
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Towards the Integration of Control and Real-Time Scheduling Design

Cervin, Anton

2000

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Cervin, A. (2000). Towards the Integration of Control and Real-Time Scheduling Design. [Licentiate Thesis,
Department of Automatic Control]. Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/e06b2af6-6a91-4df6-9205-b430a462515d

Towards the Integration of
Control and Real-Time

Scheduling Design

Anton Cervin

Department of Automatic Control

Lund Institute of Technology

Lund, Sweden

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden

Document name

LICENTIATE THESIS
Date of issue

May 2000
Document Number

ISRN LUTFD2/TFRT--3226--SE
Author(s)

Anton Cervin
Supervisor

Karl-Erik Årzén
Bo Bernhardsson

Sponsoring organisation

ARTES/SSF
Title and subtitle

Towards the Integration of Control and Real-Time Scheduling Design

Abstract

The thesis deals with scheduler and controller co-design for real-time control systems. The overall goal
is higher resource utilization and better control performance. One goal is to minimize the performance
loss due to jitter and control delays. Another goal is to relax the nominal requirements on hard deadlines
and fixed worst-case execution times. A third goal is to provide a co-simulation environment for real-time
control systems.

Sub-task scheduling of the two main parts of a control algorithm is investigated. A heuristic, iterative
deadline-assignment algorithm is given that attempts to minimize the computational delay for a set of
control tasks.

A simulator for co-design of real-time control systems is presented. It facilitates simultaneous simulation
of real-time task execution and continuous plant dynamics. The simulator makes it possible to evalu-
ate the true, timely behavior of control algorithms, and to evaluate scheduling policies from a control
performance perspective.

A feedback scheduler for control tasks with varying execution times is developed. Using a combination
of feedback and feedforward, the feedback scheduler attempts to keep the CPU utilization at the desired
level by manipulating the sampling periods of the controllers. A case-study with a set of hybrid control
tasks for a set of double-tank processes is presented.

Key words

Real-Time Control, Scheduling, Co-Design, Deadlines, Performance, Simulation, Feedback

Classi�cation system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

0280–5316
ISBN

Language

English
Number of pages

152
Security classi�cation

Recipient's notes

The report may be ordered from the Department of Automatic Control or borrowed through:

University Library 2, Box 3, SE-221 00 Lund, Sweden

Fax +46 46 222 4422 E-mail ub2@ub2.lu.se

Towards the Integration of
Control and Real-Time

Scheduling Design

Anton Cervin

Department of Automatic Control
Lund Institute of Technology

Lund, May 2000

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 LUND
Sweden

E-mail: anton@control.lth.se
WWW: http://www.control.lth.se/˜anton

ISSN 0280–5316
ISRN LUTFD2/TFRT--3226--SE

c&2000 by Anton Cervin. All rights reserved.
Printed in Sweden by Universitetstryckeriet,
Lund University, Lund 2000

Contents

Acknowledgments . 7

Introduction . 9
1. Background and Motivation 9
2. Outline, Contributions, and Related Publications 10
3. Deadlines in Real-Time Control Systems 13
4. Inverted Pendulum Experiments 23
5. Future Work . 32
6. References . 34

1. Towards the Integration of Control and Real-Time Schedul-
ing Design . 37
1. Introduction . 38
2. Real-Time Scheduling Theory 42
3. Sampled-Data Control Theory 47
4. Timing in Simple Control Loops 51
5. Flexible and Adaptive Scheduling 63
6. Research Issues . 73
7. Summary . 82
8. References . 82

2. Improved Scheduling of Control Tasks 93
1. Introduction . 94
2. Periodic Sampling . 96
3. Scheduling . 97
4. Delay Compensation . 101
5. An Example . 102

5

Contents

6. Conclusions . 109
7. Acknowledgments . 109
8. References . 110

3. A Matlab Toolbox for Real-Time and Control Systems
Co-Design . 113
1. Introduction . 114
2. The Basic Idea . 116
3. The Simulation Model . 117
4. Using the Simulator . 121
5. A Co-Design Example . 126
6. Simulation Features . 129
7. Conclusions . 132
8. Acknowledgments . 132
9. References . 133

4. Feedback Scheduling of Control Tasks 135
1. Introduction . 136
2. A Hybrid Controller . 139
3. Feedback Scheduling Example 142
4. Conclusions . 149
5. References . 150

6

Acknowledgments

Acknowledgments

Starting my graduate studies two years ago, I had the great advantage
of joining a fresh, exciting, and well-defined research project, where
several interesting problems were just waiting to be mined.

First, of course, I would like to thank my supervisor Karl-Erik
Årzén. He, together with Klas Nilsson and Ola Dahl, wrote the original
proposal for the project “Integrated Control and Scheduling”. I admire
his efficiency and his sound attitude towards research and work in
general.

Johan Eker’s input to this project cannot be overstated. Believe it
or not, but I do enjoy working with him, and I look forward to further
collaborative efforts.

The ideas on feedback scheduling were originally the brainchild of
Lui Sha. I got my basic training in real-time systems from him when
I spent two months at the Software Engineering Institute, Carnegie
Mellon University, in the summer of 1998. I would also like to extend
my gratitude to Danbing Seto.

Everybody at the department has been most helpful and friendly!
My co-supervisor Bo Bernhardsson has provided several valuable com-
ments. Karl Johan Åström lured me into the field of Automatic Control
and encouraged me to become a graduate student.

This project is a collaboration with the Department of Computer
Science, Lund Institute of Technology. It is a pleasure to work together
with Patrik Persson and Klas Nilsson.

This work has been sponsored by ARTES (A network for Real-Time
research and graduate Education in Sweden), which is a research pro-
gramme under SSF (Swedish Foundation for Strategic Research). A
travel grant from the Royal Physiographic Society is also gratefully
acknowledged.

Finally, I would like to thank my wife Anna for her encouragement,
support, and love.

Anton

7

Acknowledgments

8

Introduction

1. Background and Motivation

Real-time control plays an important part in modern technology. For
example, engine management systems for cars increasingly rely on
real-time computations and feedback control to improve performance,
reduce fuel consumption, and minimize the amount of pollutant emis-
sions. At the same time, as the capacity of microcontrollers is increas-
ing and the cost is decreasing, all sorts of functionality is migrating
from hardware to software. A control task may thus be executing in
parallel with several other tasks, including other control tasks. This
puts focus on scheduling, i.e. the choice of which task to execute at a
given time. Since the beginning of the 1970s, the academic interest in
real-time scheduling has been very large. Very little of this work has,
however, focused on control tasks in particular. On the other hand,
digital control theory, with its origin in the 1950s, does not directly
deal with the resource constraints of the computing system. Instead,
it is commonly assumed that the controller executes as a simple loop
in a dedicated computer.

This work aims at getting the best possible control performance
from limited computing resources. To accomplish this goal, integration
of the real-time scheduling design and the control design is neces-
sary. Today, real-time control design is typically a two-step procedure;
control design followed by real-time design. This leads to sub-optimal

9

Introduction

solutions and possibly poor utilization of resources. In an integrated
approach, care can be taken that both control performance and timing
requirements are respected all the way through the implementation.
Integrated design also allows for dynamic solutions where the con-
trollers and the scheduler exchange information during run-time. This
is referred to as feedback scheduling.

This thesis deals with some different aspects of the real-time con-
trol system co-design problem. One goal is to minimize the control
performance loss due to jitter and delays in the real-time system. The
problem is addressed by scheduling the two main parts of a control
algorithm as separate tasks. Another goal is to increase the average
resource utilization and the control performance by relaxing the nom-
inal requirements on hard deadlines and fixed worst-case execution
times. This problem is studied in the context of feedback scheduling
of hybrid control tasks. A third goal is to provide a simulation envi-
ronment for real-time control systems, where it is possible to study
the interaction between the scheduler, the control tasks, and the plant
under control.

2. Outline, Contributions, and Related Publications

The thesis consists of four papers and this introductory chapter. Below,
the contributions of each paper are summarized. References to related
publications are also given.

Paper 1

Årzén, K.-E., A. Cervin, J. Eker, B. Bernhardsson, and L. Sha: “To-
wards the integration of control and real-time scheduling design.”
Submitted for journal publication.

Contributions The paper gives a survey of the state of the art in
the field of integrated control and scheduling. Theory from both fields
is reviewed. Periodic control loops are discussed from both control and
scheduling perspectives. An overview of flexible and adaptive schedul-
ing is given, and control applications with flexible timing needs are
identified. A number of research problems related to co-design of real-
time control systems are outlined.

10

2. Outline, Contributions, and Related Publications

Related Publications

Årzén, K.-E., B. Bernhardsson, J. Eker, A. Cervin, K. Nilsson, P. Pers-
son, and L. Sha: “Integrated control and scheduling.” Report
ISRN LUTFD2/TFRT--7586--SE. Department of Automatic Con-
trol, Lund Institute of Technology, Lund, Sweden, August 1999.

Årzén, K.-E., A. Cervin, J. Eker, and L. Sha: “An introduction to control
and real-time scheduling co-design.” Submitted to the 39th IEEE
Conference on Decision and Control, Sydney, Australia, December
2000.

Paper 2

Cervin, A.: “Improved scheduling of control tasks.” In Proceedings of
the 11th Euromicro Conference on Real-Time Systems, pp. 4–10.
York, UK, June 1999.

Contributions Sub-task scheduling of the two main parts of a con-
trol algorithm, Calculate Output and Update State, is investigated. A
deadline-assignment algorithm is given that attempts to minimize the
computational delay for a set of control tasks in a priority-preemptive
real-time system. The control performance improvements are evalu-
ated by simulations of the scheduler, the controller, and the process.

Paper 3

Eker, J. and A. Cervin: “A Matlab toolbox for real-time and control sys-
tems co-design.” In Proceedings of the 6th International Conference
on Real-Time Computing Systems and Applications, pp. 320–327.
Hong Kong, P.R. China, December 1999.

Contributions A MATLAB/SIMULINK-based simulator for real-time
control systems is presented. It facilitates simultaneous simulation of
real-time task execution and continuous plant dynamics. The simu-
lator makes it possible to evaluate control algorithms from a timing
perspective and scheduling algorithms from a control performance per-
spective. It is particularly well suited for simulation of time-varying
controllers and flexible schedulers.

11

Introduction

Related Publications A reference manual is available:

Cervin, A.: “The real-time control systems simulator—Reference man-
ual.” Report ISRN LUTFD2/TFRT--7592--SE. Department of Au-
tomatic Control, Lund Institute of Technology, Lund, Sweden, April
2000.

The simulator software is available at
http://www.control.lth.se/˜anton/rtkernel

Paper 4

Cervin, A. and J. Eker: “Feedback scheduling of control tasks.”
Submitted to the 39th IEEE Conference on Decision and Control,
Sydney, Australia, December 2000.

Contributions A feedback scheduler for hybrid control tasks with
large variations in their execution time is presented. The paper demon-
strates that feedback and feedforward principles can be used in real-
time scheduling to increase control performance and to avoid CPU
overloads. The solution is based on co-design of the scheduler and the
control tasks.

Related Publications The execution-time properties of a hybrid
controller for a double-tank process are investigated in

Persson, P., A. Cervin, and J. Eker: “Execution-time properties of a hy-
brid controller.” Report ISRN LUTFD2/TFRT--7591--SE. Depart-
ment of Automatic Control, Lund Institute of Technology, Lund,
Sweden, April 2000.

Feedback scheduling is applied to event-based PID controllers in

Årzén, K.-E. and A. Cervin: “A simple event-based PID controller.”
Accepted for publication in Control Engineering Practice.

Outline of Chapter

The rest of this introductory chapter elaborates on some specific topics
in the thesis. Section 3 discusses the notion of deadlines in real-time
control systems. Section 4 presents some control and timing experi-
ments on an inverted pendulum. Section 5 discusses future work, and
Section 6 contains the references.

12

3. Deadlines in Real-Time Control Systems

3. Deadlines in Real-Time Control Systems

This section elaborates on the notion of deadlines in real-time control
systems. It is argued that most controller deadlines are not hard, and
that the consequences of missed deadlines should be evaluated from
a control performance perspective. An example is given that shows
that control performance and scheduling performance (i.e. the ability
to meet deadlines) are completely different things.

Background

Ever since the seminal paper on real-time scheduling theory, [Liu and
Layland, 1973], computer-controlled systems have been used as the
primary example of hard real-time systems. In a hard real-time sys-
tem, the computer responds to periodic or non-periodic events by exe-
cuting tasks that must finish within hard deadlines—or else, the sys-
tem will fail. This description has shaped much of the real-time sys-
tems research during the past thirty years. It is questionable, however,
whether this description really fits the large majority of computer-
controlled systems.

Computer-Controlled Systems The basic structure of a computer-
controlled system is shown in Figure 1. Typically, a controller is im-
plemented as a task that should execute periodically in the computer.
In each period, the controller should sample the process output, y, ex-
ecute the control algorithm, and send the new control signal, u, to the
input of the process. The controller is often designed using sampled-

Process

Clock

A-D D-A

y

u

Algorithm

Figure 1. Overview of a computer-controlled system.

13

Introduction

data control theory, see e.g. [Åström and Wittenmark, 1997], which
assumes that the samples are taken at equidistant points in time.

The performance and stability of the closed-loop system depends not
only on the control algorithm, but also on the actual implementation
and run-time behavior of the controller in the computer system. The
computing hardware, the execution-time properties of the control algo-
rithm, the real-time operating system, the scheduling algorithm, and
the possible network delays all introduce various amounts of delay and
jitter in the control system. In the end, from a control perspective, it
is the actual sampling period (including jitter) and the actual input-
output latency (including jitter) that influence the performance and
stability of the closed-loop system. Further discussion on this is found
in Paper 1, Section 4; and in [Törngren, 1998].

Real-Time Scheduling The purpose of real-time scheduling is to
ensure that the timing requirements of all tasks in the computer are
met. In the basic task model, a task is described by a period T , a dead-
line D, and an execution time C. Here, we focus on dynamic schedul-
ing, where tasks are dynamically dispatched by the real-time operating
system according to a scheduling algorithm. The two main approaches
are fixed-priority scheduling and deadline-driven scheduling.

Schedulability analysis is used to predict, off-line, whether the tim-
ing requirements of all tasks will be met. The analysis is based on
worst-case assumptions about the task execution times, the arrival
pattern of the tasks, etc. For instance, under fixed-priority scheduling,
schedulability is determined by computation of worst-case response
times, R, of the different tasks [Joseph and Pandya, 1986]. The
response-time of a task is defined as the time from its release (i.e.
the beginning of the period) to its completion. All deadlines are guar-
anteed to be met if and only if R ≤ D for all tasks. A more detailed
overview of real-time scheduling is given in Paper 1, Section 2.

Where Do Deadlines Come From?

In the hard real-time scheduling literature, it is often unclear where
the timing constraints—including deadlines—actually come from [Ra-
mamritham, 1996]. The paper [Liu and Layland, 1973] is an exception
to this, however. Assumption (A2) clearly states that “Deadlines con-
sist of run-ability constraints only—i.e. each task must be completed

14

3. Deadlines in Real-Time Control Systems

before the next request occurs.” This implies that D = T for all tasks.
The connection to control theory is then made by mentioning that “Any
control loops closed within the computer must be designed to allow at
least an extra unit sample delay.” Later research has extended the
schedulability analysis to handle the cases D < T and D > T as
well, see e.g. [Tindell et al., 1994] and [Stankovic et al., 1998], but the
origin of the deadlines and their relation to control theory are rarely
mentioned.

Sample

0 D T

Control

Response Time

Latency
Time

Figure 2. Illustration of the relationship between deadline (D), response time,
and input-output latency for a control task. The latency is bounded by the re-
sponse time, which in turn is bounded by the deadline. The task is assumed to
be released at time zero.

From a control perspective, deadlines are primarily used to bound
the input-output latency of the controllers. Figure 2 illustrates the re-
lationship between deadline, response time, and input-output latency
for a control task. Here, it is assumed that the A-D conversion takes
place when the control task starts its execution, and that the D-A con-
version takes place when the task completes its execution. A common
alternative is to sample the process at the beginning of the period. Fur-
thermore, it is common practice to divide the control algorithm into two
parts—Calculate Output and Update State—and send out the control
signal when the first part has completed. Further discussion on this is
found in Paper 1, Section 4; and in Paper 2.

For controlled plants with unstable dynamics, bounded latency is
absolutely necessary to guarantee the stability of the closed-loop sys-
tem. For all plants, bounded latency is necessary to guarantee some
minimum level of control performance. Also, in general, the smaller
the latency can be made, the better control performance and robust-

15

Introduction

ness can be achieved. Thus, typical deadlines assigned to control tasks
(D ≤ T) are often much tighter than what is dictated by pure stability
considerations.

τ1 τDA

Buffer

Figure 3. In fixed-priority scheduling with offsets, a high-priority, dedicated
output task τ DA can be used to minimize the output jitter of control task τ 1.
This enforces a deadline on τ 1.

Deadlines may also be derived from other real-time constraints in
the implementation. For instance, consider the case in Figure 3, where
a dedicated, high-priority output task τDA is used to minimize the out-
put jitter of control task τ1, see [Locke, 1992]. The tasks have the
same period, but τDA is released with a fixed offset O relative to the
release of τ1. A deadline D < O must be assigned to τ1 to ensure
that fresh output data will be available in the buffer when τDA starts
its execution. See [Audsley et al., 1993b] for further details on offset
scheduling. Different control structures, such as synchronized loops,
cascaded loops, etc., may also enforce additional time constraints, see
[Sandström, 1999].

Truly hard deadlines in real-time control systems are studied in
[Shin et al., 1985]. There, hard constraints on the controlled variables
(e.g. physical constraints) are used to derive maximum allowable con-
trol latencies in different regions of the state-space. It is also noted
that the hard deadline may be a random variable due to stochastic
disturbances acting on the process. The approach is extended in [Shin
and Kim, 1992], where the stability of the closed-loop system is also
considered. In the examples given, the hard deadlines are typically
found to be several times longer than the sampling interval. This may
not be so surprising. As pointed out, the sampling period of a controller
is not only chosen to satisfy Shannon’s sampling theorem, but also to
achieve the desired performance. Thus, a controller always has some
degree of robustness against variations in the sampling interval due
to, for instance, missed deadlines.

16

3. Deadlines in Real-Time Control Systems

The True Consequences of Missed Deadlines

The term “to miss a deadline” is used very frequently in the real-time
literature, but the exact implications of the words are very seldom dis-
cussed. Having established that most controller deadlines are not hard,
the next step is to explore the true consequences of missed deadlines.

We consider controllers implemented in real-time environments
that do not explicitly support periodic processes with deadlines. Ada,
occam2, and C/POSIX are examples of real-time languages that lack
such support [Burns and Wellings, 1997]. There, periodic loops are im-
plemented using an absolute-delay timing primitive. The pseudo-code
for a control loop can look something like this:

t = CurrentTime;
LOOP
AD-Conversion;
ControlAlgorithm;
DA-Conversion;
t = t + T;
WaitUntil(t);

END

The only time constraint enforced during run-time is, that the task
will never be released prior to its nominal release time. If the control
task does not meet its design specifications during run-time, e.g. if the
execution time of the control algorithm is larger than the predicted
worst-case execution time, overruns may occur. Which tasks that will
suffer from the overrun, and what the impact on the control perfor-
mance will be, depend on the scheduling algorithm. This is illustrated
by the following example.

EXAMPLE 1—COMPUTER CONTROL OF TWO MECHANICAL SERVOS

Consider the computer-controlled system in Figure 4, where two me-
chanical servos are being controlled by two PD (proportional-deriva-
tive) controllers executing as tasks in a computer. Let each servo be
described by the transfer function

G(s) = 1000
s(s + 1) (1)

17

Introduction

Step2

Step1

1000

s +s2

Servo 2

1000

s +s2

Servo 1

In 1

In 2

In 3

In 4

Out 1

Out 2

Computer

r1

r2

u1

u2 y2

y1

Figure 4. Two mechanical servos are being controlled by two PD controllers
executing as tasks in the computer.

The goal of the control is to make the servo position, y(t), follow the
reference position, r(t), as closely as possible. Every T seconds, the
controller should sample the servo position and the reference position
and calculate a new control signal u(t). The discrete-time PD control
algorithm is given by

P(t) = K(r(t) − y(t)) (2)

D(t) = Td

NT + Td
D(t− T) + N KTd

NT + Td
(y(t − T) − y(t)) (3)

u(t) = P(t) + D(t) (4)

where K and Td are control parameters and N = 100 is a constant.
The controllers are tuned on-line, one by one, to achieve the desired
performance. Controller 1 is assigned the sampling interval T1 = 6 ms
and the parameters K1 = 1 and Td1 = 0.042. Controller 2 has tighter
specifications and is assigned the sampling interval T2 = 4 ms and the
parameters K2 = 1.5 and Td2 = 0.035.

It is assumed that D = T for both tasks. Unfortunately, the execu-
tion time of the control algorithm is longer than anticipated, C = 3 ms.
The requested CPU utilization U is

U = C
T1
+ C

T2
= 1.25 (5)

18

3. Deadlines in Real-Time Control Systems

Since U > 1, the system is overloaded, and no scheduling algorithm
can guarantee that all deadlines will be met.

Rate-Monotonic Scheduling First, the behavior under rate-mono-
tonic (RM) scheduling is investigated. Task 2 is given priority over
Task 1 since T2 < T1. The first part of the resulting schedule, when
both tasks are released at time zero, is shown in Figure 5. Because

Time [ms]

New period Missed deadline ControlSample

15 201050

τ1

τ2

Figure 5. The first part of the schedule under RM scheduling. Task 1 misses
all its deadlines.

of preemption, Task 1 misses all its deadlines. The regularity of the
schedule makes it easy to determine the actual sampling period, T ,
and the actual input-output latency, L, of the controllers. By inspection,
they are found to be constant (jitter-free) and equal to T1 = 12 ms,
L1 = 9 ms, T2 = 4 ms, and L1 = 3 ms. It is these numbers that govern
the closed-loop behavior of the controllers.

The complete real-time system, including the servos, is simulated
using the real-time control systems simulator in Paper 3. The step
responses of the closed-loop systems are displayed in Figure 6. The
performance of Controller 2 is good, as expected. Controller 1, however,
loses stability due to the long sampling period and the long latency,
which the controller has not been designed for. This can also be shown
by applying stability analysis to the resulting closed-loop system. In
this case the analysis would be straight-forward since the resulting
sampling periods and latencies are constant.

19

Introduction

0 0.05 0.1 0.15 0.2

0

0.5

1

Servo position y2 (full), reference r2 (dashed)

Time [s]

0 0.05 0.1 0.15 0.2
−2

−1

0

1

2
Control signal u2

Time [s]

0 0.05 0.1 0.15 0.2

0

0.5

1

Servo position y1 (full), reference r1 (dashed)

Time [s]

0 0.05 0.1 0.15 0.2
−2

−1

0

1

2
Control signal u1

Time [s]

Figure 6. Step responses under RM scheduling for Controller 1 (left) and
Controller 2 (right). Controller 1 loses stability due to the long actual sampling
period and the long actual input-output latency.

Earliest-Deadline-First Scheduling Next, the behavior under
earliest-deadline-first (EDF) scheduling is investigated. The tasks ex-
ecute in the order of their absolute deadlines. Ties can be broken
arbitrarily—assume that Task 1 gets to execute before Task 2 in those
cases. The first part of the resulting schedule, when both tasks are
released at time zero, is shown in Figure 7. After an initial transient,
all deadlines are missed. This is due to the well-known domino effect.
There is no preemption in the resulting schedule so the actual input-
output latency is always equal to L = 3 ms for both controllers. The
actual sampling periods are no longer constant, but they exhibit peri-
odic behavior. By inspection, T1 is found to exhibit the cycle {6, 9} ms
while T2 exhibits the cycle {6, 6, 3} ms.

The step responses of the closed-loop systems are displayed in Fig-
ure 8. The systems are stable and the performance is satisfactory for
both controllers, despite the missed deadlines. The jitter due to the

20

3. Deadlines in Real-Time Control Systems

Time [ms]
151050 20

τ1

τ2

Figure 7. The first part of the schedule under EDF scheduling. After an initial
transient, all deadlines are missed.

varying sampling periods is clearly visible in the control signals.
Again, the behavior of the closed-loop system would be possible to

derive using control theory. The analysis would be more complicated in
this case, however, due to the varying (but cyclic) sampling intervals.

The example shows that control performance and scheduling perfor-
mance are completely different things. It also displays that EDF
scheduling distributes the available computing resources more evenly
in overload situations than RM scheduling does.

The constant overload situation in the example is if course extreme.
The effects of transient overruns on control performance will in general
be much smaller—if at all noticeable.

Conclusions

Relaxing the nominal requirements on hard deadlines in real-time con-
trol systems is motivated from a resource utilization viewpoint. Modern
computing hardware tends to be optimized for high average-case per-
formance rather than guaranteed worst-case performance. Also, many
control algorithms display considerable variations in their execution-
time demands, see Paper 1, Section 6. Taken together, scheduling based
on worst-case execution times and hard deadlines may be infeasible for
a large set of control applications.

Exploring the consequences of overruns is necessary in order to
make the correct co-design trade-offs. For instance, it may be beneficial
to decrease the average period of a controller, and allow it to miss a few

21

Introduction

0 0.05 0.1 0.15 0.2

0

0.5

1

Servo position y2 (full), reference r2 (dashed)

Time [s]

0 0.05 0.1 0.15 0.2
−2

−1

0

1

2
Control signal u2

Time [s]

0 0.05 0.1 0.15 0.2

0

0.5

1

Servo position y1 (full), reference r1 (dashed)

Time [s]

0 0.05 0.1 0.15 0.2
−2

−1

0

1

2
Control signal u1

Time [s]

Figure 8. Step responses under EDF scheduling for Controller 1 (left) and
Controller 2 (right). Both systems are stable despite the fact that, after an
initial transient, all deadlines are missed. The sampling interval jitter is clearly
visible in the control signals.

deadlines, as long as the worst-case latency does not exceed a certain
bound.

In the suggested analysis, the first step is to determine what the ac-
tual sampling period and the actual input-output latency will be for the
different control tasks. These quantities will be random variables in
the general case, depending on the task execution-time distributions,
the scheduling algorithm, the mechanisms in the real-time operating
system, the controller structure, etc. The next step is to determine
what the impact on the control performance will be. For this purpose,
the simulator in Paper 3 can be a useful tool. Application of stochastic
control theory is another alternative. In the end, however, worst-case
analysis will still be necessary to guarantee that the truly hard con-
straints in the control system are not violated.

22

4. Inverted Pendulum Experiments

4. Inverted Pendulum Experiments

Some control and timing experiments on the Furuta pendulum, see
Figure 9, were performed. One purpose was to derive some experi-
mental performance loss functions with respect to sampling interval,
input-output latency, and jitter. Such functions are essential for mak-
ing scheduling trade-offs in the co-design of real-time control systems,
see Section 6 in Paper 1 and the discussion on deadlines in the previ-
ous section. Another purpose was to experimentally verify the control
performance improvements due to the scheduling algorithm given in
Paper 2.

Figure 9. The Furuta pendulum.

The Furuta pendulum process consists of a pendulum attached to
the end of a rotating arm. A motor is used to apply a torque to the
arm, and the purpose is to swing up and stabilize the pendulum in the
upright (inverted) position.

Let ϕ denote the angle of the arm and θ the angle of the pendulum.

23

Introduction

Introduce the state vector

x = [θ θ̇ ϕ ϕ̇]T .

The full state vector is directly measurable on the process. Lineariza-
tion around the upright position gives the continuous-time state-space
description

dx
dt
= Ax + Bu =

0 1 0 0

31.3 0 0 0

0 0 0 1

−0.588 0 0 0

 x +

0

−71.2
0

191

u,

where the control signal u is proportional to the applied torque. Assum-
ing a sampling interval h, a digital state-feedback controller u(kh) =
−Lx(kh) can be designed based on the sampled-data description

x(kh+ h) = Φ(h)x(kh) + Γ(h)u(kh),

where Φ(h) = eAh and Γ(h) = ∫ h
0 eAs Bds.

Experimental Performance Loss Functions

Co-design of real-time control systems requires knowledge about the
relationships between scheduling attributes and controller attributes.
Since the CPU utilization of a controller is directly proportional to its
sampling frequency, the relationship between the sampling interval
and the control performance is of central importance. It is also impor-
tant to know the effects of jitter and delay on the control performance.

Three approaches are possible. First, some loss functions may be
computed analytically. Loss functions with respect to period for an-
other pendulum model have been calculated, see Section 6 in Paper 1
and [Eker et al., 2000]. Second, the loss functions can be obtained by
simulation, for instance using the real-time control systems simulator
in Paper 3. The third option, which is explored here, is to perform ex-
periments on the real process. This has the advantage of capturing the
effects of unmodeled dynamics and disturbances. For instance, friction
can have great impact on the performance.

24

4. Inverted Pendulum Experiments

Controllers for the inverted pendulum were designed using pole
placement. The closed-loop system is specified in terms of the
continuous-time characteristic polynomial

(s2 + 2ω 1ζ 1s+ω 2
1)(s2 + 2ω 2ζ 2s+ω 2

2),

where ω 1 = ω 2 = ω c = 10 rad/s is the desired bandwidth and ζ 1 =
ζ 2 = 0.9 is the desired relative damping.

The performance of the controllers were evaluated in terms of the
variance of the pendulum angle θ in steady-state. In each control ex-
periment, pendulum angle was measured for 30 s. The variance is a
reasonable performance measure for the pendulum process, which is
an unstable system that requires active control. It must be remem-
bered, however, that control design is always multi-objective, and that
it is hard condense the properties of the closed-loop system to a single
number.

The Linux in Control [Blomdell, 1999] experimental real-time plat-
form and MATLAB/SIMULINK with additional IO-blocks were used for
the implementation. An existing SIMULINK controller implementation
[Åkesson, 1999] for the Furuta pendulum was modified to allow sep-
arate timing of the sampling and control actions. The simulator in
Paper 3 could unfortunately not be used for real-time implementation
since it consumes too much computing resources. However, it was used
to generate timing data, i.e. sampling and control instants, for the ex-
periments.

Performance vs Sampling Period The feedback gain vector L
was computed for ten different sampling intervals in the range h =
[5 . . .50] ms. Sampling intervals longer than that were found to be
useless in preliminary experiments. This is also hinted at by the rule
of thumb, see e.g. [Åström and Wittenmark, 1997], that suggests that
the sampling interval should be chosen such that

0.15 < ω ch < 0.5.

Figure 10 shows the measured steady-state variance of the pendu-
lum angle for different sampling periods. The loss function is monoton-
ically increasing which seems very reasonable for an unstable process.

25

Introduction

0 5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−4

h [ms]

V
ar

(θ
)

Pole−placement design, ω=10 rad/s

Figure 10. Measured steady-state variance of the pendulum angle for differ-
ent sampling periods. The loss increases as the period increases.

The loss function also seems convex, which is an assumption that has
been made in some papers when optimizing sampling periods for a set
of control tasks [Seto et al., 1996; Eker et al., 2000]. The results can be
compared to the analytically computed loss function for a pendulum
process shown in Figure 14 (left) in Paper 1, Section 6. It should be
noted, though, that those calculations assumed a second-order model,
a linear-quadratic (LQ) controller, and a performance measure that
included the variance of the control signal as well.

Performance vs Input-Output Latency Scheduling can introduce
delays in a controller that were not anticipated when the controller
was designed. Figure 11 shows the results from an experiment where
the pendulum controller designed for h = 36 ms and zero delay was
subjected to fixed delays ranging from 0 to 28 ms. The performance
loss naturally increases as the delay increases. When the delay ex-
ceeds 24 ms the performance deteriorates completely. Further experi-
ments indicated that jitter in the delay didn’t add significantly to the
performance loss, cf. the discussion on sampling jitter below.

26

4. Inverted Pendulum Experiments

0 5 10 15 20 25 30
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

x 10
−4 Pole−placement design, ω=10 rad/s, h=36 ms

Delay [ms]

V
ar

(θ
)

Figure 11. Measured steady-state variance of the pendulum angle for differ-
ent amounts of input-output latency. The loss increases as the latency increases.
When the latency exceeds 24 ms, the performance deteriorates completely.

Performance vs Sampling Jitter Depending on how the sampling
mechanism is implemented, scheduling may or may not introduce sam-
pling jitter. Let the relative jitter be defined as the maximum difference
between successive sampling intervals relative to the nominal sam-
pling period. Figure 12 shows the results from another experiment on
the h = 36 ms controller with relative sampling jitter in the range from
0 to 180 %. The controller seems quite insensitive to sampling jitter,
as the performance loss only grows slightly when the jitter becomes
very large. This can be explained by the fact that the full state vector
is measurable. Thus, the controller gets correct state information re-
gardless of when the sample is taken. A state observer would be much
more sensitive to sampling jitter, since its computations rely critically
on the assumptions about equidistant samples, see the discussion on
sampling jitter in Paper 1, Section 4.

Improved Scheduling Example and Experimental Evaluation

Some further inverted pendulum experiments were performed to verify
the control performance improvements due to the scheduling algorithm
given in Paper 2.

27

Introduction

0 50 100 150 200
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
x 10

−4

Relative sampling jitter [%]

V
ar

(θ
)

Pole−placement design, ω=10 rad/s, h=36 ms

Figure 12. Measured steady-state variance of the pendulum angle for differ-
ent amounts of sampling jitter. The loss increases only slightly as the relative
jitter becomes very large.

The pseudo-code for a digital controller typically looks like this:

t = CurrentTime;
LOOP
AD-Conversion;
CalculateOutput;
DA-Conversion;
UpdateState;
t := t + h;
WaitUntil(t);

END

In order to minimize the input-output latency of the controller, the
control algorithm is divided into two parts, Calculate Output and Up-
date State, where the execution of Update State can be postponed until
after the D-A conversion.

Paper 2 shows that, given a set of control tasks, scheduling Calcu-
late Output and Update State as separate tasks can reduce the delay
due to preemption in the controllers. The control performance improve-
ments were verified by simulation. The reader is referred to Paper 2
for further background and references.

28

4. Inverted Pendulum Experiments

No dynamic real-time scheduling was actually performed in the
control experiments. Instead, a set of control tasks were first simu-
lated (see Paper 3) using the different scheduling algorithms from the
paper. The timing data (i.e. the sampling instants and the control in-
stants) from one of the tasks was then exported from the simulator
and used as static schedules in the control experiments. The reason
for this somewhat awkward procedure was that the original pendu-
lum controller was implemented in SIMULINK and not as a task in a
real-time operating system.

Now, consider a set of three control tasks (τ1,τ2,τ3) with the sam-
pling periods (h1, h2, h3) = (36, 22, 12) ms. Assume that the inverted
pendulum is to be controlled by τ1. Furthermore, assume that the exe-
cution time of each task is C = 6 ms, and that each task can be divided
into the subtasks Calculate Output and Update State with execution
times CCO = 2 ms and CU S = 4 ms respectively. (These are not actual
execution times but only made-up numbers.) It is assumed that the
A-D converters can be programmed to take samples with perfect peri-
odicity, i.e., there is no sampling jitter. The D-A conversion is assumed
to take place at the very end of the Calculate Output part.

Rate-Monotonic Scheduling First, rate-monotonic scheduling, ig-
noring the sub-tasks, is considered. It is assumed that the deadline of
a task is equal to its period, i.e. D = T (= h). The tasks are assigned
fixed priorities P according to their rates (a high priority number de-
notes a high priority). The task set is summarized below:

T D C P

τ1 36 36 6 1

τ2 22 22 6 2

τ3 12 12 6 3

The worst-case response times, R, are calculated:

T D C P R

τ1 36 36 6 1 36

τ2 22 22 6 2 12

τ3 12 12 6 3 6

29

Introduction

Since R ≤ D for all tasks, the task set is schedulable.
From a control perspective, the input-output latencies of the con-

trollers are important. In particular task τ1 will be preempted a lot,
since it has the lowest priority. The exact distribution of the laten-
cies depends on the execution-time distributions and the phasing of
the tasks. It is assumed that the actual execution times are equal to
the worst-case execution times and that all tasks are released simul-
taneously at time zero. Simulating the system for the duration of the
least common multiple (LCM) of the periods, 396 ms, reveals the de-
lay distribution for τ1 shown in Figure 13. The average delay is 13 ms,
which gives an indication of what performance to be expected from the
pendulum controller, see the loss function in Figure 11.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

Delay [ms]

R
el

at
iv

e
fr

eq
ue

nc
y

Delay distribution, rate−monotonic scheduling

Figure 13. Input-output latency distribution for task τ 1 under rate-monotonic
scheduling. The average delay is 13 ms. An indication of what performance to
expect is given by the loss function in Figure 11.

The timing data for task τ1 was exported from the simulator and
used as a static schedule in the actual pendulum experiment. The
controller ran for 30 s and the pendulum angle variance was found to
be 1.7 ⋅ 10−4.

Improved Scheduling Next, the improved scheduling is consid-
ered. In the analysis, each task τ i is divided into the subtasks τ COi
(Calculate Output) and τ U Si (Update State). The deadlines of the Up-
date State parts are equal to the task periods. The deadlines of the
Calculate Output parts are derived using the deadline assignment al-

30

4. Inverted Pendulum Experiments

gorithm found in Paper 2. First, the Calculate Output parts are as-
signed effective deadlines (i.e. as late deadlines as possible). Then,
deadline-monotonic priorities are assigned to the sub-tasks. We have
the following task set:

T D C P

τ CO1 32 28 2 2

τ U S1 32 32 4 1

τ CO2 22 18 2 4

τ U S2 22 22 4 3

τ CO3 12 8 2 6

τ U S3 12 12 4 5

Next, new deadlines for the Calculate Output parts are derived using
the deadline-assignment algorithm in Paper 2. The deadlines are it-
eratively decreased until the response times converge. The following
table results:

T D C P R

τ CO1 32 6 2 4 6

τ U S1 32 32 4 1 36

τ CO2 22 4 2 5 4

τ U S2 22 22 4 2 20

τ CO3 12 2 2 6 2

τ U S3 12 12 4 3 10

As seen, all Calculate Output parts have been given higher priorities
than the Update State parts. Task τ1 will suffer from less preemption
in its time-critical part and the input-output latency will be decreased.
Simulating the resulting system for the duration of the LCM gives the
delay distribution for τ1 shown in Figure 14. The average delay has
been reduced to 4 ms, and better control performance can be expected,
see Figure 11.

The timing data for task τ1 was exported and used in another pen-
dulum experiment. Running the controller for 30 s, the pendulum angle
variance was now found to be 1.2 ⋅ 10−4.

31

Introduction

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

Delay [ms]

R
el

at
iv

e
fr

eq
ue

nc
y

Delay distribution, improved scheduling

Figure 14. Input-output latency distribution for task τ 1 under improved
scheduling. The average delay is 4 ms, which is much shorter than under rate-
monotonic scheduling, see Figure 13. Better performance can be expected, as
indicated by the loss function in Figure 11.

Conclusions Comparing the control performance measurements, it
is found that improved scheduling could reduce the pendulum variance
by about 30 % compared to rate-monotonic scheduling. For another
controller or another process, the results would have been different.
The improvements can predicted by computing the delay distributions
for the task under the different scheduling policies and then examining
the performance-vs-latency loss function for the controller.

5. Future Work

A number of research topics related to the field of integrated control
and real-time scheduling are highlighted in Paper 1, Section 6. Some
examples of possible future work are outlined here.

Flexible Control and Scheduling There exist a large number of
flexible and adaptive scheduling techniques, e.g. value-based schedul-
ing and scheduling of imprecise calculations. Likewise, many
controllers have flexible and variable timing needs, including model-
predictive controllers and event-based controllers. Are there any direct
connections? Can the scheduling techniques be tailored for control ap-
plications?

32

5. Future Work

Cost Functions and Co-Design In the co-design of real-time con-
trol systems, there exist fundamental trade-offs between the different
task timing attributes: sampling period, input-output latency, and jit-
ter. What are the relationships between these attributes and control
performance? How can knowledge about the relationships be exploited
in the control design and the scheduling design?

One approach is to represent the relationships between timing at-
tributes and control performance by cost functions. Suitable perfor-
mance criteria must be chosen and methods for computing the cost
functions need to be developed.

Feedback Scheduling The feedback scheduling structure suggest-
ed in Paper 4 is only one of many possible. Several other variables
could be communicated between the scheduler and the control tasks.
The scheduler could perform optimization of the control performance
with respect to sampling periods, input-output latencies, and jitter.
How the scheduler and the controllers should be implemented, and
how much resources the scheduler should be allowed to consume, are
some other questions.

Switching Analysis A feedback scheduler may change the sam-
pling frequency of a controller. This can be interpreted as a switch
between different controllers. It is a well-known fact from hybrid sys-
tem theory that switching between two dynamic systems, that each
on its own is stable, may cause instability. Thus, stability analysis for
controllers in feedback-scheduling systems should be investigated. A
related topic could be the development of robust design methods for
such systems.

Simulation The work on the real-time control systems simulator in
Paper 3 will continue. The next version will provide cleaner interfaces
between the control algorithms, the scheduling algorithm, and the real-
time operating system. We would also like to facilitate the simulation
of task execution triggered by external interrupts. This would allow
simulation of event-based control systems, e.g. engine controllers that
are sampled against engine speed.

Incorporation of Timing Analysis One half of the research project
“Integrated Control and Scheduling” is devoted to interactive time and

33

Introduction

memory analysis of software for embedded real-time systems [Persson,
2000]. Ideally, we would like to create an integrated development envi-
ronment for real-time control systems, where the engineer can develop
controllers and get interactive feedback on their timing properties, per-
form co-simulation with input from the timing analysis, and finally
generate code for the target system.

Implementation Issues A number of implementation issues exist.
For instance, how easily can the suggested approaches be implemented
in commercial real-time operating systems? We are also going to need
an implementation test-bed, where we can conduct control and schedul-
ing experiments. One possibility could be to extend Pålsjö, which is a
software environment for dynamically configurable embedded control
systems [Eker, 1999].

6. References

Åkesson, J. (1999): “Safe reference following on the inverted pen-
delum.” Report ISRN LUTFD2/TFRT--7587--SE. Department of
Automatic Control, Lund Institute of Technology, Lund, Sweden.

Åström, K. J. and B. Wittenmark (1997): Computer-Controlled Sys-
tems, third edition. Prentice Hall.

Audsley, N., K. Tindell, and A. Burns (1993): “The end of the line for
static cyclic scheduling.” In Proceedings of 5th Euromicro Workshop
on Real-Time Systems.

Blomdell, A. (1999): “Linux in control.” http://www.control.lth.se.

Burns, A. and A. Wellings (1997): Real-Time Systems and Program-
ming Languages. Addisson-Wesley.

Eker, J. (1999): “A tool for interactive development of embedded control
systems.” In Preprints 14th World Congress of IFAC. Beijing, P.R.
China.

Eker, J., P. Hagander, and K.-E. Årzén (2000): “A feedback scheduler
for real-time control tasks.” Control Engineering Practice. To ap-
pear.

34

6. References

Joseph, M. and P. Pandya (1986): “Finding response times in a real-
time system.” The Computer Journal, 29:5, pp. 390–395.

Liu, C. L. and J. W. Layland (1973): “Scheduling algorithms for
multiprogramming in a hard-real-time environment.” Journal of
the ACM, 20:1, pp. 40–61.

Locke, C. D. (1992): “Software architecture for hard real-time appli-
cations: Cyclic vs. fixed priority executives.” Real-Time Systems, 4,
pp. 37–53.

Persson, P. (2000): Predicting Time and Memory Demands of Object-
Oriented Programs. Licentiate thesis, Department of Computer
Science, Lund Institute of Technology, Lund, Sweden.

Ramamritham, K. (1996): “Where do time constraints come from and
where do they go?” International Journal of Database Management,
7:2.

Sandström, K. (1999): Modeling and Scheduling of Control Sys-
tems. Licentiate thesis ISRN KTH/MMK/R--99/5--SE, Mechatron-
ics Laboratory, Department of Machine Design, Royal Institute of
Technology, Stockholm, Sweden.

Seto, D., J. P. Lehoczky, L. Sha, and K. G. Shin (1996): “On task
schedulability in real-time control systems.” In Proceedings of the
17th IEEE Real-Time Systems Symposium, pp. 13–21.

Shin, K. G. and H. Kim (1992): “Derivation and application of hard
deadlines for real-time control systems.” IEEE Transactions on
Systems, Man, and Cybernetics, 22:6, pp. 1403–1413.

Shin, K. G., C. M. Krishna, and Y.-H. Lee (1985): “A unified method
for evauating real-time computer controllers and its applications.”
IEEE Transactions on Automatic Control, 30:4, pp. 357–366.

Stankovic, J., M. Spuri, K. Ramamritham, and G. Buttazzo (1998):
Deadline Scheduling for Real-Time Systems. Kluwer Academic
Publishers.

Tindell, K., A. Burns, and A. Wellings (1994): “An extendible approach
for analyzing fixed priority hard real-time tasks.” Real-Time Sys-
tems, 6:2, pp. 133–151.

35

Introduction

Törngren, M. (1998): “Fundamentals of implementing real-time control
applications in distributed computer systems.” Real-time systems,
14:3.

36

Paper 1

Towards the Integration of
Control and Real-Time

Scheduling Design

Karl-Erik Årzén, Anton Cervin, Johan Eker,
Bo Bernhardsson, and Lui Sha1

Abstract

The survey presents the state of the art of the emerging field of
integrated control and scheduling. Among the subtopics discussed
are timing in periodic control loops, flexible and adaptive schedul-
ing, control and scheduling co-design, and feedback scheduling.

1Department of Computer Science, University of Illinois at Urbana-Champaign

37

Paper 1. Towards the Integration of Control and Real-Time . . .

1. Introduction

Most real-time control systems are embedded systems where the com-
puter is a component in a larger engineering system. The control sys-
tem is often implemented on a microprocessor using a real-time pro-
gramming language such as Ada 95 or Modula-2 with a real-time ker-
nel or run-time system, or using a sequential programming language
such as C or C++ together with a real-time operating system (RTOS).
The real-time kernel or OS uses multiprogramming to multiplex the
execution of the tasks on the CPU. The CPU time, hence, constitutes
a shared resource which the tasks compete for. To guarantee that the
time requirements and time constraints of the individual tasks are
all met, it is necessary to schedule the usage of the shared resource.
During the last two decades scheduling of CPU time for real-time sys-
tems has been a very active research area and a number of different
scheduling models and methods have been developed.

The most common, and simplest, model used within the real-time
scheduling community assumes that the tasks are periodic, or can be
transformed to periodic tasks, have a fixed period, a known worst-
case bound on the execution time (WCET), and a hard deadline. The
latter implies that it is imperative that the tasks always meet their
deadlines, i.e., that the response time is always less or equal to the
deadline, for each invocation of the task. This is in contrast to a soft
deadline, that may occasionally be violated.

Control
Algorithm ProcessA-D D-A

u(k)y(k)

Figure 1. Controllers are often used as examples of periodic, hard real-time
tasks. A typical control task consists of three parts: input data collection (A-D),
control algorithm computation, and output signal transmission (D-A).

The most common example used by the real-time scheduling com-
munity for when this model is applicable is in computer-controlled
systems, see Fig. 1. Controllers are assumed to be periodic tasks con-
sisting of three parts: input data collection (A-D), control algorithm
computation, and output signal transmission (D-A). The fixed period

38

1. Introduction

assumption of the simple task model has also been widely adopted by
the control community and has, e.g., resulted in the development of the
sampled computer control theory with its assumption on determinis-
tic, equi-distant sampling. Another result of the simple model is that
it has provided a separation between the control community and the
real-time scheduling community. The separation has allowed the con-
trol community to focus on its own problem domain without worrying
about how scheduling is being done, and it has released the scheduling
community from the need to understand what impact scheduling has
on the stability and performance of the plant under control. From a his-
torical perspective, the separated development of control and schedul-
ing theories for computer-based control systems has produced many
useful results and served its purpose. However, the separation has
also had negative effects. The two communities have partly become
alienated. This has led to a lack of mutual understanding between the
fields.

Upon closer inspection it is quite clear that many of the assump-
tions of the simple model are too restrictive. First, the assumptions do
not allow us to efficiently use low-cost general purpose hardware and
off-the-shelf operating systems, which in general are not able to give
any guarantees on determinism. These systems are, typically, designed
to achieve good average performance rather than guaranteed worst-
case performance. They often introduce significant non-determinism
in task scheduling. For computation intensive high-end applications,
the large variability in execution time caused by modern hardware ar-
chitecture also becomes visible. The effect of this on the control loop
is jitter in sampling period and control delay (input-output latency).
In order to maintain good control performance it is important to com-
pensate on-line for the variations. A requirement for this is that the
necessary timing information is provided by the real-time kernel.

The assumptions of the simple model are also overly restrictive
with respect to the characteristics of many control loops. Many control
loops are not periodic, or they may switch between a number of dif-
ferent fixed sampling periods. Control loop deadlines are not always
hard. On the contrary, many controllers are quite robust towards vari-
ations in sampling period and response time. Hence, it is questionable
whether it is necessary to model them as hard deadline tasks. It is
also in many cases possible to compensate on-line for the variations

39

Paper 1. Towards the Integration of Control and Real-Time . . .

by, e.g., recomputing the controller parameters. Obtaining an accu-
rate value for the WCET is generally a difficult problem. Measuring
WCET always implies the risk of underestimation, whereas analytical
execution time analysis tools are still rare. When the WCET is much
longer than the average execution time, an alternative may be to in-
stead measure the actual execution time every task invocation and to
adjust the task parameters accordingly. Finally, it is also possible to
consider control systems that are able to tradeoff the available com-
putation time, i.e., how long time the controller may spend calculating
the new control signal, and the control loop performance.

There is a need for more general scheduling models that better fit
the nature and needs of advanced control algorithms. The optimality
of computer control is subject to the limitations of available comput-
ing resources, especially in advanced applications where we want to
control fast plant dynamics and to use sophisticated state estimation
and control algorithms. On the other hand, the true objective of real-
time scheduling for control is to allocate limited computing resources
in such a way that the state estimation and control algorithms can
ensure the system’s stability and optimize the system’s performance.
The computing resources could include CPU time and communication
bandwidth. In the context of this survey we focus on CPU time. How-
ever, most of the issues brought up also apply to distributed system
and scheduling of communication bandwidth.

The scheduling models and methods that we consider in this survey
are based on dynamic feedback from the scheduler to the controllers
and from the controllers to the scheduler. The idea of feedback has
been used informally for a long time in scheduling algorithms for ap-
plications where the dynamics of the computation workload cannot
be characterized accurately. For example, Internet protocols use feed-
back to help solve the congestion problems. Recently, under the title of
quality of service (QoS), the idea of feedback has also been exploited
in multi-media scheduling R&D. Given this, one might expect that the
use of feedback in the scheduling of feedback control systems would
have been naturally an active area. On the contrary, the scheduling
research of feedback control systems are dominated by open loop an-
alytic scheduling methods such as rate or deadline based algorithms.
This is not an accident but rather the consequence of some serious the-
oretical challenges that require close cooperation between the control

40

1. Introduction

and scheduling communities.
The aim of this survey is to present the current state of the art in

the field of integrated control and scheduling and to identify some of
the most important research issues.

Visionary Goal

The development of more general scheduling models, and the com-
plementary control theory creates a possibility for dynamic, flexible,
and interactive integrated control and scheduling environments where
the control design methodology takes the availability of computing
resources into account during design and allows trade-offs between
control performance and computing resource utilization. The system
should support on-line information exchange between the on-line
scheduler and the control tasks. The system should be able to adapt
task parameters in overload situations in such a way that stability
and an acceptable level of control performance are maintained. The
requirement of known worst-case execution times should be relaxed.
Instead the system should be able to guarantee stability and a cer-
tain level of control performance based only on knowledge of nominal
execution times. To achieve this the system should be able to mea-
sure the actual execution time spent by the different tasks, and take
appropriate actions in case of over-runs.

In order to make this possible, a lot of information needs to be
provided. For example, the control tasks must be able to provide infor-
mation to the on-line scheduler about the desired period of the control
task, the period range for which the controller can guarantee accept-
able control performance, nominal execution time, range of execution
time variations, and desired deadline or deadline range. Alternatively
this information can be stated as cost functions, e.g., functions for the
control performance as a function of sampling period or for the control
performance as a function of input-output latency.

Outline of the Survey

A brief overview of hard real-time scheduling is given in Section 2,
and an brief overview of sampled-data control theory is given in Sec-
tion 3. Section 4 discusses timing in simple control loops from control
and scheduling perspectives. Section 5 gives an overview of flexible

41

Paper 1. Towards the Integration of Control and Real-Time . . .

and adaptive scheduling. A number of research issues in the topic of
integrated control and scheduling designs are given in Section 6.

2. Real-Time Scheduling Theory

In hard real-time systems it is crucial that the timing requirements
always are met. Hence, it is necessary to perform an off-line analysis
that guarantees that there are no cases in which deadlines are missed.
In scheduling theory we assume that we have events that occur and
require computations. Associated with an event is a task that executes
a piece of code in response to the event. The events could be periodic,
sporadic, or aperiodic. A sporadic event is non-periodic but has a mini-
mum inter-arrival time. An aperiodic event has an unbounded arrival
frequency. Each task has a required computation time, in the sequel
denoted C. This is the worst-case CPU execution time (WCET) it takes
to execute the task, in the absence of other tasks. Each task also has
an associated deadline, denoted D. This is an upper bound on the al-
lowed time taken to execute task, in the presence of all the other tasks
on the CPU.

Here we will primarily consider scheduling of CPU time for periodic
tasks. Two main alternatives exist: static cyclic executive scheduling
and priority-based scheduling. Static cyclic executive scheduling is an
off-line approach that uses optimization-based algorithms to generate
an execution table or calendar. The execution table contains a table
of the order in which the different tasks should execute and for how
long they should execute. The run-time part of the scheduling is ex-
tremely simple. The drawback that makes cyclic executive scheduling
unsuitable for integrated control and scheduling is its static nature.
It does not support on-line admission of new tasks, and dynamic mod-
ifications of task parameters. Hence, in this report we will focus on
dynamic approaches to scheduling.

In 1973, Liu and Layland proposed in their seminal paper [Liu and
Layland, 1973] two optimal priority-based scheduling algorithms, ear-
liest deadline first scheduling (EDF) and rate-monotonic (RM) schedul-
ing. EDF is based on the principle that it is the task with the shortest
remaining time to its deadline that should run. The approach is dy-
namic in the sense that the decision of which task to run is made

42

2. Real-Time Scheduling Theory

at run-time. The deadline can also be viewed as a dynamic priority,
in contrast to the RM case where the priority is fixed. The latter is
the reason why rate-monotonic scheduling also is referred to as fixed
priority scheduling.

Formal analysis methods are available both for RM and EDF
scheduling. In the simplest case the following assumptions are made:

• only periodic tasks exist,

• each task i has a period Ti,

• each task has a worst case execution time Ci,

• each task has a deadline Di,

• the deadline for each task is equal to the task period (Di = Ti),
• there is no interprocess communication, and

• the real-time kernel is “ideal” (context switching and clock inter-
rupt handling takes zero time).

With these assumptions the following necessary and sufficient condi-
tion holds for EDF:

THEOREM 1—EDF SCHEDULING

If the utilization U of the system is not more than 100% then all
deadlines will be met.

U =
n∑

i=1

Ci

Ti
≤ 1

The utilization U determines the CPU load. The main advantage with
EDF scheduling is that the processor can be fully utilized and still all
deadlines can be met. More complex analysis exists that loosens some
of the assumptions above.

Rate-monotonic (RM) assignment is a scheme for assigning priori-
ties to tasks that guarantees that timing requirements are met when
preemptive fixed priority scheduling is used. The scheme is based on
the simple policy that priorities are set monotonically with task rate,

43

Paper 1. Towards the Integration of Control and Real-Time . . .

i.e., a task with a shorter period is assigned a higher priority. With es-
sentially the same assumptions as in the EDF case, a sufficient schedu-
lability condition for RM scheduling was derived in [Liu and Layland,
1973].

THEOREM 2—RM SCHEDULING

For a system with n tasks, all tasks will meet their deadlines if the
total utilization of the system is below a certain bound.

n∑
i=1

Ci

Ti
≤ n(21/n − 1)

As n →∞, the utilization bound approaches 0.693. This has led to the
simple rule-of-thumb that says that

“If the CPU utilization is less than 69%, then all deadlines
are met”.

Since 1973 the analysis has evolved and many of the restrictive
assumptions have been relaxed [Audsley et al., 1995; Sha et al., 1994].
In 1986 a sufficient and necessary condition was derived [Joseph and
Pandya, 1986]. The condition is based on the notion of worst-case re-
sponse time, Ri, for a task i, i.e., the maximum time it can take to
execute the task. The response time of a task is given by the recursive
equation

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (1)

where hp(i) is the set of tasks with higher priority than task i and
dxf is the ceiling function. The task set is schedulable if and only if
Ri ≤ Di for all tasks i.

The rate-monotonic priority scheme is not very good when Di ≪
Ti. An infrequent but urgent task will be given a very low priority.
In this case the deadline-monotonic priority scheme is better suited.
Here it is the task deadline that decides the priority rather than the
period. A task with a short deadline gets high priority. This policy has
been proved optimal when D ≤ T in the sense that if the system is

44

2. Real-Time Scheduling Theory

unschedulable with the deadline-monotonic priority ordering, then it
is unschedulable also with all other orderings [Leung and Whitehead,
1982]. Equation 1 holds also for the deadline-monotonic case.

During the last decade the rate and deadline monotonic analysis
have been extended in various directions [Klein et al., 1993]. It has
been extended to cover situations where we have processes that com-
municate using, e.g., a monitor or using shared data protected by a
mutual exclusion semaphore. To do this it is necessary to have an
upper bound on how long a high-priority process may be blocked by
a low-priority process due to interprocess communication. The prior-
ity ceiling protocol for mutual exclusion synchronization gives such a
worst case bound [Sha et al., 1990]. The analysis has also been ex-
tended to cover release jitter, i.e., the difference between the earliest
and latest release of a task relative to the invocation of the task (the ar-
rival of the event associated with the task), nonzero context-switching
times, and clock interrupts.

The analysis behind the schedulability conditions in EDF and RM is
based on the notion of the critical instant. This is the situation when all
tasks arrive simultaneously. If the task set is schedulable for this worst
case it will be schedulable also for all other cases. In many cases this
assumption is unnecessarily restrictive. Tasks may have precedence
constraints that make it impossible for them to arrive at the same time.
Alternatively, for independent tasks it is sometimes possible to shift
them in time, i.e., introduce task offsets, to avoid the simultaneous ar-
rival. If simultaneous arrivals can be avoided, the schedulability of the
task set increases [Audsley et al., 1993b]. Schedulability analysis, both
for the case of static and dynamic task offsets, is presented in [Gutier-
rez and Harbour, 1998]. A number of alternative scheduling models
based on serialization of task executions in different ways have been
suggested recently. These include the multi-frame model, [Mok and
Chen, 1997; Baruah et al., 1999], the generalized multi-frame model,
[Baruah et al., 1999b], the recurrent task model, [Baruah, 1998a], and
the serially executed subtask model, [Gonzalez Härbour et al., 1994].
Aperiodic Scheduling

Scheduling of soft aperiodic tasks in combination with hard periodic
tasks is a large area where a lot of research has been performed. The
simplest approach is to transform an aperiodic task to a periodic task

45

Paper 1. Towards the Integration of Control and Real-Time . . .

using polling. This may, however, increase processor utilization unnec-
essarily. Another approach is to use a special server for aperiodic events
[Lehoczky et al., 1987]. The main idea of the server approach is to have
a special task, the server (usually at high priority), for scheduling the
pending aperiodic work. The server has time tickets that can be used
to schedule and execute the aperiodic tasks. If there is aperiodic work
pending and the server has unused tickets, the aperiodic tasks execute
until they finish or the available tickets are exhausted. Several servers
have been proposed. The priority-exchange server and the deferrable
server were proposed in [Lehoczky et al., 1987]. The sporadic server
was introduced in [Sprunt et al., 1989]. The main difference between
the servers concerns the way the capacity of the server is replenished
and the maximum capacity of the server. In [Bernat and Burns, 1999]
exact schedulability tests are presented for the sporadic and the de-
ferred servers. It is also claimed that the deferred server is superior,
since it has the same performance as the sporadic server and is easier
to implement. The idea behind the slack stealer proposed in [Lehoczky
and Ramos-Thuel, 1992] is to steal all the possible processing time from
the periodic tasks, without causing their deadlines to be missed. The
approach has a high overhead, but provides an optimal lower bound
on the response times of aperiodic tasks. The method has also been
extended to cover hard aperiodic tasks. The above servers have been
developed for the fixed-priority case. Similar techniques also exist for
the dynamic-priority case (EDF), see, e.g., [Spuri and Buttazzo, 1996].

The idea of stealing time from hard periodic tasks is also used in
dual priority scheduling [Davis and Wellings, 1995]. The priority range
is divided into three bands: upper, middle, and lower. Hard tasks are
assigned two priorities, one in the upper range and one in the lower
range. At run-time, other tasks, e.g., soft aperiodic tasks, are assigned
priorities in the middle band. The hard tasks are assigned their lower
priorities upon release. A fixed time interval after their release they
are promoted to their upper priority. During the initial phase of a task,
the soft tasks will have higher priority, and thus execute. The net effect
of the approach is that the execution of the hard tasks is shifted in such
a way that the end of the task execution is always close to the response
time of the task.

46

3. Sampled-Data Control Theory

3. Sampled-Data Control Theory

A computer-based control system can be designed in two different
ways:

1. Discrete-time design

2. Discretization of a continuous-time design

In both cases the interface to the process consists of AD and DA con-
verters. The AD converter acts as a sampler that returns a snapshot
value of a continuous time signal, and the DA converter acts as a
hold circuit that takes a discrete-time signal and converts it into a
continuous-time signal. Normally zero-order hold is used, in which case
the resulting continuous-time signal is piecewise constant between the
DA conversions. In certain situations it is advantageous to instead use
first-order hold, where the continuous-time signal is piecewise linear.
In the first-order hold case, the DA conversion is implemented as a
high-frequency periodic process, unless special DA hardware is used.

Discrete-Time Design

The basic idea behind discrete or sampled control theory is to only con-
sider the system through the values of the system inputs and outputs
at the sampling instants, i.e., from the point of view of the computer
according to Fig. 2.

Process

u t()

)

uk

y t(u t()

yk

SamplerHold

Computer
uk

yk

tt

t

y t()

t

D-A A-D

Figure 2. Sampled control loop.

47

Paper 1. Towards the Integration of Control and Real-Time . . .

In order to do this, a sampled version of the continuous system
model is derived. This is done by letting the process inputs be piecewise
constant signals and then solving the system equation by calculating
step responses as in the following. Given the continuous time system
description

dx
dt
= Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t),

the solution to the system equation is given by

x(t) = eA(t−tk)x(tk) +
∫ t

tk

eA(t−s′)Bu(s′) ds′

= eA(t−tk)x(tk) +
∫ t

tk

eA(t−s′) ds′ Bu(tk) (u piecewise constant)

= eA(t−tk)x(tk) +
∫ t−tk

0
eAs ds Bu(tk) (variable change)

= Φ(t, tk)x(tk) + Γ(t, tk)u(tk)

From this the values at t = tk+1 are given by

x(tk+1) = Φ(tk+1, tk)x(tk) + Γ(tk+1, tk)u(tk)
y(tk) = Cx(tk) + Du(tk)

where

Φ(tk+1, tk) = eA(tk+1−tk)

Γ(tk+1, tk) =
∫ tk+1−tk

0
eAsds B

The expression above is valid both for periodic and aperiodic sampling.
However, normally periodic sampling, i.e., tk = k ⋅ h, is assumed. This
leads to the well-known discrete-time system description.

x(kh+ h) = Φx(kh) + Γu(kh)
y(kh) = Cx(kh) + Du(kh)

48

3. Sampled-Data Control Theory

where

Φ = eAh

Γ =
∫ h

0
eAs ds B

The resulting system description is time-invariant and only describes
the system at the sampling instants. Using similar techniques it is
possible to also sample systems with time delays, both in the simple
case when the time delay is a multiple of the sampling interval and in
the case when the time delay is a fraction of the sampling interval.

A wide range of discrete-time controller design methods can then be
applied, e.g. pole placement design, linear quadratic design, or model
predictive control. The sampling intervals for discrete-time control de-
signs are normally based on the desired speed of the closed loop system.
A common rule-of-thumb is that one should sample 4 to 10 times per
rise time Tr of the closed loop system.

Nr = Tr

h
� 4 to 10

This gives relatively long sampling intervals, compared to what is used
when discretization-based design is used. The long sampling interval
also means that it may take long time before, e.g., load disturbances are
detected by the controller. The reason for this is that the disturbances
are not synchronized with the sampling.

Discretization of Continuous-Time Design

The idea behind this design philosophy is to perform the design in
the continuous time domain, and then approximate this design by a
computer-based controller through fast sampling. Using this approach
it is not necessary to employ any special sampled control design the-
ory. The price that one pays for this is higher requirements on fast
sampling.

Assume that a controller has been designed in continuous time and
that this controller is expressed on input-output form, i.e., on Laplace
transform form G(s). The goal now is to approximate this design in
such a way that A/D + Algorithm + D/A � G(s) according to Fig.

49

Paper 1. Towards the Integration of Control and Real-Time . . .

Algorithm

Clock

 u kh(){ } y kh(){ }

 H(z) ≈ G (s)

 y(t)u(t)
A-D D-A

Figure 3. Approximation of continuous-time design.

3 This can be done in several ways. The most straightforward way is
to use a simple Euler forward or backward approximation. In forward
approximation a derivative is replaced by its forward approximation,
i.e,

dx(t)
dt

� x(t+ h) − x(t)
h

This is equivalent to replacing the Laplace operator s with (z− 1)/h
in G(s), where z denotes the z-operator (can be interpreted as a shift
operator). In the backward approximation the derivative is instead
replaced by

dx(t)
dt

� x(t) − x(t− h)
h

.

This is equivalent to replacing s with (z− 1)/zh.
Several rules-of-thumbs exist for choosing the sampling interval for

discretization based designs. A simple rule is the faster the better up to
a certain limit when the limited word-length of the computer becomes
a problem. One example of a rule-of-thumb is

hω c � 0.15 to 0.5

where ω c is the cross-over frequency of the continuous-time system (the
frequency where the gain is 1). This gives substantially smaller sam-
pling intervals than for discrete-time design. However it also means
that the resulting controller is less sensitive to relative variations in
the sampling interval. A variation of 100% in the sampling interval for
a discretization based design may be fairly benign whereas a similar
relative variation in the sampling interval for a discrete-time design
would in many cases lead to an unstable system.

50

4. Timing in Simple Control Loops

4. Timing in Simple Control Loops

A control loop consists of three main parts: data collection, control algo-
rithm computation, and output transmission. In the simplest case the
data collection and output transmission consist of calls to an external
I/O interface, e.g. AD and DA converters or a field-bus interface. In a
more complex setting the input data may be received from other com-
putational blocks, e.g., noise filters, and the output signal may be sent
to other computational blocks, e.g., other control loops in the case of set-
point control. The complexity of the control algorithm may range from
a few lines of code implementing, e.g., a PID (Proportional-Integral-
Derivative) control algorithm to the iterative solution of a quadratic
optimization problem in the case of MPC (Model Predictive Control).
In most cases the control is executed periodically with a constant pe-
riod, or sampling interval, T (often denoted h), that is determined by
the dynamics of the process that is controlled and the requirements on
the closed loop performance.

Control SampleSample Control

Time

Sampling Period

Latency Latency

Figure 4. Basic timing constraints of a control loop.

The two basic timing constraints of a control loop are shown in
Fig. 4. The first is the period which should be constant, i.e., without
jitter. The second constraint involves the input-output latency, also
known as the control delay or the computational delay. This should
be as small as possible, and also without jitter. An overview of control
loop timing constraints is given in [Törngren, 1998].

51

Paper 1. Towards the Integration of Control and Real-Time . . .

Control Loop Timing and Control Theory

From a control perspective, sampling jitter and latency jitter can be
interpreted as disturbances acting on the control system. The input-
output latency decreases the stability margin and limits the perfor-
mance of the system. If the jitter and the latency are small, they could
be ignored. Otherwise, they should be accounted for in the control de-
sign.

Sampling Jitter As a rule of thumb, relative variations of sampling
intervals that are smaller than ten percent of the nominal sampling
interval need not be compensated for. The sensitivity to sampling pe-
riod variations is larger with systems that use slow sampling and for
systems with small phase margins; for such systems small variations
in sampling period can lead to instability.

There are several possible compensation methods, ranging from
simple ad-hoc techniques to quite advanced techniques requiring ex-
tensive (off-line or on-line) calculations. The choice of compensation
method depends on the range of sampling period variations, how often
the changes occur and how sensitive the system is to variations. The
cost of implementation is also an important factor. A related issue is
intentional changes in sampling period. Most compensation schemes
assume that the sampling period variations are unintentional and un-
known in advance. This is the case when the variations are due to
clock inaccuracy, overload or computer failure.

If the changes of sampling period are rare, or if the sampling period
varies slowly, then the problem can be solved using gain-scheduling.
This means that several sets of controller parameters are pre-calcul-
ated and stored in a table with the sampling rate as input parameter.
When the sampling rate changes a new set of controller parameters
are used. Small transients can occur when the controller parameters
change and special care must be taken to minimize these mode bumps.
However, the changes in sampling period often occur continuously and
should not be treated this way. The simplest compensation methods
are ad-hoc, but seem to work quite well. One possibility is to modify
the approximation methods mentioned in Section 3. For example, the

52

4. Timing in Simple Control Loops

(backward) approximation method becomes

dx(t)
dt

� x(tk+1) − x(tk)
hk

where hk = tk+1 − tk is time-varying. This works, e.g., fine for the I-
and D- parts in a PID controller. The idea must be modified for higher
order controllers, see [Wittenmark and Åström, 1980], [Albertos and
Salt, 1990]. If the nominal controller instead is a linear feedback with
Kalman filter then a solution may be to use a time-varying Kalman
filter that gives state estimates at the actual time instances (here il-
lustrated with the Kalman filter without direct term):

u(tk) = −Lx̂(tk)
x̂(tk+1) = Φ(hk)x̂(tk) + Γ(hk)u(tk) + K e(tk)

where Φ(hk) and Γ(hk) can be pre-calculated in one-dimensional ta-
bles. More involved schemes can also be used, where also the feedback
gains L and K depend on hk = tk+1 − tk.

EXAMPLE 1—SAMPLING JITTER

Consider PD control of a DC servo, see Fig. 5. The goal of the control
is to make the servo position, y(t), follow the reference position, r(t),
as closely as possible. Every h seconds, the controller should sample
the position of the servo and calculate a new control signal u(t).

r(t)
u(t) y(t)

G(s)
PD

DC Servo

Controller

Figure 5. A DC Servo is being controlled by a PD controller.

Let the servo be described by the continuous-time transfer function

G(s) = 1000
s(s+ 1) .

53

Paper 1. Towards the Integration of Control and Real-Time . . .

A good discrete-time implementation of the PD controller, which in-
cludes filtering of the derivative part, is

P(t) = K(r(t) − y(t)),
D(t) = ad D(t− h) + bd(y(t − h) − y(t)),
u(t) = P(t) + D(t),

where ad = Td
Nh+Td

D(t− h) and bd = N KTd
Nh+Td

.

A nominal sampling period of h = 10 ms is chosen, and the PD
controller is tuned to give a fast and well-damped response to set-point
changes. The resulting parameters are K = 1, Td = 0.04, and N = 30.
The parameters ad and bd are normally precalculated, assuming that
the sampling interval is constant.

A first simulation of the closed-loop system, where there is no jitter
in the sampling interval, is shown in Fig. 6. The controller behaves as
expected, and the performance is good.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−1

0

1

Reference signal (dashed) and measurement signal (full)

Time

r,
 y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2

−1

0

1

2

Control signal

Time

u

Figure 6. When no sampling jitter is present, the control performance is good.

A second simulation, where the actual sampling interval varies ran-
domly between hmin = 2 ms and hmax = 18 ms, is shown Fig. 7. The

54

4. Timing in Simple Control Loops

discrepancy between the nominal and the actual sampling interval
causes the controller to repeatedly take either too small or too large
actions. The resulting performance is quite poor. This is especially vis-
ible in the control signal.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−1

0

1

Reference signal (dashed) and measurement signal (full)

Time

r,
 y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2

−1

0

1

2

Control signal

Time

u

Figure 7. Sampling jitter causes the control performance to degrade.

Finally, in a third simulation, the controller is redesigned to com-
pensate for the varying sampling interval. This is done by measuring
the actual sampling interval and recalculating the controller parame-
ters ad and bd at each sample. Fig. 8 shows that this version of the
controller handles the sampling jitter well. The performance is almost
as good as in Fig. 6 where there was no jitter at all.

Input-Output Latency Several design approaches are possible for
the input-output latency. The simplest approach is to implement the
system in such a way that the delay is minimized and then ignore it
in the control design. The standard way to achieve this is to separate
the algorithm calculations in two parts: Calculate Output and Update
State. Calculate Output contains only the parts of the algorithm that

55

Paper 1. Towards the Integration of Control and Real-Time . . .

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−1

0

1

Reference signal (dashed) and measurement signal (full)

Time

r,
 y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2

−1

0

1

2

Control signal

Time

u

Figure 8. When compensating for the sampling jitter, the control performance
is good again.

make use of the current sample information. Update State contains
the update of the controller states and the pre-calculations that are
needed to minimize the execution time of Calculate Output. Update
State can therefore be executed after the output generation, hence,
reducing the computational delay.

A second approach is to try to ensure that the delay is constant,
i.e., jitter free, and take this delay into account in the controller design.
One way of doing this is to wait with the output transmission until the
beginning of the next sample. In this way the computational delay be-
comes close to the sampling period. If the controller is designed with
discrete (sampled) control theory it is especially easy to compensate for
this delay. However it is also relatively easy to compensate for delays
that are shorter than the sampling period. To sample a system com-
posed of a control delay and a continuous-time state-space system, see
Figure 9, one can follow the calculation in the beginning of Section 3,

56

4. Timing in Simple Control Loops

replacing the system equations with

dx
dt
= Ax(t) + Bu(t − τ)

y(t) = Cx(t) + Du(t)

The sampled system will now be on the form (assuming that the

u t()

t
τ

kh − h kh kh + h kh + 2h t

Delayed
signal

Figure 9. Relationship among u(t) and the delayed signal u(t − τ), and the
sampling instances.

control delay τ is less than the sampling interval h)

x(kh+ h) = Φx(kh) + Γ0u(kh) + Γ1u(kh− h),

where

Φ = eAh

Γ0 =
∫ h−τ

0
eAs ds B

Γ1 =
∫ h

h−τ
eAs ds B

A third approach is to explicitly design the controller to be robust
against jitter in the computational delay, i.e., the delay is treated as a

57

Paper 1. Towards the Integration of Control and Real-Time . . .

parametric uncertainty. This approach is, however, substantially more
complex than the first two. Many robust design methods can be used,
such as H∞, Quantitative Feedback Theory (QFT) and µ-design.

A fourth approach, finally, is based on the idea that the control
algorithm in certain situations can actively, every sample, compensate
for the computational delay or parts of it. This approach has been used
to compensate for the computational delays obtained when a control
loop is closed over a communication network [Nilsson, 1998]. The setup
studied is shown in Fig. 10. The conclusion in this work is that very
good performance can be obtained even under quite large variations
of control delay. The case of joint variations in control delay τ and
sampling period h is treated in [Nilsson et al., 1998].

Actuator
node Process Sensor

node

Controller
node

Network

h

τ sc
kτ ca

k

τ c
k

u(t) y(t)

Figure 10. Distributed digital control system with communication delays, τ sc
k

and τ ca
k . The computational delay, τ c

k, is also indicated. The control delay equals
τ sc

k + τ c
k + τ ca

k .

EXAMPLE 2—INPUT-OUTPUT LATENCY JITTER

Again, consider PD control of the DC servo from Example 1. (The
sampling jitter is assumed to be zero.) A delay is now introduced from
the sampling to the output action. First, the input-output latency is
constant and equal to 0.007 ms. The controller is retuned assuming
this delay, and the resulting parameters are K = 1, Td = 0.045, and
N = 100. The simulation result is shown in Fig. 11. It is not possible
to get as good performance as in the previous example due to the time
delay.

58

4. Timing in Simple Control Loops

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−1

0

1

Reference signal (dashed) and measurement signal (full)

Time

r,
 y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2

−1

0

1

2

Control signal

Time

u

Figure 11. The controller can be tuned to handle a constant input-output
latency.

Next, the input-output latency is randomly varying between
0.002 ms and 0.012 ms. Even though the average delay is the same as
before, the performance is now worse, as shown in Fig. 12.

Control Loop Timing and Scheduling

Scheduling theory can be used to analyze the time variations and de-
lays in control loops when they are implemented as real-time tasks.
Understanding the control requirements, the implementation could be
made such that the resulting delay and the jitter are small.

The following example shows that a simple-minded implementation
of control loops can introduce a lot of jitter and delays:

EXAMPLE 3
Three control loops with different sampling periods are implemented in
a priority-preemptive real-time OS. The task code for each control loop
looks like this (this would be a good implementation in a single-task
system):

59

Paper 1. Towards the Integration of Control and Real-Time . . .

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−1

0

1

Reference signal (dashed) and measurement signal (full)

Time

r,
 y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2

−1

0

1

2

Control signal

Time

u

Figure 12. Variable input-output latency degrades the control performance.

t = CurrentTime;
LOOP

AD-Conversion;
ControlAlgorithm;
DA-Conversion;
t := t + h;
WaitUntil(t);

END

Assume that the execution time is 2 ms for all three tasks, and that
the sampling periods are T1 = 12 ms, T2 = 8 ms, and T3 = 5 ms. Fixed
priorities are assigned to the tasks according to the rate-monotonic
theory. Figure 2 shows the execution graph of the three control tasks
when released at time zero. Task 3 has the shortest period, thus the
highest priority, and executes with perfect periodicity. Tasks 1 and 2,
on the other hand, are frequently preempted. The preemption causes
variations in both the sampling period and in the input-output latency.

60

4. Timing in Simple Control Loops

 0 0.010 0.020 0.030 0.040

Task 1

Task 2

Task 3

Time

Sample
Control

Figure 13. The activation graph (high=running, medium=preempted,
low=sleeping) of the three control tasks in Example 3

.

Jitter A simple way of implementing jitter-free sampling is to set
up periodic timer interrupts and sample the process in the interrupt
handler. This gives minimal jitter since interrupt handlers execute at
higher priorities than the tasks, and are, hence, not affected by task
scheduling. If an input-output latency of one sample is acceptable, the
same technique can be used to achieve jitter-free outputs. The send-
ing of the control signal is then also executed the interrupt handler,
before reading the new sample. If such solutions are not supported
by the real-time OS, then separate, high-priority application tasks for
sampling and actuation may be an alternative, see [Locke, 1992]. This
may, however, incur larger overheads for context switches. Under fixed-
priority scheduling, the extra sampling and actuation tasks can be
included in the schedulability analysis by the use of offsets [Audsley
et al., 1993b].

There are several jitter minimization solutions based on task
scheduling. The work in [Audsley et al., 1993a; Baruah et al., 1997]
addresses the problem of accommodating input jitter, i.e., scheduling
systems of periodic tasks in which the ready-times of jobs cannot be
predicted exactly a priori, but are subject to timing uncertainties at

61

Paper 1. Towards the Integration of Control and Real-Time . . .

run-time. In [Lin and Herkert, 1996] a distance-constrained task model
is studied in which the difference between any two consecutive end-
times of the same task is required to be bounded by a specified value.
This approach attempts to minimize the output jitter. Minimization of
output jitter is the topic of [Baruah et al., 1999a], where two scheduling
algorithms are proposed. In [Baruah and Gorinsky, 1999] an attempt
is made to identify some of the properties that any jitter-minimization
scheme should satisfy. The scheme is not allowed to buffer a job that is
ready to execute. The scheme may not insert idle time in the execution
of a job. The scheme is not allowed to buffer a job that is completed.
The scheme should not require too many preemptions and the on-line
scheduling overhead should be small. Within the context of these con-
ditions two jitter-minimizing scheduling algorithms are proposed.

Input-Output Latency As mentioned, the computional delay of a
controller can often be reduced by splitting the control algorithm into
two parts: Calculate Output, which is executed between the AD and
the DA conversion, and Update State, which can be executed after the
DA conversion. This idea can be further exploited in the scheduling
design, by treating the two parts as separate tasks, or sub-tasks of the
same task. This possibility was observed in [Gerber and Hong, 1993],
and later [Gerber and Hong, 1997], where control tasks are “sliced” for
the sake of increased fixed-priority schedulability.

Fixed-priority schedulability analysis for tasks where the sub-tasks
have different priorities is given in [Gonzalez Härbour et al., 1994].
In particular, it is noted that the deadline-monotonic priority assign-
ment is optimal if the sub-tasks have non-increasing priorities. The
simplified analysis could be applied to control tasks, where it seems
reasonable that Update State does not execute at a higher priority
then Calculate Output.

In [Cervin, 1999], sub-task scheduling of control tasks is explored
from a control performance perspective. An algorithm is given that
attempts to minimize the computational delay for a set of control tasks.
The algorithm is based on the deadline-monotonic priority assignment
and the calculation of response times.

62

5. Flexible and Adaptive Scheduling

5. Flexible and Adaptive Scheduling

In this section we will discuss different ways in which task scheduling
can be made flexible and adaptive to changes and uncertainties in task
parameters. A key issue for this is the ability to dynamically adjust
task parameters. Reasons for the adjustments could for example be to
improve the performance in overload situations or to dynamically opti-
mize control performance. Examples of task parameters that could be
modified are periods and deadlines. One could also allow the execution
time for a task to be varied. In order for this to be realistic, the con-
trollers must support dynamically changing execution times. Changes
in the task period and in the execution time both have the effect of
changing the utilization that the task requires.

Overload Scheduling

An important issue in integrated control and scheduling is the relax-
ation of the requirement on a known worst-case task execution time.
One possibility to approach this is to use on-line measurements of ac-
tual execution times. Another possibility is to simply treat the actual
execution times that are longer than the worst-case bound as overload
conditions and then try to use some of the scheduling techniques that
have been developed for this, for example robust scheduling.

In the rate monotonic case transient overloads can easily be an-
alyzed off-line. In [Sha and Goodenough, 1990] the following method
was suggested. Each task has a nominal execution time and a worst
case execution time. It is assumed that the task set is schedulable un-
der nominal execution times. The tasks are divided into two groups:
critical tasks that cannot miss any deadlines, and non-critical tasks
for which deadline misses are acceptable. A check is made to find the
set of all critical tasks that would miss their deadlines under worst
case execution times. If this set is empty, then nothing need to be
done. If the set is nonempty then period transformation is applied to
all the tasks in the set. For example, a task with 10 msec execution
time and a period of 100 msec is transformed into a task with 5 msec
execution time and 50 msec period, where the input and output are
only performed once every two periods. Period transformation can be
done transparently to the application tasks using a sporadic server. Af-
ter the transformation a new check is performed and, if needed, more

63

Paper 1. Towards the Integration of Control and Real-Time . . .

period transformations. This procedure is continued until no more crit-
ical tasks are found that would miss their deadlines under worst case
execution times. The method works if the set of critical tasks is schedu-
lable under worst case execution times.

The model used in overload scheduling often associates a value
with the completion of a task within its deadline. For a hard task, the
failure to meet the deadline is considered intolerable. For soft tasks,
a positive value is associated with each task. If a soft task succeeds
then the system gains its value. If a soft task fails, then the value
gained by the system decreases. Sometime also the notion of a firm
task is used. For a firm task there is no value for a task that has
missed its deadline, but there is no catastrophe either. An overview
of value-based scheduling is given in [Burns, 1998]. When a real-time
system is overloaded, not all tasks can be completed by their deadlines.
Unfortunately, in overload situations there is no optimal on-line algo-
rithm that can maximize the cumulative value of a task set. Hence,
scheduling must be made using best-effort algorithms. The objective is
to complete the most important of the tasks by their deadline, and to
avoid unwanted phenomena such as the so called domino effect. This
happens when the first task that misses its deadline may cause all sub-
sequent tasks to miss their deadlines. For example, dynamic-priority
schemes such as EDF are especially prone to domino effects. In fixed-
priority scheduling the user has more control over which tasks that
will meet their deadlines also in the case of overloads.

It is normally assumed that when a task is released its value and
deadline are given. The computation time may be known either pre-
cisely or within some range. The value density of a task is its value
divided by the computation time. The importance ratio of a set of tasks
is the ratio of the largest value density to the smallest value density.
When the importance rate is 1, the task set has uniform value den-
sity, i.e. the value of a task equals its computation time. An on-line
scheduler has a competitive factor, r, 0 < r ≤ 1, if and only if it is
guaranteed to achieve a cumulative value of at least r times the cu-
mulative value achievable for an off-line scheduler on any task set.
The competitive multiplier is defined as 1/r. In [Shasha and Koren,
1995], Dover, an optimal on-line scheduling algorithm is presented. It
schedules to completion all tasks in non-overload periods and achieves
at least 1/(1+√k)2 of the value of an off-line scheduler, where k is the

64

5. Flexible and Adaptive Scheduling

importance ratio. The method also relaxes the firm deadline assump-
tion by giving a positive value to firm tasks even if they complete after
their deadlines.

In [Buttazzo et al., 1995], a comparative study is performed of four
priority-assignment schemes, EDF, HVF (highest value first), HDF
(highest value density first), and a mixed scheme where the priority
is computed as a weighted sum of the value and the deadline. The
four basic algorithms were all extended into two additional classes:
a class of guaranteed algorithms, characterized by a task acceptance
test, and a class of robust algorithms, characterized by a task rejection
mechanism. Simulation experiments showed that the robust versions
of the algorithms were the most flexible ones.

The transform-task method [Tia et al., 1995] uses a threshold value
to separate jobs guaranteed by rate-monotonic scheduling from those
which would require additional work. The latter jobs are split into
two parts. The first part is considered as a periodic job with a resource
requirement equal to the threshold. The second part is considered to be
a sporadic job and is scheduled via a sporadic server when the periodic
part has completed.

It is difficult to improve overload performance with purely algorith-
mic techniques, what is needed is essentially more processing power.
Several approaches have considered the use of more processing power
in order to reduce the execution requirements of the tasks, e.g.,
[Baruah and Haritsa, 1997]. Another approach is to replicate the pro-
cessor with several identical copies. In [Baruah, 1998b] a characteri-
zation is given of the relationship between overload performance and
the number of processors needed.

Quality-of-Service Resource Allocation

Much of the work on dynamic task adaptation during recent years is
motivated by the requirements of multimedia applications. Activities
such as voice sampling, image acquisition, sound generation, data com-
pression, and video playing are performed periodically, but with less
rigid timing requirements than those that can sometimes be found
in closed-loop control systems. Missing a deadline may decrease the
quality of service (QoS) but does not cause critical system faults. De-
pending on the requested QoS, tasks may adjust their attributes to
accommodate the requirements of other concurrent activities.

65

Paper 1. Towards the Integration of Control and Real-Time . . .

On-line admission control has been used to guarantee predictabil-
ity of services where request patterns are not known in advance. This
concept has also been applied to resource reservation for dynamically
arriving real-time tasks, e.g. in the Spring kernel [Stankovic and Ra-
mamritham, 1991]. A main concern of this approach is predictability.
Run time guarantees given to admitted tasks are never revoked, even
if they result in rejecting subsequently arriving, more important re-
quests competing for the same resources. In soft real-time systems,
services are more concerned with maximizing overall utility, by serv-
ing the most important requests first, than guaranteeing reserved re-
sources for individual requests. Priority-driven services can be catego-
rized this way, and are supported in real-time kernels such as Mach
[Tokuda et al., 1990]. Under overload conditions, low priority tasks
are denied service in favor of high-priority tasks. In the Rialto oper-
ating system [Jones and Leach, 1995], a resource planner attempts to
dynamically maximize user-perceived utility of the entire system.

Q-RAM, a resource allocation scheme for satisfying multiple QoS
dimensions in resource constrained environments was presented in
[Rajkumar et al., 1997]. Using the model, available system resources
can be apportioned across multiple applications such that the net util-
ity accrued to the end users of those applications could be maximized.
In [Lee et al., 1998], the mirror problem of apportioning multiple re-
sources to satisfy a single QoS dimension is studied. In [Abdelzaher
et al., 1997] a QoS renegotiation scheme is proposed as a way to allow
graceful degradation in cases of overload, failures or violation of pre-
run-time violations. The mechanism permits clients to express, in their
service requests, a spectrum of QoS levels they can accept from the
provider and perceived utility of receiving service at each of these lev-
els. Using this, the application designer, e.g., control engineer, is able
to express acceptable tradeoffs in QoS and their relative cost/benefit.
The approach is demonstrated on an automated flight-control system.

Period Skipping

A simple task attribute adjustment is to skip an instantiation of a pe-
riodic task. This is equivalent to require that the task period should
be doubled for this particular instantiation, or that the maximum al-
lowed execution time should be zero. Scheduling of systems that allow
skips is treated in [Koren and Shasha, 1995] and [Ramanathan, 1997].

66

5. Flexible and Adaptive Scheduling

The latter paper considers scheduling that guarantees that at least k
out of n instantiations will execute. A slightly different motivation for
skipping samples is presented in [Caccamo and Buttazzo, 1997]. Here
the main objective is to use the obtained execution time to enhance
the responsiveness of aperiodic tasks.

Task Attribute Adjustments

In [Buttazzo et al., 1998] an elastic task model for periodic tasks is
presented. Each task is characterized by five parameters: computation
time Ci, a nominal period Ti0 , a minimum period Timin , a maximum
period Timax , and an elasticity coefficient ei ≥ 0. A task may change its
period within its bounds. When this happens the periods of the other
tasks are adjusted so that the overall system is kept schedulable. An
analogy with a linear spring is used, where the utilization of a task
is viewed as the length of a spring that has a given rigidity coeffi-
cient (1/ei) and length constraints. The elasticity coefficient is used to
denote how easy or difficult it is to adjust the period of a given task
(compress the string). A task with ei = 0 can arbitrarily vary its pe-
riod within its range, but it cannot be varied by the scheduler during
load reconfiguration. The approach can be used under fixed or dynamic
priority scheduling. In principal it is possible to modify the approach
so that it also adjusts execution times.

Adjustment of task periods has also been suggested by others. For
example, [Kuo and Mok, 1991] propose a load-scaling technique to
gracefully degrade the workload of a system by adjusting the task peri-
ods. Tasks are assumed to be equally important and the objective is to
minimize the number of fundamental frequencies to improve schedu-
lability under static priority assignments. In [Nakajima and Tezuka,
1994] a system is presented that increases the period of a task when-
ever the deadline of the task is missed. In [Lee et al., 1996] a number
of policies to dynamically adjust task rates in overload conditions are
presented. In [Nakajima, 1998] it is shown how a multimedia activity
can adapt its requirements during transient overloads by scaling down
its rate or its computational demands.

The MART scheduling algorithm [Kosugi et al., 1994; Kosugi et al.,
1996; Kosugi and Moriai, 1997] also supports task-period adjustments.
MART has also been extended to handle task execution time adjust-
ments. The system handles changes in both the number of periodic

67

Paper 1. Towards the Integration of Control and Real-Time . . .

tasks and in the task timing attributes. Before accepting a change re-
quest the system analyzes the schedulability of all tasks. If needed it
adjusts the period and/or execution time of the tasks to keep them
schedulable with the rate monotonic algorithm. For the task execution
time it is assumed that a minimum value exists in order for the task
to guarantee a minimum level of service. For the task-period, neither
minimum nor maximum are assumed to exist. The MART system is
implemented on top of Real-Time Mach.

In [Shin and Meissner, 1999] the approach in [Seto et al., 1996]
for off-line control and scheduling co-design that will be surveyed in
Section 5.2 is extended, making on-line use of the proposed method
for processor utilization allocation. The approach allows task-period
changes in multi-processor systems. A performance index for the con-
trol tasks is used to determine the value to the system of running a
given task at a given period. The index is weighted for the task’s im-
portance to the overall system. The paper also discusses the issue of
task reallocation from one processor to another, the need to consider
the transient effects of task reallocations, and the question of deter-
mining a value for running a redundant shadow task as opposed to
fast recovery. Two algorithms are given for task reallocation and pe-
riod adjustments. An inverted pendulum control system is used as an
example.

Mode Changes

Mode changes for priority-based preemptive scheduling is an issue that
has received some interest. In the basic model, the system consists of a
number of tasks with task attributes. Depending on which modes the
system and the tasks are in, the task attributes have different values.
During a mode change, the system should switch the task attributes
for a task and/or introduce or remove tasks in such a way that the
overall system remains schedulable during and after the mode change.

A simple mode change protocol was suggested in [Sha et al., 1989].
The protocol assumes that an on-line record of the total utilization is
kept. A task may be deleted at any time, and its utilization may be
reclaimed by a new task at the end of the old task’s period. The new
task is accepted if the resulting new task set is schedulable according
to the rate-monotonic analysis. The locking of semaphores during the
mode change (according to the priority ceiling protocol) is also dealt

68

5. Flexible and Adaptive Scheduling

with.
In [Tindell et al., 1992], it was pointed out that the analysis of

Sha et al. was faulty. Tasks may miss their deadlines during a mode
change, even if the task set is schedulable both before and after the
switch. The transient effects of a mode change can be analyzed by
extending the deadline-monotonic framework. Formulas for the worst-
case response times of old and new tasks across the mode change are
given. New tasks may be given release offsets (relative to the mode
change request) to prevent tasks from missing their deadlines. No
hints are given as to how these offsets should be chosen.

The deadline-monotonic mode change analysis was both extended
and modified in [Pedro and Burns, 1998]. The analysis can account
for old tasks that are aborted instantly at the mode change request.
Furthermore, all tasks present in the system after the mode change
(i.e. unchanged, changed, and wholly now tasks) must be assigned
release offsets relative to the mode change request. Since the offsets are
constant (and assigned off-line), even unchanged tasks will experience
unpredictable and unnecessary delay (jitter) during the mode change.
Again, few clues are given as to how the offsets could be assigned.

It is interesting to note, that under EDF scheduling, the reasoning
about the utilization from [Sha et al., 1989] actually seems to hold. In
[Buttazzo et al., 1998], EDF scheduling of a set of tasks with dead-
lines equal to their periods is considered. It is shown that a task can
decrease its periods at its next release, as long as the total utilization
remains less than one. It is not known whether the computation time
may be changed at the same time. A drawback of using EDF is that the
case of deadlines less than periods is more difficult to analyze. Also,
the computation of worst-case response times (if needed) is more com-
plex than under fixed-priority scheduling. Another challenge is how to
manage overloads, e.g., ensuring that the deadlines of critical tasks
will not be missed.

Feedback Scheduling

Viewing a computing system as a dynamical system or as a controller
is an approach that has proved to be fruitful in many cases. For exam-
ple, the step-length adjustment mechanism in numerical integration
algorithms can be viewed as a PI-controller [Gustafsson, 1991]. This
approach can also be adopted for real-time scheduling, i.e., it is possi-

69

Paper 1. Towards the Integration of Control and Real-Time . . .

ble to view the on-line scheduler as a controller. Important issues that
then must be decided are what the right control signals, measurement
signals, and set-points are, what the correct control structure should
be, and which process model that may be used. The idea of using feed-
back in scheduling has to some extent been used previously in general
purpose operating systems in the form of multi-level feedback queue
scheduling [Kleinrock, 1970; Blevins and Ramamoorthy, 1976; Potier
et al., 1976]. However, this has mostly been done in an ad-hoc way.

So far relatively little has been done in the area of real-time feed-
back scheduling. In [Stankovic et al., 1999] it is proposed to use a
PID controller as an on-line scheduler under the notion of Feedback
Control-EDF (FC-EDF). The measurement signal (the controlled vari-
able) is the deadline miss ratio for the tasks and the control signal
is the requested CPU utilization. Changes in the requested CPU uti-
lization are effectuated by two mechanisms (actuators). An admission
controller is used to control the flow of workload into the system and
a service level controller is used to adjust the workload inside the sys-
tem. The latter is done by changing between different versions of the
tasks with different execution time demands. A more elaborate version
of the same scheme is presented in [Lu et al., 1999].

For multimedia applications, feedback based scheduling mecha-
nisms that dynamically adjust the QoS level have been proposed in a
few cases. In [Li and Nahrstedt, 1998] a general framework is proposed
for controlling the application requests for system resources using the
amount of allocated resources for feedback. It is shown that a PID con-
troller can be used to bound tasks’ resource usage in a stable and fair
way. In [Abeni and Buttazzo, 1999a] task models suitable for multime-
dia applications are defined. Two of them, the Continuous Media (CM)
model and the Event Driven (ED) task model, use PI control feedback
to adjust the reserved fraction of CPU bandwidth.

Using a controller approach of the above kind it is important to
be able to measure the appropriate signals on-line, for example to be
able to measure the deadline miss ratio, the CPU utilization, or the
task execution times. On-line measurements of these entities are not
so often discussed.

70

5. Flexible and Adaptive Scheduling

Statistical Scheduling

A slightly different approach to flexibility and uncertainty handling in
scheduling is obtained by using statistical scheduling. Using this ap-
proach things like, e.g., task execution times are modeled by stochastic
variables with a given distribution rather than constant variables. In-
stead of generating hard guarantees that the tasks will meet their
deadlines or that dynamically generated tasks will be admitted, the
guarantees are probabilistic.

Statistical approaches to scheduling are relatively easy to find. In
[Tia et al., 1995] an analysis was given for the probability that a
sporadic job would meet its deadline when using the transform-task
method. The Statistical Rate Monotonic Scheduling (SRMS) [Atlas and
Bestavros, 1998] is a generalization of the classical RM scheduling and
the semi-periodic task model of [Tia et al., 1995]. A task is modeled
by three attributes: the period, the probability density function for
the task’s periodic resource utilization requirement, and the task’s re-
quested QoS. The SRMS algorithm consists of two parts: a job admis-
sion controller and a scheduler. The scheduler is a simple preemptive
fixed priority scheduler. The job admission controller is responsible for
maintaining the QoS requirements of the tasks through admit/reject
and priority assignment decisions. Using SRMS the probability that
an arbitrary job is admitted can be calculated.

In the model proposed in [Abeni and Buttazzo, 1999b] each task
is described by a pair of probability density functions: Ui(c), which
decides the probability that the execution time is c and Vi(t) which de-
cides the probability that the minimum inter-arrival time of the task
is t. The method guarantees that probabilistic deadlines, δ , are re-
spected with a given probability. A dynamic priority scheduler based
on EDF is used. Each soft task is handled by a dedicated constant
bandwidth server. The server assigns each job an initial deadline. The
assigned deadline is postponed each time the task requests more than
the reserved bandwidth.

Imprecise Calculations

The possibility to adjust the allowed maximum execution time for a
task necessitates an approach for handling tasks with imprecise exe-
cution times, particularly the case when the tasks can be described as

71

Paper 1. Towards the Integration of Control and Real-Time . . .

“any-time algorithms”, i.e., algorithms that always generate a result
(provide some QoS) but where the quality of the result (the QoS level)
increases with the execution time of the algorithm.

The group of Liu has worked on scheduling of imprecise calculations
for long time [Liu et al., 1987; Chung et al., 1990; Liu et al., 1994]. In
[Liu et al., 1991] imprecise calculation methods are categorized into
milestone methods, sieve function methods, and multiple version meth-
ods. Milestone methods use monotone algorithms that gradually refine
the result, and where each intermediate result can be returned as an
imprecise result. Sieve function methods can skip certain computation
steps to tradeoff computation quality for time. Multiple version meth-
ods have different implementations with different cost and precision
for a task.

Scheduling of monotone imprecise tasks is treated in [Chung et al.,
1990]. Two models are proposed. A task that may be terminated any
time after it has produced an acceptable result is logically decomposed
into two parts, a mandatory part that must be completed before dead-
line, and an optional part that further refines the result generated
by the mandatory part. The refinement becomes better and better the
longer the optional part is allowed to execute. The two models differ
with respect to if the optional part needs to complete or not. Schedul-
ing of tasks where it is the average error between the results from
consecutive jobs that is important uses a conservative and predictable
strategy for the mandatory parts and a less conservative strategy for
the optional parts. A number of RM-based scheduling algorithms for
these types tasks are described. The schedulability of tasks where it
instead is the cumulative effect of the errors that is important is also
discussed.

Dynamic System Upgrades

An alternative view of the need for flexibility is obtained if we look
upon the problem of performing safe on-line upgrades of real-time sys-
tems, in particular safety-critical real-time control systems. The Sim-
plex group at SEI/CMU has developed a framework, Simplex, that al-
lows these types of on-line upgrades [Seto et al., 1998a; Sha, 1998]. The
basic building block of Simplex is the replacement unit. A replacement
unit consists of a task together with a communication template. The
replacement units are organized into application units that also con-

72

6. Research Issues

tain communication, and task management functions. A special safety
unit is responsible for basic reliable operation and operation monitor-
ing. A typical example of a replacement unit is a controller. A common
setup is that the system contains two units: a safety controller and a
baseline controller. The baseline controller provides the nominal con-
trol performance and it is assumed that this controller is executing
when a new upgraded version of this controller should be installed.

Simplex considers a three-dimensional fault model consisting of
timing faults, system faults, and semantical faults that effect the log-
ical control behavior of the system. RM analysis is used to ensure
schedulability under fault-free conditions. If a new controller does not
return an answer before the deadline, Simplex switches in the safety
controller, and then eventually, when the controlled process is back in a
safe state, switches back to the baseline controller. System faults gen-
erated by the new controller are trapped by the operating system. In
the same way as before Simplex will switch to the safety controller and
then back to the baseline controller. Semantic faults are caught by the
analytical redundancy obtained by having the safety controller moni-
toring the operation. The safety controller is responsible for monitoring
that the controlled system is in a safe state and that the performance
is better then that obtained by the baseline controller. If any of these
two conditions should not be fulfilled, the safety controller is switched
in the same way as before.

Dynamic change management and version handling is a large area
where a lot of work has been performed, e.g., [Kramer and Magee,
1990; Stewart et al., 1993; Gupta and Jalote, 1996]. However, most of
this is outside the area of this survey.

6. Research Issues

Integrated control and scheduling contains a number of interesting
research problems. A few of them are highlighted here.

Control and Scheduling Co-Design

A prerequisite for an on-line integration of control and scheduling
theory is that we are able to make an integrated off-line design of

73

Paper 1. Towards the Integration of Control and Real-Time . . .

control algorithms and scheduling algorithms. Such a design process
should ideally allow an incorporation of the availability of computing
resources into the control design by utilizing the results of scheduling
theory. This is an area where, so far, relatively little work has been
performed.

One of the first references that addressed this problem was [Seto
et al., 1996]. An algorithm was proposed that translates a control
performance index into task sampling periods considering schedula-
bility among tasks running with preemptive priority scheduling. The
sampling periods were considered as variables and the algorithm de-
termined their values so that the overall performance was optimized
subject to the schedulability constraints. Both RM and EDF schedul-
ing were considered. The performance index was approximated by an
exponential function only and the approach did not take input-output
latency into account. The approach was further extended in [Seto et al.,
1998b].

An approach to optimization of sampling period and input-output
latency subject to performance specifications and schedulability con-
straints is presented in [Ryu et al., 1997; Ryu and Hong, 1998]. The
control performance is specified in terms of steady state error, over-
shoot, rise time, and settling time. These performance parameters are
expressed as functions of the sampling period and the input-output la-
tency. A heuristic iterative algorithm is proposed for the optimization of
these parameters subject to schedulability constraints. The algorithm
is based on using the period calibration method (PCM) for determin-
ing the task attributes. A case study involving the control design for a
CNC controller is presented. The tasks are scheduled using EDF and a
cyclic executive is used for run-time dispatching. The same application
is further explored in [Kim et al., 1999] where it was revealed that the
intertask communication scheme of PCM may incur large latencies,
and that the absence of overload handling is a critical limitation.

Imprecise Control Algorithms

As discussed in Section 4 imprecise calculation methods can be cate-
gorized into milestone methods, sieve function methods, and multiple
version methods. Examples of all three types can be found in control.
Control algorithms that are based on on-line numerical solution to
an optimization problem every sample can be viewed as milestone or

74

6. Research Issues

“any-time” methods. The result generated from the control algorithm
is gradually refined for each iteration in the optimization up to a cer-
tain bound. Examples of this type of control algorithms are found in
model-predictive control. Similar situations exists for all control algo-
rithms that can be written on iterative form, e.g., on series form. One
possibility could, e.g., be controllers on polynomial forms where the
terms are arranged in decreasing order of magnitude.

It is also straightforward to find examples of controllers that be
cast on sieve function form. For example, in an indirect adaptive con-
troller the updating of the adapted parameters can be skipped when
time constraints are hard, or, in a LQG controller the updating of the
observer can be skipped when time constraints are hard. Similarly, in
a PID controller the updating of the integral part may be skipped if
needed. The extreme case is of course to skip the entire execution of
the controller for a certain sample. This is equivalent to temporarily
doubling the sampling interval. However, in all cases it is important to
guarantee that the skips are only performed temporarily, and not too
frequent. Also, the system may be more or less sensitive to skips de-
pending on external conditions. For example, during system transients
due to, e.g., a set-point change or a load disturbance, the skip of a part
of the control algorithm and the resulting degraded performance may
be less welcome than during steady-state operation. A similar situation
holds for variations in sampling interval and variations in computa-
tional delay.

Finally it is also possible to find examples of multiple version meth-
ods in control, e.g., situations with one nominal control algorithm and
one backup algorithm. However, in most cases the motivation for hav-
ing the backup algorithm is control performance rather then timing
issues, compare the discussions about the Simplex algorithm in Sec-
tion 7.

Model Predictive Control Model predictive control (MPC) is a con-
trol method that is based on the explicit usage of a model to predict
the process output at future discrete time instants, over a prediction
horizon. A sequence of future control actions are calculated over a con-
trol horizon by minimizing a given objective function, such that the
predicted process output is as close as possible to a desired reference
signal. At each sample the first control action in the sequence is ap-

75

Paper 1. Towards the Integration of Control and Real-Time . . .

plied to the controlled process, and the optimization is repeated. The
most often used objective functions are modifications of the following
quadratic function [Clarke et al., 1987]:

J =
Hp∑
i=1

α i (r(k+ i) − ŷ(k+ i))2 +
Hc∑
i=1

β i∆u(k+ i− 1)2 (2)

The first term accounts for minimizing the variance of the process out-
put from the reference, while the second term represents a penalty
on the control effort (related for instance to energy). The latter term
can also be expressed by using u itself or other filtered forms of u,
depending on the problem. The vectors α and β define the weighting
of the output error and the control effort with respect to each other
and with respect to the prediction step. Constraints, e.g., level and
rate constraints of the control input or other process variables can be
specified as a part of the optimization problem. Generally, any other
suitable cost function can be used, but for a quadratic cost function,
a linear, time-invariant model, and in the absence of constraints, an
explicit analytic solution of the above optimization problem can be ob-
tained. Otherwise, numerical (usually iterative) optimization methods
must be used. In the more industrially relevant case of a quadratic cost
function, a linear, time-invariant model and inequality constraints on
u, ∆u, and y, the resulting optimization problem is quadratic and must
be solved every sample.

MPC fits nicely into the general scheme of integrated control and
scheduling. The optimization technique employed is based on sequen-
tial unconstrained minimization techniques. The calculations
performed in every sample are organized as a sequence of iterations
(outer iterations). In every outer iteration a number of inner, New-
ton iterations are performed. An interesting possibility is to calculate
bounds on how much the objective function decreases for each new
iteration. MPC can also be used in other ways. In every sample the
control signals for the full control horizon are calculated. Normally
only the first one is used, i.e., applied to the process, and the rest are
discarded. However, another possibility is to instead store the future
values of the control signals and to use them if the execution time is
limited and/or the measured values of y correspond well with the ones

76

6. Research Issues

that were used in optimization step. In this case it is essentially pos-
sible to use the MPC in open loop if there is not enough time to even
start a new optimization.

Event-Based Sampling

Although fixed sampling periods are adequate for many simple control
loops, there are a lot of control problems where it is more natural
to use varying sampling intervals. One such example is combustion
engines that are sampled against engine speed, another example is in
manufacturing systems, such as paper machines, where sampling is
related to production rate. Another reason for using non equidistant
sampling is if there is a large cost related to sampling, or if the rate
of sampling is governed by unpredictable events. Such examples occur
for example in biology and in economics. One motivation for using
clever sampling is that the communication resources are limited and
no unnecessary signals should be sent in the network.

There are several alternatives to periodic sampling. A basic pre-
requisite for the implementation of event-triggered sampling is that
‘significant events’ are detected. The traditional techniques to do this
are to use fast polling (sampling) or event-triggered sensors that gen-
erates an event whenever the signal passes a certain limit. A typical
situation is that the sensor sends a signal whenever the scalar sig-
nal y(t) passes any of a certain pre-specified levels in the sampling
set Y = {y1, . . . , yN}. The times tk when this happens will be called
sampling times and are defined by

y(tk) = yik

where ik ∈ {1, . . . , N} determine the sampling level at sampling time
tk. Such a scheme has many conceptual advantages. Control is not ex-
ecuted unless it is required, control by exception, see [Kopetz, 1993].
This type of sampling is natural when using many digital sensors such
as encoders. A disadvantage is that analysis and design are compli-
cated.

Event-based sampling occurs naturally in many contexts. A com-
mon case is in motion control where angles and positions are sensed by
encoders that give a pulse whenever a position or an angle has changed
by a specific amount. Event based sampling is also a natural approach

77

Paper 1. Towards the Integration of Control and Real-Time . . .

when actuators with on-off characteristic are used. Satellite control by
thrusters is a typical example, [Dodds, 1981]. Systems with pulse fre-
quency modulation, [Polak, 1968], [Pavlidis and Jury, 1965], [Pavlidis,
1966],
[Skoog, 1968], [Noges and Frank, 1975], [Skoog and Blankenship, 1970],
[Frank, 1979], [Sira-Ramirez, 1989] and [Sira-Ramirez and Lischinsky-
Arenas, 1990] are other examples. In this case the control signal is
restricted to be a positive or negative pulse of given size. The control
actions decide when the pulses should be applied and what sign they
should have. Other examples are analog or real neurons whose outputs
are pulse trains, see [Mead, 1989] and [DeWeerth et al., 1990]. Analy-
sis of systems with event based sampling are related to general work
on discontinuous systems, [Utkin, 1981], [Utkin, 1987], [Tsypkin, 1984]
and to work on impulse control, see [Bensoussan and Lions, 1984]. It is
also relevant in situations where control complexity has to be weighted
against execution time.

Much work on systems of this type was done in the period 1960–
1980. Analysis of event-based sampled systems is harder than for time-
based sampled systems. This is due to the fact that sampling is no
longer a linear operation. There are several papers that treat special
system setups, such as observers for linear system with quantized out-
puts, [Sur, 1996], [Delchamps, 1989] many of which use classical ideas
from Kalman observer design. In [Åström and Bernhardsson, 1999] it
is shown that event-based sampling is more efficient than equidistant
sampling. For example, an integrator system driven by white noise
must be sampled 3–5 times faster using equidistant sampling than
using event-based sampling to achieve the same output variance.

Just as event-triggered sampling can be used for deciding suit-
able measurement times, one can use event-triggering instead of time-
triggering for choice of actuator signal. The motivation can be that
it costs energy, bandwidth, etc, to change the control signal, so such
changes should be avoided. The standard linear-quadratic control the-
ory where quadratic weights are put on states and control signals has
been extended also with discontinuous costs on changes in control sig-
nal. Such a cost can be either fixed or dependent on the size of the
control change.

78

6. Research Issues

Execution-Time Measurement

A prerequisite for integrated control and scheduling is on-line mea-
surements of the actual task execution times. Several open issues exist.
One possibility is to let the task dispatcher be responsible for execu-
tion time measurements. Another alternative is to let the tasks them-
selves perform the time measurements by calling appropriate kernel
primitives at vital points in the code. One possibility is that the time
measurement code is automatically added to the application task by
the programming environment.

Mode Changes

Mode changes are frequent in adaptive real-time control systems. For
instance, every adjustment of task timing attributes in a feedback-
scheduling system results in a mode change. A key question is whether
the transient effects of mode changes in real-time control systems can
be ignored or not. Ignoring the effects gives a simpler mode-change
protocol and probably better average-case performance (no unneces-
sary delays and less overhead). Still, it is probably necessary to have a
fall-back strategy and some guarantees about the worst-case behavior.
This could perhaps include a calculation of the worst-case delay and
an estimate of the resulting loss in control performance.

Cost Functions

Control performance optimization in the context of task attribute ad-
justments needs cost functions that relate the sampling period with the
control performance for each control loop, cost functions that relate the
input/output latency with the control performance and, perhaps also,
cost functions that relate the execution time for the controller (e.g.,
the number of iterations in a MPC) with the control performance. In
addition to this it would also be beneficial if the control design method-
ology could provide cost functions for the jitter in sampling period and
input output latency.

An interesting question is the general nature of these cost func-
tions. For example, it is not always so that faster sampling gives better
performance. For example, consider the cost function for a pendulum,

79

Paper 1. Towards the Integration of Control and Real-Time . . .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5000

10000

15000
Cost

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

1200

1400

1600

1800
Cost

Figure 14. The cost Ji(h) as a function of the sampling interval for the in-
verted pendulum (left) and for the normal pendulum (right). The plots shows
the graphs for ω0 = 3.1416(full), 3.7699(dot-dashed), and 4.0841(dashed). Note
that the cost does not depend monotonously on the sampling period.

described by the following equations:

dx =
[

0 1

α ⋅ ω 2
0 −d

]
xdt +

[
0

α ⋅ b

]
udt + dvc

y = [1 0] x, R1c =
[

0 0

0 ω 4
0

]
The natural frequency is ω 0, the damping d = 2ζ ω 0, and b = ω 0/9.81.
If α = 1 the equations describe the pendulum in the upright position
(the inverted pendulum), and with α = −1 they describe the pendulum
in the downward position. The incremental covariance of vc is R1c,
which corresponds to a disturbance on the control signal. The cost for
the system is described by a linear quadratic function:

J(h) = 1
h

∫ h

0
[xT(t) uT (t)]Q

[
x(t)
u(t)

]
dt

The cost function, J, for the inverted pendulum as a function of the
sampling interval h is shown in Figure 14 (left). The correspond-
ing function for the stable pendulum is shown in Figure 14 (right).
Figure 14 (right) clearly demonstrates that faster sampling not neces-
sarily gives better control performance.

80

6. Research Issues

Cost functions may be used as criteria for choosing sampling in-
terval. In a setup where several control loops compete for the CPU
resources, cost functions can be used as an instrument for portioning
resources. To optimize the resource sharing using cost functions, we
need to investigate how they depend on the resource, e.g. we need
ways of calculating the cost function derivatives.

Task Attribute Adjustments

Most work on task attribute adjustments assume that the cost func-
tions at hand have certain properties, e.g., are continuous and mono-
tone. In the control context this is most likely not true. For example,
concerning adjustments of the task period it may from a control point
of view only be possible to adjust the period in discrete steps. An in-
teresting question is whether it is possible to state the problem as a
global optimization problem, and in that case, what the nature of this
optimization is, e.g., convex or non-convex. If it is possible to state the
problem as an optimization problem it is also important to find ways
of solving this or an approximation of it on-line.

In a given situation it may be possible to reduce the CPU utilization
of tasks in different ways, e.g., by increasing the period, reducing the
allowed execution time, skipping a sample. An interesting question is
to decide which way to use. Also, the possibility of a control task to
handle task attribute adjustments is most likely dependent on exter-
nal conditions, e.g., transient set-point changes, load disturbances, etc.
During a set-point change the possibility to reduce the sampling time
may be rather limited. However, in many cases the system has the pos-
sibility to postpone the set-point change for a short while, and thereby
schedule it in a way that affects the other tasks as little as possible.

Simulation

Much of the work performed by both control engineers and real-time
systems engineer are verified by simulation. There are tools available
both for simulating different scheduling protocols and other tools for
simulating different controller designs. However, the problem of how
the implemented controller will actually interact with the plant has
been studied very sparsely. A tool that allows the user to verify both the
scheduling of the control loops and the control performance is needed.
How will, for example, jitter caused by the fact that several control

81

Paper 1. Towards the Integration of Control and Real-Time . . .

loops share CPU affect the performance of the controllers? A simulator
of this type is described in [Eker and Cervin, 1999].

7. Summary

For more demanding control applications requiring higher degrees of
flexibility and for situations where computing resources are limited it
is motivated to study more general models and methods that allow
an integrated approach to control and scheduling design. The aim of
this survey is to present the emerging field of integrated control and
scheduling, and to give a state-of-the-art survey of the methods and
techniques from the fields of real-time scheduling and control that are
of relevance to this. Issues that have been discussed include scheduling
of control tasks, dynamic task attribute adjustments, feedback schedul-
ing, probabilistic scheduling, and compensation for sampling period
variations.

8. References

Abdelzaher, T., E. Atkins, and K. Shin (1997): “QoS negotiation in real-
time systems, and its application to flight control.” In Proceedings
of the IEEE Real-Time Systems Symposium.

Abeni, L. and G. Buttazzo (1999a): “Adaptive bandwidth reservation
for multimedia computing.” In Proceedings of IEEE Real Time
Computing Systems and Applications, Hong Kong.

Abeni, L. and G. Buttazzo (1999b): “QoS guarantee using probabilistic
deadlines.” In Proceedings of the 11th Euromicro Conference on
Real-Time Systems.

Albertos, P. and J. Salt (1990): “Digital regulators redesign with
irregular sampling.” In IFAC 11th World Congress, vol. IV of IFAC,
pp. 465–469. Tallinn, Estonia.

Åström, K. J. and B. Bernhardsson (1999): “Comparison of periodic
and event based sampling for first-order stochastic systems.” In
Proceedings of the 14th IFAC World Congress. Beijing, P.R. China.

82

8. References

Atlas, A. and A. Bestavros (1998): “Statistical rate monotonic schedul-
ing.” In Proceedings of the IEEE Real-Time Systems Symposium.

Audsley, N., A. Burns, R. Davis, K. Tindell, and A. Wellings (1995):
“Fixed priority pre-emptive scheduling: An historical perspective.”
Journal of Real-Time Systems, 8, pp. 173–198.

Audsley, N., A. Burns, M. Richardson, K. Tindell, and A. Wellings
(1993a): “Applying new scheduling theory to static preemptive
scheduling.” Software Engineering Journal, 8:5, pp. 285–292.

Audsley, N., K. Tindell, and A. Burns (1993b): “The end of the line for
static cyclic scheduling.” In Proceedings of 5th Euromicro Workshop
on Real-Time Systems.

Baruah, S. (1998a): “A general model for recurring real-time tasks.”
In Proceedings of the IEEE Real-Time Systems Symposium.

Baruah, S. (1998b): “Overload tolerance for single-processor work-
loads.” In Proceedings of the IEEE Real-Time Technology and Ap-
plications Symposium. IEEE Computer Society Press.

Baruah, S., G. Buttazzo, S. Gorinsky, and G. Lipari (1999a): “Schedul-
ing periodic task systems to minimize output jitter.” Proc. 6th Inter-
national IEEE Conference on Real-Time Computing Systems and
Applications, Hong-Kong, China.

Baruah, S., D. Chen, S. Gorinsky, and A. Mok (1999b): “General-
ized multi-frame tasks.” Submitted for publication. Available from
www.emba.uvm.edu/~sanjoy.

Baruah, S., D. Chen, and A. Mok (1997): “Jitter concerns in periodic
task systems.” In Proceedings of the 18th Real-Time Systems
Symposium.

Baruah, S., D. Chen, and A. Mok (1999): “Static-priority scheduling of
multi-frame tasks.” In Proceedings of the 11th Euromicro Confer-
ence on Real-Time Systems.

Baruah, S. and S. Gorinsky (1999): “Scheduling periodic task systems
to minimize output jitter.” Submitted for publication. Available from
www.emba.uvm.edu/~sanjoy.

83

Paper 1. Towards the Integration of Control and Real-Time . . .

Baruah, S. and J. Haritsa (1997): “Scheduling for overload in real-time
systems.” IEEE Trans Computers, 46:9, pp. 1034–1039.

Bensoussan, A. and J.-L. Lions (1984): Impulse control and quasi-
variational inequalities. Gauthier-Villars, Paris.

Bernat, G. and A. Burns (1999): “Exact schedulability analysis of
aperiodic servers.” In Proceedings of the 11th Euromicro Conference
on Real-Time Systems.

Blevins, P. and C. Ramamoorthy (1976): “Aspects of a dynamically
adaptive operating system.” IEEE Trans Computers, 25:7.

Burns, A. (1998): “The meaning and role of value in scheduling
flexible real-time systems.” vol. Proceedings of the IEEE Real-Time
Computing Systems Application Conference (RTCSA), Hiroshima,
Japan.

Buttazzo, G., G. Lipari, and L. Abeni (1998): “Elastic task model
for adaptive rate control.” In Proceedings of the IEEE Real-Time
Systems Symposium.

Buttazzo, G., M. Spuri, and F. Sensini (1995): “Value vs deadline
scheduling in overload conditions.” vol. Proceedings of the 16th
IEEE Real-Time Systems Symposium.

Caccamo, M. and G. Buttazzo (1997): “Exploiting skips in periodic
tasks for enhancing aperiodic responsiveness.” In Proceedings of
the 18th IEEE Real-Time System Symposium.

Cervin, A. (1999): “Improved scheduling of control tasks.” In Pro-
ceedings of the 11th Euromicro Conference on Real-Time Systems,
pp. 4–10. York, England.

Chung, J.-Y., J. Liu, and K.-J. Lin (1990): “Scheduling periodic jobs
that allow imprecise results.” IEEE Trans on Computers, 39:9.

Clarke, D., C. Mohtadi, and P. Tuffs (1987): “Generalised predictive
control. Part 1: The basic algorithm. Part 2: Extensions and
interpretations.” Automatica, 23:2, pp. 137–160.

Davis, R. and A. Wellings (1995): “Dual priority scheduling.” In
Proceedings of the IEEE Real-Time Systems Symposium.

84

8. References

Delchamps, D. (1989): “Extracting state information from a quantized
output record.” Systems and Control Letter, 13, pp. 365–372.

DeWeerth, S., L. Nielsen, C. Mead, and K. J. Åström (1990): “A neuron-
based pulse servo for motion control.” In IEEE Int. Conference on
Robotics and Automation. Cincinnati, Ohio.

Dodds, S. J. (1981): “Adaptive, high precision, satellite attitude control
for microprocessor implementation.” Automatica, 17:4, pp. 563–573.

Eker, J. and A. Cervin (1999): “A MATLAB toolbox for real-time
and control systems co-design.” Proc. 6th International IEEE
Conference on Real-Time Computing Systems and Applications,
Hong-Kong, China.

Frank, P. M. (1979): “A continuous-time model for a pfm-controller.”
IEEE Trans. of Automat. Control, AC-25:5, pp. 782–784.

Gerber, R. and S. Hong (1993): “Semantics-based compiler transforma-
tions for enhanced schedulability.” In Proceedings of the 14th IEEE
Real-Time Systems Symposium, pp. 232–242.

Gerber, R. and S. Hong (1997): “Slicing real-time programs for en-
hanced schedulabilty.” ACM Transactions on Programming Lan-
guages and Systems, 19:3, pp. 525–555.

Gonzalez Härbour, M., M. H. Klein, and J. P. Lehoczky (1994): “Timing
analysis for fixed-priority scheduling of hard real-time systems.”
IEEE Transactions on Software Engineering, 20:1, pp. 13–28.

Gupta, D. and P. Jalote (1996): “A formal framework for on-line
software version change.” IEEE Trans Software Engineering, 22:2.

Gustafsson, K. (1991): “Control theoretic techniques for stepsize
selection in explicit Runge-Kutta methods.” ACM Transactions on
Mathematical Software, 17:4, pp. 533–554.

Gutierrez, J. and M. Harbour (1998): “Schedulability analysis for tasks
with static and dynamic offsets.” In Proceedings of 19th IEEE Real-
Time Systems Symposium, Madrid.

Jones, M. and P. Leach (1995): “Modular real-time resource manage-
ment in the Rialto operating system.” In Proceedings of the of the
Fifth Workshop on Hot Topics in Operating Systems.

85

Paper 1. Towards the Integration of Control and Real-Time . . .

Joseph, M. and P. Pandya (1986): “Finding response times in a real-
time system.” The Computer Journal, 29:5, pp. 390–395.

Kim, N., M. Ryu, S. Hong, and H. Shin (1999): “Experimental
assessment of the period calibration method: A case study.” Journal
of Real-Time Systems. Accepted for publication.

Klein, M. H., T. Ralya, B. Pollak, R. Obenza, and M. Gonzalez Härbour
(1993): A Practitioner’s Handbook for Real-Time Analysis: Guide to
Rate Monotonic Analysis for Real-Time Systems. Kluwer Academic
Publisher.

Kleinrock, L. (1970): “A continuum of time-sharing scheduling algo-
rithms.” In Proc. of AFIPS, SJCC.

Kopetz, H. (1993): “Should responsive systems be event triggered or
time triggered?” IEICE Trans. on Information and Systems, E76-
D:10, pp. 1525–1532.

Koren, G. and D. Shasha (1995): “Skip-over: Algorithms and complex-
ity for overloaded systems that allow skips.” In Proceedings of the
IEEE Real-Time Systems Symposium.

Kosugi, N., A. Mitsuzawa, and M. Tokoro (1996): “Importance-based
scheduling for predictable real-time systems using MART.” In
Proceedings of the 4th Int. Workshop on Parallel and Distributed
Systems, pp. 95–100. IEEE Computer Society.

Kosugi, N. and S. Moriai (1997): “Dynamic scheduling for real-
time threads by period adjustment.” In Proceedings of the World
Congress on Systems Simulation, pp. 402–406.

Kosugi, N., K. Takashio, and M. Tokoro (1994): “Modification and
adjustment of real-time tasks with rate monotonic scheduling
algorithm.” In Proceedings of the 2nd Workshop on Parallel and
Distributed Systems, pp. 98–103.

Kramer, J. and J. Magee (1990): “The evolving philosophers problem:
Dynamic change management.” IEEE Trans Software Engineering,
16:11.

Kuo, T.-W. and A. Mok (1991): “Load adjustment in adaptive real-
time systems.” In Proceedings of the 12th IEEE Real-Time Systems
Symposium.

86

8. References

Lee, C., R. Rajkumar, J. Lehoczky, and D. Siewiorek (1998): “Practical
solutions for QoS-based resource allocation.” In Proceedings of the
IEEE Real-Time Systems Symposium.

Lee, C., R. Rajkumar, and C. Mercer (1996): “Experiences with
processor reservation and dynamic QoS in real-time Mach.” In
Proceedings of Multimedia Japan 96.

Lehoczky, J. and S. Ramos-Thuel (1992): “An optimal algorithm for
scheduling soft aperiodic tasks in fixed-priority preemptive sys-
tems.” In Proceedings of the IEEE Real-Time Systems Symposium.

Lehoczky, J., L. Sha, and J. Strosnider (1987): “Enhanced apriodic
responsiveness in hard real-time environment.” In Proceedings of
the 8th IEEE Real-Time Systems Symposium.

Leung, J. Y. T. and J. Whitehead (1982): “On the complexity of
fixed-priority scheduling of periodic, real-time tasks.” Performance
Evaluation, 2:4, pp. 237–250.

Li, B. and K. Nahrstedt (1998): “A control theoretic model for quality
of service adaptations.” In Proceedings of Sixth International
Workshop on Quality of Service.

Lin, K. and A. Herkert (1996): “Jitter control in time-triggered sys-
tems.” In Proceedings of the 29th Hawaii International Conference
on System Sciences.

Liu, C. L. and J. W. Layland (1973): “Scheduling algorithms for
multiprogramming in a hard-real-time environment.” Journal of
the ACM, 20:1, pp. 40–61.

Liu, J., K.-J. Lin, and S. Natarajan (1987): “Scheduling real-time,
periodic jobs using imprecise results.” In Proceedings of the IEEE
Real-Time System Symposium, pp. 252–260.

Liu, J., K.-J. Lin, W.-K. Shih, A. Yu, J.-Y. Chung, and W. Zhao (1991):
“Algorithms for scheduling imprecise computations.” IEEE Trans
on Computers.

Liu, J., W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung (1994):
“Imprecise computations.” Proceedings of the IEEE, Jan, pp. 83–
93.

87

Paper 1. Towards the Integration of Control and Real-Time . . .

Locke, C. D. (1992): “Software architecture for hard real-time appli-
cations: Cyclic vs. fixed priority executives.” Real-Time Systems, 4,
pp. 37–53.

Lu, C., J. Stankovic, and G. Tao (1999): “Design and evaluation of a
feedback control EDF scheduling algorithm.” In Proc. of the Real-
Time Systems Symposium, Phoenix.

Mead, C. A. (1989): Analog VLSI and Neural Systems. Addison-Wesley,
Reading, Massachusetts.

Mok, A. and D. Chen (1997): “A multi-frame model for real-time tasks.”
IEEE Transactions on Software Engineering, 23:10.

Nakajima, T. (1998): “Resource reservation for adaptive QoS mapping
in real-time Mach.” In Proceedings of the Sixth International
Workshop on Parallel and Distributed Real-Time Systems.

Nakajima, T. and H. Tezuka (1994): “A continuous media application
supporting dynamic QoS control on real-time Mach.” In Proceedings
of ACM Multimedia’94.

Nilsson, J. (1998): Real-Time Control Systems with Delays. PhD
thesis ISRN LUTFD2/TFRT--1049--SE, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

Nilsson, J., B. Bernhardsson, and B. Wittenmark (1998): “Some topics
in real-time control.” In American Control Conference. Philadel-
phia.

Noges, E. and P. M. Frank (1975): Pulsfrequenzmodulierte
Regelungssysteme. R. Oldenbourg, München.

Pavlidis, T. (1966): “Optimal control of pulse frequency modulated
systems.” IEEE Trans. of Automat. Control, AC-11:4, pp. 35–43.

Pavlidis, T. and E. J. Jury (1965): “Analysis of a new class of pulse
frequency modulated control systems.” IEEE Trans. of Automat.
Control, AC-10, pp. 35–43.

Pedro, P. and A. Burns (1998): “Schedulability analysis for mode
changes in flexible real-time systems.” In Proceedings of the 10th
Euromicro Workshop on Real-Time Systems.

88

8. References

Polak, E. (1968): “Stability and graphical analysis of first order
of pulse-width-modulated sampled-data regulator systems.” IRE
Trans. Automatic Control, AC-6:3, pp. 276–282.

Potier, D., E. Gelenbe, and J. Lenfant (1976): “Adaptive allocation of
central processing unit quanta.” Journal of ACM, 23:1.

Rajkumar, R., C. Lee, J. Lehoczky, and D. Siewiorek (1997): “A
resources allocation model for QoS management.” In Proceedings
of the IEEE Real-Time Technology and Applications Symposium.

Ramanathan, P. (1997): “Graceful degradation in real-time control
application using (m,k)-firm guarantee.” In Proceedings of the
IEEE Real-Time Systems Symposium.

Ryu, M. and S. Hong (1998): “Toward automatic synthesis of schedula-
ble real-time controllers.” Integrated Computer-Aided Engineering,
5:3, pp. 261–277.

Ryu, M., S. Hong, and M. Saksena (1997): “Streamlining real-time con-
troller design: From performance specifications to end-to-end timing
constraints.” In Proceedings of the IEEE Real-Time Technology and
Applications Symposium.

Seto, D., B. Krogh, L. Sha, and A. Chutinan (1998a): “Dynamic control
system upgrade using the Simplex architecture.” IEEE Control
Systems, August.

Seto, D., J. Lehoczky, and L. Sha (1998b): “Task period selection and
schedulability in real-time systems.” In Proceedings of the IEEE
Real-Time Systems Symposium.

Seto, D., J. Lehoczky, L. Sha, and K. Shin (1996): “On task schedu-
lability in real-time control systems.” In Proceedings of the IEEE
Real-Time Systems Symposium.

Sha, L. (1998): “Dependable system upgrade.” In Proceedings of IEEE
Real Time Systems Symposium.

Sha, L. and J. Goodenough (1990): “Real-time scheduling theory and
ada.” IEEE Computer, 23:4, pp. 53–62.

89

Paper 1. Towards the Integration of Control and Real-Time . . .

Sha, L., R. Rajkumar, and J. Lehoczky (1989): “Mode change protocols
for priority-driven pre-emptive scheduling.” Real-Time Systems,
1:3, pp. 244–264.

Sha, L., R. Rajkumar, and J. Lehoczy (1990): “Priority inheritance
protocols: An approach to real-time synchronization.” IEEE Trans
on Computers, 39:9.

Sha, L., R. Rajkumar, and S. Sathaye (1994): “Generalized rate-
monotonic scheduling theory: A framework for developing real-time
systems.” Proceedings of the IEEE, 82:1.

Shasha, D. and G. Koren (1995): “D-over: An optimal on-line schedul-
ing algorithm for overloaded uniprocessor real-time systems.” Siam
Journal of Computing, 24:2, pp. 318–339.

Shin, K. G. and C. L. Meissner (1999): “Adaptation of control system
performance by task reallocation and period modification.” In Pro-
ceedings of the 11th Euromicro Conference on Real-Time Systems,
pp. 29–36.

Sira-Ramirez, H. (1989): “A geometric approach to pulse-width mod-
ulated control in nonlinear dynamical systems.” IEEE Trans. of
Automat. Control, AC-34:2, pp. 184–187.

Sira-Ramirez, H. and P. Lischinsky-Arenas (1990): “Dynamic discon-
tinuous feedback control of nonlinear systems.” IEEE Trans. of Au-
tomat. Control, AC-35:12, pp. 1373–1378.

Skoog, R. A. (1968): “On the stability of pulse-width-modulated
feedback systems.” IEEE Trans. of Automat. Control, AC-13:5,
pp. 532–538.

Skoog, R. A. and G. L. Blankenship (1970): “Generalized pulse-
modulated feedback systems: Norms, gains, lipschitz constants and
stability.” IEEE Trans. of Automat. Control, AC-15:3, pp. 300–315.

Sprunt, B., L. Sha, and J. Lehoczky (1989): “Aperiodic task scheduling
for hard real-time systems.” The Journal of Real-Time Systems.

Spuri, M. and G. Buttazzo (1996): “Scheduling aperiodic tasks in
dynamic priority systems.” 10:2, pp. 179–210.

90

8. References

Stankovic, J. and K. Ramamritham (1991): “The Spring kernel: A new
paradigm for real-time systems.” IEEE Software, 8.

Stankovic, J. A., C. Lu, S. H. Son, and G. Tao (1999): “The case for
feedback control real-time scheduling.” In Proceedings of the 11th
Euromicro Conference on Real-Time Systems, pp. 11–20.

Stewart, D., R. Volpe, and P. Khosla (1993): “Design of dynamically re-
configurable real-time software using port-based objects.” Technical
Report CMU-R1-TR-93-11. CMU.

Sur, J. (1996): State Observers for Linear Systems with Quantized
Outputs. PhD thesis, University of Santa Barbara.

Tia, T.-S., Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and
J. W.-S. Liu (1995): “Probabilistic performance guarantee for real-
time tasks with varying computation times.” vol. Proceedings of the
IEEE Real-Time Technology and Applications Symposium. Chicago,
IL.

Tindell, K., A. Burns, and A. J. Wellings (1992): “Mode changes in
priority preemptively scheduled systems.” In Proceedings of the
13th IEEE Real-Time Systems Symposium, pp. 100–109.

Tokuda, H., T. Nakajima, and P. Rao (1990): “Real-time Mach: Towards
a predictable real-time kernel.” In Proceedings of USENIX Mach
Workshop.

Törngren, M. (1998): “Fundamentals of implementing real-time control
applications in distributed computer systems.” Real-time systems,
14:3.

Tsypkin, Ya. Z. (1984): Relay Control Systems. Cambridge University
Press, Cambridge, UK.

Utkin, V. (1981): Sliding modes and their applications in variable
structure systems. MIR, Moscow.

Utkin, V. I. (1987): “Discontinuous control systems: State of the art in
theory and applications.” In Preprints 10th IFAC World Congress.
Munich, Germany.

91

Paper 1. Towards the Integration of Control and Real-Time . . .

Wittenmark, B. and K. J. Åström (1980): “Simple self-tuning con-
trollers.” In Unbehauen, Ed., Methods and Applications in Adaptive
Control, number 24 in Lecture Notes in Control and Information
Sciences, pp. 21–29. Springer-Verlag, Berlin, FRG.

92

Paper 2

Improved Scheduling
of Control Tasks

Anton Cervin

Abstract

The paper considers the implementation of digital controllers as
real-time tasks in priority-preemptive systems. The performance
of a digital feedback control system depends critically on the tim-
ing of its sampling and control actions. It is desirable to minimize
the computational delay in the controller, as well as the sampling
jitter and the control jitter. It is shown that by scheduling the
two main parts of a control algorithm as separate tasks, the com-
putational delay can often be reduced significantly. A heuristic
method for assigning deadlines to the parts is presented. Further
modifications are given to reduce the jitter and to facilitate delay
compensation. The result is improved control performance under
maintained schedulability.

93

Paper 2. Improved Scheduling of Control Tasks

1. Introduction

Digital control systems constitute a large part of all real-time systems.
Despite of this, surprisingly little effort has gone into studying their
timely behavior when implemented as periodic tasks in a computer. In
this paper, we concentrate on the implementation of digital controllers
as real-time tasks in priority-preemptive systems.

An overview of a digital control system is shown in Figure 1. At a

A-D
y(k)

Control
Algorithm

u(k)
D-A Process

Figure 1. Overview of a digital control system.

fixed frequency, the controller requests A-D conversion to obtain a mea-
surement sample, y(k), from the physical process, computes a control
signal, u(k), and requests D-A conversion, sending the control signal to
the process. Timing is very critical to the stability and performance of
the closed-loop control system. Jitter in the sampling times and output
times can be viewed as disturbances acting on the process. A compu-
tational delay between the A-D and the D-A conversions decreases the
stability margin and the performance of the control system.

There are two common ways of synchronizing the inputs and the
outputs [Åström and Wittenmark, 1997]. In the first approach, which
we refer to as Textbook Implementation A, the control signal is sent
out as soon as it has been calculated. To minimize the computational
delay, the control algorithm is split into two parts. The first part, called
Calculate Output, contains only the operations necessary to produce
a control signal. The rest of the calculations, called Update State, are
postponed until after the D-A conversion.

Detailed in source code, Textbook Implementation A could look like
this (the source code is a variant of Modula-2, with support for real-
time primitives):
LOOP

Wait(ClockInterrupt);

94

1. Introduction

A_D_Conversion;
CalculateOutput;
D_A_Conversion;
UpdateState;

END

For example, consider the common control strategy of using state
feedback in conjunction with a state observer (this includes the pop-
ular LQG controller). The control algorithm can be structured on the
following form [Gustafsson and Hagander, 1991]:

ε (k) = y(k) − ŷ(k h k− 1) (1)
u(k) = û(k h k− 1) − Mε (k) (2)

x̂(k+ 1 h k) = Ax̂(k h k− 1) + Bu(k) + Kε (k) (3)
ŷ(k+ 1 h k) = Cx̂(k+ 1 h k) (4)
û(k+ 1 h k) = −Lx̂(k+ 1 h k) (5)

Here, the A-D conversion is implicit in the use of the measurement
variable y(k) in (1), and the D-A conversion is implicit in the calcula-
tion of the control variable u(k) in (2). Calculate Output contains only
a few scalar operations in (1) and (2), while all the matrix multiplica-
tions have been moved to the Update State part in (3)–(5).

A second common way of synchronizing the inputs and the outputs
is to send out the control signal at the beginning of the next period. In
this approach, which we refer to as Textbook Implementation B, the
computational delay is always approximately equal to one period. The
delay is more deterministic, but also longer.

At a first glance, digital controllers seem to fit right into the rate-
monotonic framework—each controller could be described as a periodic
task τ i having a period Ti and a worst-case computation time Ci. Well
known tests [Liu and Layland, 1973] [Joseph and Pandya, 1986] can
be applied to check for schedulability. But with that kind of thinking,
the specific timing needs of digital controllers are ignored. Even if a
set of control tasks are schedulable using rate-monotonic scheduling,
the controllers can suffer from significant sampling jitter, computa-
tional delay, and output jitter. Lower-priority tasks can be preempted
by higher-priority tasks at any point in the code. With a more detailed
task model, where each control task is decomposed into subtasks, these

95

Paper 2. Improved Scheduling of Control Tasks

issues can be dealt with. Decomposition of control tasks has been sug-
gested before [Gerber and Hong, 1993] [Burns et al., 1994] [Gerber and
Hong, 1997], but only for the sake of increased schedulability. The key
problems that we address are:

1. Derivation of a more detailed task model which captures the spe-
cific timing needs of control tasks.

2. Assignment of task attributes (priorities, deadlines, offsets, etc.)
to optimize the control performance, subject to the schedulability
constraints.

Previous work on task attribute assignment with respect to control
performance [Seto et al., 1996] [Kim, 1998] have focused on task pe-
riod selection for single-task models of controllers. The detailed timely
behavior has not been addressed.

The rest of this paper is outlined as follows. Section 2 deals with
periodic sampling. In Section 3, the problems of deriving a task model
and assigning task attributes are treated, and corresponding schedu-
lability analysis is reviewed. Section 4 discusses different strategies
for delay compensation. Section 5 gives an example, where the the-
ory in the paper is applied to a control example with three inverted
pendulums. Simulations of processes, controllers, and real-time kernel
together show that a more detailed scheduling can reduce jitter and
computational delay, and thus give better control performance.

2. Periodic Sampling

Digital control theory assumes that measurement samples are taken
periodically. As for the textbook implementations discussed in Section 1
however, a control task may very well be preempted by higher-priority
tasks when it is time to request an A-D conversion. This can lead to
serious sampling jitter for lower-priority control tasks.

The code segment found in Section 1 also assumes that the A-D
conversion works like a function that returns a value. This must not
be true today, however, when most A-D converters can be treated as
asynchronous input devices. Some A-D converters can be programmed
to automatically sample at a given rate. Others must be periodically

96

3. Scheduling

requested to start the conversion. This could be done by a dedicated
high-priority, low-cost task. Whichever way the conversion is initial-
ized, the A-D converter will give a hardware interrupt when it has
finished. An interrupt handler can then retrieve the value and signal
to the control task that a new sample is available. This effectively
solves the problem of sampling jitter.

Now assuming that a semaphore NewSample is signaled each time
a new sample is available to the control task, we modify our code to

LOOP
Wait(NewSample);
GetSample;
CalculateOutput;
D_A_Conversion;
UpdateState;

END

3. Scheduling

In this section, we investigate the possibility of scheduling the parts of
the control algorithm as separate tasks. Basic scheduling analysis and
subtask scheduling analysis is reviewed, and the problem of deadline
assignment for the subtasks is treated.

Basic scheduling analysis

Disregarding the different parts of the control algorithm, a digital con-
troller can be described as a period task τ i having period Ti, dead-
line Di, worst-case execution time Ci, and priority Pi. If it is assumed
that Di = Ti, the rate-monotonic priority assignment is optimal (in the
schedulability sense) [Liu and Layland, 1973]. The worst-case response
time Ri of a task can be calculated from the equation

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (6)

where hp(i) is the set of tasks with higher priority than τ i [Joseph and
Pandya, 1986]. The task set is schedulable if Ri ≤ Di for all tasks.

97

Paper 2. Improved Scheduling of Control Tasks

The rate-monotonic model is sufficient for controller implementations
where the control signal is sent out at the beginning of the next period.
For implementations where the control signal is sent out as soon as
possible, however, the scheduling model does not reflect the fact that
the Calculate Output part should finish as soon as possible. The result
is unnecessarily large delays and output jitter for lower-priority control
tasks.

We could allow Di ≤ Ti, in which case the deadline-monotonic prior-
ity assignment is optimal [Leung and Whitehead, 1982]. Eq. (6) holds
for this case also. The deadlines could be used to improve the response
time (and thus the computational delay) of a few selected tasks. De-
creasing the deadlines of all tasks could render the task set unschedu-
lable.

Subtask scheduling analysis

For simplicity, it is assumed that the requests for A-D and D-A conver-
sions can be neglected in the analysis. Let each control task τ i consist of
two subtasks, τ COi (Calculate Output) and τ U Si (Update State). The
worst-case execution time of the subtasks are assumed to be known
and equal to CCOi and CU Si respectively.

We first look at the timing analysis developed by Härbour et al. [Gon-
zalez Härbour et al., 1994]. In their model, each subtask is assigned a
fixed priority and a deadline, and the subtasks are executed serially.
For control tasks, Update State has a natural deadline DU Si = Ti. The
deadline for Calculate Output must at least be constrained by

CCOi ≤ DCOi ≤ Ti − CU Si (7)

Since Calculate Output is more time-critical than Update State, it is
natural to enforce a higher priority on it. For this special case, the
deadline-monotonic priority assignment is optimal [Gonzalez Härbour
et al., 1994].

Deadline assignment

The scheduling model above assumes that deadlines have been as-
signed to all Calculate Output subtasks. A key question is, how should
this be done?

98

3. Scheduling

To maximize control performance, the deadlines (and thus com-
putational delays) should be minimized. This could be stated as an
optimization problem—for instance to minimize a weighted sum of the
deadlines

f =
∑

i

DCOi

Ti
(8)

under the schedulability constraint. A first try would be to let all the
Calculate Output parts have higher priorities than all the Update
States parts. Unfortunately this might render the task set unschedu-
lable.

To find the optimal deadline assignment in the general case, an ex-
haustive search among the different priority orderings must be carried
out. With n tasks, there are 1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (2n−1) possible subtask priority
assignments!

For cases where exact minimization is unrealistic, some heuristic
deadline assignment method must be used. For soft real-time systems,
several such methods exists, for instance the equal flexibility deadline
assignment [Kao and Garcia-Molina, 1993]. They are not applicable
here, since they cannot guarantee that all deadlines are met.

For control tasks, we present the following heuristic which attempts
to minimize the deadlines of the Calculate Output parts while main-
taining schedulability:

1. Start by assigning effective deadlines to the Calculate Output
parts, i.e. set DCOi := Ti − CU Si.

2. Assign deadline-monotonic priorities.

3. Calculate response times according to (6).

4. Decrease deadlines by assigning DCOi := RCO i.

5. Repeat from 2 until no further improvement is given (for instance
by the criterion in Eq. (8)).

The heuristic works because of the optimality of the deadline-monotonic
priority assignment. The task set must be schedulable after each
improvement—at least by the previous priority ordering.

99

Paper 2. Improved Scheduling of Control Tasks

Offset scheduling

Another scheduling model that could be applied to the parts of a control
algorithm is offset scheduling [Audsley et al., 1993]. The subtasks are
not serially executed—rather, the subtask τ U Si is released with a fixed
offset OU Si compared to the release of τ COi. The offset must be chosen
somewhere in the interval

DCOi ≤ OU Si ≤ Ti − CU Si (9)

and DCOi must be chosen in the interval

CCOi ≤ DCOi ≤ OU Si (10)

Figure 2 shows the execution of the two subtasks in isolation.

τ U Si

τ COi

0 DCOi OU Si DU Si=Ti

t

Figure 2. The parts τ CO i and τ U Si are scheduled using an offset.

This task model is more general than the priority-constrained model
and thus provides a higher degree of schedulability. The price for this
improvement is a more complex optimization problem. We have to
choose both deadlines and offsets. The deadline monotonic priority as-
signment is no longer optimal, the response time calculations are more
complicated, and the simple heuristic presented before cannot be used.
Still, with the right set of computer tools, this approach could very well
produce better results than the priority-constrained approach.

Implementation

Even though we have modeled Calculate Output and Update State as
two separate tasks in the schedulability analysis, this does not imply
that we have to implement them as such. If we have used the priority-
constrained approach, and if the real-time operating system allows

100

4. Delay Compensation

priorities to be changed dynamically, we can simply insert ChangePri-
ority commands into our existing code:

LOOP
ChangePriority(P_CO);
Wait(NewSample);
GetSample;
CalculateOutput;
D_A_Conversion;
ChangePriority(P_US);
UpdateState;

END

4. Delay Compensation

After scheduling the parts of the control algorithm as separate tasks,
we should have been able to reduce the worst-case computational delay
of the controller significantly. If the remaining delay is very small, it
can be neglected altogether. Otherwise we have the option of redesign-
ing the controller to compensate for the delay.

Compensation assuming a fixed delay

Compensating for a fixed computational delay is straight forward
[Åström and Wittenmark, 1997]. Essentially, it is just a matter of in-
troducing an extra state in the controller. This causes a slight increase
in the computation time of the control algorithm. The task set could
become unschedulable, in which case we would respond by increasing
the sampling period of some controllers. If the performance gain due
to the delay compensation is greater than the performance loss due to
the slower sampling, the compensation pays off.

The implementation must be modified once again, this time to en-
sure that the delay between the A-D and D-A conversions really is
constant. It becomes necessary to have time-stamped samples, i.e. the
GetSample function now returns both the sample time and the sam-
ple itself. After Calculate Output, we delay the control task until the
deadline DCO. We also raise the priority momentarily when requesting
the D-A conversion, so that the output jitter is kept small (we assume
that the request can be neglected in the schedulability analysis):

101

Paper 2. Improved Scheduling of Control Tasks

LOOP
ChangePriority(P_CO);
Wait(NewSample);
GetSample(t, value);
CalculateOutput;
ChangePriority(High);
WaitUntil(t+D_CO);
D_A_Conversion;
ChangePriority(P_US);
UpdateState;

END

Compensation assuming a random delay

The computational delay for a controller is generally not constant. Be-
cause of variations in execution time and interference from higher-
priority tasks, the delay will be of stochastic nature. If the distribution
of the delay is known, it is possible to derive a compensating con-
troller that performs better than its fixed-delay counterpart [Nilsson
et al., 1996]. The increase in computation time will be larger though. It
is an open question, under what conditions the different compensation
strategies really pay off.

5. An Example

As an example, the suggested improvements from the previous sections
are applied to a control problem, step by step. Simulations show that
control performance can be improved significantly.

The control problem

The control problem is to stabilize three identical inverted pendulums,
see Figure 3. The measurement signal is the angle y, and the con-
trol signal is the acceleration u of the pivot point. The process can be
described by the transfer function

Y(s) = 1
s2 − 1

U (s) (11)

The pendulums are affected by input disturbances and measurement
noise, both modeled as sequences of white noise. Furthermore, it is

102

5. An Example

y

u

Figure 3. An inverted pendulum. The pendulum can be stabilized in the up-
right position y = 0 by controlling the acceleration u of the pivot point.

assumed that the desired closed-loop behavior of the different processes
is given by

s2 + 2ζ ω is+ω 2
i = 0 (12)

where ζ = √
3/2 = 0.886, ω 1 = 3 rad/s, ω 2 = 5 rad/s, and ω 3 = 7

rad/s.

Controller design

For each process, we design a digital controller with state feedback and
Kalman filtering using pole placement, see for instance [Åström and
Wittenmark, 1997]. The observer poles are chosen to have the same
damping and twice the speed of the desired closed-loop behavior.

The sampling interval Ti of each controller can be chosen according
to the rule of thumb

0.1 < ω iTi < 0.6 (13)
Knowing that we have limited computing resources, we tend toward
the upper bound and choose T1 = 167 ms, T2 = 100 ms, and T3 =
71 ms.

Performance evaluation

In the following, several different implementations of the controllers
are evaluated by simulations. To capture the detailed timing behavior,
the simulations include models of the process, the digital controllers,
and the real-time kernel.

103

Paper 2. Improved Scheduling of Control Tasks

The three controllers are released simultaneously at time zero and
then simulated for a time Tsim = 1000 s. Every simulation uses the
same sequences for process noise and measurement noise. For each
controller, we record the performance loss

Ji =
∫ Tsim

0
y2

i (t)dt (14)

As a reference, the controllers are first evaluated in a simulation where
the execution times, the sampling jitter, and the control jitter are all
assumed to be zero. The reference values obtained are:

Ref.

J1 2.40

J2 1.35

J3 1.16

In the rest of the simulations, it is assumed that the execution time
of the entire control algorithm is constant Ci = 28 ms, and that the
execution times of the parts are constant CCO i = 10 ms and CU Si = 18
ms.

Implementation 1—Textbook Implementation A

Not caring about the different parts of the control algorithm, we model
the controllers as the three periodic tasks τ1, τ2, and τ3. Having no
further information, we assume Di = Ti and assign rate-monotonic
priorities. We check that the task set is schedulable by calculating
response times:

T D C P R

τ1 167 167 28 1 140

τ2 100 100 28 2 56

τ3 71 71 28 3 28

In Textbook Implementation A (see Section 1), the A-D conversion
takes place at the very beginning of Calculate Output, and the D-A
conversion takes place at the very end of Calculate Output. The lower-
priority tasks suffer from a lot of interference, resulting in poor control
performance for Controller 1 and 2:

104

5. An Example

Ref. Impl. 1

J1 2.40 4.90

J2 1.35 4.27

J3 1.16 1.28

A close-up of the behavior of Controller 1 is shown in Figure 4. It is
clearly seen that the interference causes both the samples and the
control actions to occur at irregular times.

0 0.5 1 1.5 2 2.5 3
−1

0

1

2
x 10

−3

0 0.5 1 1.5 2 2.5 3
−0.05

0

0.05

Process output y1

Control signal u1

Sample

Figure 4. Close-up behavior of Controller 1 when Textbook Implementation A
(Implementation 1) is used. Notice the large jitter in the sampling actions and
the control actions.

Implementation 2—Textbook Implementation B

We now evaluate the implementation where the control signal is sent
out at the beginning of the next period, i.e. Textbook Implementation
B. The computational delay is always equal to one period, and the
controllers are easily redesigned to compensate for this, see Section 4.
To keep the example simple, we assume that the compensating control

105

Paper 2. Improved Scheduling of Control Tasks

algorithm has the same execution time as the non-compensating one.
New simulations give the following results:

Ref. Impl. 1 Impl. 2

J1 2.40 4.90 4.16

J2 1.35 4.27 1.96

J3 1.16 1.28 1.45

This implementation is sometimes better and sometimes worse than
Textbook Implementation A—the output jitter is smaller, but the com-
putational delay is larger.

Implementation 3—Improved scheduling

Referring to the procedure detailed in Section 3, we now let each con-
trol task τ i consist of the subtasks τ COi and τ U Si. The optimal set of
deadlines DCOi—by for instance the criterion in Eq. (8)—can easily be
found using an exhaustive search over the possible priority orderings.
But instead we shall illustrate the use of our heuristic for choosing
deadlines. The task set is

T C

τ CO1 167 10

τ U S1 167 18

τ CO2 100 10

τ U S2 100 18

τ U S3 71 10

τ U S3 71 18

The deadlines of the Update State parts are equal to their periods. The
deadlines of the Calculate Output parts are initialized to DCOi := Ti−
CU Si. Assigning deadline-monotonic priorities and calculating response-
times we get

106

5. An Example

T D C P R

τ CO1 167 149 10 2 66

τ U S1 167 167 18 1 140

τ CO2 100 82 10 4 38

τ U S2 100 100 18 3 56

τ CO3 71 53 10 6 10

τ U S3 71 71 18 5 28

We set DCOi := RCO i, assign new deadline-monotonic priorities, and
repeat the calculations:

T D C P R

τ CO1 167 66 10 4 30

τ U S1 167 167 18 1 140

τ CO2 100 38 10 5 20

τ U S2 100 100 18 2 66

τ CO3 71 10 10 6 10

τ U S3 71 71 18 3 48

Repeating the procedure once more, we get no further improvements
of the response times:

T D C P R

τ CO1 167 30 10 4 30

τ U S1 167 167 18 1 140

τ CO2 100 20 10 5 20

τ U S2 100 100 18 2 66

τ CO3 71 10 10 6 10

τ U S3 71 71 18 3 48

The suggested choices of deadlines are thus DCO1 = 30, DCO2 = 20,
and DCO3 = 10. Those deadlines actually minimize the criterion in
Eq. (8), so we should be quite happy about the result. Running a new
simulation reveals a significant improvement in performance for the
lower-priority controllers:

107

Paper 2. Improved Scheduling of Control Tasks

Ref. Impl. 1 Impl. 2 Impl. 3

J1 2.40 4.90 4.16 2.74

J2 1.35 4.27 1.96 1.71

J3 1.16 1.28 1.45 1.28

The improvement is also clearly visible in the close-up of the behavior
of Controller 1 in Figure 5.

0 0.5 1 1.5 2 2.5 3
−1

0

1

2
x 10

−3

0 0.5 1 1.5 2 2.5 3
−0.05

0

0.05

Process output y1

Control signal u1

Sample

Figure 5. Close-up behavior of Controller 1 when improved scheduling is used
(Implementation 3). Notice that the jitter is much smaller than in Figure 4.

Implementation 4—Improved scheduling and fixed-delay
compensation

Our last improvement consists of redesigning the controllers to com-
pensate for the remaining computational delays. Again, we assume
that the computation times remain the same. A final simulation shows
that the performance has been improved even further:

108

6. Conclusions

Ref. Impl. 1 Impl. 2 Impl. 3 Impl. 4

J1 2.40 4.90 4.16 2.74 2.66

J2 1.35 4.27 1.96 1.71 1.46

J3 1.16 1.28 1.45 1.28 1.21

It can be noted that with improved scheduling and fixed-delay compen-
sation, the performance of the three controllers all come quite close to
the reference performance.

6. Conclusions

It has been shown that it is possible to improve the performance of
digital controllers by using more detailed timing analysis. By treating
the main parts of a control algorithm as two subtasks, and by schedul-
ing them appropriately, it is often possible to reduce the computational
delay significantly. The remaining delay could be fixated, allowing for
fixed-delay compensation to be used.

The results tell us that digital controllers should be designed with
the implementation as periodic tasks in mind. The selection of task
timing attributes, such as periods and deadlines, affect both control
performance and schedulability. It is also necessary to have good es-
timates of the worst-case execution times of the different parts of the
algorithm. It would be useful to have a design tool for digital controllers
that took all of these considerations into question.

The need for more elaborate simulation tools for real-time control
systems is also evident. In order to capture the true behavior of the
such systems, the simulation software must include models of the phys-
ical processes, the controllers, and the real-time kernel.

7. Acknowledgments

This work has been performed as a part of the ARTES project “Inte-
grated Control and Scheduling”.

109

Paper 2. Improved Scheduling of Control Tasks

8. References

Åström, K. J. and B. Wittenmark (1997): Computer-Controlled Sys-
tems, third edition. Prentice Hall.

Audsley, N., K. Tindell, and A. Burns (1993): “The end of the line
for static cyclic scheduling?” In Proceedings of the 5th Euromicro
Workshop on Real-Time Systems, pp. 36–41.

Burns, A., K. Tindell, and A. J. Wellings (1994): “Fixed priority
scheduling with deadlines prior to completion.” In Proceedings of
the 6th Euromicro Workshop on Real-Time Systems, pp. 138–142.

Gerber, R. and S. Hong (1993): “Semantics-based compiler transforma-
tions for enhanced schedulability.” In Proceedings of the 14th IEEE
Real-Time Systems Symposium, pp. 232–242.

Gerber, R. and S. Hong (1997): “Slicing real-time programs for en-
hanced schedulabilty.” ACM Transactions on Programming Lan-
guages and Systems, 19:3, pp. 525–555.

Gonzalez Härbour, M., M. H. Klein, and J. P. Lehoczky (1994): “Timing
analysis for fixed-priority scheduling of hard real-time systems.”
IEEE Transactions on Software Engineering, 20:1, pp. 13–28.

Gustafsson, K. and P. Hagander (1991): “Discrete-time LQG with cross-
terms in the loss function and the noise description.” Report TFRT-
7475.

Joseph, M. and P. Pandya (1986): “Finding response times in a real-
time system.” The Computer Journal, 29:5, pp. 390–395.

Kao, B. and H. Garcia-Molina (1993): “Deadline assignment in a
distributed soft real-time system.” In Proceedings of the 13th
International Conference on Distributed Computing Systems.

Kim, B. K. (1998): “Task scheduling with feedback latency for real-
time control systems.” In Proceedings of the 5th International
Conference on Real-Time Computing Systems and Applications,
pp. 37–41.

Leung, J. Y. T. and J. Whitehead (1982): “On the complexity of
fixed-priority scheduling of periodic, real-time tasks.” Performance
Evaluation, 2:4, pp. 237–250.

110

8. References

Liu, C. L. and J. W. Layland (1973): “Scheduling algorithms for
multiprogramming in a hard real-time environment.” Journal of
the ACM, 20:1, pp. 40–61.

Nilsson, J., B. Bernhardsson, and B. Wittenmark (1996): “Stochastic
analysis and control of real-time systems with random time delays.”
In IFAC’96, Preprints 13th World Congress of IFAC. San Francisco,
California.

Seto, D., J. P. Lehoczky, L. Sha, and K. G. Shin (1996): “On task
schedulability in real-time control systems.” In Proceedings of the
17th IEEE Real-Time Systems Symposium, pp. 13–21.

111

Paper 2. Improved Scheduling of Control Tasks

112

Paper 3

A Matlab Toolbox for Real-Time and
Control Systems Co-Design

Johan Eker and Anton Cervin

Abstract

The paper presents a Matlab toolbox for simulation of real-time
control systems. The basic idea is to simulate a real-time kernel in
parallel with continuous plant dynamics. The toolbox allows the
user to explore the timely behavior of control algorithms, and to
study the interaction between the control tasks and the scheduler.
From a research perspective, it also becomes possible to experi-
ment with more flexible approaches to real-time control systems,
such as feedback scheduling. The importance of a more unified
approach for the design of real-time control systems is discussed.
The implementation is described in some detail and a number of
examples are given.

113

Paper 3. A Matlab Toolbox for Real-Time and Control Systems . . .

u1 y1 u2 y2 u3 y3

Task#1 Task#2 Task#3

Plant#1 Plant#2 Plant#3

Real-Time Kernel

Single CPU System

Figure 1. Several control loops execute concurrently on one CPU. The inter-
action between the control tasks will affect the control performance.

1. Introduction

Real-time control systems are traditionally designed jointly by two dif-
ferent types of engineers. The control engineer develops a model for
the plant to be controlled, designs a control law and tests it in simu-
lation. The real-time systems engineer is given a control algorithm to
implement, and configures the real-time system by assigning priorities,
deadlines, etc.

The real-time systems engineer usually regards control systems as
hard real-time systems, i.e. deadlines should never be missed. The
control engineer on the other hand expects the computing platform to
be predictive and support equidistant sampling. In reality none of the
assumptions are necessarily true. This is even more obvious in the case
where several control loops are running on the same hardware unit.
The controllers will interact with each other since they are sharing
resources such as CPU, network, analog/digital converters, etc. see
Figure 1.

A new interdisciplinary approach is currently emerging where con-
trol and real-time issues are discussed at all design levels. One of the
first papers that dealt with co-design of control and real-time systems
was [Seto et al., 1996], where the sampling rates for a set of con-

114

1. Introduction

trollers sharing the same CPU are calculated using standard control
performance metrics. Control and scheduling co-design is also found in
[Ryu et al., 1997], where the control performance is specified in terms
of steady state error, overshoot, rise time, and settling time. These
performance parameters are expressed as functions of the sampling
period and the input-output latency. A heuristic iterative algorithm is
proposed for the optimization of these parameters subject to schedula-
bility constraints.

Good interaction between control theory and real-time systems the-
ory opens up for a unified approach and more integrated algorithms.
Scheduling parameters could for example be adjusted automatically
on-line by a kernel supervisor. Such a setup would allow much more
flexible real-time control systems than those available today. Ideas on
adaption of scheduling parameters are for example found in [Abdelza-
her et al., 1997] and [Stankovic et al., 1999].

The development of algorithms for co-design of control and real-
time systems requires new theory and new tools. This paper presents
a novel simulation environment for co-design of control systems and
real-time systems within the Matlab/Simulink environment. The ad-
vantages of using Matlab for this purpose are many. Matlab/Simulink
is commonly used by control engineers to model physical plants, to
design control systems, and to evaluate their performance by simula-
tions. A missing piece in the simulations, however, has been the actual
execution of the controllers when implemented as tasks in a real-time
system. On the other hand, most of the existing tools for task simula-
tions, for instance STRESS [Audsley et al., 1994], DRTSS [Storch and
Liu, 1996], and the simulator in [Ancilotti et al., 1998], give no sup-
port for the simulation of continuous dynamics. Not much work has
previously been done on mixed simulations of both process dynam-
ics, control tasks, and the underlying real-time kernel. An exception
is [Liu, 1998], where a single control task and a continuous plant was
simulated within the Ptolemy II framework.

The simulator proposed in this paper is designed for simultaneous
simulation of continuous plant dynamics, real-time tasks, and network
traffic, in order to study the effects of the task interaction on the control
performance.

115

Paper 3. A Matlab Toolbox for Real-Time and Control Systems . . .

Schedule

Time offset: 0

Activation Graph

high

medium

low

Figure 2. The activation graph for three control tasks, with fixed priorities
(high, medium, low), running in a pre-emptive kernel. The execution times are
the same for all three processes.

2. The Basic Idea

The interaction between control tasks executing on the same CPU is
usually neglected by the control engineer. It is however the case that
having a set of control tasks competing for the computing resources
will lead to various amounts of delay and jitter for different tasks. Fig-
ure 2 shows an example where three control tasks with the same exe-
cution times but different periods are scheduled using rate-monotonic
priorities. In this case the schedule does not tell the whole story. In
the example, the actual control delay (the delay from reading the in-
put signal until writing a new output signal) for the low priority task
varies from one to three times the execution time. Intuitively, this de-
lay will affect the control performance, but how much, and how can we
investigate this?

To study how the execution of tasks affects the control performance
we must simulate the whole system, i.e. both the continuous dynamics
of the controlled plant and the execution of the controllers in the CPU.
We need not simulate the execution of the controller code on instruction

116

3. The Simulation Model

One Task

Time offset: 0

: Read (sample) : Write (control)

Activation
graph

u

y

Figure 3. This is how the low priority task from Figure 2 interacts with its
plant. (u is the control signal, y is the measurement signal.)

level. In fact, it is enough to model the timely aspects of the code
that are of relevance to other tasks and to the controlled plant. This
includes computational phases, input and output actions, and blocking
of common resources (other than the CPU).

Figure 3 shows the activation graph for the low priority task from
Figure 2 and how it interacts with the continuous plant. The controller
samples the continuous measurement signal from the plant (y) and
writes new control outputs (u).

Figure 4 provides a schematic view of how we simulate the system.
A model of a real-time kernel handles the scheduling of the control
tasks and is also responsible for properly interfacing the tasks with
the physical environment. The outputs from the kernel model, i.e. the
control signals, are piecewise constant. The plant dynamics and the
plant outputs, i.e. the measurement signals, are continuous.

3. The Simulation Model

The heart of the toolbox is a Simulink block (an S-function) that simu-
lates a tick-driven preemptive real-time kernel. The kernel maintains a

117

Paper 3. A Matlab Toolbox for Real-Time and Control Systems . . .

Control
Signals

Process Outputs

Kernel Model

Plant#1 Plant#2 Plant#3

Controller#1

Controller#2

Controller#3

Running Ready

Blocked

Figure 4. Schematic view of the simulation setup. The controllers are tasks
executing in a simulated pre-emptive kernel. The controllers and the control sig-
nals are discrete while the plant dynamics and the plant output are continuous.
The continuous signals from the plants are sampled by the control tasks.

number of data structures that are commonly found in a real-time ker-
nel: a set of task records, a ready queue, a time queue, etc. At each clock
tick, the kernel is responsible for letting the highest-priority ready
task, i.e. the running task, execute in a virtual CPU. The schedul-
ing policy used is determined by a priority function, which is a func-
tion of the attributes of a task. For instance, a priority function that
returns the period of a task implements rate-monotonic scheduling,
while a function that returns the absolute deadline of a task imple-
ments earliest-deadline-first scheduling. There currently exist prede-
fined priority functions for rate-monotonic (RM), deadline-monotonic
(DM), arbitrary fixed-priority (FP), and earliest-deadline-first (EDF)
scheduling. The user may also write his own priority function that
implements an arbitrary scheduling policy.

The execution model used is similar to the live task model described
in [Storch and Liu, 1996]. During a simulation, the kernel executes
user-defined code, i.e. Matlab functions, that have been associated with
the different tasks. A code function returns an execution time estimate,
and the task is not allowed to resume execution until the same amount
of time has been consumed by the task in the virtual CPU.

118

3. The Simulation Model

The Task

Each task in the kernel has a set of basic attributes: A name, a list of
code segments to execute, a period, a release time, a relative deadline,
and the remaining execution time to be consumed in the virtual CPU.
Some of the attributes, such as the release time and the remaining
execution time, are constantly updated by the kernel during a simula-
tion. The other attributes, such as the period and the relative deadline,
remain constant unless they are explicitly changed by kernel function
calls from the user code.

The Code

The local memory of a task is represented by two local, user-defined
data structures states and parameters. The states may be changed by
the user code, while the parameters remain constant throughout the
execution.

To capture the timely behavior of a task, the associated code is di-
vided into one or several code segments, see Figure 5. The execution

. . .Code
Segment

#1

Code
Segment

#2

Code
Segment

#n

time

Task

Figure 5. The execution structure of a task. The flexible structure supports
data dependent execution times and advanced scheduling techniques.

time of a segment is determined dynamically at its invocation. Nor-
mally, the segments are executed in order, but this may be changed by
kernel function calls from the user code.

On a finer level, actual execution of statements in a code segment
can only occur at two points: at the very beginning of the code seg-
ment (in the enterCode part) or at the very end of the code segment
(in the exitCode part), see Figure 6. Typically, reading of input signals,

119

Paper 3. A Matlab Toolbox for Real-Time and Control Systems . . .

enterCode exitCode

Code
Segment

Execution Time

Figure 6. A code segment is divided in two parts: the enterCode part and the
exitCode part.

locking of resources, and calculations are performed in the enterCode
part. Writing of output signals, unlocking of resources, and other ker-
nel function calls are typically performed in the exitCode part. The
following examples illustrate how code segments can model real-time
tasks.

EXAMPLE 1
A task implementing a control loop can often be divided into two parts:
one that calculates a new control signal and one that updates the con-
troller states. The first part, called Calculate Output, has a hard timing
constraint and should finish as fast as possible. The timing require-
ment for the second part, Update State, is that it must finish before
the next invocation of the task. Two code segments are appropriate to
model the task:

Read Inputs }
Write Outputs

LOOP

CalculateOutput

UpdateState
Sleep

END

CodeCode
Segment Segment

The enterCode of the first segment contains the reading of the mea-
surement signals, and the calculation of a new control signal. In the
same segment, in exitCode, the control signal is sent to the actuator.

120

4. Using the Simulator

The control delay of the controller is thus equal to the execution time
of the first segment. The enterCode of the second code segment con-
tains Update State. When the last segment has completed, the task is
suspended until the next period by the kernel.

EXAMPLE 2
The structure of a periodic task that first calculates some data and
then writes to a common resource could look like this:

Unlock(Mutex)

LOOP

}

Sleep
END

Calculate
Lock(Mutex)
WriteData

CodeCode
Segment Segment

Again, two code segments can capture the timely behavior. The first
code segment contains the Calculate statement, located in the
enterCode part. The enterCode part of the second code segment con-
tains the Lock(Mutex) and WriteData statements, while exitCode con-
tains the Unlock(Mutex) statement. When the last segment has com-
pleted, the task is suspended until the next period by the kernel.

4. Using the Simulator

From the user’s perspective, the toolbox offers a Simulink block that
models a computer with a real-time kernel. Connecting the Computer
block’s inputs and outputs (representing for instance A-D and D-A con-
verters) to the plant, a complete computer-controlled system is formed,
see Figure 7.

The plant dynamics may have to be controlled by several digital con-
trollers, each implemented as a periodic control task in the computer.
Besides the controllers, other tasks could be executing in the computer,
for instance planning tasks, supervision tasks, and user communica-
tion tasks.

Opening up the Computer block, the user may study detailed in-
formation about the execution of the different tasks, see Figure 8. It is

121

Paper 3. A Matlab Toolbox for Real-Time and Control Systems . . .

u1

u2

u3

y1

y2

y3

Plant Dynamics

Demux

Output Socket

Mux

Input Socket

Inputs Outputs

Computer

Figure 7. The simulation environment offers a Simulink Computer block that
can be connected to the model of the plant dynamics.

1

Outputs

Schedule

Sampling instants

Kernel

S−Function

Demux

Control instants

1

Inputs

Figure 8. Inside the Computer block, it is possible to study details about the
execution of different tasks.

for instance possible to study the schedule, i.e. a plot that shows when
different tasks are executing, at run-time. Further statistics about the
execution is stored in the workspace and may be analyzed when the
simulation has stopped.

Controller Implementation

It is highly desirable that the design of the kernel is flexible and allows
components to be reused and replaced. Much effort has been put into
writing control algorithms in Matlab, and these algorithms should be
straightforward to reuse. In the toolbox, a control algorithm can be
implemented as a code segment with the following format:

function [exectime,states] = ...

122

4. Using the Simulator

myController(flag,states,params)
switch flag,
case 1, % enterCode
y = analogIn(params.inChan);
states.u = <place control law here>
exectime = 0.002;
case 2, % exitCode
analogOut(params.outChan,states.u)

end

The input variables to myController are the state variables states,
and the controller parameters params. The flag is used to indicate
whether the enterCode or the exitCode part should be executed. If
the enterCode part is executed, the function returns the execution time
estimate exectime and the new state variables. The control signal is
sent to the plant in the exitCode part.

Remark The output signal u is not normally regarded as a state
variable in a controller. In this example, however, we need to store the
value of u between two invocations of the myController function.

Configuration

Before a simulation can start, the user must define what tasks that
should exist in the system, what scheduling policy should be used,
whether any common resources exist, etc. The initialization is per-
formed in a Matlab script.

EXAMPLE 3
Three dummy tasks are initialized in the script below. The tick-size of
the kernel is set to 0.001 s and the scheduling type is set to rate mono-
tonic. The dummy code segment empty models a task that computes
nothing for a certain amount a time. Each task is assigned a period,
and a deadline which is equal to the period.

function rtsys = rtsys_init

% 1 = RM, 2 = DM, 3 = Arbitrary FP, 4 = EDF
rtsys.st = 1;
rtsys.tick_size = 0.001;

123

Paper 3. A Matlab Toolbox for Real-Time and Control Systems . . .

T = [0.10 0.08 0.06]; % Task Periods
D = [0.10 0.08 0.06]; % Deadlines
C = [0.02 0.02 0.02]; % Computation times

rtsys.Tasks = {}
code1 = code(’empty’,[],C(1))
code2 = code(’empty’,[],C(2))
code3 = code(’empty’,[],C(3))

rtsys.Tasks{1}=task(’Task1’,code1,T(1),D(1));
rtsys.Tasks{2}=task(’Task2’,code2,T(2),D(2));
rtsys.Tasks{3}=task(’Task3’,code3,T(3),D(3));

The initialization script is given as a parameter to a Computer block
in a Simulink model. Simulating the model for one second produces,
among other things, the schedule plot shown in Figure 9.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

4
Schedule

Time (s)

Task 1
Task 2
Task 3

Figure 9. The schedule resulting from the simulation in Example 3. The bot-
tom graph shows when Task 1 is running (high), ready (medium) or blocked
(low). The other two graphs represent Task 2 and Task 3.

124

4. Using the Simulator

u

noise

Angle

Position

J
Pendulum 3

u

noise

Angle

Position

J
Pendulum 2

u

noise

Angle

Position

J
Pendulum 1 In1

In2

In3

Out1

Out2

Out3

Computer

Figure 10. A Simulink diagram where three continuous pendulum models are
connected with the real-time kernel. The simulation result from this system is
both the activation graph and the output from the continuous plants.

Connecting a Continuous Plant

Figure 10 shows a Simulink diagram where a Computer block is con-
nected to three pendulum models. The continuous plant models are
described by other Simulink blocks.

A real-time system with three control loops are created in Exam-
ple 4. One code segment named myController is associated with each
task.

EXAMPLE 4
function rtsys = rtsys_init
% Scheduling type, 1=RM, 2=DM, 3=FP, 4=EDF
rtsys.st=1;
rtsys.tick_size=0.001;

% Desired bandwidths
omega=[3 5 7];
% Sampling periods
T=[0.167 0.100 0.071];
for i=1:3
% Design controller
params=ctrl_design(omega(i),T(i));

125

Paper 3. A Matlab Toolbox for Real-Time and Control Systems . . .

% Initialize control code
states.xhat=[0 0]’;
% The controller reads from input i
params.inChan=i;
% The controller writes to output i
params.outChan=i;
sfbcode=code(’myController’,states,params);
% Create task
tasks{i}=task([’Task ’num2str(i)],...

sfbcode, T(i), T(i));
end
rtsys.tasks=tasks;

The outputs from a simulation of this system are a set of continuous
signals from the plants together with an activation graph. It is hence
possible to evaluate the performance of the real-time systems both from
a control design point of view and from a scheduling point of view.

5. A Co-Design Example

Using the simulator, it is possible to evaluate different scheduling poli-
cies and their effect on the control performance. Again consider the
problem of controlling three inverted pendulums using only one CPU,
see Figure 11. The inverted pendulum may be approximated by the
following linear differential equation

θ̈ = ω 2
0θ +ω 2

0u/n,

where ω 0 =
√n/l is the natural frequency for a pendulum with length

l. The goal is to minimize the angles, so for each pendulum we want
to minimize the accumulated quadratic loss function

Ji(t) =
∫ t

0
θ2

i (s)ds. (1)

Three discrete-time controllers with state feedback and observers are
designed. Sampling periods for the controllers are chosen according to

126

5. A Co-Design Example

θ

signals
input

output
control

ττ τ
Kernel

31 2

Figure 11. The setup described in Section 5. Three inverted pendulums with
different lengths are controlled by three control tasks running on the same CPU.

the desired bandwidths (3, 5 and 7 rad/s respectively) and the CPU
resources available. The execution times of the control tasks, τ i, are all
28 ms, and the periods are T1 = 167 ms, T2 = 100 ms, and T3 = 71 ms.

Task objects are created according to Example 4. Also, similar to
Example 1, the control algorithm is divided into two code segments,
Calculate Output and Update State, with execution times of 10 and 18
ms respectively.

In a first simulation, the control tasks are assigned constant pri-
orities according to the rate-monotonic schema, and the two code seg-
ments execute at the same priority. In a second simulation, the Cal-
culate Output code segments are assigned higher priorities than the
Update State segments, according to iterative priority/deadline as-
signment algorithm suggested in [Cervin, 1999]. The accumulated loss
function for the slow pendulum (T1 = 167 ms) is easily recorded in the
Simulink model, and the results from both simulations are shown in
Figure 12.

A close-up inspection of the schedule produced in the second sim-
ulation is shown in Figure 13. It can be seen that the faster tasks
sometimes allow the slower tasks to execute, and in this way the con-
trol delays in the slower controllers are minimized. The result is a
smaller accumulated loss, and thus, better control performance.

127

Paper 3. A Matlab Toolbox for Real-Time and Control Systems . . .

0 20 40 60 80 100
0

2

4

6
x 10

−5

time

cost

improved

normal

Accumulated Loss

Figure 12. The accumulated loss, see Equation (1), for the low priority con-
troller using normal and improved scheduling. The cost is substantially reduced
under the improved scheduling.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

1

1.5

2

2.5

3

3.5

Schedule

Time offset: 0

Figure 13. The activation graph when the improved scheduling strategy is
used. Note that the control delay for the low priority task is approximately the
same as for the other tasks.

128

6. Simulation Features

6. Simulation Features

Further features of the toolbox are the support for common real-time
primitives like mutual exclusion locks, events (also known as condition
variables), and network communication blocks.

Locks and Events

The control tasks do not only interact with each through the use of
same CPU, but also due to sharing other user-defined resources. The
kernel allows the user to define monitors and events, for implementing
complex dependencies between the task. The syntax and semantics of
the mutex and event primitives are demonstrated by a small example.
Two tasks Regul and OpCom are sharing a variable called data. To en-
sure mutual exclusion the variable is protected by the mutex variable
M1. Associated with M1 is a monitor event called E1. The Regul-task
consists of two code segments called rseg1 and rseg2, that are shown
in Example 5. Each time the Regul-task is released it tries to lock
the monitor variable M1. Once the monitor is locked it may access the
shared data. If the value of the data-variable is less than two, it waits
for the event E1 to occur.

EXAMPLE 5
function [exectime, states] = ...

rseg1(flag,states,params)
switch flag,
case 1, % enterCode
if lock(’M1’)

data = readData(’M1’);
if data < 2
await(’E1’);
exectime = 0;

else
exectime = 0.003;

end
else

exectime = 0;
end

case 2, % exitCode
unlock(’M1’);

129

Paper 3. A Matlab Toolbox for Real-Time and Control Systems . . .

end

function [exectime,states] = ...
rseg2(flag,states,params)

switch flag,
case 1, % enterCode
y = analogIn(params.inChan);
states.u = -50*y;
exectime = 0.003;

case 2, % exitCode
analogOut(params.outChan,states.u)

end

The locks and the events are designed similarly to how monitors and
events are implemented in a standard real-time kernel, i.e. using
queues associated with the monitor for storing tasks blocking on locks
or events. The execution time used for trying, but failing to lock, is in
the example above zero.

Network Blocks

It is possible to include more than one Computer block in a Simulink
model, and this opens up the possibility to simulate much more com-
plex systems than the ones previously discussed. Distributed control
systems may be investigated. Furthermore, fault-tolerant systems,
where, for redundancy, several computers are used for control, could
also be simulated. In order to simulate different communication proto-
cols in such systems, communication blocks for sending data between
the different Computer blocks are needed. Figure 14 shows a simula-
tion setup for a simple distributed system where the controller, and the
actuator and sensor, are located at different places. Besides the kernel
blocks there is a network block for communication. The network block
is event driven, and each time any of the input signals change, the
network is notified. The user needs to implement the network proto-
col, since the blocks simply provides the mechanisms for sending data
between kernels.

130

6. Simulation Features

InputsOutputs

Sensor
Computer

1

Sender ID 2
2

Sender ID 1

1Receiver ID22Receiver ID 1

In
 1

In
 2

O
ut

 1

O
ut

 2Network

u y1,y2

Double Tank

DemuxDemux

Inputs Outputs

Controller
Computer

Figure 14. A distributed control system where the sensor and the CPU are
dislocated. The controller and the sensor are implemented as periodic tasks
running on separate CPUs.

High Level Task Communication

One of the main reasons for designing the kernel and the network
blocks was to facilitate the simulation of flexible embedded control
system, i.e. systems where the task set is allowed to change dynami-
cally and the underlying real-time system must compensate for this.
From a control theory perspective we might say that we want to de-
sign a feedback connection between the control tasks and the sched-
uler, see Figure 15. To support the simulation of feedback scheduling,
there must be ways for the tasks and the task scheduler to communi-
cate. Therefore the kernel also supports system-level message passing
between tasks.

131

Paper 3. A Matlab Toolbox for Real-Time and Control Systems . . .

Scheduler

Processes

Controllers

Figure 15. The control tasks and the task scheduler are connected in a feed-
back loop.

7. Conclusions

This paper presented a novel simulator for the co-design of real-time
systems and control systems. The main objective is to investigate the
consequences on control performance of task interaction on kernel
level. This way, scheduling algorithms may be evaluated from a con-
trol design perspective. We believe that this is an issue of increasing
importance. There are many more things to be implemented and im-
proved before this block set will become a truly useful tool. Currently
the kernel is tick-based, and has little support for external interrupts.
The next version of the kernel block will probably be event-based in
order to better support interrupts and event-based sampling. To make
the simulations more realistic, the scheduler itself could also be mod-
eled as a task that consumes CPU time. This would also enhance the
possibilities for the user to implement new scheduling strategies for
control tasks.

8. Acknowledgments

This work was sponsored by the Swedish national board of technical
development (NUTEK) and by the Swedish network for real-time re-
search and education (ARTES).

132

9. References

9. References

Abdelzaher, T., E. Atkins, and K. Shin (1997): “QoS negotiation in real-
time systems, and its application to flight control.” In Proceedings
of the IEEE Real-Time Systems Symposium.

Ancilotti, P., G. Buttazzo, M. D. Natale, and M. Spuri (1998): “Design
and programming tools for time critical applications.” Real-Time
Systems, 14:3, pp. 251–269.

Audsley, N., A. Burns, M. Richardson, and A. Wellings (1994):
“STRESS—A simulator for hard real-time systems.” Software—
Practice and Experience, 24:6, pp. 543–564.

Cervin, A. (1999): “Improved scheduling of control tasks.” In Pro-
ceedings of the 11th Euromicro Conference on Real-Time Systems,
pp. 4–10. York, England.

Liu, J. (1998): “Continuous time and mixed-signal simulation in
Ptolemy II.” Technical Report UCB/ERL Memorandum M98/74.
Department of Electrical Engineering and Computer Science, Uni-
versity of California, Berkeley.

Ryu, M., S. Hong, and M. Saksena (1997): “Streamlining real-time con-
troller design: From performance specifications to end-to-end timing
constraints.” In Proceedings of the IEEE Real-Time Technology and
Applications Symposium.

Seto, D., J. Lehoczky, L. Sha, and K. Shin (1996): “On task schedu-
lability in real-time control systems.” In Proceedings of the IEEE
Real-Time Systems Symposium.

Stankovic, J. A., C. Lu, S. H. Son, and G. Tao (1999): “The case for
feedback control real-time scheduling.” In Proceedings of the 11th
Euromicro Conference on Real-Time Systems, pp. 11–20.

Storch, M. F. and J. W.-S. Liu (1996): “DRTSS: A simulation framework
for complex real-time systems.” In Proceedings of the 2nd IEEE
Real-Time Technology and Applications Symposium, pp. 160–169.

133

Paper 3. A Matlab Toolbox for Real-Time and Control Systems . . .

134

Paper 4

Feedback Scheduling
of Control Tasks

Anton Cervin and Johan Eker

Abstract

The paper presents a feedback scheduling mechanism in the con-
text of co-design of the scheduler and the control tasks. We are par-
ticularly interested in controllers where the execution time may
change abruptly between different modes, such as in hybrid con-
trollers. The proposed solution attempts to keep the CPU utiliza-
tion at a high level, avoid overload, and distribute the computing
resources evenly among the tasks. The feedback scheduler is im-
plemented as a periodic or sporadic task that assigns sampling
periods to the controllers based on execution-time measurements.
The controllers may also communicate feedforward mode-change
information to the scheduler. As an example, we consider hybrid
control of a set of double-tank processes. The system is evaluated,
from both scheduling and control performance perspectives, by co-
simulation of controllers, scheduler, and tanks.

135

Paper 4. Feedback Scheduling of Control Tasks

1. Introduction

There is currently a trend towards more flexible real-time control sys-
tems. By combining scheduling theory and control theory, it is possible
to achieve higher resource utilization and better control performance.
To achieve the best results, co-design of the scheduler and the con-
trollers is necessary. This research area is only beginning to emerge,
and there is still a lot of theoretical and practical work to be done, both
in the control community and in the real-time community.

Control tasks are generally viewed by the scheduling community as
hard real-time tasks with fixed sampling periods and known WCETs.
Upon closer inspection, neither of these assumptions need necessarily
be true. For instance, many control algorithms are quite robust against
variations in sampling period and response time. Controllers can be
designed to switch between different modes with different execution
times and perhaps also different sampling intervals. It is also possible
to consider control systems that are able to do a trade-off between the
available computation time and the control loop performance.

As an example throughout this paper, we study the problem of
scheduling a set of hybrid-control tasks. Such tasks are good exam-
ples of tasks that do not really meet the assumptions commonly made
in the scheduling theory. A hybrid controller switches between differ-
ent modes, which may have very different execution-time character-
istics. Utilizing only worst-case execution-time (WCET) estimates in
the scheduling design can result in very low resource utilization, slow
sampling, and low control performance. On the other hand, if instead,
average-case execution-time estimates are used in the scheduling de-
sign, the CPU may experience transient overloads during run-time.
This, again, can result in low control performance, and even tempo-
rary shut-down of the controllers.

In this work, we present a feedback scheduler for control tasks that
attempts to keep the CPU utilization at a high level, avoid overload,
and distribute the computing resources evenly among the tasks. While
we want to keep the number of missed deadlines as low as possible,
control performance is our primary objective. Thus, control tasks, in
our view, fall in a category somewhere between hard and soft real-time
tasks. The known-WCET assumption is relaxed by the use of feedback
from execution-time measurements. We also introduce feedforward to

136

1. Introduction

Usp {Ti}

mode changes

jobs ci, U
Scheduler Tasks Dispatcher

Figure 1. The feedback scheduling structure.

further improve the regulation of the utilization.
The structure of the feedback scheduler is shown in Figure 1. A set

of control tasks generate jobs that are fed to the run-time dispatcher.
The scheduler gets feedback information about the actual execution
time, ci, of the jobs (it is assumed that this information can be provided
by the real-time operating system). It also gets feedforward informa-
tion from control tasks that are about to switch mode. This way, the
scheduler can proact rather than react to sudden changes in the work-
load. The scheduler tries to keep the utilization, U , as close as possible
to the utilization setpoint, Usp. This is done by manipulating the sam-
pling periods, {Ti}. The choice of utilization setpoint depends on the
scheduling policy of the dispatcher, and on the sensitivity of the con-
trollers to missed deadlines. Notice that the well-known, guaranteed
utilization bounds of 100% for earliest-deadline-first (EDF) scheduling
and 69% for fixed-priority scheduling [Liu and Layland, 1973] are not
valid in this context, since the assumptions about known, fixed WCETs
and fixed periods are violated.

The calculated task periods should reflect the relative importance of
the different control tasks. One possibility is to assign nominal sam-
pling periods to the controllers off-line. The feedback scheduler can
then do linear rescaling of the task periods to achieve the desired uti-
lization. The controllers are informed of the new sampling periods and
may adjust their parameters if necessary. Other possibilities could in-
clude on-line optimization of a control performance criterion over the
task periods, subject to the utilization constraint. The feedback sched-
uler is in the end also implemented as a periodic or sporadic task that
consumes computing resources. There is a fundamental trade-off be-

137

Paper 4. Feedback Scheduling of Control Tasks

tween the time that should be spent doing scheduling, and the time
left over for control computations.

Related Work

The related work falls into three categories. The first one is the field of
integrated control system and real-time system design. In [Seto et al.,
1996], sampling period selection for a set of control tasks is considered.
The performance of a task is given as a function of its sampling fre-
quency, and an optimization problem is solved to find a set of optimal
task periods. Co-design of real-time control systems is also considered
in [Ryu et al., 1997], where the performance parameters are expressed
as functions of the sampling periods and the input-output latencies.
[Shin and Meissner, 1999] deals with on-line rescaling and relocation
of control tasks in a multi-processor system. A simulator for co-design
is introduced in [Eker and Cervin, 1999]. It facilitates co-simulation of
control task execution, scheduling, and continuous plant dynamics.

The second area of related work is on quality-of-service (QoS) aware
real-time software, where a system’s resource allocation is adjusted on-
line in order to maximize the performance in some respect. In [Li and
Nahrstedt, 1998] a general framework is proposed for controlling the
application requests for system resources using the amount of allocated
resources for feedback. It is shown that a PID controller can be used to
bound the resource usage in a stable and fair way. A resource allocation
scheme called Q-RAM is presented in [Rajkumar et al., 1997]. Several
tasks are competing for finite resources, and each task is associated
with a utility value, which is a function of the assigned resources. The
system distributes the resources between the tasks to maximize the
total utility of the system. In [Abdelzaher et al., 1997] a QoS rene-
gotiation scheme is proposed as a way to allow graceful degradation
in cases of overload, failures or violation of pre-run-time assumptions.
The mechanism permits clients to express, in their service requests,
a range of QoS levels they can accept from the provider, and the per-
ceived utility of receiving service at each of these levels.

The third area relates to the wealth of flexible scheduling algo-
rithms available. An interesting alternative to linear task rescaling is
given in [Buttazzo et al., 1998], where an elastic task model for peri-
odic tasks is presented. The relative sensitivity of tasks to rescaling
are expressed in terms of elasticity coefficients. Schedulability anal-

138

2. A Hybrid Controller

ysis of the system under EDF scheduling is given. Closely related to
our work, [Stankovic et al., 1999] presents a scheduling algorithm that
explicitly uses feedback. A PID controller regulates the deadline miss-
ratio for a set of soft real-time tasks with varying execution times, by
adjusting their requested CPU utilization. It is assumed that tasks
can change their CPU consumption by executing different versions of
the same algorithm. An admission controller is used to accommodate
larger changes in the workload.

Outline

The rest of the paper is outlined as follows. Section 2 describes a hybrid
controller for a double-tank process. Section 3 applies the feedback
scheduling principle to a system with three hybrid controllers. The
design and implementation are discussed and simulation results are
given. Finally, Section 4 contains the conclusions.

2. A Hybrid Controller

A hybrid controller for the double-tank process, see Figure 2, is de-
scribed. The controller was designed and implemented in [Eker and
Malmborg, 1999]. The goal is to control the level of the lower tank
to a desired setpoint. The measurement signals are the levels of both
tanks, and the control signal is the inflow to the upper tank. Choosing

Pump

Figure 2. The double-tank process.

139

Paper 4. Feedback Scheduling of Control Tasks

state variables x1(t) for the upper tank level and x2(t) for the lower
tank level, we get the nonlinear state-space description

dx
dt
=
[−α

√
x1(t) + β u(t)

α
√

x1(t) −α
√

x2(t)

]
(1)

The process constants α and β depend on the cross-sections of the
tanks, the outlet areas, and the capacity of the pump. The control
signal u(t) is limited to the interval [0,1].

Traditionally there is a trade-off in design objectives when choosing
controller parameters. It is usually hard to achieve the desired step-
change response and at the same time get the wanted steady-state
behavior. An example of contradictory design criteria is tuning a PID
controller to achieve both fast response to setpoint changes, fast dis-
turbance rejection, and no or little overshoot. In process control it is
common practice to use PI control for steady state regulation and to use
manual control for large setpoint changes. One solution to this problem
is to use a hybrid controller consisting of two sub-controllers, one PID
controller and one time-optimal controller, together with a switching
scheme. The time-optimal controller is used when the states are far
away from the reference point. Coming close, the PID controller will
automatically be switched in to replace the time optimal controller.

The sub-controller designs are based on a linearization of Equa-
tion (1).

dx
dt
=
[−a 0

a −a

]
x(t) +

[
b

0

]
u(t) (2)

The new process parameters a and b are functions of α , β and the
current linearization level.

PID Controller

The PID parameters (K , Ti, Td) are calculated to give the closed-loop
characteristic polynomial

(s+ω 0)(s2 + 2ζ ω 0s+ω 2
0) (3)

where (ω 0, ζ) = (6, 0.7) are chosen to give good rejection of load dis-
turbances. The following discrete-time implementation, which includes

140

2. A Hybrid Controller

low-pass filtering of the derivative part (N = 10), is used:

P(t) = K(ysp(t) − y(t)) (4)
I(t) = I(t−h) + Kh

Ti
(ysp(t) − y(t)) (5)

D(t) = Td
Nh+Td

D(t−h) + N KTd
Nh+Td

(y(t−h) − y(t)) (6)
u(t) = P(t) + I(t) + D(t) (7)

Time-Optimal Controller

The time-optimal control signal is of bang-bang type. For the linearized
process it is possible to derive the switching curve

x2(x1) = 1
a
((ax1 − bu)(1 + ln(axR

1 − bu
ax1 − bu

)) + bu) (8)

where u takes values in {0, 1}, and xR
1 is the target state for x1. The

control signal is u = 0 above the switching curve and u = 1 below. A
closeness criterion on the form

Vclose =
[

xR
1 − x1

xR
2 − x2

]T

P(θ,γ)
[

xR
1 − x1

xR
2 − x2

]
(9)

where P(θ,γ) is positive definite matrix, is evaluated at each sample,
to determine whether the controller should switch to PID mode.

Implementation
The controller implementation is outlined below.

y = analogIn(yChan);
ysp = getSetpoint();
if (getMode() == PID) {
if (ysp != ysp_old) {
setMode(OPT);
signal(FBS_sem); /* feedforward, see Section 3.3 */
u = calculateOPT();

} else {
u = calculatePID();

}
} else { /* OPT */

141

Paper 4. Feedback Scheduling of Control Tasks

Vclose = computeVclose();
if (Vclose < Vregion) {
setMode(PID);
u = calculatePID();

} else {
u = calculateOPT();

}
}
analogOut(uChan,u);

Real-Time Properties

The execution-time properties of the hybrid controller were investi-
gated in [Persson et al., 2000]. It was found that the optimal-control
mode had considerable longer execution time than the PID mode. In
each mode, the execution time was close to the best case most of the
time, but it also exhibited random bursts. For purposes of illustration,
assume that the execution-time characteristics in the different modes
can be described by CPID = 1.8+ 0.2ε 2

i ms and COpt = 9.5+ 0.5ε 2
i ms,

where {ε i} is unit-variance Gaussian white noise.
The nominal sampling interval is chosen to be one tenth of the

rise time, Tr, of the closed-loop system. Our first example process has
Tr1 = 210 ms which gives hnom1 = 21 ms. A simulation of the computer-
controlled system is found in Figure 3. The controller displays very
good set-point response and steady-state regulation. It is seen that
the requested CPU utilization is very low in PID mode, on average
U = CPID/hnom1 = 9%. In Optimal mode, it is significantly higher, on
average U = COpt/hnom1 = 45%.

3. Feedback Scheduling Example

Now assume that two additional hybrid double-tank controllers should
execute on the same CPU as the first one. The tanks have slightly
different process parameters. Based on the rise-times, (Tr2, Tr3) =
(180, 150) ms, they are assigned the nominal sampling intervals
(hnom2, hnom3) = (18, 15) ms. To consider scheduling, some assump-
tions about the real-time operating system must be made. Throughout
this example, we assume a fixed-priority real-time kernel with the pos-

142

3. Feedback Scheduling Example

0

0.5

1
Control signal 1

0.1

0.15

Lower tank level 1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2
Total requested utilization

Time [s]

Figure 3. Performance of Controller 1 when running in isolation. The con-
troller displays very good set-point response and steady-state regulation. (The
undershoot at t = 2.9 s is due to a load disturbance.) The CPU never becomes
overloaded.

sibility to measure task execution time. The tasks are assigned rate-
monotonic priorities, i.e., the task with the shortest period gets the
highest priority.

First, open-loop scheduling is attempted. Then, a feedback sched-
uler is added to the system. Finally, feedforward is introduced in the
scheduler. The systems are evaluated by co-simulation of the real-time
kernel and the plant dynamics [Eker and Cervin, 1999]. A 4-second
simulation cycle is constructed as follows. At time t = 0, all controllers
start in the PID mode. At t = 0.5 s, the worst-case scenario appears: all
controllers receive new setpoints and should switch to Optimal mode.
Following this, the controllers get new setpoints pairwise, and then
one by one. For each simulation, the behavior of Controller 1, now hav-
ing the lowest priority, is plotted. Also plotted is the total requested
utilization,

∑
i ci/hi, where ci is the current actual execution time of

task i, and hi is the current period of task i. Notice that the total re-
quested utilization cannot be directly measured and used for feedback,

143

Paper 4. Feedback Scheduling of Control Tasks

but must be estimated.

Open-Loop Scheduling

We first consider open-loop scheduling, where the controllers are im-
plemented as tasks with fixed periods equal to their nominal sampling
intervals. The simulation results are shown in Figures 4 and 5.

The system easily becomes overloaded, since in the worst case,
U = ∑

i COpt/hnomi = 170 %. Controller 1 is for instance temporar-
ily turned off in the intervals t = [0.5, 0.8] s and t = [1.5, 1.8] s because
of preemption. The result is low control performance.

Feedback Scheduling

Next, a feedback scheduler is introduced. In its first version, it is im-
plemented as a high-priority task with a period TFBS = 100 ms. The
utilization setpoint is set to Usp = 80 %. At each invocation, the feed-
back scheduler estimates the current total requested utilization of the
tasks by computing Û = ∑i Ĉi/hi. The estimate Ĉi is obtained from
filtered execution-time measurements,

Ĉi(k) = λ Ĉi(k− 1) + (1− λ)ci (10)
where λ is a forgetting factor. Setting λ close to 1 results in a smooth,
but slow estimate. In this case, λ = 0, which gives fast detection of
overloads, was preferred. Finally, new task periods are assigned ac-
cording to the linear rescaling

hi = hnomiÛ/Usp (11)
The execution time of the feedback scheduler is assumed to be 2 ms.
The simulation results are shown in Figures 6 and 7. The scheduler
tries to keep the workload close to 80 %. However, there is a delay
from a change in the requested utilization until it is detected by the
feedback scheduler. This results in overload peaks at some of the mode
change instants. For instance, Controller 1 is preempted in the interval
t = [0.5, 0.6] s. The result is slightly degraded control performance.

Feedback and Feedforward Scheduling

A feedforward mechanism is added to the scheduler. The basic period
of the scheduler is kept at TFBS = 100 ms. However, when a task in

144

3. Feedback Scheduling Example

0

0.5

1
Control signal 1

0.1

0.15

Lower tank level 1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2
Total requested utilization

Time [s]

Figure 4. Performance of Controller 1 under open-loop scheduling. The CPU
is overloaded during long intervals, and the controller cannot update its control
signal very often. The result is low control performance.

0.4 0.5 0.6 0.7 0.8 0.9

Task 1

Task 2

Task 3

 FBS

Time [s]

Schedule (high=running, medium=preempted, low=sleeping)

Figure 5. Close-up of the schedule under open-loop scheduling. At t = 0.5 s,
Task 2 and 3 switch to Optimal mode, and the CPU gets overloaded. As a result,
Task 1 is preempted in a long interval.

145

Paper 4. Feedback Scheduling of Control Tasks

0

0.5

1
Control signal 1

0.1

0.15

Lower tank level 1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2
Total requested utilization

Time [s]

Figure 6. Performance of Controller 1 under feedback scheduling. The CPU
is overloaded in shorter intervals and the performance is better than under
open-loop scheduling, cf. Figure 4.

0.4 0.5 0.6 0.7 0.8 0.9

Task 1

Task 2

Task 3

 FBS

Time [s]

Schedule (high=running, medium=preempted, low=sleeping)

Figure 7. Close-up of the schedule under feedback scheduling. At t = 0.5,
Task 3 switches to Optimal mode, and the CPU gets overloaded. At t = 0.55,
the feedback scheduler rescales the task periods. But this allows Task 2 to switch
to Optimal mode, and the CPU gets overloaded again.

146

3. Feedback Scheduling Example

PID mode detects a new setpoint, it notifies the feedback scheduler,
which is released immediately. The task periods are adjusted before
the notifying task can continue to execute in the Optimal mode. The
execution-time estimation can also benefit from the mode-change in-
formation, by running separate estimators in the different modes. A
forgetting factor of λ = 0.9 was chosen to give smooth estimates in
both modes. The result is a more responsive and accurate feedback
scheduler. The simulation results are shown in Figures 8 and 9. It is
seen that the delay for Controller 1 at t = 0.5 s has been reduced, and
that the control performance is slightly better.

Performance Evaluation and Summary

The performance of the controllers under different scheduling policies
are evaluated using the criterion

Vi(t) =
∫ t

0
(ynomi(τ) − yacti(τ))2dτ (12)

where ynomi is the process output when Controller i is running un-
preempted at its nominal sampling interval, and yacti is the actual
process output when Controller i is running in the multitasking real-
time system. The function V is referred to as the additional loss due
to scheduling. Twenty-five simulation cycles (100 s) are simulated and
the final losses for the controllers are summarized below:

Scheduling V1(100) V2(100) V3(100)
Open-loop 42.4 ⋅ 10−3 2.0 ⋅ 10−3 0

Feedback 5.0 ⋅ 10−3 3.2 ⋅ 10−3 1.0 ⋅ 10−3

Feedback and
feedforward

1.5 ⋅ 10−3 1.1 ⋅ 10−3 1.0 ⋅ 10−3

Under open-loop scheduling, Controller 3 has zero additional loss. This
is because Task 3 has the highest priority and thus executes unpre-
empted at its nominal sampling period. Controller 2 suffers from some
preemption from Task 3 which gives a small loss, while Controller 1 is
preempted during long intervals which gives a very large loss.

147

Paper 4. Feedback Scheduling of Control Tasks

0

0.5

1
Control signal 1

0.1

0.15

Lower tank level 1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2
Total requested utilization

Time [s]

Figure 8. Performance of Controller 1 under feedback and feedforward
scheduling. The CPU is almost never overloaded, which results in better control
performance, cf. Figures 4 and 6. The performance is not as good as in Figure 3
though, since the controller must sometimes execute at a lower rate.

0.4 0.5 0.6 0.7 0.8 0.9

Task 1

Task 2

Task 3

 FBS

Time [s]

Schedule (high=running, medium=preempted, low=sleeping)

Figure 9. Close-up of the schedule under feedback and feedforward schedul-
ing. The periods are rescaled by the feedback scheduler as each controller
switches to Optimal mode. As a result, the CPU is almost never overloaded.

148

4. Conclusions

Under feedback scheduling, the loss is much smaller for Controller 1,
due to the drastically reduced amount of preemption from Task 2 and 3.
Because of the period rescaling, however, Controller 2 and 3 increase
their losses.

Under feedback and feedforward scheduling, Controller 1 and 2
decrease their losses, since the CPU overloads are almost completely
avoided. The total loss is small, and it is evenly distributed among the
controllers.

The evolution of the additional loss for Controller 1 is shown in Fig-
ure 10. There is a very large improvement when introducing feedback,
and the addition of the feedforward mechanism gives even further re-
duction of the loss.

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

Time [s]

Accumulated loss due to scheduling V1

Open−loop

Feedback

Feedback + feedforward

Figure 10. The accumulated additional loss due to scheduling for Controller 1,
V1(t). The introduction of feedback scheduling gives a large reduction in the loss.
Adding the feedforward mechanism reduces the loss even further.

4. Conclusions

The feedback scheduler presented improves the control performance
and relaxes the requirement on known execution times for multitask-
ing control systems. The controllers are allowed to miss an occasional
deadline, and are hence not treated as hard real-time tasks. In case of

149

Paper 4. Feedback Scheduling of Control Tasks

an overload, the scheduler calculates new sampling periods for all con-
trol tasks. The estimate of the current workload is based on execution-
time measurements. The new sampling periods are given by simple
linear rescaling of the nominal sampling periods, i.e., the relative im-
portance order of the controllers is preserved. A more elaborate rescal-
ing procedure would most likely give better control performance but
also require more computational power. The feedback scheduler itself
is implemented as a task, and its period is an important design pa-
rameter.

5. References

Abdelzaher, T., E. Atkins, and K. Shin (1997): “QoS negotiation in real-
time systems, and its application to flight control.” In Proceedings
of the IEEE Real-Time Systems Symposium.

Buttazzo, G., G. Lipari, and L. Abeni (1998): “Elastic task model
for adaptive rate control.” In Proceedings of the IEEE Real-Time
Systems Symposium.

Eker, J. and A. Cervin (1999): “A Matlab toolbox for real-time and
control systems co-design.” In Proceedings of the 6th International
Conference on Real-Time Computing Systems and Applications,
pp. 320–327. Hong Kong, P.R. China.

Eker, J. and J. Malmborg (1999): “Design and implementation of a
hybrid control strategy.” IEEE Control Systems Magazine, 19:4.

Li, B. and K. Nahrstedt (1998): “A control theoretic model for quality
of service adaptations.” In Proceedings of Sixth International
Workshop on Quality of Service.

Liu, C. L. and J. W. Layland (1973): “Scheduling algorithms for
multiprogramming in a hard-real-time environment.” Journal of
the ACM, 20:1, pp. 40–61.

Persson, P., A. Cervin, and J. Eker (2000): “Execution-time properties
of a hybrid controller.” Report ISRN LUTFD2/TFRT--7591--SE.
Department of Automatic Control, Lund Institute of Technology,
Lund, Sweden.

150

5. References

Rajkumar, R., C. Lee, J. Lehoczky, and D. Siewiorek (1997): “A
resources allocation model for QoS management.” In Proceedings
of the IEEE Real-Time Technology and Applications Symposium.

Ryu, M., S. Hong, and M. Saksena (1997): “Streamlining real-time con-
troller design: From performance specifications to end-to-end timing
constraints.” In Proceedings of the IEEE Real-Time Technology and
Applications Symposium.

Seto, D., J. P. Lehoczky, L. Sha, and K. G. Shin (1996): “On task
schedulability in real-time control systems.” In Proceedings of the
17th IEEE Real-Time Systems Symposium, pp. 13–21.

Shin, K. and C. Meissner (1999): “Adaptation of control system perfor-
mance by task reallocation and period modification.” In Proceedings
of the 11th Euromicro Conference on Real-Time Systems, pp. 29–36.

Stankovic, J. A., C. Lu, S. H. Son, and G. Tao (1999): “The case for
feedback control real-time scheduling.” In Proceedings of the 11th
Euromicro Conference on Real-Time Systems, pp. 11–20.

151

Paper 4. Feedback Scheduling of Control Tasks

152

