the first cross coupling (the left-hand side of (5.1)) after the different
steps of the decoupler tuning algorithm. d12 has only been altered once
while d22 has been altered in every step of the algorithm. The figures
illustrate the fact that the algorithm shapes the two step responses of
T1 and T2 to be similar to each other but with different signs. That is
the key idea of the method.
In Figure 5.3 and Figure 5.4 unit step responses of the left-hand

side of (5.1) and (5.2) are plotted. The whole point of the algorithm is
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Figure 5.1 Unit step response of T1 in (5.1) after different steps of the decou-
pler tuning algorithm. Starting function (dotted), after first step (dash-dotted),
after second step (dashed) and final result (solid). Only two responses are seen
in the figure because the decoupler element d12 is only altered once.
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Figure 5.2 Unit step response of T2 in (5.1) after different steps of the decou-
pler tuning algorithm. Starting function (dotted), after first step (dash-dotted),
after second step (dashed) and final result (solid).

of course to make these cross couplings small. The figures show that
this is achieved, at least for the step responses of the cross couplings.
It should be pointed out that the complexity of the decoupler is not
increased and the low-pass character of the decoupler (see Chapter 3)
is not compromised.
It is also interesting to have a look at the cross couplings in the

frequency domain. It is quite obvious that if the step response of the
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Figure 5.3 Unit step response of the left-hand side of (5.1) after different
steps of the decoupler tuning algorithm. Starting function (dotted), after first
step (dash-dotted), after second step (dashed) and final result (solid).
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Figure 5.4 Unit step response of the left-hand side of (5.2) after different
steps of the decoupler tuning algorithm. Starting function (dotted), after first
step (dash-dotted), after second step (dashed) and final result (solid).

transfer function is made insignificant then the frequency response will
generally be small. In Figure 5.5 and Figure 5.6, amplitude plots of the
cross couplings are shown. They show that the frequency responses of
the cross couplings really are made very small by the decoupler tuning.

The Identification-aid Method

The method that was proposed for the diagonal elements of the decou-
pled process is an identification-aid method. The idea is that knowledge
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Figure 5.5 Amplitude plot of the left-hand side of (5.1) after different steps
of the decoupler tuning algorithm. Starting function (dotted), after first step
(dash-dotted), after second step (dashed) and final result (solid).
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Figure 5.6 Amplitude plot of the left-hand side of (5.2) after different steps
of the decoupler tuning algorithm. Starting function (dotted), after first step
(dash-dotted), after second step (dashed) and final result (solid).

of the nature of the decoupler structure is used and the fact that two
low order identification problems can be solved instead of one high or-
der identification problem is recognized. There are different methods
available for identification of low order models from step tests. In this
example none of them was chosen because the point of the work was
just to highlight the possibility of using low order identification. It is
assumed that the time delay, the rise time and the static gain of the
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Figure 5.7 Fitted (dash-dotted) and real (solid) step response of the first
transfer function in the first diagonal element of the decoupled process.
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Figure 5.8 Fitted (dash-dotted) and real (solid) step response of the second
transfer function in the first diagonal element of the decoupled process.

involved transfer functions can be found quite accurately.
Step responses of the diagonal elements were recorded. There were

two step responses for each element. The time delay, the rise time,
and the static gain of the involved transfer functions were found and
second order transfer functions with time delay were fitted to the step
responses. The poles of these were chosen as real double poles. Fig-
ure 5.7 and Figure 5.8 show the step responses and the fitted transfer
function step responses of the first (top left) diagonal element.
Finally the identified low order models were combined to form mod-
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Figure 5.9 Step response of the model of the first diagonal element (dash-
dotted) and the true first diagonal element (solid).
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Figure 5.10 Step response of the model of the second diagonal element (dash-
dotted) and the true second diagonal element (solid).

els of the diagonal elements. Figure 5.9 and Figure 5.10 show step re-
sponses of the diagonal elements. Figure 5.11 and Figure 5.12 show
Nyquist plots of the diagonal elements and of the fitted models, and it
can be concluded that they are very similar. The reason why it is pos-
sible to identify low-order models and model the elements like sums of
them instead of using high-order models is, of course, that elements to
be modeled have the structure of sums of low order models.
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Figure 5.11 Nyquist plot of the model of the first diagonal element (dash-
dotted) and the true first diagonal element (solid).
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Figure 5.12 Nyquist plot of the model of the second diagonal element (dash-
dotted) and the true second diagonal element (solid).
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5.6 Conclusion

A method for decoupler tuning in the presence of model mismatch and
an aid-method for identification of diagonal elements of the decoupled
system have been presented. In both methods knowledge of the process
structure and the decoupler structure is used.
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6

Decoupler and Controller

Design

The methods described in Chapter 3 and Chapter 4 were combined and
tested in simulated examples. The methods are meant to form a core
in an algorithm for automatic design and tuning of PID controllers
for TITO systems that is described in this chapter. It is shown that
the good disturbance attenuation properties of the proposed PID de-
sign method are inherited to a large extent by the combination of the
decoupler and the PID design methods. Further, it is shown that the
combination fulfills the special requirements of an automatic method.

6.1 Disturbance Attenuation

Chapter 4 contains a description of the disturbance attenuation prop-
erties of a SISO system with a controller designed by the proposed PID
design method. When this method is combined with the proposed de-
coupler design method and applied to a TITO system, these properties
are inherited to a large extent by the TITO system. This is described
below.
Recall the five important transfer functions from disturbances de-

scribed in Chapter 2:

Gnu = −C (I + GC)
−1
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Gmu = −C (I + GC)
−1

Gny = (I + GC)
−1

Gmy = −GC (I + GC)
−1

Gly = (I + GC)
−1
G.

Gnu and Gmu should have low high-frequency gain and the others
(Gny, Gmy, and Gly) should be small or bounded. Here C denotes the
product of the decoupler and the controller.
If the process is completely decoupled the loop transfer function is

diagonal

GC =

(

�c11 0

0 �c22

)

.

Then the output sensitivity function S = (I + GC)−1 = Gny, is
diagonal with the sensitivity functions of the decoupled loops on the
diagonal. This implies that the H-infinity norm of the multi-variable
output sensitivity function will be equal to the highest peak of the
decoupled output sensitivity functions. The same is true for the output
complementary sensitivity function T = GC(I + GC)−1 = −Gmy.
A SISO design method that bounds the sensitivity function and the

complementary sensitivity function is used for controller design for the
decoupled loops. Thus, the H-infinity norm of the multi-variable output
sensitivity function and output complementary sensitivity function of
the closed loop system are bounded. This implies that the impact of
the disturbances n and m on y are bounded.
The design method that is used to tune the decoupled SISO loops

minimizes the integrated absolute error under a step load disturbance
in each loop. In the multi-variable system this disturbance corresponds
to a disturbance that enters the loop between the controller and the de-
coupler. Such a disturbance is equal to the same disturbance, filtered
by the decoupler, entering the system at the process input. If it is as-
sumed that the process is stable and contains no sharp resonances
then the decoupler (the adjunct of the process, with some modifica-
tions) has the same properties. This is a reasonable load disturbance
on which to minimize the integrated absolute error (a low frequency
disturbance is good because load disturbances are expected to contain
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mostly low frequencies). This means that the transfer function Gly is
treated in a proper way.
Since the decoupler is not of high-pass character and the PID con-

trollers are filtered by second order low-pass filters, it is likely that
the amplification of high-frequency process output disturbances n and
measurement disturbances m to the control signal u are small, which
implies that Gnu and Gmu also are treated in a proper way.
The discussion above shows that the TITO system closed-loop would

have the required disturbance attenuation properties if the decoupler
and the controllers are designed by the proposed methods.

6.2 Automatic Method

Summary 2.1 is a summary of special requirements of an automatic
method. It states that the method should not require qualitative choices
to be made. If the method requires parameter tuning by an opera-
tor, there must exist default values that always work fairly well. Both
the proposed decoupler design method and the proposed PID design
method fulfils these requirements (see Chapter 3 and Chapter 4) and
since they are performed in a sequential manner in the algorithm the
combination of them also does so.

6.3 Examples

The method described above was applied to two processes. The idea
of the examples is to show that the method works. The examples are
taken from the literature and the proposed method is compared with
other methods. The comparison is made to give an idea of how well
the proposed methods perform in general, not to start a competition
around some specific systems.

EXAMPLE 6.1—THE WOOD-BERRY BINARY DISTILLATION COLUMN PLANT
The Wood-Berry binary distillation column plant has been studied be-
fore [Wang et al., 2000], [Åström et al., 2002]. The process has the
transfer function
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G =











12.8e−s

16.7s+ 1
−18.9e−3s

21.0s+ 1

6.60e−7s

10.9s+ 1
−19.4e−3s

14.4s+ 1











.

In [Wang et al., 2000] the process was decoupled and PID controllers
with exact gain and phase margins were tuned for each loop in a se-
quential manner. The controllers were filtered here by second order
low-pass filters. The Wang decoupling method is described in [Wang
et al., 2000] and is commented on in Section 3.4.
The decoupling method proposed in this chapter gave the decoupler

D =











−19.4
14.4s+ 1

18.9e−2s

21.0s+ 1

−
6.60e−4s

10.9s+ 1
12.8

16.7s+ 1











.

This corresponds to

K =

(

e3s 0

0 es

)

.

PID controllers of the form (4.2) with second order low-pass filters
were tuned for each loop. The controller parameters in the first loop
were K = 0.0480, Ti = 10.9, Td = 2.01. The sign of the controller was
negative and the low-pass filter poles were placed in s = −3.78. The
controller parameters in the second loop were K = 0.0281, Ti = 16.01,
Td = 2.93. The sign of the controller was negative and the low-pass
filter poles were placed in s = −2.58.
The proposed decoupler and controllers were compared with the

previously proposed decoupler and controllers [Wang et al., 2000]. The
latter were filtered by low-pass filters with poles in s = −120 in the
first loop and s = −5.32 in the second loop.
The performance of the closed loops under a unit step load distur-

bance on both channels and measurement noise on both channels were
compared. The measurement noise was uniform random numbers with
a sampling interval of 0.01s, a maximum value of 0.02 and a minimum
value of −0.02, as it is implemented in Matlab Simulink.
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Figure 6.1 Load disturbance responses of the system in Example 6.1 with the
proposed method (solid lines) and the Wang method (dot-dashed lines).

The integrated absolute error (see 4.3) under a unit step load dis-
turbance is a good measure of the load disturbance attenuation ca-
pacity of the closed loop. The proposed method gave IAE = 95.7. The
method proposed in [Wang et al., 2000] gave IAE = 89.1.
The Wang decoupler and controller gave a smaller integrated abso-

lute error but the amplification of measurement noise was not good (see
Figure 6.1). The proposed decoupler and controller gave both accept-
able load disturbance attenuation and acceptable sensitivity to mea-
surement noise (see Figure 6.1).
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EXAMPLE 6.2—THE QUADRUPLE TANK
The quadruple tank has been studied before [Åström et al., 2002]. Here
it is studied in a non-minimum phase case [Åström et al., 2002]. It has
the transfer function

G =









0.3333
s+ 1

0.6667
s2 + 2s+ 1

0.6667
s2 + 2s+ 1

0.3333
s+ 1









.

The simulations in this example were done under the same prereq-
uisites as in Example 6.1. The noise and load disturbances were the
same.
In [Åström et al., 2002] static decoupling was used. The method

proposed here gave the decoupler

D =









0.3333
−0.6667
s+ 1

−0.6667
s+ 1

0.3333









.

This corresponds to

K =

(

s+ 1 0

0 s+ 1

)

.

The controller parameters in the first loop were K = 1.66 Ti = 2.39,
Td = 0.775 The sign of the controller was negative and the low-pass
filter poles were placed in s = −6.46. The controller parameters, the
filter poles and the sign were the same in the second loop as in the
first loop and they were designed with Ms and Mp values of 1.4 in both
loops.
In [Åström et al., 2002] static decoupling and some different PI

controllers were proposed. The fastest of those were used for compar-
ison. They were filtered with first order low-pass filters with poles in
s = −15.
The proposed method gave IAE = 8.69. The method proposed in

the reference gave IAE = 13.3. For comparison of control and output
signals see Figure 6.2.
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Figure 6.2 Load disturbance responses of the system in Example 6.2 with the
proposed method (solid lines) and the Åström method (dot-dashed lines).

It may not be fair to compare PI and PID control, but the example
shows that the proposed method works.

6.4 Conclusion

A decoupler and PID controller design method for TITO systems has
been proposed. It gives the closed loop system good disturbance atten-
uation properties and it fulfills the special requirements of an auto-
matic method. The method is meant to form a core in an algorithm
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for automatic design and tuning of PID controllers for TITO systems.
It was tested by simulation in two examples from the literature with
satisfying results.
The next step in the method evaluation would be to perform tests

on a real process in an industrial environment. The results of such
tests are presented in the next chapter.
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7

Decoupling and Tuning -

Industrial Example

In Chapter 6 the proposed design methods were tested in simulations.
Simulations are a good first test of a method but they should be fol-
lowed by tests on a real process. In this chapter the results of such
tests are presented.

7.1 The Process

At Stora Enso Publication Paper, Hylte Mill in Sweden paper is man-
ufactured from wood and recycling paper. This involves transportation
of pulp at several locations in the mill. The transportation is carried
out in pipes and the flow is controlled by pumps and valves.
In this case a pipe transporting pulp from a recycling-pulp tower to

a pulp container is considered. The flow and the pressure in the pipe
are to be controlled. The controller objective is to hold a constant pres-
sure in the pipe and make the flow follow a reference signal from the
level controller in the container downstream. There are two actuators
on the pipe, a pump and a valve. The pressure and the flow are mea-
sured a small distance upstream from the valve. A schematic picture
of the process is shown in Figure 7.1.
The picture is schematic, but it contains the relevant parts of the

process. The effects of other parts of the process are seen as distur-
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Recycling−

tower Container

pulp

FTPT

Figure 7.1 A schematic picture of the process.

bances. This process is a TITO system with the two input signals, to
the pump and to the valve, and the two measured signals of the pres-
sure and the flow. It has cross couplings since both the pump and the
valve affect both the flow and the pressure in the pipe. Since it is a
TITO system with cross couplings the methods proposed in previous
chapters are appropriate.
A SIEMENS control system is used for control of the part of the

mill where the pipe is located. The control system has PID controllers,
filter blocks, and delay blocks that may be used for control. The sections
below describe how the process is controlled today and how a new
controller may be designed using the methods proposed in previous
chapters.
The process signals were logged during the experiments as de-

scribed below. In all the experiment plots the time is given in seconds,
the pressure unit is bar, the flow unit is m3/h, the signal to the pump
is given in percent of capacity and the signal to the valve is given in
percent of openness. Some of the experiments were performed in closed
loop. In these cases the reference signals were noted by hand.

Backlash in the Valve

There is a backlash in the valve which was revealed by a simple exper-
iment. Figure 7.2 shows the input to the valve and the flow response
during the experiment. The response in the measured flow is quite
slow. The reason for this is that the flow signal is filtered with a low-
pass filter with the time constant 20s.
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Figure 7.2 Experiment pointing out the backlash.
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Figure 7.3 The signals of Figure 7.2 have been normalized and are displayed
together in this Figure.

In Figure 7.3 the input signal and the output signal of Figure 7.2
have been normalized and put in the same figure to make it easier to
draw conclusions from the experiment. The experiment shows that the
backlash has a magnitude of about 3 percent.
A backlash of this magnitude limits the achievable performance of
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FTPT

FX

PIC FIC

Figure 7.4 A picture of the original controller design.

the system and makes it necessary to use a robust controller. This situ-
ation is expected and the design methods proposed in previous chapters
give a robust controller.

7.2 Original Design

The original control structure is depicted in Figure 7.4.
The system is controlled by a SIEMENS control system. At present

two PI controllers are used to control the process. These are SIEMENS
PID controllers with the D part turned off.
A first-order low-pass filter FX with the time constant T = 20s is

placed in the flow loop before the controller. It is put there to reduce
the effects of cross couplings and of the backlash.
The PI controllers are manually tuned and the parameters are K =

0.2 and Ti = 2s in the pressure controller. In the flow controller the
parameters are K = 0.6 and Ti = 28s. The signals are normalized
in the controllers and the controller gains K above are given for the
normalized system.
The controller gains are K = 4 in the pressure controller and

K = 0.07 in the flow controller if physical units are used instead of
normalized. In the following sections it is assumed that physical units
are used everywhere.
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Figure 7.5 Data for system identification

7.3 System Identification

The design methods proposed in previous chapters are model-based.
Thus, a model of the process had to be found. Simple experiments
were carried out to be used for system identification. Figure 7.5 shows
the experimental data that was used. The data was captured in open
loop. Two steps, a negative step followed by a positive step in the signal
to the valve were performed, and both the pressure and the flow were
logged. Then the same was done with the signal to the pump. This
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PIC
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Figure 7.6 A picture of the proposed controller design.

gave the required data and a linear process transfer function matrix
was identified as

G =









0.018e−2s

0.42s+ 1
−0.02e−1.4s

0.9s+ 1
4.1e−2.64s

3s+ 1
12e−4s

3s+ 1









.

This was done by fitting first-order plus dead-time models to the step
responses of the experimental data.

7.4 Controller Design

The proposed control structure is depicted in Figure 7.6.
A decoupler and PID controllers were designed by the methods de-

rived in previous chapters (the columns of the decoupler were also nor-
malized). The decoupler was built up by filter blocks and delay blocks
in the SIEMENS control system. It had the structure

D =







2.00e−1.36s
1.06
0.9s+ 1

−0.682
0.950
0.42s+ 1

e−0.6s






.
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The PID controllers in the SIEMENS control system are on the
following form

C = K

(

1+
1
Tis

+ Td
s

1+ Tds/v

)

.

The PID controllers were filtered by second order low-pass filters

F =
1

(sTf + 1)
2 .

The only difference between this controller structure and the con-
troller structure described in previous chapters is the extra filters on
the D-part of the PID controllers. In the experiments the parameters
v were chosen sufficiently high to make the filters negligible, such that
the developed methods could be used without restrictions.
The proposed method with Ms and Mp values of 1.2 for both con-

trollers gave the controller parameters. In the pressure loop they were
K = 3.60, Ti = 1.76s, Td = 0.703s and T f = 0.141s, and in the flow
loop they were K = 0.0144, Ti = 4.49s, Td = 0.703s and T f = 0.0873s.
Furthermore, v = 100 was chosen in both loops.
The sampling time of the system was 1s. Since the design was

performed in continuous time and the actual control was performed
in discrete time some discretization effects were expected. A specific
analysis of this was not made. The controller design methods were de-
veloped to give a robust controller which handled the various sources
of uncertainty.

7.5 Test of Decoupling

The decoupler was first implemented and tested. When the loops are
decoupled the pressure controller output should affect only the pres-
sure, and the flow controller output should affect only the flow. The
first test was to do some steps in the pressure controller output. Fig-
ure 7.7 shows the result. At the approximate times of 37s and 85s the
pressure controller output is raised by 3%.
It is obvious from the experiment that the cross coupling from the

pressure controller output to the flow is negligible. It is interesting to
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see that the decoupler action is as intuitively clear as increasing the
signal to the pump and closing the valve a bit, when its input signals
demand that the pressure should be raised and flow should be kept at
the same level.
In the second test the pressure controller output was kept constant

and some steps were performed in the second input signal. At the
approximate times of 29s and 82s the flow controller output is raised
by 3%. The results are shown in Figure 7.8.
It is obvious that cross coupling from the flow controller output

to the pressure is negligible and it is interesting again to see that
the action of the decoupler is quite intuitive. When its input signals
demand that the pressure should be kept and flow should be raised, it
increases the signal to the pump and opens the valve a bit.
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Figure 7.7 Data from test with the decoupled system. At the approximate
times of 37s and 85s the pressure controller output is raised by 3%.
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Figure 7.8 Data from test with the decoupled system. At the approximate
times of 29s and 82s the flow controller output is raised by 3%.
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7.6 Closed-loop Experiments

The proposed controller and the old controller were both tested in
closed loop. These kinds of tests are perhaps the most important ones
when a controller is to be evaluated.

Flow Setpoint Changes

Under normal operating conditions the pressure should be kept at a
constant value while the flow should follow external setpoint changes.
Thus, it is interesting to see what happens when this is done in closed
loop. It was tested with both the old controller and the new decoupled
controller. Figure 7.9 shows the results when the old controller is used.
The reference value for the pressure is kept at 0.7 bar and the reference
value for the flow is altered in steps of 120m3/h. The old controller does
not manage to keep the pressure close to the reference value. The flow
was logged between the low-pass filter and the flow controller when
the old controller was used. This makes the flow changes appear to be
a bit smoother and slower than they really are.
Figure 7.10 shows the results for a similar experiment with the pro-

posed decoupled controller. This controller manages to keep the pres-
sure much closer to the reference value and is able to perform faster
setpoint changes in the flow.
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Figure 7.9 Data from reference tests with the old controller. The dashed lines
indicate the reference signals for the pressure and the flow. The solid lines show
the logged signals.

82



7.6 Closed-loop Experiments

100 200 300 400 500 600
0.5

0.6

0.7

0.8

0.9
Pressure

100 200 300 400 500 600
200

400

600

800

1000
Flow

100 200 300 400 500 600

20

30

40

50

60

70
Input Signal to the Pump

100 200 300 400 500 600

20

30

40

50

60

70
Input Signal to the Valve

Figure 7.10 Data from reference tests with the proposed decoupled controller.
The dashed lines indicate the reference signals for the pressure and the flow.
The solid lines show the logged signals.
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Load Disturbances

The proposed controllers were optimized to handle load disturbances.
A load disturbance that entered the system as an increased flow from
a connected pipe was generated. The pipe connects slightly upstream
from the spot where the pressure and the flow are measured (see Fig-
ure 7.1). The disturbance had an amplitude of approximately 150m3/h.
The results of the tests are presented in Figure 7.11 for the old con-
troller and in Figure 7.12 for the proposed new one. In the experiment
with the old control controller the reference value for the pressure was
0.7 bar and the reference value for the flow was 400m3/h. The low-
pass filtered flow was again logged when the old controller was used.
This again makes the flow changes appear to be a bit smoother and
slower than they really are. In the experiment with the new decoupled
control structure the reference value for the pressure was 0.7 bar and
the reference value for the flow was 550m3/h.
The load disturbance enters the system as an increased flow from a

connected pipe. This may explain why the effect on the flow is small in
the non-decoupled case. In that case the pressure loop is controlled by
the pump only. A load disturbance in the form of an altered connected
flow has approximately the same effect on the system as an altered
signal to the pump. The dynamics of the pressure loop are faster than
the dynamics of the flow. When an increased pressure is registered the
control signal to the pump is decreased, which will prevent the flow
from increasing. Thus, the cross coupling in the process happens to be
an advantage in this particular case because it prevents a troubling
disturbance in the flow from occurring. Another thing which makes the
disturbance in the flow even less visible in this case is the low-pass
filter. As mentioned earlier, the flow was logged after the low-pass
filter when the old controller was used.
The pressure disturbance attenuation is, however, quite slow in the

non-decoupled case and faster in the decoupled case.
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Figure 7.11 Data from load disturbance tests with the old controller. The
dashed lines indicate the reference signals for the pressure and the flow. The
solid lines show the logged signals.
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Figure 7.12 Data from load disturbance tests with the proposed decoupled
controller. The dashed lines indicate the reference signals for the pressure and
the flow. The solid lines show the logged signals.

86



7.7 Conclusion

7.7 Conclusion

Simulations are a good first test of a control strategy, but they should
always be followed by real-world experiments, in this case industrial
tests. There are differences between simulations and industrial tests.
In the latter there are real disturbances, nonlinearities like the back-
lash and unmodeled dynamics (because it is impossible to find a perfect
model). These things are often hard to incorporate in simulations.
In this chapter industrial tests of the developed control strategy

were presented. The conclusion of the tests is that the proposed control
strategy works well. The pressure loop and the flow loop are decoupled
and the disturbance attenuation properties of the controller are good.
Further, the controller design methods fulfills the special requirements
of automatic methods (see Summary 2.1), which is necessary if they
are to be used in an automatic design and tuning algorithm.
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Summary and Future Work

TITO systems with strong cross couplings are an important class of
systems in the process industry. Today these systems are not dealt with
in an effective way and there is no satisfactory automatic controller
design and tuning algorithm.
A new decoupler design method and a new PID controller design

method that can make up a core in such an algorithm have been pro-
posed in this thesis. The methods fulfill the special requirements of an
automatic method (see Summary 2.1) and give the closed loop system
good disturbance attenuation properties. Further, the closed loop sys-
tem is decoupled, which is an advantage if the output signals of the
system are to follow independent setpoint changes.
The methods were developed to work together in an algorithm, but

each of them may also be useful alone in other contexts. Most PID
design methods work for processes with simple dynamics but the one
proposed in this thesis works for processes with complicated dynamics
as well, which of course is a great advantage. The proposed decoupler
design method may also be used in other contexts where a decoupler
is needed.
The proposed methods were tested in both simulations and tests

on a real process in an industrial environment. It was observed that
the proposed methods gave the closed loop systems good disturbance
attenuation properties, as they were designed to do. During the indus-
trial tests the advantage of having decoupled loops when independent
setpoint changes should be followed was also obvious (See Figure 7.9
and Figure 7.10).
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Figure 8.1 The different steps of the design and tuning algorithm are de-
scribed in this picture.

The specific objective of the work presented in this thesis was to
find methods that can make up a core of an automatic controller design
and tuning algorithm. The proposed decoupler design method and the
proposed PID controller design method can together make up such a
core and the objective is thus satisfied.
There are some natural areas for continuation of the presented

work. Figure 8.1 shows the different steps of the design and tuning
algorithm.
The first step in the algorithm is to find a model of the TITO sys-

tem by system identification. That part is not covered here and should
receive future attention. The following two steps are the decoupler de-
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sign and the PID controller design for which methods were proposed
in this thesis (see Chapter 3 and Chapter 4). The last step of the al-
gorithm is design for anti-windup and for bumpless transfer between
manual and automatic mode. That part is not covered here and should,
like the first step in the algorithm, receive future attention.
Another area that has not been covered is pre-filtering of reference

signals, which is a common technique that probably could be incorpo-
rated in the PID design method fairly easily.
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A

Matlab Code for the PID

Design Method

clear all;

close all;

s=tf(’s’);

% Load the process

processes;

t=max([(sum(1./abs(pole(G2)))*2+G2.iodelay)*10 ...

(sum(1./abs(pole(G)))*2+G.iodelay)*10])

Cpoint=-(Ms-Ms*Mp-2*Ms*Mp^2+Mp^2-1)/(2*Ms*(Mp^2-1));

R=(Ms+Mp-1)/(2*Ms*(Mp-1));

figure(1)

r=R;

x=-r:0.001:r;

x(length(x)+1)=r;

y=sqrt(r^2-x.^2);

hold on

plot(x-Cpoint,-y,’LineWidth’,2);

hold on

plot(x-Cpoint,y,’LineWidth’,2);

r=1/Ms;

x=-r:0.001:r;

x(length(x)+1)=r;

y=sqrt(r^2-x.^2);

hold on
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Appendix A. Matlab Code for the PID Design Method

plot(x-1,-y,’LineWidth’,2)

hold on

plot(x-1,y,’LineWidth’,2);

hold on

plot(-1/(1-1/Mp^2)+sqrt((1/(1-1/Mp^2))^2-1/(1-1/Mp^2)),0,’o’)

hold on

plot(-1/(1-1/Mp^2)-sqrt((1/(1-1/Mp^2))^2-1/(1-1/Mp^2)),0,’o’)

axis([-2,0.5,-1.5,1]);

axis square;

grid on

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

oldTf=Tf;

limes=2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Some constants

Kmax=100;

Kmin=0.01;

IAEmin=inf;

w=logspace(-3,2,2000);

wa=w(length(w));

wb=w(1);

% Preparing the process for simulation

L=G.iodelay;

G.iodelay=0;

Gss=ss(G);

Ga=Gss.a;

Gb=Gss.b;

Gc=Gss.c;

Gd=Gss.d;

G.iodelay=L;

L2=G2.iodelay;

G2.iodelay=0;

G2ss=ss(G2);
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G2a=G2ss.a;

G2b=G2ss.b;

G2c=G2ss.c;

G2d=G2ss.d;

G2.iodelay=L2;

% Test process sign by simulation

y=0;

sim(’tests’,t);

if y(length(y),2)>0

sign=1;

else

sign=-1;

end

% Calculating uncompensated frequency function

Gfr=squeeze(freqresp(G,w))+squeeze(freqresp(G2,w));

ar=arg(Gfr);

% Make sure that the process has positive sign

% during optimization

if sign==-1

Gfr=-Gfr;

G=-G;

G2=-G2;

end

tic

K=Kmax;

% The gridding is repeated twice

nnn=12;

for gr=1:2

if gr==1

vidd=logspace(0,3,nnn);

Tdi=logspace(log10(1/(2*wa)),log10(1/(2*wb)),nnn);

else

if finalwidthindex==1

finalwidthindex=2;

end

if finalwidthindex==length(vidd)

finalwidthindex=length(vidd)-1;
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end

vidd=logspace(log10(vidd(finalwidthindex-1))...

,log10(vidd(finalwidthindex+1)),nnn);

if finalicount==1

finalicount=2;

end

if finalicount==length(Tdi)

finalicount=length(Tdi)-1;

end

Tdi=logspace(log10(Tdi(finalicount-1))...

,log10(Tdi(finalicount+1)),nnn);

end

%%% The Td grid loop starts

Td=Tdi(1);

Ti=Td/4;

for icount=1:length(Tdi)

Td=Tdi(icount)

%%% The Ti loop starts

for widthindex=1:length(vidd)

count=1;

Ti=vidd(widthindex)*Td/4;

Tf=50*(1/(2*Td)+real(sqrt(1/(4*Td^2)-1/(Ti*Td))));

Tf=min([Tf,500]);

p=1;

l=R*2;

K=Kmax;

CuK=(1+1/(Ti*s)+Td*s)/(1+s/Tf)^(2);

G0uK=G*CuK;

G20uK=G2*CuK;

G0uKfr=0;

G0uKfr=squeeze(freqresp(G0uK,w))...

+squeeze(freqresp(G20uK,w));

%%% Determine K

%%% Decrease K until the system is stable

K=Kmax;

G0fr=G0uKfr*K;

l=abs(min(G0fr+Cpoint));
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while (l<R | stabilitytest(G0fr)==0)...

&& ((K<=Kmax) && (K>=Kmin))

K=K/2;

C=K*CuK;

G0fr=G0uKfr*K;

l=abs(min(G0fr+Cpoint));

end

%%% Increase K until l is close to Ms

while l>R && K<Kmax && K>Kmin

K=K*1.01;

G0fr=G0uKfr*K;

l=abs(min(G0fr+Cpoint));

end

K=K/1.01;

G0fr=G0uKfr*K;

l=abs(min(G0fr+Cpoint));

C=K*(1+1/(Ti*s)+Td*s);

C=K*(1+1/(Ti*s)+Td*s)/(1+s/Tf)^(2);

% Simulate the controller

if K<Kmax && K>Kmin

reg=C;

y=0;

sim(’IAE’,t);

integral=0;

% IAE

for i=1:length(y)-1

dt=y(i+1,1)-y(i,1);

integral=integral+dt*abs(y(i,2));

end

qr=integral;

if qr<IAEmin

finall=l;

IAEmin=qr

finalreg=C;

finalK=K;
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finalTi=Ti;

finalTd=Td;

finalwidthindex=widthindex;

finalvid=vidd(widthindex);

finalicount=icount;

finalTf=pole(C);

finalTf=finalTf(2);

spar=[K Ti Td finalTf];

end

end

end

end

end

toc

% Restore the process sign

if sign==-1

Gfr=-Gfr;

G=-G;

G2=-G2;

end

Tf=oldTf;
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