LUND UNIVERSITY

Some Extensions of Poincaré-Bendixson Theory Applied to a Resonant Converter.

Melin, Jan

2005

Link to publication

Citation for published version (APA):

Melin, J. (2005). Some Extensions of Poincaré-Bendixson Theory Applied to a Resonant Converter. [Doctoral

Thesis (compilation), Mathematics (Faculty of Engineering)]. Numerical Analysis, Lund University.

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 17. May. 2025

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/dffb680e-0a26-466a-ab44-42f7d8d175e4

Copyright © IFAC Analysis and Design of Hybrid
Systems, Brittany, France, 2003

IFAC

O

Publications

www.elsevier.comylocate/ifac

A LIMIT CYCLE OF A RESONANT CONVERTER
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Abstract: We study a piecewise linear system approximating the behavior of a switched
DC/DC-converter. We give conditions for a unigue limit cycle. The siability of a state
space trajectory controlled converter is addressed. The discontinuity curves have been
carefully exgmined with respect to uniqueness of intersecting solutions. Copyright ©

2003 IFAC
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1. INTRODUCTION

A group of physical system can be characterized by
abrupt changes in its dynamics. Modeling that group
of systems as a switched system has gained increased
attention during the last years. See for instance
(Schaft, er al.,, 2000). The switched model enables
more accurate analysis and more advanced control of
the physical system compared to modeling with
averaging methods or ignoring part of the dynamics.
The resulting contro} algorithms are often calculation
intensive but the development in real time capacity
makes them possible to implement.

General analysis and control of switched systems is
difficuit and this report focus on the principal
behavior of a certain controlled switched system, a
switched electrical power converter. Applying
switched control of a switched systemn, like an
electrical power converter, can give rise to
mathematically interesting solutions of the switched
differential equations describing the controlled
converter. Global analysis of the switched system is
of course crucial when designing swiiched control of
the physical system

The use of switched electrical power converters is
widely spread due to the extensive use of electronic
equipment. The demand of high bandwidth
performance motivate modeling and control of the
switched converters as switched systems. The
analysed converter is of resonant type, having many
advantages such as fow switching losses at higher
switching frequencies, and easier electromagnetic
interference (EMI) filtering. However the control
will be more complex compared to pulse width
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modulation, PWM,  controlled converters,
{Kazmierczuk and Czarkowski, 1995). The output of
the converters is the current on the secondary side of a
transformer, iy{z), see Fig. 1. The resonant converter
is applied in a high voltage equipment with a
capacitive load property. The capacitive load and the
high transformer ratio, », will give a comparatively
large load capacitance, making the load voltage, v,,
only slowly varying. The converter is controlled by the
supply voltage, £, and the four transistors Z; - Z,
determining the voltage across the resonant circuit,
U 45 , between junctions A and B. The control of the
converter is performed with non linear state space
feedback, determining the voltage U, to be
E,—FE or 0. The transistors are modeled as ideal
switches.

Different control methods have been proposed for the
control of series resonant converters. A rather general
non linear control method is chosen in this report
implying state region feedback similar to the
controliers suggested in (Oruganti and Lee, 1984), and

Fig. 1. The DC/DC converter circuit.



later by many authors ie. (Rossetio, 1998). The
closed system can in these cases be characterized as
a switched system, in fact it is picce-wise linear.
Resent works in modeling and analysis of switched
converters as a switched system can he found in
{(Escobar er al. 1999) and (Huitgren er al., 2002).
Anaiysis of piece-wise linear systems can for
instance be found in (Johansson, 1999) and
{Pettersson, 1999},

This report is devoted to a mathematical analysis of
the rich kind of solutions of the switched differential
equations that can occur in a controlled switched
system of the presented type. Our switched model is
a planar, linear system with discontinuous right hand
side, also called a Filippov system (Filippov, 1988),
We have two discontinuity lines in the model, one
circle centered in origin and the x, -axis (Alexander
and Seidman, 1998). We will prove regularity in
most parts of the x,x,-plane (Grimshaw, 1993),

(Yan-Qtian er al, 1986) and that we have unigue
limit cycles for some of the parameter values. At
some parts on the discontinuity fines we have
irregularity, so called sliding modes (Filippov, 1988),
(Utkin, 1992), (Imura and Schaft, 2600), Boukal and
Krivan, 1999, which is treated according to Filippov,
We will prove that the model is dissipative, (Savelév,
1991}. On the sliding mode part of the x, -axis, we

have numerical problems due to the simulation, so
called “chattering approximation” (Alexander and
Seidman, 1998), (Leine et al., 2000). In chapter 2 we
will introduce the model of the system, prove
symmetry, dissipativity , and discuss some parameter
values. In chapter 3 we will loock into the
discontinuity curves according to Filippov, look into
sliding mode phenomena and prove existence and
uniqueness of 4 limit cycle. In all simulations we use
the parameters:

R=020, L=31-10"%H and C=2-107°F

2. THE MODEL

The model for the resonant converter with the
suggested feedback in case of constant load voltage
Uy, with uc=x, and i,=x, is given by:

X3
(s
(1)
) X+ R xy—u;
Xy = e L
L

where the control parameter u, takes the values of
wm=E-Uy, w=Uy-E, u=-U, and

1y = U, in their respectively regions Q, j < {1,2,3,4}.
The regions are defined by:
DXy >0, ,\'22 +x22 < i;,z

£
2 ;2
Q0 xy <0, x° +x22 <A,

Where 4 >0 s

2 .2
Q40 x>0, x,z " >
s .2
0 x <0, x +x32 >,

the reference current.

170

(1)

D
N,

Q4

Fig. 2. The switching regions of the system.

In the circuit topology the load voltage U, can not
exceed the supplied voltage £, so we have
E2Uy>0. The fixed points are (x,x9) =(u;,0),
the location and numbers of the fixed points depends
on the parameters E,[/, and i, The eigenvalues are

A=-ati-b, where a=—5— and b= LK .
2L \/LC 41}

The circuit is supposed to have resonant property, so
let. R>0, L>0, C>0 and L/C>R /4. This

means that a and & are positive real numbers and
the fixed points are stable foci. We shall assume the
above conditions for the parameters through out the
paper and our simulation parameters satisfy these
criteria. We shall need the following symmetry
property later on.

Lemma 1: The vector field of the system (1) s
symmeltric with respect to any straight line through the
origin. So called reflection symmetry in the origin or
center symmetry.

Proof: The differential equation for the trajectories is:

Lo B
dx, C xy+R-x,-u;

Change x; to —x, and X; to ~x,, then we have
dx, L
dy,  C x+R-xy+u,’

uy =iy and #y = -u;. This completes the proof,

X2

but

Remark: Lemma 1 implies that any closed curve
h(x),x,) =0, which is a solution to the differential

M-x),—xy)=0. A
to the system (1)

equation  above  satisfies
consequence is that limit cycles

posses that property.
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Fig. 3. Centre symmetry of the system.

We now prove that all solutions enter a bounded
region in the phase plane.

Theorem 2: The sysiem {1} is dissipative.

Proof: Choose a starting point  (r;,0)  with

¥y >i, and r, >U,. The solution then enters £,
and calculations give eq. (2):

[x, (N=Us+{ry - UU)«e”‘” -{Cos(b{) +—Z— - Sin(bt))

{xz(f) =1 ;LUO -e” -sin(br)

If r, is large enough, the solution is in 3, when
O <<y, without intersecting the circle. Where 4,
such that x,(¢)=0, that is
t, =xfb. The solution intersects the negative x-

15 the smallest >0

axis at  {n.,0), where n =ux{4), this implies
_er
n=ly~(r~Uy)e ? { 3 ). We have
_an _ex _ar
nelg—r-e P +U ¢ ® > b >-p.

Lemma [ implies dissipativity. This completes the
proof, see Fig. 4.

TRO, E=L0, U0= 100, =50, 31021280 <200
1506 T T T

wVE L , ...... ,w ,,,,,,,,, (, .......

o

Stste -

T —— d - - -
B 5] 106 A0 G 50 1036 t5E;
State 21

Fig. 4. The system is dissipative.

3. EXISTENCE AND UNIQUENESS OF A LIMIT
CYCLE

We shall begin this section by introducing our main
result. There are two bifurcation parameters the load
voltage, U, and the difference between the input
voltage and the load voltage, E-U .

Theorem 3: Ler Uy<z i, and E-Uy<:z-i, ,

where z=(LJC-1F +R*, i

and Uy <i,, then the system (1) has
i} no fixed points and
i} a unigue limit cycle, if R =90.

E-U,>i,

Remark: We conjecture that ii} in theorem 3 holds for

R >0, but it seems difficult to construct a proof of
this fact. Our simulations have so far not contradicted
this. We will later on in this paper divide the proof of
the theorem into two cases and we will show case 2

only when R =10,

By proving Theorem 3 we shail study our two
discontinuity curves. Filippov defines three types of
sliding modes: transversal, repulsion and attracting

sliding mode. Following Filippov we let f* and
ST denote the two fields at different sides of the

discontinuity curve

P(x,,x,)=0.

¥. given by the equation
Define /* =a- f* +(1—a)- /™,

<gmd¢), f‘)
(gradw. f *F)

to Filippov we now have i= f%(x), xe .

Gsa<t, where =

. According

Remark: We introduce the definition of regularity.
With regularity we will mean uniqueness of solutions.
We have that property every where in the phase plane
ouiside  the discontinuity curves, and at the
discontinuity curves where there is transversal sliding
mode.

3.1 Stiding mode at the x| — axis.

Transversal sliding mode, at the x;-axis, occurs in the
intervals }Aoc,wi,.{ and ]i,.,oo[. Repulsion sliding
}-i,.,i,.{, Aftracting
sliding mode will never occur at the x,-axis. See Fig.
3.

mode occurs in the interval

X,
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Fig. 5. Veclor fields of the system.



3.2 Sliding mode at the circle.

Transversal sliding mode will appear where there is
no attracting sliding mode. Repulsion sliding mode
will never appear on the circle. Attracting sliding
mode will appear between the points A and B,
described below. Lemma | implies that we only have
to consider the lower half plane. Let 4 be the point
where the attracting sliding mode starts and B
where it stops. See Fig. 6.

"Theorem 4: 1) if then

A :(5&",-\{1‘,2 -2 } where

{é“i)(E—Ug)WR'\/zz 4= (E-U,)

E-U,<zi

r

=

)
i= :
Jie
Proof:
(% xz)a(fz__xs +R'X3+E..U0)
k] C’ L
We have

e
in respectively region and @(x,,x,) = x,° +x,° . But
B is determined by (gradap, ¥ ‘”> =0 this gives us
X. A is determined by ( grade, | ") =0, replace

E-Uy, by -U,
completes the proof.

in X. This gives us % and

The following lemma describes the location of 4 and
B.and can be proved by elementary calculations.

Lemma 5: /) if E-Uy<z-i then
fe[—-R-t",(L/C“E)'I"]
z z

: . Ril

i UySz-i, then xe{——ir,— 'J.
z

DY E-Uyszoi, then x>0 if and only if
E-Uy>R-0..

4} The attracting siiding mode part of the circle can

e a R-i
be reduced to only one point ¥ =% =—-=-"% fand

-
“

onlyif E=U, =

For later use we calculate some points, fa, g and 'y,
conpected {0 the previous introduced points on the
circle. A and B.

Lemma 6: 1) Ler (r,.0) be the starting point at the
A g p
positive x| -axis outside the circle for the solution

which intersects the circle at 4,  then
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Fig. 6. Atrracting sliding mode at the circle.

2
r, =U, +\/b31}(iﬁ nfz)+(a14/i,?‘ - % +U§—z) :

blyfi,” -7 \
aly)i} — % +U, - % J

2) Let (rg,0) be a starting point at the positive x, -
B g P 14 1

1
where m-g- T~ are

axis oulside the circle for the solution which intersects
the circle at B, then

2
ry =U, +\/b2L2(a‘,2 ~i2)+(aL1/f,2 -5+ U, —,EJ .

where ty =—-| 7 ~arctan

1
b

\
bLli,? ~ %2
Lal R +Uy~%

3} Let (rg.0) be the point at the negative X, ~axis
where the solution from B intersects the Xy -axis, then

a-x

rp=Ug=(rg=Uy)e * . SeeFig 7.

Proof: We shall start with 2), a solution in Q, with
starting point (r4,0) is according to eq. (2)

(=, +(rg —U,)- e -[cos(bt)i«—g-- sin(br])

rg=Us
H{t) =~ ~e - sin{br
A== (b1)
If this solution intersects R we  have

xitgl=x
Sy - IF we solve this system with
xy{fg)=—Ji,” —x°

respect to 75 and rp the result foflows. 3 follows

SR, R0 2, E=500, Lt i)

State ¢

B i [

Fig. 7. Stiding mode parameters.

euﬂ

e



from formula (3). 1) follows by replacing x by ¥ in
tg and ryp . The proof is complete.

Lemma 7: If a solution intersects the circle berween
Aand B, the solution slides along the circle to the
left and leaves itat B.

Proof: From the proof of theorem 4 we have f* and

f7, calculations give j'“(x,,xz)m(xz/c,w—xl/(i‘)

) X =x,/C L.
this implies {* 2/ . Let the solution intersect
iy =-x/
the circle at (a,—\}r}z ~a’ ) between 4and B, then

we have

x ()= a-coslt/C)- \/ a’ -sin(;/C)
Xy (ty=—a-sinft/C)~ i, —a? cos(r/C')

This solution slides aleng the circle to the left and
leaves at B enters , and intersects the negative

x; -axis at (ry,0). This completes the proof,

Remark: Lemma [ implies that there is a
corresponding attracting sliding mode part of the
circle in the upper half plane.

Lemma 8: The systent (1) has no limir cycles entirely
inside any of the regions Q,,i =1234.

Proof: Let f be the vector field of the system (1),

then the divergence of f is given by:
HER-x - xq—u\

; I -0
I, m) =5 ( cJ*axz ( A

=—R/L#0. This completes the proof.

Remark: Theorem 2 implies that the svstem (1) has
no limit cycles entirely outside the circle.

Lemma 9: There exists a trajectory yo with starting
point (rp0), re > i, such that y. enters the circle
in the fourth gquadrant at C, where C is located 1o
r‘he'right of A. Furthermore then y. intersects the

circle at B, enters S, and intersects the negative

xpaxis at (rg,0}.

Proof; Let R=0, then
wlJ 7
= E, Yy and fz——?”w». In ©, we have the
LiC -1 LiC-1

solution:

Y (=Uy—E+(r- +E-U;) cos(bt)

e E-U, (4).

Exa ()=~ sin{ bt
l 2 (1) oL sin{ht)

If this solution intersects the circle at B we have:
x{)=x
. this implies
_"'2

EAGEEN A
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4E-LiC-U}

13

e :b’§+\/L/C-if~—

L/C-1
put this into (4) and use xi(r)2 + Xy @)* .»—»1',,2 and then
we have the coordinates of point
£
J2E-Uy | (2B-0,Y
| Lc- L LiC-1 ]

This proves that C is located to the right of 4 when
R=0. Now let R>0, but still small. Then 4,8
moves to the left and C to the right. This proves the
lemma.

Remark: Such a trajeciory yo never intersects the
anracting sliding mode part of the circle, exceprt at B,
and we have: i, <ro <r,<rg.

3.3 Proof of Theorem 3
We divide the proof info two different cases:

Case 1,
(~r3,0) intersects the attracting sliding mode part of

re S—rg <rg. A trajectory which starts in
the circle and eventually intersects the negative x, -
axis at  (r;.0). Lemma ! implies that
trajectory is a limit cycle, see Fig. 8.

such a

Case 2, i, <~rg<r. . We will prove this when

R=0. Let y, be a trajectory with starting point
{70, 1 > i, ¥, enters €, and intersects the circle
at C":{c[,c5) passes through the circle, leaves it at
C’i(cy,cy) and reaches the negative x, ~axis at

(r"0). sce Fig. 9.

SR, R=0.2, =500, U0=10, w21

T T T ¥ T T T

5 A

g

Slate 12

460 L3000 -H0 e W0 XD A A
State x1

Fig. 8. Limit cycle of the system
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Fig. 9. Limit cycle calculations
Let %, c¥) be either one of ¢ or(”, eq. 2 in O
gives:

Uy = E+Urf + E~Ug)-costbr} = ¢f

JtEols -sin(br)=c§

using sin’(br)+cos’(bry =1 gives

2

B,V —bied

Dot =1, and (§F =if -\
RAE-Uy | \R+E-Up QF =ha
implies
G HE Uy + L1 €=tV =~ HE-Up)ed ~L:C-i7 =0,
(" N

H=U, -£+J(E-Ug)3 wLIC TP+ HE-Ugkt = (L/C ~1He!)?

now replace C? with ¢, and ¢ respectively, thus:

=l ——£+J(E~U)3 2w LIC2 +NE =Ugle] —(LIC —Bic))?

|15 = Uy~ E 4 LB~ Uy P + LIC i + AE =Ugke] =(L/C ~Ine3)?

o UE-Uy)
ToLic-1

“virtual” trajectory with starting point (#,0) through

~c}, (20 consider ' the

C’, see Fig. 9. according to (1) we have:

(LIC~10e] Y +2Uyc) — LIC-iP = W + (¥ =0 =

Uy + LIC(LIC =i+ ULIC =W ~(L] C =] + UG
Lic-i
eq.3 implies n'=2U,-#, let K=-r

’

=

e
¥ =2U, +r,, put this into the formula for ¢], then

Uy +JL."C(L/’CM W2 +UE —1LC—br =L C-Yrliy
LiC~1
(2%

,

and using implies:

never intersects the sliding mode part of the circle. We
have shown that if we choose 7, as in (3'), there is a

unique Hmit cycle in this case.

4. CONCLUSION

In this paper we have proved the existemce and
unigueness of a limit cycle of a piecewise linear
system with respect to two bifurcation parameters: the
load voltage and the difference between the input
voHage and the load voltage. We have proved some
properties of the system, such as symmetry and
dissipativity. Our findings show that the dynamics of
the system become much more complicated if the two
bifurcation parameters values increase.
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