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Abstract. We study agents situated in partially observable envirarimjevho
do not have sufficient resources to create conformant (cete)pplans. Instead,
they create plans which are conditional and partial, exegusimulate them, and
learn from experience to evaluate their quality. Our agentploy an incomplete
symbolic deduction system based on Active Logic and Situa@ialculus for rea-
soning about actions and their consequences. An InductgiclProgramming
algorithm generalises observations and deduced knowksaljeat the agents can
choose the best plan for execution.

We describe an architecture which allows ideas and sokufiemm several sub-
fields of Artificial Intelligence to be joined together in antmlled and manage-
able way. In our opinion, no situated agent can achieve aitierrality without
using at least logical reasoning and learning. In practiéeclear that pure logic
is not able to cope with all the requirements put on reasqiing more domain-
specific solutions, like planners, are also necessaryll¥ieny realistic agent
needs a reactive module to meet demands of dynamic enviriame

Our architecture is designed in such a way that those thegeegits interact in or-
der to complement each other’'s weaknesses and reinforhetir’s strength.

1 Introduction

Rational, autonomous agents able to survive and achieuregibals in dynamic, only
partially observable environments are the ultimate dre&wl sesearch since its be-
ginning. Quite a lot has already been done towards achigtigigdream, but dynamic
domains still remain a major challenge for autonomous systén particular, nontriv-
ial environments that are only partially observable posmateds which are beyond
the current state of the art, possibly except when dedichsatt-crafted solutions are
developed for specific domains.

One of the major ways of coping with uncertainty and lack obwiedge about
current situation is to exploit previous experience. In mgearch we are interested in
developing rational, situated agents that are aware af tai limitations and can take
them into account, as brilliantly presented by Chong andrsthn [1]. To facilitate this,
we use Active Logic [2] for knowledge representation, whittaracterises reasoning
as an ongoing process, instead of focusing on a fixed pointtaflment relation.

! This work has been partially supported by the EU-projectFAS, Skill-Based Inspection
and Assembly for Reconfigurable Automation Systems (FPG1488).



Due to limited resources and to the necessity to stay resoinsa dynamic world,
situated agents cannot be expected to create a completéoplachieving their goals.
In theoretical Al a common approach is to creatpaformant plani.e. a plan which
contains provisions for any possible sequence of extekmailte and observations, and
which is guaranteed to reach the goal in all scenarios. Reatsid agents, however, not
only the task otreating but even a requirement to simpjoresuch plan could easily
exceed available resources.

The lack of resources is partly addressed by considerirfgrimation-providing”
actions and interleaving their execution with planning\ist In particular, executing
them at the right time allows the agent to greatly simplifystibsequent planning pro-
cess — it no longer needs to take into account the vast nunflgssible situations
which would be inconsistent with newly observed state ofwoeld. Thus, it can pro-
ceed further in a more effective way, by devoting its compaiteal resources to more
relevant tasks.

Therefore, situated agents need to consciously altermdeclen reasoning, acting
and observing their environment, or even do all those thingsarallel. We aim to
achieve this by making the agents create short partial gladexecute them, learning
more about their surroundings throughout the process. Gteate several partial plans
and reason about usefulness of each one, including whati&dge/can it provide. They
generalise their past experience to evaluate the liketiled@ny particular plan leading
to the goal. The plans are conditional (i.e. actions to bertadepend on observations
made during execution), which makes them more generic arahgnbat their quality
can be estimated more meaningfully. We also intend for thentatp judge by itself
whether it is more beneficial to begin executing one of thdsagimmediately or
rather to continue deliberation and, possibly, develogésrand more complete plans,
in order to avoid making an unrecoverable mistake.

We expect the agent to live significantly longer than the tlomaof any single plan-
ning episode, so it should generalise solutions it finds.drigular, the agent needs
to extract domain-dependent control knowledge and use émwv#olving subsequent,
similar problem instances. It is the authors’ belief thadwigtive knowledge, at least in
many of the domains we are interested in, may contain mowlsleind be more ac-
curate than other forms of representation (such as nunheripaobabilistic), therefore
our agent learns deductively using a symbolic represemtati Active Logic. To this
end we introduce an architecture consisting of four moduwidsch allow us to com-
bine state-of-the-art solutions from several fields of f#iai@l Intelligence, in order to
provide the synergy our agent needs to achieve the desinetiduality.

Ultimately, the agent will need to be able to handle noniatairy, adversary en-
vironment, to cooperate with others in multi-agent settingl to plan for goals more
complex than simple reachability properties, such as teallyoextended goals and
restoration goals. It is our belief that symbolic knowledgpresentations are the only
way of achieving such versatility.

The goal of this paper is to present and justify the architeotve use for our agents,
as well as suggest possible ways to extend it. In the nexibsese introduce exam-
ple domains which we exploit to present and test our ideasettionArchitecturewe
provide an overview of the organisation of our agent. Théo¥ahg four sections in-



troduce each of agent’s functional modules in more delductor Planner, Actor
andLearner. After that, we describe the module interaction in some ndetail, briefly
present some of thResultsof our experiments with the architecture, discuss some of
the Related Worland finish with som€onclusions

2 Experimental Domains

Throughout this paper we will be using two simple domainsbhetter illustrate our
ideas. The first one is a simple game called Wumpus [3]. Theegaegasy to understand
and people have no problems playing it effectively as soah&glearn the rules. For
artificial agents, however, this game — and other similatiagtions, including many
of practical importance — remain a serious challenge.

The game is played on a square board. There are two charattenslayer and
the monster called Wumpus. The player can, in each turn, nmaay neighbouring
square, while the Wumpus does not move at all. Position ofrtbester is not known
to the player, he only knows that it hides somewhere on thedbdackily, Wumpus is
a smelly beast, so whenever the player enters some squaranlimmediately notice
if the creature is in the vicinity. The goal of the game is tafwut the exact location
of the monster, by moving throughout the board and obsemmghich squares does
it smell. At the same time, if the player enters the squar@pied by the beast, he gets
eaten and loses the game.

For learning experiments we also use a second domain, a eebdéision of “king
and rook vs king and knight” chess ending. Since we are istedan partially unknown
environments we assume, for the sake of experimentatiwaistite agent does not know
how the opponent’s king is allowed to move a—priori, any move may be legal. The
agent will need to use learning and discover what kinds ofes@re actually possible.

Those domains are, obviously, only examples and the aotaite presented here
does not dependent on them. In order to better understargbtiieof our research, it
can be helpful to imagine the setting similar to theneral Game Playing Competition
[4]: our agent is given some declarative knowledge aboutltain and is supposed
to act rationally from the very beginning, while becomingmnand more proficient as
it gathers more experience.

3 Architecture

The architecture we propose consists of four main modules(s in Figure 1)De-
ductor corresponds to a typical “core” of logically reasoning agemcept that in our
case it does not use classical logic, but rather Active Légimalism in order to better
interact with other module®lannermodule is mainly responsible for creating poten-
tially interesting plans, although any kind of domain-dfieceasoning could just as
well be performed in it. Its main purpose is to increase thewam of agent’s beliefs
(including plans) that provide Deductor with knowledge¢ason about.

Actor is an overseer of the interactions between an agent andviloement. It
analyses and interprets agent’s sensor data, in orderdcbwbanever something inter-
esting happens in the external world. It also watches oventgyreasoning process and
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Fig. 1. Architecture of an agent.

makes decisions about when their results are sufficientydeeeloped to begin acting
based on them.

Finally, Learneranalyses the performance of the agent as a whole and geesrali
its past experience in order to improve the work of each nadualparticular, the most
important part is to evaluate conditional partial plans emarn which ones are most
likely to lead to good results in future situations.

In the following sections, we describe each module in moteijas well as point
out the most important interactions among them.

4 Deductor

This module analyses both current state of the world and hwill change as a result of
performing a particular action. Our agent uses a variantativA Logic [2], augmented
with some ideas from Situation Calculus [5].

Active Logic is a reasoning formalism which, unlike clasgitogic, is concerned
with theprocessf performing inferences, not just the final outcome (fixethpf the
entailment relation. In particular, instead of classicalion of theoremhood, AL has
i-theoremsi.e. formulae which can be provém: steps This allows an agent to reason,
among other things, abodifficulty of proving something, to retract knowledge found
inappropriate and to resolve contradictions in a meaningéy, as well as makes it
aware of the passage time and its own non-omniscience.

To this end, each formula in AL is labelled with the step numbben it was de-
rived. E.g., thanodus ponenimference rule looks like this?z?j%:“ and means “if at
stepi formulaex anda = § are present in the belief set, then at step 1 formula
B will also be present.” Moreover, there is a special infem%, which
allows an agent to refer to the current moment and to expylitatiow the passage of
time. A more in-depth description of Active Logic can be fdlin [6].



Following ideas of [7] we have decided to augment Active lcogith some con-
cepts from Situation Calculus. In particular, in order tovdndhe agent reason about
changing world, every formula is indexed with current ditora Furthermore, since
the agent needs to reason about effects of executing vaslans, we additionally in-
dex formulae with the plan the agent is considering. Theesfa typical formula our
agent reasons about looks like thisnows(s, p, Neighbour(a2,b2)) and means “an
agent knows that after executing plain situations, squares2 andb2 will be adja-
cent.” This formula is only mildly interesting, as its validityeghends on neither nor
p, at least in the Wumpus domain. Butinows(s, p, -Wumpus(b2)) which means
“an agent knows that after executing plam situations, Wumpus will not be o2,”
does obviously, depend og, since agent’s knowledge changes as it acts in the world.
It still does not, however, depend eritself. Clearly, no “new” knowledge can be ob-
tained by simplyconsideringsome plan (without actually executing it). If an agent
Knows(s, p, "Wumpus(b2)), then it must alsdnow(s, §, ~Wumpus(b2)), where
() stands for an empty pldn

In contrast, an example of some really interesting formthag¢ can be formulated
could beKnows(s, p, Wumpus(b3))V Knows(s, p, Wumpus(c2)) which means “an
agent knows that after executing plain situations, it will eitherknow that there is
Wumpus orb3 or that there is Wumpus ar2”. As an example of reasoning by cases and
predicting action results, this is exactly the kind of knedge that we want the agent
to infer — it doestell important things about quality of the plan being coesat. If all
the agent knew before wa&nows(s, ), Wumpus(b3) V Wumpus(c2)) than clearly
executingp is useful. For a human “expert,” sughooks like a good plan. The goal of
our research is to maken agentbe able to reason about plans in exactly this way. It
is our intuition, supported by preliminary experimentsaepd later in this paper, that
creating adomain independem¥ctor module which would efficiently select good plans
by learning from experience using formulae like the one absypossible.

5 Planner

As we stated earlier, our agent creates conditional, pgtaas. The plans are partial
because limited resources do not allow our agent to consititine possibilities and
come up with a good conformant plan. The plans are conditiginae we intend the
agentto learn that some of them are generally good and sotherafare generally bad.
By the virtue of being conditional, the plans remain condigealso strictly more ex-
pressive than in the unconditional case. In particulaiy tiygplicability is significantly
enhanced and the agent is able to reason about their usefulne

Let us take an example from the Wumpus domain. With an agesgoarez1, one
simple plan is 42", meaning “go toa2”, while another is 423", meaning “go toa2
and then go t@3”. A conditional plan could bed2 7 a1 : 52", meaning “go toa2 and
if it smells there go back tal, else go forward t2”. Actually, in Wumpus domain it

2 We use chess-like notation for naming squares, with lettessgning columns and numbers
designing rows.

% Since in our game the player has no way of changing Wumpugtiposthe actual validity of
“Wumpus(b2)” remains constant, only agent’s knowledge is changing



is difficult to find a simple plan longer than one step which lgdee good, while there
exists a number of conditional plans which can be easilysifiad as good.

In a sense, our treatment of plans is related to the notioneofchical planning,
since the conditional partial plans we consider are verylaito macro-operators [8].
Our goal is to let the agent learn which conditional partlahg aregoodto later use
them as building blocks for finding complete solutions.

6 Actor

The Actor module acts as a controller of the agent as a whblead three kinds of
duties. First, it observes the environment and forces tlemta react to interesting
events that take place there. Second, it decides when ernonglhas been spent on
deliberation and no further interesting results are likelige obtained. Finally, it makes
decisions to execute a particular plan from Deductor’snepe.

The typical scenario consists of Actor continuously manitg the sensor input,
analysing it and transforming it into symbolic represeontatvhenever needed. In Ac-
tive Logic, there exists a special provision for that, clidservation functionwith
exactly the same status as domain axioms, but with difféegnporal extent. Such in-
put can then be used by the Deductor, allowing an agent t@onesip the changes in
the world. It is also possible for Actor to react more “vidlghif needs arises, either
by directly and immediately performing some physical atsi¢e.g. obstacle avoidance
if the agent is about to hit something) or by straightforviidfluencing agent’s inter-
nal reasoning process (for example, if Actor notices thattimange of the environment
reaches some threshold, it can “reset” Deductor, underghenaption that its previ-
ous results are no longer applicable anyway). In this seheefctor implements the
reactive behaviour of the agent.

In addition, Actor continuously monitors the progress ofaits internal reasoning
and can react to certain conditions there. For example, @s as Deductor finds a
plan which looks sufficiently good (in the extreme case, oh&lvdirectly leads to the
goal), the reasoning can be interrupted and this plan ezd@mmediately. Similarly, if
it turns out that the deduction cannot proceed further leefome observation is made,
Actor can decide to pause the reasoning and perform the s@gesensing actions.

Finally, Actor chooses which plan to execute. This decisiay be based on plan
ranking done earlier by either Deductor or Learner, or mepsj be a random pick, if
a situation is sufficiently new and such knowledge is not yatlable.

7 Learner

The goal of the learning module is to provide Actor with knedge necessary to choose
the best plan for execution and to decide when to stop delileer — i.e. when too
much time has been spent on it without reaching any newdstieg insights.

In order to do that, Learner finds out recipes for evaluatiagpand to decide which
ones are most likely to lead to the goal. Since the plans ateapat is very difficult
to predict, in general, whether a given plan is a step in thletrdirection. There is an
active research on heuristics in planning, focusing on thx#us problem.



Using learning techniques developed in the field of Indectiegic Programming,
however, is another possible way to approach the problesedan experience and
on deductive reasoning performed by Deductor module, ibssible to analyse how
the world (and the agent’s knowledge about it) will chanderaéxecuting a particular
plan. Itis then possible to learn rules for determining tlasg of plans which have been
successful in the past, and use that to choose the one to betesdaext.

In the simplest case, it could consist of just distinguighidangerous” plans, i.e.
ones that can lead to agent’s immediate death. This is natggnio general, but there
is a large class of domains which are “safe” in a sense thatgbssible to win from
every position. Wumpus domain belongs to this class, wiss does not.

Moreover, an important question is one of credit assignpsnte the agent typi-
cally executes several partial plans before it reacheswinat state of the game. Only
the complete sequence of actions is then rewarded or puhitoan very well happen
that one of the plans in a bad sequence was, in fact, goode &rernumerous tech-
niques, each with own advantages and disadvantages, miafpded for dealing with

this problem, and it is not clear at this point which one wolbidbest suited for our
particular case.

8 Modulelnteractions

DEDUCTOR PLANNER

BELIEFS ' / \
e ;
< beliefs A
LEARNER /
‘ about plans /) plans
R
plan | beliefs about world |
! ! ; \ eneric :
! 1 quality situation—specifig !
BLAN hypotheses |
about plans |
EVALUATION |

Fig. 2. Some details of the architecture of the agent.



The main idea of our architecture is to ensure fruitful iatgions between the mod-
ules introduced above. Each of them roughly correspondsembthe major subfields
of Artificial Intelligence and is designed to employ statetloé art solutions from it.
Each module can provide a very good performance in spedifiatgins, but neither is
quite sufficient to achieve real intelligent behaviour ofemeric situated agent.

The major contribution of our architecture is the idea to mmétiple conditional
partial plans, together with expected results of theirigptibn to a particular situation,
as the way to exchange information between modules. In this Rlanner comes up
with plans which are potentially interesting, but it doe$ need to commit to a single
one. Deductor reasons about each of those plans sepabately,also able to explore
interactions between them, as well as to make use of anyasgitigk it can find in
order to extrapolate results concerning one plan to therethearner induces generic
knowledge about what types of plans have been successt ipast. Actor predicts,
based on that, which should be executed in the future, asawelersees the reasoning
and chooses the best course of action as soon as enough Bgevwlecomes available.

Using the above architecture, agent is able to reason aboeint state of the world,
both about the details of current situation and about thegetaws governing the ap-
plication domain. Moreover, it can also reason about the stithe world as it expects
it to be after execution of each plan under consideratiamallyj, it reasons boytlans
themselves, how successful were they in the past, both iargeand in situations sim-
ilar to the current one, and how good they are expected tabé mow.

9 Resultsof Initial Experiments

We have performed some initial experiments in order to etalthe feasibility of our
ideas and to check how well do they work in practice. Our fogas on interactions
between modules and on showing that different approachesmbine do indeed com-
plement each other.

We have used an ILP algorithm PROGOL [9] for learning, sihéeamong the best
known ones and its author has provided a fully-functionabligly available imple-
mentation. In a previous paper [10] we have presented sesiiliéarning to distinguish
“bad” plans early. We have shown that PROGOL is able to fincctiveect hypothesis
from as few as 30 randomly-chosen examples. Such a hypstaksivs the agent to
save up to 70% of its reasoning time, since it does not needstewesources analysing
plans which are known to be useless. Those results requiositng additional do-
main knowledge specifically for the purpose of learning,wethave also analysed (in
[11]) how the PROGOL learning algorithm can be adapted toaekit automatically.

The results we have obtained can be seen in figure 3. The fingt ¢oniddle one,
marked “Full Knowledge Base”) corresponds to the case wiverased no additional
domain-specific knowledge, except from PROG@hbde declarationsand where the
whole knowledge the agent has gathered has been providee kearning algorithm.

For the remaining two curves we identified the parts of agaatbwledge which
are most relevant to learning the concept of bad plans andprakented those to the
learning algorithm. In the lowest one, marked “Relevant ER¢luding Deductor”, we
have provided only domain description and observationgnigaemoved all the results
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Fig. 3. Results of learning.

of Deductor’s work. In the highest one, we have left themaht@nly in this latest case
the Learner has been able to correctly learn the concept.

Those results show that Deductor provides knowledge whigtifecantly improves
quality of learning. At the same time, as mentioned abowniag the right hypothesis
allows the agent to save a lot of its reasoning effort. We plather experiments which
shall reveal even more synergy between modules in the aothit.

10 Related Work

The amount of work on agent architectures in general is tageléo summarise com-
prehensively here, therefore we will only discuss a smabition of this field here.

The work presented in this paper is related to studies ofitecthres for general
intelligence. There has been a lot of attempts to define suahchitecture, with SOAR
being the most prominent and most successful of them ([1@]iges a general intro-
duction). In contrast to SOAR, we do not claim any cognitileugibility of our archi-
tecture, focusing our interests on mainly on the task ofehg intelligent behaviour
of an artificial agent.

Our approach is also quite distinct from the layered archites which are popular
nowadays (see, for example, [13] for a collection of paperthes topic). In particular,
we do not focus specifically on the reactive part of the systeiding it one part of
the Actor module. This does not mean that we diminish the sgtyeor importance
of the reactivity, but rather that we simply decided to corate on the higher-level
reasoning aspect of our agent as it is less understood andasgnore attention. We
make sure, however, that higher levels of our architecemaain sufficiently flexible to
be able to handle the requirements of reactive part.



Although we have been stressing the need of rationality &edirhportance of
reasoning throughout this paper, our approach also differs the one exhibited by
Beliefs-Desires-Intentions systems and BDI architestsee, among others, [14] for
a formalised approach to this topic). We do not explicitlgtoiguish intentions, while
both plans and goals are treated in a very similar mannes.i$ldue to the fact, how-
ever, that BDI approaches usually lack learning, which esdbntral issue in our ap-
proach, and which allows an agent to account for its inteistio a different, but also
sufficiently effective, way.

11 Conclusions

In this paper we present an architecture for rational ageetare currently develop-
ing. It allows agents to combine planning, deductive reamprinductive learning and
time-awareness in order to operate successfully in dynamiconments. Agents cre-
ate conditional partial plans, reason about their congezpgeusing an extension of
Active Logic with Situation Calculus features, and emplaf? llearning to generalise
past experience in an attempt to distinguish good plans fadones.

The basic framework of the architecture is already implelegtand initial exper-
iments show that the synergy effects we aimed for do, indapgdear. The modules
themselves still need more work before they contain thetfanality needed to tackle
practical problems, since we have only been working on tagsarp to now. State of
the art solutions, however, are available and many of thembeaintegrated into our
architecture with minimal changes. Nevertheless, the needing further attention are
efficient Deductor for Active Logic, and Learner using maetifilLP algorithm. Our
current research focuses on those topics.
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