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CHAPTER 1 -~ INTRODUCTION

1. Background

The swedish interest for the characteristics of thermal power plants has
grown considerably during the last years. The reason is a change of the
structure of the swedish power system. Up till now power generation has
been dominated by hydro-electric power plants. The installed power of
these plants is roughly 80 percent of the total installed power in the
current system. The major part of these plants are connected to the con~
sumers by very long transmission lines. The majority of the thermal
power plants are close to the consumers.

In the present system, the control of mains frequency and the net stabi-
lization have been performed using the hydro-electric power plants.
The thermal power plants have essentially been running at a scheduled
constant load,

A drastic change of these conditions is predicted in the future {367, [37].
This is mainly due to the fact that nearly all avajlable water power has
now been utilized. The demand for power will however continue to increase
and the installed power must be doubled roughly each ten years. Con-
sequently, the dominating role of hydro-electric power plants in the power
system will rapidly diminish.

In [ 367 the new operating conditions for different types of power plants
are predicted. It is concluded that a number of thermal power plants must
-  participate in control of mains frequency

- participate in control of net stability after failures, that is,
large load changes

- make a large number of start up and shut down,
To be able to judge the possible contribution of thermal power plants to

the first two items the dynamic properties of these plants must be known,
Furthermore, possible control strategies should be studied and evaluated.

The changed operating conditions thus motivate the study of models valid
for both small and large load changes. For small load changes it is usually




sufficient with linear models, Different models may however be required
for different operating points. For large load changes, it is known that
the dynamics of the boiler-turbine unit varies to such an extent, that
nonlinear models must be used.

This work deals with dynamic models of thermal power plants with
drum-~type boilers, since the majority of existing and projected boilers
in Sweden are of this type. The scope of the work is further limited to
the problem of small disturbances that is, only linear models are con-
sidered. However, as a by-product of this study a simple nonlinear
model for a drum-type boiler-turbine unit was developed [53]. This
model is well suited for studies of large load changes.

The scope of this work thus is to derive linear models for a drum-type
boiler~turbine unit. The models may be used for

- design of regulators for steady state control

- redesign of the process itself by improved knowledge of the
dynamic properties

=  further studies of nonlinear models

The boiler=-turbine unit is a multi-variable system and as such an
interesting application from a control point of view. Both the design of
control strategies and process identification include principal difficulties.
In this work only the problems associated with process identification are
discussed.

A good model will also clearly indicate the limitations of the existing
plants, ‘from the point of view of the new operating requirements. It
can thus be used to investigate the need for a redesign of the plant.

This work clearly shows that the linear models obtained are different for
different stationary points. The knowledge of the physical parameters
causing the major part of these differences may suggest the nonlinearities
to be preserved in a nonlinear model,

There was the opportunity to perform a series of dynamical experiments
on a large thermal power plant. The results are used to evaluate the
theoretically derived models. Certainly such experiments also improve
the general knowledge of the dynamics of the process.

}




2. Model Building
There are two different approaches to the modelbuilding problem

- physical equations

-~  process identification

In the sequel we will call models based on the first approach for construc-
tion data models. In this work, models based on both approaches are
presented. Certainly both methods can be combined to improve either
type of model.

The choice of method depends on several things e.g.

~  the knowledge of the process

-  the available results of identification experiments or the possibi-
lities to do such experiments

- the purpose of the model

In the last item we have included the question of e.g. linear or nonlinear
models and desired representation of the model.

The major advantages of construction data models are that, the model can
be built before the real process, the influence of different physical para-
meters can be investigated and the model can have any form (linear-
—nonlinear, discrete or continuous time, ordinary or partial differential
equations, time variant or time invariant, single input-single output or
multivariable). Methods for process identification are well developed for
multiple input-single output linear systems. In other cases it is usually
necessary to have some a priori information to reduce the computational
effort involved. For example, algorithms to identify parameters in a
given multivariable or nonlinear structure are available. A comparison
between the total effort for developing a model from physical equations
and from measurements is, for complex processes, usually advantageous
for the later type of models. Also process identification usually produces
more accurate models since the parameters are adjusted to the plant
under consideration. The models obtained by identification are however
strictly limited to a particular plant and to the particular operating
conditions under which they were obtained.




2.1 Construction Data Models

Often the dynamic model of a process can be regarded as an extension

of a static model. Such models can often be supplied by the manufacturer
and will ease the modelling task. Especially the gathering of construction
data can be essentially reduced.

As mentioned earlier the building of a construction data model requires

a good knowledge of the physical phenomena involved. Further, even if

the physical phenomena are known, they might be very complex and the
resulting model not feasible for e.g. control purposes. This create the
important problem of approximating process behaviour or process equations
in a proper way. Consider for example a heat exchanger, which is de-
scribed by partial differential equations but might, for most control
purposes, be approximated by a low order set of ordinary differential
equations. The approximating problem for this application is extensively
discussed in Chapter 4.

The steady state control problem requires a linear model. A construction
data model usually directly leads to a state space representation which is
a useful form for further calculations. However, the amount of numerical
calculations to establish the matrices A, B, C and D of the state space
model S(A, B,C,D) is very large. The natural way to handle this problem
is to use a computer, The model will thus exist as a computer programme
which as input has construction data from the process and as output has
the matrices of S(A, B, C,D). This, in a sense, makes the model in-
‘dependent of the process under consideration and increase the model
applicability.

A severe problem, when modelling large and complex processes, is to
decide if the final result is right or wrong. Using a computer, the entire

task is divided into a number of smaller tasks, which can be programmed
as subroutines and tested separately.

3. Control
The two major control tasks of a thermal power plant are

i
- steady state control

-  control of large load changes




In this work none of these problems arc studicd. In control literaturc

most papers have dealt with the steady state control problem. The
essential difficulty of this problem is that the boiler-turbine unit represents
a multivariable system. The disturbance on the system is the changing
demand for power. This disturbance has been modelled, by process identi-
fication, by the author in [15], using data from the Swedish power system.
The report also includes a multivariable regulator based on linear
quadratic optimal control theory. The process considered is the drum
system of the boiler. The process and regulator was simulated on a

hybrid computer. Other authors e.g. {27, [35] have reported similar

and more complete studies. The results obtained indicate that there are

no great problems associated with such an approach to multivariable
control of thermal power plants. However, none of the authors presents
any results from implementation on the real process.

The control of large changes which usually leads to an optimization
problem has not been treated in literature as extensively as the steady
state control problem. The reason is probably that the modelling appears
more difficult. The simple nonlinear model in [537 may represent a first
step to overcome this problem.

4, Content

A systematic approach to the numerical modelbuilding problem is outlined
in Chapter 2. A straight-forward linearization of the physical equations
does not directly give a state model on standard form. Instead a model
of the following form is obtained

dv

Eqy + Fv+Gu=0 a.1)

Py+Qv +Ru=290

where the vectors u and y are the input and output vectors respectively,
vector v contains all other variables introduced and E, F, G, P, Q and
R are matrices of proper order. It is then a crucial problem to assign a
minimal number of state variables to eq. (1.1) and reduce this equation to
state space form, This problem is solved both in a general case and in

a special case, Both methods are applied to boiler models in this work.




All significant facts about the measurements and the Oresundsverket
power plant, which is used as an application, are accounted for in
Chapter 3. Since the experiments were designed for identification, the
choice of input sequences, sampling rate etc are also discussed. Expe-
riments were made at two different load levels, 90 % and 50 % of full
load respectively and the perturbed inputs were fuel flow, feedwater
flow, control valve position, and two attemperator flows. This gives

ten different experiments and a selection of recorded variables is shown
at the end of Chapter 3.

In Chapter 4 all model equations are derived. Both the assumptions and
the equations are presented in detail. The model for the drum system is
especially treated and one section deals with the comparison of such
models of different order. A 5th order model is found to be best suited.
Data from Oresundsverket power plant is used to derive numerical results.
Models of 9th and 15th order are discussed, The approach taken in this
section is similar to earlier works, However, the systematic approach
taken to the drum system model and the general effort to keep model
order low, give a model of essentially lower order than others presented,
The model has the form of a computer programme built on subroutines,
which generate the models for power plant components such as drum
system, superheater and turbines, In Appendix A the drum system
subroutine is listed as an example,

Chapters 5 and 6 deal both with models from measurements. The maxi~
mum likelihood method is used throughout. In Chapter 5, single input -
single output linear difference equation models are identified. The con=
sidered input-output relations are those connecting fuel flow and control
valve position to the outputs, drum pressure and active power, Models
at both load levels are computed and compared. The results show that
low order models are obtained and that there is a significant difference
between the models obtained at half load and those obtained at full load.
The boiler has marked nonlinear characteristics. In Chapter 6 the
theoretically derived multivariable model is improved using the measure-
ments. A number of parameters of the A and B matrices of the state
space form is estimated.

The representation is not canonical and we have the problem of identifia~
bility. In this case it is found that the model

x(t+ 1) = #x(t) + Tu(t) + K e(t) 1. 2a)

V() = Cx() + Dugt) + e (t) (1. 2b)




where ¢ and Tare the sampled model A and B matrices and the matrix K
can be interpreted as the Kalman filter gains, yields esscntially better
results than a model of type (1.2) but not including the third term on the
right hand side of eq. (1.2 a). However, compared to the initial construc-
tion data model, an improvement is achieved in all cases. To the best of
authors knowledge this type of measurements and identification has not
been reported earlier.

The last chapter is concerned with the evaluation of the construction data
model. The evaluation is based on a comparison of recorded and simulated
responses. Further, the models obtained in Chapter 5 are compared to
those calculated from the construction data model. The one-step ahead
prediction errors for all models are also given and discussed. From this
material we establish the validity of the assumptions and approximations
used to derive the construction model, Even if this evaluation is based
only on one application to the model programme, a significant amount of
general conclusions may be drawn and a set of initial approximations
recommended.
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CHAPTER 2 - NUMERICAL MODELBUILDING

1. Introduction

It is very tedious to establish a linearized mathematical model of an
industrial process of some complexity. Even if basic physical laws are
applicable it can be extremely laborious to compute the steady-state
values and to linearize the equations. In particular we must take into
account that it is often highly desirable to develop linearized models for
different operating conditions and to investigate the sensitivity of the
model to physical parameters. It is also very difficult to check the linea-
rized equations even if the basic equations themselves are often quite
easy to check.

It thus seems attractive to develop an algorithm which enables a digital
computer to perform all the tedious work. Such an algorithm is proposed

in this chapter. We start with the basic non-linear equations and proceed

to compute steady~state values and linearize. The final result is a system
description in state space form. The state space form is convenient because
a large amount of control theory uses this representation of the system

a8 a starting point and since important physical variables can be retained
-ag state variables in the final model. The procedure is based on well-known
methods for solving non-linear equations and numerical differentiation.

One crucial difficulty is to assign the smallest number of state variables

to the linearized model. A method for solving this problem is the main
result of this chapter. It has been published in [167.

The procedure is outlined in Section 2, The main result is given in Sec~
tion 3 as a theorem. The assignment of state variables is not unique.

It is discusséd how this non-uniqueness can be exploited to choose state
variables which are physically significant. Section 3 also contains an
application to a boiler drum system model. In Section 4 an alternative
approach to the reduction problem is given. The problem considered is
a special case of that stated and solved in Section 3 but the computational
effort involved is less.

§




2, A systematic model reduction technique

To establish a mathematical model of an industrial process it is often

convenient to divide the process into a number of components. These

components are treated separately. A set of equations which describes

the dynamic and static relations between the inputs and outputs for each |
component is derived. The components are coupled through a number '
of internal variables which might be of secondary interest. This technique
simplifies the derivation of the basic equations but introduces a number

of auxiliary variables, see e.g. [30]. The resulting mathematical model
is usually a set of non-linear equations which includes both ordinary and
partial differential equations. Partial differential equations are approxi-
mated by finite differences in the space coordinates. We also assume that
the system has constant coefficients. The system behaviour for small
disturbances around an equilibrium state is often of great interest. This
behaviour might be described by the linearized system equations. Thus,

if we require the resulting model to be a set of linear ordinary differential
equations, the following systematic approach is proposed.

The process is described by basic physical laws such as the laws of
conservation of mass, energy and momentum. Let the resulting set of
equations be

f(¥,v,u) =0 (2.1a)
gy,v,u) =0 (2.1b)

where f is an ¢ vector whose components are non-linear functions

of the variables vj, their time derivatives and the process input variables
uj; g is a k vector whose components are non-linear functions of the
variables vj, u; and the process output variables y;. The input vector u
and the output vector y are identified and treated separately already at
this stage. All other variables are included in v. The set of equations

is consistent if the number of variables v; equals £ andif y isa k
vector. We can always assiime that the vector f does not depend on
du/dt because we can then introduce a new input variable u* = du/dt.

The steady-state values are obtained if we put time derivatives equal to
zero in eq. (2.1), viz,

f0,v,u) =0 (2. 2a)

gy,v,u) =0 (2. 2b)



Given the steady-state values u? of u, eqs. (2.2a) and (2. 2b) determine
the steady=state values v0 and y0 of v and y respectively. The zero
solutions of the non-linear eq., (2.2) are obtained by standard techniques,
e.g. a Newton-Raphson method or as given in [ 39].

Linearize eq, (2.1). We get

EV+Fv+Gu=0 (2. 3a)
Py+Qv+Ru=0 (2. 3b)
where
E=f‘.,(0,vo,u0 {exed,
F=t 0,v",u) fexz},
G=f1 (O,VO,u0 {axel,
Yo 0 0
P=g (y,v,u) {k x k},
Y0 0 o0
0 0 0
R=g v ,v,u) {k x m}.

To avoid new symbols the perturbed variables, that is the differences

vV - VO, y - y0 and u - uO, are denoted as the variables themselves. The
matrices of first partial derivatives of the vectors f and g with respect
to v, vand u and y, v and u respectively are obtained by nume~
rical diffgrences. '

The linearized set of eqs. (2. 3) is reduced to state space form
S(A, B, C,D)

% = Ax + Bu,
(2.4)
y = Cx + Du,

where x is the state n vector, u is the input m vector and y is
the output k vector, A, B, C and D are matrices of proper order,

The problem of reducing eqs. (2.3) to state space form is to find the
smallest possible number of state variables and to assign these to the
model. A method which solves this problem is the main result of the
paper and is presented in the following section.




If the transfer function representations are needed , these are easily
obtained from eq. (2.4) using standard methods, see e.g., [497.

3. Reduction to state space form. A general approach
Since the proof of the theorem given below requires knowledge of the
concept-of pseudo-inverses some relevant properties are given as an
introduction,

A detailed presentation of the pseudo-inverse and its properties can

be found in e.g. [13].

3.1 Pseudo=Inverse

{mxr}

Every matrix A of rank n>0 has a rank factorization of the form

Almxe} _ fmom]  {nxr) (3.1)

where both B and C have rank n. The pair of matrices B and C '
are not unique. The requirements are that the columns of B form a
basis for the column space generated by the columns of A, C is then
chosen to satisfy (3.1). The pseudo-inverse of A is now defined as

+ -1 -1
A = CT(CCT) (BTB) BT (3. 2)
Some of the properties are

(1) For any matrix A there always exists a unique pseudo-inverse.

+
(2) - The rank of A equals the rank of A,

(3) If A is quadratic and non=-singular AJr = A-l.
+
@ aH =a
+ o+ o+
) AATA=A and ATAAT =A".
© aahZ-aA" and ATA)% = ATA, thatis AAT and ATA are
projections.,

+ +
(7) AA and A A are symmetric matrices.




Further we have
5 - @ p tpT
C+ _ CT(CCT)—l
where B and C are the same matrices as in (3.1).
We will also use the following rank properties of the pseudo-inverse,
Let T be an mxn matrix, where n is the rank of T and m>n

Lemma 1

+
The rank of the matrix TT is n.

Proof
The rank of T and T+ equals n. We have according to (5) above

(TTHT =T
Then

. +

p(T) = n<min{p(TT ), o(T)}

where p(T) denotes the rank of T. We also have
+ . +

p(TT") < min{o(T),p(T )}

Thus

+
P(TT ) =n O

Lemma 2

+
The rank of the matrix (I-TT ) is m-n.

Proof

We have




+ + + +
p{(I-TT ) + TT } < p(I-TT ) + p(TT )
or
+ +
PI-TT )>p) -~ o(TT ) =m -n
and
(I-TT+)T =0

The last equation implies that the dimensions of the range space of
(I—-TT+) is less than or equal to m-n. Thus

p(I—TT+) =m -n |

Introduce the notations R(T) and N(T) which stand for the range space
and the null space of the matrix T respectively. Then we also have

Lemma 3

+
The range space of T equals the null space of (I-TT ).

Proof
We have
+ €
(I-TT YT =0
Hence
+
tieN(I—TT ), i=1, ..., 1, (3.3)

where t; is the i:th column vector of T. According to Lemma 2 we have
+
p(I-TT )=m -n
+
The dimension of the null space of (I-TT ) is then n. The vectors
ty (i=1, ..., n)are linearly independent and span the range space of

T. Thus i

R (T) = NI-TT ) 0



3.2 Main Result

Before stating the theorem it is convenient to consider the structure of
eq. (2.3). It is clear that the number of state variables in a minimal
representation can at most equal the rank of E. If the rank of E equals

o the number of state variables is £ and eq. (2.3a) can be solved directly
using the inverse of E. The reduction to standard form is, in this case,
trivial. However, in general the rank of E is less than g and greater than
zero. This is a consequence of two facts. Statis equations in the variables
v; and u; create rows of zeros in E. The number of time derivatives
introduced might exceed the rank of E. That is we have additional static
equations in the variables Vi and uy which are not quite apparent.

If the inverse of P in eq. (2.3b) does not exist, one or several of the
outputs are a linear combination of the others. The linearly dependent
outputs may be excluded by computation of the linearly independent rows
of P. However, physical insight usually permits us to avoid this problem
and there is no loss of generality to assume that the inverse of P exists.

Theorem 1

Given a linear dynamic system with constant coefficients described by
Ev(t) + Fv(t) + Gu(t) =0 (3. 4a)
Py(t) + Qv(t) + Ru(t) = 0 (3.4b)

where' v(t) is an & vector, u(t) is an m vector, y(t) is a k vector and

E, F, G, P, Q, R are matrices of proper order. Assume that the rank
of Eis n, 0<n<?. Leta rank factorization of E be

E{SL X2} :K{.zxn}L{nx 2} (3.5)

where the matrices K and L both have rank n, If

() p{(I-KK)F}=2-n
(ii) R{ (I—KK+)F} NR(L)y=0

then the state spa)ce form of the linear system (3.4) is



% (1) = Ax(t) + Bu(t)
(3.6)
y(t) = Cx(t) + Du(t)
where the state n vector is
X(t) = Lv(t)
and ’
A=- K+F{LTL + FT(I—KK+)F}_1LT
8=k [F{L L+ r Ty} 7 r k") - 1o
C=- P—IQ{LTL + FT(I—KK+)F}—1LT

- \ -1_T +
D=P l [Q{LrIL + FT(I—KK+)F} F (I-KK )G - R}

Proof

It is sufficient to prove that there exists a unique solution to eq. (3.4)
and that this solution is given by eq. (3.6).

The proof consists of three steps. First eq. (3.4a) is formally rewritten,
as two equations, one representing the dynamic relations and the other
the static relations of eq. (3.4a). This manipulations also give an equation
relating v to x and u. Second it is shown that there exists a solution to
eq. (3.4a) and finally that this solution is unique.

Combining eqs. (3.4a) and (3.5) we get

KLV +Fv+Gu=0 (3.7)
Introduce the n vector x defined by

x=Lv (3.8)
Egs. (3.7) and (3. 8) then give

KX =~ (Fv + Gu) (3.9)

i

}
We will thus show that the dynamic relations of the original eq. (3.4a)
can be represented by a differential equation for x. There exists a
solution to eq. (3.9) if



Fv + Gu € R(K) (3.10)
Using Lemma 3, eq. (3.10) can be replaced with

Fv + Gu € N(I-KK ) (3.11)
where

K+ _ (KTK)_IKT
By definition eq. (3.11) is equivalent to

(I-KK " )(Fv + Gu) = 0 (3.12)
or

(I-KK )Py = - (-KK )Gu (3.13)

The solution of eq. (3.13) gives the static equation in the vectors u and
v. If condition (i) holds then

R (1-KK") = R{ (1-KK ) F) (3. 14)
Hence
+ +
(I-KK )Gu ¢ R{(I-KK ') F} (3.15)

and eq. (3.13) has a solution for every given u. Then a solution of
eq. (3.9) exists,

Rewritting eqs. (3.8) and (3.13) as

( b X

\(I-KK+)F) v :’(- (1-KK )Gu/ (3.16)
or

Tv=z (3.17)

A solution to eq. (3.16) exists since the vector z belongs to the range
space of T according to eq. (3.15). If condition (ii) holds then

o(T) = 2 | (3.18)



and the solution is unique. Eqg. (3.16) thus relates the vector v to
the vectors x and u.

+
Solving (3.16) using the pseudo-inverse of T and the fact that (I-KK )
is a symmetric projection we get.

v=Tx+Tu ' (8.19)

where

T + -1
T, = {LTL +F (I-KK )F} Lt

T

+ _.-1_T +
T, = {LTL +F (I-KK )F} lg (I-KK )G

Combining egs. (3.9) and (3.19) we get
. + + +
X (t) = K FT, x(t) - ® FT, +K Gu(t) (3.20)

This differential equation has a unique solution for every given initial
condition X(to) and input u(t).

Now the existence of a solution to (3.4a) for every initial condition v(t,)
and every input u(t) in the interval [to, tl] follows from the fact that,
the solution to eq. (3.20), with the initial condition x(t)) =L v(ty), in
the interval [t,,t;] satisfy eq. (3.4a). This follows from the construc-
tion of eq. (3.20) and is proved by substituting eqs. (3.19) and (3. 20)

into the original differential equation and using eq. (3.13). Notice that
both conditions of the theorem are necessary since they guarantee the
existence of a solution to eq. (3.13) and the existence of a unique solution
to (3.16). ‘

The uniqueness of a solution to (3. 4a) follows from eq. (3.16) since, for
every given vector v(t} and input u(t), which satisfy eq. (3.13), then
eq. (3.16) uniquely determines the vector x(t). Again this requires both
conditions of the theorem.

It is thus proved that there exists a unique solution to eq. (3.4a) and that
this solution is given by eq. (3.20). All static equations in the variables
vj and uw; are given by eq. (3.13). When eqs. (3.4b), (3.19) and (3. 20)
are combined, the state space form of the original set of equations is
obtained and the theorem is proved. .
Notice that the theorem only‘supplies a solution to the reduction problem
when the number of state variables equals the rank of E.




3.3 Check of Conditions

An algorithm which performs the rank factorization of the matrix E is a
necessary subroutine of the reduction programme. It is then convenient
to formulate the conditions as rank conditions. Condition (i) is already in
a suitable form. If condition (i) holds, condition (ii) is equivalent to that
the rank of T equals £ . Hence

+
(i) o{(I-KK )F} =2 =n
(i) o(T) =12
where the matrix T is defined by eq. (3.17). The conditions should be

checked in the listed order.

3.4 Choice of State Variables

The state variables are given by
x=Lv

The matrix L is not uniquely determined but L is chosen to satisfy
E =KL

where the column vectors of K form a basis for the vector space generated
by the column vectors of E. In this subsection we will investigate if this
non-uniqueness of L could be exploited to get a simple physical inter-
pretation of the state variables.

The variables v; often have a simple physical interpretation. It seems
attractive then to retain these variables as state variables. Let E be
arranged so that the n first columns of E are linearly independent.
Assume that s is the largest number of variables v; which can be
retained as state variables, viz.

Xl :Vl,



The matrix L can then be partitioned as

i
L11 | L12-
Le|-- -l - -
|
Lot | Log
where
L, =1 {sxs}
Li,=0 {sx(%=s)}
Ly,  {m-sxs)
- Q-
Lzz { (n-s)x(2-5)}

However, in general, the number s will equal zero. To show this let

E=[e1 S e,]

where e; is the i:th column vector of E, The vectors ey, ..., €

n
are linearly independent and ep.7, ..., €y are linearly dependent.
Let kl, ey kn be an arbitrary basis for the column space generated

by eq, ««., €,. Then the rank factorization of E may be written as

[el 'en n+l e£]=
1 : 0
= (k... k] - —;-L— i
21 | 22
l |
Kyq | Ky I | 0
A N I EE e (3. 22)
{
Kot} Koo Lol Lo

where the sub-matrices of the partitioned matrix K have the dimensions

K {sxs],
Ky [(-s)xs],
K

99 {(2-8)x(n-s)}.




Evaluating eq. (3.22) we get

[el...eS €1 %y en+1...e2] =
+ |
% P iabar 1 Frabae
B + L L
Ko T Kpaligr | Koalap

The identity above implies

e e ...eQ]:[k

[es+1... 0 Cnil kL (3.23)

s+1° n 22

There might still be n linearly independent column vectors in the left-hand
matrix in (3.23). The right-hand matrix has maximally n-s linearly inde-
pendent column vectors. Equation (3.23) thus gives s =0. This means

that there is, in general, no especially favourable choice of the state
variables available.

A natural way to obtain a basis for the column space of E is to choose the
linearly independent columns of E as a pasis. The rank factorization of E
then is

E=K[L iL] (3.24)

{
{
11 2

where

L, = I {nxn},

L, {nx(2-n)}.

The sub=-matrix Lo gives the coefficients of the expressions which
constitute the %-n linearly dependent column vectors e .4, «.e» e, of

E. That is, if L
n
e .= T e, i=1,2,...,0n
nti i=1 g

then f

(zz)i:[xli...xni] , i=1,2, su., %1



where (512)i denotes the i:th column vector of L. If only one of the
vectors eq, ..., €p, 5ay €1, is needed to establish e, .1, ..., €,
then the choice (3.24) creates rows of zeros in the sub-matrix Ly except
in the row corresponding to eq. Considering that we have no especially
favourable choice of state variables available it seems attractive to use
the choice of (3. 24).

Note that if the rank n of E equals the number & of derivatives of
variables v; then Lg will equal zero and we get

3.5 Application to a Boiler Drum System Model

In this sub-section we will give an application of the reduction procedure
to a practical problem, We will consider the drum system (drum-down ~
comer-riser) of a drum boiler for a 150 MW power station unit. The drum
pressure is 140 bar and the outlet steam temperature 530°C. The derivation
of the basic non-linear equations, computation of steady=state values and
linearization result in the matrices E, F, G, P, Q, R. The derivation of
these results as well as a FORTRAN programme for the computations are
documented in [17]. The complete output of the FORTRAN programme
which computes the matrices of the state space form given the matrices
E, F, G, P, Q, R is presented in Table 3.1. This table also includes
some intermediate results. The matrix KK which should equal the unit
matrix is used to check the accuracy of K*.

The components of the vector v correspond to the following physical
quantities

P4 drum pressure
y drum liquid level
TW drum liquid temperature
Tr riser tube temperature
V=X steam quality
m, riser outlet flow
m downcomer flow
m, evaporaﬁon flow
Q heat flow from the risers to
r .
the steam water mixture |
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The input variables are

heat flow to risers_‘

Q
g
u= \me feedwater flow
m gteam outlet flow J
s

and the output variables are

.

Py drum pressure

y= Al drum liquid level

The two last conlumns of E equal zero.

elements. The column vectors 6 and

All other columns have non-zero

7 of E have non-zero elements only

in the second row and consequently they are linearly dependent. The rank
of E is at most 6 and the number of time derivatives of the variables vj

exceeds the rank of E. The time

derivatives of the riser outlet flow

and

the downeomer flow which correspond to the non-zero elements in columns

6 and 7 arise from momentum equati

ons for the riser and the downcomer.

Both conditions of Theorem 1 are satisfied in this case and the reduction

is successful. The computed rank of

E equals 6. Previously we found that

the non-uniqueness of the rank factorization could not always be exploited
for a favourable choice of the state variables. However, in special cases
K could be chosen as the linearly independent columns of E and a simple

form of‘L is obtained. This choice

is used in the reduction programme.

For the drum system K equals the first six columns of E. Using the

pseudo-inverse of K the matrix L is

E = KL. The state variables are given

X7V
Xy = Vor
X3 = Vg
X, =V
X, = Vg,
Xg = \A + 2.6356v7,

i

and the state variables have simple

computed to satisfy the equation
by the matrix L. We get

physical interpretation.

Equation (3. 13) gives all static equations in the variables v, and u..
i i




A successful reduction requires p{(I—KK+)F} = g-n. This rank equals 3
and consequently the number of static equations in the variables uj and
v; is 3. These equations are given by the matrices (I—KK+)F and
(I-KK+)G in Table 3.1. The original linearized equation contains two
apparent static equations in the variables vj and uy which are found in
the fourth and ninth rows of F and G. These equations are re-found in the
fourth and ninth rows of (I-KK")F and (I-KK")G. The third static
equation is given by any of the rows 1, 3, 7, 8 of (I—KK+)F and (I-KKH)G.
These four rows are in pairs linearly dependent. The existence of the
third static equation is a consequence of the fact that the number of time
derivatives of the variables v; exceeds the rank of E and primarily of
the assumptions made when basic physical laws were applied to the
process.

Inspecting the system matrices A, B C and D we find that D equals zero
and that the two outputs equal the first two state variables as expected.

Several elements of A and B also approximately equal zero. However,
some caution must be observed when interpreting a number as small
since the numerical value of the elements depend on the chosen units.

If the reduction is made manually it is indeed very tedious work. It is

therefore believed that this algorithm represents a very attractive
solution to the reduction problem.

4. Reduction to state space form. An alternative
approach.

In the case when the number of state variables equals the number of
derivatives of physical variables an alternative and simpler expression
for the matrices of S(A, B, C,D) can be derived. This method will be
used frequently as a complement to the more elaborate method described
in Section 3.
Rewriting eq. (3.4) as
EX (t) + Fx(t) + Gu(t) + Hv(t) = 0 (4.1a)
Py(t) + Qx(t) + Ru(t) * Sv(t) = 0 (4.1b)

where the input and output vectors u and y are defined as before., All



physical variables which appear differentiated are included in the n-vector
x and the remaining variables in the r-vector v. Coefficient matrices
are constant. As before the inverse of P is assumed to exist, Stating the
result as a theorem we get

Theorem 2

Consider a linear time invariant dynamical system given by eqs. (4.1).
Define the order of the variables v; in a way such that,if the rank of H
equals r then the rank of Hy equals r. Matrix Hg is given by the partioning
of eq. (4.1a).

B By G Hy
k) H - - =) |- == ju) t =] V() =0 (4.2)
E, F, G, H,

where matrices indexed by 2 have r rows, If

(i) p(H) =r and thus O(HZ) =r

(i) p(El —Hle EZ)

then the state space form of eqs. (4.1) is
X (t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where
=1 =1 =1
A=~ (B -HH,E) " (F-HHF,)
=1 -1 -1
B=- (El-HlH2 Ez) (Gl—HlH2 GZ)

c=-P'1{Q+SH;1[E2(E1 ~H H, 2 E,)" <F ~H H, F 2]}

-1 -1
D=-P {R+SH2[E2(E ~H, H, E) (G ~H, H 2G2)-G2]}




Proof
Evaluate eq. (4.2)
X + =0 4.3
E1X+F1X G1u+H1V 4.3)
E2x+F2x+G2u+H2V:0 4.4)

If condition (i) holds then eq (4.4) gives

-1
5 Fx = H Gyu (4.5)

-1_ .
vV=- H2 sz -H
Substitute eq. (4.5) into eq. (4.3) and solve for x. We get
1

% = - (E,-H H,

-1 1
 7HHy Ey) - (Fy~HyH, Foix -

1

-1 -1 -1
- (B ~H;H,"E ) (G, -H H, G, )u (4.6)
The above equation has a unique solution if condition (ii) of the theorem
holds. Using an argument similar to the one used in Theorem 1itis
easily shown that a unique solution satisfying the original differential
equation exists for every initial condition x(to). Combining eq. (4.1b),
eq. (4.5) and eq. (4.6) the state space form of eqs. (4.1) is obtained

and the proof is completed, O

If the reduction method presented above applies, the state variables
have a nice physical interpretation since they will simply equal the
physical variables which appear differentiated in the equations..

Eq. (4.1) can be written as
E‘% (t) + F'x(t) + G u(t) + H'vl(t) =0 4.7a)
Plyt) + Q'x(t) + R u(t) + S'vz(t) =0 (4. 7b)

where the vector v has been expressed as two vectors vy and vg with

as few common elements as possible. Both eqs. (4.7) are consistent.
This procedure reduces the dimensions of coefficient matrices and the
reduction programme used for eq. (4.7a) can also be applied to eq. (4.7b)
if the conditions of Theorem 2 are fulfilled, From a computational point
of view this later approach is usually advantageous and has been used in
the boiler application.



CHAPTER 3 - FIELD MEASUREMENTS

1. Introduction

The field measurements were performed in June 1969, in cooperation
with Sydsvenska Kraft AB on the power plant Oresundsverket situated in
Malmd, Sweden.

Experiments were designed for two purposes:

- to understand the behaviour of the poiler during large load
transients,

- to give a basis for identification of parameters in linear models
valid for small perturbations around a steady state.

Engineers from Sydsvenska Kraft AB designed the first set of experi-
ments. The second set of experiments were designed by the author.
Only these experiments are analysed in detail.

Measured responses of the power plant are used for identification in
Chapters 5 and 6 as well as for comparison with responses of models
from construction data in Chapter 7.

Section 2 gives a description of the power plant unit P16-G16. Especially
the boiler and the turbines are treated. In Section 3 the measuring program
is presented in more detail. Also measuring points and equipment are
presented. Properties of measuring devices are discussed, It is essential
in a dynamical experiment that the input signal which excites the process

is carefully chosen. The choice of input signals as well as sampling rate
and other measurement characteristics is accounted for in Section 4.

In the last section the results of the experiments are shown and com~
mented.
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2. Power plant unit P16-G16

The considered unit is the largest of five units of the Oresundsverket
power plant. It was taken into operation in 1964. The drum type boiler
was built by Steinmiiller and the turbine by Stal-Laval AB. Alternators
were delivered by ASEA. Fig 2.1 shows a reduced drawing from an aerial
photograph of the entire power plant.

2.1 Plant Configuration

The size and characteristics of the power plant are well defined by the
maximum figures given below:

- active power 160 MW

-  steam flow 500 t/h

= drum pressure 150 kg/cm2
- turbine inlet temperatures 535°C

-~  feedwater temperature 300°C

A complex process as a boiler includes a large number of auxiliary
equipment and machinery. A schematic diagram is given in Fig 2.2
where some essential systems and components are included. In the
boiler (1) steam of up to 150 kg/cm2 is produced by oil-firing. The
temperature rises to 535°C in the superheaters. In the high pressure
turbine (2) the steam expands-to about 32 kg/cm2 thereby developing
maximally 45 MW. The steam temperature drops and the steam is
returned to the boiler and temperature rises to 535°C. After expan-
sion in the intermediate and low pressure turbine which maximally
gives 115 MW the steam is condensed to water in the condenser (4).
The condensate is pumped through the preheater (6) to the feedwater
tank (7). From the tank the water goes to the feed pumps (8) and is
pumped through the preheaters (9) and through the economisers and
back to the boiler which completes the cycle. The make-up water is
produced by an equipment for demineralisation. When modelling this
process only the boiler and turbines will be considered.



Fig 2.1

- A drawing from a photograph of the Oresundsverket
power plant,




Fig 2.2 - A schematic diagram of Oresundsverket power plant
unit P16-G16.

1. Boiler 6. L. P. preheater
2. H.P. turbine 7. Feed tank
3. I.P. and L. P, turbine 8. Feed pump
4, Condenser 9. H.P. preheater
5. Extraction pump 10. Alternator

2.2 The Boiler

A schematic picture of the boiler is shown in Fig 2.3. Steam is separated
from water in the drum (1) and splits on two equal steam paths. After
passing three superheaters (5), (7) and (9) the steam from both paths

are mixed and transported to high pressure turbine (10). Steam expands
in H. P. turbine and is returned to the reheater (11). The final expansion
takes place in the L, P. turbine (12).

The three superheaters are thus divided into two parts each. Under nor-
mal operating conditions the thermal state of steam in the two paths
is roughly equal.

The two spray attemperators separating superheaters are also split into
two parts each. The attemperator flows are used to control the steam
temperature after the following superheater or the temperature before
H.P. turbine but also to trim the symmetry of the steam paths.



Atternperator valves

Control valve

Fig 2.3 ~- A simplified diagram of the boiler of Oresundsverket.
1. Drum 8., Attemperator 2
2. Downcomers 9, Superheater 3
3. Risers 10. High pressure turbine
4, Economiser 11. Reheater
5, Superheater 1 12. Low pressure turbine
6. Attemperator 1
7. Superheater 2

The economiser (4) is situated in the later parts of the combustion gas
channel and is also divided into two parts. The air needed for combustion
first passes an air-preheater. The fans for air and combustion gases
have movable blades which give these actuators a fast response to control
actions.

There are twelve burners. The number of burners in action depends
essentially on the load but could be varied to a certain extent,

2.3 The Turbines

There are two turbines in the plant unit since the steam is reheated. The
H.P. turbine is a radial flow turbine and the L. P. turbine of the axial
flow type. Steam inlet data are T =535°C, p =130 kg/cm?2 and T = 535°C,
p =32 1«:g/cm2 respectively.

At full load the H. P. turbine gives 45 MW and the L. P. turbine 115 MW.
The major part of 01’1tput power is thus generated by the L. P. turbine,

t




2.4 Control Equipment

The controlling equipment of the boiler is named Conronic and produced
by Schoppe & Faeser.

The main controlled variables are given in Table 2.1. The inputs which
cause the intended control action are also given. The boiler model

Controlled variable Regulator acts on:
Boiler pressure Fuel flow

Drum level Feedwater flow
Steam temperature before Attemperator flows

H.P. turbine

Steam temperature before Combustion gas flow

L. P. turbine

Fuel-air ratio Air flow

Active power Control valve position
Table 2,1 ~ Main control loops of boiler P16.

discussed in this work makes it possible to study all control loops
except for the one associated with the regulator acting on combustion
gas flow. The regulator for this loop is seldom needed since high
temperatures are rare.

The control of active power and drum pressure requires some comments.
There are two different ways to operate the boiler-turbine unit so as to
produce a given power. If the control valve is fully open, active power is
changed by changing the drum pressure. Keeping drum pressure constant,
active power is altered by changing control valve position. Certainly fuel
flow must be adapted to active power. For small perturbations around

a steady state the so called turbine regulator controls active power using
the control valve. The initiated variations of drum pressure is handled

by the drum pressure regulator using the fuel flow. Table 2.1 thus does
not give a complete description of the whole control system.

Properties of the regulatoﬂs such as used measured variables and signal
treatment are not discussed since the regulators were disabled during
the experiments.



3. Measuring program and equipment

In this section only experiments concerned with small perturbations
around a steady state will be ireated. Some results from the large
load transients have been used and presented in [537.

3.1 Experiments

The experiments were designed for identification of parameters in linear
models. The basis for the identification algorithms is a set of recorded
data of process input and output signals. Efficient algorithms are available
to identify systems with several inputs and one output. The identification
of multivariable systems is more complicated since the coupling between
inputs and outputs might not be known a priori. The numerical algorithm
thus has to seek for the correct structure, which for large systems is
very time consuming, or has to assume this structure known.

The boiler is a typical multivariable process. It was intended to perform
experiments where only one input variable at a time is perturbed and also
experiments where all input variables are perturbed simultaneously. Un~
fortunately the power situation at the time for the experiments was such
that the economic consequences of a failure would be large. The more
complicated multivariable experiments were then inhibited.

The intended purpose of the measurements requires that the process is

in open loop. All main regulators listed in Table 2.1 except for the
fuel-air ratio regulator were then disconnected, This is of no consequence
since air flow could be changed rather fast and when modelling the boiler
fuel flow and heat flow can be considered equivalent,

The experiments are listed in Table 3.1. The steady state in the first

five experiments is about 90 % of full load. This point was chosen in or-
der not to get too high values of any variable. Load level is then decreased
to roughly 50 % of full load and the experiments are repeated. As seen
from the table the steady state was approximately the same within each
set of five experiments. However, to be able to perturb control valve po-
sition Exp. E slightly differs from the other four at 90 % load level.

By choosing two different load levels for experiments the influence of
non-linearities can be investigated. When designing control strategies
for processes based on linear models it is essential to have an estimate
of the validity range.




Attemperator flows in Exps. C, D, H and I were only perturbed in onc
of the two steam paths.

Perturbed Active Drum
Exp. input variable power pressuxée
MW kg/cm
A Fuel flow 140 125
B - Feedwater flow 140 125
C Attemperator flow 1 140 125
D Attemperator flow 2 140 125
E Control valve position 135 135
F Fuel flow 68 110
G Feedwater flow 68 110
H Attemperator flow 1 68 110
I Attemperator flow 2 68 110
J Control valve position 70 110
Table 3.1 =~ Some characteristics of experiments.
3.2 Measured Variables

Twentythree variables as listed below were recorded during the
measurements

active power

drum level .

flow of fuel
feedwater
attemperator 1 (both paths)
attemperator 2 ( " ")
steam " ")

steam temperature before attemperator 1
after attemperator 1
before attemperatur 2
after attemperator 2
before control valve
before reheater
after reheater
feedwater temperature' (both paths)
steam pressure in drum
before control valve
after control valve
before L. P, turbine




The position of the measuring points are indicated in Fig 2.3

The only significant variable which was not automatically recorded
was control valve position. Approximate values were recorded manually.

3.3 Measuring Devices

Tor all measuring points the ordinary measuring equipment of the
boiler-turbine unit was used. The equipment was of the standard industrial
type. All recorded temperatures were measured by thermocouples, all
flows and drum level by difference pressure gauges. For the recording
the signal was taken from the ordinary transducers and amplifiers.

Calibrating curves for recorded flows and temperatures were available.
The drum level measurement was also calibrated according to the drum
pressure.

Except for the temperature transmitters all measuring equipment can

be considered fast compared to the boiler dynamics.

3.4 Recording Equipment

A data-logger was used to record measured quantities. Measurea
values were punched on paper tape.

Maximum scanning and punching rate is 10 values in 1.8 seconds.
Accuracy is approximately 0.01 % of maximum recordable value.
Disturbances of net frequency are eliminated by integrating the input
signal over one period of this frequency.

Input signals are scanned sequentially. No sample and hold features
were available. Recorded time series of different variables are thus
shifted in time. This must be taken into account when identifying if the
shift is a considerable fraction of the sampling interval.




4, Characteristics of Measurements

The choice of sampling rate and input signal are two important problems
when making an identification experiment. These problems have been
treated in literature [ 207, [237, [547. In the general case no solution
has been given. Since the choices heavily depend on process dynamics
the ideal identification experiment requires repeated measurements,

4,1 Choice of Sampling Rate

The choice of sampling interval for parametric identification is treated
in {277 for some special systems. It is shown that there often exists

an optimal sampling rate. This rate depends on e.g. the criterion and
noise characteristics, The calculation of the optimal sampling rate
requires that the system is known. However, the following rules of thumb
for the choice of the sampling interval Tg often apply

0.5:1.5) 7T _.
min
T =min 4.1)
s
o, 1
245 W
max
where
T . smallest time constant
min
1 t tf
W ax argest resonant frequency

associated with the process dynamics.

In the boiler case the process dynamics was estimated using rough
models from first principles and measured step responses. This informa-
tion indicated that the smallest time constant of interest was about 10
seconds, The data-logger was capable to scan the twentythree measuring
points in 4.8 seconds. This reduced the possible sampling intervals to

5 - 15 seconds. Finally trivial practical limitations restricted the

choice to Tg > 10 seconds. Thus we choose

T =10 sec.
s



4,2 Choice of Input Signal

The properties of different identification schemes have been discussed
in litterature [54], [26].

It was decided to use the maximum likelihood method mainly for two
reasons. Efficient computer programs utilizing this method were
available [25] and the disturbances are modelled.

The identification method do not impose any restriction on a persistent
exciting input signal other than, it must be constant over the sampling
interval. But this restriction can be avoided, if necessary. Since the
input signal had to be generated manually, a square wave type of signal
was used. Such an input sequence also take maximum advantage of the
permitted amplitude range, which is favourable, when experiments has
to be made during normal operating conditions,

The input signal should excite all the essential modes of the process.

In the general case, the process dynamics is only known to be bounded
to a certain frequency interval. For this reason, it is desirable that the
power spectrum of the input signal is approximately constant in this
interval.

One type of input signal which satisfy the demands discussed above is
the PRBS (Pseudo Random Binary Sequence). The properties of the
PRBS are well known and a detailed presentation is found in e.g. [8].
This type of input has been used frequently [5], [46]. However, some
significant properties are

the amplitude is +a or -a,

= the sign shifts at time points that are integer multiples of the
basic interval Tp,

- it is periodic with period N- Tp where N is the maximum length
= the normalized autocovariance function is

1if 7=k'N, k=0, 1, -1, ...
r(y) =
-1/N elsewhere
i

As an example a PRBS of length N=7 is shown in Fig 4.1,
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Fig 4.1 - Time serie, covariance function and spectral density for
a PRBS of length N =7, The sampling interval is norma-
lized to 1.

The PRBS was chosen as the starting point for deriving the input signal
to be used. Then, it remains to choose the interval T,,, the length N
and the amplitude a.

To choose the interval Tp and the length N the following rules may
be used

= choose N. Tp =5T

- choose r- Tp =3T



where r is the longest run of +a or =-a and Tp,,x the maximum time
constant associated with the process dynamics, The first rule has been
given in [8]. The second rule is based on the argument that, the
estimates of the gain and largest time constant are improved, if the
process is allowed to approach a new steady state during the experiment.
The measurement time T, should in both cases be at least N-T .

The second rule above leads to significantly larger length N and %hus

to larger measurement time.

In the boiler case the measurement time was limited to one hour for
each experiment and thus Ty = 1 hour. The maximum time constant
of the boiler was estimated to 300 < Ty, < 500 seconds. According to
the first rule above it is possible to identify a maximum time constant
of 720 seconds, which seems satisfactory.

The most common PRBS are the m- and QR-sequences with period

length N = 2D-1 (n integer) and N =N R Where N R 1S a prime
number of the form 4k-1 (k integer). In the m-sequence the longest

run of +a or =-a equals n. According to the second rule above we
should choose, for the m=-sequence, nT_ =3 (300 # 500) seconds, If

we also consider the measurement time given as (Zn-l)sz 3600 seconds,
we get a small value of n (n~ 4) and thus a large value of T,. However,
the value of the spectral .density function of an m-sequence will be small
above w; = 2';7/Tp, see Fig 4,1 where T, =1, This requires that T

is chosen in such'a way that, the spectral density function of the input
covers the interesting frequency range, which approximately equals

0 - 0,3 rad/sec. The upper bound is given by the Nyquist frequency

t, = m/Tg 0.3 rad/sec, This situation certainly requires a compromize
and we, choose

Tp =60 sec 4. 2)

which gives wq=~ 0.1 rad/sec if the sampling interval Tgq =T . The
value of Tp is also long enough to reduce the influence of the positioning
time of the actuators. That is, the input signal will be approximately
constant over most sampling intervals of length 10 seconds.

Now the preliminary choice of input signal was a QR=sequence of léngth
N=59, The longest run of +a or -a in this sequence is 5, However, this
sequence was manually modified to contain more 16ng runs of +a or =-a
and thus more power at low frequencies. The final choice was the
sequence i
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44+ttt et =t 4.3)

with

N =60 4.4)

where the + and - signs indicate positive and negative deviations of
amplitude a from the mean value. The composed input sequence has
zero mean value and the covariance and spectral density functions are
shown in Fig 4. 2, The spectral density function has been computed
from the input sequence used in Exp. I. Fig 4. 2 shows that we have
wy =0, 1 rad/sec for the constructed input sequence.

The sequence (4, 3) was used in all experiments, Since the dynamics of
a superheater is faster than that of drum and reheater a signal with
more power at high frequencies might be preferred for e.g. Exps., C
and D. However, the sampling interval is short enough to ensure these
dynamics to be detected,

Still the amplitude of the input signals remains to be determined. The
choice of amplitude must be a compromize between the demand for a
large amplitude to keep signal to noise ratio high and the demand for

a low amplitude to avoid the influence of non-linearities. Normal
operating records and pre-experiments guided the choice which is
shown in Table 4.1. The given amplitudes were used for both load level
experiments,

< Input Amplitude
3
Fuel flow £2.10 kg/h
Feedwater flow 20+ 10‘3 kg/h
Attemperator flows +2° 103 kg/h
Control valve position +3 %
Table 4.1 -~ Amplitude of deviations from mean value for input

signals.
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4,3 Conditions of Experiments

Although most conditions already have been stated in this chapter the
significant conditions of experiments will be summarized.

The experiments were made on the open loop process, that is the regu-
lators for drum pressure, drum level, steam temperatures and active
power were disconnected. Only the regulator controlling the ratio between
fuel and air was intact. The regulators for auxiliary machinery were

still in operation.

With the process in open loop the actuators could be manoeuvred from
the control room of the power plant. No equipment for automatic gene-
ration of the input sequences was installed but the changes were made
manually, Most actuators were driven by electrical motors but the
maximum settling time for a change was measured to be about 5 seconds.
Compared to the basic interval of the input sequence which equals 60 sec,
this settling time is acceptable small.

Some precautions were taken in order not to cause failure or damage.
The steam temperatures at the inlet of turbines are not allowed to
exceed 540°C. Since in all experiments,the inputs will cause variations
of these temperatures,the steady state temperatures were decreased to
about 510°C using the attemperator flows. The drum level must be
kept within certain limits in order not to cause disturbed circulation in
the drum system (low level) and to prevent moisture from entering the
superheaters (high level). By acting on the feedwater valve these
requirements were satisfied.

e

5. Results

Not all measured variables could be included in this presentation of
results. The number of variables has been limited to ten for Exps. A,
E, F and J, and to five for Exps, B, C, D, G, H and I. The whole mate-
rial given will not be used later but already an inspection of the responses
from the dynamical tests gives valuable information. Boiler dynamics
will not be discussed in detail here, This is accounted for in the following
four chapters. Some peculiarities are, however, pointed out.

1

In Exps. A, E, F and J where the fuel flow and control valve position
are the main inputs also the feedwater flow has been changed in order to



avoid extreme high or low drum levels (see Figs. 3. 1, 5.5, 5.6 and
5.10). Ideal conditions for a single input experiment is therefore not
established.

In these experiments also the attemperator flows vary. This is shown

in Figs. 5.1 and 5.6 where the flow in attemperator 1 in the right steam
path is included. The reason is that the pressure drop over the attempe~
rator valve changes according to drum pressure variations. Also in

the other experiments drum pressure is affected, but the fluctuations
are considerably less.

Inspecting temperature responses of Exp. A in Fig 5.1 we find that the
amplitude of responses are larger in the first half of the experiment

than in the second half. The cause is an asymmetrical heat flow distribu-
tion between the left and right steam paths of the boiler. This transient
in heat flow distribution was initiated by the changes in fuel flow and

the symmetric distribution was reestablished without any aid from the
working staff, In fact the asymmetry was not recognized until all tests
were finished.

Feedwater flow is the main input variable in Exp. B, Fig5.2. As a
consequence of flow changes and a constant heat flow to the economiser,
feedwater temperature is greatly influenced.

Previously we have seen that drum pressure affects attemperator flows.
Also the reverse is true. In Exps. C, D, H and I drum pressure is changed
according to the changing coolant flows. Thus the response of superheater
outlet temperature is caused by the two variables attemperator flow and
drum pressure.

In both experiments using attemperator flow 1 the response of steam tem~
perature before attemperator 2 shoéw a non-minimum phase characteristic.
This can be caused by a fast pressure transient in the superheater when
changing the injected water flow.

A non-minimum phase response is also a property of dynamics relating
drum level to control valve position, In this case the phenomenon is
caused by fast changes of the volume of steam bubbles in the drum water
since a changing drum pressure affects the saturation state in the drum.

In Exp. H where attemperator flow 1 is the main input variable the
response of drum pressure is also due'to significant changes of feedwater
flow.
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CHAPTER 4 - CONSTRUCTION DATA MODELS

1. Introduction

The modelling of an industrial process from basic physical laws must
start with a definition -of the goal of the modelling. It is the goal which
determines the degree and techniques of approximation., The size and
complexity of the final model thus heavily depend on the goal.

In this study the model is primarily designed for steady state control of
the boiler-turbine unit. As in every modelling process, however, the
achieved knowledge of the process could be used for other purposes
e.g. redesign of the process itself.

The steady state control of large boilers includes several control loops.
The most egsential are

- active power control,

- drum pressure control,

-  temperature control,

- drum level control,

- combustion control (air/fuel) control.

The regulators act on

- control valve,

- fuel flow,

- attemperator flows,
- feedwater flow,

- air flow,

This means that not only the overall behaviour of the boiler is of interest
but also intermediate process variables are important for the control.
The model must properly describe the dynamic relations and cross-
coupling between the inputs and outputs which are defined by the control
task.

3
1

The multivariable process under consideration is quite complex. Heat
exchangers such as superheaters and economiser are described by non-




linear partial differential equations, which probably also are time varying.
The size of the boiler cause time delays. The two-phase flow, in the risers
of the drum system, has very complicated characteristics. The presence
of vapor in risers and drum gives non~minimum phase response to water
level. Thus the need for approximations and simplifications is obvious.

The steady state control problem is usually solved using a set of linear
time invariant ordinary differential equations (linear models). This is
mainly for two reasons. Linear models are usually sufficient for stability
considerations when the process is slightly perturbed around an equilibrium
state. The theory for linear systems is almost complete and powerful.,
However, problems will still arise when high order and multivariable
systems are to be treated.

For our purpose the goal must be to derive a linear model of as low
order as possible. The model should include significant input and output
variables to be able to solve the essential control problems of the boiler.

The access to a static model originating from e.g. the constructors design
material is a good basis for the development of a dynamic model. The
static model will contain a large amount of the construction data needed.
The dynamic model could, to a certain extent, be regarded as a static
model where certain equations have been extended with a derivative,

The problem of choosing the derivatives of physical variables to be
included is the main difficulty. It should be pointed out that this procedure
is greatly simplified by rough estimates of the involved dynamics. Such
an approach has been the approximation procedure used in this work,

When modelling a physical process the computational effort to derive
constants of the model from construction data soon becomes a major
task. Adopting the philosophy stated in Chapter 2 the final model will
take the form of a computer programme. This will increase the gene-
rality as well as the analyzability of the model.

We will try to recognize characteristic physical components of the boiler
and develop a model for each of these. The models have the form of
computer subroutines. There will be conflicts between the demand for
model generality and model simplicity. The size and construction of
different boilers vary e.g. the circulation of the drum system can be
forced or natural and the number of superheaters as well as their heat
transfer characteristics are different. The approach taken is to develop
a model for each one of the essential components of the boiler. In cases
where several types of components are possible a typical situation is
chosen and elaborated in more detail. In such cases it is commented upon
possible extensions.




The components chosen for modelling are

- drum system,
-  superheater,
- attemperator,
- control valve,
-~ turbine.

The list is lacking e.g. economiser, air and combustion fans, sensors
and actuators. The reasons for this will be stated in more detail in Sec-
tion 3. However, it is possible to build up a number of drum boilers from
these components. They are also considered to be invariant to an extent
qualifying them to be quite generally modelled.

A number of investigators have considered the modelling of drum-type
boilers. The approaches taken in the papers differ quite considerably.
The main reason for this is that the ultimate goal of the models.are not
the same. Also the investigators have treated drum boilers of different
types. For example, the boilers are oil- or coalfired, the number of
superheaters and turbines vary and the circulation in drum system is
forced or natural. A detailed comparison of the models presented will
not be given. However, some characteristics such as model order and
comparison to field measurements are treated.

An early attempt to model a complete drum-~type boiler was made by
Chien et al.[10]. The dynamics of the drum system and one superheater
is included which gives a ninth order model, Model responses are not
compared to field measurements. In [ 357 the model used is essentially
that of Chien et al. The approach taken in Section 3 to the modelling of
the drum system is partly adopted from [10].

The boiler considered in [12] is a power station boiler of 200 MW

equipped with a reheater, controlled circulation and coal-firing. Model
order is very high. The validity of the model is evaluated using measure-
ments in [117. The duration of field experiments is 300 seconds. This
appears to be a too short time interval for a valid comparison. The

model of [127] was elaborated in [43] using higher order approximations

of distributed parameter processes such as the superheaters. Model
responses was evaluated using recordings of boiler responses during

300 seconds. An improvement was established but model order is increased.

Three models for different, boilers have been developed by Anderson et al,
{47, [32]. Model order range from twenty to thirty. In [4] the responses
to a step change in control valve position are compared to model responses.



Recently a fourteenth order model was published in [33], [34]. These
reports give both the responses of the linearized as well as the non-
linear models. Step responses of both models to main input variables
such as fuel flow and control valve position are compared to field
measurements. The agreement is in general good especially when com~-
paring measurements and responses of the nonlinear model.

The model derived in [457] is designed especially for the control task
under consideration. The validity is thus limited. A detailed treatment
of different boiler subprocesses is found in [ 387.

The superheater is a significant component of the boiler-turbine unit.
The dynamics of heat exchanges has been treated in e.g. [3], [19],
[427, [297. The first three papers discuss the influence and importance
of different approximations.

The model presented in this chapter is based on two earlier published
reports, [17] and [557. The later one is a master thesis supervised
by the author. In Section 2 the structure of the model computer programme
is discussed. All equations which constitute the boiler model are given in
Section 3. Different drum system models are derived in Section 4. A
comparison of drum system responses shows that a fifth order model is
suitable. Section 5 gives an application to the Oresundsverket power plant
unit P16-G16. The final choice of model order is nine. This choice was
based on a comparison to a fifteenth order model where superheaters
were approximated by higher order dynamical systems,

L4

2. Model Programme and Subroutines

The process is divided into a number of components and a model is
derived for each of these. The components are linked up with a number
of internal variables which are eliminated when the complete model is
established. The final model is on state space form S(A, B, C, D).

2.1 Model Main Programme

There are two different approaches to the model building. The computer
subroutines of the models can generate either a state space model or a
set of unreduced linearized equations, In the first case the reduction
procedure is applied inside each subroutine and the main programme is




used to build the complete A, B, C and D matrices from the component
matrices. In the second case the main programme connects the compo-
nent parts to a linearized set of equations for the entire process. Finally,
the reduction to state space form is made. It was decided to use the later
approach mainly because the connecting procedure appeared simpler than
in the first approach. A drawback is that the system to be reduced is
quite large. This can give rise to numerical difficulties.

It was found that for all components of the boiler except the drum system
the alternative and simpler reduction method could be used. The drum
system required the general method. However, as will be shown later

in this chapter, a reduced order drum system model was satisfactory
and this model could be reduced using the simpler method., Thus all
model subroutines shall generate two matrices X and § defined by

s
Aiz1 =0 (2.1a)
agizz =0 (2.1b)
where
- [ l
'in =(E, | F, G | H) (2.2)
I |
= (P S .
4 ST T Tt (2.3)
and
(%
X 4
Zy = (2.4)
"
L v
4 —X—\
X
z, = (2.5)
b

Eqgs. (2.1a) and (2.1b) are those discussed in Section 2 which apply to
the i:th process component.

For each component we thus define input, output, internal and state
variables. As stated before these variables do not need to be processes
input and output variables but only input or output variables for another
component and used to link components together,



It was further decided that all communication between and with model
subroutines should be executed through the formal parameters of the
computer subroutines.

The structure of the model main programme is now roughly given.

All input statements are executed by the main programme. The body

will consist of a string of calls to model subroutines and manipulations

with the returned 2, and @Zl matrices in order to establish the A’ and
matrices for the entire process. Finally, the reduction subroutine

is called twice to give the final model S(A, B, C,D).

2.2 Model Subroutines

The task for the model subroutines has been limited to produce the
matrices A’i and Q’i. This means that the computations are restricted

to the calculation of steady state values, values of introduced proportional
constants such as heat transfer coefficients and finally the coefficients

of the linearized set of equations. Only in the drum system subroutine
there is a more complex calculation of steady state values. The lineariza=
tion of equations is made analytically. No numerical differentiation has
thus been used in model subroutines.

Input data are physical dimensions, steady state steam conditions and
so forth, The data are arranged in vectors each containing similar
information. As an example of the organization of a model subroutine
the listing of the subroutine DR5M (Drum system 5:th order model) is
given in Appendix A, The subroutine is quite self-explanatory but, of
course, the understanding is simplified by also using the text presented
under Drum System in Section 3.

3. Derivation of Equations

To meet the request for low order and wide applicability of the model
the following initial assumptions are made

(a) partial differential equations are approximated by ordinary
differential equations,

(b) the flow of combustion gases is not considered but the heat input
to risers and superheaters is taken to be a constant times fuel flow,



(c) steam flow is considered incompressible,

(d) dynamics of actuators and sensors are not included.

An alternative to assumption (b) could be to neglect the dynamics of
combustion gases but include a calculation of the temperature distribution
along the boiler. The heat transfer to risers and superheaters would then
depend on both gas and wall temperature. This is a more realistic
assumption than the one made in (b) which implies the dependence on wall
temperature only.

A static treatment of both the flows of combustion gases and steam is
fully justified. The dominant time constants can be estimated to lie in
the interval 1 - 10 seconds. Boiler dominant time constants is of the

magnitude of several hundreds of seconds.

The last assumption or simplification is caused by the aim for generality.
This part of the equipment differs greatly between boilers. In most cases
the dynamic properties of actuators for small changes can be considered
fast and treated as static. Sensors such as thermocouples could
contribute to the dynamic behaviour of the entire plant.

The thermal state equations, which are used, are linearized equations,
where the coefficients for certain steady state conditions may be found
in e.g. steam tables. The heat transfer rates are empirical relations
found in literature.

A list of symbols used in this chapter is found in Appendix D.

v

3.1 Drum System

The process configuration is shown in Fig 3.1. Into the drum enter the
feedwater flow and the steam-water mixture from the risers. The flows
which leave the drum are the output steam flow and the water flow into
the downcomers. A heat flow is supplied to the risers. The process
input variables are

- feedwater flow,

- feedwater enthalpy,
- heat flow to risers,
-  steam outlet flow,

and the process output variables are



~ drum pressure,
- drum liquid level.

Notice that the fuel flow is not the heat input variable. If the fuel is oil
there is approximately a static relation between the fuel flow and the heat
flow to the risers. The heat may be transferred by radiation or convection
or both, The proportions in which the heat is transferred are different in
different boilers. The fuel-heat flow relation is then also different.

feedwater flow steam flow

X

heat flow [
—
- downcomer
— tubes
—>
Fig 3.1 - The considered drum-~downcomer-riser loop of a drum

boiler.

i

We have taken the steam flow as an input to the drum system. When the
drum system is connected with the other boiler components the control
valve position will replace steam flow as an input variable, The control
valve has the steam flow as an output variable,

The process includes some very intricate physical phenomena. The risers
contain a boiling liquid and thus both a vapor phase and a liquid phase

are present. The amount of each phase changes along the risers. The

two phases have different densities and move with different velocities.
There is a heat exchange between the vapor and the liquid. The tempe-~
rature of the risers is not the same everywhere, The heat flow to the
risers and the refrigeration supplied by the fluid are different in different
parts of the riser banks,



The temperature of the feedwater is normally less than the saturation
temperature. The temperature difference causes vapor {o condense

and effect the bubble formation in the drum. Thus both the pressure and
the liquid level are influenced. The influence on these two variables will,
however, depend on the way in which the feedwater is inserted into the
drum.

An accurate description of the dynamic behaviour of such processes
becomes very complex. The process is a distributed system. Some of
the phenomena are difficult to express in mathematical terms. If the
ambition is to derive a model of low order some simplifying assumptions
must be applied.

Two possible approaches are recognized. The simplest way is to regard
the drum system as an energy reservoir where the energy content is go-
verned only by the drum pressure. The drum level is only influenced

by feedwater and output steam flow, Applying these ideas two differential
equations are sufficient. The drawback of this approach is that the non -
minimum phase characteristics of drum level responses are not modelled,
The second way then is to make an attempt to include this phenomenon. To
do so,it is necessary to consider the behaviour of steam bubbles in risers
and drum liquid. Since non-minimum phase behaviour is essential from

a control point of view the later approach will be used here.

The drum system is divided into three components which are treated
separately

-  the downcomers,
- the drum, -«
-  the risers.

In addition to the general assumptions stated previously we assume

- downcomers
{a) no boiling occur in the downcomers,

(b) liquid temperature is the same as drum liquid temperature,

= drum
(c) circulation is natural,

1
(d) there is no temperature gradient in the liquid and the vapor
phase in the drum,



(e) vapor phase is always of saturation state,

(f) feedwater is entered into the drum in such a way that the
liquid phase becomes slightly undercooled,

(8) condensation or evaporation rate in the drum is proportional
to the difference between liquid temperature and the saturation
temperature,

(h) feedwater temperature does not vary,

- risers

(i) there is no velocity difference between the vapor and the liquid
phases in the risers,

(j) steam quality is linearly distributed along the risers,

(k) there is always saturation state in the risers and the same
saturation state along the risers.

If the drum pressure is decreasing fast enough, boiling will occur in the
downcomers. The circulation flow decreases and the refrigeration of

the riser tubes may become insufficient, The result is a process failure.
If we want to take this phenomenon into account we have to describe the
behaviour of the downcomers quite accurately [31]. No attempt to model
constraints on the time derivative of the drum pressure has been made,

The treatment of the circulation as natural is an example of a simplifying
.assumption, Forced circulation can easily be handled by an additional
term in the equations. Both possibilities might be included in the model
subroutine and the choice governed by input data. Assumptions (d) and

(e) are physically well-grounded since the turbulence in the drum is
considerable. Assumptions (f) and (g) allow us to describe the mass
transportation phenomena caused by the subcooled feedwater. These
assumptions are due to Chien and collaborators [107]. The liquid level
variations due to the bubble formation is taken into account through the
steam quality variable. This will introduce a non-minimum phase charac-
teristic for the drum level dynamics. The feedwater temperature varia-
tions due to small load disturbances are assumed to be neglectable. This
process input is thus set equal to a constant,

Assumptions (i) and (j) are coupled to each other. In the real process
there is a velocity difference between the vapor and liquid phase, If we
assume constant steam quality along the riser, it will de difficult to reach
the true value of the steam quality at the outlet of the risers with a rea-




sonable circulation rate in the downcomer-riser loop. Assumption (j) will
supply a solutivn to this problem and is physically motivated. If a mean
value of the steam quality is used in the calculations, we will get two times
this value at the outlet of the risers. If we want to take the velocity diffe-
rence explicitly into account we have to introduce the so called slip factor.
Thig is the standard technique in the theory of two-phase flow and is found
ine.g. [6], [41].

Downcomers
The component is shown in Fig 3.2 and the variables used are indicated.

Since the fluid in the downcomers is water, it can be considered in-
compressible and since there is no heat exchange with the environment,
we only have to apply a momentum equation. Notice, that the water in
the downcomers instantaneously assume the temperature of the water
in the drum. The downcomers terminate in a mud drum where a certain
amount of the kinetic energy is dissipated due to turbulence. The down-
comers are several parallel coupled tubes and may be treated as one
tube. The Bernoulli equations for nonstationary flow without friction
yields

pmd o} cW 0
J‘ QP-—F Igdz+f c de + S:1-9-dz=0 (3.1)
pw L 0 L dt
Pg di d1

¥

The integration shall be performed along a streamline A with the co-ordi-
nate z. The integration is possible since the variables py,, ¢ and dec /dt
can be considered as constant or zero throughout the streamline A,
Integrating and adding correction terms of friction we get

1 d
PgPmd g~ {fd 5. " Ca1tlaa”t 1}

d
mi‘l Ldl dm
w
9 - prdl * 8A, dt (3.2)
2g A

d OW




The velocity Cy 1s replaced with the mass flow m,.. The proportional
constant fq also takes energy losses in tube bends into account,

drum
P4
c
L w
di My,
z Tw
Sw
Pmd

Fig 3.2 -~ Simplified diagram of the downcomer,

Risers

In Fig 3.3 the component under consideration is shown and variables
used are indicated. Again the parallel coupled tubes are treated as one
tube., We have assumed that the steam quality is distributed along the ri-
-ser. Hence the velocity, the density and the enthalpy of the steam water
mixture are dependent of the length co-ordinate z, In the equations,
according to the assumptions, we must use some mean values of these
variables.

Fig 3.3 - Simplified diagram of the risers.



Fig 3.4 shows the simplified riser and the steam distribution. Let the
steam distribution be

x = f(z) } (3.3)
Z e
pg T
Zg
H x=f(z)
Fig 3.4 - The steam quality distribution along the riser.

Then the mean value X, of the steam quality is defined as

Z
o

1
X, =7 J‘ f(z)dz (3.4)
00

In every section, of the riser we have

T

X 1=x
== 4 — 3.5
o 0 3.9)

If we define the mean value of the density of the steam-water mixture
as the mean value of the steam quality above and use equations (3. 3)
and (3.5) we get

=-1— f (3.6)
z, Py +f(Z)(p -p)

o

i
Since we assumed that there always is the same saturation state along
the risers, the densities p,, and p  are independent of the co~ordinate

Z,



Further we have in every section of the riser

= + -h 3.7
h hws (hss ws)X 3.7
and thus the mean value ig
z
o
1
By =h -+ . i b b )f()dz (3.8)

The enthalpies hWS and hSs are independent of the co-ordinate z
according to the assumptions.

Assume a linear distribution, Hence

f(z) =Kz
and
Kzo
mT 2 onzxm (3.9)
o0 p.~0
Dm:?x-“z_s_——) In <1+2—1V-——Sx ) (3.10)
m'Pw s Ps m
h =h +hm -h )x (3.11)
m ws ss ws' m
The momentum equation yields
pd Lrl % Lrl
Jl—dﬂ-+ jgdz+ J‘cdc+ I Mdzzo (3.12)
p o(z) o) JEe ) dt
md w

where the integration is taken along the streamline B in Fig 3.3. As indi-
cated in the equation (3.12) the density p and the acceleration de/dt

are dependent of the variable z. This means that equation (3,12) cannot
be directly integrated. However, using the mean value theorem for in-



tegrals we get

Pg Y
J' —99— L ilf dp; O0<z, <L (3.13)
o ) - 1=
pmd
rl de(z,) Lrl
dec(z) _ 2 J‘ .
2[ at 9= Ta | dz; 0zl (3.19)

The points z; and z, cannot be determined considering the assumptions
made and will vary with changing operating conditions of the boiler. Then
we have to guess the values of these variables. A simplifying assumption

is

-—1; L (3.15)
o(z) o,
and
de(z,) de
2 0
dt ~ dt (3.16)

The preserved fraction of the kinetic energy in the mud drum is set
equal to £. £ is less than one and greater than zero. Integrating and
adding correction terms for energy losses we get:

2 2
1 Lr mopm mw
o] _—— — +
®PmaPd g (frDr+1> NCRE T L on?
80, &0,
n? 2 . o
o]
+L, 5 e L 5 (52)
2A"gp 2A.0 Po



The velocities Cmds Gy and ¢, are replaced with the corresponding
mass flows. The entrance and exit energy losses are set dependent of
the entrance and exit velocities, respectively. The continuity equation
becomes:

d |

m -m = ArLrl T P (3.18)
and the energy equation
d
Qr + mwhw - XOmOhSS - (l—xo)mohWS = ArLrl T (ph)Irl (3.19)

Terms due to the rate of change of the kinetic energy are neglected
since they are small compared to the heat energy. It is very difficult
to compute the exact mean value d(ph)/dt along the riser, bacause p
depends on pressure, flow etc. We use the approximation

d d
dt (oh) m dt pJrnhm

where py, and hp, are the mean values of the density and the enthalpy
respectively. The linearized equation then contains the time derivative
of py, which is eliminated using the mass balance across the riser.

The heat flow to the risers Q. is taken as a process input variable.
'The energy equation applied to the riser gives
d

Qg B QI‘ B Mror dt Tr (3.20)

where T, is the mean temperature of the riser tubes. In literature
e.g. [4] the following empirical formula is often used to describe
the heat transportation from the riser tube walls to the steam water
mixture

3
Q, =k (T -T) (3.21)
The proportional constant kr is calculated from steady state values.

1

i



Drum

Fig 3.5 gives the simplified diagram of the drum. The two phases, the
vapor phase and the liquid phase, in the drum are treated separately.
Energy and continuity equations are applied to the liquid phase and
continuity equation to the vapor phase. The energy equation of the vapor
phase is then automatically satisfied. Thus we get the following equations
using variable notations indicated in Fig 3.5

d
(l—zxm)hwsmo " hfwmfw h hwmw - hssme Todt (Mwhw) (3.22)
1-2 +tm, - -m = d. M 3.23
(1-2x Jm, fw o Cw e dt T w (3.23)
and
- = = 3.
ZXmmo + m -mg (V Ps ) (3. 24)

According to the assumptions the evaporation or condensation rate in
the drum is

m, =k (T -T) (3. 25)

In equations (3.22) and (3. 24) two new variables, the mass of the liquid
phase in the drum Mw and the volume of the vapor phase in the drum Vg
are introduced. Under small disturbances, these variables are approxi-
mately proportional to the drum system output variable, the drum level.
The proportional constants are easily derived. This is used when the
linearized set of equations are derived, However, in general we have

V=V () (3. 26)
M, = M_() (3.27)

The functions are nonlinear due to the geometry of the drum.




Fig 3.5 - The simplified drum diagram.

Thermal state equations

The thermal state of the steam-water mixture in the riser and of the
vapor phase in the drum, is the saturation state. Then, there is only
one independent thermal variable. Choose the drum pressure as the
independent variable. Hence

T =T (Py) (3.28)
Py =0,y (3. 29)
ho = h Py (3. 30)
hWS = hws(pd) 3.31)

The functions are nonlinear, The liquid phase in the drum is not in
saturation state but is slightly undercooled. The dependence of the
pressure of the enthalpy of the liquid phase is negligible and thus

hw = hW(TW) (3.32)

where hw(TW) is a nonlinear function,



Steady state values

The set of equations which describes the drum system dynamic behaviour

is given by the equations (3.2), (3.5), (3.9) through (3.11) and (3.17)
through (3. 32). If we include the process input variables in the m-vector

u and the process output variables in the k-vector y and all other variables
in the 2=vector v, a compact notation is

f(v,v,u) =0 (3. 33a)
g(y,v,u) =0 (3. 33b)

where f is an ¢-vector and g a k~vector whose components are non-
linear functions of the indicated variables. The set of equations is consistent
if the dimensions of the vectors given above are the true dimensions, If

all time derivatives are set equal to zero we get

f(0,v,u) =0 (3. 34a)
gly,v,uy =0 (8. 34b)

If a solution to this set of nonlinear equations exists, this solution yields
the steady state values of the variables v and y. Computer programmes
which solve set of nonlinear equations are available. However, in this
study, such a general approach to the problem has not been used since
the structure of the equations is quite simple.

Except for construction parameters, such as the size of the drum, the
length of tubes and the empirical correction constants, the steady state
values of the following variables are known

-~ the heat input rate 6;_

- the feedwater enthalpy -};w

=  the drum pressure P4
-  the temperature of the riser tubes -’i‘:

- the temperature of the liquid phase in the drum -’I;

The last two variables are not process input variables or otherwise
given. Thus, they have to e guessed or measured on the actual physical
process. However, usually it is possible to get a fairly good estimate of
these variables.



The drum pressure determines all other variables associated with the
fluid in saturation state. Hence we know the steady state values of

-  the temperature E-s

-  the density of the vapor phase

Pq
the density of the liquid phase ;;

the enthalpy of the vapor phase g

the enthalpy of the liquid phase hWS
Equation (3.10) can be approximated with a straight line

Om = Clxm + Cz (3' 35)

The line is adjusted to fit as good as possible in the interval, in which
the mean value of the steam quality is supposed to vary. This approxima-
tion is used when the steady-state value of the mean value of the steam
quality is computed. Manually the equations (3.2), (3.5), (3.17), (3. 18),
(3.19) and (3. 35), with time derivatives set equal to zero, are reduced

to a third order polynomial in the mean value of the steam quality. Using
the real positive root of the polynomial, the original set of equations

is solved for the other variables. Hence we know the steady state values
of the variables

-~  the méan value of the steam quality X

~- the mean value of the density of the steam-water mixture p_n:
-  the outlet density of the steam-water mixture a

-  the mean value of the enthalpy of the steam-water mixture -h;
-  the circulation mass flow -m—o

Equation (3. 21) gives the heat transfer coefficient

Q ,
k = —— — (3. 36)



The equations (3.22), (3.23), (3.24) and (3. 25) with time derivatives
set equal to zero give the evaporation constant

m h -h h -
W

(3.37)

Now equations (3.25), (3.24) and (3, 23) determines the steady state
values of

=  the evaporation mass flow Ee

= the outlet steam flow .n:.ls

= the feedwater flow m fw

Linearized set of equations

The perturbed variables, that is, the difference between the actual
value and the steady state value of the variables, are denoted as the
variables themselves. The linearized set of thermal state equations
become

T =k Dy (3.38)
o, =kp, (3.39)
h = kspd! (3.40)

= khpd (3.41)

where the proportional constants are obtained from a steam table. The
linearized versions of equations (3,26) and (3. 27) are

Vs == Ay (3.42)
MW = Aowy (3.43)

Hence the geometry of the drum is neglected. Using the above equations
the left=hand variables aré eliminated from the other equations. It is
further relatively simple to eliminate the outlet density p, and one of
the variables pp, and X, using the linearized versions of the equations



(3.5) and (3.10). From a computational point of view the variables o,
and Xy, are equivalent. However, the most informativa variable is the
mean value of the steam quality and we choose to keep this variable.
The pressure difference in the two momentum equations (3. 2) and (3.17)
is also eliminated. The linearized system then is

albd + az)'cm tagm +am =0 (3. 44)
a51'n0 * aanw + 3'7pd * aBXm * a9mo * 8’10mw =0 (3.45)
By1Pg ¥ By oKy T AP T A Ty T ARy, T ATt
+at1>mw+a18 Qr:0 (3. 46)
19dera T +a Q (3.47)
azzTr TRy 12,49, =0 (3.48)
Bl * ATy, T Ay Fay T Fayx Fagm
231 F 2gaMy T 23g™e T 0 (3-49)
Agu¥ + g%y *AggMpy, T Ag M Faggm tagem =0 (3.50)
a40f)d 41y+a4x +a43ms+a44mo+a45me=0 (3.51)
6pd+a T +a48me=0 (3.52)

The first three equations are obtained by using the pairs (3.18), (3.10),
and (3.2), (3.17), and (3.18), (3.19). The last six we get from eqgs.
(3.21), (3.20), (3.22), (3.23), (3.24) and (3. 25) respectively. The coeffi-
cients are found in Appendix B expressed as functions of the steady state
values of the variables and of the drum system construction parameters.
Before the momentum equation for the riser is linearized, the accele-
ration term is simplified by setting d/dt(m,/0) =1/p d/dt m.

Rewriting this set of linear equations on the form of eq. (3.4a) in
Chapter 2 we get

E%—t- +Fv+Gg_o (3.53)

where E, F and G are matrices of proper order and



T

= 3.54
v (pyTW Tr Xm m0 mw me Qr) ( )
T

u = (Qg me. ms) (3. 55)

The set of equations for the drum contains seven derivatives of physical
variables. It is, however, easy to see from the structure of the matrix
E that the number of state variables for the drum system does not
exceed six. It is then necessary to use the general approach to the model
building problem presented in Chapter 2. In fact these equations were
used as an example in Chapter 2.

The properties of this model will be discussed in Section 4.

3.2 Superheater

The number of papers treating different kinds of heat exchangers is
indeed very large. Several investigators (3], [19], [427. have also
compared different types of models which represent different degree

of approximation. Generally,it can be said that the developed equations
represent the dynamics of heat exchangers accurately. The model,
however, becomes very complex and we end up with nonlinear partial
differential equations. It is required e.g. that the dependence of heat
transfer coefficients on physical variables such as flow and temperatures
is known a priori.

The standard technique of approximation is to replace the partial diffe-
rential equations with a number of ordinary differential equations. It can
be shown that the approximation error is decreased with increased number
of ordinary equations used.

Here this standard technique will be applied to a superheater. The origi-
nal nonlinear equations will be linearized and the final model is a linear
model.

To obtain a flexible model the number of ordinary differential equations
used to approximate the superheater is free. That is, the model computer
subroutine will have this number as an input variable. The physical
motivation to this approach is that the size of different superheaters of

the boiler vary considerably. Tt is also important to be able to investigate
the influence of the choice of division number on the dynamics of the entire
boiler.



Model equations

A schematic picture of the superheater is shown in Fig 3.6 where also
the used notations are indicated.

Combustion gas flow

¢

Qgm
: i 74,7724 Tme€mMm
___._{__.T'__.__.J_ :>

D 4z | Steam flow rr‘ns
z s

\
x
\______

Fig 3.6 - A one tupe representation of a superheater.

The superheater is assumed to be a heat exchanger of the cross flow type.

The tubes are represented by one tube with constant dimensions through-

out the whole length. The standard simplifying assumptions now are

(a) there is no heat transportation in the axial direction neither in the
tube nor in the steam,

(b) radial distributions of variables are averaged and the only space
variable is z measured in the flow direction,

(c) heat conductivity of tube material is infinite,

(d) flow is free from losses,

(e) flow is incompressible,

A crude estimate of the time constant associated with the compressibility
of the steam givesifigures of the order of seconds. Hence assumption (e)

is considered justified. Applying an energy balance to the element of
length dz in Fig 3.6 we get for the tube



oT
m

dzdt + dzdt
ngdzdt Qms zdt CmMm - z
and for the steam
ahs ahs
= — + —_—
Qmsdzdt m >z dzdt MS - dzdt
or
3T
ng B Qms * CmMm ot (3.56)
ahs ahs
= — —
Qms M3z s ot (3.57)
where
ng heat transfer rate from gas to tube [kJ/s m]
Qms heat transfer rate from tube to steam [kJ/s m]
m steam flow [kg/s]

S

Ms’ Mm mass of steam and tube respectively [kg/m]

¢

c specific heat of tube material [kJ/kg ° C]
hS enthalpy of steam [kJ/kg]
Tm temperature of tube material

In order to simplify the superheater model further, a rough estimate

of the dynamics of heat capacity of the steam is made, Again the time
constant is about one second for typical cases. Consequently we put
ahs/at equal to zero.

The spatial derivative of ed. (3.57) can be eliminated using a difference
approximation



» 2 TH

g; - Az
where xp and x; denote the value of the variable x at the end and

beginning of a finite section of length Az. The value of X can be chosen
as any point in the interval Az. The most obvious choices are

X = xl(t)
X = xz(t)
x =5 (%, +%,())

referred to as forward, backward and central difference approximations
respectively.

It is easily shown that the forward difference method gives an unstable
system. The central difference method can, uncarefully applied, give
responses with no physical interpretation. The most satisfactory method
is the backward difference method and is adopted here.

The superheater is divided into N sections as shown in Fig 3.7. Index n
is used to refer variables to section n. As a consequence of this
approximation, all variables are assumed to be constant within each sec-
tion and equal to the output value. The equations governing heat dynamics
for section n then are

Qgmn

Mmn, Tmn

Q msn
Msn

1st nth Nth

Fig 3.7 = The superheater divided into N sections.
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dTmn
ngn - Qmsn N CmMm dt (3.58)

Q =m (h (3.59)

-h
msn s sn s, n-l)

The pressure drop over a superheater is essential and cannot be neglected.
For each section of the superheater, the pressure drop is lumped to the
end of the section. The assumptions reduce the momentum equation to

2
Ap =k m (3.60)

The constant k is first determined for the entire superheater. Assuming
that the pressure drop is linearly distributed over the superheater, the
proportional coefficient for each section is given as kpl divided by the
number of sections.

It was stated earlier in this chapter that heat transfer rates from com-
bustion gases to risers and superheaters were taken to be proportional

to the fuel flow. This certainly limits the validity range of the model.
Depending on the type of heat transfer, the load dependent characteristics
of the superheater will vary. This is schematically shown in Fig 3.8.

5 |
R
4 n
c
o
S .
el convection
oo
¥
radiation
—_—
7
Load

Fig 3.8 ~- Heat transfer characteristics of a superheater,

i



For small variations around the steady state value, the heat transfer
i 1
rate ngn approximately equals

= . 1
ngn kfmf (3.61)

The coefficient k; is determined from steady state values.

The heat transfer rate Qmsn is supposed to follow the power law of
Nussel

0.8
= - 3.62
Qmsn kspms (Tmn Tsn) ( )

This assumption is frequently [4], [38] used in literature. The constant
ksp is computed from steady state values.

Thermal state equations

In eq. (3.59) the enthalpy of steam at the inlet, hS n—1° and the outlet,
hsn’ of the n:th section of the superheater is used. For superheated steam,
the enthalphy depends both on pressure and temperature., The nonlinear
functions are written as

p (3.63)

=h , T
s,n=1 s,n-1"g n-1 S,n—l)

hsn - hsn (psn’ Tsn) (3.64)

¥

Steady state values

The superheater is a typical process where a static model can be used
to a large extent. The static model can supply the steady state values

of the temperature distribution of steam and the temperature distribution
of tube material along the superheater. Such a model can also give the
value of the constant ke since the heat transfer rates are known.

The value of the steam flow, which is required for the computations,
is calculated in the drum system subroutine and transferred via input data.

1
!




Linearized set of equations

Linearizing eqs. (3.58) through (3.64), a set of equations describing
the n:th section of the superheater is obtained. In the thermal state
equations, two constants are introduced.

c - (22 (3.65)
P (oT
p = constant
_ |3k
°T= | 3p (3. 66)

T = constant

These proportional constants are easily obtained from steam tables at
the considered stationary point.

Eliminating ngn’ Qmsn and pSn we get

a T -am,+am +a T +a
5 4" mn

1 mn 2™ %3 Tn=0 (3.67)

5

am +a T +a T +a T
s 7 mn 8 s

-+ =
6 n " 2Ts n1 " ®10Ps n-1 =0 (3.68)

The coefficients a. through a

1 are given in Appendix B.

10
Egs. (3.67) and (3.68) constitute the model equations for the n:th

section, Since the number of sections is an input variable to the sub-
routine a general expression for the A’i matrix has to be developed. If
K_z =0
i
where

= T e s T .9
z ml mN Tml TmN Mg Mg TsO T

cor TPy ...’pN] (3.69)

then the elements a,, of the matrix ')&i could be expressed generally,
see [55].




The only derivative, which appears in eqs. (3. 67) and (3.68), is that
of the tube temperature in section n. The order of the complete linear
model will then equal the division number N. If the state space form
5(A, B, C, D) of the superheater model is wanted oniy the simpler alter-
native model building approach has to be used.

The model properties can now be summarized as follows. The only dyna-
mics considered is the heat capacity of tube walls. The stationary gain
will show good agreement with the real one within the validity range of
the linearized thermal state equations. The high frequency behaviour
will improve with increased division number N. For details of model
properties see e.g. [3].

3.3 Attemperator

A spray type attemperator is considered. The cooling of the steam is
simply achieved by injecting water into the steam flow. The volume
and material masses of such an attemperator are small, Therefore all
dynamics of the attemperator is neglected. Using notations indicated in
Fig 3.9 energy, mass and momentum equations give

777777777 7777, A Steam flow

) 2] =)

Vs ZZzzzZ] WZZzzzzzzZ7zz s

hs hs2
' tsy ts2
ps] T p52
Attemperator flow m
he

Fig 3.9 =~ A schematic diagram of a spray attemperator.

mslhsl * mchc - ms2hsz (3.70)

m._+m =m (3.71)

(3.72)



The pressure drop is lumped to the end of the attemperator. The drop
is small and if it is desirable to have it zero, the constant kp2 is sct
to zero.

The thermal equations required are

h . ,=h

1~ Pg1 @ Ty (3.73)

h_=h

s2 52(ps2’ Ts2) (3.74)

The enthalphy of the coolant is assumed to be constant. Often this is
justified since the water supplied to the attemperators is feedwater taken
at the outlet of the economiser,

Steady state values of flows and enthalpies are known. Steam flow is,
as before, computed in the drum system subroutine. The constant kp2

can then be calculated.

Linearizing eqs. (3.70) through (3.74) and eliminating enthalpy
variables we get

T + +a.m _+ + +
a T, +tap,tam, *aT +apy

taghag *a,m, = 0 (3.795)

+ =
agMs1 gy T a10Me 0 (3.76)
81Pgy * 2P ¥ A1gMgn = O (3.77)

The coefficients are given in Appendix B. The inti‘d:duced specific
heat constants are defined as in egs. (3.65) and (3. 66).

The generated Q’i matrix is defined by

Q’,z =0
i
where 3
T
z = (T (3.78)

T
s2 ps2 msl sl psl msz mc)




3.4 Control Valve

Since the pressure ratio between inlet and outlet of the control valve may
be above the critical ratio both the subcritical and overcritical cases

are considered. In both cases, the control valve is assumed to be an
ideal restriction which preserves the enthalpy of the steam. The approach
taken is adopted from [ 387,

Subcritical case

The control valve area AV is a function of the rod position u
AV = f(u) (3.79)

The function f has to be determined from construction data or
measurements,

The flow through the valve is supposed to be governed by

2 2
-k -
My v(psl pSZ)AV (3.80)

where ky is a constant and Ay, is the control valve area, The indices
1 and 2 refer variables to the inlet and the outlet respectively.

Since enthalpy is preserved we have

hsl<ps1’ Tsl) N hsz(p52’ TSZ) (3.81)

The linearized set of equations for the control valve is, after the
elimination of AV

+ + =
ms alu+a2psl a3p82 0 (3.82)

+ + -+ =
8 Tgg T 2P Tagp o +a, T =0 (3.83)

Again coefficients are found in Appendix B. The constant ay is computed
from the calibration curve. Eq. (3. 81) above is used to compute the
steam temperature at the outlet of the valve.
The matrix ., valid for the control valve in the subcritical case, is

. 1 .
defined by the Telation



S
Z =
i

where

T
- 3.84
z <ms TSZ “ psl ps2 rI‘sl) (3.84)

Overcritical case

In the overcritical case, steam flow will only depend on inlet pressure,
that is

m =k AD (3. 85)
or linearized and using eq. (3.79) to eliminate AV

+ + =
mS a8u agpsl 0 (3. 86)

Together with eq. (3.83) the above equation coimpletes the model. The
matrix Qi is defined using the same variable z as in the previous
case eq. (3.84).

3.5 Turbine

Large power plants are usually equipped with a reheater thus requiring
two turbine units. The expansion of the steam before the reheater takes
place in the high pressure turbine (H.P. turbine) and after the rehéater
in the low pressure turbine (L. P. turbine). Two different models will
be derived corresponding to two different approximations of the steam
flow through the turbine.

The assumptions guiding the modelling process are

(a) the prime output of the model is active power (as distinguished
from the number of revolutions of the turbine),

(b) turbine dynamics could be neglected,

(c) efficiency of the turbine is constant,

(d) condenser pressure is constant and an equivalent steam mass flow
could be used to simulate the steam taken from turbine stages for
preheating of feedwater.




To be able to model the number of revolutions of the turbine,a model of

the alternator, the transmission lines and the load must be included.

This is beyond the scope of this work. Assumption (b) is based on the
general philosophy that minor dynamical effects are neglected in order

to keep the model as simple as possible. This is also the motivation for
assumptions (c) and (d) which are also believed to be satisfactory accurate.

Both models are based on the fact that active power equals the product

of an equivalent steam flow and the enthalpy drop over the turbine reduced
according to the efficiency of the turbine.

High pressure turbine

The state changes of the steam in the turbine can be visualized in an
enthalpy-entropy diagram (h-s diagram) as in Fig 3.10. For the ideal

pressure constant

SEEN
S

Fig 3.10 = An h~s diagram of steam expansion in H. P. turbine.

turbine,the change of the steam state takes place along the dashed line
1-3. Due to an efficiency less than one the state change will go from
state 1 to state 2. Using indices 1, 2 and 3 to refer variables to state 1,
state 2 and state 3 the following relation is used for active power PHT

P = ms(hsl'rh

HT (3.87)

sz)

where



h  =h

sl s2 nt(hsl_hsii) (3.88)

The constant 7, is the turbine efficiency. If the pressure drop is assumed
to be under the critical one along the steam path in the turbine a good
approximation of the steam flow is given by [447.

2

P P
m_ = C, _‘;S_l 1 - |82 (3.89)
sl psl

To eliminate the dependence of the specific volume vg; a modification
of the ideal gas law could be used [447]. Hence

p .V
—slsl _q (3.90)
T
sl
where
C=vR (3. 91)

The ideal gas law constant R =461.5 J /kgoK and a suitable value of vy
is 0.933,

The thermal state equations necessary are

hsl - hsl(psl’ Tsl) (3.92)
Ss1 = %5151’ Te1) (3.93)
hs3 - hs3(ps2’ Sg3) (3.94)
th - th(psz’ Tsz) (3.95)
s =s (3. 96)

sl s3

Since all steady state temperatures and pressures are known, all
introduced proportional constants can be computed.

When linearizing the thermal state equations, the following constants
are introduced in addition to those given by eq. (3.65) and (3. 66)




3h
cS = 5 (3.97)
° s = constant
3h )
= | 3.98)
s [as (
P p = constant
3s )
dp = { 3T (3.99)
p = constant
d. = [ 28 (3.100)
=13 .
T P T = constant

Eliminating all variables except for T

P and m the
linearized set of equations is

s1’ Pa1 TSZ’ HT

+ -+ = -
Py * 2Py tagTy, vam =0 (3.101)
+ + = .
aSTSZ a6p51 7psz+ a T o1 T agmy 0 (3.102)
+ + T + = 3.103
210Ps1 T 211Psa T 2T g™ 7O (3.103)

Coefficients are given in Appendix B. Again we have a static model and
the matrix Q is determined by defining the z-vector as

= (T Py Ty m) (3.104)

s2 Ps1 Pur Ps

Low pressure turbine

Assuming a pressure drop above the critical one along the steam path,
the steam flow can be modelled as
1
m =g p

ol (3.105)

which is also used in [38]. Except for the steam flow equation, all other
equations are the same as in the previous case. Note, however, that the
condenser pressure is assumed constant which means that in the linearized
set of equations the; variable Py vanishes.



Defining the z-vector as

T

z° = (P m ) (3.106)

LT psl Tsl s

the elements of the Q’i matrix are given by the following set of linear
equations where variables not contained in z are eliminated

+ + = 3.107
alPLT +a2psl aSTsl a4ms 0 (3.107)

+ = . L]
agP i tagm, 0 (3.108)

The derived models are quite general. For the high pressure turbine

the only model restriction is that the steam mass flow is governed by

eq. (3.89). Obviously this model also can be used for a low pressure
turbine if eq. (3.89) is true. In the low pressure turbine model the steam
mass flow is proportional to the inlet pressure. In cases where this
assumption is a relevant approximation and where the counter pressure
is constant it can be applied regardless of the pressure range covered.
The later model can be extended to include a variable counter pressure.

4, Comparison of Drum System Models

It is important that the derived model for the boiler is of as low order
as possible. Inspecting the linearized set of equations given for the drum
system we find ‘seven derivatives of physical variables. In Chapter 2

an application of Theorem 1 showed that the order of the drum system
model was at most six.

4.1 Model Order

Three drum system models of different order will be derived and com=-
pared. The sixth order model results from the equations derived in the
previous section, The fastest modes of this model are those of the down-
comer and riser. This implies the following assumptions to reduce mo-
del order.

1
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(a) neglect the accelaration terms in the Bernoulli equations for
downcomer and riser,

(b) neglect all dynamics of downcomer and riser.

The number of derivatives of physical variables in the models obtained
are five and four respectively. An upper bound of the order is thus found
immediately.

Using the general reduction technique for the sixth order model as
described in Chapter 2 the state space model was obtained as

%=Ax+Bu @.1)
y = Cx (4. 2)

The state variables are-

x, drum pressure [bar]

% drum liquid level [m]

drum liquid mean temperature [°C]
mean. temperature of riser [°C]

x_  mean value of steam quality

5
X 5 a linear combination of mass flow at outlet of riser and
mass flow of downcomer [k g/s]

and the input variables are

u heat input rate to riser [kJ/s]
u, feedwater flow [kg/s]
ug steam outlet flow [kg/s]

The output variables y; and yp equal the first two state variables.

Applying the alternative reduction method to the set of equations
obtained, when agsumptions (a) and (b) are imposed, the model order
is found to equal five and four respectively. The inputs to these models
are the same as for the sixth order model. The state variables for the
fifth order model can be chosen as the first five components of the state



vector given above and for the fourth order model as the first four com-
ponents.

To be able to compare the different models, it is necessary to introduce

a numerical example. Such an example is given below. The eigenvalues

as well as the model responses to step changes of input variables will

be compared. The influence of input data on model properties is discussed.

4.2 Numerical Example

The boiler data used is taken from a thermal power plant boiler. The
maximum steam flow is 350 t/h and the drum pressure is 140 bar. The
energy loss coefficients of flow are calculated from empirical equations
given in literature. The friction coefficients f. and fj can be used to
adjust the steam quality at the outlet of the risers. The feedwater tem-
perature is ~230°C. The heat flow to the risers is calculated from a
heat balance in steady state. Two temperatures have to be guessed, the
drum liquid temperature and the temperature of riser tubes. The riser
temperature is often approximately known. A straight line is manually
fitted to eq. (3.10) in the interval 0.07 < x,, < 0.09. The thermal state
data and proportional constants are taken from steam tables. If the
pressure is changed, we thus have to change thermal state data, propor-
tional constants and the coefficients of the straight line fit,

In this case drum liquid temperature has been guessed to be 326° C which
is about 10°C below the saturation temperature. The mean temperature
of riser is set to 480°C. The factor ¢ is 0.5 and friction coefficients

f. and fy are 0.1 and 0.2 respectively. All other data are boiler
construction data or thermal state data determined by the drum pressure.

Eigenvalues

In Table 4.1 below the eigenvalues of matrix A for the three models
are given. Notable is the unstable mode of all models. The existence
of such a mode is physically motivated.

Consider the drum system as an energy reservoir with stored energy H,
input power P; and output power P0 then an energy balance gives

dH }
& 5o ' *.3)




Ei%en— 4:th order 5:th order 6:th order
vatue model model model
No.
1 0.000 0,000 0.000
-3 -3 =3
2 3.95-10 1.35°10 1,42.10
3 -8.89-10"2 -9.19-1072 -9.19-1072
4 -3.26°107% 1.23-107% -1.22:107
5 ~7.34:1072 -7.40-102
6 -1.58
Table 4.1 - Eigenvalues of the 4:th, 5:th and 6:th order drum

system models.

Input power is a function of fuel flow and power contained in feedwater.
Output power equal steam mass flow times steam enthalpy. Assume
that all inputs that is, fuel flow, feedwater power and steam flow

are kept constant, Linearizing eq. (4.3) we get

d = e
n AH = mSAhS 4.4)

If we assume saturation state in the entire drum system we have
=k
Ahs sApd
AH =k, Ap,

where kg is a negative constant. The sign of the constant ky depends
on the mass of steam and water in the drum system and on how the iron
masses are taken into account. If the influence of iron masses is
neglected, we get for pd =140 har

v

w
— <71 = iti
VS kH positive

where Vgand V., are the volumes of steam and water in the drum
i



system respectively. In this case the total volume of water in downcomer,
riser and drum is 88 m3 and that of steam is 14 m3. The ratio is less
than 7.1 and the mode of eq. (4.4) is unstable. This simple analysis

thus indicates that it is possible to get an unstable model of the drum
system. However, moderate errors when estimating the steam and water
volumes could change stable model dynamics into unstable and conversely.

When the complete model is built, steam mass flow is no longer an input
variable. Other components are coupled to the drum system and the
unstable mode is changed into a stable mode.

Starting with the fifth order model it is possible to give a physical inter-
pretation to some of the eigenvalues. The zero eigenvalue is obviously
associated with the drum liquid level. The unstable mode is the domi=-
nating eigenvalue and generated by the heat capacity of the water, iron
and steam masses. The three remaining eigenvalues are of the same
order of magnitude and it is difficult to separate them. Thus the order
between the fourth and the fifth eigenvalue is arbitrary. The sixth eigen-
value, -1.58, is associated with the mass flow derivatives of the momen-
tum equations. Since the corresponding mode respond rapidly assumption
() is a good approximation,

Between the fifth and sixth order models the first five eigenvalues of

matrix A only differ slightly, Comparing the fourth order model with
the other models there is a more marked difference.

Simulated stepresponses

7

The open loop responses of state variables of the three models to a step
change in the heat input flow, the feedwater flow and the steam outlet

flow are given in Figs 4.1, 4.2 and 4.3, Comparing the responses, we
find an extremely good agreement between the fifth and sixth order models.
We thus conclude that the dynamic behaviour of the model is not strongly
affected by approximation (a). The essential difference between the

fourth and fifth order models is that the non-minimum phase response of
the drum liquid level does not appear in the fourth order model. This
non-minimum phase behaviour is a significant property of the real process.
Thus the steam quality variable, which is a state variable in the fifth or -
der model, takes at least qualitatively the effects of bubble formation in
the riser and the drum into account, If we want to include this effect in

the model, the dynamic beﬁaviour of the riser cannot be neglected. There
seems also to be a considerable difference in gain between the fourth and
sixth order models. The difference is, however, partly due to the diffe-
rence between the unstable mode of the models,
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Parameter variations

A number of drum system models were generated with different input
data. It was found that the factor £ did not influence the value of the
eigenvalues. When the guessed mean temperature of riser tubes was
changed 20°C only a very slight change of the system eigenvalues resulted.
If the drum liquid temperature was raised to a value only 1°C from the
saturation temperature a considerable change of one of the eigenvalues
(No. 4 in the fourth order model) took place. For a difference between
drum liquid temperature and saturation temperature larger than 5°C

it is believed that the estimated liquid temperature is not critical.

4.3 Conclusions

The comparison of drum system models above clearly indicates that for
our purposes the fifth order model is the most satisfactory. Thus this
model will be used when modelling the entire process. The computer
subroutine DR5M is given in Appendix A.

The acceleration terms of the momentum equations for the riser and
downcomer can be neglected, If a non-minimum phase behaviour of drum
liquid level is desirable the dynamics of the risers must be included.
Finally, it was found that model properties did not critically depend on
estimated physical variables,

5. Applicat!ion to Oresundsverket Power Plant

A number of models for different boiler subprocesses have been derived.
To be able to apply these models, the considered power plant first has to
be divided into subprocesses which are recognized. This procedure
requires that the assumptions stated in Section 3 are valid and may also
require additional simplifications.

5.1 Simplified Configuration

In Fig 5.1 a simplified diagram of the Oresundsverket power plant unit
P16-G16 is given, The development of this figure is based on the assump-
tions made in Section 3,




Attemperator valves

Fuel valve

Fig 5.1 - A simplified piant configuration,
1. Drum 8. Attemperator 2
2, Downcomer 9. Superheater 3
3. Riser 10. High pressure turbine
4. Economiser 11, Reheater
5. Superheater 1 12, Low pressure turbine
6. Attemperator 1
7. Superheater 2

The drum system model applies without any further simplification.

The steam path of the boiler between drum and control valve is

divided into two nominally equal paths, There are for example four
attemperator valves instead of the two valves which are indicated.

The two paths are lumped together in the model. Tubes for transporting
steam:to and from the turbines are neglected. The heat transferred to
superheater 1 is not only due to convection but also to radiation. The

heat flows, to the two different parts, have approximately the ratio 4:1.
No model has been developed which can handle both types of heat transfer.
Since the heat transfer by convection is the dominating part, it is assumed
that all heat transfer takes place by convection in superheater 1. Super-
heaters 2, 3 and the reheater are of the standard type and the derived
model can bé used, The attemperator, the control valve and the two
turbines create no problems, Of course, this is not a coincidence but

the choice of model to be developed was naturally guided by the actual
application.

The dynamics of actuators and transmitters were not included when
modelling the boiler-turbine components. In Table 5.1 typical positioning
times are given for the actuators. For small changes positioning times
will be less than ten seconds in all cases. Compared to boiler dynamics,



Actuator for: Position Time
control valve 0 - 100 % 5 sec.
100- 0% 0.4 v
feedwater pumps 0-100% 70 "
fuel valve 0~-100% 25 "
attemperator valve 0-100% 75 "
Table 5.1 -~ Typical positioning times for actuators.

the positioning times are considered small. Transmitter dynamics are
fast, order of magnitude is seconds, except for the thermocouples.

As inputs to the boiler model the flows of fuel, feedwater, coolant
water and the position of control valve will be used. Valves can easily
be included using calibration curves relating rod position to flow,

5.2 Model Order

Accepting the simplified boiler configuration in Fig 5.1 as the basis for
further development, the minimal order of the boiler=~turbine unit s
obtained as follows. The drum system requires five state variables

and the four heat exchanger at least one state variable each. Hence

the minimal order of the complete model is nine, Recalling the properties
of the reduction technique, this figure is only an upper limit. However,

in this case it is also the true order. By dividing the superheaters into
sections, the model order can be increased arbitrarily.

The temperature raise of steam in superheater 1 is considerably larger
than in superheaters 2 and 3. The reheater is also large compared to
superheaters 2 and 3, Then it seems motivated that if a model of higher
order than nine is derived, superheater 1 and the reheater are approximated
more accurately.

It was decided to derive two models. One model of minifmal order and one
model of fifteenth order. The order is increased by @ividing superheater 1
and the reheater into four sections each. The improvement of the complete
model using more accurate approximations of the superheaters can be
judged from a comparison.




5.3 Model Main Programme

The matrices X and & of the equations

N,

Az1 =0

n

=0

Qz,
have to be generated before the reduction programme is called. The
elements of & and Q( are determined by the zy and z, vectors and
the component matrices A. and Qi' This defining and connecting pro-
cedure is made manually and the result is a table for the elements of

X and @ assigning to these elements, an element of an Ki ora Q’l
matrix,

The model subroutines are

DR5M drum system model
SHEAT superheater model

ATTEMP attemperator model
VALVE control valve model

TURBINE turbine models
SPERED reduction subroutine

Moreover, some mathematical subroutines for determining roots of
polynomials and for solving linear equations are needed.

The structure of the main program will be

-~ read input data

= call DR5M

- updata X and 'Q matrices

- call SHEAT the required number of times
- update X and ’Q matrices

- . call ATTEMP, VALVE and TURBINE

.= . update X ‘and %2 matrices

= call REDUCE two times

- print S(A,B,C,D)

The steam mass flow is computed in subroutine DR5M which makes it
necessary to call this routine first. To save core memory space,
matrices A and Q’ are updated after each model subroutine call.



The computational effort required to model the process is small. Typical
execution times for the UNIVAC 1108 computer are

9:th order model 9.5 seconds
15:th order model 12,0 seconds

These figures do not include compilation time and time required for
tape operations.

5,4 Input Data

No static model of the boiler-turbine unit was available. It was then
decided only to produce data for one load point corresponding to the
measurements made at roughly 90 % load.

Masses and lengths of tubes were calculated from data given in design
drawings, Steam temperatures were found in boiler documentation and
measurements made during the acceptance test. At this occasion, the
boiler was equipped with a number of additional thermocouples thus
making it possible to get a more detailed picture of the temperature
distribution. In this way an approximate temperature distribution of super=-
heater 1 was obtained and used in the fifteenth order model. For the
reheater a linear temperature increase was assumed. Temperatures of
tube material have been guessed on the basis of reasonable heat transfer
coefficients, All proportional constants, in the linearized thermal state
equations, are calculated from steam tables. Specific heat constant of
tube matter is assumed to be the same for all materials. Proportional
constants relating heat flow to fuel flow are obtained from steady state
values of two Toad levels around the considered stationary load. Steady
state values of attemperator flows are determined by the temperature
drop across the attemperator since the spray water enthalpy is equal to
feedwater enthalpy. Drum system input data was discussed in the previous
section. The set of input data was checked by a heat balance calculation
for the entire system. The computed value of the required fuel flow was
very close to the measured value. The details of the input data develop-
ment are accounted for in [55].

If the considered stationary point is changed, a new set of input data
should be derived. In this work the same input data will be used to cover
a load interval of about 5 - 10 %. This assumption means great time
savings apd only a minorzerror is introduced.




5.5 Complete Model

The state space model for Oresundsverket power station unit is given by

dx
T = Ax + Bu

y =Cx + Du

6.1)

where the state vector for the ninth order model is

% drum pressure [ bar] W

X, drum liquid level [m]

Xq drum liquid mean temperature [°C] > drum system
X 4 mean temperature of riser °cy

X mean value of steam quality

X, mean tube temperature [°C] superheater 1
x, mean tube temperature [°C] superheater 2
Xg mean tube temperature [° C] superheater 3
Xq mean tube temperature [°C] reheater

and for the fifteenth order model:

X, drum pressure [ bar]

X, drum liquid level [m]

Xq drum liquid mean temperature [°C] ) drum system
x, mean temperature of riser [°C]

X, mean value of steam quality )

X, mean tube temperature 1 [°C] ]

x,7 mean tube temperature 2 re C] }

X, mean tube temperature 3 [°C] superheater 1
X, mean tube temperature 4 [°C] J

X, Mmean tube te’mperature [°cj superheater 2
X,. mean tube temperature [°C] superheater 3

11



x12 mean tube temperature 1 °cy

X, 4 mean tube temperature 2 [°C]

14

x15 mean tube temperature 4 [° C]

reheater

X, . mean tube temperature 3 [°C]

The input variables and output variables are the same in both models.
The input variables are

fuel flow [kg/s] -

uz feedwater flow [kg/s]

ug attemperator flow 1 [kg/s]
u, attemperator flow 2 [kg/s]
u, control valve position [ % ]

and the output variables:

Yy steam temperature before attemperator 1 [°C]
Yy steam temperature after attemperator 1 °c
Yq steam flow before attemperator 1 [kg/s]

Yy steam temperature before attemperator 2 [°C]
Vs steam temperature after attemperator 2 [°C]
Vg Steam flow, before attemperator 2 [kg/s]

Yq steam temperature before control valve [°C]
Vg steam flow before H. P. turbine [kg/s]

Vg steam temperature before reheater [°C]
steam pressure after control valve [ bar]

active power of H. P, turbine [kW]

Y10
Y11
V1o
Y13
Y14

steam temperature after reheater [ °C]
steam pressure before reheater [bar

active power of L. P, ,turbine TkW)




The number of output variables is, in a sense, arbitrary, The output
variables have not been defined as physical variables which are measured
and used for control or display purposes. But significant variables bearing
information of the model were chosen. No state variables were included
since they are already available.

The matrices A, B, C and D for the ninth order model are given in
Appendix C as an example.

Eigenvalues

An estimate of the model dynamics can be gained from the eigenvalues

of the system matrix A. In Table 5. 2 eigenvalues for the ninth and fifteenth
order models are given. The eigenvalues are arranged in two groups con=

taining the real eigenvalues and the complex conjugate pairs of eigenvalues
respectively.

All eigenvalues in the ninth order model are not found in the fifteenth
order model. Preserved are Nos. 1, 3, 8 and 9 which equal eigenvalues
Nos, 1, 7, 14 and 15 in the fifteenth order model. Since the drum system

1 2 9:th order model 1 2 15:th order model
S o S o
g & 2
I Real part Imag. part =i Real part Imag. part
1 | 0.0000 1 0.0000
2 |-2.29.107° 2 -2.65-107°
3 |-3.44.1072 3 -1,82:10"2
-3 -3 -2
4,5 | -4.82:10 £2,91:10 4 -1.98°10
- - -2
6,7 | -1,56+10 2| 1.45.1072 5 -2,77-10
-2 -3 -2
8,9 | -8.21-10 +8,95°10 6 -2,99-10
7 -3.44-1072
-3 -3
8,9 -5,65-10 £3,08°10
10,11 |-1.31-107% | #7.75.107°
12,13 |-1.70-107% | +5.09-107°
i 14,15 |-8.21-1072 | 28.95°10~°

Table 5.2 ~ Eigenvalues of 9:th and 15:th order models for Oresunds=-
verket power plant,




model is common for both models it seems reasonable to assume that
these eigenvalues originate from the drum system. The zero eigenvalue
is c¢learly associated with the drum liquid level. It is difficult to assign
any particular subprocess to the other eigenvalues. However, perturba-
tion of input data showed, that for the ninth order model, eigenvalue

No. 2, No. 6 and No. 7, Nos. 8 and 9 are associated with the reheater,
superheaters 2 and 3, superheater 1 and drum system respectively. This
also verifies that the right eigenvalues were assigned to the drum system.

Superheater models with steam temperature and heat flows as inputs and
steam temperature as oufput will have only real eigenvalues regardless
of the number of sections. However, the entire model shows several
complex conjugate pairs., The explanation is, the coupling between the
subprocesses established by the steam flow and numerical inaccuracy.

Parameter variations

The influence of the guessed tube temperatures were investigated. In a
first order superheater model of the type used here, the time constant is
inversely proportional to the heat transfer coefficient. If the temperature
difference between steam and tube matter was increased with a factor
three, a proper number of eigenvalues moved to the right in the complex
plane. As expected these eigenvalues were reduced roughly three times.

Only the steam volume in the drum has been included in the model. A
possible way to take other steam volumes into consideration is to increase
the drum volume. Only very slight changes resulted if the drum volume
was increased four times.

Choice of model order

Both the 9:th and 15:th order models were simulated using input sequences
from measurements, No significant difference between the two models
could be established. Considering the advantages of low order models it
was decided to prefer the ninth order model,




CHAPTER 5 -~ IDENTIFICATION OF DIFFERENCE EQUATION
MODELS

1. Introduction

This chapter presents linear models with one input and one output. The
purposes are

- to derive models for design of regulators of essentially single
input-single output loops,

- to give insight into the dynamic properties of the boiler such as
necessary model order, nonlinearities and noise intensity,

-  to guide the evaluation of models from construction data.

Since no implementation of control strategies was possible in this case
the interest has been concentrated on the last two items.

A number of identification methods are available for estimation of
linear models. Frequently used are

- the maximum likelihood method,
-  the least squares method,
-  spectral analysis.

For the modelling of the Gresundsverket boiler-turbine unit it was
decided to use the maximum likelihood method. This method gives a
parametric model which also includes a model of the disturbances. An
efficient numerical algorithm was available which also gave the least
squares estimate as a byproduct,

The data used throughout this section was presented in Chapter 3. The
numerical results obtained in Section 3 are thus restricted to the boiler
on which the experiments were made. However, some of the resulis
such as the effect of nonlinearities are valid for most drum~type boilers.
Especially the results are valuable when used to evaluate models from
construction datai

The maximum likelihood method is well documented in literature [517,



[52]. The numerical algorithms which have been used in this work are
presented in [24], [25]. But for convenience and for the introduction of
notations a short resumé is given in Section 2., Most problems arising when
modelling from industrial data have been extensively discussed in r26],

This paper is a valuable guide for the choice of model order and other prac-
tical matters, Section 3 of this chapter gives a selection of results and
models obtained, The considered outputs are drum pressure and active
power and the inputs are fuel flow and control valve position. In the last
section we discuss the results on boiler nonlinearities and noise. Also

the choice of experiment characteristics is discussed.

2. Resumé of the maximum likelihood Method

The identification problem is to estimate a number of unknown parameters
in a model of known structure. The available information is a sequence of
measured values of the input variable {u¢t), t=1, 2, ..., N} and the
output variable {y(t), t =1, ..., N} of the process under consideration,
The sampling interval is fixed and normalized to 1.

Using the maximum likelihood method it is assumed that the process
can be described by a linear model of n:th order and that the disturbance

is a stationary gaussian process with rational power spectra. A general
model under these assumptions is

# =] E | # -1
A (@ )yt) =B (@ )u®) +AC (q )e(®) (2.1)
In eq. (2.1), {e(t)} is a sequence of independent normal (0,1) random
variables and ¢ denotes the shift operator
ax(t) = x(t+1)

* % *
The polynomials A , B, and C are defined as

¥ n

A (z)=1+alz+... +anz
* 2 n

Bl(z) :b1z+bzz + ... +bnz (2.2)
* n

C (z)=1+clz+... +cnz

i

#* -1 * -
It is assumed that the polynomials A(z) = znA (z ) and C(z) = an (z ™)
have all zeros inside the unit circle and that there are no factors in com-




mon to all polynomials A(z), Bl(z), C(z).

The parameter A in the model (2.1) controls the variance of the noise
since var{e(t)] is normalized to 1.

The problem is solved by establishing the maximum likelihood function
for the estimation of the parameters

and the parameter ). The maximizing of the logarithm of the likelihood
function

N

2 N N
T e (t)—-z-logk—zlogz'rr (2.3)
t=1

log LB,)) = -'—IE
2\

is equivalent to minimizing the loss function

N
V(9)=§ z ez(t) (2.4)
t=1

where the residuals e(t) are obtained from
P | ¥ =1 A =]
C (@ )e®) =A (@ )y®) -B(a )uc) (2.5)

and A, B, and € denotes the estimates of the polynomials A, B, and C.
The estimation problem is thus equivalent to minimizing a function of
several variables,

Knowing the estimate 6 and the minimal value V(é) of the loss function
the parameter X\ is estimated as

~2 2 ~
by =X Vi) (2.6)

It has been shown [527 that the maximum likelihood estimates are
consistent, assymptotically normal and efficient under mild conditions.

The residuals e(t) have a nice interpretation. It can be shown that the
residuals equal the one-step ahead prediction error. Thus the maximum
likelihood method tries to estimate the parameters of the model (2.1)

in such a way that the sum of squared prediction errors is minimized,



An iterative technique is used to find the minimum of V(@) and both
the gradient V, and the matrix of second derivatives Vgg are utilized
in the recursive formula for improving the estimate 8. Apart from
improving the rate of convergence the matrix V69 also gives the
accuracy of the parameters since an estimate of the covariance matrix

xzv;é then is available.

The order of the model is usually not known & priori. This problem is
solved by repeated identification of the parameters in models of increasing
order. A statistical test may then be applied to judge, if the loss function
has decreased significantly, when model order is increased from n to
ntl, Let Vj be the minimal value of the loss function for the i:th order
model. The null hypothesis is that the model is of order n. Then the test
variable

F _ Vn - Vn+1 N - 3(nt+l1)
ntl,n~ V 3
n+l

2.7

has an F[3,N - 3(n+1)] distribution under null hypothesis, When N
is large 3Fn n tends towards a x2 distribution with 3 degrees of
freedom. ’” Usually the risk level 5 % is used that is, if the test
quantity is greater than 2.6 (N>100) then the loss function has been
decreased significantly and model order is at least n+l.

The material given above is somewhat simplified. The model (2.1) is
easily extended to have more than one input. By shifting the time series
fu), t=1, ..., N} or {y(t), t=1, ..., N} the model (2.1) can also
be applied to processes where the B"lt'(z) polynomial contains a constant
term bg. In the same way processes described by the model

# -1 * =1 #* -1
A (@ )y(t) =B (@ )u(t-k) +AC (q ")e(t) (2.8)
where
+* B ‘b n 3%
B(z)—bo 1Z+...+bnz =bo+Bl(z)

can be handled. The model can thus be extended to contain k time
delays.

1




3. Results of Identification

As stated in Chapter 3, the variables were not sampled simultaneously.
The maximum time delay between the measurements was 4.8 seconds.
Before identifying all data of each experiment were adjusted to a refe-
rence sampling point using linear interpolation.

The full material motivating the final choice of a model will only be given
for the first derived model. For the other models only samples of the
calculations are given.

Experiments were made at two different load levels corresponding to

90 % and 50 % of full load. The models for both load levels will be given
and treated together. Load dependent boiler dynamics are thus clearly
seen.

3.1 Drum Pressure

The output drum pressure is strongly influenced by the inputs fuel flow
and control valve position., When controlling the boiler, drum pressure
is usually kept constant or manipulated to follow a prescribed curve
depending on the load. The control action is essentially performed using
the fuel flow, and the control valve position can be regarded as a distur-
bance,

Exps. A, F, E and J are used. In the first two experiments the fuel
flow is perturbed and in the last two the control valve setting is perturbed,

1

Fuel flow

To establish the number of time delays in the model (2.8), models of
different order and different number of time delays were computed and
the minimal values of the loss function (2.4) compared. The resulting
values of V are shown in Table 3.1. From the table it is clear

Exp. A Exp. F
k
0 1 0 1
n
1 1! 0.559 1.080 2.537 4,323
2 0. 259 0.817 1.322 2,219
3 0.198 0.648 1.170 1,987
Table 3.1 - The values of the loss function V for models from

Exps. A and F.



that a model with k = 0 should be chosen, since the values of the loss
function is reduced by roughly a factor 2. The reduction is not only due
to the change of k but also to the shifting of data for k =0 which
affects the initialization of the identification algorithm,

From a physical point of view one would expect k> 1. The presence
of a direct coupling between u(t) and y(t) is due to the sequential

scanning of data, the interpolation of data and to the fact that u(t) is
not changed instantaneously. The last statement follows from the fact
that the algorithm used assumes the input signal constant over the

sampling interval. U sing a more sophisticated preprocessing of data
it might be possible to reduce the magnitude of the direct connection,

Table 3.2 shows the estimated coefficients of the model (2.8) for
increasing model order and both experiments. The coefficients are
given with their estimated standard deviation o. The value of ), the
loss function, the test quantity Fn, n-1 and the stationary gain Kst

are also given. Notice that the gain depend on the units of the input and
output variables. In this subsection fuel flow and drum pressure are
measured in ton/hour and kg/cm2 respectively.

From this table the model orders can be determined. First, consider the
high load level experiment. The test quantity Fn n-l indicates that the

order of the model is greater than 3. Inspecting the accuracy of coeffi-
cients of the fourth order model it is found that a4, by and ¢ 4 do
not differ significanty from zero.

If model order is chosen properly the residuals {e(t)} defined by eq. (2.5)
are a sequence of independent normal random variables. Model order can
thus be checked by computing the covariance function r(r) of the resi-
duals. The covariance function for the third order model of Exp. A is
given in Fig. 3.1, According to the theory [52] the covariance function
should be equal to zero for T {: 0. The dashed line of Fig 3.1 gives the
one ¢ limit for r{r), T % 0. The sample covariance function indicates
that the residuals € (t) are uncorrelated and we conclude that the model
order is three,

The coefficient b, of the third order model of Exp. A in Table 3.2 is
significantly equa} to zero. Putting this parameter equal to zero and
estimating all other parameters we get
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Fig 3.1 =~ The sample correlation function for the residuals {¢(t)} of

the third order model of Exp. A. The dashed line gives the
one ¢ limit for r(r), T $0.

a, ~2.465£0.026 ¢, =0.86040.057
a,  1.96640.051 ¢, =0.316£0.064
ag  -0.500%0.026 c,  0.335%0,051
b,  0.085%0.002 A 0.0333 3.1)
b, O , v 0.198
b -0.181%0.003 K . 4.27
2 st
by 0.101£0.003

The statistical F-test does not indicate a significant decrease of the loss
function, if the b; parameter is included in the third order model.

In Fig 3.2 a simulation of the third order model (3.1) is shown. The
curves are

1. input u(t)
2, output y(t)




3, residuals or one step ahead prediction error e¢(t)

4. output of deterministic model

# =1

vy = 8- u

A@ )

5. error of deterministic model

eq(t) =y(t) - y4(0)

Notice that different scales are used. The maximum error of the deter-
ministic model is ~1.6 kg/cmz.

The raise of the error ey in the.interval 1200-1800 seconds and the drop
in the interval 2200-2600 is probably due to changes of feedwater flow,
compare Fig 5.1 in Chapter 3. An increased feedwater flow results in a
decreased feedwater temperature, Heat available for evaporation thus
decreases and the drum pressure will drop.

If the model is used for control purposes the goodness of the model
should be judged from the prediction error. In this case, the standard
deviation of the prediction of the drum pressure 10 seconds ahead based
on old measurements of u(t) and y(t) is 0,033 kg/cm2, The residuals
are shown in Fig 3.2. According to the sample covariance function

Fig 3.1 the time series can be regarded as uncorrelated. The diagram
shows that the amplitude is systematically larger at time points of large
changes of the input. This is due to the properties of data and identifica-
tion scheme as mentioned previously.

Now consider the low load level models. The F~test of Table 3. 2 indicates
at least a third order model. The computer algorithm failed to converge
to a fourth order model despite several restarts using different initial
parameter guesses. A test of the covariance function of residuals does
not reject this proposal and we accept model order as three.

The standard simulation is shown in Fig 3.3. The suddeh taise of the
error curve at time 1600 seconds can be explained by ¢hanges of feedwater
flow, compare Fig 5.6 in Chapter 3. The maximum error eq is 2.5
kg/cm2, In both models the relative deterministic error is of the same
magnitude, if computed in relation to the peak-to-peak values of the out-
puts.
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The least squares estimate of the parameters of the model
#* =1 * =]
A (@ u) =B (q u(t) + A e(t) (8.2)

is obtained in the first iteration of the used maximum likelihood algo-
rithm. For the third order models discussed we get

1

A 0.088

H

0.042 >\L

0.316

(3.3)
Va VL

1,394

where indices H and L stand for high and low load level respectively.

None of the A(q) polynomials of the maximum likelihood models have
any zeros on the negative real axis. The transformation to continuous
time thus behaves well. The transfer functions have both the form

1 (1+Tzs)

G(s) =K, +K_—— +K (8.4)
2 2
1 21+T1s 3 1+ZCT3S+T3S

where the coefficients are given in Table 3. 3.

Table 3.3

Para- High load level Low load level
meter

K1 0.085 0.080
; K2 0.199 0.211

K3 3.92 8,93

Tl‘ 16.2 16.5

T2 109 156

T3 190 294

e 0.714 0.955

W, 0.0052 0.0034

Coefficients of the transfer function

G(s) =K

+
K2

+
1 Tls

+ K
1+2CT35+T s

1+TZS

22
3

relating drum pressure (kg/ cmz) to fuel flow (ton/h) at
high and low load levels.




The table also includes wy = 1/T3. The constant term K1 is practi=
cally the same in both cases and compared to the gain of the third
term of G(s) it is very small.

It seems possible to give a physical interpretation of the first and
second order dynamics of (3.4) The first order dynamics represent

the storage of energy in the risers. The second order dynamics repre=-
sent the energy storage in the drum,superheaters and reheater, This is
further discussed in Chapter 7 when comparing models from measure-
ment and from construction data.

A straightforward comparison of the model dynamics, for the two load
levels, is possible since both models are of the same order. The first
order mode is the same in both cases which verify the physical inter-
pretation. In the second order transfer function gain, damping factor
and natural resonant frequency are altered indicating load depending
dynamics.

In [53] a simple nonlinear first order model is derived for a drum
boiler-turbine unit. The model is based on physical arguments and has
the form

do _
g = He.ug Uy (3.5)
P = g(,uy)

where

p drum pressure

P active power

uy fuel flow

uy control valve position (normalized units)
ug feedwater flow,

Linearizing eq. (3.5) the time constant T and gain K of the first order
dynamics relating any of the inputs u, U, and u 3 to the drum pressure
is

T = (3.6)

K=kuT 3.7



where oy and ku , i=1, 2, 3, are constants and Vv is the steady

i
state value of the variable v, If the drum pressure is constant and if the
control valve setting is reduced to halv its previous value then the model
(8.5) predicts an increase of the time constant and the gain with a factor 2.
Recalling that the difference in experimental conditions between Exps. A
and F were that the control valve was partly closed and the drum pressure
15 kg/cm2 lower in Exp, F we find that the results of the maximum like-
lihood identification well agree with physical properties.

Control valve position

The results of the identification is shown in Table 3.4. The position of
control valve is measured in % of the full stroke. Also for this input the
lowest value of the loss function was achieved for k = 0. Considering

the test quantity F and accuracies of parameters model orders are found
to be 3 and 2 for the high and low level experiments respectively. Putting
the parameters by and cg of the third order model equal to zero we get

a,  -2.271%0,008 c, =-1.003£0.103

a, 1.64580,166 c,  0.271%0,074

ag =0.370%0,071 cg O

b, -0 069:£0. 002 A 0.0546 (3.8)
b,  0.075%0.004 vV 0.533

b, 0. ( K, .87

by =0.013£0.003

The standard plots of the two models are given in Fig 3.4 and Fig 3.5.
The deterministic error ey is roughly two times greater in the low load
experiment. The influence of feedwater changes could also be recognized
and an improvement could be achieved by including feedwater flow as a
second input signal. The residuals of Exp. J in Fig 3.5 appears to contain
a low frequency component but according to Table 3.4 no significant
improvement is obtained by increasing model order.

The continuous time equivalents of the discrete time models are




*ST9AQ] peO] MO] puk Y31y

18 (%) uomisod aaTeA [0IIUOO O Amﬁo\mmv aanssoxd wnap SUNB[OX IOpIO SUISBAIOUL JO S[OPOIN - ¥H°¢ 9198l
1S

€6 P Ly 8- gT°9- VL T- 13 °2- 0¢ "¢~ b
. T-u ‘u

T°¢ 9°0% - 6°% A 44 - od.
6S°T ¥9°T €6°T T8S°0 $6S°0 0.9°0 A
760 °0 960°0 #01°0 §$60°0 L8G0°0 €T90°0 X
G690 °0%F920°0 090 "0¥350 "0~ Mo
13€ "0¥F20¢€ "0 $G0 “0¥F380 ‘0 TSI 0¥F1I6E "0 190 "0FL60°0 Ho
€88 "0FLIT T~ 940 "0FI8L "0- L¥0 "0FIST 0 69T °0¥FG8T "I~ 680 "0FPLY "0~ %0 "0FLZS "0 o
600 "0FG00 "0~ 200 °0FE1I0 "0~ Mo_
260 "0FEF0 *0- 00 "0¥9T0 "0- TT0°0F0TO0 "0~ 200 "0F0T0°0 Hn
S¥0"0FI9T "0 010 °0FP21°0 ¥00 "0F920 °0 210 0F680°0 LOO0FFF0°0 200 "0¥F¥10 *0~ oQ_
700 "0F9TT "0- #00 "0F8TIT "0~ $00 "0F9TT "0- 200 *0%690 "0~ 200 "0F0L0 °0~ 200 *0¥890 "0~ q
LEE "0FL6TZ "0~ %1 "0F00S "0~ Mm
LTLOFLES T 6%0 "0FLG8°0 662 "0F376°T 890 “0F6S.L "0 ﬁ.m
08¢ "0F6EZ "¢~ 6%0 "0%9G68 " T- 200 "0FS86 "0~ 6'GT "0F0%¥ "G~ 0L0 "OFISGL " T- 200 °0F%96 "0~ | ®
g 4 T g 4 1 u
r *dxy 19491 pEO] MO A °dxy 19ao] peol y3IH peoT




Output y(t) Input u(t)

Residuals e(t)

Output of deterministic

model Y4 (t)
kg/cm?

Deterministic error

eq(t)

Fig 3.4

Control valve position

s

Orum pressure

kg/cm?

y(t)-yg (1)

kg/cm?

kg/cm?

60

“ JUW

50

T
1000 2000 3000 Time sec

135+

1304

0.29

130+

135+

»
J

o
I

1
~

Results of the identification of a third order model relating
drum pressure to control valve setting, Input and output time
series from Exp. E.

]

H




B ©
S &
i R
an ey
BE
<3
@ 29
w Q ..m
E g &
(=
St
g SE
-8 - M .m
oo
g ¥
o =
3 8
“ g
< o
;m L L L L o m
[=]
Sz
s g
S £
Ho .
.m... [ )
lm B r I~ - QO .
= o - mA
= 0
g4
+~ 0w m
9 U o
[=2
oo
r 2 a
b w
— o
S — ] N S LR S z 84
A 8 2 &8 pX s 8 2 2 i o £ &
! Mo w
LA w6y ZwWa/ By W3/ 6y Zwas By
uoi1s0d 3A|DA JOJIUOD aJnssaud wnig (¢))] P& Japow ) P~ MA=(3) Ps '

(3)n ndu| (1) A inding (1)2 sionpisay  Snsiuiwilep o Inding J04J2 D1IStUIUILIRIRQ

Fig 3.5



1 1 1
—_— _— S .
21+TS+K3 1+T.s K4 1+T.s (3-9)

G(s) =K, +K
1 2 3

where the coefficients are given in Table 3.5.

The direct coupling between input and output is small for both models.
It is not clear how to give physical interpretations to the different terms
of the transfer function. However, the dominant time constant Ty is
associated with energy storage in drum and superheaters. The remar-
kable difference of the value of T could only partly be explained by
the increase of the time constant as given by eq. (3.6) used previously.

Para- High load level Low load level
meter
Kl -0.0693 -0,1167
K2 -2.219 -8.418
Ko ~0.0312 -0,2186
K4 0.4464 -
T1 183 1252
T2 12.2 75.4
T3 79,2 -
Table 3.5 =~ Coefficients of the transfer functions
1 1 1
= +
G(s) =K; + K, 4T 5 *Kq 14T, * Ky +T s

relating drum pressure (kg/ cmz) to control valve setting
(%) at high and low load levels.

The roots of the A(z) polynomial of the second order model are

The root zj is very close to the unit circle, and this mode behaves
practically as an integrator over the sampling interval. The accuracy
of the obtained value of T; can thus be quite poor.

The difference in model gaih is not only due to the change of operating
conditions of the boiler. The nonlinear characteristic of the control valve
has contributed considerably.




3.2 Active Power

The main input variables which affect the active power are fuel flow and
control valve position. The presented models are derived from the same
experiments as in the previous subsection. The power unit is MW.

Fuel flow

The models which will be discussed are shown in Table 3.6, In all models
the number of delays k equals one.

B High leoad level. Low load level,
xD. Exp. A Exp. F
n 1 2 1
al ~0,9816+0.003 ~1,9786+0,003 ~0.9849x0. 002
a, 0.9795+0. 003
b1 0.1964+0, 006 0.1837+0. 006 0.1149+0.003
b2 ~-0,182640.006
¢y -0.4363+0, 047 ~1,5183+0. 054 ~0,6453%0. 045
02 0.5183+0. 055
A 0.373 0.356 0.378
A% 25,03 22,73 25.59
Fn, n-1 - 11.9 -
K, 10.7 1.22 7.6
st
Table 3.6 -~ Parameters of models relating active power (MW) to fuel

flow (ton/h) at high and low load levels.

For the low load level the F-test works well and Fg 1 = 2.5. Inthe
Exp. A, we should choose a second order model according to the test
quantity. The roots of the A(z), B(z) and C(z) polynomials are given
in Table 3.7. For the second order model there is nearly one root in
common which indicates that model order is too high. Comparing the
sample correlation functions of the models shown in Fig 3.6 no im-
provement is achieved by increasing model order from 1 to 2. A first
order model is thus preferred for both load levels.



n 1 2

A(z) 0.982 0.989+0. 0281
0.989-0.028i
B(z) 0.994
C(z) 0.436 0.518
1.000
Table 3.7 ~ Roots of A, B and C polynomials of first and second

order models of Exp. A.

The standard plots are given in Figs, 3.7 and 3.8. Note the different
scales. The deterministic error is quite large in Fig 3.7 which partly
may be due to an error in the initial conditions.

r(T)

0.2 t

-0.1 +

Fig 3.6 - Sample correlation functions for the residuals {e(t)} of the
first order model (heavy line) and second order model of
Exp. A given in Table 3.6. The dashed line gives the one ¢
limit for r(r), 7 % 0.
H
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The continuous time model is

K
G(S) =17 g (3.10)

where the gain and time constant for both models are given in Table 3.8.

Para-
High load level Low load level
meter
K 10.7 7.6
T 538 659

Table 3.8 =~ Coefficients of the transfer function

G(s) = 1+Ts
relating active power (MW) to fuel flow (ton/h) at
high and low load levels.

According to eq. (3.6) the increase of the time constant is physically
motivated. The steady state gain of the dynamical system relating
fuel flow to active power can easily be computed theoretically. The
gain is approximately 5 for both models. The gain estimates are thus
quite poor in this case.

Control valve position

The best choice of k was found to be zero. A second order model is
for both load levels believed to be satisfactory. In the low load level
case, the statistical F-test indicated a third order model, F = 5.5,

However, the third order model polynomials have nearly one root in
common. The final model parameters are given in Table 3. 9.

The model of Exp, J is unstable. This is not in accordance with the
physical properties of the boiler. However, the obtained model is the
one of order two which minimizes the sum of the one=-step-ahead predic-
tion errors. ;



Ex High Load level | Low Load level
P | ExpE Exp J

n 2 2
al =1,521+0, 047 =1.5394+0.034
a2 0.535+0, 046 0.534%0, 035
bo 1.101+0,023 1.470+0,025
b1 ~1,464+0., 080 -1, 95440, 084
b2 0.343+0,071 0.442+0,072
¢ ~0.788+0.074 -0.887+0, 072
¢y 0.096%0., 060 0.153+0. 059
A 0.580 0.569

K -1,544 -
st

Table 3.9 = Parameters of models relating active power (MW) to

control valve setting (%) at high and low load levels.

Since input power is constant, a change of control valve position cannot
affect the steady state output power, providing that boiler efficiency
does not vary. The gain Kqt should then be near zero, but is estimated
to ~1.54 MW/% in the high load level case.

The standard plots are given in Figs. 3.9 and 3.10. Both curves for the
error eq show some step-like changes. This is probably due to errors

in the recording of the input sequence which was registrated manually.
This is certainly true at time 3200 of Exp. E where a change of the control
valve position was made and not recorded. The effect on both residuals
and error ey is clearly visible.

Comparing to the least squares estimate the value of the loss function
has decreased from 72 to 60 and the value of )\ from 0.637 to 0.580,
The given figures are valid for Exp. E. In this experiment a first degree
C polynomial is probably sufficient considering the uncertainty of the
estimate of the parameter c,.

Parameters of the continuous models represented as a transfer function

KZ ; KS

+ +
1
1+Tls 1+T2s

G(s) =K (3.11)

are given in Table 3.10.
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Para- High load level Low load level

meter
Kl 1.101 1.470
K2 -3, 37 5.9
K3 0.693 0.790
T1 333 =308
T 16.8 15.7

2
Table 3,10 -~ Coefficients of the transfer function
K2 K3

G(s) :Kl * 1 +Tls + 1 +Tzs

relating active power (MW) to control valve setting (%)
at high and low load levels,

The direct coupling K1 is quite large and reflects the fast response
of active power to a change of control valve setting, The nonlinear valve
characteristic gives rise to the higher gains in the low level model,

The physical reason for the mode associated with the time constant Ty
may be the large steam volume contained in the reheater of the boiler.

4, Conclusions

In all cases presented in this chapter we have been ahle to establish a
model. In most cases it was also possible to assign a physical inter-
pretation to model dynamics. Two important properties of the boiler
dynamics have been illustrated namely the noise characteristics and
the nonlinearities. Since a linear model is assumed a priori, the non-
linear effects recognized, when perturbing the boiler in steady state,
could also influence the noise characteristics.

The results of the identification have shown that an improvement is
achieved if the C*—polynomial is included. However, neither the maximum
likelihood model nor the least squares model implies that there is only
output noise. in a stdte space representation, This is true only if the

A*- and C*-polynomials are identical. A continuous state space model



should thus be
X (t) = A x(t) + Bu(t) + v(t)
y(t) = C x(t) + D u(t) + e(t)

where v(t) and e(t) are white noise with the covariance matrices
Ry and Rz. The modelling of noise characteristics from physical
arguments is not easy. Possibly, the covariance matrix Ry could be
estimated from sensor and transmitter properties.

The gain and time constants of the derived models change significantly
when load is changed from 90 % to 50 %. It has been shown in [ 537 that

the dominant time constant and the gains depend on stored energy and
control valve position. For the design of regulators for the boiler, the
nonlinearities are not of the worst kind since the dominant time constant
will not decrease when gain increases. However, the magnitude of changes
of the boiler dynamics, when load is varied, is such that it cannot be
neglected when designing control systems.

The design of the experiment included the choice of

=  multiple input or single input experiments,
= measurement time,

- input sequences,

=  sampling interval.

For reasons stated previously there was in this case only a rather
unrestricted choice regarding the input sequence. The results of the
identification Kave shown that especially the steady state gain of the
models relating active power to fuel flow and control valve setting is
inaccurate. This could be due to the choice of input sequence and sampling
rate but also to nonlinearities of boiler dynamics. A possible way to
improve the estimates is to choose an input sequence as in Fig 3,11,

Two "step inputs" of opposite sign are thus included. The length of each
step is chosen so that the steady state is nearly approached. The demand
on the time required for the measurement will, however, increase.

The signal to noise ratio is rather high in the experiments. To reduce
the effects of nonlinearities of boiler dynamics it seems possible to use
a smaller input amplitude.

The order of the maximum likelihood models range from 1 to 4. The
fourth order models were needed when modelling drum level using two
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Fig 3.11 - An input sequence including two "'step inputs" of
opposite sign.

inputs, Low order linear models is thus obtained in spite of the very
complex phenomena of the real process.

Accuracy of parameters of model polynomials is in general good.

Only the attempted identification of drum level using two inputs

gave bad results. This should be expected since feedwater, which

was one of the inputs, was only intentionally changed a small number of
times. A successful modelling with several inputs at least requires
experiments especially designed for this purpose.

The peak to peak value of the deterministic error represents in all
cases 20-30 % of the peak to peak value of the measured output. A
large portion of the output is thus modelled as caused by the input.

7



CHAPTER 6 =~ IDENTIFICATION OF STATE SPACE MODELS

1, Introduction

The methods for modelling multivariable processes from measurements
are not as well established as for single input-single output processes.
The choice of model structure becomes more involved and the number

of unknown parameters grows very rapidly with increasing model order
and increasing number of inputs and outputs. In this situation, it becomes
more worthwhile to look for solutions where all available a priori
knowledge can be used.

In many cases, a state space model derived from basic physical equations
is available. The model might be derived using rough approximations and
might also include physical quantities, such as heat transfer rates which
are difficult to compute in advance. On the other hand, the model might
include the basic physical phenomena which constitute the essential dy-
namic behaviour of the process. Such a model might possess a correct
structure and it can possibly be improved by adjusting the parameters

to measurements.

The state space representation of the process thus has several attractive
features. It allows the process to be multivariable and full advantage

can be taken of a construction data model. Also when designing a control
system, based on a construction data model, this system can be regarded
as preliminary. The final design is made, when measurements are avail-
able and model parameters have been identified.

In the boiler application we will use a drum system meodel to illustrate
the feasibility of this identification approach. The drum system is the
most essential process component since drum pressure strongly influences
other important boiler variables. The complete boiler=-turbine model is
not considered since the data available are only from single input experi-
ments. When identifying a multivariable process it is most advantageous
to use multivariable experiments. In this case, this is achieved by
shifting two experiments in time and then adding the inputs and outputs

of the experiments, thus assuming that the principle of superposition is
valid. The shifting of inputs is necessary since the inputs are identical.
Also the number of unknown parameters, in the complete boiler-turbine



model, becomes very large and it is convenient to investigate the possi~
bilities of the method on a system less complex,

The purpose of the material presented in this section is thus two-fold,
The possibilities of improving state space models from construction
data are investigated. Further additional information can be obtained
about the dynamics of the boiler and the validity of the construction data
model,

In Section 2 the identification method is outlined. Two different state

space models, called open and closed loop models, are also discussed.
The results of the identification are given in Section 3, The identified
models are evaluated by comparing simulated responses and measurements,
by the properties of residuals and by comparing the eigenvalues to those

of the construction data model. Finally, the gained information is sum-
marized in Section 4.

2, Resumé of the identification method

The problem is to estimate an unknown parameter vector § in a model
of the process. In this case, the model chosen to represent the boiler
is a state space model, which is allowed to be multivariable. Since a
construction data model will be used as an initial guess, model order
is assumed to be known. The available information is sequences of
measured values of input variables

fu®, t=1, ..., N} i=1, ..., m
and output variables

{yi(t)’ t=1, ..., My i=1, ...,k
The input variables iui(t), i=1, ..., m} , are assumed to be constant
over the sampling interval,

A stochastic discrete time model of a multivariable linear system is

H



X(t+1) = ¢(@)x(t) + TO)u(t) + K@)e(t)
@.1)
y(t) = CO)x(t) + D@)u(t) + ¢(t)

where the sampling rate is taken to unity and where {¢(t)} is a sequence
of independent equally distributed gaussian variables with zero mean and
covariance matrix R. The state vector x, the input u and the output y
have dimensions n, m and k. The matrices ¢, T, K, C and D may all de-
pend on the unknown parameter vector f. The model (2.1) will in the
sequel be referred to as a closed loop model, The continuous time model
is obtained by transforming the deterministic part of (2.1).

If the process under consideration is identical to the model with the same
initial conditions, the model state vector x(t) has physical interpretation
as the conditional mean of the state of the process and the matrix K is
the Kalman filter gains [487], [547]. This is a nice property since the
implementation of a Kalman filter for reconstruction then requires no
additional computation,

The likelihood function for estimating the parameter vector § and the
covariance matrix R is given by

N
-1
=2log LO,R) =NlogdetR+ T eT(t)R ¢(t) + nN log 2¢ (2. 2)
t=1

The maximization of L(9,R) can be performed separately with respect
to 6 and R and it has been shown [14] that the maximum of L(g,R)
is obtained by finding the minimum of

(n T
V@) =det { T e(t)e (t)} 2.3)
t=1
with respect to §. Using the residuals ¢(t) computed at the minimum
point, the covariance matrix R is estimated by
N

T ee () @.4)
t=1

R =

2=

H
t

The residuals ¢(t) are defined by



et) = y(t) = ¥(t) (. 5)
where J(t) is the output of the model using the current value of 8.

Under mild conditions the maximum likelihood estimates are consistent,
efficient and asymptotically normal [9], [47]. If the numerical algorithm
also calculates the matrix of second derivatives,an estimate of the accu~
racy of the parameter vector @ is also obtained.

The state space model (2.1) is not a unique representation of the
input-output relations. If no a priori information of the system matrices
#, T\, K, C and D is available the number of parameters must be reduced,
In general the number of parameters equals

k 1
N1=n(n+m+2k)+k[m+g+-2-] (2. 6)

where the fact that R is symmetric has been used. A canonical
representation has

k. 1
NZ:n(m+ Zk)+k[m+5+-2-] 2.7

parameters. This number is less than Ny and constitutes an upper
bound of the number of parameters which can be identified. Choosing ¢
diagonal and by imposing a condition such as

maxy, =1, i=1, ..., n-
i,

on T a canonical representation is obtained. However, a construction
data model, which is a type of a priori knowledge, is unlikely to be a
canonical representation.

Identifiability is thus a severe problem in this case. The concept of
identifiability has been treated in several papers [7], [50], [54]. In
this report we use

- the model (2.1) is identifiable if there is a one~to-one correspondence
between the parameter space and the input-output relations,

= the model (2. 1') is locally identifiable at 8 =8, if there is a one=to-
one correspondence between the parameter space and the input-output
relations in a neighbourhood of .6,.



Unfortunately there exists no general criterion which makes it possible

to determine, if a given parametric model with unknown parameters is
identifiable. Local identifiability can in this case be established if the
minimum of (2, 3) is unique. However, this requires that the minimum

is known and that the matrix of second order derivatives can be computed,

From (2. 3) it follows that the identification is equivalent to the minimiza-
tion of a function of several variables. Since the computation of an ana=
lytical gradient and matrix of second derivatives is quite complex, the
identification programme utilizes a minimization algorithm which
numerically estimates these quantities. The minimization algorithm

is (187 which was constructed on the basis of [17], [21], [40]. The num-
ber of unknown parameters, in a multivariable model, will become quite
large since there is usually no a priori knowledge of the K matrix.

This may create numerical difficulties, In particular the matrix of second
order derivatives has been found to be poor.

The model (2.1) is called the closed loop model because the model
receives process outputs as well as inputs, Besides this model we will
also use

x(t+1) = ¢x(t) + Tu(t)
. 8)
y(t) = Cx(t) + Du(t) + ¢(t)

where {e(t)} is measurement noise with the same properties as in
model (2.1). The parameters are also in this case adjusted to minimize
(2. 3). The model (2.8) is referred to as an open loop model since only
process inputs are used. The model (2.8) correspond to the case when
the only disturbahces are white measurement noise.

In the identification programme, the parameters are introduced as
elements of the matrices A, B, C and D of the continuous time model,
Thus

5= A0

1 @.9)
T= jeA(e)sds B@©)
[0

It is then easier to have physical interpretation of the parameters.



3. Results of Identification

A fifth order model for the drum system was chosen in Section 4 of
Chapter 4. The model is

%@ = Ax(t) + Bu(t)
(3.1)
y(t) = Cx(t) + Du(t)

where the state vector x is

x, drum pressure

x. drum level

drum liquid mean temperature
riser tube mean temperature

x_. steam quality mean value

the input vector u is

ul fuel flow
Uy feedwater flow

uq steam flow

and the output vector y equals the first two state variables. Numerical
values of matrices A, B, C and D were obtained using subroutine DR5M,
see Appendix A, and construction data from Oresundsverket power plant.

Data for a multivariable experiment was created by adding the inputs
and outputs of Exp. A and Exp, E. Since the main input sequence in

both experiments are identical, the data sequences of Exp., E were
delayed 30 sampling intervals viz. if T is the sampling rate and if
v¥(nT) is the value of variable v of Exp., X at time nT, then

vA{ (n+30)T} was added to vE@T). The last thirty data points of Exp. E
were not used and all variables of this experiment were taken to be
equal to their mean value in the interval t=T = 30T. In this way, all
data of Exp. A could be used. The input variable in Exp, E is control
valve position, but steam flow changes accordingly as seen from Fig 5.5
in Chapter 3. Exp. B was not included since the feedwater flow was



changed in both Exps. A and E. Further it is essential to be able to test
the resulting model against data not used in the identification.

3.1 Closed Loop Models

The model is defined by eq. (2.1). The initial estimates of matrices A,

B, C and D are obtained from the construction data model (3.1). Matrices
¢ and T' are obtained using eq. (2.9). No information of the elements

of matrix K is available., Since the construction data model has been

the starting point for the identification, the outputs drum pressure and
drum level are measured in bar and mm respectively.

Choice and estimates of parameters

A canonical representation of model (2.1) will contain, in this case,

44 unknown parameters which gives an upper bound on parameters in

an identifiable model. Since nothing is known about the matrix K, there
are at least 10 parameters to be identified. The problem then is to find

a set of parameters which gives an identifiable model and where the

fixed elements of A, B, C and D do not essentially restrict the input=output
relations defined by the model. It is also important, that the number of
unknown parameters is as small as possible, to avoid numerical diffi-
culties.

The structures of the continuous time matrices A and B are

a a a

g 0 13 14 15
B 0 By By, By
A= lag 0 a, a,  ag
a41 0 0 a44 0
a1 0 %53 By 2 |
o 12 Pig
0 byy  byg
B = 0 by, f53
by O 0
0 by gy




The elements in A and B which equal zero are given as zero. The outputs
simply equal the first two state variables which means that both the C

and D matrices are entirely known. Certainly not all of the parameters

of A and B can be identified since the total number of parameters in A,

B and C is 37. The canonical representation has only 35 parameters

(D is zero and R is not included). In general, it is very difficult to choose
the elements of A and B which are most essential for the dynamics and
crosscoupling. The choice of parameters was based on physical arguments
such as

- drum pressure strongly influences other state variables,

- steam quality gives non-minimum phase characteristics to responses
of drum level,

- the influence of inputs is essential and especially the influence of
steam flow is not known accurately,

-~ fuel flow does not affect drum pressure directly but only riser tube
temperature.

Several sets of parameters were tried, The number of parameters in A
and B ranged from 2 to 10. The final choice, which gave reasonable
good results, is shown in Table 3.1, This set of parameters may for
physical reasons well establish an identifiable model. Other sets, which
included the eighteen parameters in Table 3.1, gave only a small impro-
vement of the loss function V. The computational aspects are discussed
later in this section.

The value of the loss function has been decreased drastically by the
identification. All parameters of the A and B matrices have changed
significantly, Parameters ajg, azy and b13 have been subjected to the
largest changes, roughly a factor 4, 10 and 3 respectively, The first two
parameters, aj, and a4y, stronly influence the coupling between mean
temperature of risers and drum pressure, and the dynamics of heat
storage in riser tube masses. The change of by represents a decrease
of the influence of steam flow on drum pressure derivative,

The estimated covariance matrix R equals
-0.0240 0.016

R= i (3.2)
0.016' 12,43



Initial Identified
v 0.2567-1017 0.3850-105
all -0, 02835 ~0.02052
a4 0.0406 0.1678
2,5 -0, 2266 -0.3622
aq; 0.01382 0.00896
244 -0, 0454 -3 -0.3295 -3
2y -0.1341:10 -0.0738:10
b13 -0.01575 _ -0. 00496
b 0.1162<10 0.1446-10
41
kll 0. 1.271 _
k12 0. -0.1041-10
k21 0. 0.01027 _
k22 0. 0.1279-10
k31 0. -0.1214
k32 0. -0, 06576
k41 0. 0.5432
k42 0. 0.01398 -3
k51 0. -0,7702-10_
k52 0. 0.3585-10
Table 3.1 - Initial and identified parameters of the closed loop

model. Elements of matrix K are valid for the
discrete time model.

The standard deviations of the one-step ahead prediction error then are

g =0.155 bar
€1

g =3.53mm
€2

Compare the results in the previous chapter.

The residuals {e(t)} should equal a realization of discrete time white
gaussian noise if the conditions of the identification method are fulfilled
and if the minimum is ad¢hieved. Fig 3.1 shows the residuals {e®)}

and Fig 3,2 shows the sample correlation function of {sl(t) 1, 1t is clear




from Fig 3.1, that large values of residuals are obtained at time of
changes of the inputs. Compare Fig 3.6 and the discussions in Chapter 5,
At time t = 300 seconds, the residuals of drum level take extreme large
values. The reason for this is, that we start to add the actual values of
Exp. E to those of Exp. A at this point.

Residuals €, (1)
o ~N
\_?

1000 2000 30b0 Time sec

Residuals €, (t)
o

mm

401 T T

Fig 3.1 - Residuals ¢1(t) of drum pressure and €go(t) of drum
level of the closed loop model.

r(T) A

0.4

0.2

-0.2 H

Fig 3.2 - Sample correlation function of residuals {€1(t)} of the closed
loop model. The dashed line gives the one ¢ limit for r (1),

T {: = 0. Note that the basic interval of the input sequences
is 60 seconds,



Since such errors now dominate the residuals, it means that further
refinements of the model based on these particular measurements are

not worthwhile. Should more accurate models be desired new experiments
must be performed.

The sample correlation function of €;(t) shows that the sequence €1(t)
differs significantly from a realization of discrete time white noise, The
sample correlation function of €(t) has the same characteristics.

Eigenvalues

The eigenvalues of the matrix A, corresponding to the initial guess and

to the final model, are given in Table 3.2. The eigenvalues can be sen-
sitive to parameter changes when transforming from discrete time models
to continuous time models [ 27]. Especially eigenvalues corresponding to
timeconstants smaller than the sampling interval.

Eigen-
value Initial Identified
No.

1 0. 0.
2 0.00192 ~0. 00166
3 -0.0367 -0, 0449
4 -0, 0796+0, 01771 -0, 0811
5 -0,0796~0, 0177i -0, 343

Table 3.2 - Eigenvalues of matrix A for the construction data model
and for the identified model.

Since the column of zeros in A does not include any parameter, the zero
eigenvalue is preserved exactly., The unstable mode of the construction
data model is not found in the identified model and is thus not verified

by measurements. This is not surprising since the eigenvalve of the
identified model correspond to a timeconstant of 600 second and the
model has been adjusted to predict the value of the outputs only 10 seconds
ahead. During this time there is only a slight difference between the mo-
des. The fast mode No. 5 of the identified model is due to the strongly
changed parameter agq Wwhich means that the dynamics associated with
the riser masses appears very fast in the measurements. This fact can
be used for further simplification of the construction data model.




Simulations

The simulated responses of the identified stochastic model, using the
same data as used for the identification, agree extremely well with
measurements. Any difference would not appear in a diagram and is
therefore not shown. This situation is quite typical when simulation

is done on the same dataset which was used in the identification. It is
therefore of interest to make other comparisons. In this section we will
investigate the deterministic part of the final model, that is

d—gfg = AX(t) + Bu(t)

(3.3)
y(t) = Cx(t) + Du(t)

where A, B, C and D are the identified matrices.

The deterministic model will be investigated for the datasets A, E
and B, Figs 3.3, 3.4 and 3.5 respectively. Notice that the identification
was based on the superposition of Exps. A and E.

Only responses of the two output variables are given, The magnitudes
of the responses of the other three state variables are, however, within
reasonable limits,

In Figs 3,3 and 3,4 the differences of responses are largest when the
feedwater flow is changed. A reason for this can be that the feedwater
temperature, which varies due to the changing fuel, feedwater and steam
flows, has been neglected in the model. Especially the difference in trend
of drum level responses, in the time interval t =1000 - 1500 of Exp, E
in Fig 3.4, verifies this assumption. This is discussed in detail in the
next chapter.

The drum pressure response of Exp. E in Fig 3.4 appears to be too
sluggish or the gain is too small, The last alternative is most probable
since the parameter bjgq was decreased by a factor 3 in the identified
model. The non-rmmimum phase characteristics of the drum level
responses have been well adjuted to measurements,

The responses of Exp. B are shown in Fig 3.5. The discrepancies of
drum level responses imply that feedwater flow affects the derivative

of drum level téo strongly. However, when element bog of matrix B
was included in the identification the sign of bgy was changed, which
cannot be accepted for physical reasons. The drum pressure response of
the identified model is not in accordance with measurements,
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3.2 Open Loop Models

As seen in the previous subsection the number of unknown parameters
soon becomes large. If we assume that no a priori information is avail-
able about the matrix K, which usually is true, the minimum number of
parameters in the closed loop model (2.1) is nk which rapidly increases
with the number of outputs k. For this reason an open loop model (2.8)

is attractive. Notice that the statistical assumptions that lead to the open
loop model correspond to the case when there are no process disturbances
and white measurement noise only,

Choice and estimates of parameters

The same set of parameters of matrices A and B was used., The
resulting values are given in Table 3. 3.

Initial Identified
\' 0.2567'1017 0.3591'109
all ~0. 02835 =0,01731
3.14 0.0406 0.1255
a25 -0, 2266 -0, 3572
g 0.01382 0.00513
2, -0.0454 o | -0.2401
gy -0,1341-10 -0.0903-10
b =0,01575 =0, 00462
3
bi4 0.1162'10-4 0.1135'10.“‘Jl
Table 3.3 - Initial and identified parameters of the open loop model,

As an initial guess of parameters the values provided by the construction
data model were used. Compare with the results for the closed loop
model in Table 3.1,

The sample covariances decay very slowly thus indicating that the resi-
duals are not realizations of white noise. The standard deviations of
residuals are

i



g =1.70bar
&

o =50.1mm
€9

Compare with ¢ = 0,155 bar and cr€ = 3,53 mm obtained for the
2
closed loop model.

Eigenvalues

The eigenvalues of matrix A using the adjusted parameters are given in
Table 3.4.

Figen=
value Initial Identified
No.
1 0. 0.
2 0,00192 -0, 000797
3 =0, 0367 -0, 0420
4 -0, 079640, 0177i -0, 0815
5 -0, 0796-0, 01771 =0, 253
Table 8.4 - Eigenvalues of matrix A for the construction data model

gnd for the identified open loop model.

Eigenvalue No. 2 has changed to a stable mode but the change is smaller
than in the closed loop model. The identified eigenvalue is now very close
to zero and corresponds to a time constant of 1250 seconds which is a
considerable amount of the measurement time. Eigenvalues 3, 4 and 5

of the identified model are similar to those given in Table 3.2, This veri-
fies the conclusion that the dynamics of the riser tube masses can be
considered fast.

Simulations
i
For this model we choose to show a comparison of responses for Exp.
A + E, used in the identification, and for Exp. A. The steady state values




of inputs and outputs of Exps, A and E, at the beginning of the experi-
ments, were not the same, Therefore in Fig 3.6, showing the results
of Exp. A + E, only the deviations from the steady state values are given.

Drum pressure responses of both Figs 3.6 and 3.7 do not agree well in
the middle part of experiments, This has been a characteristic property
of all deterministic drum pressure loops considered both in this and

the previous chapter, The drum level response in Fig 3.6 is, in general,
not well adjusted to the measured curve but the non-minimum phase cha=-
racteristics of both responses agree, Using data from Exp. A, as in

Fig 3.7, the simulated drum level response differs completely from the
measured one, This is a severe disagreement since the gross characteris-
tics of the two curves are not the same, The results obtained using an
open loop model is thus significantly worse that those of a closed loop mo-
del in this application. The reason may be that physical variables, such as
feedwater temperature,- are not included in the initial model structure,

If we interprete the result of such model imperfections as noise, it is
probable, that this noise can more easily be handled by the stochastic
structure of the closed loop model.

3.3 Computational Aspects

The minimization algorithm uses a numerical estimate of both the
gradient and the matrix of second order derivatives. A local minimum
of V, with respect to the parameters 8, is achieved if the gradient
equals zero at this point and if the matrix of second derivatives V6 9 is
positive definite. The inverse of V. _ contains information of the
accuracy of estimated pa»ra.meters.ee

The minimization could rarely be done in one run. It was frequently
necessary to interfere manually, by choosing different starting values
and to change various parameters of the algorithm, like testquantities
for terminating conditions, It was sometimes difficult to know that a
local minimum was obtained since the numerical gradients were not
always small. By restarting the algorithm from different starting points,
the algorithm would usually converge to the same parameter values,

even if the numerical gradient had relatively large values. In this respect
the open loop models were more difficult to handle than the closed loop
models,

The estimates obtained of the matrix of second order derivatives were
usually very poor. The identifiability of the models could not be verified.
The assumption of identifiable models is then only based on physical

arguments.
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It is not easy to give a meaningful figure of computing times, The final
choice of parameters and parameter values was not obtained in one run
of the programme. As initial values of one set of parameters, earlier
computed estimates of partly another set were used. However, taking
the construction data model as an initial guess the computing time
ranged between 10 and 40 minutes for estimating between 8 and 20 para-
meters. The programmes were run on a UNIVAC 1108, The time de~-
pended on the number of parameters, the initial value of # and the
required accuracy.

4, Conclusions

In spite of the difficulties encountered with the minimization algorithm
it is not believed possible to obtain significantly better models without
using new experiments, This is indicated by the nature of the residuals
of the closed loop model. The residuals obtained are actually dominated
by factors which can be referred to experiment limitations, like finite
raise time of the input signal and the nonsimultaneous sampling of the
inputs.

The closed loop model has appeared to be superior to the open loop
model in this application. The agreement between measurements and
model responses were much better for the closed loop model. The
residuals, for the closed loop model, were also significant smaller than
those of the open loop model. The number of parameters in a closed loop
model is, however, increasing rapidly with the number of outputs. If the
identification method is applied to the complete boiler model, five signi=-
ficant outputs is easily found. Then the minimum number of parameters,
that is the number of parameters in the matrix K, is 45, This will
probably yield very long computing times if the minimization routine can
be made to behave well.

Computing times have turned out to be long even for a moderate number

of parameters. Since this number easily grows, the identification method
heavily depends on the minimization algorithm which is used. Difficulties
were encountered with the numerical differentiation in this particular al-
gorithm. It would probably be a significant improvement to evaluate the
gradient explicitly, even if this means a significant increase of the 7
programming work. Further, to be able to benefit from the nice proper-
ties of the maximum likelihood scheme, which gives a complicated loss
function requiring numerical differentiation, the minimization algorithm
must produce reliable estimates of the matrix of second order derivatives,




The large discrepancies, between identified model responses and measure-
ments of Exp. B in Fig 3.5, strongly point out the need of multivariable
experiments for multivariable identification.

it is important that the structure of the initial model is correct. That is,
physical phenomena which are important for the dynamical behaviour must
be present in the model. This is clearly illustrated by the good model !
adjustment to non-minimum phase characteristics of drum level responses
and the failure of adjustment to the assumed influence of feedwater
temperature. :



CHAPTER 7 =~ EVALUATION OF MODEL FROM CONSTRUCTION
DATA

1, Introduction

A proper evaluation of model properties requires, that the purpose of the
model is specified. The ultimate goal of all models derived has been to
develop models suitable for steady state control. Since models from
first principles and measurements have been developed it is possible

to establish whether the assumptions made are compatible with the data.
This is an essential result since, if a construction data model is available,
the control system can be designed and tested beforehand, Also the in-
fluence of different physical parameters on model dynamics can be in~
vestigated and the process designed, if possible, to ease the control task.
This chapter will thus be devoted to the comparison of models from
construction data to measurements and results of identification.

The open loop properties of the construction data model can thus be
evaluated using

= field measurements,
- deterministic responses of models from measurements,

= transfer functions from the deterministic part of the maximum
likelihood models,

=  parameter changes in state space models adjusted to measurements.

The first item for comparison is treated in Section 2 and the last three
in Section 3,

For control purposes obviously, the prediction error of the model is

a significant quantity, The variance and sample correlation functions of
the prediction error were computed for the maximum likelihood models
as well as for the state space model from measurements. Comparing
these quantities to those calculated from the construction data model will
indicate the improvement which is possible to achieve by adjusting the
models to a set of measurements,




In Section 2 model responses are compared to field measurements. The
comparison covers Exps. A, B, C, D and E. Responses to all main input
variables, viz, fuel flow, feedwater flow, attemperator flows and control
valve position are thus given, Outputs included in the comparison amounts
to seven in Exps. A and E and to three and four in Exps. B and C, D res~
pectively. In the simulations of Exp. E the computed control valve cha-
racteristic was erroneous and had to be adjusted to measurements. Notice
however, no other adjustments of the construction data model were made,
The third section deals with the comparison of transfer functions and
prediction errors. Since the number of input-output relations of the multi-
variable boiler process is large (~ 70), only a limited number of important
loops are considered. To the knowledge of the author an extensive com-
parison of model responses to field measurements such as that of Section
2 has only been published in [ 337, [347] and [437. The first two reports
are concerned with the same model. However, in these reports only step
responses of a duration of 20 minutes are presented, The last report also
presents a comparison of step responses but the duration is only 5 minutes
which is a very short experiment time., None of these reports is concerned
with identifications. In the last section the valid and invalid model simpli-
fications and approximations are stated. Possible simplifications are also
indicated.

b

2, Comparison to field measurements

In Chapter 3 the results of experiments were presented and some pecu~
liarities were pointed out. In the comparison given here only the high load
level experiments are used. In Figs 2.1 - 2.5 responses of both the real
process and the model from construction data for Exps, A - E are
presented., In the simulation the measured sequences of fuel flow,
feedwater flow etc. are used as model inputs. The control valve posi-
tion was not automatically recorded, Therefore an idealized sequence
reconstructed from the manual recordings is used. The sampling rate

is as in the measurements 10 seconds.

2.1 Fuel Flow Perturbations

Except for the main input, the feedwater flow was intentionally altered
to keep drum level within acceptable limits. As a consequence of drum
pressure fluctuations also the attemperator flows varied. In Fig 2.1 the
flow of coolant water in attemperator 1 in the right steam path is given
as an example,
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The agreement of drum pressure, steam flow and active power responses
is good. In the time interval 1500 - 2000 seconds there is a marked diffe-
rence. The difference in drum pressure causes the differences in the
other two responses. The reason for the high measured drum pressure
is that feedwater flow was decreased at t =~ 1200 seconds and kept low
until t = 1800 seconds. The influence of the changed flow is accounted

for in the model but the assumption of constant enthalpy is violated. The
decreased flow will raise the feedwater temperature. For constant input
power to the risers, the amount of power available for evaporation then
increases and pressure will raise,

Drum level responses differ considerably. There are two time points
where the deviations seem to be initiated. The first point is at t = 1200
seconds and the second at t = 1800 seconds. Again this is where feed-
water flow is changed. This indicates that the measured level response

is due to changes of the volume of steam in drum water and risers. The
increased evaporation due to higher feedwater temperature in the interval
1200 - 1800 seconds increase the steam volume in water, and drum level
is raised in this interval. On the other hand the low feedwater temperature
for t = 2000 - 2400 seconds gives the opposite effect and model drum level
becomes higher than the measured one,

The last three curves of Fig 2.1 show the responses of temperature be~
fore attemperator 1, after attemperator 2 and after reheater. The large
difference between responses in the first half of the experiment is due

to an asymmetric heat distribution between the left and right steam paths
of the boiler. This was commented upon when presenting the results of
experiments in Chapter 3. Responses of temperatures measured before
the H. P. turbine agree fairly well with model responses. However, model
responses appeal to be too fast, This is expected since the distributed
parameter systems such as the superheaters have been approximated by
one ordinary differential equation only. An improvement is achieved if a
higher order approximation is used but to the prize of an increased model
complexity. A fiftzenth order model was also derived, but as stated in
Chapter 4, the improvement was not significant enough to motivate an
increased model order. More sluggish measured responses are also
expected since the dynamics of temperature measuring devices are not
included in the model and since heat flow to superheaters is modelled as
a constant times fuel flow. Dynamics of temperature measuring devices
is, however, fast and is further discussed in Exps. C and D. A more
realistic model of heat flow to superheaters is obtained if the dependence
on combustion gas temperature is included. This would probably improve
model responses and does not increase model order.




2.2 TFeedwater Flow Perturbations

In Exp. B shown in Fig 2.2 both feedwater flow and temperature are
shown as input variables. Model responses are calculated using a constant
feedwater temperature. The influence of feedwater changes on steam tem-
peratures, active power and steam flow are small and due to drum pres-
sure fluctuations. Therefore, only the steam temperature before the
turbine is given to illustrate the magnitude of temperature variations.

In this experiment the influence of feedwater temperature on drum
pressure and level responses is clearly shown and the arguments used
in the previous subsection verified. Consider for example the increased
feedwater flow in the interval t =800 - 1100 seconds. Feedwater tempe-
rature drops and causes the drum pressure to drop since evaporation
decreases. The volume of steam in water kept in drum and risers
decreases. Model drum level response thus raises faster than the
measured response,

TFrom this discussion we conclude that the economiser should be included
in the model and that a significant improvement of model responses can
be expected, Most likely a first order model is sufficient and the complete
model complexity is only slightly increased.

2.3 Attemperator Flow Perturbations

The attemperator flows 1 and 2 were perturbed in Exps, C and D and
are shown in Figs 2.3 and 2.4 respectively. Only the flow in the right
steam path was changed. The two steam paths were modelled as one
path. In the simulations the measured attemperator flows thus were
multiplied by two and the responses of drum pressure, active power and
steam flow divided by two.

The magnitude of drum pressure variations in both experiments is small
and responses agree well with model responses. Saturation temperature
in drum will vary according to drum pressure and causes small tempe-
rature variations along the steam path. This is shown in Fig 2.4 where
the temperature of steam is given before attemperator 2. The model
predicts well the actual behaviour,

In both experiments steam temperature i8 measured directly after the
attemperator. The model will give an instantaneous change of temperature
followed by a response due to mass flow and drum pressure responses.

The dynamics involved in the boiler responses are those of the attemperator
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and the measuring device. Temperatures are measured by thermo~couples
contained in a steel pipe mounted on the steam tube. The pipe is inserted
to slightly more than half the tube diameter and the thermo~-couple
pressed to the bottom of the steel pipe by a spring. Maximum likelihood
identification of a model relating steam temperature after attemperator
to attemperator flow gave in both cases, for a first order model, a time
constant roughly equal to 12 seconds. This figure can be taken as an
estimate of the dynamics of the measuring device. However, the figure
was not in accordance with established a priori knowledge. The estimates
given by the working staff and companies delivering such equipment
ranged from 80 to 120 seconds. It has not been verified that the results
of measurements can be explained by physical arguments such as insta-
tionary heat transfer coefficients or that wet steam is hitting the inserted
pipe. Heat transfer rates must then be high enough to yield the measured
fast responses. This illustrates a typical situation where experiments of
this kind contribute to the general knowledge of the plant dynamics.

The non-minimum phase characteristics of the measured temperature
responses in Fig 2.3 is not a property of the model. The presence of

such characteristics was not recognized when modelling the superheater.
The responses of temperatures measured later in the steam path do not
show non-minimum phase characteristics. Also steam temperature
responses to changes of the flow in attemperator 2 show very little of this
behaviour., A possible physical cause could then be that a fast change of
the flow in attemperator 1 gives a rapid change of pressure in super-
heater 2. Numerical estimates of the temperature transient created gives,
however,to small valves.

2.4 Control Valve Position Perturbations

Responses of model and boiler in Exp. E is shown in Fig 2.5. Due to
drum pressure changes, also in this experiment, the attemperator flows
varied significantly, The magnitude of variations is roughly 75 % of the
magnitude in Exp. A.

A satisfactory model response of drum pressure is obtained. The discre-
pancies in drum level curves are, however, considerable., At least partly,
the difference is explained by changes in feedwater temperature. However,
most of the difference is explained by the difference in steam flow. Con=-
sider for example the interval t = 500 - 750 seconds. Obviously the lower
steam flow of the hoiler will give a faster raise of drum level than the mo-
del response. Notable is also the non-minimum phase characteristics of
drum level dynamics, Physically this is caused by the steam bubbles
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contained in the water of the drum system which are affected by the initial
fast drum pressure response to the control valve change. The phenome-
non is predicted by the model but the amplitudes of peaks are too small.
Since the steam content of water is only modelled for the water contained
in risers this is an expected result. The model could be improved by
treating a fraction of drum water as contained in the risers.

The active power diagram and especially the steam flow diagram show
model responses which after the initial rapid change decline too fast. The
model for steam flow used throughout was to take the squared steam mass
flow proportional to the pressure difference. Since drum pressure respon-
ses agree well, we must conclude that the model does not predict changes
of pressure after the control valve in a proper way.

Three steam temperatures measured before H. P. turbine and one
measured after reheater are also shown in Fig 2.5. Considering the
difference in steam flow between the actual plant and the model the result
is satisfactory.

3. Comparison to results of identification

To resolve the steady state control problem of the boiler=turbine unit,

it is essential to know the dynamics relating the outputs drum pressure,
active power, drum level and steam temperature before control valve

to the main inputs fuel flow and control valve position. Also the dynamics
relating drum level to feedwater flow and steam temperatures to attem-
perator flows are important. Some of this dynamics as given by the
boiler model will be compared to the results of identification. Both open
loop models represented by transfer functions and closed loop models in
the sense of one-step ahead prediction errors are discussed,

Some model transfer functions will be of ninth order. Most transfer
functions will be of lower order, because some modes are either
non-observable from a particular output or non-controllable from a
particular input. The order of the M. L. models are frequently of
significantly lower order. This can be explained by making a modal
analysis and consider the orders of magnitude of mode gains, It will
be shown in examples that Ssome modes give a very small contribution
to the transfer function.

The modal analysis is also used to obtain a reduced order construction




data (C.D.) model for comparison to the continuous equivalent of the M. L.
model.

The one-step ahead prediction errors of the C.D. model are computed
from

* =1 #* =1
ey =A (@ ) 3/111(t) -B @ ) “le(t)

where yp,(t) and u, (t) are the measured output and input sequences.
The polynomials A”gnand B¥ are obtained from the discrete time C.D.
model. The order is again reduced using modal analysis. This is
favourable from a computational point of view since it is well known
that the simulation of high order dynamical systems represented by the
pulse transfer functions can be extremely sensitive to disturbances in
model parameters.

3.1 Transfer Functions

In Table 3.1 the model order and steady state gain of maximum likelihood
models (M. L.) and the approximate models obtained from the construc-
tion data model (C.D.) are given. The model order, given for the con-
struction data models, indicates the modes with large steady state gain.

Drum pressure

A modal expansion of the transfer function relating drum pressure to
fuel flow gives the steady state gains shown in Table 3.2, The gain given
for mode no 1 is the integrator gain.

MI\?:.e Eigenvalue Gain
1 0. 000 0

2 -2.29°1073 0

3 -3.44.1072 0.49
4,5 | =4.82:10732.91-10731] 14.6
6, 7 | -1.56-107241.45-10751 0.73
8, 9 | -8.21-10728.95-1073i| -0.89

Table 3.2 - Steady state gains of the modes of the transfer function
relating drum pressure to fuel flow.
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The dynamics of this loop is dominated by the modes 4 and 5. The
gains of other modes are less than 6 % of the gain of modes 4 and 5.
Thus it is not surprising that the M. L. method estimates the order as
being 3. Physically the modes 4 and 5 can be interpreted as part of the
dynamics generated by the drum and superheater 1. The transfer func-
tion of the reduced order model is

- 1+
Gop(s) = 4.6+10 4 112s - (3.1)
s + ZCwOS + wo
where
-3
=5,6-1
W, 0
£ =0.856

which should be compared to the transformation of the maximum likeli-
hood model to continuous time.
1

=0.3+0,7 ———
Cpp(®) = 0.3+ 0.7 70 +

4 1+ 109s (3.2)

+3.810 5
+ +
s ZCwOS wo

where
-3
w, = 5.2°10
£=0.71

The second order term of both models agree well, especially the natural
resonant frequency. The first order term of (3.2) has a low gain and
such modes were neglected in (3.1). The first order term of (3. 2) did not
change between the high and low load maximum likelihood models and
was therefore interpreted as the dynamics of the risers. In Chapter 4

we assigned the modes 1, 3, 8 and 9 to the drum system. Only 3, 8 and 9
can possibly be associated with the dynamics of the risers. Neglecting
the imaginary parts of eigenvalues 3, 8 and 9 the corresponding time
constants are 29, 12 and 12 seconds respectively. This suggests that the
order of the drum model can be reduced. However, as indicated in the
previous section the dynamics of the steam-water mixture is essential
for the non-minimum phase responses of drum level and cannot be neg=
lected. Then it remains the state variables describing mean temperature



of riser steel masses and drum liquid temperature. It seems possible to
neglect both these dynamics. The first one can be neglected without
changing the structure of the drum model. Also in the previous chapter

the eigenvalues of a state space model of the drum system adjusted to
measurements was compared to those of an initial model obtained from
construction data. It was found that the eigenvalue associated with the
mean temperature of riser tubes was decreased with roughly a factor 10
and the corresponding time constant then equals 3 seconds. If drum liquid
is assumed to be at saturation state this is a more drastic change and could
affect the dynamics of the well behaving drum model analysed here.

The transfer function relating drum pressure to control valve position

is also dominated by the modes 4 and 5 defined in Table 3. 2. The gain

of other modes maximally equals 5 % of the gain of these modes. The
parameters of the maximum likelihood model were given in Table 3.5 in
Chapter 5. This table shows that the gain of the fastest of the three modes
is very small compared to the total gain and the order of dominating dy-
namics of both models coincide.

Table 3.1 shows that steady state gains of drum pressure loops, estimated
from measurements and computed from physical equations, agree very
well,

Active power

The third order transfer functions which relate active power to fuel flow
and control valve position are both dominated by the modes 4, 5 and 2
where mode No. 12 is associated with the reheater of the boiler. According
to measurements first and second order dynamics are sufficient and the
parameters are given in Tables 3,8 and 3,10 in Chapter 5. The single
time constant in Table 3.8 in Chapter 5 is of the expected order of magni-
tude.

The continuous equivalent of the maximum likelihood model with control
valve position as input is

1 1
T+17s ~ 2% T3 3335

L(s) =1.1+0.7 (3.3)

Y,

and the modal expansion of the ninth order construction data model gives
i




1 1

G _(5=19+1.0——"—— =2.9 (3. 4)
2 2
CcD 1+ 436s 1+20Ts + T s
where
T =178
£ =0.856

and the other terms are neglected. The fast first order dynamics in the
maximum likelihood model is due to the large steam volumes in reheater,
feed and exhaust pipes for turbines. The dynamics of these volumes

were neglected when deriving the construction data model. However,

the sum of the gains of the first two terms in (3. 3) agree well with the
gain of the direct connection between input and output in (3.4).

The steady state gains of the maximum likelihood models differ consider-
ably from those of the model from construction data. Theoretically the
gains of the construction data models are expected and quite reliable.

The gain estimates produced by the M. L. method is uncertain for two
reasons, The dynamics include a large time constant, which means,

that even rather small uncertainties in the coefficients of the A¥*-polyno-
mial of the M. L. model might give poor gain estimates. Further, the
experiments were not specially designed to give accurate estimates of
the steady state gain.

Drum level

Great difficulties were recognized when modelling the drum level loops
with data from Exps. A and E. The origin of these difficulties is that
the feedwater flow was changed only a couple of times and that the feed-
water temperature varied according to the changing feedwater, fuel and
steam flows.

The responses of the deterministic maximum likelihood models agree

well with the responses of the deterministic state space model discussed
in the previous chapter. Thus also the models adjusted to measurements
give drum level responses with the same characteristics as those of the
ninth order model from construction data. This clearly suggests, that the
measured drum level responses cannot be explained by the phenomena
included in the models. Using physical arguments presented in the previous
section we conclude that drum level responses of the construction data
model will be improved by including a2 dynamic model of the economiser.



The non=minimum phase characteristics of the drum system responsces
are improved after adjustment to measurements and agree well with
measurements with respect to amplitude and duration. The physical
cause for this behaviour is thus present in the model equations and will
produce realistic constraints when designing the regulator.

Steam temperature before control valve

Among the steam temperatures available for comparison, the steam
temperature before the control valve was chosen, since it is an essential
controlled variable.

The figures given in Table 3.1 show that the superheaters, which are
distributed parameter systems, are modelled with only second order
models when using the maximum likelihood method. This strongly supports
the earlier stated opinion that a higher order approximation of super-
heaters does not considerably improve model properties. The fourth

order models are the dominating dynamics of the construction data

model and are in all cases dominated by the modes 4, 5, 6 and 7 as
defined in Table 3.2. The eigenvalues 6 and 7 are associated with the
second and third superheaters.

The theoretically calculated gains and the gains estimated from measure~
ments agree reasonably well except for the loop, steam temperature -
attemperator flow 2. However, this loop is quite simple and the calculated
gain is probably a good approximation,

3.2 One-Stép Ahead Prediction Errors

For control purposes a possible measure of the goodness of the used
models is the one-step ahead prediction error. In Table 3.3 the standard
deviation of this error for some maximum likelihood models as well as
for the construction data models is given. The prediction errors for the
construction data model are computed using a reduced order model.

The standard deviations of the prediction errors of the two types of
models differ generally with a factor 2-5. There are three exceptions
which are the drum level errors and one steam temperature error,

The magnitude of drum ;level errors of the construction data model con-
firms the conclusion that feedwater temperature should be modelled. The
large difference in steam temperature error is partly due to the fact that
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only the last 240 points were used in the maximum likelihood identifica-
tion while the prediction error of the construction data model was based
on the entire time series.

Compared to a model, where parameters have been determined in order
to minimize the sum of prediction errors, with respect to the recorded
data sequences, the errors of the construction data model are quite large.
However, in most cases these errors are acceptable small, and in some
cases even very small,

4, Conclusions and Recommendations

In this section we will use the discussion of good fit and discrepancies

of the construction data model responses compared to measurements and
results of identification to summarize the validity of diffferent approxima-
tions. Also we will indicate possible extensions to improve on model
properties.,

The construction data model has only been applied and compared to one
specific boiler in this work. This obviously limits the generality of

the conclusions drawn. However, even if e.g. attemperators, number
of superheaters, type of heat transfer, sensors, actuators and the
geometric lay-out of the boiler may differ considerably from one drum
type boiler to another the gross dynamics included in the derived model
is governed by the same equations in all cases,

The discussion in previous sections shows that drum pressure loops
behave very well in all respects. Active power loops perform reasonably
well. Still active power heavily depends on how well steam flow responses
are predicted. In this respect the construction data model does not show
very good performance, Steam temperature loops are in most cases good
and the behaviour can be accepted. The modelling of drum level dynamics
is bad but the discussion above has clearly explained the reasons for this.
However, the non-minimum phase responses to control valve position
perturbations is a property of the model.

The following important assumptions have been verified and can be
recommended as an initial set of approximations

|
= drum model structure is sufficient,

= a l:st order approximation of superheaters and reheater is sufficient,




-  steam dynamics can be neglected,

~  static models are sufficient for turbines and attemperators.

The evaluation of the construction data model has also indicated that
the model can be significantly improved by

-~ including a model of the economiser,

- a static calculation of gas temperature distribution along the
combustion gas path,

- careful treatment of the pressure distribution along steam path
and across turbines.

The first extension means the introduction of a new state variable
namely a mean temperature for the economiser steel masses. The
increased model complexity is well motivated. A more realistic treat-
ment of combustion gas temperatures will probably improve steam
temperature responses to fuel flow perturbations, The last recommen-
dation above merely points out that model prediction of steam flow is
very essential since it both affects steam temperatures and active power,

A possible further simplification of the presented model is
- neglect heat capacity of riser masses.
“This has been indicated by both the maximum likelihood identification

in Chapter 5 and the estimation of parameters in state space models in
Chapter 6.
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PRINT 1034,PKY
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2752 K=u

2708 V0 Tu Iz=1ed

2772 IF (XROOTR(I)) 70070075

278% 75 r=h+l

279« XROOT(K)=XROOTR(I)

2bus 70 CONTINUE

2b8l» LF(K=1) 80,85980

202 Bl KUFSb

28349 60 TO 999

26k 85 CONTIWUE




2008 [

2oue ¢ Cu PUTE whis PRIGT STEASY STATE VALUES

2ole <

2oue wSLH/ (U2 AROUT (1)~ ])

doye VLS Lo/ (1.0exXROUT(1)422)

29y vEr 2L L e XKOUT L) +Ce

2940 MVEZTo=Tw

29¢ ¢ Phu=n‘(BLTu‘KNOvr(l)‘(HWS'HFN)/ﬂVw-(HHS-HN)/AVG)/(HSS-“FH)
2998 ALZ=PR4rAv ]

294 e WIZWEHUE TASRRO0T (1) 2w

295 nbaZad

29ue FPROZUR/{TR=T5) %e R

297 FMZHta S+ BETASXRODT (1) #jqp.

29be HAYZHaSEXRUOT (1) 2

29Y9» SV(1)=XRuuT (1)

Suue Svi2i=w

3ule SVIdI=LE

Suege V(4 Z0E M

3uae SVI(5)=Phy

Juue V(b)) zwt

Jube IV(T)aWs

Juobe SV (8)=PKS

3ui= SV{Y)IaNm

Juye DVI(LU)=HMm 4

JUye LFCIPKRINT) Blebarel

3lue &Y PRI Borxq0OTL)

Sile 86 FOSAT/ /0 28H M AL VALUE OF STEAM QUALITYs(15.90/7)

Jige PRINT 9004

3100 90 rORMAT (ol TUTAL ASS FLUWPISXeEL5.5)

314 PRI 16l 2k

31Hse LOL1 + ORMAT (3UH OUTLET UENSITY OF STEA“=WATER¢/0¢BH MIXTUREY23XPELS05)
RITYY PRINT LogeobEM

317« lU2 FOKMAT(28H MEAN DeNSITY OF STEAM=WATER /2 8H MIXTURE»23X¢£1565)
Jlue PRINT 950 PKU4

3lys YS FORMAT (24t CONSTALY OF EVAPORATION» 7XeE 15,5)

Secue FRINT 10vewk

3cie LU0 FURMAT(22H EVAPOR,TION MASS FLOWI9XeE15.5)

PP PRI 100euS

J2de 105 FORKAT (Lot QUTLET STEAM FLOW#13X9715,.5)

ey PRINT 91ePKS

325 91 FURMATU(31H HEAT TIKANSFER COEFFICIENT FROMo/s27H RISER TUJES TO STE
3cbe 1AM=WATER? /18H MIXTURE»23X0E15,.5)

327= PRINT 929H4

3zbr 92 +OKMAT(27H OUTLET ENTHALPY OF MIXTUREs/+15H IN RISER TUBESv16X2ELS
RPLT 1¢9)

33ue PHINT 103r11MM

331 1U3 FORMAT(25H MEAN EnTHALPY OF MIXTUREs/s1SH IN RISER TUBES#16X+1ELS.5
3a¢e 1)

RERTY <

334« Cc ALL STEADY STATE VALUES KNOWN,

RETIYY [«

LETY C

3370 < The ELEMENTS OF M. TRIX AA IS CALCULATED

Jobe C

339 46 LU Quu I=1+9

I4uae vV 20U J=1017

J4de 2u0 AA(1+9)=0.0

Juce AVASUEW=LESS




3lede
Juye
Subs
ALY
Ju7e
Jupe
duYe
3bue
3ok
Jbce
309
LETYY
3bhe
3bue
357+
3bos
3bys»
Joys
36L ¢
Jbes
Jode
Jou s
Sobe
Jou*
3u7s
Joox
Jo9s
3Tus
371e
37¢+
373s
37ue
375+
3702
3772
374
379%
RETVEY
Jbie
Joes
383
E1-TY
Joba
Jéoe
3b7=2
Joos
349
39y
394
39¢e
3932
I94
395s
AT
397e
3944
399s
40ye

JWH=Le bt ThoavUsX, OUT(1)/LESS

AVOSALUG (AVD)

AVTSLe/ VS

MWezLEwr Ut o

AVI0ZalsaliieOF

AV1IL1Zle=pE TASXRCOI(L)

AVIODSULTARXROOT (L) eAVY

AR(L1r 1) S (AVIRAVE/ (BETASXKOOT (1) #AVEEAVL ) =AVI2AVT/ (DESS»AVE) ) #PK2
AntlrL)ZUEA®AVT /X 0OT (1) =LEWSDESS*AVE/ (RETABXRUOT (1) 2XK0OT (1) #aVY)
AA(LPLU)IZ 1/ LAROALRL)

AA{LeLS)==AA(Lr 1Y)

Anl2en) Tt ((blavew)/ (DEPDE) =(XSIaWeuw)/(2.#AV16AVY) +ALR1)2AA(L01) /PR
lé-(((FktuLR)/bR&U-l)O(Mtw'uETA*XPcoT(l))/(AVZ#DESS‘DES&)))‘PKZ
AR(2010)S (310400 / (LERDE) =XSIoHak/ (2. 8AV1SAVI) +ALR1)9AA(1¢5) ¢ (B13DE
IMs2e /UE+UL1/AV2) Bu W]
AAL20LU)Z(13122.9DLM/DE402/AV2)%4/LE

AA(2¢15)S( (107, VE=XSI2DENM/ (AVLISDLY) ) /DEWSAL22. )84
AA(I91T7)==1 o/ (AL S ALRLIADEMBHE)
An{302)Z(PR3=XR0O0T (1) 2{PK3=PKI) ) /tip

AA(3eb)=1,

AR(3r0)==AA(3017) sa*(PRI=BETASXROOT (1) 2 (PK3=PKI))
AA(3r8)zAA(3e1T) 2. 9PKe

AA(3910)=BETAR®Y/AVLO
AA(3r34)2=(1.=BE T, ) e XRCOT(1}/AVLO
AAC3P15)SAA(3017) 2 (Hi=1MM)
AA(458)==3.2PKSe(IR=TS)2%2

AA(4rD)Z=nA L D)6’ R]L

WAL lTIZ1

AA(Se4)=1,

AA(DrL1)==1e/ (RMASSHPKE)

AA(Se1T)E=AA(DY 1)

AA(6r2)RAUREDEY

AA (60 3) TAMASSAPKH/HW

AA(BoL) == (AVLIL 22K 3=KE *PKI) /Hi

AA(61 D) ZaaPKO/HY

AA(6e10)SweHUSeZETA/Hu

AA(6212)==HF d/HW

AA (69 LU)Z=AVLLEHWS/HY

AALOYL5)=L.

AA (69 16)ZHSS/HY

AA(Ti2)=AA(602)

AA(T¢10)=W=BETA

AA(Te12)==1,

AA(T21b)==AV1]

AA(TeLS)=1,

AA(Te16)=1.

AA({BoL)Z1.

AA(B213)21./(VSsPr2)

AL (Be2)==ADR2DESS2AA(B13)
AA(B910)==HETA®W®AA(8,13)
AA(Br14)S=3ETAZXRLOT(1)5AA(Be13)
AA(Br16)5=AA(8913)

AA(Yrb) =PRYEPKT

AA(9¢8)==PKY

WAL 16) =1,

IF CIPRINT) 20502100205

205 PRINT 211
211 FORMaT{2(/)030H MATRIX AAe/)




4ule
Yuge
4yUde
buhe
LTTEYY
L1
407
4yBe
4yYe
Qlys
Yihe
Bige
413s

2ul
170
203
175
2u2

210
999

v 22Ul IR1e9

PRILT 2020 (AA(TI»J)0d=100)
FRENT 17V

ForRmal (/)

w203 I=109

PRINT 2020 (RACI s J)oJR7012)
PRINT 17u

w0 175 1219

PRINT 2020 (hA(I¢J) 0 J313017)
FOLMAT (62010 8)

CONTInUE

RE TUKN

ENu




APPENDIX B.

Drum System

Resonable numerical values of the constant ;, ..., §, are used in the
expressions for the coefficients.
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Attemperator

Indices 1 and 2 refer to the inlet and outlet of the attemperator.

a; = mschz ap = hc
-1
a.=—m C 38
2~ Ps2%m2 .
3,9 =
ag==hy 80=1
=1
. - . 211
4 sl pl 0 = -1
12
= = = 2
a5 = " M1%71 | 213 = 2K oMy
a- =



Control Valve

Indices 1 and 2 refer to the inlet and outlet of the control valve.
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APPENDIX C

Numerical values of the matrices A, B, C and D of the linearized
boiler-turbine model. The matrices are valid for 90 % of full load of
the Oresundsverket power plant unit P16-G16, Steady state values
of state variables are

x1 142,5 bar
x2 0 m

x3 320 °¢C
X, 450 °C
x5 0,115

x6 480 °C
X, 515 °C
x8 570 °C
x9 570 °C

and steady state values of inputs are

uy 9.55 kg/s

u, 119.96 kg/s (equals drum outlet steam flow)
ug 3.94 kg/s

uy 0.84 kg/s

u, 100 %
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APPENDIX D.

Symbols used in Chapter 4

=

total length of downcomer tubes [m]

Lj 1 length of one downcomer tube [m]

L, total length of riser tubes [m]

Lrl length of one riser tube [m]

Ay total flow area of downcomer tubes [mzj

Ar total flow area of riser tubes [m2]

AV opening area of control valve [mzj

D d total diameter of downcomer tubes [m]

Dr total diameter of riser tubes [m]

Mr mass of riser tubes [kg]

MW mass of drum liquid [kg]

M mass of superheater tubes [kg]

MS mass of steam in superheaters [kg]

VS volume of vapor phase in drum [m3]

Qg heat flow from gases to riser walls [kJ/s]

Qr heat flow from riser walls to steam-water mixture in
riser tubes [kJ/s]

ng heat flow from gases to superheater tubes [kJ/s]

Qms heat flow from superheater tubes to steam [kJ/s]

P, density of drum liquid [kg/m3]

o density of saturated steam [kg/m3]

pm mean %ensity of steam-water mixture in the riser tubes
[kg/m*] ‘

po density of steam—{’vater mixture at the outlet of the

risers [kg/m3]

R constant of ideal gas law
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o
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drum liquid temperature [°C]
riser tube temperature [°C]
saturation temperature [°C]
superheater tube temperature [°C]
drum liquid enthalphy [kJ/kg®]
saturated liquid enthalpy [kd/kg®]
saturated steam enthalpy [kJ/kg]
enthalpy of evaporation [kJ/kg]
feedwater enthalpy [kJ /kg]

mean enthalpy of steam=-water mixture in risers [kJ/kg]
steam enthalpy [kJ/kg)

coolant water enthalpy [kJ/kg]

enthalpy of steam~-water mixture at the outlet of the
risers [kJ/kg]

downcomer mass flow [kg/s]

mass flow at the outlet of risers [kg/s]
steam flow [kg/s]

evaporation mass flow [kg/s]

feedwater flow [kg/s]

, coolant flow in attemperator [kg/s]

fuel flow [kg/s]

drum pressure [bar]

mud drum pressure [ bar]

steam pressure [ bar]

active power of H. P. turbine [kW]

active power of L, P, turbine [ kW]

downcomer flow velocity [m/ s]

riser flovg velocity at the outlet of risers [m/s]
enthropy ‘?[kJ /kg]

specific volume of steam [m3/kg]

drum liquid level [ m]




length coordinate
steam quality at the outlet of risers

mean value of steam quality

Constants

NO0g

b
o

=

2
acceleration due to gravity [m/s"]

temperature-pressure proportional constant at saturation
state

density-pressure proportional constant at saturation state

water enthalpy-pressure proportional constant at saturation
state

evaporation constant

heat transfer coefficient from riser walls to steam-water
mixture

pressure drop proportional constants
heat transfer coefficient from superheater tubes to steam
proportional constant relating heat flow to fuel flow

vapor enthalpy-pressure proportional constant of saturation
state

pressﬁre drop proportional constant for valve equation
pressure drop proportional éonstant for turbine

heat capacitance for drum liquid [kJ/kg °C]

heat capacitance for riser tubes [kJ/kgC]

heat capacitance for superheater tubes [kJ/kg ©C]
partial derivatives of h (p, T)

partial derivatives of h (s,p)

partial derivatives of s(p, T)

energy loss coefficient for downcomer flow

energy loss coefficient for riser flow

energy loss coefficient for entrance and exit losses




Index

g<TmnRoB 3RO RO
o,

-
Do

loss factor
turbine efficiency

constant in turbine mass flow equation

coolant

drum or downcomer
evaporation
feedwater
superheater material
mud drum

section number n
riser exit

riser

steam or saturated
turbine or temperature
valve

water

inlet, outlet
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