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Extremal control of Wiener model
processes

Björn Wittenmark
Lund Institute of Technology

Lund, Sweden

Robin J. Evans
University of Melbourne

Melbourne, Australia

Abstract

In this report we describe different approaches to extremal control.
Especially, processes of Wiener type are considered. These models con-
sists of a linear part followed by a nonlinearity. In our case we will
consider nonlinearities having one extremum point. The purpose of
the control is to keep the output of the process as close as possible to
the extremum point. Different control schemes are discussed and an-
alyzed. The main problem in the control of this kind of Wiener model
processes is the non-uniqueness of the inverse of the nonlinearity. This
causes problems, for instance, in the estimation of the states of the
process and the identification in the adaptive case.

1. Introduction

There are many application where it is of interest to position the process
output at an optimum or extremum point. A typical situation is combus-
tion engines where the emission and efficiency depend on the inputs to the
motor such as fuel and air/fuel ratio. Other examples are control of grind-
ing processes, water turbines, and wind mills. It is therefore of interest to
study processes having an extremum value in the output and to be able to
operate the system as close as possible to the extremum point.

This problem has been studied over a long period of time and there are
solutions to some of the problems occurring in extremum control. See, for
instance, Draper and Li (1951), Jacobs and Langdon (1970), Keviczsky and
Haber (1974), Keviczsky et al. (1979), Sternby (1980a), Sternby (1980b),
Dumont and Åström (1988), Wellstead and Scotson (1990), Scotson and
Wellstead (1990), Wittenmark (1993), Allison (1994), Wittenmark and
Urquhart (1995), Navarro and Zarrop (1996), Krstić and Wang (1997),
Krstić and Wang (2000), and Gäfvert et al. (2000). In many of the earlier
references the static optimization problem has mainly been discussed and
it is only recently in the work by Krstić and coworkers that the problem
with stability in the case of dynamics has been solved for some cases.

The problem of extremum control can be approached in several ways.
Among the first approaches was the introduction of perturbation signals. A
perturbation signal is then used to get information about the local gradient
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Figure 1 a. Hammerstein model, b. Wiener model

of the nonlinearity. This is done by comparing the phase of the perturba-
tion and its influence in the output. The input signal is then changed using
a gradient method to find the extremum point. When a perturbation sig-
nal is introduced the dynamics of the process will influence the response
of the system and this can corrupt the estimation of the gradient. See
Sternby (1980b), Krstić and Wang (1997), and Krstić and Wang (2000).
The perturbation signal method is usually only used to find a constant
value of the input and/or to be able to follow a varying operating point.
The process will then behave as an open loop system around the extremum
point. The perturbation signal method has the advantage that it requires
very little information about the process. On the other hand the conver-
gence of the system and the steady state performance are not very good,
especially in presence of noise.

A second approach is to use more advanced optimization methods. If
the nonlinearity is a known function the optimal constant input might be
computed directly. This method has the drawback that the static nonlin-
earity and the open loop gain of the process have to be known. Further,
the performance at the extremum point is still as if it were an open loop
system. This implies that if the open loop dynamics of the process is slow
then the convergence and recovery after a disturbance will be slow.

There are different classifications of nonlinear systems and we will dis-
cuss two different classes of systems shown in Figure 1. The first class of
models is called Hammerstein models where the nonlinearity is at the input
of a linear dynamic subsystem. Extremum control of Hammerstein models
has been studied in Keviczsky and Haber (1974), Keviczsky et al. (1979),
Wittenmark (1993), and Wittenmark and Urquhart (1995). In Witten-
mark (1993) and Wittenmark and Urquhart (1995) different dynamic con-
trollers together with adaptive schemes are investigated. The Hammer-
stein models have the advantage that the models are linear in the param-
eters, which makes it easy to estimate the parameters of the model.

In the second class of models, Wiener models, the system has a linear
part followed by a nonlinearity. Estimation of the parameters in Wiener
models, is discussed in Wigren (1990), Wigren (1993), Hagenblad (1999),
and Hagenblad and Ljung (2000), but mainly for the case when the non-
linearity is invertible. In this paper we will discuss extremum control of
Wiener models. To start with we will assume that the processes are known
and the parameter estimation problem will only be briefly discussed at the
end of the paper.
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The paper is organized in the following way. The problem is formulated
in Section 2 and different controllers are discussed in Section 3. Some of
the controllers require that the output or the states of the linear part of
the process are known and different ways to make estimators are discussed
in Section 4. An example is used in Section 5 to illustrate the behavior of
the different control schemes. Section 6 contains a discussion of estimating
the unknown parameters of Wiener models. Finally, some conclusions are
given in Section 7.

2. Problem formulation

We assume that the process is a Wiener model where the linear part is
described by the known discrete-time system

z(k) + a1 z(k− 1) + a2z(k− 2) + ⋅ ⋅ ⋅+ anz(k− n)
= b0u(k− d) + b1u(k− d− 1) + ⋅ ⋅ ⋅+ bn−d+1u(k− n− 1)
+ e(k) + c1e(k− 1) + ⋅ ⋅ ⋅+ cne(k− n)

(1)

where u(k) is the input signal, z(k) the output of the linear part, and e(k)
is Gaussian distributed white noise with zero mean and standard deviation
σ .

The model can also be written in polynomial form

A(q)z(k) = B(q)u(k) + C(q)e(k) (2)

where q is the forward shift operator and deg A = deg C = n and deg B =
n− d. Further, A and C are monic, i.e. the coefficient of the largest power
of q is equal to one. The parameter d is the time delay in the system. The
model (1) can also be written in state-space form.

The nonlinearity is described as a quadratic function of the form

y(k) = h(z(k)) = γ 0 + γ 1z(k) + γ 2z(k)2 (3)

with γ 2 �= 0. Other types of nonlinearities can also be assumed. However,
we assume, at least close the optimum point, that the nonlinearity can be
described by a quadratic function. The nonlinearity has an optimum point,
maximum or minimum, depending on the parameter γ 2. For the sake of
simplicity we assume that the extremum point is a minimum, i.e. γ 2 > 0.
The minimum of y(k) is obtained for

z0 = − γ 1

2γ 2
(4)

The minimum of y(k) is

y0 = γ 0 −
γ 2

1
4γ 2

(5)

Independent of the value of z(k) the output can never be below the value
y0.

The control signal, u(k) is allowed to be a function of the process output
y(k) and previous inputs and outputs. In the derivation of some of the

3



y
0

Time

y(k)

Figure 2 The purpose of the control of the Wiener model is to minimize the
indicated area.

controllers we will also assume that the control signal may be a function
of the outputs of the linear system or its state, i.e. of z( j), j ≤ k. The
estimation of the states is discussed in Section 4.

The purpose of the control is to keep the output y(k) as close as possible
to the optimum point y0. The loss function is formally expressed as

min
u(k)

(y(k) − y0) (6)

i.e. we want to minimize the area indicated in Figure 2.

3. Control strategies

In this section three different control strategies will be discussed. Firstly, a
static controller is derived and then two types of one-step-ahead controllers
will be considered.

3.1 Static controller
Assume that there is no noise acting on the system and assume that the
input to (2) is constant then z(k) = z0 if

u0 = A(1)
B(1) z0 = − γ 1 A(1)

2γ 2B(1) (7)

Using (7) on the system (2) gives

z(k) = A(1)B(q)
B(1)A(q) z0 + C(q)

A(q) e(k) = z0 + C(q)
A(q) e(k) = z0 + v(k)

The second equality follows since z0 is constant. This implies that the mean
value of z is equal to z0 but the variation around z0 is determined by the
open loop noise dynamics C/A. The output y will thus deviate from the
desired value y0. The variable z is a Gaussian process but the output y is
a non-central χ2 distribution, see, for instance, Johnson and Kotz (1970).
If the open loop system has slow dynamics then the convergence of z will
be slow at the startup or after the noise process has driven z away from
its desired value.
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The controller (7) can be regarded as a one step minimization of the
quadratic nonlinearity opposed to the use of the gradient method when
using a perturbation signal. Using (7) gives

y(k) = γ 0 + γ 1(z0 + v(k)) + γ 2(z0 + v(k))2
= y0 + (γ 1 + 2γ 2z0)v(k) + γ 2v(k)2

(8)

This implies that

E(y(k) − y0) = γ 2σ 2
v (9)

where σ 2
v is the variance of the process v(k), which is the same as the

open loop variance of the process, i.e. the controller gives the correct mean
value, but the stochastic part of the system is not influenced.

3.2 One-step-ahead prediction using the true linear output
We now assume that z(k) is measurable. One way to obtain a good control
of the system is to minimize the variance of z around the value z0. With
z available this is essentially the problem of predicting z(k + d) where d
is the time delay of the system, i.e. d = deg A − deg B, see Åström and
Wittenmark (1997). To make the prediction we introduce the identity

qdC(q) = A(q)F(q) + G(q) (10)
where deg F = d and deg G = n−1 and d is the prediction horizon. Further
F is monic, i.e. f0 = 1. The linear output at time k+d can then be written
as

z(k+ d) = F(q)e(k) + 1
C(q)(B(q)F(q)u(k) + G(q)z(k)) (11)

The controller that minimizes the variance of z(k) around z0 is given by,
see Åström and Wittenmark (1997),

u(k) = − G(q)
B(q)F(q) z(k) + C(1)

B(1)F(1) z0 (12)

The controller (12) will keep z as close as possible to z0 and will also make
y(k) close to its optimal value y0. In the case when d = 1 as assumed in
(2) then F = 1 and G = C − A and the controller (12) becomes

u(k) = A(q) − C(q)
B(q) z(k) + C(1)

B(1) z0 = A(q) − C(q)
B(q) z(k) − γ 1C(1)

2γ 2B(1) (13)

Using (12) gives

z(k) = z0 + F(q)e(k− d+ 1)
= z0 + e(k) + f1e(k− 1) + ⋅ ⋅ ⋅ + fd−1e(k− d+ 1) (14)

which gives the output

y(k) = γ 0 + γ 1z0 + γ 2z2
0 + γ 1 F(q)e(k− d+ 1)

+ 2γ 2z0 F(q)e(k− d+ 1) + γ 2(F(q)e(k− d + 1))2
(15)

Further
E(y(k) − y0) = γ 2(1+ f 2

1 + ⋅ ⋅ ⋅ + f 2
d−1)σ 2 (16)

Since F(q) is the first d−1 coefficients of the series expansion of C(q)/A(q)
it follows that the average loss per step is lower when (12) is used than
when (7) is used.
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3.3 One-step-ahead prediction using the estimated linear output
The controller (12) is an idealized controller since the output (or the state)
of the linear part cannot be measured. An obvious modification of the con-
troller is then to assume that the separation principle holds and then re-
place z(k) with the estimated value ẑ(k), i.e. to use a certainty equivalence
controller, see Wittenmark (1995). The estimation of z(k) is assumed to
be based on measurements of y(k) and previous values of the measured
outputs and inputs. The control law based on the estimated linear output
is

u(k) = − G(q)
B(q)F(q) ẑ(k) + C(1)

B(1)F(1) z0 (17)

There are obvious difficulties in the estimation of z, especially since the
nonlinear part of the system has a non-unique inverse. The estimation
problem is discussed in Section 4.

3.4 An example
A simple example is used to illustrate the problem formulation and the
different controllers. Assume that the process is described by

z(k) + az(k− 1) = bu(k− 1) + e(k) (18)

The output nonlinearity is given by

y(k) = γ 0 + γ 1z(k) + γ 2z(k)2 (19)

The output of the system at time k+ 1 can be written as

y(k+ 1) =γ 0 + γ 1z(k+ 1) + γ 2z(k+ 1)2
=γ 0 − γ 1az(k) + γ 1bu(k) + γ 2[a2 z(k)2 + b2u(k)2 − 2abz(k)u(k)]
+ γ 1e(k+ 1) + γ 2[e(k+ 1)2 − 2az(k)e(k+ 1) + 2bu(k)e(k+ 1)]

(20)

Since e(k+ 1) is independent of z(k) and u(k) it follows that the expected
mean of y(k+ 1) is given by

Ey(k+ 1) = γ 0 − γ 1az(k) + γ 2a2z(k)2 + γ 2σ 2

+ (γ 1b− 2γ 2abz(k))u(k) + γ 2b2u(k)2
(21)

which is quadratic in u(k). The mean value is minimized using the control
law

u(k) = 2γ 2az(k) − γ 1

2γ 2b

which obviously is the same as the controller (12). This controller gives
the expected loss per step equal to

Vpred = γ 2σ 2 (22)

The constant controller corresponding to (7) is in this case

u0 = −γ 1(1+ a)
2γ 2b
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Assuming that the linear part is stable, i.e. hah < 1, then the expected loss
per step using this controller is

Vconst = γ 2σ 2

(1− a2) (23)

which is larger than (22).

4. The state estimation problem

The controller (17) requires an estimate of the output of the linear part of
the process based on the output from the nonlinearity. This constitutes a
nonlinear estimation problem. There are different ways of approaching this
problem. One approach is to use the extended Kalman filter. Another way
is to try to utilize the structure of the process and approach the estimation
of z(k) in some other ways. For simplicity, it is assumed that there is no
extra time delay in the system (1) in this section. This is not any restriction
and will simplify the notation and the discussion in the sequel.

4.1 Extended Kalman filter
The process (1) can be written in the state space form

x(k+ 1) = Φx(k) + Γu(k) + Γ ee(k+ 1)
z(k) = Cx(k)
y(k) = h(z(k)) + ε (k)

(24)

In the measurement of y(k) a noise term is also included and it is assumed
that the variance of ε is r2. From (1) the state representation is not unique
and it is only the output z(k) that we need to estimate for the controller
(17). We use the notation in (24) to comply with the normal formulation of
state estimation. The extended Kalman filter, see e.g. Gelb (1974), is based
on a linearization of the output nonlinearity when computing the gain in
the filter. The estimator can now be written as

x̂(k) = x̂(khk− 1) + K(k)[y(k) − h(x̂(khk− 1))]
x̂(khk− 1) = Φ x̂(k− 1) + Γu(k− 1)
P(khk− 1) = ΦP(k− 1)ΦT + Γ eΓT

e σ 2

P(k) = [I − K(k)Hk(x̂(khk− 1))]P(khk− 1)
K(k) = P(khk− 1)HT

k (x̂(khk− 1))
⋅ [Hk(x̂(khk− 1))P(khk− 1)HT

k (x̂(khk− 1) + r2]−1

Hk(x̂(khk− 1)) = γ 1C + 2γ 2 x̂T(khk− 1)CT C
(25)

4.2 Analysis of the extended Kalman filter
Equation (25) looks very reasonable, but there is an intricate problem
due to the non-uniqueness of the output non-linearity or equivalently the

7



existence of a minimum. This is easily illustrated using the example in
Section 3.4. For the example we get

ẑ(k) = −aẑ(k− 1) + bu(k− 1) + K(k)[y(k) − h(−aẑ(k− 1) + bu(k− 1))]
P(k) = [I − K(k)Hk ](a2P(k− 1) +σ 2)
K(k) = (a2 P(k− 1) + σ 2)HT

k [Hk(a2 P(k− 1) +σ 2)HT
k + r2]−1

Hk = γ 1 + 2γ 2(−aẑ(k− 1) + bu(k− 1))
(26)

Some properties of the extended Kalman filter can now be seen. Firstly,
there will be problems when using the controller with feedback from the
estimated linear output. Using the controller (17) gives

Hk = γ 1 + 2γ 2(−aẑ(k− 1) + bu(k− 1))

= γ 1 + 2γ 2

(
−aẑ(k− 1) + b

2γ 2aẑ(k− 1) − γ 1

2γ 2b

)
� 0

(27)

I.e. the gain in the filter will be equal to zero, which eliminates the updating
of the estimate.

Secondly, consider the noise-free case, i.e. σ = 0 and r2 = 0. It then
follows that K(k) = 1/Hk. This implies that even if we are not using (17)
the variable Hk can be small and the gain in the filter will be large and
the filter may become unstable. Away from the optimum point the extended
Kalman filter is able to make good estimation of the the full state of the
linear part of the process.

Another way of analyzing the instability of the filter is by assuming that
γ 0 = γ 1 = b = 0 in the example in Section 3.4. The estimator equations
can then be written as

ẑ(k) = −aẑ(k− 1) + K(k)(y(k) − h(−aẑ(k− 1))
= −aẑ(k− 1) + K(k)(a2 z(k− 1) − a2 ẑ(k− 1)) (28)

Using z(k) = −az(k− 1) and introducing z̃(k) = z(k) − ẑ(k) we get

z̃(k) = −az̃(k− 1) + K(k)(a2 z(k− 1) − a2 ẑ(k− 1))
= −az̃(k− 1) + K(k)a2(z(k− 1) + ẑ(k− 1))(z(k− 1) − ẑ(k− 1))
= [−a+ K(k)a2(z(k− 1) + ẑ(k− 1))] z̃(k− 1) = α z̃(k− 1)

(29)

This is a time-varying system and it is clear that the magnitude of α can
be larger than 1 and the estimation error will grow exponentially if K(k)
is sufficiently large.

The analysis indicates two possibilities for eliminating the drawback of
the extended Kalman filter. Either the control law has to be changed. This
can be done by changing the goal for the controller by trying to reach a
different mean value for the process output. Another way to change the
control law is to introduce a perturbation signal, which also will increase
the loss. A second possibility is to look at different ways of making the
estimator. The extended Kalman filter uses the estimate of the derivative
of the nonlinearity giving Hk, but other types of filters may use other
approximations.

8



4.3 Second order nonlinear filter
It is possible to make further extensions of the extended Kalman filter. In
Gelb (1974), pp 191–192, second order nonlinear filters are also described.
These filters take up to second order terms in the series expansions into
account. Since the output nonlinearity is quadratic this should be sufficient.
The second order filter has the same structure as (25) with some slight
modifications. The main problem with the extended Kalman filter that
Hk � 0 when the controller (17) is used remains. The equations for the
second order extended Kalman filter will thus not be given.

4.4 Probabilistic estimator
A new estimator will now be derived by fully utilizing the structure of the
problem. Since there is not any measurement noise in y(k) in (1) and the
nonlinearity is quadratic we can solve for the value of z(k) using y(k). The
two possible solutions for the output of the linear system is

z1,2(k) = 1
2γ 2

(
−γ 1 ±

√
γ 2

1 + 4γ 2(y(k) − γ 0)
)

(30)

Using (11) we introduce the following one-step-ahead predictor for the out-
put of the linear system

ẑ(khk− 1) = B(q)
C(q)u(k− 1) + G(q)

C(q) ẑ(k− 1) (31)

This can be interpreted as the second equation in (25). We now assume
that we have an estimate of the probabilities p1(k− 1) and p2(k− 1) that
the linear output at time k− 1 are z1(k− 1) and z2(k− 1), respectively. An
algorithm to obtain the estimate at time k is the following

1. Use y(k− 1) to compute the two possible values of z at time k− 1
giving z1(k− 1) and z2(k− 1).

2. Predict one step ahead using (31) with ẑ(k − 1) = ẑi(k − 1). (For
previous values of ẑ(k − 1) the previous estimates are used.) This
results in ẑ1(k) and ẑ2(k), respectively. The prediction error has the
normal distributed frequency function fn(z)

3. The probabilities for being in the two states can now be updated using
the following equations

p1(k) = α norm[p1(k− 1) fn(z1(k) − ẑ1(khk− 1))
+ p2(k− 1) fn(z1(k) − ẑ2(khk− 1))]

p2(k) = α norm[p1(k− 1) fn(z2(k) − ẑ2(khk− 1))
+ p2(k− 1) fn(z2(k) − ẑ1(khk− 1))]

(32)

where α norm is a normalization factor making the sum of p1(k) and
p2(k) equal to one.

4. The estimate ẑ(k) is chosen as the zi(k) which has the largest prob-
ability.

9



The probability based estimator uses the previous measurement of y to
compute two possible values of z. These two outputs of the linear sys-
tem are then predicted into the future using a slightly modified predictor.
The two predicted values represent two possible outcomes for z at time k
and these are compared with the two possibilities that are obtained from
the present measurement. The probabilities for the two outcomes are cal-
culated and the one of the possible present values of zi(k) that has the
highest probability is chosen as the estimate of z at time k. The estima-
tor has the advantage that it can’t be unstable. It is only selecting one
of two possible values. There is, however, a possibility that the estimator
may sometimes choose the wrong value. An estimator of the form (32) was
discussed in Jacobs and Langdon (1970).

It is also straightforward to show that p1(k) = p2(k) = 0.5 independent
of p1(k−1) and p2(k−1) when the constant controller (7) is used. This im-
plies that the constant controller doesn’t give any information about which
of the values zi(k) to choose. The maximum probability rule then doesn’t
give any possibility to decided which value to use. Another possibility to
determine the estimate is to use the mean value, i.e.

ẑ(k) = p1(k)z1(k) + p2(k)z2(k) (33)

A controller based on this estimate will move the control signal towards
u0, which implies that there will be less excitation of the process compared
when the largest probability is used for the decision.

5. An example

The example in Section 3.4 will be used to illustrate the properties of
the different controllers. The following numerical values will be used in
the simulations: a = −0.99, b = 0.1, σ 2 = 0.1, γ 0 = 12, γ 1 = −4, and
γ 2 = 0.5. The system is simulated using the the constant controller (7),
one-step-ahead prediction controller using the true linear output (12) and
the one-step-ahead prediction controller using the estimated linear output
(17) when the estimation is carried out using the probabilistic estimator
in Section 4.4.

Figure 3 shows the input u and the output y when using the three
controllers. It is clearly seen that output y deviates much more from the
optimum y0 when the constant controller is used compared to the other
two controllers. This is also seen in Figure 4 showing the accumulated loss
function

V (k) =
k∑

i=1

(y(k) − y0)

when the different controllers are used. The loss when using (12) corre-
sponds well with the predicted loss per step given by (22), while the loss
when using the constant controller is less in the simulation than what
is predicted by (23). Longer simulations are required to obtain a better
agreement with (23) since the process in this case has a very low fre-
quency behavior. (The pole of the open loop system is close to the unit
circle.) The use of the estimated linear output gives a loss that is 2.3 times
larger, while the constant controller gives a loss that is 28 times larger
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Figure 3 The left diagrams show the input u and the right diagrams the output
y together with the minimum value y0 when using a. (7); b. (17); and c. (12).

than the loss when using feedback from the true linear output. Despite the
much improved result with the one-step-ahead controller using the esti-
mated linear output there are still improvements that can be achieved by
using a better estimator or an improved controller. Simulations also verify
that using the mean value estimator (33) gives a much worse performance
than when using the most probable value. The accumulated loss is 12.5
times the loss when using the feedback from the true linear output.

The histogram of the distribution of the output for 20000 steps of time
is shown in Figure 5. When using (17) the distribution gets a “heavier” tail
then when (12) is used. The properties of the estimator is seen in Figure 6.
The curves show the estimated and true linear output when the controller
(17) is used. There is a quite good estimation of the true linear output but
the estimator picks the wrong solution in about 35% of the cases. This is
due to the noise and that the process is operating close to the optimum
where it is difficult for the estimator to distinguish between the influence
of the noise and the influence of the control signal.

Figure 7 shows the probability p1 when using different controllers.
Curve a. shows that the estimator gives equal probabilities of the two pos-
sible values of the linear output when the control signal is constant. This
is due to the poor excitation of the process. For the other two controllers
the probabilities are moving rapidly around the value 0.5.

The performance of the estimators when the input signal is not gener-
ated by (17) will now be investigated. Figure 8 shows the input u, output
y, and the linear output z. The input is

u(k) = 0.2+ 2 sin(0.1k) (34)
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Figure 4 The accumulated loss function when using the three controllers (7)
(dash-dotted), (12) (dashed), and (17) (full).

and is chosen such that z passes the value z0 several times during the
simulation. Figure 9 shows the true linear output together with the es-
timated output using three different estimators. Curve a. shows the case
when the extended Kalman filter is used. Curve b. is when the second or-
der filter is used and curve c. when the probabilistic estimator is used. The
extended Kalman filter has difficulties to choose the branch of the non-
linearity while the second order filter most of the time is making a good
estimate. The probabilistic estimator is the best of the three investigated
estimators. The performance of the estimators can be measured in how
large percentage of the estimates that are within 10% of the true value.
For the extended Kalman filter it is 54%, for the second order filter 87%,
and for the probabilistic estimator 98%. Within 1% accuracy the numbers
are 23%, 35%, and 96%, respectively.

The special case a = −1, b = 1, γ 0 = γ 1 = 0, and γ 2 = 1 is dis-
cussed in Jacobs and Langdon (1970) and Sternby (1980a). The optimal
controller is numerically derived in Jacobs and Langdon (1970) by using
dynamic programming. The average loss per step is shown to be 2.2σ 2.
A suboptimal controller controller based on an approximate least squares
estimation of the linear output and a two-step loss function is proposed in
Sternby (1980b) and gives an average loss 2.64σ 2 per step. The proposed
probabilistic estimator and the certainty equivalence controller suggested
in this report gives a loss of 2.42σ 2 per step, which is 10% larger than the
optimal loss, but better than earlier proposed suboptimal controllers. The
improvement is probably due to the perturbation introduced by choosing
the most probable value of zi(k).
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Figure 5 The histogram of the output y when using the three controllers (7)
(upper), (17) (middle), and (12) (lower). Notice the difference in the vertical axis
of the upper curve.

This indicates that further improvements are possible.

6. Unknown process parameters

In the analysis and simulations so far we have assumed that the process
and its parameters are fully known. In practical applications this is not
the case. In many situations the parameters of the process will change
depending on the environment in which the process is working. This is the
case, for instance, for combustion engines.

One way to circumvent the lack of knowledge about the process is to
use a method that does not depend on the process parameters. The use of
a perturbation signal only relies on the assumption that the nonlinearity
is a concave or convex function. The input signal is changed based on
the estimate of the gradient. The dynamics of the process and the noise,
however, have a heavy influence on the estimation of the gradient. The
phase lag introduced by the process dynamics can be compensated for as
suggested in Sternby (1980b), Krstić and Wang (1997), and Krstić and
Wang (2000).

An alternative way is to estimate the parameters of the process on-line
or off-line. The estimation of the parameters of the Wiener models is dis-
cussed, for instance, in Wigren (1990), Wigren (1993), Hagenblad (1999),
and Hagenblad and Ljung (2000). The method suggested in Wigren (1990),
Wigren (1993) is essentially based on the idea of the extended Kalman fil-
ter and the references are only briefly considering the more difficult case
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Figure 6 The true (black) and estimated state z (grey) when using the controller
(17). Curve b. show an enlarged part of curve a.

with non-unique inverse of the nonlinearity that is discussed in this report.
This topic requires more research.

7. Summary

Extremum control of Wiener model processes has been discussed. For known
processes there are several possibilities to obtain good control of the pro-
cess. A crucial part of the controller is the estimation of the output of the
linear part of the process. Several types of estimators have been discussed
and most of the estimators have the drawback that they has a singular
point at the optimum point of the process and this is where we want to
keep the process. The method proposed to avoid this problem is to use a
probabilistic based estimator that selects between two possible values of
the output based on previous measurements and input signals. The com-
bination of this estimator and a prediction controller has the advantage
that especially close to the optimum it is insensitive to the accuracy of the
estimates.

The controllers discussed have been based on the assumption that the
separation principle is valid, which implies that the true linear output
can be replaced by its estimate. The behavior when using the constant
controller also indicates that perturbation signals should be introduced to
improve the performance of the closed loop system. This implies that the
controller should have a dual property, which ensures that that the con-
trol action is a compromise between making good control and obtaining
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Figure 7 The probability p1 as function of time when using the controllers a. (7);
b. (17); and c. (12).

good estimates of the linear output. Dual control is discussed in, for in-
stance, Wittenmark (1995), Åström and Wittenmark (1995), and Filatov
and Unbehauen (2000).

More research is required for the case when the process is unknown.
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