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Chapter 1

Introduction and Summary

1.1 Aim and Scope

This thesis is a collection of five independent, although not unrelated, essays dealing

with several issues in empirical financial economics. Through the use of quantitative

methods, the aim of the thesis is to study practically relevant problems related to

the functioning of financial markets. The issues at hand stretch all the way from

options pricing and futures hedging, over stochastic volatility and variance/covariance

forecasting models, to issues on chaotic asset markets and market micro structures.

The essays have at least three things in common, however; first, they all focus on time

series properties of asset prices, second, they all explicitly model the return volatilities

of these assets as time varying, and third, they all deal with nonlinear models.

1.2 Background and Contribution of the Thesis

Financial markets are not mere academic inventions or theoretical abstractions. They

thrive even in the absence of academic research, and are of real and fundamental im-

portance for the stability and growth of the economy. Throughout the last decades,

much of the traditional national bank-based financial system has changed into a glob-
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2 Chapter 1: Introduction and Summary

ally integrated market-based financial system, and in line with this development,

financial markets are not only growing in size but also in complexity. While some of

the new financial instruments and new ways of utilizing the markets originally sprung

out of the academic world, the reverse has actually been more common; the academic

researcher has had to move quickly in order to keep pace with fast moving market

participants and their creativity in inventing new financial products. Still, academic

research on financial markets is important in order to gain a deeper and more struc-

tured general understanding of the markets, and just as academic progress depends on

the availability of practical cases to study, the development of the markets themselves

does depend on qualified financial models and empirical analysis of market behavior.

Throughout the years, a multitude of different financial markets have been set

up, and in this thesis, I focus on one of the oldest, the stock (or equity) market,

as well as one of the youngest, the electric power market. When it comes to the

stock market, my focus is on individual stocks and stock indices from the Nordic

countries. In addition to the stocks and stock indices themselves, I also look at one

of the larger derivative markets in the Nordic countries; the Swedish market for stock

index options. In the case of electricity, I have chosen to study the first multinational

electricity exchange in the world, the Nordic Power Exchange ”Nord Pool”. Both

spot and futures contracts on electricity are traded in this market.

Research on financial markets deals with a number of different issues, from empiri-

cal studies on market behavior to the development of general theories on asset pricing,

using tools from various academic subjects. In this thesis, however, I deal exclusively

with the econometrics of financial markets. More specifically, I look at time series of

asset prices and asset price changes (returns); in particular the variability and covari-

ability of such time series. Asset returns are usually supposed to be random variables

with associated statistical distributions, and through the use of both discrete time

and continuous time models, estimation and forecasting of moments of these asset re-

turn distributions is the main thread throughout the thesis. The distinction between

unconditional and conditional distributions is very important; unconditional distri-

butions are often assumed to be constant over time while conditional distributions

are usually modelled as time dependent. In this thesis, I capture the time variation
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with so called ”ARCH models” and ”stochastic volatility models”. As an alternative

to these stochastic models, deterministic ”chaos models” are also applied; the idea is

that not too complicated deterministic relationships exist between the returns of dif-

ferent days and that these relationships can be used to explain asset price movements

and to improve forecasts of asset returns.

In financial markets, it can often be observed how large returns tend to be followed

by large returns, of either sign, and small returns tend to be followed by small returns.

To capture this ”volatility clustering”, Engle (1982) introduced the autoregressive

conditional heteroscedastic (ARCH) model. ARCH and its extensions, most notably

Bollerslev’s (1986) generalized ARCH model (GARCH), have been very successful in

modelling time varying variances in individual financial series. In multivariate exten-

sions to the univariate ARCH and GARCH models, however, there are huge problems

due to the very large number of parameters that must be estimated. These estima-

tion problems limit the use of traditional multivariate ARCH and GARCH models.

In Chapter 2 I therefore study a new multivariate technique, Orthogonal GARCH,

of forecasting large covariance matrices in the presence of heteroscedasticity (Ding

(1994), and Alexander and Chibumba (1998)). One of the assumptions behind Or-

thogonal GARCH is supposed to break down under stress scenarios and I therefore

demonstrate the forecasting performance of the model on stock indicies from Den-

mark, Finland, Norway, and Sweden during the Asian Crisis 1997-1998.

Compared to the stock index prices studied in Chapter 2, prices in the electricity

market are extremely volatile. In addition, since electricity cannot be stored, it is

very difficult to price electricity futures by using arbitrage arguments. These facts,

together with the fact that no other study on hedging with electricity futures exists

in the literature, have led me to the study of the Nordic power market. In Chapter

3, I show that electricity spot as well as electricity futures returns are several times

as volatile as ordinary financial asset returns. I also study whether electricity futures

traded on Nord Pool can actually be used to hedge against adverse price changes in

the spot electricity market.

Some studies have suggested that deterministic chaos models might be successfully

applied to problems in economics and finance. This has lead many authors to claim to
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have found chaos in different asset markets, and that the movements of the assets are

deterministic, not stochastic. In order to investigate whether Swedish stock returns

can be described by chaotic models, we apply (in Chapter 4) a statistical test, the BDS

test (Brock et al. (1996)), that detects deviations from the IID (Identical Independent

Distributions) hypothesis. Intradaily, daily, and monthly stock index returns are all

used.

If we plot these stock index returns in a scatterplot, with today’s return on the x-

axis, and yesterday’s return on the y-axis, nothing unexpected appears. On the other

hand, if we do the same thing with the returns of an individual stock, a very interesting

observation can be made. The scatterplot of return pairs is now not only a diffuse

cloud of dots, but a clearly defined ”compass rose” pattern appears; evenly spaced rays

of different thickness radiate from the origin in the directions of an ordinary compass

(Crack and Ledoit (1996)). The reason why stocks have a compass rose pattern while

stock indices have none is that prices of stocks and stock indices are quoted in different

ways. While stock index prices are quoted with many decimals, stocks are usually

quoted in integers or fractions of integers. This discreteness creates the observed

compass rose. While the compass rose has been studied by other authors, we are the

first to study whether the compass rose affects AR and GARCH parameter estimates

(Chapter 5). We also discuss forecasts based on the compass rose more rigorously

than other authors. Finally, the effect of the compass rose on the BDS test and Savit

and Green’s (1991) dependability index is studied.

While I have worked with discrete time models in the other chapters, I turn to

continuous time models in Chapter 6. These models have turned out to be successful

in the context of derivatives and, typically, the popular Black-Scholes framework is

used in the pricing of derivatives. The Black-Scholes model to price options is based

on a number of assumptions, the most critical one being the assumption of a constant

return volatility. Stochastic volatility option pricing models relax this assumption by

modelling the volatility as a stochastic process (Hull and White (1987)). In Chapter

6, I have chosen to apply a model based on Fourier-Inversion (Stein and Stein (1991))

to the Swedish stock index call option market. Compared to Stein and Stein (1991),

I apply the Fourier-Inversion technique not only to the pricing of options, but also
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to the estimation of risk-neutral process parameters. To my knowledge, this study is

also the first to apply stochastic volatility models to the Swedish options market.

1.3 Summary of the Thesis

In the first essay (Chapter 2), Orthogonal GARCH and Covariance Matrix Forecasting

in a Stress Scenario: The Nordic Stock Markets During the Asian Financial Crisis

1997-1998, I study a new multivariate technique, Orthogonal GARCH, of forecasting

large covariance matrices based on GARCH models. Orthogonal GARCH is built on

principal components analysis and makes the creation of covariance matrices of arbi-

trary size based on any kind of ARCH or GARCH model possible. Using traditional

multivariate GARCH models, covariance matrices of more than two to three assets

are very difficult to estimate due to the large number of parameters. In Orthogonal

GARCH, on the other hand, not only can any number of assets be modelled together

in a common framework, but the forecasted covariance matrix also has the important

property of always being positive definite. The most important drawback with Or-

thogonal GARCH is that it builds on assumptions that might sometimes break down;

for instance when some of the assets we model behave differently than the other as-

sets, or when the time period considered is very volatile. For that reason, I have

chosen to apply the Orthogonal GARCH model to the highly volatile Nordic stock

markets during the Asian Crisis 1997-1998, using a number of different forecast eval-

uation techniques. First, I apply two different statistical evaluation techniques, the

traditional RMSE as well as an asymmetrical extension of this loss function. Second,

I apply an operational technique suggested by the Basle Committee on Banking Su-

pervision based on the concepts of Value-at-Risk and Risk Management. And third,

considering the fact that a better covariance matrix forecast also gives a more accu-

rate price of options on the assets in question, I create a simulated rainbow options

market and test which forecasting technique earns most money when used to price

and trade options. The results from the different evaluation methods indicate a better

performance of the Orthogonal GARCH model compared to traditional unconditional

forecasting techniques. The absolute performance of the Orthogonal GARCH model
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is weaker in the most volatile time periods but its relative performance is still very

strong.

In the second essay (Chapter 3), The Hedging Performance of Electricity Futures

on the Nordic Power Exchange Nord Pool, I study the first multinational power ex-

change in the world, ”Nord Pool”. Nord Pool has existed since 1996 and has partici-

pants from Norway, Sweden, Finland, Denmark, and England. Both spot and futures

are traded on the exchange and in this essay, I investigate whether the futures con-

tracts can be used to hedge short-term positions in the underlying spot market. Due

to a number of factors, this question is of particular interest in the electricity market;

first, since electricity cannot be stored, it is not obvious that futures prices and spot

prices follow each other as well as in other markets where arbitrage is possible, sec-

ond, the returns in the electricity markets have much higher volatility than in other

financial markets, and third, the return distributions are far from being normally dis-

tributed. Minimum variance hedges are constructed with hedge ratios estimated in

a number of different ways, and standard unconditional hedges like the naive hedge

and the OLS hedge are compared to conditional GARCH hedges and moving aver-

age hedges in an out-of-sample fashion. The Orthogonal GARCH model described

above is used in addition to a constant correlation bivariate GARCH model. The

empirical results indicate some gains from hedging with futures, despite the lack of

straightforward arbitrage possibilities in the electricity market. I also find the rela-

tive performance of the different variance minimizing hedges to depend on whether I

evaluate by looking at unconditional or conditional variances. In the former case, the

unconditional hedges are the better performers and in the latter case, the conditional

hedges are the better performers.

In the third essay (Chapter 4), The Search for Chaos and Nonlinearities in Swedish

Stock Index Returns ( co-authored with Henrik Amilon), we search for evidence of

chaos and other nonlinearities in Swedish stock return series. Empirical evidence

suggests that nonlinear models, including chaotic models, might explain the dynamics

of a financial return series. In our essay, we use the BDS test to determine which

linear or nonlinear dependences are responsible for the observed rejection of the IID-

hypothesis in the Swedish stock market. We look at monthly, daily and 15-minute
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return series and find clear evidence of nonlinearities in general but no evidence of

chaos. Most of the nonlinearities seem to be due to ARCH effects, and a GARCH

model with t-distributed errors explains most of the observed nonlinearities.

In the fourth essay (Chapter 5), The Compass Rose Pattern of the Stock Mar-

ket: How does it Affect Parameter Estimates, Forecasts, and Statistical Tests? ( co-

authored with Henrik Amilon), we investigate the discrete nature of stock prices and

how the minimum ”tick size” on a stock exchange creates a ”compass rose” pattern

in a scatter plot of stock returns. The effect of the compass rose on GARCH esti-

mates/forecasts as well as on tests for chaos is further studied. For a particular stock

to demonstrate a compass rose pattern, its ”typical” price changes must be compa-

rable in size to the imposed minimum tick size, and in our Monte Carlo study, we

simulate discrete AR-GARCH price series with a data generating process resembling

a typical stock on the Stockholm Stock Exchange. We create discrete price series

rounded both according to the rules of the Stockholm Stock Exchange and to the

nearest integer. Simulations reveal some effects on AR-GARCH estimates as well as

forecasts due to rounding, in particular for integer rounding. The same holds for

correlation integral based tests for dependences (the BDS test and Savit and Green’s

dependability index); when price series are heavily rounded (to the nearest integer),

we find that large shifts in the null-distributions of the tests render these useless in

detecting chaos and other dependences. We also show how non-stationarities and

”spurious” dependences in the series are created by the discreteness, and how this

gives rise to shifts in the null-distributions of the statistical tests.

In the fifth essay (Chapter 6), Stochastic Volatility and Pricing Bias in the Swedish

OMX-Index Call Option Market, I study the pricing of European call options when

the underlying stock index (OMX-Index) volatility changes randomly over time. This

differs from the Black-Scholes approach, where volatility is assumed to be constant

over the life-time of the derivative security. Both the stock index and its volatility are

modeled as diffusion processes; the stock index as a Geometric Brownian Motion, and

the volatility as a mean-reverting square-root process. Stochastic Volatility option

prices are calculated with the Fourier-Inversion method and process parameters are

backed out from empirical market prices on the Swedish Exchange for Options and
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Other Derivative Securities (OM). The stochastic volatility option prices are compared

to Black-Scholes prices as well as to market prices, and the pricing bias is examined.

Both models overprice options out-of-the-money and underprice options in-the-money.

A dynamic hedging strategy reveals some mispricing in this market, and risk-free

profit possibilities exist if transaction costs are neglected.
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Chapter 2

Orthogonal GARCH and

Covariance Matrix

Forecasting in a Stress

Scenario: The Nordic Stock

Markets During the Asian

Financial Crisis 1997-1998

2.1 Introduction

Over the last decades, a great deal of the focus has shifted from the study of means

of stock market returns to return volatilities. Correct modelling and forecasting of

variances and covariances are important in many practical applications; for instance

11
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in option pricing and calculations of Value-at-Risk measures. It is therefore of great

interest to compare different forecasting models and to find a model that gives more

accurate forecasts. Much research has focused on univariate forecasting problems

and the task of finding increasingly accurate volatility forecasts. Less work has been

done within multivariate frameworks where covariances as well as variances have to

be forecasted.

Traditionally, very simple models are used to describe and predict variances and

covariances. One often relies on historical data and extrapolates into the future in a

straightforward (unconditional) way. However, the increasingly frequent large shocks

in the financial markets in the last decades have spurred the search for, and appli-

cation of, more elaborate (conditional) models. Some of these models are feasible in

univariate settings but difficult to generalize to multivariate specifications. Examples

of this are the ARCH-type models developed by Engle (1982), Bollerslev (1986), Nel-

son (1991) and many others over the last two decades. Conceptually, these models

are easily extended to multivariate frameworks, but problems arise when it comes to

parameter estimations. The number of parameters explodes when more than two or

three assets are modelled together, creating huge estimation problems for a risk man-

ager who wants to estimate large ARCH or GARCH covariance matrices, perhaps for

hundreds of assets.

Ding (1994) and Alexander and Chibumba (1998) have shown how this problem

can be avoided by using orthogonal factors and principal component analysis in what

the first author calls ”Principal Component Multivariate ARCH” and the latter two

call ”Orthogonal GARCH”1. These two GARCH models are actually identical and

the basic idea behind the model is to ”diagonalize” the multivariate problem, so that

only univariate GARCH estimations are needed2. The most important advantage of

the Orthogonal GARCH method is the possibility to create arbitrarily large covari-

ance matrices built on GARCH forecasts. In addition, these matrices have the nice

1In his thesis, Ding mentions how the model was suggested to him by Ron Khan at BARRA,

Berkeley.

2In this paper, I call the model ”Orthogonal GARCH” for the simple reason that I prefer that

name to the lengthy one suggested by Ding.
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feature of always being positive definite; something that is not always the case in,

for instance, moving average forecasting models. Compared to classical multivariate

GARCH models, Orthogonal GARCH estimations also seem to converge in situations

where traditional GARCH models do not. Some financial variables that, tradition-

ally, have been difficult to model might therefore possibly be modelled. The major

drawback of the model is expected to reveal itself under extreme market conditions;

in particular when unexpected events affect some of the assets in the system more

than others. Under such stress scenarios, the orthogonality assumption partly breaks

down (Alexander and Chibumba (1998)).

Regardless of how one chooses to model volatilities and correlations, a crucial

question in studies on forecasting performance is how to evaluate the forecasts. A

statistical approach, where comparisons between model predictions and the realized

value are made by, for instance, calculating a measure like the root mean squared

error (RMSE), can be adopted. This particular error statistic is symmetric in the loss

function and assumes over and underpredictions to be considered as equally bad by

a particular investor. In practical applications, an investor can be expected to put

different weight on over and underpredictions and such an investor might therefore

prefer an asymmetric error statistic. A problem with both the symmetric and the

asymmetric statistical approach for volatility evaluation, however, is that realized

volatility is not directly observable.

An alternative way to proceed is to look at ”operational” procedures. The Bank for

International Settlements (Amendment to the Capital Accord to Incorporate Market

Risks (1996)) has suggested the use of ”backtesting” to evaluate volatility and cor-

relation forecasts in Value-at-Risk models and bank capital requirement calculations.

An important difference between this approach and the statistical approach is that

while measures like RMSE focus on the entire return distribution, backtesting focuses

on the lower tail of the distribution3. This makes the backtesting of BIS more suited

for Value-at-Risk evaluations.

3The realized variance in a measure like RMSE is calculated by using all returns over a certain

sample period, positive as well as negative, large as well as small.
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Yet another direction to take in order to evaluate forecasts of second moments is to

exploit the role of covariances and variances in the pricing and hedging of contingent

claims (Engle et al. (1993)). In order to price and hedge options whose payoff depends

on more than one underlying asset, so called ”rainbow options”, forecasts of the whole

covariance matrix are required. By setting up a hypothetical rainbow derivatives

market, where a number of actors with different forecasts trade simulated rainbow

options with each other, a preference free approach to the evaluation of covariance

matrix forecasts is created (Gibson and Boyer (1998)). In such a setup, forecasting

actors producing better forecasts should simply earn higher profits than other actors

in the market.

In this essay, I present results from covariance/variance forecasting in a multivari-

ate framework by using Orthogonal GARCH in addition to more traditional methods

on four Nordic stock indices between 1996 and 1998. During this period, several

countries in East and Southeast Asia were hit by a severe financial crisis that was

spread to the rest of the financial world. In the Nordic countries, the effects of the

crisis could be observed on plunging stock markets coupled with a rise in stock return

volatility, larger than the volatilities during both the 1992 Swedish currency crisis

and the Kuwait war. The markets in Finland, Norway, and Sweden were more badly

affected than those in Denmark, which led to stock indices from the first three coun-

tries being slightly differently affected by the crisis compared to the Danish index. As

mentioned, in addition to the high level of volatility, this is expected to weaken the

performance of the Orthogonal GARCH method. As mentioned above, a well-known

problem in this kind of studies is how to evaluate the different forecasts. Therefore,

I include a whole range of different evaluation approaches; each evaluation measure

corresponding better to a certain kind of economic agent.

Chapter 2.2 briefly describes the Asian crisis and presents some descriptive statis-

tics on the data. Chapter 2.3 deals with covariance matrix modelling and presents the

Orthogonal GARCH model, and chapter 2.4 describes the different evaluation mea-

sures. Chapter 2.5 contains the empirical results, and finally chapter 2.6 summarizes

and concludes the essay.
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2.2 The Nordic Stock Markets during the Asian

Crisis

In order to evaluate different forecasting techniques, I use data collected from four

Nordic stock exchanges in four different countries. Three out of these four countries

(all but Norway) are members of the European Union. The Stockholm Stock Exchange

and the Copenhagen Stock Exchange (soon also the Oslo Stock Exchange) use the

same trading system and all four exchanges coordinate their distribution of price and

turnover statistics.

2.2.1 The Asian Crisis

After 30 years of unprecedented economic performance, a serious crisis hit the East

and Southeast Asian countries in mid 1997. The crisis ”started” in Thailand during

the summer and the crisis was soon spread from Thailand to the ”neighboring” coun-

tries, Malaysia, South Korea, The Philippines, and Indonesia. In October 1997, the

crisis was spread further through the internationally important Hong Kong economy

to Europe (and the Nordic countries) as well as to the US. The uncertainties about

the Asian economies and the effect of the crisis on the world economy as a whole

were well reflected by the gloomy and highly volatile European and US stock markets

during the whole second half of 1997. The first half of 1998 was a period of slight

recovery in Asia, and the European financial markets temporarily became less ner-

vous. However, what had started as a regional economic and financial crisis in East

Asia in the summer of 1997 had slowly developed into a global financial crisis and

by the summer of 1998, volatilities were again increasing on a global scale. In the

period August to November 1998, the Nordic financial markets were close to being as

volatile as during the October crisis 1987.

2.2.2 Data and Preliminary Statistics

The data consists of daily quotes from four Nordic stock indices that serve as un-

derlying assets for options and futures trading in Sweden (OMX), Denmark (KFX),
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Finland (FOX), and Norway (OBX), respectively4. Each index represents a value

weighted portfolio of the 25−30 most traded stocks on the associated stock exchange
and can be seen as a proxy for the stock price behavior in the actual country. The

four markets have trading hours that almost perfectly overlap and 717 observations

of daily returns from February 1, 1996 to December 29, 1998 are used. Descriptive

statistics are given in Table 2.1.

All the series show excess kurtosis and some skewness, but the Ljung-Box statistics

indicate no significant autocorrelations in the index returns. The squared return series

Ljung-Box statistics, however, show large Q-values indicating autocorrelated squared

returns, which explains some of the observed kurtosis.

In Figure 2.1, I plot volatilities (standard deviation (%) on an annual basis using

a 20-days moving window) for the four Nordic stock index returns for the three-

year period 1996-1998. In late 1997 and 1998, the volatilities in all four countries

reached levels comparable to the levels during the Kuwait war. The patterns in

Sweden, Finland, and Norway are very similar while the volatility in Denmark is

lower systematically.

2.3 Covariance Matrix Modelling and Forecasting

For a financial institution, the forecasting of covariances between asset returns is

important in addition to the forecasting of variances. The forecasted covariance

matrix, that is forecasts of covariances and variances presented in matrix form, serves

many purposes for a practitioner. Financial institutions can create large covariance

matrices of all its positions in different assets and use them for a number of its

operations; a portfolio manager might want to use them to create optimal portfolios,

the option trader can price and hedge different kinds of contingent claims with the

help of both variances and covariances of underlying assets, and risk managers easily

transform covariance matrices into Value-at-Risk measures.

4All data are retrieved from Reuters Inc. A small number of observations were removed from the

original dataset due to different dates of holidays in the four countries.
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The last point in particular, that is, the use of variance and covariance forecasts

in Value-at-Risk models, is of current interest since all financial institutions in the

European Economic Community countries have been encouraged to calculate their

own Value-at-Risk measures for inspection of their central banks since the end of

1997 (”Amendment to the Capital Accord” (1996a)); these (internal) Value-at-Risk

models are supposed to create less stringent capital requirements than standard (ex-

ternal) capital requirement calculations. The importance of linkages between returns

as well as volatilities in different markets is also emphasized by the Amendment to

the Capital Accord, where natural hedges and correlations between bond markets,

stock markets, and foreign exchange markets are suggested to be allowed (Belaisch

and Kjeldsen (1997)). According to the rules worked out by The Bank for Interna-

tional Settlements (BIS) and the Basle Committee on Banking Supervision, central

banks are supposed to regularly (every 3 months) evaluate their domestic institutions

Value-at-Risk models by using operational methods and historical data from at least

one year, ”Supervisory Framework for the use of Backtesting” (1996b). On the basis

of the performance of these Value-at-Risk models, the central bank calculates capital

adequacy requirements for the bank in question.

In the light of this regulative aspect on Value-at-Risk models, together with the

other uses mentioned above, it is obviously important to be able to forecast large

covariance matrices. BIS requires the use of at least one year of historical data in

its evaluation methodology but gives no guidelines as to how the forecasts should

be calculated. A number of approaches are in use; regression methods, differently

weighted moving averages, simulation methods, etc. GARCH models are usually

difficult to use, but as suggested in Ding (1994), Alexander and Chibumba (1998),

and as shown in this article, Orthogonal GARCH might be a powerful alternative to

other simpler forecasting techniques.

2.3.1 Orthogonal GARCH

A well known problem with GARCH models is the difficulty in generalizing the model

to a multivariate framework. All theoretical results are easily modified to many
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dimensions but problems arise when the parameters in the model equations must

be estimated. Since the number of parameters explodes with increasing dimensions,

model specifications restricting the parameterspace dimension are usually chosen.

These specifications are all based on simplifying assumptions, and problems like non-

positive definite covariance matrices may arise. To circumvent these problems, Ding

(1994), and Alexander and Chibumba (1998) suggest a factor GARCH model using

orthogonal factors. The main idea is to use principal components analysis to generate

a number of orthogonal factors that can each be treated in a univariate GARCH

framework.

I assume there are k return series with t observations (at time t) represented as a

t× k matrix, Yt
5. The t× k matrix, Pt, of principal components is defined as

Pt = YtWt (1)

whereWt is the orthogonal k×k matrix of eigenvectors ofYT
t Yt ordered according to

the size of the corresponding eigenvalue. Notice thatPt, likeWt, is now an orthogonal

matrix. By inverting (1), one gets the principal components representation of the

system

Yt = PtW
T
t .

Ωt, the variance of Yt at time t, can now be calculated as

Ωt = var(Yt) = var(PtW
T
t ) =WtDtW

T
t (2)

where Dt is a diagonal matrix of principal component variances at t andWt is as-

sumed to be known at time t6. This also enables us to calculate the forecasted covari-

5If the return series represent different kinds of assets with different behavior, it is sometimes

necessary to first normalize the matrix by subtracting each column by its sample mean and divide

it by its sample standard deviation.

6Wt does not change much from day to day andWt can be approximated withWt−1 without
introducing large errors in the calculation of the covariance matrix. This is particularly the case

when calculating the forecasted covariance matrix. In this case, I forecast at time t− 1, only using
information up to t− 1. (includingWt−1)



Covariance Matrix Modelling and Forecasting 19

ance matrix Ωt+1 | Ψt, where Ψt is the information set at t, by univariate methods;
for each principal component, the conditional variance of the principal component

i, vart+1(Pi | Ψt), can easily be forecasted by, for instance, any univariate GARCH
model. This gives us the Orthogonal GARCH specification. This particular covariance

matrix also has the advantage of always being positive definite, since Dt is diagonal

with positive elements along its diagonal.

For each principal component with the conditional variance modelled as GARCH(1,1)

we have:

pt = α0 + εt

σ2t = φ0 + φ1ε
2
t−1 + φ2σ

2
t−1 (3)

where σ2t is the conditional variance of εt, εt = σtut, and ut ∼ N(0, 1). Most empirical
studies suggest that an order of the GARCH model larger than (1, 1) is rarely needed.

In GARCH modelling, the parameters are restricted; φ0 must be larger than zero, φ1

and φ2 must be zero or larger, and the sum of φ1 and φ2 must be less than one

in order to have a finite unconditional variance. The maximum likelihood estimates

(using the BHHH algorithm implemented in GAUSS ) of the GARCH model and

some statistics on the standardized residuals are presented in Table 2.2. For all

four principal components, we get significant parameter estimates, and φ−parameters
fulfilling the restrictions above. The residuals are well behaved and show no signs of

large deviations from normality.

It is important to remember that just like most other multivariate GARCH spec-

ifications, Orthogonal GARCH is based on some assumptions. When assuming the

conditional covariance matrix of the principal components to be diagonal, we fore-

see that only the unconditional covariance matrix is diagonal by construction. The

conditional covariances need not be perfectly zero. Alexander and Chibumba (1998)

recognize this and show how the errors induced by this assumption are quite small,

at least for highly correlated return systems in tranquil periods.
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2.3.2 Covariance Matrix Forecasts

The forecasts at time t of the volatilities from the univariate GARCH specification of

the principal component ii, at different times t+ k in the future, are expressed as

σ2ii,t+k = φ0
1− (φ1 + φ2)k−1
1− (φ1 + φ2)

+ (φ1 + φ2)
k−1

σ2ii,t+1, k ≥ 2

where

σ2ii,t+1 = φ0 + φ1ε
2
t + φ2σ

2
ii,t

This formula comes from iteration of the variance equation (3), and from this ex-

pression, I calculate variance forecasts for the principal components over different

horizons, h, between one and fifteen days by simply summing up σ2ii,t+k for all k = 1

to h7. Using equation (2) in chapter 2.3.1, I then transform the results for the princi-

pal components into the original index return series. In this way, I get explicit values

of both variances (volatilities) and covariances (correlations) that can be compared

to comparative models forecasts as well as realized values.

The following two variance expressions are used as comparative models8: at time

t, I forecast σ2ii,t+k (which is independent of k) by using the historical variance (HI)

σ2ii,t+k =
1

t− 1
tX

s=1

rii,s − 1t
tX

j=1

rii,j

2

, k ≥ 1

and a 20-day equally weighted moving average model (MA), where rt is the daily

return.

σ2ii,t+k =
1

19

tX
s=t−19

rii,s − 1

20

tX
j=t−19

rii,j

2

. k ≥ 1

7Since no autocorrelation in the return series is evident, it entails no correction.

8These expressions are very similar in spirit. Both are simple expressions for the unconditional

variance (and covariance); only the number of used historical observations differs. In a stress scenario,

they act fairly differently, however, and therefore, I emphasize their differences rather than their

simularities by giving them different names.
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The expressions for the covariances σij,t+k are much the same.

Variances and covariances over the different forecasting periods are then calculated

by simply multiplying σ2ii,t+k and σij,t+k by the number of days, h, over the forecasting

horizon.

2.4 Out-of-Sample Evaluation of Covariance Matrix

Forecasts

A difficult question to answer is how to best evaluate the various forecasts out-of-

sample. An investor that trades options might care about the influence the volatility

forecasts have on the whole return distribution while Value-at-Risk managers might

care more about how common extreme returns are. Other investors might want to

punish over-predictions more than under-predictions.

2.4.1 Symmetric and Asymmetric Statistical Evaluation

As a symmetric statistical evaluation method, I have chosen the traditional root

mean squared error (RMSE)

RMSE =

vuut 1

N

NX
t=1

³
σ2t,h,sample − σ2t,h,forecast

´2
,

where N is the number of days in the test sample, and h is, once more, the length of

the forecast horizon. σ2t,h,sample is simply the h-day sample variance (or covariance)

of the realized returns over the h-day forecasting period commencing at t.

As an asymmetric extension, I follow Brailsford and Faff (1996) in constructing

an error statistic that penalizes underpredictions more heavily than overpredictions:

ASY (U) =
1

N

 OX
t=1

¯̄
σ2t,h,sample − σ2t,h,forecast

¯̄
+

vuut UX
t=1

¯̄̄
σ2t,h,sample − σ2t,h,forecast

¯̄̄
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where O is the number of overpredictions and U is the number of underpredictions9.

For instance, this kind of loss function might be appropriate for a seller of a call

option since an underprediction of the stock price volatility will lead to a downward

biased estimate of the call option price. By switching places for the O and the U in

the formula above, we get the corresponding asymmetric error statistic that penalizes

overpredictions harder than underpredictions. A forecast model giving ”unbiased”

estimates might, in some general sense, be considered better; unbiased meaning that

the model overpredicts (underpredicts) 50 percent of the time.

2.4.2 Backtesting

Following the Bank for International Settlements, I also choose to look at their pro-

posed operational method, that is backtesting. In this essay, backtesting is applied

only to evaluate the diagonal elements of the forecasted covariance matrix, i.e. the

variances. Backtesting can be done in different ways and this essay follows Alexander

and Leigh (1997) who implement backtesting in two ways; ”backward looking” where

the current one-day 97.5% as well as 99% Value-at-Risk measures are compared to the

last 250 returns for each day in the test period, and ”forward looking”, where each

day in the test period the current one-day Value-at-Risk measure, is compared to the

realized return of that day. Since we only study very short time horizon (one-day)

Value-at-Risk measures, it is probably best to assume a zero mean return and sim-

ply calculate the Value-at-Risk measure as V aR1−α = Zασ, where Zα is the critical

value for the standard normal distribution and σ is the forecasted (one-day) standard

deviation.

Assuming moderate excess kurtosis, the average number of exceptions, returns

that are more extreme than the Value-at-Risk measures, should be around 2.5 (0.01*250)

for 99% VaR and 6.25 for 97.5% VaR in the backward looking version.10 Due to sta-

9When using this asymmetric evaluation method, errors of equal size but with different signs do

not cancel out as when the simple Mean Error statistic is used.

10The excess kurtosis as well as the skewness in the Scandinavian return series could, naturally,

affect the critical VaR values measured in standard deviations (1.96 standard deviations from the
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tistical problems and the approximative nature of the backtesting method, BIS has

defined three zones for the evaluation of Value-at-Risk measures. The use of these

zones is then believed to help bank supervisors (central banks) in their calculations

of bank capital requirements. If the average number of exceptions in the backward

looking version (for the last 250 days and the 99 % measure) is less than five then the

model falls into the green zone; between five and ten exceptions puts the model in the

yellow zone; and finally more than ten exceptions in the red zone. When calculating

capital requirements, green models are OK, and yellow models should lead to capital

requirement increases imposed on the bank in question to create incentives to im-

prove forecasting and Value-at-Risk measures. Red models are assumed to seriously

underestimate Value-at-Risk measures and should not be used at all. In addition to

substantially increased capital requirements, bank supervisors should also require the

bank to immediately begin working on improving its model.

Since it is not my intention to impose capital requirements on banks but to evaluate

the accuracy of different forecasting models, I emphasize both the zones and the actual

number of exceptions.

2.4.3 Pricing of Simulated Options

Finally, I evaluate covariance as well as variance forecasts by their ability to correctly

price a certain type of rainbow option, that is, the option to exchange one asset for

another (even called Outperformance Option). Among all options depending on more

than one asset, the option to exchange one asset for another is one of few options with

an analytical solution (Margrabe (1978))11. This option has a payoff function equal

mean for the λ0.025 critical value and the normal distribution). The λ0.025 critical values (in number

of standard deviations) for the four return series for our three-year period are 2.08 for OMX, 2.32

for KFX, 2.15 for FOX, and 2.39 for OBX. In other words, large negative returns are more common

than for the normal distribution (fattailedness).

11The Margrabe model is an extension of the Black-Scholes model and it assumes non-stochastic

variances and covariance. This stands in contrast to what is observed in the real world as well as to

my methodology of modelling second moments as time varying. However, the short time to maturity

(one day) of the simulated options in my experiment minimizes the difference in option price between
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to max[0, x1 − x2], where x1 and x2 are the prices of the two underlying assets, and
the option price depends on both assets’ variances as well as their covariance. In

other words, the whole covariance matrix is needed in order to accurately price such

an option. All options are at-the-money and their time to maturity is always one day.

In the setup described below, I follow Gibson and Boyer (1998) but instead of

trading a single rainbow option, each actor now trades six different rainbow options

each day12. Each day t in the test period, a certain sequence is followed:

1. Forecasts. Each actor forecasts, at t − 1, the covariance matrix using the
observations up to that date. In order to get a deeper market, I add a fourth

actor to the other three forecasting actors (GARCH, MA, and HI). This fourth

actor uses a strategy halfway between MA and HI; he simply uses a MA model

but with a 350-day window instead of a 20-day one. This actor is called MA-

long.

2. Option Pricing. Each actor uses his covariance matrix forecast to price a

one-day at-the-money option at time t − 1 to exchange one asset for a certain
amount of an other asset at time t13.

3. Option Trading. Actors trade options among themselves at t− 1. Each actor
trades six options with each of the other three actors. An actor who finds

another actor’s option to be underpriced buys the option and vice versa. In this

constant volatility and varying volatility models (Engle et al. (1993)). As mentioned by Gibson and

Boyer (1998), the use of the same constant volatility option pricing model for all different forecasts

should bias my results against finding any differences among forecasting agents.

12While Gibson and Boyer apply their evaluation technique to a two-dimensional problem, my

setup has four different assets, which gives me six different options with different pairs of underlying

assets. According to Gibson and Boyer (1998), up to 1000 observations are needed to get statistically

significant results. Since my test period only has 345 observations, this might be a problem. However,

by trading six times as many different options as Gibson and Boyer, I bypass this problem (Byström

(1999)).

13Index levels in the four countries are all calculated in the same currency, the Swedish krona

(SEK). The exchange rates are assumed to be constant at the rates prevailing on February 1, 1996.
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way, each actor trades 18 options each day, his ”bank account” being credited

(if a seller) or debited (if a buyer) with the mean of the two traders’ options

prices.

4. Hedging. For each of the six options, each trader hedges his exposure to the

two underlying assets by going short or long in these assets at time t − 1; an
amount equal to his options position’s sensitivity to changes in each underlying

asset (delta hedging). His bank account is again credited or debited with the

amount needed for the trades. It is important to remember that the quality

of the different forecasts affects the hedging performance as well as the pricing

performance.

5. Payoff. Money in the bank account earns one day’s interest at the riskfree

rate14. Using actual returns between time t−1 and time t, the payoffs (possibly
zero) of the options are calculated. The bank accounts are again credited or

debited with these payoffs. The hedge positions of the underlying assets are

sold at t and the bank account is once more debited or credited.

6. Accounting. Going from t− 1 to t, the balances of the bank account of each
actor’s have changed with an amount equal to that day’s profit (positive or

negative).

The last day in the test period, the actor with the ”best” forecasts should have

made the highest accumulated profit.

2.5 Empirical Results

Evaluating forecasts of second moments is very hard and it is not my intention to

present a single forecasting model that gives superior forecasts in every situation, for

every financial asset, every forecasting horizon, and every evaluation method. Instead,

my aim is to throw some light on the performance and the stability of the Orthogonal

14The interest rate used is the Swedish 30-day treasury bill rate (statsskuldsväxel).
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GARCH approach to forecast large covariance matrices. In addition, it should be

remembered that there exist some reasons for the Orthogonal GARCH methodology

to perform relatively weakly for my particular choice of time period; the time period

is highly volatile (stress scenario), and the assets in question react to shocks in a

slightly asymmetric way.

The unconditional correlation matrix (over the whole sample) is shown below.

The largest correlation is that between the Swedish OMX index and the Finnish FOX

index, and the smallest the one between the Swedish OMX index and the Danish KFX

index.

OMX KFX FOX OBX

OMX 1.00 0.58 0.74 0.66

KFX 0.58 1.00 0.67 0.63

FOX 0.74 0.67 1.00 0.71

OBX 0.66 0.63 0.71 1.00

When Orthogonal GARCH is put to use it is marginally more time consuming

than more traditional regression or moving average methods. As mentioned before,

it also has some model inherent advantages compared to simpler models, and the

behavior of Orthogonal GARCH forecasts might be of interest, even if no systematic

forecasting superiority is found.

To evaluate the performance of the different forecasting models out-of-sample, I

divide my set of time series into an (expanding) estimation period and a test period.

The test period contains the last 345 days of the sample and is divided into three

equally long subperiods of 115 days each. These subperiods are chosen to coincide

with the rise and fall of volatility and to have equal length; they are all fairly volatile

in an historical perspective but two of these, August 7, 1997 to January 23, 1998 and

July 15, 1998 to December 29, 1998, are clearly more volatile than the third, January

24, 1998 to July 14, 1998. From here on, I call the less volatile period 1998 ”tranquil”

and the volatile periods ”volatile 97” and ”volatile 98”, respectively. For each period,

I apply the statistical methods, the operational evaluation method, as well as the



Empirical Results 27

option methodology described above.

2.5.1 Entire Period

The RMSE results for the entire test period August 7, 1997 to December 29, 1998 are

presented in Table 2.3. Before turning to the individual forecasting models and their

relative performance, a quick look at the numbers in the table tells us how higher

stock index variances as well as longer forecast horizons typically give larger errors15.

It can also be seen that covariance forecasts are at least as good as variance forecasts.

Focusing on the relative performance of the different models, it is immediately

observed how the ranking of the models remains more or less constant over different

horizons. It is equally obvious how GARCH overall dominates both the 20-day mov-

ing average model (MA) and the historical variance model (HI); GARCH is best in

23 out of 30 cases and in the other 7 cases, it is second best after MA. The weak per-

formance of Orthogonal GARCH in the particular case of the KFX-index is probably

due to the slightly asymmetric behavior of the Danish KFX-index compared to the

other indices. Reducing the number of principal components would probably improve

GARCH forecasts in this case16.

The results from the asymmetrical statistical evaluation methods are shown in

Table 2.4. In the upper part, overpredictions are punished harder than underpre-

dictions, ASY (O), and in the lower part, underpredictions are punished harder than

overpredictions, ASY (U). For the ASY (O) measure it is obvious how for all variances,

covariances, and horizons, HI systematically dominates GARCH, which, in turn, sys-

tematically dominates MA. Not surprisingly, the historical model underpredicts con-

siderably during this volatile period, and the relative ranking of the models would

be expected to be the opposite, when underpredictions are punished harder than

overpredictions. However, even if the historical model is clearly the worst performer

15The larger is the volatility of the asset, the larger the error (FOX>OMX>OBX>KFX).

16It must be remembered that each principal componenet is built up from all asset series. KFX

forecasts would probably be improved if the principal component associated with the common move-

ments of the other three indicies could be identified and removed.
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according to ASY (U), MA does not systematically dominate GARCH this time. In

other words, for the two asymmetrical error statistics taken together, GARCH domi-

nates MA. In addition, GARCH (as well as MA) has the attractive feature of acting

fairly unbiased (neither heavy over nor heavy underpredictions) compared to the

historical method. As for the symmetrical evaluation method, Orthogonal GARCH

works less well for the KFX index than for the other indices.

While both variance and covariance forecasts are evaluated with the statistical

approaches above, backtesting is performed on variances only. The results from the

”backward looking” version are presented in Table 2.5 for the 97.5% VaR measure

as well as for the 99% VaR measure. The theoretically predicted average number of

exceptions is 6.25 and 2.5, respectively, and the best (smallest value) model in each

category is typed in bold. Table 2.5 contains evidence of GARCH dominating MA as

well as HI. Orthogonal GARCH clearly dominates the other two models in one-day

forecasting of simple variances by giving a low number of exceptions in accordance

with the guidelines of BIS. Not in a single situation is GARCH beaten by any of the

other two models. Overall, the historical model is worse than the other two models

and ends up in the yellow region for all four indices (99% VaR).

In Table 2.6, I present the results from the ”forward looking” interpretation of the

BIS backtesting technique. Once more, GARCH dominates the other two models, but

this time, MA performs almost as well as GARCH. The historical model is, once more,

the weakest performer and this time, it ends up in the red zone for all indices. In

Figure 2.2, I have plotted 97.5% VaR estimates for the three different models as well

as the returns for the OMX index over the entire test period. The two conditional VaR

measures, GARCH and MA, increase (decrease) when the size of the returns increases

(decreases) and both models catch much of the movement in return volatility. The

underestimation of volatility of the historical VaR measure is also evident as is the

slow adjustment of the model to changes in volatility. Overall, the models perform

quite badly when evaluated with the forward-looking approach and in many cases

they end up in the yellow or the red zone. This is not very surprising, considering

the very volatile market (in the test period) and the associated difficulties in creating

accurate forecasts and VaR measures.
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Results from the option evaluation methodology is presented in Table 2.7 and

in Figure 2.3. Table 2.7 contains the mean daily profit and its standard deviation.

More or less the same information is presented in Figure 2.3, where the accumulated

profits from the different forecasting techniques over the test period are shown. It is

quite clear how Orthogonal GARCH gives higher profit than the other forecasters,

thereby indicating better forecasts of the whole covariance matrix. Traders using

Orthogonal GARCH or MA earn positive profits from trading rainbow options, while

both HI and MA-long traders lose money. HI is the worst performer and it is clear

how incorporating longer series of historical observations in variance and covariance

forecasts decreases the profitability of option trading based on these forecasts.

To summarize, Orthogonal GARCH dominates models based on simple historical

variances and covariances, and in addition to always giving positive definite covari-

ance matrices, it gives accurate forecasts in a highly volatile market. According to the

statistical evaluation, our straight-forward GARCH method dominates both the mov-

ing average and the historical method. Looking at the performance of the different

models in an operational Value-at-Risk context, where the focus is on the lower tail

of the return distributions rather than the whole distribution, gives the same results.

Furthermore, GARCH also dominates the other models in the rainbow option trading

experiment.

2.5.2 Subperiods

By dividing the entire test period into subperiods, we get an idea about the stability

of the results in the former chapter as well as some indications of whether the level of

volatility affects the Orthogonal GARCH methodology. In Table 2.8, I present both

the RMSE and the two asymmetric error statistics for each of the three subperiods.

In Chapter 2.5.1, it was shown how the results for the covariances were very similar to

the results for the variances, and for clarity, I only present forecast errors for variances

in this chapter. The same holds for the different horizons, and only 5-days forecast
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errors are presented in this chapter17. When comparing the relative performance

of the different models, it immediately becomes clear how GARCH dominates both

the 20-day moving average model and the historical model for all subperiods, when

we evaluate using RMSE. The pattern from the entire period also repeats itself for

the asymmetrical evaluation methods; GARCH clearly dominates MA for two of the

periods and for the third period, GARCH always performs better than at least one of

the other two models. The underprediction by HI for the entire period repeats itself

for each of the subperiods. The only period that stands out slightly is the ”tranquil”

period. In this period, GARCH works even better than in the other periods while

the historical method shows less of its heavy underpricing. Overall, for the statistical

evaluation measures, most of the results from the entire period remain valid for each

of the individual subperiods.

For the operational method, we present the results for both the backward-looking

and the forward-looking version of back testing in Table 2.918. Even here, the results

are fairly stable over the different subperiods, and at least for the backward looking

approach does GARCH dominate the other models in each period. For the forward

looking approach, GARCH dominates (or performs equally well as) the other models

in two of the three periods while in the volatile period 1997, MA slightly outperforms

GARCH as well as HI. As for the statistical evaluation method, GARCH and, in

particular, HI works relatively better in the tranquil period.

Turning to Figure 2.3 and the option trading experiment it can be seen how

the performance of the different forecasting algorithms changes slightly from period

to period. For the two volatile periods the results from the entire period remain;

GARCH dominates MA (for the volatile period of 1997, MA does almost as well

as GARCH) that, in turn, dominates MA-long and HI. For the relatively tranquil

period, the performance of MA deteriorates while HI performs better than in the

volatile periods. Overall, the results are more or less in accordance with the results

17The results for other horizons as well as for covariances do not differ from those presented to

any extent.

1897.5% and 99% VaR show very similar results and the 99% measure is therefore left out.
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from both the statistical evaluation and the backtesting.

In this chapter, I find that the results from the previous chapter remain more or

less valid for each of the three subperiods. Orthogonal GARCH outperforms both of

the two simpler forecasting techniques (as well as MA-long for the options approach)

irrespective of which evaluation measure and time period is chosen. The moving

average works better than the historical method in the more volatile periods, while

HI dominates MA in the tranquil period (a period that is in no way tranquil seen in

a historical perspective).

2.6 Conclusions

This essay has studied forecasts of variances and covariances from the Orthogonal

GARCH model as well as from simpler models in a multivariate framework of Nordic

stock index returns. Orthogonal GARCH produces positive definite covariance ma-

trices without the typical estimation problems associated with multivariate GARCH

models. A look at the Nordic stock markets during the Asian crisis 1997 and 1998

shows how Orthogonal GARCH performs relatively well in forecasting covariance ma-

trices under volatile market conditions.

Different users of forecasts define ”good” and ”bad” forecasts in different ways.

Therefore, I assess the predictive performance of Orthogonal GARCH, using a number

of different evaluation methods. Both symmetrical and asymmetrical error statistics

show (although no statistical inference is made) how Orthogonal GARCH produces

better forecasts than the use of historical variances and covariances as well as forecasts

from an equally weighted moving average model. In addition to statistical evaluation

methods, I also apply operational methods. The ”backtesting” approach suggested by

BIS is particularly well suited to Value-at-Risk contexts and even here, Orthogonal

GARCH dominates the historical variance as well as the moving average model in

forecasting the whole covariance matrix.

Using simulated options to evaluate forecasts of the second moments also demon-

strates the dominance of Orthogonal GARCH over the simpler models. A market

actor using Orthogonal GARCH to predict the whole covariance matrix earns a sig-
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nificant profit from trading over/under priced rainbow options with actors using his-

torical variances and covariances as well as moving average models. From this, I draw

the conclusion that Orthogonal GARCH predictions are the most accurate.

Overall, Orthogonal GARCH seems to perform well as a covariance matrix fore-

caster in highly volatile periods. It is difficult to statistically assess the significance

of the results, but the results in this essay suggests Orthogonal GARCH to be a good

forecaster compared to different standard covariance matrix forecasters. The use of

historical averages using data extending far into the past generally gives the worst

forecasts in this very volatile period of the Nordic stock markets. Only in a few

cases does Orthogonal GARCH perform worse than the other predictors in the study.

By using longer estimation periods and more elaborate ARCH-type models, this or-

thogonalization approach should be able to produce even better forecasts. The essay

demonstrates the importance of including GARCH-effects in volatility and covariance

forecasts and how the orthogonalizing technique makes multivariate forecasting from

GARCH models feasible.
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Figure 2.1: Volatilities for the Nordic stock indicies 1996-1998 (20-day window).
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Figure 2.2: OMX VaR estimates (97.5%) and OMX returns over the test period.



Tables 37

-700

-500

-300

-100

100

300

500

  970807                                                 980401                                                          981229

Pr
of

it

OGARCH

M A

M A-long

HI

Figure 2.3: Accumulated profits from trading rainbow options.

Table 2.1: Descriptive statistics on daily return data. February

1, 1996 to December 29, 1998.

Statistics OMX KFX FOX OBX

No. of observations 717 717 717 717

Mean (%) 0.098 0.093 0.114 0.026

Std. Dev. (% on a yearly basis) 23.79 17.30 24.35 21.91

Skewness 0.25 -0.58 -0.69 -0.47

Excess Kurtosis 5.33 2.89 4.39 4.56

Ljung-Box:

Q(6) 5.25 14.04 8.31 12.31

Q(12) 22.13 20.74 14.79 22.88

Q(18) 52.10 31.60 32.26 36.49

Ljung-Box (Squared Returns):

Q(6) 140.84 200.10 247.37 362.43

Q(12) 191.82 313.40 347.48 635.29

Q(18) 237.56 417.22 441.30 917.86

99 percent critical values for Ljung-Box are: 16.8, 26.2, and 34.8.
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Table 2.2: Typical GARCH(1,1) volatility parameter estimates

for the four Principal Components, as well as statistics on the

standardized residuals.

First PC Second PC Third PC Fourth PC

φ0 · 106 21.91
9.31

0.10
0.043

1.30
0.95

0.10
0.082

φ1 0.17
0.038

0.027
0.0095

0.038
0.016

0.026
0.0093

φ2 0.76
0.056

0.97
0.0093

0.93
0.045

0.97
0.0090

Residuals:

Mean -0.041 0.012 -0.0042 0.0089

Standard deviation 0.999 1.005 1.005 0.993

Skewness -0.390 0.189 0.0782 0.0591

Excess Kurtosis 0.279 0.250 0.697 1.178

The first 530 observations are used for these particular estimates. Small

figures are standard errors.

Table 2.3: RMSE for variance and covariance forecasts over different horizons. Values

are for the entire test period 970807 - 981229.

5-days 10-days 15-days

Variances GARCH MA HI GARCH MA HI GARCH MA HI

OMX 10.46 15 .75 18.90 21.94 34 .44 37.20 34.96 54 .10 54.72

KFX 6 .42 5.72 8.94 13 .42 12.74 17.75 21 .13 20.71 26.34

FOX 13.01 15 .28 20.91 28.47 33 .75 41.34 46.17 54 .16 61.09

OBX 9.70 10 .89 19.51 21.10 24 .58 38.82 35.50 40 .15 57.82

Covariances

OMX/KFX 5.38 5 .54 8.71 11.38 12 .31 17.28 18.31 19 .77 25.67

OMX/FOX 10.06 13 .33 16.27 21.68 29 .13 32.02 35.11 45 .96 47.05

OMX/OBX 7.27 9 .54 13.97 15.48 21 .07 27.60 25.51 33 .75 40.83

KFX/FOX 7 .57 7.07 11.57 16 .46 15.92 22.98 26 .83 26.16 34.15

KFX/OBX 6 .42 6.32 10.89 13.69 14 .37 21.64 22.19 23 .82 32.19

FOX/OBX 9.59 11.55 17.39 21.28 25 .80 34.49 35.07 41 .93 51.13

GARCH = Orthogonal GARCH, MA = 20-days moving average model, and HI = historical variance.

The smallest value is typed in bold letters and the second smallest value is typed in italics.
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Table 2.4: Asymmetric error statistic for variance and covariance forecasts over dif-

ferent horizons. Values are for the entire test period 970807 - 981229.

Overpred. Punished Harder

5-days 10-days 15-days

Variances GARCH MA HI GARCH MA HI GARCH MA HI

OMX 97 .16 129.31 47.52 134 .87 199.95 70.06 159 .75 253.36 86.94

KFX 71 .02 96.35 21.95 104 .14 145.54 32.00 130 .76 187.20 38.63

FOX 100 .85 129.71 54.79 146 .86 206.18 82.13 191 .50 271.17 102.83

OBX 85 .91 111.36 40.41 129 .66 183.41 61.53 166 .90 241.73 78.10

Covariances

OMX/KFX 51 .99 83.71 25.74 77 .22 129.65 38.55 96 .70 162.45 47.49

OMX/FOX 91 .37 120.74 51.41 127 .14 186.34 76.45 159 .14 241.91 93.82

OMX/OBX 60 .85 110.07 44.49 93 .10 171.56 66.33 121 .08 218.67 80.63

KFX/FOX 64 .64 103.70 38.69 96 .89 159.64 56.03 127 .57 203.64 69.43

KFX/OBX 76 .48 96.40 38.62 112 .60 147.61 56.24 140 .50 191.61 69.33

FOX/OBX 88 .77 117.95 47.63 132 .89 183.77 70.74 169 .29 241.14 87.67

Underpred. Punished Harder

5-days 10-days 15-days

Variances GARCH MA HI GARCH MA HI GARCH MA HI

OMX 139.44 139 .73 248.88 215.78 219 .61 357.87 291.25 293 .69 447.94

KFX 128 .08 100.10 200.33 193 .38 155.56 284.28 247 .07 202.31 351.44

FOX 152.07 154 .26 255.87 241 .61 238.86 361.37 326 .27 308.67 443.22

OBX 128 .23 121.65 237.40 195 .24 190.52 341.43 257 .45 252.95 426.75

Covariances

OMX/KFX 115 .44 98.98 197.63 177 .77 155.10 281.17 238 .87 202.37 347.71

OMX/FOX 127.68 134 .90 225.82 206.16 210 .82 320.48 285 .20 277.39 394.76

OMX/OBX 115.71 116 .69 204.85 176.94 185 .48 291.61 243.55 250 .18 360.20

KFX/FOX 133 .98 107.08 202.55 206 .24 166.10 287.49 271 .03 218.22 354.25

KFX/OBX 96.75 99 .21 173.63 152.22 155 .43 247.81 199.84 201 .88 306.71

FOX/OBX 113.64 118 .04 215.97 185 .68 184.58 308.01 258 .21 243.89 380.54

GARCH = Orthogonal GARCH, MA = 20-days moving average model, and HI = historical variance. The

smallest value is typed in bold letters and the second smallest value is typed in italics.
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Table 2.5: Operational evaluation. Backtesting ”back-

ward looking” according to BIS with 97.5 percent VaR

as well as 99 percent VaR. Values are for the entire test

period 970807 - 981229.

Var-97.5 % VaR-99 %

GARCH MA HI GARCH MA HI

OMX 6.88 7.26 11.44 4.37 4.70 7.19

KFX 6.48 6.60 11.96 3.89 4.04 8.56

FOX 8.47 8.97 13.68 5.76 5.89 8.16

OBX 5.91 7.66 12.63 3.75 5.11 8.59

GARCH =Orthogonal GARCH, MA= 20-days moving average

model, and HI = historical variance. The smallest value is typed

in bold. (Theoretical values are 6.25 and 2.5, resp.)

Table 2.6: Operational evaluation. Backtesting

”forward looking” according to BIS with 97.5 per-

cent VaR as well as 99 percent VaR. Values are for

the entire test period 970807 - 981229.

Var-97.5% VaR-99 %

GARCH MA HI GARCH MA HI

OMX 15 19 31 9 8 22

KFX 15 15 30 11 10 22

FOX 17 18 31 12 12 26

OBX 12 18 37 7 12 30

GARCH = Orthogonal GARCH, MA = 20-days moving

average model, and HI = historical variance. The smallest

value is typed in bold. (Theoretical values are 8.625 and

3.45, resp.)
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Table 2.7: Option trading simulation. Mean daily profit

and its standard deviation. Values are for the entire test

period 970807 - 981229.

GARCH MA MA-long HI

Mean Daily Profit 1.626 0.808 -0.085 -2.352

Standard deviation 0.286 0.382 0.240 0.440

GARCH = Orthogonal GARCH, MA = 20-days moving average

model, MA-long = 350-days moving average model, and HI =

historical variance.

Table 2.8: RMSE as well as asymmetric error statistics for 5-days variance forecasts.

Values are for the three equally long subperiods.

RMSE ASYM(O) ASYM(U )

GARCH MA HI GARCH MA HI GARCH MA HI

Volatile 97

OMX 9.62 11 .56 12.91 39 .69 116.71 13.88 172 .67 132.53 265.08

KFX 3.51 2.74 3 .50 49 .19 62.69 5.68 108 .05 77.75 157.54

FOX 15.36 20 .15 20.16 59 .26 145.53 26.62 172 .22 157.01 269.97

OBX 6.34 8.76 8 .04 82 .83 108.57 46.74 81.49 87 .97 144.77

Tranquil

OMX 3.86 5.34 3 .93 108.84 75.87 100 .43 71.04 94.10 78 .00

KFX 4.14 5 .21 5.42 56 .26 88.45 48.08 104 .70 88.07 124.64

FOX 4.82 6.63 5 .53 83.88 97 .46 97.88 86.72 114.67 101 .80

OBX 2.56 5.35 2 .74 68 .99 83.74 45.26 52.93 76.07 64 .11

Volatile 98

OMX 15.80 26 .06 32.22 156 .27 170.57 25.58 155.56 225 .30 433.10

KFX 10 .01 7.87 14.80 108 .13 122.49 12.31 183 .85 138.66 325.10

FOX 17.62 19 .09 33.22 149.63 144 .77 31.63 227.39 238 .32 466.92

OBX 16.02 16 .73 35.07 26.67 147.92 32 .03 291 .85 199.94 512.78

GARCH = Orthogonal GARCH, MA = 20-days moving average model, and HI = historical variance. The

smallest value is typed in bold letters and the second smallest value is typed in italics.
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Table 2.9: Operational evaluation. Backtesting (backward as well

as forward looking) according to BIS with 97.5 percent VaR. Val-

ues are for the three equally long subperiods.

Backward Looking Forward Looking

GARCH MA HI GARCH MA HI

OMX 3.78 2.34 6.44 5 5 10

Volatile 97 KFX 6.16 5.05 8.60 4 4 8

FOX 4.68 4.70 7.40 7 6 10

OBX 4.73 7.95 7.11 3 3 8

OMX 11.68 15.80 11.55 3 3 2

Tranquil KFX 8.27 9.77 10.29 4 4 4

FOX 13.24 14.47 13.69 2 1 1

OBX 9.80 11.13 11.79 2 3 3

OMX 3.55 5.18 16.05 3 9 16

Volatile 98 KFX 4.89 5.46 16.85 6 5 16

FOX 5.99 7.36 19.58 6 7 16

OBX 5.24 5.00 18.91 6 9 20

The smallest value is typed in bold letters. Theoretical values are 6.25 for

backward looking and 2.875 for forward looking.



Chapter 3

The Hedging Performance of

Electricity Futures on the

Nordic Power Exchange Nord

Pool

3.1 Introduction

One of the latest markets to become standardized and organized on an exchange is

the electric power market. Allover the world, there are only a handful of operating

electricity exchanges, with the Nordic Power Exchange, ”Nord Pool”, being the only

multinational one. On this exchange, there are actors from Norway, Sweden, Den-

mark, Finland, and England. The early deregulation of their electricity markets is

an important factor behind the development of an exchange for trading in electricity

in the Nordic countries; in particular the Norwegian and the Swedish markets have

become fairly competitive in the last few years.

43



44 Chapter 3: The Hedging Performance of Electricity Futures

With the setup of an organized exchange, the situation for electricity producers

and distributors has changed; from a situation where a reliable supply of energy was

most important, the focus has partly shifted to obtaining optimal financial perfor-

mance and efficient risk management. On the Nordic Power Exchange, electricity is

traded both on a spot market and a futures market. The main reason for trading in

futures is for actors to monitor the volatility of their power portfolios and to minimize

the negative effect of adverse fluctuations in electricity prices.

This essay investigates the statistical and distributional properties of spot and

futures prices on Nord Pool, as well as the short-term hedging performance of the

futures. An evaluation of the hedging performance is principally of interest in the

electricity market, due to problems with the storage of electricity when arbitrage

arguments are used for the pricing of futures. The high volatility in this market,

many times as large as in traditional financial markets, also contributes to make

hedging important.

When hedging price risk, the optimal proportion of the future contract that should

be held to offset the cash position is called the optimal hedge ratio. This ratio is tra-

ditionally estimated by examining the ratio between the unconditional covariance

between cash and futures prices and the unconditional variance of the price of fu-

tures. This method can be criticized on a number of grounds. First, the traditional

optimal hedge ratio is only utility maximizing under certain assumptions on the fu-

tures returns, otherwise it is merely variance minimizing as shown by Myers (1991).

Second, since almost all financial assets and commodities have time varying second

moments, the hedge ratio will be time varying and possibly best modelled in a dy-

namic framework as a function of conditional covariances and variances (Baillie and

Myers (1991)). These conditional covariances and variances are often modelled with

the conditionally heteroscedastic ARCH- and GARCH-type models developed by En-

gle (1982) and Bollerslev (1986). Baillie and Myers (1991), for instance, employ

a bivariate GARCH model to estimate hedge ratios for commodities and find that

dynamic GARCH-based hedge ratios out-perform those ratios coming from the tra-

ditional unconditional approach.

In this essay, I consider time varying variances and covariances of Nordic elec-



Spot and Futures on The Nordic Power Exchange 45

tricity price returns over the period January 1996-October 1999 and investigate how

the time variation affects the hedging performance out-of-sample on the Nordic Power

Exchange. In addition to the traditional unconditional hedges, I apply different condi-

tional hedges. On the one hand, I apply continuously updated 50-day moving averages

of the second moments, and on the other, I apply two different GARCH models; first,

the constant conditional correlation bivariate GARCH model proposed by Bollerslev

(1990), and second, a multivariate GARCH model called Orthogonal GARCH where

a ”diagonalization” of the bivariate problem simplifies the multidimensional GARCH

estimation (Ding (1994), Alexander and Chibumba (1998), Byström (1999)).

I find that short-term hedging of electricity spot prices with electricity futures,

using different estimates of the optimal (or actually minimum variance) hedge ratio,

systematically reduces the variability of the portfolio returns. My empirical findings

also confirm that variances and hedge ratios vary significantly over time, but that the

two GARCH models only slightly improve the hedging performance out-of-sample

compared to the unconditional hedges. The traditional simpler hedging models per-

form as well as the more elaborate conditional models if the performance of the hedges

is evaluated on the basis of their ability to reduce the unconditional (sample) portfolio

variance. If we look at the conditional variance of the hedging portfolios instead, then

the GARCH based hedges outperform the other hedges.

The essay is organized as follows: chapter 3.2 describes the data and the statis-

tical particularities of electricity prices as well as the general features of the Nordic

electricity market and Nord Pool, chapter 3.3 deals with hedging and hedge ratios,

and chapter 3.4 presents the hedging results. Chapter 3.5 concludes the essay.

3.2 Spot and Futures on The Nordic Power Ex-

change Nord Pool

In January 1996, the Swedish electricity market was deregulated and integrated with

the previously deregulated Norwegian electricity market. At the same time, the first

multinational electricity exchange, Nord Pool, was created. The exchange has partic-
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ipants from Sweden, Norway, Denmark, Finland, and England (January 1998), but

only the Norwegian and the Swedish markets are fully integrated. Of all trade in elec-

tric power in these two countries, around 25% ( January 1998) is managed by Nord

Pool; the main part of the electricity trade is still organized as bilateral contracts

between producers and consumers.

In this essay, I will deal with the two major markets on Nord Pool, the spot market

and the futures market. The spot market is a market for physical delivery of electricity,

while the futures market is organized as a purely financial market without physical

delivery. In reality, the spot market is also a short-term (one-day) futures market,

however. Each day at noon, spot prices and volumes for each hour the following day

are determined at an auction; what is called a futures contract in the electricity market

is actually a futures contract with a future as the underlying asset1. Otherwise, the

futures contracts are highly standardized and defined in terms of a given number

of MWhs of electricity for (hypothetical) delivery during a given future week. The

contracts are designed to reduce risk and make it possible to secure electricity prices

up to three years in advance. It is possible to go short (and long) in the futures market,

but the physical properties of the commodity in question, electricity, makes it difficult

(or impossible) to go both short and long in the spot market. This complicates the

theoretical treatment of these markets as regards pricing and hedging.

3.2.1 Data

Due to the deregulated electricity market being a fairly new phenomenon, data of

any useful size and quality has only recently become available. In this essay, I use

daily (trading days) spot and futures prices (Figure 3.1) from Nord Pool for almost

four years, January 2, 1996 to October 21, 19992. From these daily prices (quoted in

Norwegian kroner (NOK/MWh)) I calculate 946 daily returns (log-differences).

1Throughout this paper the ”spot” price is treated as if it were a true spot price.

2The daily spot prices are so called ”dygnspriser”. These daily prices are the average prices

of the 24 hourly quoted prices each day. The futures contracts are so called ”veckokontrakt” for

(hypothetical) delivery of a certain average amount of power over one week (vecka).
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Each day a number of futures contracts with different maturities can be chosen

as a hedge instrument and a decision of which contract to use must be taken. My

intention is to study the short term hedging performance (one-week holding period),

and since short term future contracts are more liquid as well as more correlated with

the underlying spot prices than the longer term contracts, futures with three weeks

left to maturity are chosen for the hedging investigations3. In order to avoid thin

market and expiration effects, however, I roll over to the next three-week maturity

contract one week prior to the expiration of the current contract. With this roll-over

procedure, a time-series is created for the full time period 1996-19994. A drawback

from closing out the futures positions before expiration is that it introduces some

basis risk to the hedge, since the future price is not directly tied to the underlying

spot price prior to the maturity date5. This basis risk is particularly serious in the

electricity market, where large temporary deviations between spot and future prices

appear, due to non-straightforward arbitrage possibilities.

In Figure 3.2, I have plotted daily spot and futures return volatilities over the

second half of the data set; GARCH volatilities (from the constant correlation bivari-

ate GARCH model) as well as sample volatilities (annualized standard deviations).

The volatilities are apparently very high compared to ordinary asset and currency

markets. It can also be seen how the GARCH model successfully captures the swings

in volatilities.

The volatility of both spot as well as futures returns clearly varies over time

and the assumption of identically and independently normally distributed returns

seems unrealistic. Further evidence of this is given by the investigation of the return

3In addition to these futures, I have also hedged spot movements with longer maturity futures

(still with one-week holding period). In these cases, the hedging performance deteriorates compared

to the shorter maturity futures case.

4In this way, the futures in my hedges always have a remaining lifetime of between 5 and 15 days.

5I already have basis risk due to the complexity associated with the closing of the futures; the

futures are price contracts for an entire future week, not a single day. The basis risk due to this

phenomenon should be partly eliminated by the roll over procedure though; no actual expiration is

ever allowed.
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distributions in Figure 3.3 and Figure 3.4; the return distributions are skewed and

fat-tailed compared to the normal distribution. A time varying conditional variance

might be one reason for the fat-tailed unconditional distributions.

According to Table 3.1, both the spot and the futures price series (logarithms)

in this sample are stationary already on the level. The assumption of stationary

electricity prices might seem unrealistic in the long run, but for the sample at hand,

it cannot be rejected. Error correction due to cointegration is therefore not expected

to improve the behavior of the GARCH models.

Table 3.2 reports some statistics on the return series. Both the futures returns

and the spot returns have means not significantly different from zero. The uncondi-

tional distributions of spot returns and, in particular, futures returns are non-normal,

as evidenced by skewness, high excess kurtosis, and highly significant Bera-Jarque

statistics6. Tests for autocorrelation, using different Q-statistics, indicate that no au-

tocorrelation is present in the spot market while some correlation exists at long lags in

the futures market. Finally, a test for ARCH, using the Q2-statistic, finds significant

ARCH effects at all lags in the spot market and at long lags in the futures market.

3.3 Hedging Strategies

In this chapter, the minimum variance hedge ratio is estimated7. This hedge ratio

determines how many futures contracts should be bought or sold for each spot contract

for an investor to minimize the variance of his portfolio returns. There are many

alternative ways of estimating this ratio, and this chapter looks at both unconditional

and conditional estimates.

6The Bera-Jarque (B-J) statistic is χ22−distributed under the null of normality. The statistic is
n · [ skewness2

6
+ excess kurtosis2

24
],where n is the sample size.

7The minimum variance hedge ratio is also the optimal one (maximizing the mean-variance ex-

pected utility) if the futures prices either behave as martingales or the investors have infinite risk

aversion. Neither of these conditions are expected to hold in the electricity market, however.



Hedging Strategies 49

3.3.1 The Minimum Variance Hedge Ratio

To secure positions in a spot market, traders use futures as hedging instruments.

For each spot contract, the hedge ratio tells us how many futures contracts should

be purchased or sold. Let st+1 and ft+1 be the changes in spot and futures prices,

respectively, between time t and t+1, and let ht be the hedge ratio at time t. Then,

xt+1 = st+1 − htft+1 (1)

is the return to a trader going long in the spot market and going short in the futures

market at time t. The variance of this return portfolio is

vart(xt+1) = vart(st+1) + h
2
t · vart(ft+1)− 2 · ht · covt(st+1, ft+1), (2)

and the minimum variance ratio, ht,min .var., can then be derived by simply mini-

mizing this variance with respect to ht. We end up with the following expression for

ht,min .var. :

ht,min .var. =
covt(st+1, ft+1)

vart(ft+1)
. (3)

In the particular case of electricity I invent a scenario where an electricity pro-

ducer/distributor knows he is to sell electricity on the spot market on a particular

day in the near future and wants to hedge with electricity futures. Since the aim

is to study the short term hedging performance, a one-week investment horizon is

assumed. For each spot position, the producer goes short in ht,min .var. contracts in

the futures market, where ht,min .var. comes from (3). This operation is then repeated

each day in the (out-of-sample) test period. As described below, ht,min .var. is either

modelled as constant throughout the test period or as time varying and updated on

a daily basis.

3.3.2 Estimating the Hedge Ratio

The hedge ratio is estimated in five different ways; the naive one-to-one hedge ratio,

where each spot contract is offset by exactly one futures contract, the OLS-hedge
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ratio where a regression of the spot returns on futures returns gives the hedge ratio

expressed as in (3), but in an invariant unconditional version8, a dynamic hedge ratio

calculated by using continuously updated moving averages (50 days back in time) of

variances and covariances and finally, two different dynamic hedge ratios based on

bivariate GARCH modelling of the two return series (estimated by using daily data).

Several time series, including our spot and futures return series, exhibit periods

of unusually large volatility followed by periods of tranquility. Under such circum-

stances, the assumption of a constant variance is obviously not appropriate. In order

to capture the varying variance, the conditional variance can be modelled as a func-

tion of past errors as well as its own lags. This is done in GARCH models, and the

first GARCH model to be estimated is the bivariate constant conditional correlation

GARCH model introduced by Bollerslev (1990). The second choice is a multivari-

ate GARCH model called Orthogonal GARCH, where the use of principal compo-

nents analysis ”diagonalizes” and simplifies the problem (Ding (1994), Alexander and

Chibumba (1998) and Byström (1999)).

In the first GARCH model, spot returns and futures returns (daily returns) are

modelled within the bivariate constant conditional correlation framework of Bollerslev

(1990). The mean equations are specified as AR(2) processes and the conditional

variance equations as GARCH(1,1):

ys,t = αs,1 + αs,2ys,t−1 + αs,3ys,t−2 + εs,t

yf,t = αf,1 + αf,2yf,t−1 + αf,3yf,t−2 + εf,t

σ2s,t = φs,1 + φs,2ε
2
s,t−1 + φs,3σ

2
s,t−1

σ2f,t = φf,1 + φf,2ε
2
f,t−1 + φf,3σ

2
f,t−1 (4)

σsf,t = ρσs,tσf,t,

where σ2s,t and σ
2
f,t are the conditional variances of εs,t and εf,t, σsf,t is the conditional

8Regression of futures returns on spot returns over the estimation period gives an OLS estimate

of the optimal hedge ratio hopt = 0.408, with a standarderror = 0.049. Daily returns, instead of

weekly, are used since this is expected to improve the estimate (Duffie (1989)).
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covariance between εs,t and εf,t, and εt = σtut, where ut ∼ N(0, 1)9. The time-

varying conditional covariance between spot and futures returns are parametrized

to be proportional to the product of the corresponding conditional standard devia-

tions. This assumption greatly simplifies the computational burden in the estimation

compared to more elaborate multivariate models. In the upper part of Table 3.3, esti-

mation results from the Maximum Likelihood estimation (using the BHHH algorithm

implemented in GAUSS) of the bivariate GARCH model are presented. It is shown

how all GARCH parameters as well as the correlation coefficient are significantly dif-

ferent from zero. According to the statistics in Table 3.3, both the spot and futures

residuals distribution approximate a standard normal distributions fairly well, even

though some autocorrelation remains for the futures residuals. Some skewness and

kurtosis remain as well.

The second model is the Ding (1994) and Alexander and Chibumba (1998) Or-

thogonal GARCH model. The main idea is to use principal components analysis

to generate a number of orthogonal factors which can each be treated in a simple

univariate GARCH framework.

There are two daily return series, spot and futures, with t observations represented

as a t× 2 matrix, Yt. The t× 2 matrix, Pt, of principal components is then defined
as

Pt = YtWt (5)

whereWt is the orthogonal 2× 2 matrix of eigenvectors of YT
t Yt ordered according

to the size of the corresponding eigenvalue. Notice that Pt, just as Wt, is now an

orthogonal matrix. By inverting (5), one gets the principal components representation

9In this essay we limit ourselves to the standard GARCH model without asymmetrical extensions

or dummies, and it is usually sufficient to limit the order of the GARCH model to (1,1). The

same model has also been estimated with the conditional distribution for the error term modelled

as the Student’s t-distribution. No significant change in either the time-varying hedge ratio or the

hedgeportfolio variance has been observed.
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of the system:

Yt = PtW
T
t .

Ωt, the variance of Yt at time t, can now be calculated as

Ωt = var(Yt) = var(PtW
T
t ) =WtDtW

T
t , (6)

where Dt is a diagonal matrix of principal component variances at t and whereWt

is assumed to be known at time t10. This also enables us to calculate the forecasted

covariance matrix Ωt+1 | Ψt by univariate methods, where Ψt is the information set at
t; for each principal component, the conditional variance of the principal component

i, vart+1(Pi | Ψt), can easily be forecasted by, for instance, any univariate GARCH
model. This gives us the Orthogonal GARCH specification. This particular condi-

tional covariance matrix also has the advantage of always being positive definite, since

Dt is diagonal with positive elements along its diagonal.

In the lower part of Table 3.3, estimation results from the univariate GARCH

estimates of the principal components are presented by using the previous AR(2)-

GARCH(1,1) model. As for the constant correlation bivariate model, all GARCH pa-

rameters are significant, and the residuals are skewed and peaked, indicating (slightly)

less than a perfect fit.

It is important to remember that Orthogonal GARCH, just like most other multi-

variate GARCH specifications, is based on certain assumptions. When assuming the

conditional covariance matrix of the principal components to be diagonal, we foresee

the fact that only the unconditional covariance matrix is diagonal. The conditional

covariances need not be zero (Alexander and Chibumba (1998)), which could create

some problems for the orthogonal GARCH methodology.

10Wt does not change very much from day to day and Wt can be approximated with Wt−1,
without introducing large errors in the calculation of the covariance matrix. This is particularly the

case when calculating the forecasted covariance matrix. In this case, we forecast at time t− 1, only
using information up to t− 1 (includingWt−1).
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3.4 Hedging Performance

The data set is divided into an estimation period of 473 days, January 2, 1996 to

November 30, 1997, and an equally long 473 day test period, December 1, 1997 to

October 21, 1999. Calculating weekly returns from daily data over the test period,

test series with 469 overlapping weekly spot- and futures returns are constructed.

From each of these series, I then construct five different test series with 93 non-

overlapping weekly spot- and futures returns11. To further assess the stability of the

results the test period is divided into three equal long subperiods; December 1, 1997

to July 23, 1998, July 24, 1998 to March 8, 1999, and March 9, 1999 to October

21, 1999. For the dynamic models, the (one-week) hedge ratio is updated each day

in the test period; in the two GARCH cases, GARCH forecasts of weekly (5-days)

covariances and variances by iteration of the variance equation are used (using an

expanding sample when estimating the GARCH parameters). In this way, the hedge

ratio variability is captured and we get the three series of varying hedge ratios pictured

in Figure 3.5. These ratios are all stationary and the means of the different hedge

ratios all close to the constant OLS hedge ratio12.

3.4.1 Different Evaluation Approaches

The purpose of the entire hedging exercise has been to minimize the variance (un-

certainty) of the hedge portfolio (which, in the case of an infinitely risk avert trader

or Martingale futures, is equal to utility maximizing). To evaluate the hedging per-

formance out-of-sample, I look at the test period and the test series defined above,

covering approximately the months December 1997 to October 1999. Throughout the

11The series with 469 overlapping observations contain Monday to Monday weekly returns, Tuesday

to Tuesday weekly returns, etc. Each of the five series with 93 non-overlapping returns contains

returns from only one of the five working days, for instance Monday to Monday weekly returns. In

this way, almost all autocorrelation found in the overlapping weekly return series is removed.

12The Phillip Perron values with and without trend are -71.7 and -71.9 for the BIGARCH hedge

ratio, -110.4 and -111.5 for the OGARCH hedge ratio, and -16.13 and -16.09 for the 50-days MA

hedge ratio. The mean hedge ratios are 0.43, 0.47, and 0.64, respectively.
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essay, I evaluate out-of-sample and all hedge ratios are predicted hedge ratios using

predicted variances and covariances.

I have chosen to evaluate to what extent the hedges minimize both the uncondi-

tional variance and the conditional variances over the test period. The unconditional

variance is simply the sample variance of the (one-week) spot returns and hedge port-

folio returns over the test period. In calculating the conditional variance I assume

either the bivariate GARCH model or the Orthogonal GARCH model to be the un-

derlying ”data generating process”, and each day I calculate (one-week) conditional

spot and hedge portfolio variances that can be compared. The average conditional

variances over the test period are then calculated and compared. The close fit of

both the GARCH models to data, as demonstrated in Table 3.3 and in Figure 3.2,

makes the assumption of data generated by either of these GARCH models plausible.

The interesting information from this conditional evaluation is to what additional

extent GARCH hedges reduce the conditional portfolio variance, in the presence of

heteroscedasticity, compared to hedges that do not incorporate GARCH effects.

Both the unconditional variance approach, Kroner and Sultan (1993), and Park

and Switzer (1995), as well as the conditional variance approach, Baillie and My-

ers (1991), Sephton (1993), and Bera, Garcia and Roh (1997), can be found in the

literature.
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3.4.2 The Unconditional Variance

This subsection studies the unconditional variance of the spot and portfolio returns

by simply calculating the sample variance of the different return series over the test

period as in Kroner and Sultan (1993) and Park and Switzer (1995). In Table 3.4, the

variances and variance reductions (out-of-sample) of the different hedges compared to

the open spot position are presented for the test series with overlapping returns. All

hedges reduce the variance. Somewhat surprisingly, the best hedges are the uncondi-

tional naive hedge and the OLS hedge. All the dynamic hedge ratios perform worse

than the static ones and there do not seem to be any major gains from modelling spot

and futures returns on Nord Pool with time-varying volatilities13. The finding that

the naive hedge performs equally well as (or even slightly better than) the OLS hedge

was also found in the US stock index market by Park and Switzer (1995), and is an

example of how simpler models sometimes work better than more elaborate ones.

In order to assess the significance of the results in a statistical sense, I turn to

”bootstraping” techniques to get the distributions of the portfolio variance estimates.

Bootstrapping return series with overlapping returns is possible by systematically

picking (with replacement) groups of five (the dependences reach over five days) re-

turns from the series until a new bootstrapped series of equal length as the original

series is constructed (Shau and Tu (1995)). This procedure is repeated 1000 times

and for each bootstrapped series, a new estimate of the unconditional return vari-

ance is found. In Table 3.5, means and standard deviations from these 1000 variance

estimates are presented. It can be noticed how, as expected, the mean variances

correspond closely to the actual sample variances in Table 3.4. From the size of

the standard deviations, it can be concluded that even if the hedge portfolios have

a smaller variance for our sample than the spot position, no hedge differs in a sta-

tistically significant way (at traditional significance levels) from the unhedged spot

position. At the same time, no hedge significantly differs from any other hedge in its

hedging performance.

13In the case of orthogonal GARCH, the weak performance could at least partly be due to a break

down in the orthogonalization methodology.
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The overlapping nature of the returns (in the test period) obviously induces de-

pendences in the return series above. To study the effect of this on the relative hedge

performance, Table 3.6 shows the same entries as Table 3.4, but now calculated for

non-overlapping return series where almost all autocorrelation in the returns is re-

moved. From the five different test series it can be seen how the conclusions drawn

from Table 3.4 remain valid. All the different hedges systematically reduce the portfo-

lio variance compared to the spot variance even though the reduction is much smaller

for some series (for instance series 4) than for others14. Once more, even for the non-

overlapping return series, the naive hedge and the OLS hedge perform better than

the conditional hedges.

As a final variation of this theme, the 469 observation long test period is split

into the three subperiods of equal length. As can be seen in Table 3.7, the hedging

performance differs somewhat between the three subperiods but for all hedges and

time periods, the hedged positions vary less than the unhedged spot position. For the

special case of the Orthogonal GARCH hedge, it can clearly be seen how the perfor-

mance deteriorates in period two; this is probably due to the high return variance in

this period. The high volatility spills over to both hedge ratios and portfolio returns

and, as mentioned above, the performance of the Orthogonal GARCH technique is

particularly sensitive to highly volatile time periods.

It has been shown how the non-hedged spot position is, overall, more volatile than

the hedge portfolios, indicating how hedging spot positions with futures contracts

on the Nordic Power Exchange can be profitable for a variance-minimizing trader.

To further evaluate the performance of the different hedges, I have chosen to look

at another performance measure; how often the weekly portfolio return is actually

smaller (in an absolute sense) than the weekly spot return. In Table 3.8, I count the

number of times (out of 469) the absolute weekly return of the hedged positions is

smaller than the absolute weekly spot return15. While the naive hedge now performs

14The Orthogonal GARCH hedge actually increases the variance for the fourth non-overlapping

series.

15This is an alternative measure of the variability of the different portfolios. The large variance of
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relatively worse, the two GARCH hedges perform equally well as the OLS hedge.

Even though the moving average hedge is just slightly better than the naive hedge,

it is clear how the conditional hedges tend to reduce the ”variance” as often as

the unconditional hedges, even if they, on average, do not remove as much of the

variability as the unconditional hedges. It should also be noticed that the portfolio

returns are actually larger than the spot returns in about 35 to 40% of the weeks.

So far, we can conclude that it has been possible to use futures hedges on Nord

Pool to reduce the variance in the Nordic electricity market in the last two years, while

the performance of the different hedge portfolios does not generally differ significantly

from each other. The fairly weak performance of the more elaborate GARCH hedges

compared to the simple OLS hedge might be explained by estimation problems or the

fact that GARCH models do not always perform as well out-of-sample as in-sample.

There are no indications of severe estimation problems, however, and the problems

associated with forecasts from GARCH models estimated on daily data should be

quite limited at such short horizons as one week. When it comes to Orthogonal

GARCH, which has primarily been developed for large highly correlated multidimen-

sional problems, the weak performance could partly be explained by a breakdown

of the orthogonalization technique in periods of high volatility and asymmetrically

behaving weakly correlated assets.

3.4.3 The Conditional Variance

Studying the reduction of the conditional instead of the unconditional variance gives

somewhat different results. Assuming that the true return processes, and the condi-

tional covariance matrix, are generated by either of the two GARCH models gives us

the possibility to compare the relative performance of the data-generating GARCH

model and the other models in minimizing the conditional variance (Baillie and Myers

(1991), Sephton (1993) and Bera, Garcia and Roh (1997)). Hedging the spot position

a particular portfolio might be due to a small number of very large returns, even though most of the

returns are smaller than the other portfolios. Such a portfolio should perform relatively better with

this alternative variability measure.
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each day in the test period and taking the average value of the conditional variance

of the spot and hedge portfolio returns, provides a measure for each portfolio that

should be as small as possible.

In Table 3.9, the (average) conditional variances and variance reductions (out-

of-sample) of the different hedges compared to the open spot position are presented

for two different choices of underlying covariance matrix16. The constant correlation

GARCH model is (not unexpectedly) the best model when it is itself assumed to have

generated the data. The OLS hedge is the second best, dominating the other GARCH

model, Orthogonal GARCH. On the other hand, when the Orthogonal GARCHmodel

is assumed to have generated the data it is also producing the best hedge. This

time the constant correlation GARCH hedge performs better than the OLS hedge.

The ranking of the very best hedges not surprisingly changes when changing the

assumption of the covariance matrix, but those hedges that perform badly in one case,

are also shown to perform badly in the other case. The best hedge in the unconditional

variance evaluation, the naive hedge, is now instead the worst performer, and while

the moving average model earlier performed as well as the GARCH models, it now

barely reduces the variance at all. In Table 3.9, I assume, a priori, that return series

follow GARCH models and the relative ranking of the different models is therefore

of no major interest; the two GARCH models obviously dominate the other models.

Instead, the focus should be on the absolute reduction in variance compared to the

spot position, as well as the absolute performance of the GARCH models compared to

the simpler models. From this, it should appear whether modelling the hedge ratio in

this market with GARCH models is worth while. The answer to this question finally

depends on how costly a dynamic GARCH hedge is, in terms of transaction costs etc.,

compared to the simpler static hedges.

As in the unconditional evaluation in the last subsection, we continue by looking

at non-overlapping return series as well as subsamples of the whole test period. In

16In Tables 9, 10, and 11 the percentage reduction of the average (over the test periods) conditional

variances is presented. Instead, looking at the average of the percentage reductions over the test

periods gives exactly the same relative performance and relative ranking of the different hedge

portfolios.
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Tables 3.10 and 3.11, we see how the results from Table 3.9 remain stable both for

the non-overlapping series and the different subsamples17; the performance of the

different hedges changes very little from series to series in Table 3.10 and even if there

is some change in performance from subsample to subsample in Table 3.11, this does

not affect the relative ranking of the different hedges.

In a similar way as done in Table 3.8 for the unconditional evaluation, I now look at

the number of times the conditional portfolio variance is smaller than the non-hedged

spot position conditional variance over the test period. In Table 3.12, it is observed

how the ranking from the earlier Tables 3.9, 3.10, and 3.11 remains unchanged, and

that the GARCH model that is assumed to have generated the conditional covariance

matrix always (100%) reduces the variance compared to the spot position.

When comparing the results from the conditional evaluation with the results from

the unconditional evaluation, there are both similarities and differences. In both cases,

and throughout the essay, it is quite obvious how hedging in this market can reduce

the variance. However, while the naive model performed well in the unconditional

evaluation context it is, by far, the worst performer in the conditional context. In

some cases, it even increases the variance. The opposite holds for the two GARCH

models; while not improving on the simple OLS hedge in the unconditional evaluation,

the inclusion of heteroscedasticity and volatility clustering in calculating the hedge

ratio clearly contributes towards an optimal hedge when looking at the conditional

variance. The disappointing results from the last subsection are therefore reversed and

the dynamic modelling of the hedge ratio seems to improve the hedging performance;

when spot and futures returns can be modelled as GARCH processes, which is shown

to be a plausible assumption in this market, then the hedge ratio should be modified

and continuously updated according to these GARCH processes. It is hard to tell from

the results in this chapter however, which GARCH model actually captures most of

the variability in the market, since the relative ranking of the two GARCH models

strongly depends upon the choice of the true covariance matrix.

17In order to save space, only the variance reductions, not the actual portfolio variances, are

presented in Table 3.10.
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3.5 Conclusions

In this essay, I have looked at a possible scenario of an actor on the Nordic Power

Exchange that hedges a position (at a one-week horizon) in the spot market with

futures contracts. The traditional unconditional methods of calculating the minimum

variance hedge ratio are extended to time-varying moving average and GARCH hedge

ratios. A constant correlation bivariate GARCH framework is compared to the new

multivariate Orthogonal GARCH approach. Out-of-sample evidence presented in this

essay indicates how both the traditional unconditional naive hedge, the unconditional

OLS hedge, and the dynamic conditional GARCH hedges reduce the variance of

the hedge portfolio compared to the spot position. The relative performance of the

different hedges depends on the evaluation measure, however. The OLS hedge and

the two GARCH hedges reduce both the unconditional and the conditional variance,

while the naive hedge successfully reduces only the unconditional variance. Among the

dynamical hedges, the moving average model is dominated by the GARCH models.

Overall, there seem to be some gains from including heteroscedasticity and time-

varying variances in the calculation of hedge ratios, but the constant OLS hedge ratio

is nearly as successful in reducing the portfolio variance.
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Figure 3.1: Electricity Prices at the Nordic Power Exchange Nord Pool.
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Figure 3.2: Spot Return Volatility and Futures Return Volatility. The GARCH

volatility comes from the constant correlation bivariate GARCH model. The sam-

ple volatility is annualized in percent (20-day window).
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Figure 3.4: Future Return Distribution vs. Normal Distribution.
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Figure 3.5: Conditional hedge ratios over the test period.
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Table 3.1: Stationarity of logprices over the sample period January

2, 1996 to October 21, 1999.

Phillips-Perron (no trend) Phillips-Perron (with trend)

Spot prices -38.97 -84.16

Future prices -24.71 -42.12

The 99 percent critical values for the Phillips-Perron test with and without

trend are -3.96 and -3.43.

Table 3.2: Return statistics January 2, 1996 to October 21, 1999.

mean variance kurtosis skewness B-J Q(6) Q(18) Q2(6) Q2(18)

Spot -0.000273
0.066

0.00429 6.698 -0.055 1768.83 6.92 20.56 146.16 175.20

Future -0.000210
0.042

0.00175 9.211 1.004 3503.14 4.57 52.72 8.74 175.40

Small figures denote standard errors. Kurtosis is the excess kurtosis. B-J is the Bera-Jarque test for non-

normality and Q(.) is the Ljung-Box test for autocorrelation. 99 percent critical value for Bera-Jarque is

9.21 and 99 percent critical values for Ljung-Box are 16.8, and 34.8.
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Table 3.3: Typical GARCH parameter estimates. Maximum Likelihood esti-

mates as well as standardized residual statistics.

Bivariate GARCH

Spot Futures

α1 0.000464
0.00185

-0.000128
0.00129

α2 0.0750
0.0392

-0.0661
0.0470

α3 -0.0121
0.0421

-0.0420
0.0471

φ1 0.000299
0.000173

0.0000570
0.0000341

φ2 0.199
0.0305

0.0758
0.0110

φ3 0.736
0.0284

0.898
0.0146

ρ 0.290
0.0270

Mean -0.0189 -0.0179

Standard Deviation 1.003 1.003

Skewness -0.024 0.326

Excess Kurtosis 3.005 6.822

Q(6) 4.49 12.73

Orthogonal GARCH

First Principal Component Second Principal Component

α1 -0.000254
0.00181

0.000588
0.00127

α2 0.104
0.0411

-0.0846
0.0456

α3 -0.00146
0.0440

-0.0802
0.0461

φ1 0.000442
0.000269

0.0000461
0.0000278

φ2 0.229
0.0388

0.0637
0.0105

φ3 0.681
0.0418

0.910
0.0158

Mean 0.0159 -0.0020

Standard Deviation 1.001 0.999

Skewness -0.127 0.050

Excess Kurtosis 2.982 7.361

Q(6) 8.05 18.98

The first 722 daily observations are used. Small figures are standard errors and Q(6)

denotes the Ljung-Box test for the first six lags.
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Table 3.4: Unconditional portfolio return variance and percentage variance re-

duction out-of-sample compared to the non-hedged spot position. Overlapping

weekly portfolio returns.

Spot Naive OLS BIGARCH OGARCH 50-days

Variance 0.0227 0.0193 0.0195 0.0201 0.0208 0.0200

% Variance Reduction − 17.79 16.44 12.87 8.97 13.46

Table 3.5: Means and standard deviations of the bootstrapped (1000x) un-

conditional variance distributions. Overlapping weekly portfolio returns.

Spot Naive OLS BIGARCH OGARCH 50-days

Mean Variance 0.0230 0.0193 0.0195 0.0201 0.0209 0.0203

Standard Deviation 0.0033 0.0035 0.0033 0.0034 0.0039 0.0034

Table 3.6: Unconditional portfolio return variance and percentage variance

reduction out-of-sample compared to the non-hedged spot position. Non-

overlapping weekly portfolio returns

Spot Naive OLS BIGARCH OGARCH 50-days

series 1 0.0169 0.0145 0.0140 0.0144 0.0149 0.0147

series 2 0.0271 0.0191 0.0213 0.0218 0.0221 0.0210

Variance series 3 0.0253 0.0227 0.0226 0.0229 0.0241 0.0229

series 4 0.0270 0.0263 0.0252 0.0263 0.0274 0.0267

series 5 0.0191 0.0154 0.0159 0.0163 0.0170 0.0163

series 1 − 14.19 17.03 14.50 11.61 12.65

series 2 − 29.27 21.15 19.40 18.49 22.50

% Var. Red. series 3 − 10.30 10.63 9.58 4.82 9.41

series 4 − 2.74 6.68 2.47 -1.64 0.95

series 5 − 19.50 16.62 14.59 11.18 14.60

Series 1 represents Monday to Monday returns, series 2 represents Tuesday to Tuesday returns,

etc. In this way, I work with non-overlapping returns with almost all autocorrelation removed.
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Table 3.7: Unconditional portfolio return variance and percentage variance reduction

out-of-sample compared to the non-hedged spot position. The three subperiods.

Spot Naive OLS BIGARCH OGARCH 50-days

subperiod 1 0.0118 0.0101 0.0102 0.0100 0.0102 0.0114

Variance subperiod 2 0.0376 0.0372 0.0354 0.0370 0.0388 0.0374

subperiod 3 0.0176 0.0106 0.0123 0.0125 0.0130 0.0113

subperiod 1 − 17.25 15.58 18.03 15.98 3.89

% Var. Red. subperiod 2 − 0.99 6.04 1.52 -3.09 0.43

subperiod 3 − 66.91 43.08 40.60 36.01 55.73

The three subperiods correspond to the three time periods of equal length 1997-12-01 to 1998-07-23,

1998-07-24 to 1999-03-08, and 1999-03-09 to 1999-10-21.

Table 3.8: The number of times (out of the 469 weekly returns)

that the hedge portfolios absolute weekly return is smaller (in an

absolute sense) than the absolute weekly spot return.

Naive OLS BIGARCH OGARCH 50-days

number of times 280 306 306 305 281

% of the full sample 59.70 65.25 65.25 65.03 59.91

Table 3.9: Portfolio return conditional variance (average value over the test period)

and percentage reduction of this average conditional variance out-of-sample compared

to the non-hedged spot position. Overlapping conditional weekly portfolio variances.

Spot Naive OLS BIGARCH OGARCH 50-days

Cond. Var., BIGARCH Cov. Matrix 0.0250 0.0268 0.0235 0.0232 0.0237 0.0250

Cond. Var., OGARCH Cov. Matrix 0.0247 0.0243 0.0223 0.0213 0.0208 0.0239

% Red., BIGARCH Cov. Matrix − -7.13 6.16 7.11 5.11 -0.07

% Red., OGARCH Cov. Matrix − 1.11 9.65 13.72 15.82 3.06
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Table 3.10: Percentage reduction of the conditional portfolio variance (average value

over the test period) out-of-sample compared to the conditional spot variance. Non-

overlapping conditional weekly portfolio variances.

Naive OLS BIGARCH OGARCH 50-days

series 1 -7.16 6.17 7.11 5.53 0.17

series 2 -7.32 6.32 7.10 5.34 -0.36

% Red., BIGARCH Cov. Matrix series 3 -8.42 6.15 7.11 4.27 -0.54

series 4 -6.93 6.23 7.09 5.22 -0.34

series 5 -5.75 5.93 7.16 5.13 0.34

series 1 -0.04 9.27 13.06 14.71 3.27

series 2 -1.05 9.09 11.70 13.53 2.50

% Red., OGARCH Cov. Matrix series 3 2.11 10.02 14.14 17.11 1.98

series 4 1.03 9.74 12.86 14.84 2.72

series 5 3.78 10.24 16.83 18.96 4.60

Table 3.11: Portfolio return conditional variance and percentage reduction of the

conditional variance out-of-sample compared to the non-hedged spot position. The

three subperiods.

Spot Naive OLS BIGARCHOGARCH 50-days

subperiod 1 0.0161 0.0175 0.0152 0.0152 0.0154 0.0170

Cond. Variance, subperiod 2 0.0390 0.0412 0.0366 0.0360 0.0370 0.0386

BIGARCH Cov. Matrix subperiod 3 0.0195 0.0212 0.0182 0.0181 0.0184 0.0191

subperiod 1 0.0165 0.0156 0.0147 0.0145 0.0142 0.0160

Cond. Variance, subperiod 2 0.0367 0.0356 0.0328 0.0303 0.0294 0.0355

OGARCH Cov. Matrix subperiod 3 0.0204 0.0217 0.0190 0.0187 0.0184 0.0198

subperiod 1 − -8.38 5.54 5.82 4.19 -5.66

% Var. Reduction, subperiod 2 − -5.70 6.16 7.64 5.30 1.17

BIGARCH Cov. Matrix subperiod 3 − -9.07 6.70 7.09 5.50 2.02

subperiod 1 − 5.74 11.02 11.95 13.73 3.01

% Var. Reduction, subperiod 2 − 3.06 10.54 17.36 19.95 3.19

OGARCH Cov. Matrix subperiod 3 − -6.33 6.86 8.37 9.80 2.87
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Table 3.12: The number of times that the conditional hedge portfolio variance is

smaller than the conditional spot variance (out of the 469 weekly variances).

Naive OLS BIGARCH OGARCH 50-days

no. of times, BIGARCH Covariance Matrix 81 468 469 464 347

no. of times, OGARCH Covariance Matrix 177 416 428 469 322

% out of 469, BIGARCH Covariance Matrix 17.27 99.79 100.00 98.93 73.99

% out of 469, OGARCH Covariance Matrix 37.74 88.70 91.26 100.00 68.66
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Chapter 4

The Search for Chaos and

Other Nonlinearities in

Swedish Stock Index Returns

4.1 Introduction

Common assumptions in financial economics are that financial variables like stock

returns and exchange rates can be described by stochastic processes, and that eco-

nomic systems are linear. From a theoretical point of view, nothing indicates that this

must be the case, and numerous empirical studies have shown that different nonlinear

dependences might exist in financial time series. The high frequency of crashes and

booms that can be observed in stock markets is an example of behavior non-consistent

with a linear model1 with normally distributed disturbances.

Nonlinear models explaining this type of behavior can be both stochastic and

deterministic. An example of a stochastic nonlinear model is Engle’s (1982) autore-

1By a linear model, we mean a model with a linear mean and additive IID error terms.

75
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gressive conditionally heteroscedastic (ARCH) model with extensions. These models

have been successful in explaining volatility clustering in stock returns and in mod-

elling interest rates. A chaotic process, on the other hand, is perfectly deterministic

but its behavior is indistinguishable from pure randomness. Chaotic systems are al-

ways nonlinear and have been important in explaining seemingly random behavior

in the sciences. A very important fact regarding chaotic models, which is different

from the usual situation in economics, is that all movements are generated within the

model. No external shocks need to be introduced.

The lack of explanative power in linear models has led numerous researchers to

the study of chaos in financial economics, (Scheinkman and LeBaron (1989), Peters

(1991), Larrain (1991)). Hsieh (1989, 1991) instead focuses on nonlinear stochastic

models, in particular GARCH models. Varson and Doran (1995) try to distinguish

chaos from random nonlinearities with the Grassberger-Procaccia correlation dimen-

sion. The disadvantages of this method are that very long data series are needed, and

that it does not constitute a statistic test. Therefore, Brock, Dechert, and Scheinkman

(1987) proposed a related statistic test, the BDS test, based on the correlation inte-

gral. This is a measure of spatial correlation, and it can be used to detect deviations

from the IID-hypotheses. Since the BDS test does not distinguish between different

causes for rejections of IID, Hsieh (1991) first filters data with different linear and

nonlinear filters in order to detect what kind of model can explain the nonlinearities.

In this paper, we look at Swedish stock index returns, and try to detect the

presence of nonlinearities in this market. Can nonlinear effects, for instance, help

explaining the large jumps in stock prices that occur with fairly high frequency? Our

data covers monthly returns from 1919 to 1996, daily data from 1977 to 1996, and

intradaily data (15 minutes) from January 1992 to August 1993.

Since the movements cannot be successfully described by linear models, we try to

determine how to model the nonlinearities that must be introduced. Typically, non-

linearities can enter in the process governing returns (nonlinearities in the conditional

mean) or in the process of the time-varying conditional variance (nonlinearities in the

conditional variance). In order to have a chaotic returns process, there must exist

nonlinearities in the conditional mean. To test this hypothesis, we investigate the pre-
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dictability of linear versus nonlinear models fitted to data by using neural networks.

The weak evidence of nonlinearities in the conditional mean makes us continue our

search for causes of the non-IID stock returns. We turn to the BDS test, and try to

separate the different causes of a rejection of the IID-hypothesis in our market; chaos,

heteroscedastic conditional variance, nonstationarity, or simple linear autocorrelation.

We reject the hypothesis of conditional mean changes or nonstationarities causing the

BDS test to reject the IID hypothesis. Instead, we find strong evidence of conditional

variance dependences in the stock index returns. We do not only find significant

GARCH effects but also the stronger result that GARCH effects alone contribute to

more or less all the non-IID behavior in our data.

In chapter 4.2 we give an introduction to chaos, nonlinearities, and the BDS test,

in chapter 4.3 our data is described, in chapter 4.4 we present our results, and chapter

4.5 concludes our paper.

4.2 Chaos and How to Detect It

What is chaos? A clear cut definition has not yet been generally accepted, but three

fundamental properties must be included (see Strogatz (1996)):

• Chaotic motion must have an aperiodic long-term behavior. This means that

there are trajectories2 which do not settle down to fixed points, periodic orbits,

or quasiperiodic orbits as t→∞.

• Chaotic motion exhibits sensitive dependence on initial conditions, which means
that nearby trajectories diverge exponentially fast.

• Chaotic motion is purely deterministic. The irregular behavior stems from the

nonlinearity of the system and not from random effects.

A dynamic system evolving in a chaotic way is also said to have a strange attractor.

It is possible to quantify the sensitivity on the initial conditions above by defining the

2The phase space is the space spanned by the state variables. A trajectory is the path of evolution

of a point in the phase space.
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Liapunov exponents for chaotic systems in continuous time (flows), and discrete time

(maps). For a flow in n dimensions, an infinitesimal sphere will be distorted into an

infinitesimal ellipsoid during its evolution in phase space. If ²k(t), k = 1, ..., n denotes

the length of the kth principal axes of the ellipsoid, then ²k (t) ∝ ²k (0) e
λ
k
t, where

the λk are the Liapunov exponents. The n different Liapunov exponents therefore

describe the deformation of the system. For a strange attractor, at least one of

the λk must be positive because of the separation of neighboring trajectories. The

sum of the λk describes the contraction of volume, which must be negative since, by

definition, an attractor (strange or otherwise) should attract all trajectories starting

in a sufficiently small open set containing the attractor. Chaotic behavior demands

a positive Liapunov exponent, which implies the existence of a time horizon beyond

which prediction breaks down, since any discrepancy in the estimate of an initial state

will grow exponentially.

From where does chaos come? In the ”definition” of chaos, two properties seem

hard to combine. How can trajectories on a strange attractor diverge endlessly and

yet remain bounded? The answer is that strange attractors result from a stretching

and folding process. To be more concrete, consider again the sphere in the phase

space. A strange attractor is generated when the system contracts the sphere in some

directions and stretches it in others. To remain bounded, the distorted sphere must

be folded back onto itself. After a large number of iterations, the sphere is spread

throughout a bounded region in the phase plane. The mechanisms involved reflect

the volume contraction, the sensitivity on initial conditions and the boundedness of

the attractor.

4.2.1 The Correlation Integral

How do we test for the presence of chaos? One way would be to calculate the largest

Liapunov exponent and see if it is positive, but this is not easily done in real world

situations. Moreover, the other Liapunov exponents are even harder to estimate

so this procedure cannot distinguish between different types of strange attractors.

Grassberger and Procaccia (1983) therefore proposed a different procedure based on
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spatial correlation.

Consider a set {xt}T1 of points on an attractor. Define the correlation integral as
C(l) = limT→∞C

T (l),

CT (l) =
1

T 2

X
s,t

θ(l− |xt − xs|),

where θ(a) = 1 if a > 0, and 0 otherwise. The quantity C(l) measures the fraction of

the total number of pairs (xt,xs) whose distance |xt−xs| is less than l. Grassberger
and Procaccia found that C(l), and its sample estimate CT (l), are proportional to ld

where d is called the correlation dimension. In practice, d is estimated as the slope

in a plot of logCT (l) versus log(l). When dealing with finite data sets, the power

law, CT (l) ∝ ld, only holds over an intermediate range of l, since at large l, all points
will be within a distance of l, while on the other hand, at extremely small l, no pair

of points will be within l. Typically, strange attractors have a fractal structure and

therefore, a non-integer correlation dimension.

4.2.2 Attractor Reconstruction

A time series, {xt}, of all state variables x ∈ Rn is often not accessible. In many cases,
it is not even possible to specify either the relevant components of x or its dimension,

which might be high. Nevertheless, such systems might have low-dimensional attrac-

tors. Fortunately, Packard et al. (1980) and Takens (1981) show that the dynamics in

the full phase space can be reconstructed from measurements of a single-variable time

series {{xt};xt ∈ R,x ⊂ x}. The main idea is to construct m-dimensional vectors

ξt = (xt,xt+τ , ..., xt+(m−1)τ )

for some delay τ > 0. If {xt} possesses an attractor that can be embedded in an
n-dimensional x-space, then the topological structure of the attractor remains un-

changed when embedded in ξ-space, provided that the embedding dimension m is

large enough. A necessary condition ism ≥ n and a sufficient condition ism ≥ 2n+1.
In other words, it is possible to make some kind of ”variable substitution” between

the unobservable variables in x and the lagged observables.
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Since {xt} and {ξt} are observationally equivalent, they also have the same cor-
relation dimension, provided that m is large enough. Thus, CTm(l) can be calculated,

now with a subscript m, using ξt instead of xt. If {ξt} is obtained from a chaotic

time series, then the computed correlation dimension will level off at its true value

when the embedding dimension is large enough, so that there is enough room for the

attractor to unfold. The point to be made is that if {ξt} is obtained from a purely

random (IID) sequence, the correlation dimension keeps increasing withm, since noise

always fills up the space in which it is embedded. In principle, estimates of d can thus

be used to distinguish chaos from noise.

The delay τ should not be chosen too small since then xt ≈ xt+τ ≈ ... and the

attractor might have problems in disentangling. If, on the other hand, τ is chosen

too large, problems arise because the spatial correlation is low for distant values in

the time series.

Unfortunately, the Grassberger-Procaccia method has some drawbacks. First, it

must be emphasized that the method breaks down when the embedding dimension is

too large due to the sparsity of data, which causes statistical sampling problems.

Second, Grassberger and Procaccia based their results on time series of 10000-

30000 points, although they argued that only a few thousand points would be neces-

sary to obtain reasonable estimates. Ramsey and Yuan (1989) have shown that there

is a tendency to underestimate the slope in data sets with as many as 2000 points,

thus indicating chaos when none is present.

Third, the graphical procedure is not put on firm statistical ground and it might

be difficult to interpret when noise is added to the system.

4.2.3 Influence of Noise

In real life, systems can seldom be isolated from the unpredictable environment. The

observed dynamics will then consist of two parts; the intrinsic deterministic dynamics

of the system and the influence of random noise. One common way of modelling the

randomness is as dynamical noise:

xt = f(xt−1, ...) + εt, (1)
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where εt is IID, xt is the observable, and f is a deterministic, possibly nonlinear,

function. If f is chaotic, much of what has been said above about chaos is still valid

when noise is added to the system, provided the noise level is not too high. Otherwise,

the trajectories could jump out of the basin of attraction, or jump between different

parts of the attractor in such a way that it becomes impossible to separate the behavior

from true noise; the attractor has lost its structure. An acceptable noise level is hard

to determine since different chaotic systems exhibit very different sensitivities to noise,

but generally, only small amounts of noise can be introduced.

The Grassberger-Procaccia method must be modified when dealing with noise

(see Ben-Mizrachi et al. (1984)). For length scales, l, below those where the random

component blurs the structure, the slope of logCTm(l) versus log(l) is proportional

to the embedding dimension, while for length scales above, the slope is equal to the

correlation dimension of the deterministic system (CTm(l) ∝ ld).
Equation (1) can also be used to describe different stochastic processes. If, for

instance, f is a nonlinear (or linear) map with a stable attracting fix point, then the

output corresponds to passing random noise through a nonlinear (linear) recursive

filter, thereby obtaining stationary aperiodic behavior. In principle, the Grassberger-

Procaccia method could be used to identify the properties of f by calculating the

slope at different l and m, and comparing it to the slope of an IID process of the

same length and with the same moments, i.e. the time series randomly permuted or

scrambled.

Figure 4.1 shows log(C(l)) versus log(l) for the Hénon (1976) map

xk+1 = 1 + yk − ax2k, (2)

yk+1 = bxk, (3)

for m = 2, 3, and 4 with uniformly distributed noise dynamically added. In this case

the attractor can be completely reconstructed when m = 3.3 From Figure 4.1, it is

clear that the slopes are different for length scales less than the magnitude of the

3The slope for m = 2 is only slightly less than the slopes in higher embedding dimensions, thereby

suggesting that the attractor has a non-trivial structure already when m = 2.
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imposed noise. Since the noise is uniformly distributed in (−0.03, 0.03) , the slopes
for l < 0.06 (log(l) < −2.8) are equal to the corresponding embedding dimensions. As
expected, the correlation dimensions of the scrambled time series show no saturation

as m grows. This graphical procedure should, in principle, also be valid for residuals

from ARCH-type models4, where εt = g(xt−1, ...)ut, ut IID, but it would be hard to

tell if any deviation from the scrambled counterpart is caused by the conditional mean

process f or the conditional variance process g or both (see Scheinkman and LeBaron

(1989)).

Brock, Dechert, and Scheinkman (1987) modified the Grassberger-Procaccia method

in order to circumvent some of its drawbacks by developing the BDS test. A revised

version of this method is found in Brock et al. (1996).

4.2.4 The BDS Test

The test is based on the observation that for an IID sample

CTm(l) = [C
T
1 (l)]

m.

The identity should be understood in a statistical sense. Brock, Dechert, and Scheinkman

(BDS) derived a normalization factor5 V Tm (l) in order to make a correct statistical

quantification of the departure from IID. More specifically, they showed that the BDS

statistic

WT
m(l) =

√
T

£
CTm(l)− [CT1 (l)]m

¤
V Tm (l)

converges in the distribution to N(0, 1) as T → ∞, for l > 0 and m > 1, under the

null hypothesis of IID.

4By ARCH-type models, we mean models that exhibit autoregressive conditional heteroscedas-

ticity.

5The normalization factor is a complicated function of correlation integrals in different dimensions.

It is not very illuminating and therefore not presented in this paper, but it can be found in Brock et

al. (1996).
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The BDS test has proved to be quite powerful in finding departures from IID in

a number of Monte Carlo simulations; see, for example, Brock, Hsieh, and LeBaron

(1991) and Hsieh (1991). It has also been verified that the asymptotic distribution well

approximates the finite sample distribution for sample sizes above 1000 observations.

As for the Grassberger-Procaccia method, the results depend on the magnitude of

the additive noise component. It is therefore recommended (see Brock, Hsieh, and

LeBaron (1991)) to apply the test for l = 0.5−1.5 times the sample standard deviation
of the time series.

The BDS test suffers from the fact that a rejection of the null does not provide any

hints about the cause of the rejection. It has been shown in Brock and Potter (1993)

and de Lima (1996), however, that the null distribution of the test is not affected by

applying the BDS test to the estimated residuals from a general class of parametric

models with additive IID errors:

xt = f(xt−1, ...;α) + ut,

where α is a parameter vector and ut is IID, provided that a
√
T -consistency estima-

tion of the parameters is possible. The last requirement means that
√
T (α̂ − α) →

N(0,Σ) for some covariance matrix Σ, and is fulfilled in maximum likelihood estima-

tions. Moreover, de Lima (1996) shows that the nuisance parameter free properties

of the BDS test remain valid for residuals from some multiplicative models

xt = f(xt−1, ...;α) + g(xt−1, ...;β)ut, (4)

where ut is IID, which covers many, if not all, of the known ARCH-type models, if

the test is applied to the transformed residuals v̂t = ln(û
2
t ) where ût are the estimated

residuals in (4). The key idea is that the transformation gives rise to a model with

additive IID errors:

x̃t = ln
¡
(xt − f(xt−1, ...;α))2

¢
= ln

¡
g2(xt−1, ...;β)

¢
+ ln(u2t ) = f̃(xt−1, ...;β) + vt,

where vt is IID because ut is IID. It must be kept in mind that the asymptotic

properties of v̂t and vt are equal only if α is known, i.e. when a GARCH model is
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fitted to the data without the conditional mean process. However, the bias introduced

is expected to be small when α and β are jointly estimated ”...because of the lack

of predictability of the first moment compared to the second central moment...” (see

Brock and Potter (1993)), as is often the case in financial time series6.

Furthermore, the BDS test does not require any moments for the time series stud-

ied to exist, contrary to other nonlinearity tests, but when the test is applied to

estimated residuals
√
T -consistency of the parameters sometimes demand the exis-

tence of higher moments in the disturbance process, typically a finite variance. The

assumption of the existence of higher order moments might otherwise be severe in

the nonlinearity testing of financial time series, whose distributions are often heavily

tailed. The disadvantage is that the BDS test may require longer samples to be as

effective as some other tests.

Altogether, the BDS test may not only be useful in detecting chaos, but also in

diagnostic testing of estimated model residuals.

4.3 Data

The data we use is log-returns from two different Swedish stock indices, the OMX-

Index and the Affärsvärldens Generalindex. The former was created as an underlying

security for trading in standardized stock index options and forward contracts, and

consists of a value-weighted combination of the 30 most traded stocks at the Stockholm

Stock Exchange. The latter is the most used stock index in Sweden and it is a value-

weighted index of the majority of all stocks quoted on the Stockholm Stock Exchange.

The time interval between observations is sometimes of importance in financial

time series. Therefore, we look at series with different sampling frequency; monthly,

daily, and 15 minutes.7 In this way, we can detect chaotic and nonlinear behavior on

6With the possibility of bootstrapping small sample distributions, the asymptotic properties of

the test are nowadays of less importance.

7The 15-minute time span between data points should be large enough that possible micromarket

structure dependences do not shine through. Such dependences can, for instance, arise from the

sequential execution of orders in the traders’ limit order book, or by thin trading in some of the
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different time scales. In addition, the problem of too short or too long delay times

τ in the reconstruction of the chaotic attractor mentioned in chapter 4.2.2 can be

mitigated.

The monthly data (Affärsvärldens Generalindex) is extended over the period 1919-

1996, while the daily data (OMX-Index) is for the period 1984-1996. The intradaily

series (OMX-Index), with data collected every 15 minutes, covers the period January

1992-August 1993 and is divided into three series with approximately equal length to

catch any instability in the estimated parameters.8 At the same time, the length of the

series becomes comparable to the length of the daily series. The first observation every

day has been removed due to the auction-like start up procedure at the exchange. All

data is without dividends, but we have also looked at monthly (1919-1996) and daily

(1977-1991) returns with dividends included (Affärsvärldens Generalindex).9 The

results for these series are not reported but are similar to those without dividends

and any differences will be commented upon. Table 4.1 displays some sample statistics

of the return data. A high degree of kurtosis and skewness, in particular for the 15

minute data is observed.

4.4 Empirical Results

In the following chapter, we apply the BDS test to the raw data to test if the different

time series are IID. If the null hypothesis of IID is rejected (and it is), we try to dis-

cover the cause of the rejection by applying the BDS test to the estimated residuals

from different models. More precisely, we examine whether the rejection origins from

nonlinear (possibly chaotic) or linear dependences in the mean processes, nonstation-

arities, or if the rejection can be explained by nonlinear stochastic models exhibiting

underlying stocks.

8The second subperiod covers the volatile months when Sweden abandoned the fixed exchange

rate regime.

9For monthly returns, the series with dividends has 936 observations and for the daily returns,

3489 observations.
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conditional heteroscedasticity.

4.4.1 Test of the Raw Data

Table 4.2 shows the BDS statistics when the embedding dimension is between 2 and

10, and l is chosen as 0.5, 1 and 1.5 times the sample standard deviation of the different

time series. As can be observed, the test strongly rejects the hypothesis of IID stock

returns at any conventional significance level and for all m and l, even though little

can be said about the cause of the rejection. If the time series came from a noisy

chaotic system with a higher dimensional attractor (m ≤ 10), then the test statistic
would typically be small for low embedding dimensions and large in dimensions with

enough ”room” for the attractor. Obviously, this is not the case since the rejections

are significant already at m = 2.

Considering the results, we proceed to study how dependences in the conditional

mean might cause the rejection of IID.

4.4.2 Test of Dependences in the Conditional Mean

Suppose stock returns are generated as:

xt = f(xt−1, ...) + εt (5)

where εt is IID and f is the conditional mean process. The expression in (5) can be

used to describe noisy chaotic models as well as different stochastic processes. Now,

we will investigate whether f is nonlinear (and possibly chaotic), and whether any

dependences in the conditional mean can explain the rejection of IID.

If f is nonlinear, it can be modelled by nonparametric regressions, e.g. artificial

neural networks. This powerful technique is exhaustively described elsewhere (see

Hertz et al. (1991) and Kuan and White (1994)), and thus, we will here merely

say that a multi layer perceptron (MLP), with one hidden layer of sigmoid transfer

functions, can consistently model a time series generated by an arbitrary function,

provided that the function is bounded and uniformly continuous. On the other hand,
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if the MLP only contains linear transfer functions, it can only pick up linear depen-

dences, i.e. the nonparametric modelling reduces to a linear regression. We therefore

proceed in the following way:

We split each time series into three parts of unequal size. The first 50% are used

for the regression, or training, while the consecutive 25% are used as validation sets.

The last 25% (t = 1, ..., Ttest) are used as test sets for out-of-sample evaluation. For

each returns series, we train 10 MLPs with 3, 5 and 7 hidden neurons, each with

sigmoid (than) transfer functions, in a single hidden layer and a linear output neuron.

As inputs we use xt−1, ..., xt−9 corresponding to an embedding dimensionm = 10. For

each time series, we also train linear perceptrons to capture the linear dependences.

In all cases, the sum squared errors of the validation sets are minimized, and for each

time series, we pick the network with the best validation performance. The different

MLPs are then evaluated using the out-of-sample prediction error normalized with

the out-of-sample variance of xt:

Ep =

1
T
test

PT
test
t=1

³
xt − f̂

¡
xt−1, ..., xt−9

¢´2
σ2test

.

If f is nonlinear, Ep should be smaller for nonlinear than for linear networks . Further-

more, if f is chaotic, then the performance of nonlinear networks should improve as

the forecast horizon shortens, that is, when we go from a sample interval of one month

down to 15 minutes, and it is a consequence of the positive Liapunov exponent(s) in

a chaotic system.

The results are reported in Table 4.3. Three things can be noted. First, the

out-of-sample prediction performance is very weak, with Ep slightly below one (and

occasionally above). Second, there is no support in the data for nonlinear regression

being superior to linear regression. Sometimes, it is superior but then the improve-

ment is negligible. Third, the performance of the nonlinear networks does not improve

as the sample interval is reduced.

We also analyze the dependence of the output on the input variables by inspecting
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derivatives after completed regression. This is done by calculating

Sk(t) =
∂f̂(xt−1, ..., xt−9)

∂xt−k
, k = 1, ..., 9

for t = 1, ..., Ttest and then computing

Sk =
1

Ttest

X
t

| Sk(t) | . (6)

The measure in (6) shows which variables are the most important. For a linear

network, this is just equal to (the absolute values of) the coefficients from a linear

regression.

The results are found in Table 4.4. We see that both types of networks identify

approximately the same variables as being important, often the first. The magnitudes

of Sk differ somewhat between linear and nonlinear networks, but the point is that

there seem to be no substantial dependences in the data not captured by the linear

networks.

Although this is not a statistical test of nonlinearities in the conditional mean

process, we draw the conclusion that there are none. Either the dependences in f

are truly linear, or they are so blurred with noise that the conditional mean can best

be approximated by a linear process. Since chaos can only arise from a nonlinear

mapping, this suggests that there is no chaotic behavior in the mean process.

Can the linear dependences in f cause the BDS test to reject IID?We try to answer

this question by applying the BDS test to the residuals from the linear networks above.

As appears from Table 4.5, the test strongly rejects the residuals as being IID at any

reasonable significance level. The test statistics of the linearly filtered data do not

differ a great deal from those of the raw data, indicating that the rejection is not only

due to linear dependences10.

In the following, we try to sort out what kind of nonlinearities the BDS test in

fact detects in our data.

10We also applied the BDS test to the residuals from the nonlinear networks. As expected, the

test statistics did not differ a great deal from those in Table 4.5, but to our knowledge, it is not clear

whether the nuisance free properties of the test is valid for residuals from nonparametric regressions.
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4.4.3 Test of Nonstationarities

Financial time series are not necessarily stationary. There might be a number of

structural changes creating nonstationary series: policy changes, changes in financial

structures as well as important technological innovations. Therefore, it is possible

that a rejection of IID by the BDS test is caused by nonstationarities and a closer

study of whether this is the case is motivated. The type of nonstationarities we discuss

in this section arise from switching between different linear models; that is, we allow

the parameters of a linear model to change from regime to regime.

To investigate the influence of nonstationarity, we can either apply the BDS test to

the residuals from a linear switching model, or we can try to judge it more qualitatively

(following Hsieh (1991)). Since we have time series with different extensions in time,

we do the latter. Our longest return series is 77 years and our shortest is about 7

months. In between, we have a time series of about 13 years. When we proceed

to increasingly shorter time intervals, we expect the effect of structural changes to

disappear (we simply assume that less and less changes occur) and consequently, any

rejection of the IID hypothesis due to nonstationarities alone should disappear.

There is no support for this idea. The linearly filtered statistics in Table 4.5 are

as high for the 15 minute data as for the monthly and daily data. As long as the

linear regime shifts occur with a frequency low enough to leave our 15 minute data

unaffected, they cannot be the only cause of the BDS test rejecting the IID hypothesis.

4.4.4 Test of Dependences in the Conditional Variance

As mentioned, there are many ways of generating non-IID data; we have treated linear

and nonlinear autoregression, chaos, and nonstationarity. Now, we turn to models

exhibiting nonlinearities in the conditional variance. Examples of models with this

behavior are autoregressive conditionally heteroscedastic models like ARCH, GARCH,

and their extensions.

Many time series exhibit periods of unusually large volatility followed by periods

of tranquility. Under such circumstances, the assumption of a constant variance is

obviously inappropriate. In order to detect the varying variance, the conditional
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variance can be modeled as a function of past errors. This is the ARCH model.

Further extensions of the model, allowing the conditional variance to also be a function

of its own lags, gives us Bollerslev’s (1986) generalized ARCH model, GARCH(p, q),

where p and q are the number of lagged conditional variance and error components,

respectively. In the case of an AR(2) process with the conditional variance modeled

as GARCH(1,1) we have:

xt = α0 + α1xt−1 + α2xt−2 + εt

σ2t = φ0 + φ1ε
2
t−1 + φ2σ

2
t−1,

where σ2t is the conditional variance of εt, εt = σtut, and ut ∼ N(0, 1). Most empirical
studies suggest that p and q larger than one are rarely needed. One problem with

GARCH modelling is that the parameters are restricted; φ0 must be larger than zero,

φ1 and φ2 must be zero or larger, and the sum of φ1 and φ2 must be less than one

in order to have a finite unconditional variance. The sum φ1 + φ2 measures the

persistence of conditional variance to shocks, which approaches infinity as the sum

approaches one from below. The case where the sum of φ1 and φ2 equals one is

referred to as Integrated in GARCH or IGARCH.

We proceed one more step, this time using an asymmetric specification for the

conditional variance process, by extending the standard ARCH-model to Nelson’s

(1991) EGARCH-model:

lnσ2t = φ0 + φ1
εt−1
σt−1

+ φ2

µ¯̄̄̄
εt−1
σt−1

¯̄̄̄
−E

·¯̄̄̄
εt−1
σt−1

¯̄̄̄¸¶
+ θ ln(σ2t−1)

where as above σ2t is the conditional variance of εt and εt | εt−1 ∼ N(0,σt). Unlike
simple ARCH and GARCH, EGARCH can capture the asymmetric response of the

variance to the direction of εt, that is, a higher variance when εt is negative, and

a lower variance when εt is positive. In this model, φ1 < 0 represents the asym-

metric effect while φ2 > 0 produces the ARCH effect. The θ-parameter determines

the persistence in variance. Unlike the GARCH model, there are no non-negativity

restrictions on the parameters in the EGARCH model.

A crucial assumption in the models above is the normality assumption on the

standardized error term ut; the conditional heteroscedasticity of εt alone is expected
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to explain the observed kurtosis in the return distribution. Since empirical evidence

strongly rejects the idea that financial returns are normally distributed, we compare

estimates with normally distributed errors with t-distributed ones. In this way, a

larger part of the excess kurtosis in the stock returns might be captured.11

Baillie and DeGennaro (1990) as well as Poon and Taylor (1992) clearly demon-

strate that the t-distribution gives a better fit to the error term of financial return

series. For the t-distribution one additional parameter must be estimated, the de-

gree of freedom, υ. The t-distribution is symmetric, but has fatter tails and a higher

kurtosis than the normal distribution. When υ goes to infinity, the t-distribution

approaches a normal distribution.

GARCH Estimation

Below, we estimate the parameters in different GARCH models. EGARCH models

have also been estimated but the results are not presented since these are very similar

to those of the GARCH models. For each time series, a number of different GARCH

and EGARCH models have been estimated, and the models with the best fit have

been chosen, on basis of parsimony, likelihood value, and behavior of the standardized

residuals.

For the t-distribution, one problem that has earlier been found for the 15-minute

data is the low degrees of freedom (below 4), which means that fourth-order moments

do not exist (Hansson and Hördahl (1994)). One possible explanation for these results

is that the density for the 15 minute returns has very fat tails, driving the degrees

of freedom of the t-distribution to low levels. In fact, these problems are solved by

adding a daily overnight dummy to the 15-minute series in order to account for the

increased variance in overnight returns.12 Using a process like the following for the

11For the EGARCH model, one must be aware of the fact that the conditional variance expression

changes with the distribution; E
h¯̄̄
εt−1
σt−1

¯̄̄i
depends on the chosen distribution. For the normal distri-

bution E
h¯̄̄
εt−1
σt−1

¯̄̄i
=
q

2
π
, and for the t-distribution, our calculations give E

h¯̄̄
εt−1
σt−1

¯̄̄i
=

Γ
³
υ−1
2

´
Γ( υ2 )

√
υ√
π
.

For large values of υ (over 30), this expression is very close to
q

2
π
.

12It would also be straightforward to include a weekend dummy but its impact should be smaller
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conditional variance in the GARCH model,

σ2t = φDD + φ0 + φ1ε
2
t−1 + φ2σ

2
t−1

where D is the dummy variable with parameter φD, we capture a considerable part

of the kurtosis and get well-behaved residuals.13

The maximum likelihood estimates (the BHHH algorithm) of GARCH models

with normally distributed, as well as t-distributed, errors are presented in Tables 4.6

and 4.7. For all our models and return series, we get significant parameter estimates,

except for α0 for the 15-minute returns. For the monthly data, we cannot reject the

null of an infinite unconditional variance (we cannot reject the null of an IGARCH

in these GARCH models) even though intuition suggests a mean-reverting variance.

This conflicting evidence might be reconciled by allowing for fractional orders of inte-

gration (Bollerslev and Mikkelsen (1996)). Including AR(2) terms in the conditional

mean gives better fit to data and less (linearly) correlated standardized residuals for

some data series. In general, the coefficients of the AR(2) terms are very small, how-

ever. The estimates of the degrees of freedom parameter υ for the t-distribution are

clearly finite, indicating non-normally distributed errors. The degrees of freedom pa-

rameters differ between time series but are similar for the GARCH and EGARCH

models, respectively. Overall, the parameter estimates are fairly non-sensitive to the

specification of the error distribution.

For our daily OMX-Index data, Hansson and Hördahl (1997) have fit EGARCH

models where the errors are described by the normal distribution as well as the gen-

eralized error distribution (GED). A comparison of our estimates with the results

from Hansson and Hördahl (1997) shows almost identical estimates for φ1, φ2 and θ

when the errors are assumed to be normal. The same holds for our parameters in the

t-distributed model, when compared to the estimated GED models by Hansson and

than the overnight dummy; the number of nontraded days each weekend is much smaller than the

number of nontraded 15-minute periods overnight.

13In the EGARCH-case, a dummy is introduced in a similar manner; lnσ2t = ln(1+φDD)+φ0+...
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Hördahl.14

In practice, all models retain some skewness in the residuals, a finding common

in empirical studies of conditionally heteroscedastic models. A comparison of the

values of kurtosis between the models shows that, as expected, the t-distributed model

has residuals with higher kurtosis than the normally distributed one. While the

normally distributed standardized residuals show excess kurtosis for all data series,

the t-distributed standardized residuals show a lower than theoretically predicted

kurtosis of about the same size for all but the daily series.

BDS Statistics on Transformed Standardized Residuals

With a comparison of BDS statistics for the linearly filtered financial data and for

the GARCH residuals, the extent to which the rejection of IID residuals are due

to GARCH effects is captured. As discussed in chapter 4.2.4, we circumvent the

problem in GARCH filtering related to the issue of nuisance parameters by looking

at the transformed standardized residuals. In Table 4.8 and Table 4.9, we present the

BDS statistics for the transformed standardized residuals from the fitted GARCH

models in Table 4.6 and Table 4.7, respectively.

The most obvious result is the substantial decrease in rejecting frequency after

GARCH filtering15. We cannot reject the null hypothesis for monthly and daily data

with normal errors. Some test statistics are outside the often used 95% confidence

intervals, but that is not unexpected with as many as 27 test statistics for each return

series. We still reject IID returns for the 15-minute data in period 2 and the overall

period. For the third period, one statistic is very large. We should reject IID for this

period, but the asymptotic properties of the test might not be applicable for m as

high as 10, with these sample sizes. A proper bootstrapping may clear these doubts,

14It is important to note that, as Nelson (1991) shows, EGARCH models with a t-distributed ut
give rise to strictly stationary although not covariance stationary σ2t and εt; i.e. σ

2
t and εt have no

finite unconditional moments.

15The BDS test is asymptotically distributed as N(0, 1) and considering our long data series, we

assume the same holds in finite samples. Any rejection mentioned is at the 5% significance level.

For a two-sided test at this level, the critical values are ±1.96.
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however.

For the t-distributed residuals, we have no rejection for monthly and daily data,

and a slightly better fit of 15-minute returns, but we still have problems with period

2. It seems that the data series contain linear or nonlinear dependences that we have

not succeeded in catching. Treating overnight effects with only one dummy might be

too simple, at least for this period.

There might be another explanation, however. Table 4.8 and Table 4.9 clearly

suggest that there are GARCH effects in all our data, although the specification for

period 2 is not correct. As mentioned above, this period includes a highly volatile part

in the Swedish financial history when the fixed exchange rate regime was abandoned.

In chapter 4.4.3, we concluded that linear regime shifts could not explain the rejection

of IID in our returns, but we cannot exclude nonlinear regime shifts in the volatility.

Such nonlinearities may be captured by the Markov switching model, SWARCH,

where a Markov-chain governs the transition probabilities between the volatility states

(Hamilton and Susmel (1994)). In the SWARCH model, the conditional variance is

described by an ARCH model which is the same in the different regimes, but the

scale of the conditional variance differs across regimes. Moreover, the regimes are

solely identified from the data in the estimation procedure and involves no subjective

classifications other than the number of volatility states.

It might be argued that if we have regime shifts in our 15-minute data, then

the residuals from ordinary GARCH models for the monthly and daily data covering

that period should not be IID. However, nonstationarities detected in one time scale

are not necessarily detectable in another. For example, a shift to a higher volatility

regime for some months would probably not be detectable in the analysis of monthly

returns, but would most likely be detected when analyzing 15-minute returns. Some

indications of nonstationarites are indeed observed in our parameters; in Tables 4.6

and 4.7 the variation in parameter estimates for the 15 minute return sample and its

subsamples can be noted.
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4.5 Conclusions

We have searched for nonlinearities and chaos in Swedish stock index returns. We

find strong evidence of nonlinear behavior, but no evidence of low-dimensional chaos.

We use the BDS test to detect deviations from IID errors in time series. This

test detects both deterministic and stochastic dependences, and lacks some of the

disadvantages of the more commonly used Grassberger-Procaccia method.

Applying this test to Swedish stock index returns of different sampling frequencies

(monthly, daily, 15 minutes) strongly rejects the IID hypothesis. Since many possible

dependences in the data, linear as well as nonlinear, may be the cause of this rejection,

we apply the test to residuals from different models.

Linear dependences do not explain much of the deviation from IID. The same

applies to nonstationarity; IID is not more strongly rejected for low frequency data. In

order to detect chaos in stock indices, we compare the predictability of nonlinear and

linear neural networks. No significant improvement is found, giving low importance to

nonlinearities in mean or chaotic dependences in the time series. However, this does

not exclude the possibility of chaos in individual security returns, since a combination

(like in a stock index) of chaotic time series might very well lose its chaotic structure,

as examined by Atchison and White (1996).

Instead, heteroscedastic conditional variance models are found to explain much

of the rejection of IID. The BDS statistics decrease substantially when GARCH or

EGARCH models with normal or t-distributed errors are fitted to the time series. In

particular, the t-distributed GARCH model explains the rejection of IID for monthly

and daily data, while no model fully explains the nonlinearities found for the 15-minute

data, but there is little doubt that the answer to a better fit lies in the specification of

the conditional variance. If the rejections are caused by (not too many) regime shifts

in the volatility process, these might be successfully captured by SWARCH models.

We find our results quite robust and nonsensitive to the chosen type of GARCH

model, and the inclusion of dividends or not. Our paper increases the strength of the

already strong support for GARCH-type models of financial returns. For future re-

search, we suggest searching for nonlinearities in other financial variables like implicit
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option volatilities, interest rates, and currencies. Analyzing nonlinear dependences

both in time series and panel data might be of interest. The availability of trans-

action data also gives the possibility to study nonlinear effects in the micromarket

structure.
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Figure 4.1: Plot of log(C(l)) vs. log(l) for the Hénon map with a = 1.4 and b = 0.3

(thick lines) and its scrambled counterpart (dotted), for m = 2, 3, and 4. Higher lying

lines correspond to lower m. Noise uniformly distributed on (−0.03, 0.03) is dynam-
ically added to the x-component. The changes in slopes for l < 0.06 (log(l) < −2.8)
are clearly visible. The time series is normalized to unit sample variance, and consists

of 2000 observations.
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Table 4.1: Sample statistics of the return data.

monthly daily 15 min. 1 15 min. 2 15 min. 3 15 min. all

nr. of observations 936 2949 2579 2571 2767 7917

Mean (·102) 0.49 0.023 -0.0015 0.0072 0.0088 0.0049

Variance (·104) 21.61 0.30 0.03 0.13 0.036 0.06

Skewness -0.52 -0.18 1.05 4.53 0.27 4.36

Kurtosis 8.04 9.30 32.72 96.43 9.58 130.11

Table 4.2: BDS statistics for the raw data.

m
l
σ

2 3 4 5 6 7 8 9 10

monthly 0.5 8.33 10.83 13.57 16.61 20.13 26.49 33.56 48.21 67.21

1 8.43 10.74 13.39 15.72 17.81 20.54 23.64 27.34 32.20

1.5 7.70 9.83 12.04 13.79 15.20 16.73 18.24 19.76 21.49

daily 0.5 12.36 14.66 17.55 21.05 24.82 30.05 36.82 46.94 59.21

1 12.53 14.40 16.35 18.53 20.49 22.82 25.29 28.17 31.87

1.5 13.25 15.12 16.73 18.13 19.21 20.34 21.47 22.56 23.86

15 min. 1 0.5 11.43 13.13 12.82 13.58 13.81 13.81 13.67 13.67 13.00

1 12.76 13.53 12.88 12.61 12.25 11.73 11.13 10.42 9.51

1.5 11.80 11.79 10.89 10.19 9.48 8.82 8.21 7.48 6.72

15 min. 2 0.5 16.71 19.11 20.87 22.47 24.03 25.38 26.34 27.23 27.37

1 14.34 15.67 15.78 15.74 15.32 14.78 14.01 13.25 12.36

1.5 9.51 10.01 9.67 9.19 8.53 7.85 7.16 6.48 5.81

15 min. 3 0.5 8.89 11.16 11.93 13.39 15.15 16.79 18.13 19.29 20.77

1 8.36 10.59 11.23 12.40 13.48 14.27 14.79 14.95 15.14

1.5 7.49 8.98 9.35 10.11 10.72 11.00 11.05 10.85 10.54

15 min. all 0.5 24.98 29.87 32.63 36.31 40.49 44.78 49.12 53.58 58.02

1 24.09 6.89 27.75 28.68 29.28 29.57 29.65 29.52 29.21

1.5 20.12 21.57 21.39 21.29 20.92 20.40 19.79 19.13 18.43

l is the length scale, σ is the sample standard deviation, and m is the embedding dimension. The

test statistic is asymptotically distributed as N(0, 1).
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Table 4.3: Out-of-sample evaluation for nonlin-

ear and linear neural networks.

Ep
MLP3 MLP5 MLP7 MLPL

monthly 1.0512 1.0418 1.1635 1.0357

daily 0.9913 1.0132 1.0046 1.0108

15 min. 1 0.9903 0.9871 1.0127 0.9852

15 min. 2 0.9942 1.0452 1.0015 0.9943

15 min. 3 0.9926 0.9869 1.0029 0.9820

15 min. all 0.9901 0.9925 0.9909 0.9895

MLP3 refers to a MLP with 3 hidden neurons etc. MLPL

refers to a linear perceptron.

Table 4.4: Sensitivity dependences in the nonparametric regressions.

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

monthly MLP 0.1153 0.1208 0.0360 0.0929 0.0409 0.1091 0.0263 0.0515 0.1228

MLPL 0.1634 0.1131 0.0123 0.0230 0.0001 0.1681 0.0129 0.1049 0.1217

daily MLP 0.1217 0.0171 0.0462 0.0249 0.0107 0.0574 0.0475 0.0325 0.0242

MLPL 0.1843 0.0124 0.0569 0.0106 0.0210 0.0659 0.0898 0.0780 0.0281

15 min. 1 MLP 0.0537 0.0507 0.0511 0.0381 0.0191 0.0046 0.0206 0.0183 0.0105

MLPL 0.0812 0.0365 0.0816 0.0189 0.0292 0.0069 0.0053 0.0111 0.0157

15 min. 2 MLP 0.0939 0.0499 0.0223 0.0023 0.0665 0.0572 0.0040 0.0147 0.0219

MLPL 0.0714 0.0486 0.0298 0.0014 0.0105 0.0195 0.0381 0.0251 0.0224

15 min. 3 MLP 0.0341 0.0262 0.0102 0.0055 0.0134 0.0231 0.0068 0.0156 0.0056

MLPL 0.0585 0.0095 0.0153 0.0270 0.0039 0.0003 0.0109 0.0062 0.0216

15 min. all MLP 0.1330 0.0385 0.0091 0.0325 0.0070 0.0227 0.0132 0.0062 0.0303

MLPL 0.1371 0.0393 0.0053 0.0348 0.0054 0.0162 0.0025 0.0181 0.0314

MLP refers to a nonlinear multi layer perceptron. MLPL refers to a linear perceptron.
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Table 4.5: BDS statistics for linearly filtered data.

m
l
σ

2 3 4 5 6 7 8 9 10

monthly 0.5 7.28 10.09 12.59 15.04 17.70 22.11 26.18 31.35 36.66

1 7.04 9.77 12.55 14.86 16.87 19.46 22.36 25.85 30.39

1.5 6.50 8.97 11.30 13.19 14.65 16.22 17.73 19.26 20.97

daily 0.5 11.83 14.41 17.04 20.54 24.45 30.48 37.75 47.93 58.89

1 12.18 14.27 16.16 18.52 20.69 23.26 26.03 29.21 33.28

1.5 12.94 15.05 16.68 18.25 19.44 20.65 21.87 23.09 24.53

15 min. 1 0.5 10.58 12.21 11.98 12.60 12.90 12.77 12.48 12.10 11.14

1 11.27 11.99 11.46 11.18 10.86 10.34 9.74 8.99 8.08

1.5 10.46 10.34 9.64 8.97 8.32 7.69 7.12 6.41 5.69

15 min. 2 0.5 14.34 16.87 18.52 19.83 21.12 22.25 22.78 23.33 23.34

1 14.27 15.45 15.53 15.51 15.16 14.67 13.95 13.19 12.27

1.5 9.69 9.99 9.61 9.08 8.42 7.78 7.12 6.44 5.74

15 min. 3 0.5 7.99 10.21 10.80 12.02 13.49 15.04 16.65 17.92 19.78

1 7.53 9.83 10.52 11.69 12.72 13.44 13.93 14.05 14.18

1.5 6.67 8.37 8.87 9.76 10.42 10.73 10.77 10.56 10.23

15 min. all 0.5 22.42 27.25 30.09 33.43 37.12 40.88 44.46 48.19 52.13

1 22.52 25.29 26.25 27.13 27.70 27.95 27.96 27.78 27.42

1.5 19.56 20.82 20.62 20.49 20.12 19.62 19.01 18.34 17.59

l is the length scale, σ is the sample standard deviation, and m is the embedding dimension. The

test statistic is asymptotically distributed as N(0, 1).
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Table 4.6: GARCH with normally distributed errors.

α0 · 105 α1 α2 φ0 · 105 φ1 φ2 φD · 105
monthly∗ 0.01

0.002
0.16
0.035

-0.088
0.034

5.87
1.830

0.17
0.024

0.81
0.025

daily 33.20
8.710

0.20
0.019

0.14
0.022

0.11
0.008

0.83
0.012

15 min. period 1 -1.36
2.23

0.21
0.021

0.07
0.0024

0.10
0.013

0.27
0.017

1.89
0.119

15 min. period 2 4.55
3.640

0.26
0.019

0.19
0.0068

0.20
0.021

0.17
0.013

13.75
0.452

15 min. period 3 4.43
2.993

0.14
0.022

0.12
0.0063

0.15
0.017

0.34
0.025

1.70
0.163

15 min. all 1.98
1.650

0.21
0.012

0.13
0.002

0.24
0.013

0.17
0.0073

6.35
0.099

* indicates that the null hypothesis of an IGARCH cannot be rejected. Small figures

indicate standard errors.

Table 4.7: GARCH with t-distributed errors.

α0 · 105 α1 α2 φ0 · 105 φ1 φ2 φD · 105 υ

monthly∗ 0.01
0.002

0.16
0.035

-0.078
0.035

6.60
2.56

0.16
0.031

0.82
0.033

9.13
2.580

daily 34.00
7.490

0.17
0.019

-0.037
0.019

0.09
0.020

0.11
0.015

0.86
0.018

7.28
0.630

15 min. period 1 -1.28
1.910

0.17
0.019

0.06
0.005

0.10
0.024

0.34
0.033

1.54
0.190

4.90
0.455

15 min. period 2 2.24
3.246

0.24
0.019

0.16
0.013

0.21
0.034

0.26
0.027

7.77
0.925

4.66
0.438

15 min. period 3 5.10
2.656

0.11
0.019

0.11
0.011

0.16
0.031

0.35
0.042

2.07
0.158

4.62
0.438

15 min. all 1.35
1.436

0.17
0.011

0.10
0.006

0.25
0.023

0.31
0.018

3.07
0.235

4.02
0.196

* indicates that the null hypothesis of an IGARCH cannot be rejected. Small figures indicate

standard errors.
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Table 4.8: BDS statistics for transformed GARCH residuals, normal distribution.

m
l
σ

2 3 4 5 6 7 8 9 10

monthly 0.5 -1.13 -1.10 -0.98 -0.79 -0.43 0.04 0.35 -0.17 -2.24

1 -0.69 -0.46 -0.28 -0.15 -0.13 -0.21 -0.20 -0.27 -0.13

1.5 -0.49 -0.22 -0.08 -0.07 -0.06 -0.24 -0.29 -0.46 -0.46

daily 0.5 0.82 1.18 1.37 1.74 2.01 1.84 1.41 0.60 0.13

1 0.50 0.65 0.80 1.29 1.38 1.29 1.09 0.97 0.92

1.5 0.67 0.37 0.41 0.87 0.86 0.71 0.57 0.50 0.45

15 min. 1 0.5 0.19 -0.26 -0.48 -0.45 -0.25 -0.11 0.02 1.04 1.38

1 -0.52 -0.44 -0.29 -0.08 0.21 0.55 0.91 1.28 1.46

1.5 -0.89 -0.36 0.05 0.37 0.80 1.20 1.59 1.96 2.16

15 min. 2 0.5 1.30 1.47 1.38 1.59 1.69 1.61 0.80 -0.52 -2.69

1 1.51 1.37 1.33 1.52 1.60 1.80 1.95 2.14 2.00

1.5 1.83 1.86 1.89 1.97 2.06 2.22 2.31 2.43 2.39

15 min. 3 0.5 -0.44 -0.93 -1.04 -0.68 -0.71 -0.43 -0.87 -1.49 -2.94

1 -0.27 -0.71 -0.98 -0.72 -0.57 -0.55 -0.59 -0.60 -0.59

1.5 -0.39 -0.90 -0.97 -0.67 -0.49 -0.55 -0.59 -0.62 -0.61

15 min. all 0.5 0.40 0.03 0.01 0.45 0.70 0.90 0.95 0.83 0.84

1 0.27 0.06 0.10 0.63 1.01 1.40 1.66 1.91 2.04

1.5 0.38 0.30 0.56 1.03 1.43 1.80 2.11 2.38 2.51

l is the length scale, σ is the sample standard deviation, and m is the embedding dimension. The

test statistic is asymptotically distributed as N(0, 1).
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Table 4.9: BDS statistics for transformed GARCH residuals, t-distribution.

m
l
σ

2 3 4 5 6 7 8 9 10

monthly 0.5 -1.14 -1.27 -1.16 -0.94 -0.68 -0.38 -0.43 -0.81 -1.31

1 -0.73 -0.49 -0.28 -0.12 -0.11 -0.20 -0.19 -0.25 -0.19

1.5 -0.49 -0.20 -0.03 -0.04 -0.06 -0.26 -0.32 -0.51 -0.53

daily 0.5 0.72 1.12 1.22 1.47 1.76 1.57 0.93 0.28 0.27

1 0.55 0.68 0.84 1.21 1.23 1.13 0.97 0.84 0.73

1.5 0.72 0.55 0.65 1.04 0.94 0.79 0.65 0.60 0.59

15 min. 1 0.5 0.27 0.02 -0.07 -0.00 0.16 0.53 1.04 1.64 2.77

1 -0.39 -0.38 -0.21 -0.04 0.30 0.54 0.77 0.99 1.13

1.5 -0.76 -0.28 0.16 0.48 0.99 1.36 1.65 1.89 2.02

15 min. 2 0.5 1.27 1.26 1.18 1.21 1.20 0.72 -0.14 -0.75 -2.45

1 1.38 1.19 1.27 1.48 1.64 1.86 2.04 2.22 2.18

1.5 2.00 1.97 2.06 2.16 2.31 2.57 2.72 2.89 2.88

15 min. 3 0.5 -0.58 -0.93 -1.03 -0.82 -0.56 -0.28 -0.62 -0.80 -1.69

1 -0.34 -0.74 -1.03 -0.83 -0.70 -0.68 -0.74 -0.80 -0.78

1.5 -0.57 -0.97 -1.07 -0.85 -0.70 -0.75 -0.80 -0.85 -0.83

15 min. all 0.5 0.35 -0.03 -0.15 0.15 0.28 0.51 0.71 1.07 1.47

1 0.32 0.02 -0.00 0.44 0.88 1.25 1.47 1.67 1.75

1.5 0.64 0.40 0.55 0.93 1.37 1.72 1.93 2.13 2.19

l is the length scale, σ is the sample standard deviation, and m is the embedding dimension. The

test statistic is asymptotically distributed as N(0, 1).
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The Compass Rose Pattern of

the Stock Market: How Does

it Affect Parameter

Estimates, Forecasts, and

Statistical Tests?

5.1 Introduction

Typically stock prices, as well as numerous other financial time series, move in small-

integer multiples of a minimum ”tick size”. This discrete nature of stock prices

restricts stock returns to take on a limited number of values only, a restriction which

is one of the necessary conditions for creating the so-called ”compass rose” pattern,

a geometrical pattern in a scatter plot of returns versus lagged returns. Crack and

Ledoit (1996) were the first to discover this pattern in return plots, finding compass
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rose patterns in all stocks they investigated on NYSE. Crack and Ledoit describe the

compass rose pattern as ”subjective” and impossible to use for predictive purposes.

Contrary to the beliefs of Crack and Ledoit, Chen (1997) demonstrates some evidence

of how the compass rose of a stock can be used to improve stock return forecasts.

Crack and Ledoit also suggest that the discrete nature of stock prices might affect

GARCH estimates as well as statistical tests. So far, no studies of discrete prices

and GARCH estimates have been made but Krämer and Runde (1997) show how

the compass rose seriously distorts the null distribution of the BDS test (Brock et

al. (1996)). The BDS test is a widely used statistical portmanteau test detecting

deviations from IID in general and the existence of chaos in particular. Based on

their own findings, Krämer and Runde suggest that this test should be used with

caution whenever discrete data is used. However, we believe their return series to be

highly unrealistic and less suitable for drawing conclusions.

There is more to the compass rose than meets the eye and in this paper, we use

Monte Carlo simulations to test whether the existence of a compass rose and the

associated discreteness affect estimates, forecasts, and correlation integral based sta-

tistical tests. Possible effects on parameter estimates are investigated as is the use

of the compass rose to enhance forecasts in a GARCH framework (as suggested by

Chen) which is tested and further developed in a more theoretical framework. We

also test how the BDS test and the associated Savit and Green (1991) dependability

index are influenced by the discreteness of stock prices. When researchers look for

evidence of chaos in the stock market, they often study stock indexes and not indi-

vidual stocks. However, as shown by Atchinson and White (1996), an aggregation of

chaotic processes may very well be non-chaotic. This turns the focus to the study of

individual stocks and therefore, it is important to clarify whether correlation integral

based tests can be used when examining stock returns with a discrete nature and

compass rose patterns.

Chapter 5.2 describes the compass rose. In chapter 5.3 we investigate how round-

ing affects AR-GARCH parameter estimates. Chapter 5.4 deals with our compass

rose enhanced forecasts of stock returns. Chapter 5.5 shows how correlation based

statistical tests and their distributions can be affected by discrete prices and the
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compass rose. Chapter 5.6 concludes the paper.

5.2 The Compass Rose

A compass rose pattern sometimes appears when returns from a financial time series

are plotted against lagged returns. The pattern is characterized by several evenly

spaced lines radiating from the origin of the graph; the thickest lines pointing in the

major directions of a compass. Crack and Ledoit (1996) were the first to recognize

and explain this phenomenon, induced by discreteness in stock price data. They

found that the compass rose appears clearly if the stock in question satisfies three

conditions:

1. Daily stock price changes are small relative to the price level.

2. Daily stock price changes occur in discrete jumps of a small number of

ticks.

3. The stock price varies over a relatively wide range.

The derivation of these three conditions is straightforward and the details can

be found in Crack and Ledoit (1996)1. The patterns in Figures 5.1a-d show the

appearance of the compass rose and when it appears. In Figure 5.1a, we plot the

log-returns from a stock, ”Atlas Copco A Fria” 1977-1984, listed on the Stockholm

Stock Exchange.2 The compass rose pattern can be seen clearly. In Figures 5.1b-d,

we plot simulated returns based on simulated prices from an AR-GARCH model (see

chapter 5.3) fitted to the same Atlas Copco stock. In Figure 5.1b, it can be seen

how the original simulated returns show no pattern. This is radically changed in

Figure 5.1c, where we have rounded the simulated prices to mirror the behavior on

1Szpiro (1998) shows how a more rigorous treatment of the compass rose makes the assumption

that asset prices change by only small amounts relative to the price level superfluous.

2Crack and Ledoit derive their three conditions on basis of the assumption of percentage returns.

In this paper, we use the more widely used log-returns and we see how the compass rose is not a

consequence of the use of percentage returns.
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the Stockholm Stock Exchange3. This pattern is very similar to the one in Figure

5.1a. It is important to notice, however, that the discreteness induced by the official

tick size alone is not the cause of the striking patterns in Figure 5.1a and Figure 5.1c.

In Figure 5.1d, we plot the same rounded returns as in Figure 5.1c but randomly

permuted (scrambled). The compass rose pattern disappears, which indicates that

something must be added to the discreteness to create the pattern. The remaining

cross-shaped pattern is merely a consequence of the large number of zero returns that

remain in the scrambled series.

5.3 Parameter Estimation

Crack and Ledoit (1996) hypothesize that Autoregressive Conditional Heteroscedas-

ticity (ARCH) models (Engle (1982)) might be influenced by the compass rose. Chen

(1997) uses information contained in the compass rose to improve forecasts from an

ARMA-GARCH model. He does not study the effect of the discreteness on his pa-

rameter estimates, though, which is exactly what we try to investigate with Monte

Carlo simulations in this chapter.

In order to study the effects of the discreteness, return series differing in nothing

but their level of discreteness must be found. Since this is not easily achieved with

empirical data, we have chosen to simulate series which we then round in order to

get discrete time series4. The simulated series used in this section all come from the

same AR-GARCH model:

rt = α0 + α1rt−1 + α2rt−2 + εt (1)

σ2t = φ0 + φ1ε
2
t−1 + φ2σ

2
t−1,

3On the Stockholm Stock Exchange, the prices are allowed to take only certain discrete values.

The level of discreteness depends on the price level; below 5 SEK the smallest price jump is 0.01

SEK, between 5 SEK and 10 SEK the jump is 0.05 SEK, between 10 and 50 SEK it is 0.1 SEK,

between 50 SEK and 500 SEK it is 0.5 SEK, and above 500 SEK it is 1 SEK.

4When we use the word discrete, we mean discrete in value space, not in time space. All statistical

tools used are based on common discrete-time models.
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where rt is the stock log-return, σ
2
t is the conditional variance of εt, and where

the parameter vector θ = {α0,α1,α2,φ0,φ1,φ2} = {5.2 · 10−4, 0.12,−0.053, 2.2 ·
10−5, 0.11, 0.83} comes from an AR-GARCH estimation of the ”Atlas Copco A fria”

stock on the Stockholm Stock Exchange over the period 1977-19905. Atlas Copco is

one of the largest companies on the exchange and the stock is liquid and representa-

tive for the time period. Moreover, it also shows a distinct compass rose pattern. Our

choice of simulated series is different from the treatment in Krämer and Runde (1997).

Their simulated stock price series come from IID normally distributed returns with

means and variances chosen without resemblance to stocks in the real world. There-

fore, any relationships between the level of rounding and the potential effects detected

are not useful.

Using the model in (1), we simulate 1000 return series, each being 2000 observa-

tions long. The return series are exponentiated and 1000 price series are computed,

all with the starting value of 50. These ”original” price series are not discrete and

do not show any compass rose pattern. To get price series with varying degrees of

discreteness, we round the original price series; either Integer Rounding to the near-

est integer or Stock Exchange Rounding to mirror the stocks on the Stockholm Stock

Exchange, as described in chapter 5.2. After calculating log-returns from these series

we have three× 1000 return series originating from non-rounded prices, realistically

discretized prices, and heavily rounded prices.

Our purpose is to study how the parameter estimates from the three×1000 return
series change with the three different degrees of discreteness. The model we apply

to these series is exactly the AR-GARCH model in (1) and therefore, we expect

the estimated parameter vectors, bθ for the original series, bθS for the stock exchange
rounded series, and bθI for the integer rounded series, to come rather close to θ.
However, it is important to note that the AR-GARCH model we use is misspecified

when applied to the rounded series, since εt cannot be continuous if rt is discretely

distributed around the conditional mean.

In Table 5.1, we present some statistics such as the mean, the 95% confidence

5Totally, 3489 daily observations.
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interval, the minimum, and the maximum, of the three×1000 AR-GARCH estimates.
The AR-GARCH parameters were jointly estimated by Maximum Likelihood methods

(the BHHH algorithm)6. From Table 5.1, we see that the small sample distributions

of some of the parameters in bθ, φ̂0 and φ̂2, have changed, since the true parameters,
φ0 and φ2, are outside the 95% confidence intervals of the means of φ̂0 and φ̂2.

The distribution of the parameter estimates in bθS and bθI change with the level of
discreteness. The confidence intervals are wider and the means of the estimates differ

compared to bθ, which is most obvious for bα1. It is important to emphasize that a
combination of two effects is observed. First, in infinite samples, we know that bθ will
converge to θ, but since we have rounded the series, we do not know to what bθS andbθI will converge asymptotically. Second, as mentioned above, the continuous-state
AR-GARCH framework is not the proper one to use in modelling discrete return

series. Hence, we cannot separate the effect of the rounding on the asymptotics from

the effect of the misspecified AR-GARCH model on modelling performance; we can

only investigate the compound effect of discreteness on parameter estimation7.

To say something about how the distributions of bθ, bθS, and bθI differ, we analyze
the deviation vectors, eθS = bθ − bθS and eθI = bθ − bθI . Comparing individual estimates
from the Stock Exchange rounded and Integer rounded series with the original non-

rounded series, we get two×1000 deviation vectors. In Table 5.2, we look at the
distributions of these deviations. The confidence intervals are much wider for eθI
compared to eθS. The absolute values of the mean deviations increase with the level
of discreteness, and the sign of the mean deviations differ between parameters, but do

not change with the level of rounding. According to the 95% confidence intervals of

the mean deviations, all means of eθS and eθI are quite small but significantly different
from zero.

In Table 5.1, further evidence of the effect of discrete prices on model estimation is

given by the log-likelihood value statistics from the Monte Carlo simulations. The log-

6Estimating the AR parameters prior to the GARCH parameters, did not considerably affect the

estimates and these results are therefore not presented.

7An extension of the GARCH framework to handle cases where the return series are discrete is

given in Amilon (1999).
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likelihood values are lower for discrete time series, in particular for heavily rounded

series with a mean log-likelihood value clearly below the original series. Looking at

the distribution of the log-likelihood deviations in Table 5.2, it becomes even clearer

that the rounded series have significantly lower log-likelihood values. In fact, for the

integer rounded series, the likelihood values from the original series are never smaller

than the corresponding likelihood values from the rounded series. Since we have

rounded the series, we would expect the log-likelihood values to change. In this case,

they are almost always smaller, which is a consequence of the rounded series no longer

fulfilling the assumptions underlying the model in (1).

5.4 Enhanced Forecasts

Another way of assessing the importance of discrete stock prices is to study whether

the compass rose can be used to enhance forecasts. Crack and Ledoit (1996) argue that

the compass rose contains no information that can be used for predictive purposes.

Chen (1997) on the other hand tries to contradict this empirically by incorporating

the compass rose pattern in his ARMA-GARCH return forecasts (not modifying his

estimates, though) and in this way improving his forecasts8. In summary, Chen ar-

gues that there are feasible regions (the rays radiating from the origin) and unfeasible

regions (the white spaces between the rays) in the compass rose. Chen’s enhanced

procedure simply tries to force his ARMA-GARCH forecasts to lie within the feasible

regions. When a forecast is being made, Chen goes through the constantly updated

historical compass rose pattern created from all historical return pairs (rt, rt+1) and

replaces the original forecasted return pair (rtoday , rforecast) by the pair from the fea-

sible region closest to the actual forecasted pair in an Euclidean sense. In our paper,

we call such enhanced forecasts rose-enhanced forecasts.

In addition to Chen’s method, we suggest an alternative enhancement considering

the fact that prices move in discrete jumps and can only take on certain values.

8Chen’s results are based on out-of-sample predictions of six stocks during a certain period of

time, by using the mean absolute error and the root mean squared error as performance measures.

No statistical significance of his results are presented.
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Instead of looking at the historical return pattern, we suggest that more emphasize

should be put on the feasibility of the forecasted returns, implied by the feasibility

of the forecasted prices. Since only a limited number of discrete prices are feasible

forecasts for tomorrow’s stock price at a certain point in time, we replace our actual

forecasted price by one rounded to the nearest possible price9. From this forecasted

price, we then calculate an associated forecasted return, called tick-enhanced forecast,

that can be compared to the original forecast and the rose-enhanced forecast as well

as the realized out-of-sample return. This is in contrast to Chen’s method, which

adjusts the forecasts to belong to the set of realized returns, although these are not

attainable at all price levels.

Since we do not incorporate the discreteness in our parameter estimates, it can be

shown how the enhancements will affect the performance. Suppose that we have esti-

mated our AR-GARCH parameters from a discretized time series. When forecasting,

tomorrow’s return, rt, is assumed to be a continuous stochastic variable symmetrically

distributed around the conditional mean return, mt, which is described by the AR

parameters. Since rt is actually discrete, so is mt. Suppose further that the possible

states at time t are ix, i = 0,+− 1,
+
− 2, ..., where, for simplicity, we let x = 1 10. Let pj

denote the conditional probability that state j occurs. Because of the symmetry of

rt, it follows that if j < mt < j + 1/2, then pj > pj+1 > pj−1 > ... > pj+N > pj−N ,

where we limit the possible states to 2N + 1, where N states are larger than j, and

N states are smaller than j. We can let N → ∞, or we can truncate the distribu-
tion by letting pj±N =

P∞
l=1 pj±(N+l). In the same way, if j − 1/2 < mt < j, then

pj > pj−1 > pj+1 > ... > pj−N > pj+N . We disregard the low probability events of

mt = j, and mt = j
+
−1/2, although they can be treated in a similar manner. Figure

5.2 illustrates the notation for j = 0, N = 2, and mt = 0.25.

9The possible prices depend on the level of discreteness; either we allow only integer prices or also

the rounded prices mirroring the Stockholm Stock Exchange prices.

10Since we are using log-returns calculated from discrete prices, this is only approximately correct.
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Now, if our forecast is f , the Mean Squared Error will become:

MSE =

j+NX
i=j−N

pi(f − i)2 = E[(f − i)2] = V [f − i] + (E[f − i])2 = V [i] + (f −E[i])2,

which is minimized for f = E[i] which, in turn, should be close to mt. Thus, the

original forecasted return will always have the lowest MSE, although this forecast is

not feasible. Let us consider the Mean Absolute Error on the interval k ≤ f ≤ k+ 1:

MAE =

j+NX
i=j−N

pi|f − i| =
kX

j−N
pi(f − i) +

j+NX
k+1

pi(i− f) =

f(
kX

j−N
pi −

j+NX
k+1

pi) +

j+NX
k+1

pii−
kX

j−N
pii. (2)

If
Pk
j−N pi <

Pj+N
k+1 pi, the MAE is minimized when f is chosen as large as possible

on the interval and consequently, if
Pk
j−N pi >

Pj+N
k+1 pi, then f should be as small

as possible. What happens when we move from one interval to the next? If we let

f1 = k − ² and f2 = k + ², with ² being small, it is easily shown that

MAE2 −MAE1 = 2²(
k−1X
j−N

pi −
j+NX
k+1

pi). (3)

In the case of pj > pj+1 > pj−1 > ... > pj+N > pj−N , (3) is negative if k ≤ j, and
positive if k > j. The MAE is therefore minimized when k = j, and according to (2),

f should be chosen as small as possible, that is f = j. Similarly, when pj > pj−1 >

pj+1 > ... > pj−N > pj+N , (3) is negative for k < j, and positive otherwise. The

minimizing state is then k = j − 1, and (2) is, once more, minimized for f = j. In

a MAE sense, choosing the most probable feasible outcome is favored compared to

the expected forecast. Thus, our enhanced forecast will outperform the original one,

using the MAE as a performance measure.

Let us examine our theoretical results empirically in the following way: AR-

GARCH return forecasts are nothing but the returns forecasted from the mean process
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in (1). Using the two× 1000 different parameter sets bθS and bθI , estimated in chapter
5.3, we forecast returns by using the different forecasting methods. As a test sample,

we use two× 1000 different return series simulated from (1), each 1000 observations

long, and rounded in the two different ways11. For each of the two× 1000 parameter
sets, Root Mean Squared Errors (RMSE) as well as Mean Absolute Errors (MAE)

are calculated over the test sample for the different forecasting methods and different

roundings. In our setting, the RMSE and the MAE are:

RMSE =

"
1

1000

1000X
i=1

(ri − r̂i)2
# 1
2

,

MAE =
1

1000

1000X
i=1

|ri − r̂i| ,

where ri is the actual return at day i, r̂i is the forecasted return at day i, and the

number of days in the test period is equal to 1000.

In Table 5.3, we present the means and the 95% confidence intervals of the ratios

of the enhanced and the original forecast errors. Starting with the MAE statistic, we

can see how the mean ratios are generally close to one but that our tick-enhanced

method clearly outperforms the original non-enhanced method; the mean of the ratio

is significantly smaller than one on the 5% level for both the exchange rounded and

the integer rounded series. Even for the RMSE statistics, the mean ratios are close to

one but otherwise, the results are somewhat reversed and the original method seems

to outperform the tick-enhanced one; for the exchange rounded series, the mean ratio

is significantly larger than one on the 5% level, while for the integer rounded series

the mean ratio is neither significantly larger nor smaller than one on the 5% level.

The results are qualitatively the same for the rose-enhanced forecasts; a mean ratio

significantly smaller than one for the MAE, and a mean ratio significantly larger than

one for the RMSE. These results confirm our theoretical conclusions about the choice

11Each of the two × 1000 parameter sets (estimated by using the observations in the estimation
period) is tested on exactly one of the two×1000 (out-of-sample) test series. The model parameters
in each set are kept constant over the entire test period.
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of evaluation measure; the MAE measure indicates gains from using our enhanced

method while the RMSE seems to favor the original method. It is also worth noticing

how the relative performance of the enhanced methods improves when we round more

heavily; throughout Table 5.3, we see that the heavier we round, the smaller are the

error ratios. Finally, if the tick-enhanced method were to be directly compared with

the rose-enhanced method, significant results indicating a dominance of our tick-

enhanced method over Chen’s rose-enhanced method would most probably be found;

in three cases out of four, the mean ratios are smaller for the tick-enhanced method.

The results depend, a priori, on the choice of performance measure, so which

should be chosen? If constraining one’s forecasts to belong to the set of possible

outcomes is believed to be reasonable, then the forecasts should be adjusted to be

feasible, as we have done, and an evaluation measure favoring a feasible forecast,

such as the MAE, should be chosen. It is obvious that the continuous AR-GARCH

framework is not the proper one to apply to discrete return series, but we see no

theoretical or empirical justification why Chen’s adjustments should result in better

forecasts. However, the discreteness of the returns should already be incorporated in

the parameter estimates to fully improve forecasts, an issue treated in Amilon (1999).

5.5 Correlation Integral Statistics

In this chapter, we will examine how the distribution of some correlation integral

based statistics, defined below, are influenced by the fact that prices only move in

discrete ticks. We are primarily concerned with two issues: Do the null distributions

of the test statistics change, when applied to return series originating from discrete

prices? How are the powers of these test statistics affected when trying to detect

explicit time series dependences in such return series?
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5.5.1 The BDS Test and Savit and Green’s Dependability In-

dex

Grassberger and Procaccia (1983) introduced a quantity called the correlation inte-

gral, in order to identify structures and dependences in data series. In the case of

time series analysis, the correlation integral is computed by first forming m-histories

from the time series considered:

x (t) = (r(t), r(t− 1), ..., r(t−m+ 1)) = (x1(t), x2(t), ..., xm(t)).

If the distance between the kth components of two m-histories, x (t) and x (s), is

defined as

lk(t, s) = |xk (t)− xk (s) |, k = 1, 2, ...,m,

then the correlation integral at embedding dimension m and tolerance ² can be ex-

pressed as

Cm (²) =
1

Npair
n(l1 ≤ ², ..., lm ≤ ²), (4)

where Npair is the total number of pairs, and n(l1 ≤ ², ..., lm ≤ ²) is the number of

pairs with all components within ² apart.

The BDS test is based on the observation that for an IID sample,

Cm (²) = [C1 (²)]
m.

The identity should be understood in a statistical sense. Brock et al. (1996) derived

a normalization factor, Vm(²), in order to make a correct statistical quantification of

the departure from IID. More specifically, they showed that the BDS statistic

Wm(²) =
Cm (²)− [C1 (²)]m

Vm(²)
, (5)

converges in distribution toN(0, 1), as the time series become infinitely long, for ² > 0,

and m > 1, under the null hypothesis of IID. With the possibility of bootstrapping

small sample distributions as in Efron (1979), the asymptotic properties are nowa-

days of less importance. The BDS test has proved to be quite successful in finding
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departures from IID in a number of Monte Carlo studies (see, for example, Brock et

al. (1991)), but the test gives no hints of at what time lags there are dependences in

the data, information that is most useful in time series modelling and analysis.

Savit and Green (1991) filled this gap by introducing a dependability index com-

puted from the correlation integrals in different embedding dimensions. As seen from

(4), Cm(²) is nothing but the joint probability of two m-histories being no more than

² apart in all their Cartesian components, that is Cm(²) = Pr(l1 ≤ ², ..., lm ≤ ²). This
holds under the assumption of time-invariance or stationarity, so that we can compare

pairs from different parts of the time series. It is also possible to form the conditional

probabilities of two observations being close, given that their m-histories are close:

Pr(l1 ≤ ²|l2 ≤ ², ..., lm ≤ ²) =
Pr(l1 ≤ ², ..., lm ≤ ²)
Pr(l2 ≤ ², ..., lm ≤ ²)

=
Cm(²)

Cm−1(²)
,

since Pr(l2 ≤ ², ..., lm ≤ ²) = Pr(l1 ≤ ², ..., lm−1 ≤ ²) by construction. In the same

way,

Pr(l1 ≤ ²|l2 ≤ ², ..., lm−1 ≤ ²) =
Cm−1(²)
Cm−2(²)

.

If r(t) does not depend on r(t−m+ 1), then

Pr(l1 ≤ ²|l2 ≤ ², ..., lm ≤ ²) = Pr(l1 ≤ ²|l2 ≤ ², ..., lm−1 ≤ ²),

that is, Cm(²)/Cm−1(²) = Cm−1(²)/Cm−2(²). It is now possible to define a depend-

ability index

δm−1(²) = 1−
C2m−1(²)

Cm(²)Cm−2(²)
(6)

for m > 1 (C0 ≡ 1), which is zero (in a statistical sense), if there is no dependence
of r(t) on the lag t −m + 1. In contrast to the BDS test, the delta indexes provide
information on at what time lags there are dependences causing the rejection of IID.

An asymptotic distribution for the δ’s under the null hypothesis of IID has not been

working out, but can easily be estimated by a bootstrap procedure.
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5.5.2 Rounding of IID Series

In order to investigate the ability of the correlation integral based statistics to pick up

the micromarket dependences caused by the rounding of prices we do the following

Monte Carlo simulation: First, we generate 1000 return series of the length of 2000

from N(µ,σ), with the same unconditional moments as implied by the AR-GARCH

coefficients in chapter 5.3, that is µ = 5.57 ·10−4, and σ = 0.019. After exponentiating
to prices, rounding and calculating log-returns as described in chapter 5.3, we have

three×1000 return series originating from non-rounded prices, realistically discretized
prices, and heavily rounded prices. An integer rounding of prices around and below

50 must be regarded as unrealistic, at least for modern financial data. Henceforth,

we denote these series R, RS, and RI.

In Table 5.4, we report some distributional statistics of the W ’s and the δ’s, such

as the mean, the standard deviation, the skewness, the kurtosis, the minimum, the

maximum, and the 2.5% and the 97.5% percentiles. The embedding dimensions are

m = 2, 3, 4, and 5, corresponding to time lags 1 to 4, and the tolerance parameter ²

equal to the standard deviation of each time series, as is often suggested.12

For R, the distribution of the BDS statistics is close to N(0, 1), as expected for

sample sizes of this magnitude. The δ’s also seem to be normally distributed around

zero, indicating no dependences on past lags. In the case of RS, the picture is very

much the same. Both the BDS statistics and the deltas are normally distributed, but

the distribution appears to be shifted somewhat upward, which is especially notable

for W5, and δ2. The percentiles and the mean for W5 are -1.74, 2.35, and 0.16 as

compared to -1.87, 2.10, and -0.03 for the R statistics. For realistically discretized

data, the rounding mechanism is picked up by the correlation integral statistics, but

the introduced shifts of the distributions are not very severe. This is certainly not

true when examining RI. Neither the W ’s nor the δ’s are normally distributed, and

the means as well as the critical values are heavily shifted upward for all m, although

most heavily when m = 2.

12Throughout this paper, we report our results for ² = σ only. We have also examined the cases

of ² = 0.25σ, 0.5σ, 1.5σ, and 2.0σ, with similar findings.
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The δ’s are all large, indicating dependences, but our simulated series have no

explicit time dependences. How is this possible? The reason is that the rounded series

are not time-invariant, which is assumed in the derivation of the correlation integral

statistics. At a given price, a stock will only jump a certain amount of ticks, giving

rise to a finite number of return realizations. As the stock price evolves, the number

of probable realizations will change, increasing if the stock goes up and decreasing

otherwise (if the tick size is the same for all prices). In addition, the nonstationarity

in returns is linked to the price level, which creates new complicated dependences.

Their appearance is best illustrated by an example.

Let r1, r2 ∈ N(0,σ) denote the returns at times t = 1 and t = 2, let σ = 0.019,
and let the starting price be P0 = 100. The prices at t = 1 and t = 2 are then

P1 = 100 exp(r1) and P2 = 100 exp(r1 + r2), the rounded prices P̄1 = [100 exp(r1)]

and P̄2 = [100 exp(r1 + r2)], where [·] denotes integer rounding, and the resulting
rounded returns are r̄1 = log

¡
P̄1/P0

¢
and r̄2 = log

¡
P̄2/P̄1

¢
. Suppose we want to

calculate the probability of r̄1 = 0, and r̄2 = log (101/100) . The probability that

r̄1 = 0 is equal to:

Pr (r̄1 = 0) = Pr
¡
P̄1 = 100

¢
= Pr

µ
100− 1

2
< P1 < 100 +

1

2

¶
=

= Pr

µ
log

µ
100− 1

2

100

¶
< r1 < log

µ
100 + 1

2

100

¶¶
.

The joint probability that r̄1 = 0 and r̄2 = log (101/100) is given by:

Pr

µ
r̄1 = 0, r̄2 = log

µ
101

100

¶¶
= Pr

¡
P̄1 = 100, P̄2 = 101

¢
= (7)

= Pr

µ
log

µ
100− 1

2

100

¶
< r1 < log

µ
100 + 1

2

100

¶
, log

µ
101− 1

2

100

¶
< r1 + r2 < log

µ
101 + 1

2

100

¶¶
However, the probability that r̄2 = log (101/100) is given by the following:

Pr

µ
r̄2 = log

µ
101

100

¶¶
= Pr

µ
P̄2
P̄1
=
101

100

¶
=
X
k

Pr

µ
P̄1 = k, P̄2 = k

101

100

¶
. (8)
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Since we use integer rounding, the probabilities in the sum are zero unless k =

100, 200, ...,∞. Besides, the probability that P̄1 = 200 or more is almost zero, so

(8) reduces to

Pr

µ
r̄2 = log

µ
101

100

¶¶
' Pr

µ
P̄1 = k, P̄2 = k

101

100

¶
|k=100 = Pr

µ
r̄1 = 0, r̄2 = log

µ
101

100

¶¶

If the rounded returns r̄1, r̄2 were independent, then

Pr

µ
r̄1 = 0, r̄2 = log

µ
101

100

¶¶
= Pr (r̄1 = 0)× Pr

µ
r̄2 = log

µ
101

100

¶¶
,

which is obviously not satisfied here. It is these kind of dependences, which could be

more or less pronounced in different time series, that are detected by the correlation

integral statistics13. The rounded returns are no longer IID. In Table 5.5, we show

the BDS test statistics, and the autocorrelation in returns and squared returns, for a

typical series (series no. 347) in R, RS, and RI. We see that the BDS test strongly

rejects integer rounded IID returns, a finding not discovered by just examining the

autocorrelations, as is the common approach in econometric analysis.

To summarize, the rounding of prices has two effects. It makes the rounded return

series time-variant, and it introduces complicated dependences in the series. The BDS

test correctly rejects the rounded returns as IID variables, but the lag-dependences

identified by the δ’s may be spurious, since the rounded series are nonstationary.

13The probability in (7) can be calculated by numerically integrating

1√
2π

Z log
100+1/2

100

r1=log
100−1/2

100

exp

µ
− r21
2σ2

¶Φ
 log

µ
101+ 1

2
100

¶
− r1

σ

 − Φ

 log
µ
101− 1

2
100

¶
− r1

σ


 dr1.

With the numbers chosen here, Pr
¡
r̄1 = 0

¢ ' 0.2076 and Pr
¡
r̄1 = 0, r̄2 = log

¡
101
100

¢¢
=

Pr
¡
r̄2 = log

¡
101
100

¢¢ ' 0.0703.
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5.5.3 Rounding of AR-GARCH Series

We turn to exploring the power of our test statistics when applied to our simulated

AR-GARCH return series from chapter 5.3, denoted G, GS, and GI. We have estab-

lished that the correlation integral statistics are distorted by the nonstationarities

and dependences introduced by price rounding. Here, we are interested in the ability

of detecting explicit time series dependences. In Table 5.6, we report the minimum,

the maximum, and the 95% confidence interval of the test statistics, together with

the frequencies of rejecting the null hypothesis of rounded IID observations, at the

5% significance level, when it is false. In the power tests, we are using the simulated

critical values from R, RS, and RI in Table 5.4.

Somewhat surprisingly, no sign of upward shifts is distinguishable in the confidence

intervals of the BDS statistics when we increase the level of discreteness. The δ’s,

on the other hand, show more of the previous positive shifts, at least for the integer

rounded GI. Because of the upward shifts presented in RS and RI, in combination

with the tendency of downward shifts in GS and GI, the power of the test statistics

deteriorates, due to the rounding effects. The empirical rejection frequencies of the

BDS statistics are 100% for both G and GS. The δ’s clearly also identify dependences

at all time lags, as should be the case for GARCH series. The ability of detecting

lagged dependences weakens asm increases, and also when comparing G and GS. This

should not be confused with any superiority of the BDS test over Savit and Green’s

dependability index. The former is a true portmanteau test, answering the question

if a time series is IID or not. The latter, on the other hand, determines whether

including additional lags raises the conditional probability of two observations being

close, given that their m-histories are close. Deciding whether a time series is IID or

not just by examining a certain lag, rather than using information at all lags, is quite

a different task. The BDS test and the dependability indexes therefore give different,

but complementary, information usable in time series analysis.

When examining GI, the power of the test statistics falls dramatically to around

22% for the W ’s and to 8% for the δ’s. Trying to determine whether an integer

rounded time series (at the price levels examined here) has any explicit time series
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dependences based on the null distributions of the test statistics would most likely

lead to the wrong conclusion. It is somewhat surprising that the power of W2 and δ1

are so different, since the numerator of W2 in (5) is equal to C2δ1. Obviously, this is

related to the influence of the denominator of the BDS test statistic14.

Let us examine the standardized residuals from the maximum likelihood estima-

tions of the AR-GARCH series, denoted S, SS, and SI. As shown in Brock et al.

(1996), the asymptotic properties of the BDS test are the same, whether the test is

applied to IID series or residuals from linear (and some nonlinear) stochastic mod-

els. This nuisance parameter free property of the BDS test is not valid for GARCH

residuals, which is clearly visible in Table 5.7. The test statistics are still normally

distributed, but with smaller variances, resulting in narrower confidence intervals (see

Hsieh (1989)).

The distributional properties of S and SS are again very similar, confirming that

realistic rounding of prices does not change the null distribution of the correlation

integral based statistics to a very large extent. Once again, these similarities are lost

when examining SI. We have upward shifts in the distributions, giving rise to totally

different confidence intervals for both the W ’s and the δ’s. Furthermore, there is no

longer only a scaling factor of the standard deviation separating the distributions of RI

and SI, as is the case between the distributions of R and S. If one wishes to investigate

the standardized residuals from a heavily rounded return series, there seem to be no

shortcuts. A proper Monte Carlo simulation, similar to ours, must be performed in

order to extract the critical values to compare with the test statistics of the residuals

of one’s GARCH model. Even so, the power of such a test would most probably be

quite low.

14When investigating the power of C2δ1, compared to the integer rounded null distribution of the

same quantity, the power raises to 12.1%, but is still far from 22.8%.
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5.6 Conclusions

Throughout this paper, we try to shed some light on the consequences of the trade

induced compass rose pattern in stock returns. We examine how AR-GARCH pa-

rameter estimates change with the level of rounding in stock prices, and find that

the distribution of the estimates differ, in particular for the AR(1) parameter. The

differences arise from two effects. First, when rounding the series, we may change the

dynamics of the processes, and second, the rounded series no longer fullfil the assump-

tions underlying the continuous-state AR-GARCH model. Obviously, the higher the

level of discreteness, the more pronounced will either of the two effects be.

Further, we show theoretically that incorporating discretization in return forecasts

(not in estimation), as outlined in chapter 5.4, improves the performance in an MAE

sense, while the opposite holds using the RMSE as an evaluation measure. Simulations

reveal that the out-of-sample performance is better, significantly at the 5% level, when

using the MAE measure, and we argue for the use of this measure if wishing to favor

feasible forecasts.

We also investigate how the distributions of some correlation integral statistics

change when applied to rounded return series, and residuals from such series. Our

findings suggest that the effects on the distributions are small, provided the return

series come from realistic roundings of prices, such as those present at the Stockholm

Stock Exchange. Only when we investigate heavy rounding, most likely uncommon in

modern financial markets, do the null distribution of the test statistics change remark-

ably. This is contrary to the findings of Krämer and Runde (1997), who discovered

large changes in the null distribution of the BDS test already at low roundings (tick

size of 0.1), due to their highly unrealistic simulated stock prices. In chapter 5.5, we

explain why these changes occur. The rounding of prices makes the corresponding

return series time-variant, and introduces dependences in the series. The rounded

IID returns are no longer IID. The distributions of the correlation integral statistics

therefore change, because of the dependences and the nonstationarities in the rounded

data.

The main conclusion is that the effects of discrete prices are small, at least for
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a discretization comparable to the one present at the Stockholm Stock Exchange.

When investigating series with higher tick size to price ratios, such as those present

in low-priced stocks, the use of statistical models and tests based on state-continuity

can be questioned.

Our results are based on time series of the length of 2000. It may be the case that

the rounding effects are more severe when examining shorter time series. Caution

should also be taken when less traded stocks are examined. The ”effective” tick size

chosen by market participants can then be larger than the official tick size.
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Figure 5.1: The compass rose pattern in: (a) Atlas Copco, (b) simulated returns, (c)

stock exchange rounded simulated returns, and (d) scrambled stock exchange rounded

simulated returns. All time series are of length 2000.
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Table 5.1: Parameter estimates and likelihood values. bθ, bθS, and bθI denote the pa-
rameter vector estimates of the original, the stock exchange rounded, and the integer

rounded series respectively. The empirical α-percentile is denoted Iα. Small numbers

are 95 percent confidence intervals.

φ̂0 · 105 φ̂1 φ̂2 bα0 · 104 bα1 bα2 logL

mean 2.314
(2.273,2.355)

0.110
(0.109,0.111)

0.826
(0.824,0.828)

5.342
(5.103,5.582)

0.118
(0.117,0.120)

-0.054
(-0.056,-0.053)

3.502
(3.500,3.505)

I0.025 1.258 0.075 0.757 -2.395 0.073 -0.103 3.419bθ I0.975 3.815 0.147 0.882 12.819 0.165 -0.010 3.579

minimum 0.910 0.056 0.709 -8.080 0.037 -0.135 3.367

maximum 5.471 0.175 0.908 16.914 0.191 0.014 3.624

φ̂0 · 105 φ̂1 φ̂2 bα0 · 104 bα1 bα2 logL

mean 2.370
(2.328,2.412)

0.107
(0.106,0.108)

0.828
(0.826,0.830)

5.372
(5.131,5.612)

0.108
(0.107,0.110)

-0.052
(-0.053,-0.050)

3.493
(3.491,3.496)

I0.025 1.267 0.073 0.757 -2.385 0.062 -0.098 3.414bθS I0.975 3.928 0.144 0.885 12.791 0.155 -0.008 3.568

minimum 0.908 0.053 0.689 -8.246 0.033 -0.130 3.364

maximum 5.495 0.179 0.908 16.881 0.178 0.023 3.607

φ̂0 · 105 φ̂1 φ̂2 bα0 · 104 bα1 bα2 logL

mean 2.539
(2.484,2.595)

0.091
(0.090,0.093)

0.846
(0.844,0.848)

5.546
(5.289,5.802)

0.048
(0.044,0.051)

-0.042
(-0.044,-0.042)

3.433
(3,429,3.437)

I0.025 1.181 0.042 0.769 -3.261 -0.092 -0.092 3.267bθI I0.975 4.589 0.135 0.918 13.296 0.128 0.001 3.537

minimum 0.621 0.047 0.681 -9.071 -0.215 -0.122 3.040

maximum 10.022 0.162 0.959 17.885 0.152 0.027 3.571
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Table 5.2: Parameter estimate and likelihood value differences. eθS = bθ − bθS andeθI = bθ − bθI , where bθ, bθS, and bθI denote the parameter vector estimates of the
original, the stock exchange rounded, and the integer rounded series respectively.

The empirical α-percentile is denoted Iα. Small numbers are 95 percent confidence

intervals.

φ̃0 · 105 φ̃1 φ̃2 eα0 · 104 eα1 eα2 glogL
mean -0.056

(-0.065,-0.048)
0.003

(0.002,0.003)
-0.002

(-0.003,-0.002)
-0.029

(-0.042,-0.016)
0.010

(0.010,0.010)
-0.003

(-0.003,-0.002)
0.009

(0.009,0.009)eθS I0.025 -0.360 -0.005 -0.017 -0.460 -0.000 -0.012 0.001

I0.975 0.223 0.011 0.012 0.411 0.023 0.005 0.020

φ̃0 · 105 φ̃1 φ̃2 eα0 · 104 eα1 eα2 glogL
mean -0.225

(-0.261,-0.188)
0.018

(0.017,0.019)
-0.019

(-0.021,-0.018)
-0.203

(-0.249,-0.157)
0.070

(0.068,0.074)
-0.012

(-0.013,-0.011)
0.069

(0.066,0.073)eθI I0.025 -1.538 -0.003 -0.089 -1.621 0.015 -0.041 0.014

I0.975 0.878 0.062 0.018 1.464 0.210 0.012 0.225

Table 5.3: Means estimates and 95% confidence intervals of the out-of-sample forecast

error ratios. Each statistic is computed from a test sample of length 1000. Small

numbers are 95% confidence intervals of the mean estimates.

Exchange Rounding Integer Rounding

Ê
h
MAEtick-enhanced

MAEoriginal

i
0.9951

(0.9949,0.9953)
0.9738

(0.9728,0.9748)

I0.025 0.9876 0.9319

I0.975 1.0014 0.9955

Ê
h
MAErose-enhanced

MAEoriginal

i
0.9993

(0.9992,0.9994)
0.9841

(0.9834,0.9848)

I0.025 0.9945 0.9537

I0.975 1.0036 1.0000

E
h
RMSEtick-enhanced

RMSEoriginal

i
1.0055

(1.0052,1.0058)
0.9995

(0.9989,1.0001)

I0.025 0.9956 0.9738

I0.975 1.0171 1.0151

Ê
h
RMSErose-enhanced

RMSEoriginal

i
1.0031

(1.0028,1.0034)
1.0012

(1.0007,1.0017)

I0.025 0.9946 0.9781

I0.975 1.0127 1.0144
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Table 5.4: Distributional properties for the BDS statistics Wm(²), and Savit and

Green’s dependability index δm−1(²) of the R, RS, and RI series, for m = 2, 3, 4, and

5, and with ² = σ, the standard deviation of each time series. The α-percentile is

denoted Iα. Note that the entries corresponding to the δ’s are multiplied with 100,

except for the entries corresponding to skewness and kurtosis.

W2 W3 W4 W5 δ1 δ2 δ3 δ4
mean -0.04 -0.02 -0.02 -0.03 -0.02 0.01 -0.02 -0.03

std.dev. 0.99 0.99 1.01 1.01 0.46 0.49 0.53 0.54

skewness 0.10 0.13 0.23 0.29 0.07 0.18 0.12 0.08

R kurtosis 3.11 2.97 3.10 3.27 3.12 3.08 2.97 2.95

minimum -3.57 -3.01 -2.97 -2.82 -1.70 -1.51 -1.48 -1.56

maximum 3.34 3.55 4.14 4.60 1.51 1.67 1.89 1.93

I0.025 -1.88 -1.88 -1.92 -1.87 -0.89 -0.90 -1.02 -1.06

I0.975 2.07 1.97 2.05 2.10 0.92 1.04 1.06 0.98

W2 W3 W4 W5 δ1 δ2 δ3 δ4
mean 0.07 0.13 0.15 0.16 0.03 0.06 0.03 0.01

std.dev. 1.00 1.00 1.02 1.04 0.46 0.50 0.53 0.56

skewness 0.08 0.11 0.22 0.30 0.06 0.17 0.16 0.06

RS kurtosis 3.12 2.94 2.95 3.07 3.10 2.90 2.90 3.16

minimum -3.20 -2.76 -2.57 -2.38 -1.43 -1.52 -1.51 -1.60

maximum 3.32 3.46 4.04 4.41 1.48 1.63 1.82 2.30

I0.025 -1.88 -1.74 -1.84 -1.74 -0.85 -0.85 -0.96 -1.10

I0.975 2.12 2.08 2.32 2.35 0.99 1.08 1.09 1.11

W2 W3 W4 W5 δ1 δ2 δ3 δ4
mean 2.42 3.06 3.48 3.84 1.47 1.14 0.91 0.81

std.dev. 2.43 2.98 3.42 3.85 1.69 1.35 1.16 1.04

skewness 0.96 1.13 1.27 1.42 1.41 1.42 1.39 1.17

RI kurtosis 3.46 3.81 4.26 4.80 4.47 5.01 5.69 5.10

minimum -2.01 -2.01 -1.97 -1.76 -1.00 -1.23 -1.42 -1.51

maximum 11.08 13.80 17.14 19.99 8.47 7.35 7.11 5.43

I0.025 -0.91 -0.69 -0.60 -0.58 -0.45 -0.56 -0.74 -0.82

I0.975 8.24 10.48 12.23 14.42 5.83 4.84 3.96 3.65
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Table 5.5: BDS test statistics and autocorrelations in returns and in squared returns

for lag 1-4, for a typical series (series no. 347) in R, RS, and RI, denoted r, rs, and

ri.

AC in returns AC in squared returns

W2 W3 W4 W5 ac1 ac2 ac3 ac4 ac1 ac2 ac3 ac4
r 0.18 0.33 0.64 0.69 0.02 -0.01 0.02 -0.03 -0.01 0.01 0.03 0.01

rs 0.37 0.56 0.79 0.85 0.01 -0.01 0.02 -0.04 -0.01 0.02 0.03 0.02

ri 3.59 3.59 4.08 4.47 -0.04 -0.00 0.01 -0.02 -0.02 -0.01 0.01 0.01

Table 5.6: Distributional properties for the BDS statistics Wm(²), and Savit and

Green’s dependability index δm−1(²) of the G, GS, and GI series, for m = 2, 3, 4, and

5, and with ² = σ, the standard deviation of each time series. The α-percentile is

denoted Iα. Note that the entries corresponding to the δ’s are multiplied with 100,

except for the power0.05’s.

W2 W3 W4 W5 δ1 δ2 δ3 δ4
minimum 2.99 3.28 4.23 4.69 1.39 0.16 0.25 0.06

maximum 14.54 16.41 18.30 20.54 7.10 4.81 4.19 3.76

G I0.025 4.08 5.28 6.19 6.85 1.93 1.18 0.94 0.53

I0.975 10.81 13.23 14.96 16.74 5.22 4.07 3.33 2.96

power0.05 1.000 1.000 1.000 1.000 1.000 0.985 0.961 0.904

W2 W3 W4 W5 δ1 δ2 δ3 δ4
minimum 2.93 3.48 4.17 4.86 1.34 0.26 0.37 -0.12

maximum 14.14 15.98 17.30 19.24 6.92 4.60 4.09 3.75

GS I0.025 3.80 5.09 5.99 6.80 1.82 1.14 0.90 0.52

I0.975 10.48 12.84 14.99 16.48 5.10 4.02 3.35 3.00

power0.05 1.000 1.000 1.000 1.000 1.000 0.977 0.948 0.851

W2 W3 W4 W5 δ1 δ2 δ3 δ4
minimum 2.18 3.25 4.06 4.31 1.16 0.05 0.37 -0.74

maximum 13.70 18.16 22.28 26.37 9.81 9.66 8.46 7.62

GI I0.025 3.64 5.02 6.09 6.99 1.95 1.21 1.11 0.69

I0.975 10.63 13.62 16.30 18.67 7.19 6.07 5.31 4.64

power0.05 0.228 0.233 0.233 0.192 0.076 0.093 0.089 0.071
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Table 5.7: Distributional properties for the BDS statistics Wm(²), and Savit and

Green’s dependability index δm−1(²) of the S, SS, and SI series, for m = 2, 3, 4, and

5, and with ² = σ, the standard deviation of each time series. The α-percentile is

denoted Iα. Note that the entries corresponding to the δ’s are multiplied with 100,

except for the entries corresponding to skewness and kurtosis.

W2 W3 W4 W5 δ1 δ2 δ3 δ4
mean -0.02 -0.08 -0.09 -0.10 -0.01 -0.01 -0.01 -0.02

std.dev. 0.87 0.75 0.68 0.63 0.40 0.45 0.49 0.55

skewness 0.17 0.16 0.15 0.20 0.13 0.12 0.15 0.01

S kurtosis 2.75 2.88 2.98 3.07 2.71 2.79 3.00 2.83

minimum -2.45 -2.07 -2.02 -1.82 -1.15 -1.30 -1.75 -1.78

maximum 3.22 2.87 2.18 2.07 1.31 1.29 1.56 1.63

I0.025 -1.61 -1.46 -1.37 -1.30 -0.75 -0.93 -0.93 -1.08

I0.975 1.68 1.40 1.33 1.23 0.77 0.86 1.00 1.05

W2 W3 W4 W5 δ1 δ2 δ3 δ4
mean -0.01 -0.07 -0.09 -0.10 -0.01 -0.07 -0.02 -0.04

std.dev. 0.88 0.77 0.69 0.64 0.41 0.45 0.50 0.54

skewness 0.10 0.18 0.22 0.25 0.06 0.04 0.11 0.09

SS kurtosis 2.83 3.02 3.16 3.19 2.79 2.73 3.04 2.87

minimum -2.31 -2.00 -2.22 -1.84 -1.14 -1.35 -1.67 -1.49

maximum 3.38 3.31 2.72 2.49 1.41 1.17 1.55 1.77

I0.025 -1.71 -1.48 -1.37 -1.32 -0.79 -0.92 -0.95 -1.09

I0.975 1.69 1.43 1.31 1.20 0.79 0.82 1.02 1.02

W2 W3 W4 W5 δ1 δ2 δ3 δ4
mean 1.10 1.53 1.86 2.12 0.63 0.72 0.70 0.57

std.dev. 1.63 1.95 2.23 2.48 0.99 1.08 1.03 0.99

skewness 0.49 0.82 0.97 1.09 0.84 1.18 1.30 1.27

SI kurtosis 3.33 3.44 3.62 3.87 4.72 4.53 5.08 5.74

minimum -4.21 -2.50 -2.21 -2.00 -3.77 -1.37 -1.36 -1.37

maximum 6.89 8.32 10.61 12.71 4.31 5.23 4.95 5.68

I0.025 -1.65 -1.46 -1.17 -1.02 -0.80 -0.76 -0.69 -0.89

I0.975 4.85 6.24 7.25 8.29 3.11 3.43 3.44 3.05
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Chapter 6

Stochastic Volatility and

Pricing Bias in the Swedish

OMX-Index Call Option

Market

6.1 Introduction

An option is a derivative security and its value can, in principle, be determined if

all underlying variables are specified. The Black-Scholes (1973) (henceforth ”B-S”)

model is, of course, the outstanding model for this purpose. It is simple and elegant

but builds on fairly restrictive assumptions, two of which, the constant stock return

volatility and the constant interest rate, have been relaxed in a number of papers in

the last decade.

Early studies of the Black-Scholes model and its pricing behavior include Macbeth

and Merville (1979), Rubinstein (1985), and Evnine and Rudd (1985). In the case

of option pricing with volatility modelled as a stochastic process, both stock and

137
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stock index options, (Hull and White (1987), Wiggins (1987), Scott (1987), Stein

and Stein (1991), and Ball and Roma (1994)), and currency options (Chesney and

Scott (1989), Melino and Turnball (1990), Heston (1993), and Bates (1996)) have been

studied. There are also articles where the interest rate is assumed to be stochastic

(Heston (1993), Amin and Ng (1993), and Saez (1995)). A common result is that

an improvement in pricing (more efficient markets) follows with the inclusion of a

stochastic volatility, while the impact of a stochastic interest rate seems less clear.

Several option-pricing models, with different assumptions regarding the return

distribution of the underlying asset, have been developed; the vast majority of the

models being based on continuous time stochastic processes and Ito calculus. When

the model is specified, the option price must be solved for. Normally, this means

solving a partial differential equation (PDE) and a number of methods are available.

Whether direct numerical solving of the partial differential equation, Monte Carlo

simulations, approximation methods, or a combination of numerical and analytical

solution methods is used, depends on the kind of option to be priced as well as the

processes chosen for the underlying assets. In addition, when introducing a non-traded

underlying parameter like stochastic volatility, it is known from financial theory that

a non-zero volatility risk premium must be introduced, which complicates the search

for the option price, although not in a critical way.

With a randomly changing volatility, the option price is no longer determined by

a single stochastic variable, the stock index price, but a second stochastic variable,

the volatility of the stock index return, is equally important. We end up having two

underlying stochastic processes, two state variables, that may be specified in different

ways and may or may not be correlated. In this essay, a Geometric Brownian Motion

is assumed for the stock index price and a mean-reverting Cox-Ingersoll-Ross (CIR)

square-root process for the volatility (variance)

dS = mSdt+ σSdZ1 (1)

dσ2 = α(θ − σ2)dt+ ξ
√
σ2dZ2, (2)

where S is the stock index price, σ2 is the volatility (variance) of the stock index

return, α, θ, ξ, and m are constants, and dZ1and dZ2 are independent Wiener pro-
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cesses. The parameter α is the degree of mean reversion, θ is the long-run mean

volatility, and ξ measures the volatility of the variance process. The choice of model

for the volatility behavior is partly due to mathematical tractability where we can

draw on interest rate theory and the bond pricing formula in Cox, Ingersoll and Ross

(1985), and partly due to feasibility; empirically, volatility is never negative and it

has a tendency to revert to a long-run average. Both these phenomena are covered

by the mean-reverting square-root process.

To solve for the option price, I use the Feynman-Kac functional and the concept

of risk neutrality, i.e. solving the PDE with a stochastic representation formula where

the discounting is done with the risk-free rate of interest. In order to find the final

stock index price distribution, I use the Fourier-Inversion method introduced by Stein

and Stein (1991). They used this technique for the arithmetic Ornstein-Uhlenbeck

process, and Ball and Roma (1994) modified the model for the CIR-process. In these

studies, the prices given by the Fourier-Inversion model and the B-S model were

compared but the pricing methods were not used to back out real-world parameters

and biases. In this essay, the aim is to study the pricing bias in the Swedish OMX-

Index call option market and the Fourier-Inversion model is used both to estimate

volatility process parameters and to price options. While several empirical studies on

stochastic volatility option pricing exist, most of these rely on Monte-Carlo methods

to find the option price. By instead using the Fourier-Inversion method, I get a quicker

and more flexible method. For comparison, I also calculate B-S prices in addition to

stochastic volatility prices.

My choice of market is the Swedish OMX-Index option market and, to my knowl-

edge, this is the first study applying stochastic volatility option pricing methods to

this particular market. The OMX-Index option market is smaller than the bigger

stock option markets in the US and the UK, but it has many interesting features. All

trade is done with a computer system, the contracts are purely European style, and

most important, there are no dividends in the market for the time periods studied.

To assess the stability of the results, I have looked at two separate time periods,

October 1993 to February 1994 and July 1994 to December 1994. Both these periods

are relatively tranquil, compared to, for instance, late 1992 when the Swedish krona
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was under pressure. Using data from these periods, I back out parameters for the

stochastic processes and with these estimates as input, I try to judge how efficient

option prices are quoted. The fast Fourier-Inversion method proves to be useful in

making it possible to back out the risk neutral (Q-measure) parameters from quoted

option prices (compare yield-curve inversion). This is a fairly new approach in the area

of option pricing, where most authors use historical stock-return data and moment

methods to estimate volatility parameters (Bakshi et al. (1996)). The method has

the advantage of directly giving the risk neutral volatility parameters and giving

possibilities to infer the sign and size of the volatility risk premium.

The bias study in this essay is divided into a static and a dynamic part. The

static study is done on a daily basis and compares, out-of-sample, the market-, the B-

S-, and the stochastic volatility-prices by daily updating model inputs. The dynamic

efficiency test consists of a hedging scheme, where a hedged position in two call options

and the underlying index is formed and daily updated with suitable ∆:s, and where

risk-free arbitrage profits are calculated, ex ante.

The essay is organized as follows. Chapter 6.2 looks at the pricing model and the

Fourier-Inversion technique. Chapter 6.3 describes the OMX-Index Option Market

and estimates the volatility parameters. Chapter 6.4 contains the static bias study

and the dynamic efficiency test. Finally, chapter 6.5 concludes the essay.

6.2 The Model

6.2.1 Equilibrium Pricing and the Stochastic Volatility Model

In the Black-Scholes model, the call option has a unique price. This is related to the

fact that in the B-S model, every contingent claim can be replicated by a self-financed

portfolio. In other words, the B-S model is complete.

In the stochastic volatility model, the situation is different. Since volatility is

not spanned by assets in the economy, the volatility-risk cannot be eliminated by

arbitrage methods. Instead, we must rely on equilibrium methods. It then follows

that the market price of volatility risk explicitly enters the general partial differential
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equation for the option price:

∂F

∂t
(t, s) + rs

∂F

∂s
(t, s) +

1

2
s2σ2 (t, s)

∂2F

∂s2
(t, s) + (3)

£
α(θ − σ2)− λ¤ ∂F

∂(σ2)
(t, s) +

1

2
ξ2σ2

∂2F

∂(σ2)2
(t, s)− rF (t, s) = 0

F (T, s) = Φ(s),

where F is the option price, s is the price of the underlying asset (the OMX-index),

σ2 is the index return volatility, and finally, λ is the volatility risk premium.

The main difference between the present situation and the B-S setting is that in

the B-S model, arbitrage methods are used to find the price, while here, equilibrium

arguments are used. The option price will only be unique when supply and demand in

the market are equalized, and the forces of supply and demand are, in turn, determined

by such phenomena as risk aversion.

One way out is to find situations where the solution to the PDE is independent

of risk preferences. This is the case if (a) the volatility is a traded asset or (b) the

volatility is uncorrelated with aggregate consumption (Hull and White (1987)). An

alternative way is to treat the volatility as the non-traded parameter it actually is

but putting the risk premium equal to zero, which is done by Scott (1987) and Hull

and White (1987).

The exact form of the risk premium might not be found and one might not be

comfortable with assuming a zero risk premium. Then there is the special case of a

non-zero constant risk premium for the volatility that does not actually change our

solution method or the results in any profound way. In this essay, I will assume a

non-zero constant risk premium, so that a risk adjusted drift rate for the volatility can

be defined in (2). The drift rate α(θ−σ2) changes to α(θ0−σ2), where the only change
is a shift in the constant long-run mean1. λ has now disappeared from (3) and the

1In the PDE, all parameters are assumed to be constant. If further assuming a constant risk

premium λ, then the variable sustitution α(θ− σ2)− λ = α(θ− λ
α
− σ2) = α(θ0 − σ2) can be made.
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new parameters, α, θ0, and ξ are called risk-adjusted parameters, or Q-parameters2.

6.2.2 The Fourier-Inversion Technique and Stochastic Volatil-

ity Option Pricing

The Fourier Inversion method as a technique to find the stock price distribution was

introduced by Stein and Stein (1991), who focused on the similarity between Moment

Generating Functions (MGFs) and Fourier Transforms and combined this with the

averaging over time of the stock price variance. Ball and Roma (1994) continued this

work by even further emphasizing the important role of the average variance and, in

particular, the MGF of the average variance, also showing its importance in other

solution methods. Heston (1993) developed a slightly different model and suggested

the use of a square-root process, which has the advantage of always giving positive

volatilities and being familiar from earlier work by Cox, Ingersoll and Ross (1985) in

the different, but related, context of bond pricing.

The closed-form solution of the option price in (5), F (t), is derived by following

Stein and Stein (1991) and Ball and Roma (1994) and by applying the Feynman-Kac

functional (risk adjusted expectation)

F (t, S) =
1

er(T−t)

Z ∞

X

(ST −X)f(ST )dST

to the non-lognormal stock return distribution

f(ST ) =
e
m(T−t)

2

2πS
3
2

T

Z ∞

−∞
I[
(η2 + 1

4)(T − t)
2

]cos[(ln(ST )−m(T − t))η]dη, (4)

where (4) is derived by using the similarity between Moment Generating Functions

and Fourier-Transforms. We end up with the following expression for the call option

price, where ST is the underlying stock index value at the exercise date, X is the

2Under the assumption of a constant risk premium and if the ordinary parameter θ can somehow

be found, an estimate of the risk premium, λ, can also be obtained.
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strike price, and η merely an integration variable:

F (t) =
1

2πS
3
2

T e
r(T−t)

2

Z ∞

X

Z ∞

−∞
(ST −X) I[

(η2 + 1
4)(T − t)
2

]cos[(ln(ST )− r(T − t))η]dηdST

(5)

where

I[λ] = exp(N +Mσ20),

σ20 is the initial variance, and N and M are the following functions:

N =
2αθ0

ξ2
ln

"
2γe

(α−γ)(T−t)
2

g(T − t)

#

M =
−2(1− e−γ(T−t))

g(T − t)

where

γ =

s
α2 + 2

µ
λ

(T − t)
¶
ξ2

and

g(T − t) = 2γ + (α− γ)
³
1− eγ(T−t)

´
.

What remains is an integration giving the explicit solution. Unfortunately, any

attempt to find a primitive function to this integrand seems bound to fail, and con-

sequently, we must rely on the best possible approximation found by some kind of

numerical integration. To solve this problem, a combination of Simpson’s method

and the simple Trapetzoid method is chosen, and all programs are written in the

GAUSS programming language. The stochastic volatility option prices in (5) are

then calculated with these programs.
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6.3 The Swedish OMX-Index Option Market and

Parameter Estimates

6.3.1 Data

In September 1986, the Swedish exchange for options and other derivative securities

(OM) introduced the OMX-index. It consists of a value-weighted combination of the

30 most actively traded stocks on the Stockholm Stock Exchange. The purpose of the

introduction was for the OMX-index to serve as an underlying ”security” for trading

in standardized European style options and forward contracts. A unique feature of

the Swedish stock-index options, at least compared to US markets, is that during

a large part of the year, there are no dividends at all. The OMX-index must be

adjusted for dividends only when the April-, May-, June- and July- option contracts

are analyzed. This essay looks at dividend-free August to March contracts.

The OMX-index Option Market consists of European style Call- as well as Put-

Options with different times to expiration. At any time throughout the year, trading

is possible in at least three classes of option contracts with up to one, two and three

months left to expiration, respectively. On the fourth Friday each month, when the

exchange is open for trading, one class of contracts expires and a new class, with time

to expiration equal to three months, is initiated. Furthermore, for options with a

given time to expiration, a wide range of exercise prices is available. When options

with a new expiration date are introduced, the exercise prices are chosen so that they

are centered around the current value of the OMX-index.

The set of data used consists of daily closing bid and ask quotes for the two

time periods, October 1993 to February 1994, and July 1994 to December 1994.

The option data and index data are obtained from OM and contain both prices and

volumes. Options with a time to maturity shorter than 15 days, as well as options with

very low liquidity, are removed from the sample. Certain days (very few) have been

removed from the data set due to errors in the data (non-feasible prices, missing bid

or ask quotations, erroneous strike prices, etc.) and the total number of observations

is 1694. Both the options exchange (OM) and the stock exchange (StSE) close at 4.00
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p.m., minimizing the possibility of synchronization problems. Interest rates for 30,

60, and 90 days are obtained from Sveriges Riksbank, and the relevant interest rates

are computed by interpolation between the two closest interest rates.

6.3.2 Parameter Estimation

The next step is to estimate the parameters in the volatility process and in the PDE.

Most empirical research shows that volatility follows a mean-reverting process, like

the one in (2), which gives three parameters to be determined: the reversion rate, α,

the long-run mean, θ0, and the volatility of the volatility, ξ. The volatility is assumed

to start at its long-run level.

There are many alternative ways of estimating these parameters. An approach

using the discrete time approximation of continuous time stochastic processes is the

method of moments by Chesney and Scott (1989) and Hansen (1982). By looking at

the moments of the stock return distribution, estimates of the discrete time process

parameters as well as the continuous time parameters can be found.

If choosing to work directly with the continuous time processes, determining the

distribution of stock returns as a function of the parameters in question and then ap-

plying maximum likelihood methods would be a natural approach. The problem with

this approach is that stock returns are dependent over time, and the joint distribution

for a sample of observations would be very difficult to derive, Scott (1987).

The estimation approach chosen here is that of calibrating the model to data. This

is comparable to the way Brown and Schaefer (1994) fit the ”yield curve” of bonds,

and this method has the advantage of directly giving the Q- parameters (Martingale),

not the objectively observed parameters.

The calibrating technique works as follows. I choose to model the stock return as

a Geometric Brownian Motion and the volatility process as a mean reverting square-

root process. By specifying these processes under the Q-measure, option prices can be

calculated with the Fourier-Inversion method as functions of the volatility parameter

set Ω, where Ω is defined as Ω = {α, θ0, ξ}. Using empirical data, I calculate the
midpoint between daily quoted bid and ask OMX-Index option prices and compare
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these midpoint values to the modelled option prices. On any given day, I minimize the

sum of the squared differences between the model prices and the empirical midpoint

prices to get estimates of the parameters, Ω:

min
Ω
SSE = min

Ω

NX
i=1

¡
Fmodel,i(Ω)− Fmarket,i

¢2
, (6)

where N is the number of options on a particular day. Since the stochastic volatility

option price, Fmodel,i(Ω), is highly non-linear in its parameters, the problem (6) is

a non-linear least square minimization problem. Thanks to the Fourier-Inversion

method, the least square minimization method of estimating the parameters is not

too costly in terms of computer resources and fully compiled computer languages are

not necessary to implement the routine.

The problem has been implemented in GAUSS and the calculations were made on

a Pentium 100MHz PC. At the heart of the computation lies an integration routine

and for the nonlinear least square minimization, the Gauss-Newton algorithm with

numerically calculated derivatives is used. The generalized double integral is trun-

cated to a finite region without too much loss of information. In addition, the high

non-linearity creates a number of local minima, and a range of initial parameter-values

has to be tried as inputs to find the global minimum.

Since I look at two separate time periods I can, to some extent, assess the stability

of the estimates. Running the program each day in the sample periods gives around

250 estimates each of α, θ0, and ξ. Studying how the parameters change over time

reveals some time dependency but the model assumption of constant parameters does

not seem very strong. Average parameter values and average asymptotic standard

deviations (from the covariance matrix) are given in Table 6.1.3

In Table 6.1, I also include a calculation of the B-S implicit volatility. This volatil-

ity is calculated by minimizing the squared difference between the market price and

3The high asymptotic standard deviation for α might seem to be a subject of concern. It is due

to the very low second derivative of the price function F with respect to α; a large variation in α

gives only a slight variation in F . However, since the sensitivity of F with respect to α is very small,

predictions of future option prices do not critically depend on the estimated value of α.
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the Black-Scholes price for all options traded on a particular day, which is different

from the usual approach of using at-the-money options only. Our procedure gives a

worse correspondence with empirical prices at-the-money but gives a lower pricing

bias in-the-money and out-of-the-money4.

6.4 Pricing Bias

6.4.1 Static Bias

This chapter looks at the out-of-sample pricing bias in the Swedish OMX-Index call

option market. I have chosen the previous day’s (yesterday’s) estimates of process

parameters as inputs to compute the current day’s (today’s) model price. These

model prices will then be compared to actual market prices and a possible bias is

studied. This approach is supposed to replicate the behavior of practitioners and one

should be aware of its tendency to favor the shortsighted B-S model; the stochastic

volatility model works much better than the B-S model in the unrealistic setting of

no (or not very frequent) updating of parameters. Next, the observed market price

is subtracted from the model price to compute both the percentage pricing error and

the absolute percentage pricing error. This is repeated for all different call options

each day in the sample, both for the stochastic volatility model and the B-S model.

The percentage error is defined as

e =
100 (Pmodel(Ω)− Pmarket)

Pmodel(Ω)
,

and moneyness is defined as

m =
100 · ¡OMX-index value− Strikeprice · e−r(T−t)¢

Strikeprice · e−r(T−t)

4I have also tried the usual approach of only inverting options at-the-money. The results are not

reported here but the two average estimates are fairly similar, even though substantial differences

are present on particular days.
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Far-out-of-the-money is defined as m < −5, out-of-the-money as −5 ≤ m < −1,
at-the-money as −1 ≤ m < 1, in-the-money as 1 ≤ m < 5, and finally deep-in-the-

money as m ≥ 5.
If the theoretical prices are compared in a scatter plot (with empirical parameters

estimated one day earlier) a smile-shaped bias structure is found between B-S prices

and stochastic volatility prices, Figure 6.1.

This smile is predicted by theory and is due to the convexity properties of the B-S

model (as a function of the mean variance over the life of the derivative security).

Jensen’s inequality says that, if F is concave, E[F (·)] < F (E[·]) where E is the

expectation operator (when F is convex the opposite holds). This, together with

the fact that (5) can be seen as an expectation of the B-S price over different mean

variances and that the B-S price, as a function of the mean variance, is convex for

large (and small) values of S/X, and concave for values of S/X close to one, where,

as before, S is the stock index price and X is the strike price, gives the observed bias

structure.

Figure 6.2 is a scatter plot of the bias between stochastic volatility prices and mar-

ket prices as a function of moneyness. It can be seen how the options are overpriced

out-of-the-money and slightly underpriced in-the-money compared to the market val-

uation. The plot for the B-S model shows a similar bias structure. For a more

quantitative analysis of the pricing bias, we can look at the results in Tables 6.2 and

6.3. In these tables, the results for the different pricing models are reported, divided

into different times to maturity as well as different levels of moneyness. The tables

show how the two models demonstrate percentage errors of a similar magnitude, as

well as a similar bias structure. This behavior is stable over different time periods

as well as different pricing models5; overpricing out-of-the-money, underpricing in-

the-money, and somewhat better correspondence at-the-money. For both models,

the prices deviate significantly from the market price out-of-the-money and in-the-

money and the percentage errors (with sign) are significantly different from zero.

5The results for the individual time periods are not presented, but looking at these two time

periods, October 1993 to February 1994 and July 1994 to December 1994, separately, there is no

significant change in patterns.
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The absolute percentage errors confirm this evidence of mispricing and both models

give significant pricing errors. Overall, the absolute percentage error decreases with

moneyness, ranging from around 15% out-of-the-money to 3% in-the-money.

In addition to the strike price bias above, a quick, qualitative look at the time to

maturity bias is also interesting. As a whole, the absolute percentage bias decreases

with time to maturity. In particular, the options with the longest times to maturity

have a smaller bias than the options with shorter maturity. No explanation to this

behavior has been found.

For all maturities, both models systematically overprice out-of-the-money and

underprice in-the-money. An explanation of this skewness might be a negative corre-

lation between the stock return and the volatility taken into account by the market

but not by the models. This would lead to an overvaluation by the models of out-of-

the-money options, since the stock return distribution becomes negatively skewed and

really high option prices are less likely to be achieved; when the stock price increases,

volatility tends to decrease, thereby making large movements in price less likely. The

opposite holds when stock prices decrease. On the other hand, several studies have

also shown that the skewness is not significant in the equity markets.

The results are confirmed by many studies, both for the constant volatility B-S

model and the stochastic volatility models. One notable finding, however, is the differ-

ence between the B-S prices in my study and the B-S prices in the study by Hansson

et al. (1995) in the same market. Hansson et al. find out-of-the-money options to be

better priced than at-the-money options and only slightly underpriced compared to

the market price. This is somewhat surprising, since they use at-the-money options

to back out the implied volatility. The only explanation for the difference in results

is the different specification of the implicit volatility and the different data sets6.

To summarize, the difference between the theoretical B-S price and the stochastic

volatility price is in accordance with theory and shows the expected smile-shaped bias

6Even if not presented in my paper, it is interesting to notice that the B-S model with at-the-

money-estimated implicit volatility shows substantially worse pricing behavior than the other two

models out-of-money and in-the-money. This is not very surprising, considering the well-known

volatility smile existing in implicit B-S volatilities.
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structure. The difference between market prices and model prices is larger, though,

and both models overprice out-of-the-money and underprice in-the-money. To fully

evaluate the pricing performance of the models, we turn to a dynamic test measuring

riskfree profits over time by holding, and each day rebalancing, risk-free portfolios

designed with each of the models.

6.4.2 Dynamic Efficiency Test

If the B-S price is closer to the ”correct price” than is the market price, then it

should be possible to make riskfree arbitrage profits by trading with the B-S model.

Further, since the variance is observed to vary randomly, a trader using a random

variance model may be even more efficient in identifying mispriced options. To test

this hypothesis, I compute ex ante net gains from a hedged position of options and the

underlying variables7. In the B-S case, I use a standard ∆-hedge with a call option

and a hedged position in the OMX-Index (or the stocks making up the index). In

the random variance case, both the OMX-Index and the volatility must be hedged,

which is accomplished by taking positions in two call options as well as the underlying

index. In this way, both the random sources in the option pricing model are hedged

(Chesney and Scott (1989)).

The dynamic ∆-neutral hedge for the stochastic volatility model is created in the

following way. Each day, I take a position in the option that is most mispriced. If the

model price is higher than the midpoint of the bid-ask spread, then I buy the option,

if it is lower, I sell it. The position in the second option must be the opposite in order

to hedge the volatility risk, and if I need to sell the second option, I choose one with a

model price below the midpoint price. Finally, a position is taken in the OMX-Index.

The hedged position is

F (S,σ, t,K1) +w1St +w2F (S,σ, t,K2) ,

7Ex ante means that model prices at time t are calculated by using parameters estimated at time

t− 1.
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where w1 and w2 are

w1 = −∂F (S,σ, t,K1)
∂S

−w2
∂F (S,σ, t,K2)

∂S

w2 = −
∂F(S,σ,t,K1)

∂σ2

∂F(S,σ,t,K2)
∂σ2

.

Each day the net gain on this hedge is calculated:

[F (t2,K1)− F (t1 −K1)] +w1
h
St

2
− St

1

i
+w2 [F (t2,K2)− F (t1,K2)]−

rt
2
−t

1

h
F (t1,K1) +w1St

1
+w2F (t1,K2)

i
.

Every transaction is made at the midpoint price in an attempt to exclude trans-

action costs, due to the bid/ask spread. For both the B-S model and the stochastic

volatility model, positive ex ante average profits from using the trading rules are

found.

Table 6.4 shows means, medians, and standard deviations for the B-S model and

the stochastic volatility model for the two different time periods. For both time

periods, the stochastic volatility model gives higher profits than the B-S model, whose

profits are not significant. The existence of these profits indicates mispricing in the

OMX-Index market, even though it is important to notice that my hedging scheme

assumes that all trade can be done within the bid-ask spread and without transaction

costs. In practice, this is the case for large traders and market-makers only.

6.5 Conclusions

The standard Black-Scholes model for pricing European call options assumes a log-

normal probability distribution for the underlying stock-index price and a constant

stock-index return volatility. Considering empirical evidence, a more plausible hy-

pothesis is that volatility changes randomly.

In this essay, I specify the volatility process as a mean-reverting square-root pro-

cess and calculate theoretical option prices with the Fourier-Inversion Technique. The
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option pricing equation contains a preference term, the volatility risk premium, as

volatility is a non-traded asset. It is not obvious, a priori, what constitutes a reason-

able value for the price of volatility risk and I have chosen to treat the risk-premium

as a constant. In this way, the Fourier-Inversion method can be used.

I quote actual prices on dividend-free European call options from the Swedish

OMX-Index Option Market, and from these market prices, I estimate daily volatility

process parameters by a non-linear least square minimization of the difference between

market and model prices. This procedure has the advantage of directly giving the

risk-neutral parameters.

From a static point of view, I find a smile-shaped bias between the Black-Scholes

prices and the stochastic volatility prices. Both models give prices showing a similar

bias compared to actual prices quoted in the market and both models price options

in-the-money and at-the-money more accurately than out-of-the-money. The absolute

percentage bias decreases with time to maturity for both models.

The dynamic hedging test reveals riskfree arbitrage profit possibilities, at least

for the stochastic volatility model, which supports the existence of mispricing in the

OMX-Index Option Market, when transaction costs are not considered.

My conclusion is that the stochastic volatility model dominates the standard

Black-Scholes model and produces a more efficient market. Considering the easy

implementation of the stochastic volatility pricing model, this model is seen as an

alternative to the established Black-Scholes model in actual pricing.

For further research, I suggest a comparative study on stock- and currency options

and exchanges versus OTC-trading, and a more thorough study of the risk premium,

for instance in the context of different macroeconomics situations (the 1992 currency

crisis etc.). The application of the stochastic volatility model in related areas might

also prove to be useful.
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Figure 6.1: % Bias–—Stochastic Volatility Prices minus B-S Prices. Both time periods

(1649 obs.).
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Figure 6.2: % Bias–—Stochastic Volatility Prices minus Market Prices. Both time

periods (1649 obs.).
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Table 6.1: Average volatility parameters.

Oct. 93 to Feb. 94 Jul. 94 to Dec. 94 Both Periods

Parameter Std. Parameter Std. Parameter Std.

θ0 0.058 0.002 0.037 0.001 0.048 0.001

α 3.96 24.71 4.13 18.39 4.04 21.55

ξ 0.51 0.46 0.39 0.26 0.45 0.36

B-S Impl. Vol. 0.076 0.001 0.036 0.001 0.056 0.001

Parameter = average parameter value over the time period. Std. = average value over the time

period of the standard deviation coming from the asymptotic covariance matrix for the parameter

estimates.

Table 6.2: Stochastic Volatility average pricing errors. Both time periods

(the total number of options is 1649).

T-t 15-30 days 31-45 days 46-60 days all days

Average % Error 7.17
2.23

9.25
0.95

8.84
0.93

8.81
0.68

Far Out Average Abs. % Error 14.73
1.68

14.02
0.67

12.39
0.66

13.61
0.48

No. of Options 89 256 156 501

Average % Error 3.51
2.15

2.67
0.61

1.10
0.61

2.08
0.47

Out Average Abs. % Error 11.73
1.54

7.30
0.42

5.93
0.37

7.29
0.33

No. of Options 75 258 128 461

Average % Error 1.02
1.51

-0.42
0.60

-1.90
0.61

-0.75
0.44

At Average Abs. % Error 6.38
1.01

5.18
0.36

4.22
0.38

5.01
0.27

No. of Options 36 123 62 221

Average % Error -0.33
0.75

-1.58
0.34

-2.30
0.43

-1.60
0.26

In Average Abs. % Error 3.96
0.50

3.64
0.23

3.48
0.30

3.61
0.17

No. of Options 454 176 73 303

Average % Error -1.39
0.53

-1.12
0.31

-0.68
0.39

-1.12
0.24

Deep In Average Abs. % Error 2.91
0.35

2.93
0.23

1.59
0.23

2.73
0.17

No. of Options 44 99 20 163

Small numbers are standard deviations.
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Table 6.3: Black-Scholes average pricing errors. Both time periods (the total

number of options is 1649).

T-t 15-30 days 31-45 days 46-60 days all days

Average % Error -8.86
3.56

5.14
1.09

5.83
1.02

1.16
0.99

Far Out Average Abs. % Error 23.57
2.72

13.73
0.74

11.26
0.90

15.55
0.73

No. of Options 89 256 156 501

Average % Error 3.86
1.73

2.82
0.58

0.58
0.61

2.29
0.47

Out Average Abs. % Error 11.27
1.21

7.33
0.40

5.60
0.38

7.42
0.33

No. of Options 75 258 128 461

Average % Error 2.15
1.18

-0.12
0.59

-1.68
0.61

-0.38
0.42

At Average Abs. % Error 6.08
0.79

5.20
0.35

3.27
0.37

4.97
0.26

No. of Options 36 123 62 221

Average % Error 0.10
0.64

-1.54
0.34

2.31
0.43

-1.51
0.25

In Average Abs. % Error 3.77
0.43

3.65
0.23

3.47
0.30

3.59
0.17

No. of Options 454 176 73 303

Average % Error -1.47
0.46

-1.29
0.31

-1.41
0.66

-1.31
0.29

Deep In Average Abs. % Error 2.73
0.33

3.04
0.23

2.05
0.31

2.79
0.19

No. of Options 44 99 20 163

Small numbers are standard deviations.

Table 6.4: Risk-free daily profits (SEK per option and day) from using a dynamic

trading rule.

Oct. 93 to Feb. 94 July 94 to Dec. 94 Both Periods

Mean 0.43 0.39 0.41

Stoc. Volatility Median 0.18 0.37 0.29

Mean Std. 0.21 0.33 0.20

Profit

Mean 0.054 0.14 0.090

Black-Scholes Median 0.023 0.19 0.16

Mean Std. 0.37 0.10 0.16


