rd1 Photoreceptor Degeneration: Photoreceptor Rescue and Role of Metalloproteases in Retinal Degeneration

Ahuja Jensen, Poonam

2005

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
DECREASED GLUTATHIONE TRANSFERASE LEVELS IN rd1/rd1 MOUSE RETINA: REPLACEMENT PROTECTS PHOTO RECEPTORS IN RETINAL EXPLANTS

P. AHUJA, A. R. CAFFE,* S. AHUJA, P. EKSTRÖM AND T. VAN VEEN
Wallenberg retina Centre, Department of Ophthalmology, Lund University, BMC-B13, Klinigatan 26, Lund 221 84, Sweden

Abstract—Currently much attention is focused on glutathione S transferase (GST)-induced suppression of apoptosis. The objective of our studies was therefore to see if GST lacerzymes rescue photoreceptors in retinal explants from rd1/rd1 mice, in which photoreceptors degenerate rapidly. Eyes from C3H rd1/rd1 and +/+ mice were collected at various time points between postnatal day (PN) 2 and PN28. Localization and content of α-GST and μ-GST were investigated by immunofluorescence and semi-quantitative Western blot analysis, respectively. In addition, PN2 and PN7 retinal explants were cultured till PN28, during which they were treated with 10 ng/ml α-GST or μ-GST. The spatiotemporal expression of both GST isoforms was closely similar: early presence in ganglion cell layer after which staining became restricted to Müller cells (particularly in the endfeet) and horizontal cell fibers in both rd1/rd1 and +/+ . Doublets of α-GST and μ-GST were detected by Western blot analysis. Densitometry of these bands indicated steady reduction of α-GST content in rd1/rd1 retina starting from the second postnatal week. When α-GST and μ-GST were added exogenously to rd1/rd1 explants, photoreceptor rescue was produced that was more prominent in PN2 than in PN7 explants and more effective by α-GST than μ-GST. We propose that α-GST neuroprotection is mediated by reduction of tissue oxidative stress. © 2005 Published by Elsevier Ltd on behalf of IBRO.

Key words: GST, neuroprotection, retinal degeneration, culture.

The rd1/rd1 mouse has an insertion of viral DNA in the β-subunit of the cGMP phosphodiesterase gene (Bowes et al., 1990; Pittler and Baehr, 1991). This leads to a total degeneration of rods between postnatal day (PN) 7 and PN21 leaving only a single layer of cones in the outer nuclear layer (ONL) of the retina (Sanyal and Bal, 1973; Carter-Dawson et al., 1978). Subsequently remaining cones also die. Defects in the same gene are involved in human forms of retinitis pigmentosa (McLaughlin et al., 1995) and, for this reason the rd1/rd1 mouse serves as an adequate model for human inherited retinal degenerative disease. Use of an in vitro mouse retinal explant assay, such as the one we and others have developed (Caffé et al., 1989, 2001a; Caffé and Sanyal, 1991; Mosinger-Ogilvie et al., 1999), allows screening of potential therapeutic factors for retinal degenerative disease under rigidly controlled conditions. Previously combinations of nerve growth factor and fibroblast growth factor-2 as well as ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) have been shown to retard in vitro loss of rd1/rd1 photoreceptors (Caffé et al., 1993, 2001b; Mosinger-Ogilvie et al., 2000). Lately we reported that lens epithelium-derived growth factor (LEDGF) also retards rd1/rd1 photoreceptor loss in culture when compared with untreated tissue (Ahuja et al., 2001).

Apart from these typical growth factors, other classes of compounds might be of benefit in attempts to retard neurodegeneration. For instance, supplementation of glutathione peroxidase, thiorodoxin, superoxide dismutase, or catalase and their synthetic mimetics, to growth medium may protect neurons or retinal pigment epithelium (RPE) cells in vitro (Lipton et al., 1993; Akeo et al., 1996; Castagné and Clarke, 2000). All of these are redox-regulating enzymes. However, their neuroprotective effect may be independent from their involvement in redox regulation. Such an example is glutathione S transferase (GST). A series of recent studies have shown that several forms of GST isoenzymes interact with different protein kinases in stress-induced pathways thus indicating that GST isoenzymes might play an additional role at the level of cellular signaling and regulation. A number of cystolic GST isoenzymes have been purified from vertebrate organs. On the basis of their primary structure cystolic GST isoenzymes are divided into five families designated class α, β, γ, δ, and η-GST (Hayes and Pullford, 1995). Intracellular α-GST interacts with c-Jun N-terminal kinase (JNK), whereas μ-GST and thiorodoxin interact with and inhibit apoptosis signal-regulating kinase 1, which modulates the two downstream JNK and p38 mitogen-activated protein kinase apoptotic pathways and inhibits or deactivates them (Adler et al., 1999; Cho et al., 2001). The p38 apoptotic pathway has been linked directly to rd1/rd1 retinal degeneration (Jo- mary et al., 2001). Usually intracellular GST levels change after trauma or during pathology (Manevik and Danielson, 1988; Lovell et al., 1998), in agreement with reports that investigated this issue in retina (McGuire et al., 1996, 2000). But, whether this also happens during rd1/rd1
retinal degeneration was unknown. Therefore we studied the following questions: (1) if tissue level of GST changes during rd1/rd1 retinal degeneration; (2) whether exogenous GST can also delay rd1/rd1 photoreceptor loss in vitro.

Here we present evidence that both \(\omega \) and \(\mu \)-GST isoenzymes, the most abundant forms of GST, levels decrease from the second postnatal week of \(\text{rd1/rd1} \) retinal degeneration. Further, \(\mu \)-GST can indeed rescue photoreceptors in \(\text{rd1/rd1} \) mouse retinal explants.

EXPERIMENTAL PROCEDURES

Animals

All experimental treatments were according to NIH guidelines and the European Communities Council Directive (86/609/EEC). The Swedish National Animal Care and Ethics Committee also approved the experiments. Homozygous retinal degeneration 1 (\(\text{rd1} \)) and corgenic control (\(\text{+} /\text{+} \)) mice of the C3H strain from our own colonies were used. Day of birth was considered as PN0. Pups from PN2 and PN7 age were decapitated whereas older mice (PN14, PN21 and PN28) were killed by asphyxiation on dry ice. Efforts were made to minimize the number of animals used and their suffering.

Detection and semi-quantification of \(\omega \) and \(\mu \)-GST in retinal extracts by Western analysis

The in vivo retina from two animals in each category were taken from PN2, PN7, PN14, PN21 and PN28 \(\text{+/+} \) and \(\text{rd1/rd1} \) mice. After enucleating the eyes, the anterior segment, vitreous body, and retina and vitreous body, vitreous body, and retina were removed in the dissecting medium and retinas with RPE were frozen at \(-80^\circ C \) until used. Two retinas of the same kind were pooled and homogenized by hand in homogenizing buffer (2% sodium dodecyl sulfate, 10% glycerol and 62.5 mM Tris [pH 6.8]). The homogenate was centrifuged at 10,000 \(\text{rpm} \) for 5 min. Protein concentration of the soluble extract was determined by protein kit (Bio-Rad Laboratories, Hercules, CA, USA). Molecular weight markers were of broad range biologically SDS-PAGE standards (Bio-Rad Laboratories) and E. coli produced human recombinant \(\omega \)-GST (65.2 ng) or \(\mu \)-GST (50 ng). Oxford Biomedical Research, Oxford, MI, USA) served as molecular weight markers and positive references, respectively. Proteins of the gel were transferred using a Semi-Dry blotter (Bio-Rad Laboratories, Hercules, CA, USA) using blotting buffer (48 mM Tris base, 39 mM glycine, 0.0375% SDS, 20% methanol). The membranes were blocked for 1 h in Tris-buffered saline containing 0.1% Triton X-100 (TBST) and 5% skim milk (pH 7.2). This was followed by overnight incubation at 4 \(^\circ C \) with either of the antibodies (1) anti-rat GST Ya (goat polyclonal, 1:10,000) that detects \(\omega \)-GST, (2) anti-human GST M1-1 (rabbit polyclonal, 1:1000) that detects \(\mu \)-GST (Oxford Biomedical Research, Inc.), diluted in phosphate-buffered saline (pH 7.2) containing 1% bovine serum albumin and 0.25% Triton X-100 (PBST). Sections were pre-incubated with PBST for 30 min at RT followed by overnight incubation with the diluted primary antibody at 4 \(^\circ C \). In case of negative control sections the primary antibodies were omitted. After washing with PBST for 3×5 min, bound primary antibody was detected by incubation with rabbit anti-goat conjugated to fluorescein isothiocyanate (FITC) or goat anti-rabbit antibody conjugated to FITC (DAKO, Glostrup, Denmark, 1:200). After another wash with PBST for 3×5 min each, the slides were mounted with Vectashield anti-fade medium (Vector Laboratories, Burlingame, CA, USA).

To confirm the identity of stained profiles double labeling of GST M1-1 with either glutamine synthetase (GS: mouse monoclonal, 1:1000; Chemicon, Temecula, CA, USA) or neurofilament (mouse monoclonal, 1:3000; Sigma, St. Louis, MO, USA) was performed on PN28 \(\text{+/+} \) retina. The secondary antibody used in both the cases was Alexa Fluor 594 goat anti-mouse (Molecular Probes, Eugene, CA; 1:3000). For double labeling, sections were initially incubated with the first primary antibody overnight followed by the first secondary antibody and then again overnight with the second primary antibody followed by the second secondary antibody. Washes with PBST were performed in between each step as described above.

Immunohistochemical labeling was examined and documented using an Axiohot photomicroscope (Zeiss, Oberkochen, Germany). Adobe Photoshop was used for image processing. Only contrast and brightness of images was adjusted. In the double labeling experiment separate digital images of the fluorescent phores were superimposed on each other, resulting in a yellow or orange signal depending on the intensity in case of co-localization.

Long-term \(\omega \)-GST and \(\mu \)-GST treatment of retinal explants to study the rescue effect

PN2 and PN7 retinas were used to generate mouse retinal explants from \(\text{rd1/rd1} \) and \(\text{+/+} \) animals as described before (Ahuja et al., 2001). The incubation medium was supplemented with either 10 ng/ml of human recombinant \(\omega \)-GST, \(\mu \)-GST (Oxford Biomedical Research, Inc.) or vehicle as a control. According to the data sheets specific activity of \(\omega \)-GST was 57 \(\mu \text{mol/min} \) using spectrophotometric determination of 1-chloro-2,4-dinitrobenzene conjugation with reduced glutathione (1 mM) in 100 mM KPi buffer pH 6.5 at RT, while that of \(\mu \)-GST was 207 \(\mu \text{mol/min} \) mixing with 10 mM reduced glutathiones. For long-term incubation studies all explants were cultured till the age of PN28; meaning that PN2 and PN7 explants were kept for 26 and 21 days in vitro (DIV), respectively. At the end of culture period the retinal explants (PN2 = 26 DIV and PN7 = 21 DIV) attached to the carrier membrane were fixed and processed according to the protocol described for immunocytochemistry. A number of sections were stained with H&E to study morphology and to count the number of photoreceptor rows in ONL. For the latter a vertical column in the center of the retina was chosen and a previously described counting method was compared after semiquantification by optical densitometry (BIO-1D Software, Leica, Mannheim, Germany).
procedure was followed (Caffé et al., 1993). All data are presented as mean ± S.E.M. Data were analyzed using one way analysis of variance at 5% significance level, followed by Fisher’s protected least significant difference post hoc comparisons. The difference between groups was regarded as significant if \(P < 0.05 \).

RESULTS

\(\alpha \)-GST levels are decreased in \(rd1/rd1 \) mouse retina

Fig. 1A, B display Western blots and statistical analysis, respectively, obtained for \(\alpha \)-GST. Western analysis revealed that the antibody reacted with a band migrating at approximately 17 kDa and a doublet co-migrating with the positive control at approximately 35 kDa (Fig. 1A). This latter doublet was regarded as the protein(s) of interest and scanned for statistical analysis of which results were plotted in Fig. 1B. This graph showed that in \(rd1/rd1 \) retinal extract \(\alpha \)-GST content increased between PN2 and PN7, after which levels declined starting at a time point between PN7 and PN14. This decline continued till PN28, the last measured time point. The difference in \(\alpha \)-GST levels between PN7 and PN21 as well as between PN7 and PN28 in \(rd1/rd1 \) retina was statistically significant (\(P < 0.01 \)). By contrast, after having reached peak levels during the second postnatal week, \(\alpha \)-GST levels remained stable in \(+/+ \) retinal extracts and no statically significant differences occurred during 4 weeks of retinal maturation. At none of the studied time points \(\alpha \)-GST level was significantly reduced in \(rd1/rd1 \) retina compared with \(+/+ \) counterparts (Fig. 1B).

\(\mu \)-GST levels are decreased in \(rd1/rd1 \) mouse retina

Fig. 1C, D display Western blots and numerical data, respectively, obtained for \(\mu \)-GST. Western analysis revealed several protein bands migrating at approximately 17 kDa, approximately 31 kDa and approximately 60 kDa, but a doublet co-migrating with the positive control at approximately 37 kDa (Fig. 1C) was regarded as the protein(s) of interest and used for statistical analysis. The results showed that from PN2 to PN28 no statistically significant alterations in levels in \(+/+ \) as well as \(rd1/rd1 \) retina occur, although in the \(rd1/rd1 \) retina the levels displayed a tendency to decrease after PN7. ** \(P < 0.01 \); *** \(P < 0.001 \).

Fig. 1. Western analysis demonstrating age dependent levels of \(\alpha \)-GST and \(\mu \)-GST levels in \(+/+ \) and \(rd1/rd1 \) retinas. Panels A and B display the Western blot and semi-quantification of \(\alpha \)-GST, respectively. The Western blot shows a doublet co-migrating with recombinant \(\alpha \)-GST protein. The densitometry of the \(\alpha \)-GST bands shows that between PN2 and PN7 a development increase in levels of this protein is observed in both \(+/+ \) and \(rd1/rd1 \) retinal extracts. Note that from PN7 to PN28 no major alterations in levels of this protein occur in the \(+/+ \) retina. In contrast, in the \(rd1/rd1 \) retina levels dramatically decrease after PN7 with changes being statistically significant (\(P < 0.01 \)). Both at PN21 and PN28 levels in \(rd1/rd1 \) were also statically significantly reduced compared with age-matched \(+/+ \). Panels C and D illustrate similar data for \(\mu \)-GST. The Western blot shows a band co-migrating with recombinant \(\mu \)-GST protein. Densitometry of the \(\mu \)-GST bands shows that from PN2 to PN28 no statically significant alterations in levels in \(+/+ \) as well as \(rd1/rd1 \) retina occur, although in the \(rd1/rd1 \) retina the levels displayed a tendency to decrease after PN7. ** \(P < 0.01 \); *** \(P < 0.001 \).
And GST are localized in Müller cells and horizontal cell fibers of in vivo retina

Cellular expression of α-(Fig. 2) and γ-GST (Fig. 3) showed closely similar spatiotemporal developmental pattern and, therefore, will be presented together. At PN2, when there was no morphological difference in retinal structure between rd1/rd1 and +/+ genotypes, weak expression of both GST isoforms was detected in developing ganglion cell layer (GCL; Figs. 2a; 3a; b; arrow). Labeling of astrocytes could not be excluded. At PN7 labeling for both GST isoforms was still prevalent in GCL region, but contours of Müller cell endfoot and profiles at the developing inner limiting membrane became better discernable along with presentation of weak-immunoreactivity in developing horizontal cells (Figs. 2c; d; 3c; d; arrow). Between PN7 and PN14 rod degeneration got under way in rd1/rd1 mouse retina, while in +/+ retina photoreceptors underwent further differentiation. At PN14 both α- and γ-GST are now clearly detectable in Müller cell endfoot and OPL staining persists (arrows, asterisks). Panel k, negative control showing absence of IR after only the secondary goat antibody is applied. Panel l is higher magnification of panel j showing distinct γ-GST labeling in the Müller cells radial endfoot and descending processes (arrow) and also in the horizontal oriented fibers in the OPL (asterisks). Scale bar=50 μm.
To unambiguously confirm presence of GST immunoreactivity in Müller and horizontal cells retinal sections were double-labeled using antibodies against GST M1-1 combined with either GS or neurofilament. Fig. 4a–c displays μ-GST (Fig. 4a), neurofilament (Fig. 4b), and the superimposed image (Fig. 4c). The results demonstrated co-localization of μ-GST and GS, thereby confirming presence of GST in Müller cell endfeet (arrows) and radial processes. Staining of astrocytes could not be excluded. Fig. 4e–g depicts μ-GST (Fig. 4e), neurofilament (Fig. 4f), and the superimposed image (Fig. 4g). This showed co-localization of μ-GST and neurofilament, thereby confirming presence of GST in fibers extending from horizontal cells (arrowheads).

α- and μ-GST treatments rescue photoreceptors in PN2 rd1/rd1 mouse retinal explants

PN2 or PN7 retinal explants were cultured with or without α-GST or μ-GST supplementation to the medium and analyzed at PN28. Without these factors PN2+div26 rd1/rd1 retinal explants displayed 2.6±0.1 rows of nuclei in ONL (Fig. 5c, Fig. 6). Similar tissue treated with α-GST showed 4.6±0.2 rows of nuclei (Fig. 5a, Fig. 6) and when treated with μ-GST showed 4.7±0.2 rows of nuclei (Fig. 5b, Fig. 6). In both treated cases a rescue effect was found that was significant at P<0.01 (Fig. 6). Corresponding PN2+div26 91/91 retinal explants exhibited 7.3±0.2 rows of nuclei in the ONL (Fig. 5f, Fig. 6), which was not different statistically from α-GST- (Fig. 5d, Fig. 6) and μ-GST- (Fig. 5e, Fig. 6) treated tissue, which had 7.1±0.1 rows of nuclei and 7.2±0.1 rows of nuclei respectively (Fig. 6). A rescue effect of α-GST and μ-GST, although less pronounced, was also observed in PN7+div21 rd1/rd1 tissue. The responses of untreated PN7+div21 rd1/rd1 (Fig. 5i, Fig. 6) explants displayed 2.3±0.2 rows of nuclei in the ONL, whereas similar tissue treated with α-GST (Fig. 5g, Fig. 6) showed 3.1±0.1 rows of photoreceptor and that treated with μ-GST (Fig. 5h, Fig. 6) showed 2.7±0.2. Only α-GST
treatment was significant at the $P<0.05$ level (Fig. 6) when compared with the untreated one. Untreated PN7+div21 +/- explants were not statistically different from α-GST- and μ-GST-treated ones (Fig. 6). The PN7+div21 +/- untreated (Fig. 5, Fig. 6) showed 8.0±0.2 rows as compared with nuclei and μ-GST treated (Fig. 5k, Fig. 6) which showed 7.2±0.1 rows of nuclei. The rescue effect by α-GST and μ-GST on rd1/rd1 explants at PN2+div26 was significantly higher than the effect at PN7+div21 (Fig. 6).

DISCUSSION

Anatomical localization of GST isoenzymes in mouse retina: endogenous GST isoenzymes act as detoxifying agents

Intracellular detoxification is supposedly the most important function of cytoplasmic GST isoenzymes (see Hayes and Pulford, 1995; Salinas and Wong, 1999). The anatomical localization of various GST isoenzymes has been investigated previously in rat retina. Results demonstrate that the μ-GST is primarily present in Müller cells and photoreceptor outer segments, the α-GST is found in Müller cells, whereas amacrine cells express staining after using antisera directed against α-GST (Ahmad et al., 1988; Singh et al., 1984; Naash et al., 1988; McGuire et al., 1996). We have found α- and μ-GST immunolabeling in Müller cell endfeet and, interestingly, in large caliber horizontal cell fibers. A common denominator between A-type (axonless) horizontal cells and Müller cell endfeet is that they contribute to the formation of the inner blood-retinal barrier composed of the deep capillary layer of retina at the OPL and the superficial retinal capillary layer at the inner limiting membrane (Knabe and Ochs, 1999; Yu and Cringle, 2001). We suggest that GST isoenzymes can be secreted, as has been shown in tissues such as the seminiferous tubules (Mukherjee et al., 1999). The GST staining in the retinal OPL is, thus, strategically positioned to protect retina against toxic molecules that penetrate from the blood retinal capillaries into the retinal syncytium. In order to further support this hypothesis GST stainings as done here should be performed in partially vascularized retinas like those from rabbit and horse and avascular retinas as that from the guinea-pig (but see Pow and Crook, 1995). Alternatively, Müller cells and the horizontal cells are in appropriate positions to release GST molecules which could then interact with reduced glutathione and proteins on the surface of photoreceptors and presumably influence their survival. Curiously, GST isoenzymes have been shown to bind to steroids such as estrogens and these steroids have a potent effect on photoreceptor survival in a variety of retinal degeneration models (Yu et al., 2004).

Lower α-GST levels in rd1/rd1 as compared with +/- retina

GST doublets in Western blot migrated slightly above the reference protein because the latter is a recombinant pro-
Fig. 5. α-GST and μ-GST rescue photoreceptor cell in rd1/rd1 mouse retinal explants. Photomontage demonstrating H&E-stained sections of mouse retinal explants from the following experimental conditions: (a) PN2-dx26 rd1/rd1 α-GST treated. (b) PN2-dx26 rd1/rd1 μ-GST treated. (c) PN2-dx26 rd1/rd1 untreated. (d) PN2-dx26 r/rα GST treated. (e) PN2-dx26 r/rμ GST treated. (f) PN2-dx26 r/r untreated. (g) PN7-dx21 rd1/rd1 α-GST treated. (h) PN7-dx21 rd1/rd1 μ-GST treated. (i) PN7-dx21 r/rα GST treated. (j) PN7-dx21 r/rμ GST treated. (k) PN7-dx21 r/r untreated. It shows that PN2-dx26 rd1/rd1 untreated explants contain two rows whereas similar α-GST and μ-GST-treated explants display five rows in the ONL (ONL thicker in a and b than in c). PN2-dx26 r/rα treated and untreated explants remain unaffected in this respect. Panels g and h show that PN7 rd1/rd1 retinal explants are less responsive to α-GST treatment compared with PN2 rd1/rd1 explants. Scale bar=25 μm.

Fig. 6. Statistical analysis of α-GST and μ-GST effect in retinal explants. The data are presented as the number of rows (mean ± SEM) of nuclei in the ONL. Number of rows in PN2-dx26 rd1/rd1 untreated explants (5.2 ± 0.0) is significantly different from that of both PN2-dx26 rd1/rd1 α-GST (4.8 ± 0.2) and PN2-dx26 rd1/rd1 μ-GST (4.7 ± 0.2). P<0.01. Number of rows in PN2-dx26 r/rα untreated explants (7.3 ± 0.2) is statistically not different from that of PN2-dx26 r/rα GST-treated (7.1 ± 0.1) and PN2-dx26 rd1/rd1 GST-treated tissue (7.2 ± 0.1). Number of rows in PN7-dx21 rd1/rd1 untreated explants (2.3 ± 0.2) is significantly different from that of PN7-dx21 rd1/rd1 GST-treated tissue (3.1 ± 0.1). P<0.05. Number of rows in PN7-dx21 r/rα untreated explants (4.0 ± 0.2) is statistically not different from that of PN7-dx21 r/rα GST-treated (7.1 ± 0.1) and PN7-dx21 r/rμ GST-treated tissue (7.2 ± 0.1). The number of rows in the ONL of PN2-dx26 rd1/rd1 α-GST- and PN2-dx26 rd1/rd1 μ-GST-treated was also statistically significantly higher when compared with PN7-dx21 rd1/rd1 α-GST- and PN7-dx21 rd1/rd1 μ-GST-treated. P<0.01. In the PN2 and PN7 r/rα GST- and μ-GST-treated and untreated no statistically significant difference was seen. The rescue effect by μ-GST was more pronounced in the PN2-dx26 explants compared with the PN7-dx21 explants. ** P<0.01; * P<0.05.
rd1/rd1 photoreceptors in the retinal explants and more efficiently so when cultures are started at PN2 age than at PN7. This rescue effect was not as potent as that found after CNTF and BDNF supplementation (Mosinger-Ogilvie et al., 2000; Caffè et al., 2001) but was similar to that seen after LEDGF application (Ahuja et al., 2001). There are three possible modes through which GST can affect retinal explants in order to rescue rd1/rd1 photoreceptors. These include (1) uptake through the plasma membrane to act intracellularly; (2) binding extracellularly to transmembrane receptors; and (3) modulation of the extracellular environment. With regard to the first mode, no transmembrane receptors that recognize GST are known, although it has been reported that other redox regulating enzymes, i.e. extracellular superoxide dismutase, can bind to the cell surface via heparan sulfate proteoglycans (Karlsson et al., 1988). Evidence that GST can penetrate the cell membrane is also lacking. By deduction the site remaining for exogenously added GST to exert its rescue effect is likely to be the extracellular culture environment. This mode of action is not novel since other redox regulating enzymes like superoxide dismutase, catalase, and glutathione peroxidase or their synthetic mimetics exert either neuroprotective or neurodestructive effects when added to culture media (e.g. Oury et al., 1992; Bonfoco et al., 1995; Ricart and Fiszman, 2001). Our hypothesis is that exogenous GST, may also function as a peroxidase (Saneto et al., 1999), thereby acting as an extracellular antioxidant similar to its function within the cell cytoplasm. It is often overlooked that in cell or tissue culture experiments the medium is present in a hyperoxic (95\% O2 + 5\% CO2) incubation atmosphere and due to this redox-active oxygen species (ROS) are present. (Leist et al., 1996; Halliwell et al., 2000; Grzelak et al., 2000). The tissue, especially when in a pathological state, is an additional source of ROS. Redox-sensitive enzymes, like glutathione and dopamine receptors are among the retinal redox-sensitive cell surface receptors that enable this tissue to sense the extracellular redox state (e.g. Sucher and Lipton, 1991; Coyle and Puttfarcken, 1993; Tanaka et al., 2001). Based upon this line of thinking the differential sensitivity displayed between PN2 and PN7 retinal explant can be explained by the following arguments. First, the well-accepted molecular concept of an age-related decline in cellular response to oxidative stress (e.g. Holbrook and Ikeyama, 2002). Second, during maturation, physical changes like establishment of new neural circuits and activation-dependent events take place that induce functional changes like specialization of initial dual action receptors (e.g. Joseph et al., 1998; Puopolo et al., 2001). It is plausible that such maturation changes also occur in redox-sensitive receptor systems in the rd1/ rd1 retinal explant leading up to the differential response of PN2 and PN7 tissue to GST treatment. The observation that α-GST is more potent than μ-GST argues in favor of the redox-related function of GST isoenzymes since α-GST has more redox power compared with μ-GST (Hayes et al., 1995). Validation of this extracellular antioxidant mechanism of GST-induced photoreceptor rescue will depend in part on supportive evidence generated by experiments whereby the redox-sensitive receptors are blocked.

REFERENCES

P. Ahuja et al. / Neuroscience 131 (2005) 935–943 943

(Published 2 November 2004)