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ABSTRACT

The sampling and analysis of reactive compounds in aerosols pre-
sent a challenging problem in the field of industrial hygiene. The
use of reagents to transform the reactive compounds to stable
forms, suitable for instrumental chemical analysis, is often neces-
sary. It is thereby important that the reactive compounds are
transferred to stable forms before reaction with moisture and
other sampled contaminants occur. A specific problem with sub-
micrometer particles is that methods based on inertial collection
of these particles into liquid reagents have poor collection effi-
ciencies due to the low mass of the sub-micrometer particles.

A device with which a reagent can be vaporised and then con-
densed onto sub-micrometer airborne particles, prior to the col-
lection of them, has been constructed and tested for di-n-buty-
lamine that is a suitable reagent when determining airborne iso-
cyanates. The results show that the reagent can be condensed
onto sub-micrometer particles so that the single particles are
embedded in reagent droplets. Typical mass ratios between
reagent and particle that can be achieved in each droplet are in
the range 10%-10°. This minimises the risk of chemical changes
due to moisture and other components in sampling/analysis of
reactive components in aerosols prior to the derivatisation. The
growth of the sub-micrometer particles to 5-10 pm facilitates the
collection with techniques based on inertial impaction.
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INTRODUCTION

Today there is an increasing concern
about the indoor air quality in industrial,
office and home environments. Reactive
and irritating compounds in the air are
important constituents to consider in
health effect assessments. There have
been many investigations of reactive low
molecular weight compounds like form-
aldehyde, but for reactive compounds
that partitions between gas and particle
phase there are still several methodologi-
cal problems (Soderholm 1995).

In order to analyse reactive com-
pounds in the environment, they nor-
mally have to be transferred to a stable
form as soon as possible after sampling.
The most commonly used technique for
this process is called derivatisation, where
the reactive compound reacts with a spe-
cific reagent to a stable derivative.
Sources of errors from the derivatisation
process are for example the occurrence of
reactions with other compounds in the
sampled aerosol and poor reagent trans-
port into particles collected on a samp-
ling substrate. In addition, low collec-
tion efficiencies for sub-micrometer par-
ticles when using standard techniques as
sorbent tubes and impingers can under-
estimate exposures. (ACGIH 1995,
Spanne 1999). Sub-micrometer parti-
cles have too low mass to be sampled
with conventional inertial techniques
and often the particles carrying most of
the mass have too low diffusivity to be
collected with devices based on collec-
tion by thermal diffusion.

Thermal degradation products of
polyurethane in workplace air (Karlsson
et al. 1998) constitute typical reactive
pollutants for which there are a need for
improvements of sampling and analyti-

cal techniques. Many types of hazardous
isocyanates in both gas phase and in sub-
micrometer particles are emitted when
polyurethane is heated. The condensa-
tion device presented here was devel-
oped initially with a focus on that par-
ticular problem.

The purpose of this work was to
develop and evaluate a method capable
of supplying a reagent to particles prior
to collection and thereby, in addition to
the immediate start of the derivatisation
reaction, increase their size so that they
easily can be collected with inertial par-
ticle collectors. This procedure min-
imise the influence of sampling on the
chemical composition in the particles
before the derivatisation reaction has
taken place. Furthermore, this increase
the collection efficiency for sub-micro-
meter particles compared with passing
the particles directly through an imp-
inger, which is a standard method for
collecting particles into liquid reagents.

DESIGN OF THE DEVICE
A device facilitating sampling and
derivatisation of reactive compounds in
sub-micrometer particles was developed,
where a derivatisation reagent is sup-
plied to the particles before collection.
The device presents a method to supply
a derivatisation reagent directly to parti-
cles in an aerosol.

The evaporation-condensation devi-
ce is shown in Figure 1. It works as the
corresponding part of a conductive-
cooling-type condensation particle
counter (Willeke and Baron 1993). The
device consists of a heated evaporation
chamber (B) and a condensation cham-
ber (C), which is held at a lower tem-
perature. In the evaporation chamber,
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a) Photograph of a working prototype of the condensation device, stripped of its insulation.
A: aerosol inlet, B: evaporation chamber with a resistive heater attached o the top, C: con-
densation chamber, D: heat sink of the Peltier element cooling the condensation chamber,

E: aerosol outlet.

b) Schematic diagram of the same condensation device. The aerosol passes info an inlef
(A), through the evaporation chamber (B) that is covered with a wick (F) to which the liquid
reagent is supplied from a reagent reservoir (G), and then into the condensation tubes (C).

the walls are covered with a wick (F),
filled with the liquid reagent. The wick
is supplied from a reagent reservoir (G).
Air is passed into the device through an
inlet (A) and then through the evapora-
tion chamber where it is saturated with
reagent, which vaporises from the wick.
The amount of reagent vapour trans-
ferred to the air depends on the temper-
ature of the heated saturation chamber,
the flow rate and the vapour pressure of
the reagent. Air and vapour are trans-
ported to the condensation chamber
where the air is supersaturated with
reagent as the temperature decreases.
The level of super-saturation that can be
achieved depends mainly on the flow
rate and the temperature difference
between saturator and condenser. These
temperatures can be adjusted and held
constant by electronic control units.

When sampled aerosol is passed into
the device, the aerosol particles are
mixed with the vapour in the evapora- ,I
tion chamber. The aerosol, now with
reagent vapour added to it, then enters
the cooled condensation chamber where
reagent vapour condenses on the parti-
cles. The particles are thereby individu-
ally embedded in reagent and grow in
size so a visible droplet cloud is emitted.
The droplets can easily be collected in
for example an impinger or impactor or
on a filter.

Dibutylamine (DBA) has been
found as a suitable reagent for the deter-
mination of isocyanates in airborne par-
ticles (Spanne 1996). As there is a need
to determine airborne isocyanates in dif-
ferent environments in order to avoid
exposures giving rise to adverse health
effects, dibutylamine was chosen as the
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Figure 2.

Experimental setup for the characterisation
of the device with dibutylameine as
reagent.

reagent to initially be evaluated in the
device.

MATERIALS AND METHODS
In order to evaluate the device, it was
tested in an experimental set-up, shown
in Figure 2. A fluorescein test aerosol
was generated using an nebulizer
(Atomizer model 3076; TSI Inc., St
Paul, MN, USA) from a saturated fluo-
rescein solution in acetone, diluted
1:100 with ethanol. The test aerosol is
electrically neutralized with a 10 mCi
Kr-85 B source. The size distribution
and concentration of the original aerosol
was measured with a Scanning Mobility
Particle Sizer model 3934, consisting of
an Electrostatic Classifier model 3071
and a Condensation Particle Counter
model 3022A (TSI Inc., St. Paul, MN,
USA). The size distribution of the
enlarged particles from the condensa-
tion sampler was measured with a
Fraunhofer diffraction instrument
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(Mastersizer S with a 300 mm lens;
Malvern Instruments Ltd., Malvern,
UK).

All chemicals used were of technical
grade and fluorescein, was obtained from
Sigma-Aldrich, Steinhem, Germany.

The saturator in the condensation
device was held at 52°C and the con-
densation tubes at 10°C .

Samples of the test acrosol were taken
using a 2-stage single-jet impactor with
jet nozzle diameters of 2.2 and 1.0 mm,
resulting in a 50 % particle cut-off dia-
meter of 3.4 and 1.0 pm, respectively.
The sample flow rate was 1.5 1 min™.
Teflon filters (Zefluotr™ supported
PTFE, pore size 2 pm; Gelman
Sciences, Ann Arbor, Michigan, USA)
were used on the impaction plates and
for the final filter. The fluorescein was
extracted from the filters with 3 ml
ethanol and measured with a fluoro-
merter (model TD-700; Turner
Designs, Sunnyvale, CA, USA).
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Figure 3.

Particle size distribution of the fluorescein
test aerosol before passing the condensa-
tion device, measured with an SMPS-sys-
tem.
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The size distribution of the generated
fluorescein aerosol was measured with
the SMPS-instrument. The size distrib-
ution of the aerosol used for the tests is
shown in Figure 3.

The size distribution of the droplets
exiting the condensation chamber was
measured with the diffraction instrument
for different flow rates through the de-
vice. The results are shown in Figure 4
and the calculated count median diame-
ters were 5.2, 6.6 and 8.6 ym for 2.1,
1.0 and 0.74 | min’, respectively.

Results from the analysis of the col-
lected particles in the impactor and on
the final filter are shown in Table 1.
After the reagent was condensed onto
the particles, 70 % of the collected
amount of fluorescein was in particles
larger than 3.4 pm and more than
99.3 % was in particles larger than
1 pm.

DiscussioN

The size distribution in Figure 4 is cal-
culated from the volume equivalent
diameter given by the Malvern Master-
sizer S. No relevant concentration data
is given by the instrument, as the mea-
surements were made at the very low
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Figure 4.

Particle size distribution of the droplets with
fluorescein particles and reagent affer pass-
ing the condensation device at three differ-
ent flow rates, measured with a Fraunhofer
diffraction instrument.

end of the instruments concentration
range. Quantitative data was achieved
by impactor measurements. The theo-
retical loss of particles due to diffusion
was 50 % for 1.2 nm particles and 5 %
for 8.1 nm particles (Gormley and
Kennedy 1949).

The temperatures of vaporisation
and condensation were chosen to give a
high supersaturation in order to demon-
strate the feasibility of the method. The
theoretical saturation ratio (partial pres-

Table 1.

Sampling of the fluorescein aerosol with an impactor, before and after passage through the
condensafion device. Samples were taken during 3 minutes at a flow rate of 1.5 | minl.

Results are given in pg fluorescein m3.

Impactor stage no.

Sample 1 {d50=3.4 pm) 2 (d50=1.0 pm) Final filter Sum
After the 10.5 4.3 0.1 14.9
condensation device

Before the 0.7 3.5 25.4 29.6

condensation device
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of litterature data (Lide 1995). As the
homogenous nucleation is not a prob-
lem in this application, a high saturation
ratio can be used.

The Kelvin diameter corresponding
to the theoretical supersaturation in the
condensation chamber was 2.9 nm.

Future work to develop the conden-
sation device should be focused on
examinations of flow rates and super-
saturation ratios in order to minimise
losses and maximise collection efficiency
for suitable collection devices while
maintaining sufficient growth of parti-
cles of the desired size range to be sam-
pled and analysed. The use of a turbu-
lent mixing CPC technique as described
by Mavilev and Wang (2000) might
work particularly well for this applica-
tion as a short residence time will min-
imise diffusion losses.

Furthermore, the device should be
tested for other reagents suitable for
analysis of reactive hazardous air pollu-
tants.

CONCLUSIONS
A condensation device with ability to
transfer the reagent dibutylamine to sub-
micrometer particles was constructed.
The use of the device facilitates an
immediate start of the derivatisation
process and particle collection with iner-
tial samplers.

The ability of the method to transfer
a liquid reagent to airborne particles was
demonstrated. This method increases
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tial devices like impingers and impac-
tors.
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