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CHAPTER 1

L. INTRODUCTION

Heating of solids is an important engineering problem. A typical
example is heating of ingots and slabs in the steel industry.

Other examples are found in precision instruments like frequency
oscillators and micro calorimeters, where it is desired to keep

certain components at a constant temperature.

The purpose of this thesis is to explore some control problems
associated with the heating of solids. A characteristic feature
of the problem is that the controlled object can be described by
a parabolic partial differential equation. An important problem
is to find suitable lumped models, which can be used for

analysis and synthesis of control strategies. Techniques for con-

trol system design is another crucial problem.

The thesis is partly analytical and partly experimental. The ex~
periments were performed using a simple pilot plant. An overview

of the main results are given below.

Apparatus

The apparatus consists of a rod and a concentric guard tube. These
are thermally connected to heat sources at their end surfaces. The
guard reduces the heat loss rate from the rod considerably. In
fact, the employed configuration makes it possible to obtain a very
accurate realization of a one-dimensional heat diffusion process
without using vacuum equipments. The temperature along the rod is
measured using thermistor sensors. The heat sources consist of Pel-

tier elements. In some experiments the process is connected to a




process computer using A/D- and D/A-converters.

Model building

Mathematical models of the rod and its environment are required
for analysis and design. In this thesis input-output models are
obtained using system identification techniques and state-space

models are obtained from basic physical laws.

Input-output models - Clustering

The rod is a linear infinite dimensional system. The transfer
function, relating the temperature at a point z on the rod to one

end point temperature, has the series expansion

Ky (2)

P +T

(1L.1)
1 ks

G(z,s)

™8

k

The transfer function is estimated from measurements, using sys-
tem identification techniques [2]. Statistical tests indicate that
the appropriate orders of the obtained models are relatively low.
This is explained by the fact that the models are estimated from
sampled data. Furthermore, it is found empirically that successive
terms in the expansion (l.1), having gain factors of the same sign,
are identified as a single term K/(1l+sT), where K is approximately
equal to the sum of the gain factors and T is some average value

of the time constants of the clustered terms.

State~space models

It is straightforward to obtain a model using physical laws. This
leads to partial differential eguations. Lumped state-space models
of the rod have been derived using finite-difference techniques.

It is found that the accuracy of these models is essentially deter-




mined by the number of intervals used and that a refinement of
the approximation to the partial derivatives only improves the

accuracy to a certain extent.

Determination of thermal diffusivity

To obtain models based on physical equations it is necessary to
know the thermal diffusivity. A method to determine this quan-=
tity was given by the Swedish physicist Angstrdm [1] in 1861.
This method is still considered as one of the most accurate
methods for determining thermal diffusivity. In this thesis
Angstrém's method and a maximum likelihood method are used to

determine the thermal diffusivity of the rod.

Errors in measuring the thermal diffusivity of the rod mainly
originate from systematic errors in the sensor position and the
characteristics of the temperature transducers. Compared to the
Angstrém's method the maximum likelihood method has the distinct
advantage of allowing a larger sensor separation. It is also
possible to estimate the characteristics of the temperature
transducers. The relative errors in the thermal diffusivity can
thereby be reduced. The conclusion is that the thermal diffu-
sivity of the rod can be determined approximately three times
more accurate using the maximum likelihood method instead of

the Angstrdm's method.

Control design

The nature of the heat equation implies that it takes conside-
rable time for a solid to reach a steady state temperature pro-
file. The purpose of many control systems is therefore to speed
up the time required to reach equilibrium. This means that it

is quite reasonable to consider dead-beat control strategies.

A multivariable dead-beat theory for sampledmdata control has

been developed. The following types of controllers are derived




state dead-beat controllers
output dead-beat controllers

constrained output dead-beat controllers

o 0 O O

minimum gain dead-beat controllers

The dead-beat controllers drive the state or the output of a
discrete-time system to zero in a minimum number of time steps.
The output dead—~beat controllers may give an unstable closed
loop system and, therefore,it is important to consider const-
rained output dead~beat controllers which always give a stable
closed loop system. Computational aspects of the algorithms for
computing the dead-beat controllers are presented. The approach
used is basically geometric and much inspiration comes from

Wonham [3].

Experimental results show that the lumped models proposed may
be used to estimate the profile of the rod accurately using
Ralman filtering techniques. Moreover, these models well pre-
dict the performance of the closed lcoop system, obtained with
dead~beat control. The experiments also show that the dead-beat
control strategies are very relevant for controlling the diffu-

silon process.

Organization of material

In Chapter 2 the apparatus is described in detail. Physical models
of the rod are also derived. Particular attention is given to the
modelling of the heat loss rate from the rod. The lumped state-
space models of the rod are given in Chapter 3. In Chapter 4 the
input-output models of the process are found. The clustering
effect is accounted for in detail here. The Angstrdm's method and
the maximum likelihood method are described in Chapter 5. A dis-
cussion on the systematic errors of the two methods is also given.
The multivariable dead-beat control theory is developed in Chapter
6. Several engineering aspects of the controllers are given here.
Finally the optimal filtering and profile control experiments are

presented in Chapter 7.
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CHAPTER 2

DIFFUSION PROCESS, MODELLING AND MEASUREMENTS

1. INTRODUCTION

The process is a laboratory pilot plant. It consists of a long
copper rod. A guard tube is used to reduce the heat loss from
the rod. The rod and the tube form a concentric cylindrical
annulus. Silver plates thermally connect the end surfaces of
the rod and the tube. The heat sources consist of Peltier ele-
ments which uniformly heat or cool the silver plates. Thermis-
tor sensors are used to measure the temperature along the rod.
The input and output variables of the process are the end point
temperatures of the rod and the temperature in seven equidis-
tant points along the rod respectively. The process operates in

' o
the temperature range 20 °c - 30 “c.

The process has been designed in such a way that it should well

be described by a simple model. To reduce the heat loss complete~-
ly, it would be necessary to evacuate the space between the rod
and the guard. The complication of vacuum equipment is avoided
by accepting a small heat loss. A static and a dynamical model

are used to describe the conduction of heat in the rod. The static
model is primarily used for design purposes. The heat loss rate
from the rod is assumed to be proportional to the temperature dif-
ference between the rod and the tube in this model. The dynamical
model is used for parameter estimation and control. In this model,
the heat loss rate from the rod is supposed to be proportional to
the temperature of the rod only. Although this model is less accu-~
rate than the static model, it describes the dynamics of heat con-

duction in the rod very well.




2. APPARATUS

A photograph of the pilot plant is shown in Fig. 2.1. This plant
consists of a heat process, a temperature transducer and control
unit, a computer interface, a power control unit, a power ampli-

fier and a fan unit.

Heat process

Temperature transducer
and control unit

Computer interface
Power control unit

Power amplifier

Fan unit

Fig. 2.1 - The pilot plant.

Heat process

The experimental process is shown schematically in Fig. 2.2. The

rod is 14 mm in diameter and 450 mm long. Nine 0.06" Veco 32A129




}glas probe thermistors are placed into 3 mm deep equidistant
holes along the rod. The spaces between the thermistors and the
rod are filled with silicon paste. Two of the nine thermistors
are situated at the ends of the rod. The holes are drilled with
a 1.2 mm drill. All diameters are less than 1.27 mm. The sepa-
ration of the centers of the holes is # 0.1 mm. The nine ther-
mistors are selected from 20 units. They have diameters of 1.22
t 0.05 mm and off-center distances of the beads less than 0.05

mm. Therefore, the sensor separation and its maximal error be-

come
d = 0.05625 = 0.0003 m (2.1)
Cooler
Ui l__D re.lc::jeurlrclﬁor o Peltier elements
Ye Silver plate
- Rod
i g ™~ Guard tube
Y <
Y; <
Yi <
Ys <
Ys 4
Y; 4=
Ye, ’
‘—D Temp
Uy regulator
Fig. 2.2 = A schematic diagram of the experimental process.

A guard tube, made of the same material as the rod, is used to
reduce the heat loss from the rod. The rod and the tube form a
concentric cylindrical annulus. Silver plates thermally connect

the end surfaces of the rod and the tube. The heat sources con=-




sist of Peltier elements. One side of the Peltler elements is
kept at constant temperature by water cooling (see Fig. 2.3).
A heat insulation, made of small polystyren balls enclosed in

a box, surrounds the guard tube.

Guard tube zz==F
— N
Cooler
14
/% Peltier elements
Rod 41\ Silver Plate

AANAN

Coolant

N\

Y

Fig, 2.3 - A figure, on a reduced scale, showing the connection
of the cooler, the Peltier elements, the silver plate,

the guard tube and the rod.

The rod and the tube are made of commercial, pure, oxygen free and
high conductivity copper. Chemical analyses show that the rod and
the tube consist of 29.7 = 0.2 % and 99.8 * 0.2 % copper respec-
tively, where the percentage deviations are the 3o0-~limits. The a-

mounts of arsenic in these materials are less than 0.1 %.

The Siemens PKE 36E 0260 Peltier element is made of a semicon-

ductor material and consists of 36 pairs of small bars. Each pair
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is made of one n-doped and one p-doped bar. The bars are joined
with copper bridges. The pairs are connected in series elec=

trically, but in parallell thermally. The current through the

element causes heat to flow from one side of the element to the
other. The direction of the heat flow 1is altered by a reversed
current. For small currents, the power transferred through the
element is proportional to the magnitude of the current. How-

ever, for large currents, the Joule heating of the elements is
appreciable. The maximum cooling power of a Peltier element is
23 W and is obtained at a current of 10 A and zero temperature
difference across the element. Each servo contains two Peltier

elements, which give a maximum cooling power of 46 W.

Temperature transducers

The temperature transducer consists of a resistive Wheatstone
bridge and a differential amplifier (see Fig. 2.4). The Veco

322129 thermistor is placed in one leg of the bridge circuit.
This thermistor has a nominal resistance RO = 2000 @ at 25°C.
Under the laboratory conditions, the maximal yearly change in
the resistance RO is 0.05% or 1 Q. At 25OC, the time constant
of the thermistor, in still oil, is 0.5 s and the temperature

coefficient is ~0.039 1/°C

The resistance versus temperature characteristic of a thermis-
tor is non-linear. In [6], it is shown that by a proper choice

of the Thevenin resistance R with respect to the thermistor

th'’
terminals, the transducer can be designed to give an almost lin-
ear voltage versus temperature characteristic over a fairly

large temperature range. For proper choices of R the maximal

th'’
theoretical linearity errors of the thermistor used are 0.003 %
and 0.06 % in the temperature ranges 24 °c - 26 °C and 20 °c -

30 °c respectively. It also follows from [6] that the linearity

is not sensitive to variations of the resistance Rth°

A circuit diagram of the transducer is given in Fig. 2.4. In this
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figure, the thermistor resistance is denoted by RT and the

Thevenin resistance is denoted by Rth‘ o
and pr are used to adjust the zero level and the voltage swing

The potentiometers Ry

of the transducer. The bridge voltage is E= 0.306 V. This wvalue
was chosen so that the self-heating would be much smaller than
0.01 °C. Assume that the amplifier has infinite gain and that
its input current can be neglected. With the notation in Fig.

2.4, the output of the transducer then becomes

e = <Rth I S . I > KE (2.2)
10 \R Ry ~ KK, K E[+R,

where

Rl: R10+Rlp

Re= REg+Re

Rin= RgFR{R,/(Ry+R,) (2.3)
and
Rl/(Rl+R2)= 0.42
= l+Rf/Rin= 686 (2.4)
Re. R
fo "f
T
+
Fig. 2.4 - A schematic circuit diagram of the transducer.

Resistances: R1,=300 @, R,=R_= 500 @, Rfo=450 ka

Potentiometers: Rlp= 150 @, pr= 200 k&
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Calibration

The transducers are calibrated against a mercury-in-glass ther-
mometer in the temperature range 20 °c - 30 °c. For calibration,
the thermistors and the thermometer are immersed in a well stir-
red temperature bath with a long term stability of 0.01 °c. 1f

stem-exposure corrections are made, the accuracy of the thermo-
meter is 0.01 °C. In [6] it is found that the maximal linearity
error and the slope error of the transducers both are 0.01 °c

°c - 30 °

[6] that the zero adjustment error 60 of the transducers is less

in the temperature range 20 C. Moreover, it follows from
than 0.01 °C in this temperature range. Neglecting the linearity
error of the transducers, the relation between the body tempera-
ture T [ C] of a thermistor and the output y [V] of the corre-
sponding transducer is given by

y= (l+as)(T~25)+a 20<T<30

OI
{58|< 0.002, ]aO]< 0.01 (2.5)

The 12 hours drift of the transducers ig 0.001 OC,

Temperature servo

The open loop system consists of the Peltier elements (see Fig.
2.2) . The Bode diagram of the transfer function, relating the
voltage across the Peltier elements to the end point temperature
of the rod, is shown in Fig. 2.5. The temperature regulator con-
sists of a PID-regulator followed by a power amplifier. This re-
gulator also has nonlinear compensators, to eliminate the influ-
ence of the nonlinearites of the Peltier elements, due to Joule

heating.

The PID-regulator is implemented as a cascade of a PI-network and
a lead compensator. The circuit diagram is given in Fig. 2.6.
Assume that the amplifiers have infinite gains, that their input
3>>R R / R +R ). Provided that

no zenerdiod is active, the transfer func1on of Lhe PID-regulator

currents can be neglected and that R
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10 <

Compensated system

T

0 i ™.
\\\\\\ \\\\\

Uncompensated system

N
N N
-1.0 \\\
2 \
2 A
C
£ \\
© =20
01 0.2 05 1.0 20 5.0 10.0
Frequency [rad/s]
0
\\\
-90 —— \:: —Compenlscted systelm
= :S Unclompenscted slst m
g ~ T
o \ \\
_ : AN N
Q 180 A
0 N N
o
& A
0.1 0.2 05 1.0 2.0 50 100
Frequency [rad/s]
Fig. 2.5 - Bode diagram of uncompensated and compensated

Peltier elements.
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is given by

& Ly _Stb_
Ts ' s /N+b

and
(e B ITREV/R3 Rey
Rg+Ry 1+R,/Rg; R_IR,
1 Ry UR/Rg g o 0ss
T R*R) I3R;/Rp;  R,C4
1
p= = 3.1
C
R.Cy

N= 1+ R7/R6 = 11

(2.6)

(2.7)

(2.8)

In order to increase the corner frequency T of the PI-network,

the integrator is connected to the differential amplifier via a

voltage divider. The corner frequency of this network may be

adjusted with the potentiometer Rp

By means of the potentio-

meter szp' the gain K of the PID-regulator is varied. The out-

put swing of the lead compensator is matched to the input swing

of the power amplifier by inserting a voltage divider between

these two circuits.
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Summing amplifier ‘ integrating compesator Lead compensator

Fig. 2.6 - A schematic diagram of the PID-regulator
Resistances: R1=R7= Rf20= 100 ke, R2= 390 k@, R

Rg1= Rf1p= 39 k, Rg=8.2 ko, R.=Rg= 10 ka, Ry=

2 kQ, Rflp= Rf2p= 500 k@

R

377
1 k@

5

Potentiometers: Rp

The power amplifier supplies a maximum direct power of 130 W at a
resistive load of 1 Q. The gain of this amplifier is 10. The in-
put and output impedances of the amplifier are 500 kQ and 25 mQ
respectively. Moreover, the bandwidth of the amplifier is 110
rad/s. The transfer function of the temperature regulator becomes

Gk(s)= 10 GPI (s) (2.9)

D

The Peltier elements require a maximum power of 80 W at a current
of 10 A.

The Bode diagram of the compensated open loop system is given in
Fig. 2.5. For high frequencies, (2.8) and (2.9) indicate that the

measured phase angle curve of the compensated system should go
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somewhat higher. The phase angle decrease of the PID-regulator is
caused by a filtering capacitor in the regulator [7]. The inte- ;
grating compensator introduces a phase shift of -2.2° at the
crossover frequency W= 2.2 rad/s of the compensated system. The
lead compensator gives a maximum positive phase angle of 57° at
the frequency O e bVN= 10.3 rad/s. As a rule of thumb, the maxi-

mum phase lead angle should occur at a frequency close to 0. From

practical experiences, it was found that by choosing 0 ax considr-
erably larger than W the creeping tendency in the step response
of the compensated closed loop system could be eliminated. Since
the uncompensated open loop system is not sensitive to high fre-
quency noise, it is possible to use a relative large value of N.
The parameter K is adjusted so that the compensated closed loop
System obtains an overshoot of 4 % at reference temperature chan-
ges of = 1 °C., The bandwidth of the compensated closed loop system
is Wy = 4,4 rad/s.

The PID-regulator contains two non-linear cempensators for the
Joule heating of the Peltier elements. The first compensator,
consisting of a single zenerdiode, is inserted across one of the
feedback resistances of the differential amplifier in Fig. 2.6,
This compensator gives the amplifier a voltage dependent gain.
The gain may be adjusted with the potentiometer Rfq - During a

heat cycle of the rod, the gain of the amplifier is reduced.

The second non-linear compensator is a limiter and consists of two
different zenerdiodes, connected in series. The bounds of the
limiter are chosen so that the same maximal heating and cooling
power  is obtained in the Peltier elements. The zenerdiodes used
have steep forward Characteristics, which give sharply defined

bounds of the limiter.

The step responses of the temperature servo are shown in Fig. 2.7
for changes in the reference temperature of +0.,5 OC, +1 °c and
+2 °c. From this figure, it is seen that the solution time (5 %
of final value) of the servo increases somewhat with increasing

step sizes. It also follows from Fig. 2.7 that the solution time
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Negative step
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(@) 0.6 0.5
0.4 0.3
0.3
o 0 0.2
@
5 0-2# 0.1
g
¢ 0.1 0
£
2 0 -0.1
(b) 1.25 1.00 \
1.00 / 0.75
'© 0.75 050
2 !
o
§ 0.50 0.25
e
% 0.25 0 —_——
2 0 -0.25
(c) 25 2.0
2.0 — 1.5 \
‘C 15 / 1.0 \
o
é 1.0 0.5
s ool \
o 05 0
o
|
2 0 -05 \
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time [s] Time [s]
Fig. 2.7 - Step responses of the temperature servo for the follow-
ing values of the reference temperature changes
(a) +0.5 °C
(b) +1 °C
(c) =2 °c
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o
of the servo is 2 s for reference temperature changes of +1 “C.

It is found in [7] that the stationary error &, of the servos is
less than 0.01 °C in the temperature range 20 8C ~ 30 °C. There-
fore, the output u [V] of a servo and the corresponding end point
temperature T [°C] of the rod are statically related by (2.5).

O‘I

The 12 hours stability of the temperature servo is 0.001 C.

3. MATHEMATICAL MODELS

A static and a dynamical model for the process are derived in

this section. The static model is primarily used for process
design. Ideally, there would be no radial heat loss from the rod,
if the rod and the tube always had the same temperature distri-
bution. The temperature errors due to the temperature drops in
the silver plates and the‘heat losses from the rod and the tube
may be calculated from the static model. Since the temperature
drops decrease with the thickness of the plates whereas the rise
time of the servos increases with the thickness of the plates,
this model is useful for the trade~off between the servo responses

and the temperature errors in the rod.

The dynamical model is primarily used for parameter estimation

and control design. Although, the heat loss rate from the rod is
modelled less accurate in this model than in the static model, it
describes the conduction of heat in the rod very well. In Chapters
4 and 7 it is shown that the model is adequate for parameter esti-

mation and control purposes.




Nomenclature

The following notations are used:

IR

Z
r

w

=T o T

t

=t /(22 fa)

T

space coordinates in cylindrical system

radius

length

length of rod
perimeter

area

time
dimensionless time

time constant

temperature

ambient temperature

temperature difference

boundary temperatures at z=0 and z=%
heat-transfer raté

heat-transfer rate per unit volume
heat~transfer rate loss

heat—-transfer rates at z=0 and z=2

density
specific heat at constant pressure
thermal conductivity

effective thermal conductivity
thermal diffusivity

kinematic visconsity
volume coefficient of expansion

emissitivity

convection heat=transfer coefficient
radiation heat-transfer coefficient

surface heat-transfer coefficient

19

K

K (°C)
% (°c)

Wh® K
W a? K
w,mz ¢
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n= prA coefficient of surface heat loss 1/s

R p thermal resistance W/ K

g acceleration of gravity 9.81 mz/s

o Stefan=Roltzmann constant 5.70 10_8W/m2K4
Dimensionless dgroups:

Bi= as /A Biot number

Fo= at/’s2 Fourier number

Pr= v/a Prandtl number

Gr= 98(60“61)53/v2 Grashof number

Ra= Pr:Gr Rayleigh number

Subscripts:

1,2,3,4 refer to medium 1,2,3,4

i refer to inside cylinder surface

0 refer to outside cylinder surface

s based on length s

Preliminaries - Conduction of heat in a rod with linear heat losses

Consider a long rod with linear loss of heat from its surface.
Assume that the temperature in all points of a cross-section of
the rod may be taken to be the same. Then, the temperature 0=
0(z,t) is a function of the time t and the distance z measured
along the rod. The constant thermal properties of the rod are
p,cp and A. The thermal diffusivity is then a= X/(pcp)a Moreover,
the length of the rod is ..

The rate at which heat is dissipated from each surface element of
the rod is supposed to be proportional to the temperature differ-
ence between the element and its environment. The latter is as-
sumed to have the constant temperature @a. Therefore, the rate Q

at which heat is lost at the surface per unit volume become




(3.1

21

)

where o denotes the surface heat~transfer coefficient, p denotes

the perimeter and A denotes the area of the cross-section of the

rod.

Since

the thermal properties of the rod are &ssumed to be con-

stant, an energy balance for a volume element of the rod gives:

(3.

By taking @a as the zero of the temperature scale, (3.2)

written

2

%8 1 56 2

822 a ot
where

2 _ ap

& =5a
has been introduced.
ject to the boundary
68(0) = 0, = 0,70,
8(e) = 96 =®l“(§)a

[2]

is given by,

_ Sinhg (2-2)+sinhgz

conditions

6(2) sinhgg

As £ tends to zero,
for all z€[0,2]. If

°1

it follows from

(3.6)

(3.

The steady~state solution of (3.3),

(3.

that 6(z) tends

2)

can be

4)

sub-

.5)
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q(z) =2 - (&?
a,(z) =2~ 237+ 289 - &* - 2q (2) (3.7)

then a series expansion of A6 (z) 8 (z) - el gives

2 2 4 2
26 (z) = - 2 g (2)eq - %—}’1—»- q,(2)0) + o((e2)®) (3.8)

It follows from Fourier”s law of heat conduction that the steady-

state heat-transfer rate at the end points of the rod is given by
o, = = AA =—| = - 0 = )\A | (3.9)

By an energy balance, it follows from (3.6) that the radial heat

loss rate from the rod between z=0 and z=¢ is given by

_ _ . £ (coshgg—1)
21088 T %0 ?, = 2)A sinhg g °1 (3.10)

A series expansion of (3.10) gives

4 4
A 2 2 g8 6
= L8 - 8, + O L
) oss T (£7e 5 ) 91 (Kg ) ) (3.11)
Preliminaries - Natural convection in horizontal concentric cylind-

rical annuli

Natural convection in a horizontal annulus, formed by two concen-
tric cylinders, has been experimentally studied in [1], [5] and
[8]. The axial temperature variations in all experiments were
neglectable. For small inner radius, it was found that the fluid
circulated in a twin kidney=shaped pattern with the centers of
rotation located above the horizontal axis. The velocity was low

near the centers of rotation and at the bottom of the annulus. Pro-
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vided that PrRa/(1l.36+Pr)x< 103, then it follows from [8] that
the heat is essentially only transferred by conduction in the
annulus, i.e.

‘ 2
r/X =1, Pr:Ra/(1.36+Pr)< 10~ (3.12)

where Ae is the effective thermal conductivity and X is the

thermal conductivity of the fluid.

Construction and material data

A cross-section of the diffusion process is shown in Fig. 3.1.

Fig. 3.1 - A cross-section of the diffusion process.
Media = 1 = rod
2 = air gap
3 = guard tube
4 = thermal insulation
5

= environment
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The construction and material data relevant for the diffusion

process at 25 °C are given by

rl = 0,007 m
r2 = 0.027 m
ry = 0.0285 m
r4 = 0,13 m
L = 0.45 m
2 .
A = A3 = 3.8:107 W/mK
Ay = 2.6-10"2 W/mK
Ay = 4-10"% W/mK
-4 9
a, = a, = 1.16:10 m /s
o3 ls
a, = 2.3+¢10 m /s
a, = 3.10°° m2/s
_ =3
82,— 3.6-10 1/K
-5 2
v, = 1.6-10 m /s
el = €y = 0.03 (3.13)

The material data are taken from [9] and [12]. The values of €1

and €3 apply to polished emeried commercial copper.

From experiments, it is known that the modulus of the temperature
difference between the rod and the tube is less than 1 °C in the

temperature range 20 °c - 30 °c. Therefore, by (3.13), the follow-
ing bounds on the Prandtl number, the Grashof number and the Ray-

leigh number are obtained

It

0.70
3

1.10-10

7.7-10% (3.14)

Pr2

Gr2

Ra2

A

A

o
The Grashof number is evaluated at the mean temperature 25 C.

When modelling the diffusion process, it is of great value to know

the ozders of magnitude of the Biot numbers and the Fourier numbers
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of the different media of the heat process. Taking o = 10 W/mZK
as an upper bound for the surface heat~transfer coefficients of
the rod and the tube, (3.13) gives the following limits on the
Biot numbers of these objects
, -4
(Bi_ ), < 1.8-10
rll
(Bi_ ), < 7.1-1074 (3.15)
rq 3

Assuming that the surface temperatures of the recd and the tube
are equal to the boundary temperatures of the air gap for r = r,
and r = r, respectively, it follows that the Biot numbers of the

air gap are

(Bi_ )y == (3.16)

Moreover, on the assumption that the surface temperature of the

tube and the boundary temperature of the thermal insulation for

r = r4 are equal, the Biot number of the insulation becomes

(Blr )4 = (3.17)
3

The dominant time constant of the rod is T = 176 seconds. For

this given time, (3.13) implies that the Fourier numbers of the

alr gap and the heat insulation are

(Fo_ __ ) = 10.1
27r1 2

(Fo_ ) = 0.65 (3.18)
Ty 4

All dimensionless groups are calculated at 25 °c.

Heat-transfer mechanisms in the air gap

The transition from conduction to convection heat-~transfer in the

air gap is determined by (3.12). It follows from (3.14) that




26

PrZ-RaZ/(l.36 + Prz) < 2,6«102 < 103. Therefore, by (3.12), the
heat in the air gap is mainly transferred by conduction and the

effective thermal conductivity is

A /AZ =1 (3.19)

Then, using [10], it is clear from (3.16) and (3.18) that the heat
transfer mechanism in the air gap can be considered as stationary

for all end point temperature variations.

For the steady-state heat transfer in the air gap, it is convenient

to define a convection heat-transfer coefficient dcy by
e, = Aoy Al(®l=®3) (3.20)

If this formula is used with the conventional relation for radial

steady-state conduction in a cylinder

0,=0
0, = +3 | (3.21)
ln(r2/r%i
ZHXZQ’

it follows that Ocy is given by

AéZ 2
o = = 2.7 W/m“K (3.22)
Cl rlln(rz/rl)

where (3.19) and the numerical values in (3.13) have been used.

The heat is also transferred by radiation in the air gap. It
follows from [4] that the radiative heat-transfer coefficient is
given by

2 2
o(el+@3)(@l+@3)

o, = —2 37 = 0.14 W/m?k (3.23)
r A
2 1 71 (1)
€ A >

1 3 %3




where the data in (3.13) are employed. The total heat transfer in
the air gap

0. = o + a. = 2.8 W/mZK (3.24)

is thus dominated by conductiocon (ac = 2.7 W/mZK)
1

Heat~transfer mechanisms in the thermal insulation

The heat is mainly transferred by conduction in the heat insulation.
Employing [2], the temperature wave penetration depth for persis-
tently varying end point temperatures can be calculated from (3.17)
and (3.18). It follows that this penetration depth is 0.09 m. This
result should be compared with the radius of the insulation which

is r4= 0.13 m.

For steady-state heat transfer in the insulation, it is convenient
to define a convective heat transfer coefficient by ®4 = 03 A3-

%@BWOQ). If this formulae is used with the relation (3.21) for

~

steady-state conduction in a cylinder, it follows that

M4

3 - r3ln(r4/r3)

= 0.92 W/m°K (3.25)

where the numerical values in (3.13) are used.

Temperature drops in the silver plates

Experimental studies show that thermal resistances between the two
end surfaces of the rod and the tube are not negligible. Moreover,
it is found that the temperature drops in the silver plates can be
modelled by
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o)
i

0 (1-vy) o

@
i

y = 0.04 ‘ (3.26)

where v is a correction factor.

A static model of the rod

A static model for the process will now be derived. Some assump-
tions will first be made which will simplify the calculations.
These assumptions will then be verified by experiments. Assume

that the heat loss rates from the rod and the tube are proportional
to the temperature difference between these objects and their en-
vironments. Also, assume that the heat flow rate from the rod to
the tube is negligible compared to the heat flow rate from the

tube to the thermal insulation. By this assumption, the heat con-
duction equation for the tube is decoupled from the one of the rod,
but not vice versa. The Biot numbers of the rod and the tube are
very small, according to (3.15). Therefore, it follows from [10]
that the temperature in all points of a cross section of the rod

or the tube may be taken to be the same.

Putting
(2 o Al
1 Ay
0aP
373
E3 = TR (3.27)
3773

it now follows from (3.3) that the steady-state heat conduction in

the rod and the tube is governed by
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dzel 2 ’

- £7(0,=-6,) =0 (3.28)
d22 171 73 ;
and
d263 5
— = E g, = 0 (3.29)
d22 373

respectively. Let the boundary conditions of (3.28) and (3.29) be

_ ¢
6,(0) = of
_ C
0 (2) = 0f (3.30)
and
, _ ¢
05(0) = 85
- C
05(2) = 85 (3.31)

respectively. From (3.5), it follows that the solution of (3.29),
subject to the boundary conditions (3.31), is given by

sinh£3(2mz) + sinhg3z .

03(2) = Sinhe g O3 (3.32)

A substitution of (3.32) into (3.28) gives

cfel gze _ gz sinth(sz) + sinh£3z . (3.33)
d22 171 1 sinthR 3 :

The solution of (3.33), subject to the boundary conditions (3.30),

is
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, , 2 . : ,
o (2) = 51nh£l(£ z) + Slnhglz < gl slnh£3(£ z) + 31nh£3z )
1 sinhg, 2 1 2 2 sinhg. ¢
1 £.=¢ 3
1 °3
sinh¢. (4=2z) +sinht. 2z
_ 1 21 6
sinhglﬁ" 3 (3.34)

As El tends to zero, it follows from (3.34) that el(z) tends to

ei, for all z€ [0,2]. The steady-state temperature error A6
= Gl(z)mei can be expanded in the following series
2 2 4 4
£ £q2
. l c_.,c C1lT ¢c_,.C
0,(2) = - —5— q;(2) (8-83) 57 d,(2) (8{-63)
2 2 4
£.¢8
1 3* c 6 6
+—Sgr— 9p(2) 05+ 0((Er+e5) )

This equation is very wvaluvable for design purposes.

terms in (3.35) represent the temperature erroxr in
the temperature drops in the silver plates whereas

represents the temperature error in the rod due to
the rod and the tube.

l(Z) =

(3.35)

The first two
the rod due to
the third term

heat losses from

that the radial heat

By an energy balance, it follows from (3.34)
loss rate from the rod is given by
£ (coshg, t-1) 2
6. -0 = 2XA<:1 CoSt 6 + %
1ossl Ol Ri 51nh£lz L

£1783

) gl(coshgli=l) .
sinhglz 3

A series expansion of (3.36) shows
; 4 4 2 2 4
£, 8 £, 60
- AA 2,2, ¢c_ ¢, 1 c_.C 1°3 c
loss, ~ T @lz (07703) = 57— (87-03)+ —35— 83
6 6
+ O((El+€3) 27)

63(coshg32ﬂl,_
2 inhe, 2

51nhg3

(3.36)

(3.37)




Remembering that the area of the cross-section of the tube is A=

3
ﬂ(rgmré), it follows from (3.13), (3.24), (3.25) and (3.27) that
glz = 0.66 |
E40 = 0.57 (3.38)

Assume that 0pq = O, = 30 °c and 0, = 25 °C. oOn this assumption
(3.11), (3.13), (3.26), (3.37) and (3.38) yield that the heat loss

rates from the surfaces of the rod and the tube are

d 0.02 w
lossl

Qloss3 0.34 w (3.39)

Moreover, on this assumption (3.7), (3.8), (3.13), (3.26), (3.35)
and {3.38) imply that the steady-state temperature errors in the
nid-points of the rod and the tube become

- 0.02 °c

Ael(Q/Z)

~ 0.19 °c (3.40)

A63(2/2)

The calculated température error in the mid-point of the rod is in
agreement with the measurement results in Table 4.1. According to
this table, the maximum absolute value of the temperature errors is
0.02 °C. From Table 4.2, it can be seen that approximately the same
temperature errors are obtained when a temperature gradient is in-
troduced in the rod. This is in fact a simple consequence of the

principle of superposition.

It follows from (3.35) that the temperature drops in the silver
plates and the heat losses from the rod and the tube give equal
contributions to the temperature error in the mid-point of the rod.
This shows that the trade-off between the servo responses and the
temperature drops in the silver plates is well made. On the assump-
tion 8 = 0, = 30 °c and o_ = 25 °C, (3.26) and (3.40) imply that
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05(2/2) = 6 (1/2) 'eg +00,(2/2) - (ei + 88,(2/2)) =

~-0.37 °¢c : (3.41)

This temperature difference should be compared with the value -0.4
OC, obtained from measurements. The error in this measured value
might be relatively large, since the influence of the room tempera-

ture on the result is not known.

In a dynamlcal model the heat loss rate from the rod is modelled
by the term gl 17 instead of the term gl(e =0 ) The ratio between

the terms, used to describe the heat loss rates from the rod is

£1 (6, (2) =0, (2))

c(z) = 5 (3.42)

glel(z)

Assume that the constant end ‘temperatures of the rod and the tube
are 61 and 63 respectively. Neglecting the steady-state temperature
error in the rod, it then follows from (3.8), (3.26) and (3.42)

that

c 2 2
“A93(2)+y61 _ 532 4
c(z) = S = ql(z) (I=v) + v + O((§32) ) (3.43)
5]
1

In particular, it is found that
c(2/2) = 0.079 (3.44)

where (3.7), (3.26), (3.38) and (3.43) have been used.

A dynamical model of the rod

The main problem, which arises when setting up a dynamical model
of the rod, is to adequately model the heat flow rate from the sur-
face of the tube. It follows from (3.15) and (3.18) that this rate,
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in general, is not proportional to the temperature difference
between the tube and its environment. This means that the complete
system, describing the conduction of heat in the rod, involves

three coupled partial differential equations. The problem of simpli-
fying this system of partial differential equations therefore

naturally arises.

Since the heat flow rates from the surfaces of the rod and the tube
are very small and since the conduction of heat in the air gap can
be considered as stationary, the heat loss rate from a surface ele-
ment on the rod may as a first approximation be taken to be pro-
portional to the temperature of the surface element. On this assump-
tion, it follows from (3.3) that the conduction of heat in the rod

is described by

3 el B@l
a1 77 Tae T | (3.45)

where Ny is the coefficient of surface-heat loss

For given variations of the end point temperatures of the rod, nq
is a measure of the mean heat loss rate from the rod. If the fre-
guency content in these variations is increased then the heat loss
rate from the tube is increased and, consequently, nq is increased.
Therefore, the static consideration (3.42) yields an estimate of
the lower bound of Ny valid for a case where the end point tempe-
ratures of the rod are perturbed very slowly. A comparison of (3.28)
and (3.45), together with (3.13) and (3.38), gives that this lower
bound 1is

-

_ 2 _ L1n”5
ny = c(2/2)£lal = 2,010 1/s (3.46)

The value of Ny estimated by means of a maximum likelihood exper-
> 1/s. In this

specific experiment, it is found that the heat loss rate from the

iment in Section 3 of Chapter 5, is ny = 3.6:10

rod is increased only by a factor 1.8, compared to the static case.
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To calculate the transfer function and the step response of the

rod, it i1s convenient to introduce the dimensionless time

t/T
T o= 32/
aq

-
It

Equation (3.45) then becomes

I NS L
2 (22 9T al 1

with the boundary conditions

el(OIT) = eOl(T)

Gl(l,r) = eﬁl(T)
and initial condition
86(z,0) = eil(z)

Introduce the laplacetransforms

[e o)

¢l(z,s) = fe_STGl(Z,T)dT

0
$o, (s) = ée“STeol(T)df
¢Ql(5) = ée_STte(T)dT

(3.50)

(3.51)

If ei(z) = 0, for all z€ [0,2], then a Laplace transformation of

(3.48), subject tc the boundary conditions

(3.49),

gives
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¢l(ols) = ¢Ol(5)

P (a,s) = ¢gl(s) (3.52)

Putting

2
b = nll /al

(3.53)
The solution of (3.52) is
sinh Aoz Vs+b sinh 2 Vs+b
¢ _ [ ¢ 2 ¢ (3.54)
l(z,s) = Ql(S) + % (s)
sinh Vs+b sinh Vs+b

The transfer function from the end point temperatures of the rod

to the temperature at a point z on the rod thus becomes

sinh &%E Vs+b sinh % Vs+b
G(z,s) = (3.55)

14
sinh Vs+b sinh Vs+b

If the time scale of the temperaturés eol’ egl, el is changed from

T to t, then G(z,s) becomes

£
7
sinh VsT+b sinh VsT+b

sinh 2=z VsT+b sinh % VsT+b
H(z,s) = ; (3.56)

A modal analysis shows that this transfer function may be written

sin 2°Z nk in 2 1k

*® " © sin = mk

H(z,s) = |2n ¥ (-1)F % —t 2z (-)FT — Ly
k=1 sT+b+n "k k=1 sT+b+n"k

(3.57)




The transfer function H(z,s) has an infinite number of poles

2.2
S = ~(b+n"k™) /T k=1,2,... (3.58)
These poles are negative and real. If z/% is a rational number,
then pole-zero cancellations occur in the transfer function H(z,s).
The cancelled modes are unobservable from measurement of the tempe-
rature in the point z. This is discussed in detail in Section 5 of

Chapter 4. The response of the rod to a temperature step change 6 c

1
in the end point temperature eol is
sinhg, (2-2) w sin 2% gk m(b+n2k2)/T
_ 1 c k+1 [ c
8(z,t) = el - 21 (=1) k 5> e el
sinhgll k=1 b+n "k
(3.59)

4. MEASUREMENTS

Steady—~state measurements

The steady-state temperature distribution of the rod was measured
in two different cases. The measurements were performed with a
Tekelec, model 350, digital Voltmefer, with a long term accuracy
of 0.01 % of full scale and 0.02 % of readings. The ambient tempe-
rature was 25 OC. In the first case, the end point temperatures of
the rod were equal and varied from 20 °c to 30 OC, with a tempera-
ture increment of 1 °C. The measurement results are given in Table
4.1. The modulus of the temperature errors 1is largest at 20 °c and
30 °C. The maximum absolute value of the temperature errors in the
table is 0.02 OC, which i1s just noticable relative to the trans-
ducer errors 0.01 °cC. |
In the second case a temperature gradient was introduced in the rod.
The different values of the employed end point temperatures are

found in Table 4.2. In this table, there is no longer a strong cor-
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relation between the sign of the temperature errors and the sign of
the corresponding temperatures (relative to 25 °C). This is due

to the slope and linearity errors of the transducers. The maximum
absolute value of the temperature errors in Table 4.2 is 0.02 °c.
Notice that the temperature errors in Table 4.1 and 4.2 are calcu-

lated on the assumption that the temperature transducers are ideal.

Dynamical measurements

To verify the dynamical model of the rod experiments were performed
by perturbing one end point temperature of the rod and measuring

the temperature along the rod. A Dynamco, series 6000, data logger
was used in these experiments. The input channels of the logger
were scanned sequentially. The time elapsed between the readings

of two consecutive channels was 0.18 s. Aitken”s scheme for Lag-
range interpolation was used to synchronize the readings of the dif-
ferent channels of the logger, within the same sampling interval,

to the readings of the input of the process. The long term accuracy
of the DM 2006 digital voltmeter of the logger was 0.01 % of full

scale and 0.02 % of readings.

The input signal of the process was a pseudo random binary signal
(PRBS) , generated by a special signal generator. This signal had a
mean level of 25 °C and a temperature swing of 1.8 °Cc. The readings
of the input channels of the data logger were synchronized to the
shifts of the PRBS—signal.

In all experiments, the input u, was manipulated and the input u,
was kept constant at 25 ©C. The initial temperature profiles of

the rod were stationary, but the temperature gradient was nonzero.
The room temperature changed several degrees centigrade during the
experiments. The variation of the sampling period was kept within

0.1 %.

In Table 4.3 the three series used for identification of the dyna-

mics of the rod are specified. The input-output samples of these
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series are believed to be useful test examples for comparing dif-

ferent identification algorithms. In [11] such a comparison is per-

formed between the generalized least squares method and the maxi-

mum likelihood method for the series S1. The choice of the samp-

ling interval for the diffusion process has been discussed briefly

in [3].
Series | Sampling | Number of PRBS-signal Measured
period sampling | minimum puls length period signals
S events s S
S1 10 862 60 4095 ul,yl,yz,..
Y7 IYQl IYGZ
82 4 920 60 255 ul,yl,yz,...
Y71Yel:Ye2
S3 2 1828 20 1023 Uy 1Yy eYos
YG]_ lyez
Table 4.3 -~ Series used for maximum likelihood didentification of

the rod.




[11:

[2]:

[31;

[4]:

[5]:

[6]:

[7]:

[8]:

[9]:
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CHAPTER 3

LUMPED STATE-SPACE MODELS

1. INTRODUCTION

In the previous chapter the rod was modelled as a linear distri-
buted parameter system. To obtain numerical solutions to filter

and control problems for such a system, it is, in general, neces~
sary to make approximations. These approximations can either be
done, at the beginning, by approximating the infinite dimensional
system by a finite dimensional system or, at the end, when the par-
tiél differential equation, yielding the solution to the problem,
is obtained. Approximation at the beginning has the advantage, in
most cases, of simplifying the mathematical manipulations whereas

approximation at the end probably gives better accuracy.

This chapter deals with the problem of obtaining lumped state-space
models of the rod. The finite-difference method described in [6] and
[7] is used. Filter and control strategies, based on the lumped mod-
els, are derived in Chapter 7. In that chapter it is shown that these
strategies, obtained by the approximations, can be used to, online,

estimate and control the profile of the rod satisfactorily.
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2., FINITE-DIFFERENCE STATE-SPACE MODELS

In Section 3 of Chapter 2 it was found that the rod could be mo-
delled by the distributed parameter system

276 _ 20 4 o (2.1)

9z ot
subject to the boundary conditions

8(0,t)

|
<]

0 ()

8(L,t) 9£(t) (2.2)

i

To obtain a lumped state-space model of the system (2.1), the
rod is divided into a number of intervals and the partial deri-
vative 326/322 is approximated in the nodal points using finite-
difference formulae. The acéuracy of this approximation can be
improved by increasing the number of nodes, by using higher or-
der difference formulae or by choosing smaller intervals where

the temperature gradient can be expected to be large.

Preliminaries

If v is a continuous function in one variable with continuocus de-

rivatives then [1l] gives

2
h, 12 90

2
é_,.}if. [ = _3&_(52 N SR 56]v] + o(hg) (2.3)
2=z, Z2=2

where hZ is the interval size and & is the central difference ope-

rator. This operator is defined by

h ( h
(6v) (z) = vi]z + B A EEJ (2.4)
2 2

Let the wvalue of v at Z; = 2, + ihz be vy Then (2.3) and (2.4)
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2
d”v 1 2 ,
—z = (v, . - 2v, + v, .) 4+ 0(h?%) (2.5a)
d22 _ h2 i-1 i i+l z
i z
alv| L (- + 16 - 30v, + 16V, .. - v,..) +
2] = 27 Vi-2 Vi-1 i i+l © Vi
dz” |, 12h
i Z
4
+ O(hz) (2.5b)
2
d g - 2(2Vi“3 27Vim2 + 270vi—l 490vi +
dz™ | 180h;
6
+ 270Vi+l - 27Vi+2 + 2Vi+3) + O(hz) (2.5c)

where O(ht) denotes terms containing k:th and higher power of h,.
The approximations (2.5a), (2.5b) and (2.5c) require knowledge of
v in 3, 5 and 7 equidistant points.

ROD1

Assume that the rod is divided into n, intervals. Let the tempe-
rature in the i:th nodal point of the rod, at time t, be ei(t)
for i =0,1, ..., n,. Choose as the state~vector of the lumped

model the temperature in the nzml internal nodal points of the

rod, i.e.
[0,
9,
X = |, ’ (2.6)
e
|27

and choose as the input vector of this model the temperature in
the two end nodal points of the rod, i.e.
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y = (2.7)

Then it is possible to set up a set of lumped state-space mo-
dels of the system (2.1).

If all intervals have the size hz and if the approximation (2.5a)

to 826/822 is used for all internal nodal points, this model be-

conmes
=3y a, Féz 0
_ 0
a, ay a, 0 0
R = : & A +
% = <+ u= AqgX Byu
_ 0 0
L a, ~ay 0 %2 (2.8)
where
a, = 2a/h2 + 7
1 Z
a, = a/hi (2.9)

This model is called RODIL.

ROD2

Let all the intervals have the size h, and let the approximations
(2.5a) and (2.5b) to 828/322 be used for the nodal points i = 1,
nz—l and 1 = 2, 3; ooy nzm2 respectively. Then the lumped model
of the system (2.1) is
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— 7] r 3]
al aZ 3, 0
b2 mbl b2 ="b3 O —b3 0
—b3 b2 “bl b2 “b3 0 0
£== X + ué AX + B.u
2 2
“b3 b2 “bl b2 =='“}:»3 0 0
0 _ y _
b3 b2 bl bz 0 b3
i g A |0 3 (2.10)
where
a, = 2a/h2 +
] Z n
_ 2
a, = a_/hz
b. = 30a/(12h%) +
1 Z n
_ 2
bz = lGa/(thz)
_ 2
by = a/(12h)) (2.11)

This model is called ROD2.

ROD3

Provided that all intervals have the size hZ and provided that
the approximations (2.5a), (2.5b) and (2.5c) to 329/322 are used
for the nodal points i =1, nzwl; i = 2, nZ“Z and 1 = 3, 4, ...,

nZ=3, respectively the lumped model of the system (2.1) becomes
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2
By ™y
3 S
C4 “’03

0o o0
b, by 0
““Cl 02 "“C3 04 O

Cy ™

€2 %3 4
Cp "C3 Cy TG S

c, =-C ¢, =C
4 3 2 1
0
6] =b3 b2
0 0
L
A
—Z%X'FB\J
whére
a, = 2a/h.2 +
1 z n
_ 2
a, = a/hZ
b, = 30a/(12h%) +
1 Z n
_ 2
b2 = l6a/(12hz)
_ 2
b3 = a/(l2hz)
c. = 490a/(180h%) +
1 z n
_ 2
c, = 270a/(180hz)
_ 2
Cy = 27a/(180hz)
B 2
c4 = 2a/(l80hz)
This model is called ROD3.

®x +

>

(2.13)
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ROD4

Assume that the intexrval sizes are chosen according to Fig., 2.1.

hz‘l : h22

Fig. 2.1 = Choice of the interval sizes for the model ROD4,

In this figure the interval sizes are chosen smaller near the end
points of the rod since the temperature gradients are expected to
be large here. Let the approximations (2.5a), (2.5b) and (2.5c)
to<329/322 be used for the nodal points i =1, 3, nZ-3, nzml; i=
2, 4, nzﬂ4, nzﬂ2 and i = 5, 6, ..y nZ—S respectively. Then the
lumped model of the system (2.1) is

Fal a 0 ]
b, “b; b, mb3 0
0 a “ay) 2, 0 ©
0 ¢y, 0 ¢ ¢y -cy O 0
0 =d3 0 4, “dl d, md3 d4
d, 0 =d3 d, ~-d dz -d., d
0 d4 d
x = \\\:i:::i:;;::i\\\\\\\ | x+
d,-& dy-dy d, 0O
d4 —d3 d, —dl d, -d53 0 d4
d, -d, d, -4; d2 0-d; 0
0 C3 C, O 0 c, 0
0 0 O a,-aj; a, 0
0 -by b, bl b2
i 0 0 a, —ald
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raz 0
mb3 0
0 0
=C 0
0 0
0 0
A
+ I u= A4
0 0
0 0
0 d4
0 mc3
0 0
0 mb3
0] a
. -
where
hZl = Z/nz
hZ = 2/(2nz)
2
and
_ 2
al = 2a/h + n
Z
2
_ 2
a, = a/h22
_ 2
b, = 30a/(12h ) + 7
1 z
2
b, = 16a/<12h2 )
2 z
Z
2
b3 = a/<12h )
29

X + 84u

(2.14)




¢, = 30a/<12h2 ) +
Z
1

c, = l6a/<12h )

2

“

_ 2)
Cy = a/<12hzl

a. = 49Oa/(180h2 > +
21

)

a., = 270a/(180h

N N

1
2
d, = 27a/(l80hZ )

1
d, = 2a/(l80h2 ) (2.15)
21

This model is called ROD4.
The order of the models RODl) ROD2, ..., ROD4 is given by
n=n_ -1 (2.16)

Tt should be noticed that the approximation among (2.5a) and among
(2.5a), (2.5b) which has the highest possible order is chosen in
each node for the models ROD1 and ROD2 respectively. Similar the
approximation, among (2.5a), (2.5b) and (2.5¢c), that has the high-
est possible order is chosen in each of the nodal points for the
models ROD3 and ROD4. Also notice that for each of the models RODI,
ROD2 ..., ROD4 there exist choices of n such that the measurable
signals of the rod are contained among the state variables of the

considered model.

3. SIMULATION STUDIES

In this section the eigenvalues and the step responses of the

lumped models are calculated. These values and responses are com-
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pared with the eigenvalues and step responses of the infinite di-
mensional system (2.1). From this comparison some conclusions are
drawn about the accuracy of the different finite-difference tech-
niques used to lump the system (2.1). It is not claimed that all
aspects of the approximations can be judged from the eigenvalues

and the step responses.

The eigenvalues of the models RODl, ROD2, ..., ROD4 are given

for different values of n in Table 3.1. This table alsc contains
the eigenvalues of the infinite dimensional system, given by
(3.58) in Chapter 2. The step responses of the models ROD1, ROD2Z,
-+., ROD4 are given in Tables A.l, A.2, ..., A.6 for z = /8,
32/8, ..., 7¢/8 and for different values of n. In these tables
the differences between the approximated step responses and the
step responses of the infinite dimensional system, given by (3.59)
in Chapter 2, are also presented. All calculations are based on
the parameter values a = 1.159*10"4 m2/s and n = 3..6°lOm5 1/s (see
Section 3 of Chapter 5).

The main conclusion to be drawn from Table 3.1 and Tables A.1l,

A.2, ..., A.6 is that the accuracy of the lumped models is pri-
marily determined by the number of intervals. The refinement of

the difference approximation to 326/822 improves the accuracy to

a certain extent. However, such a refinement improves the accuracy
of the eigenvalues considerably more than the accuracy of the step
responses. These conclusions are obtained by comparing, for example,
the eigenvalues and the step responses of the models ROD1l, RODZ and
ROD3 for n = 7, given in Table 3.1 and Tables A.l, A.2 and A.3 re-
spectively, and the corresponding values and responses of the models
ROD2 and ROD3 for n = 15, given in Table 3.1 and Tables A.5 and A.6
respectively. It should be observed that it is not possible to in-
crease the order of the approximation to 326/822 near the end points

of the rod where the temperature gradients are large.

It is important to use smaller intervals near the ends of the rod
where the temperature gradients can be expected to be large. This
means that the temperature in the mid-section of the rod, for fixed

but arbitrary t, is well described by low order polynomials in z.
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This is; however, not the case near the end points of the rod.
The conclusion above 1s obtained by comparing the eigenvalues and
the step responses, for example, of the model ROD4 for n = 11 and
the model ROD3 for n = 15, given in Table 3.1 and Tables A.4 and
A.6 respectively. In particular, it is found that the modulus of
the maximal temperature errors of the step responses of the model
ROD4 for n = 11 is less than 0.002 °C for all t at z = &/8, 31/8,
., 72/8. Hence, the lumped models are very accurate even for

relatively small values of n.

Since the eigenvalues and the step responses are very accurate, it
has not been considered necessary to use more accurate weighted
residuals models [2] and [3]. Moreover, on the basis of simulation
studies in [4] and [5], it should be expected that the performance
of the system (2.1) only is decreased slightly if filter and con-
trol strategies are based upon lumped models of (2.1), instead of
(2.1) itself.
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APPENDIX 3A
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CHAPTER 4

SYSTEM IDENTIFICATION

1. INTRODUCTION

Theoretical models of the rod were derived in Chapter 2. These
models were linear and infinite dimensional. The modal expansion
of the transfer function for one of these models, relating the

temperature at a point z to one end temperature of the rod, is

given by
°° K, (2)

G(z,s) = X (1.1)
k=1 1+T. s

k

Lumped state space models of the rod were given in Section 2 of
Chapter 3.

In this chapter the dynamics of the diffusion process will be de-
termined using system identification methods. First a straight
forward parametric maximum likelihood method is used. The orders
of the employed models are successively increased and order tests
are performed. These tests indicate that the appropriate orders of
the models are relatively low. Given the appropriate order of the
model, the parameters of an extended model are identified. The re-

sults obtained from this identification are the final results.

The relatively low model orders are partly explained by the fact
that the models are identified from sampled data. It has been found
empirically that successive terms in the expansion (1.1), which

have gain factors of the same sign, are identified as a single term
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K
1+sT

where K is approximately equal to the sum of the gain factors of
the clustered terms and T is an average value of the time constants
of these terms. This also explains the relatively low order of the

models.

The study shows that the first term in the expansion (1.l) is accu-
rately estimated in all cases. It is also found that the infinite
number of terms in this expansion, which have time constants Tk
close to or less than the inverse Nyquist frequency, are identified
as a first order term or a second order term, depending on the
relative differences of the time constants Tk' If this difference
is large, then the rest terms in (l1.1) are identified as a first
order term. Otherwise, these rest terms are identified as a second

order term, with well damped complex poles.

Models are estimated from the series S1 and 83, defined in Section

4 of Chapter 2. The sampling period of these series are 10 s and 2 s
respectively. The dominant time constant of the rod is 176 s. An
order test indicates that the appropriate orders of the models are

4 and 5. The coefficients of the characteristic polynomials of the
identified models are estimated very accurately in all cases. The
standard deviations of the residuals of the different models are

extremely small. These standard deviations are 0.0003 °c - 0.0008 °c

whereas the corresponding output swings are 0.4 °c - 1.3 °c.

2, OUTLINE OF THE MAXIMUM LIKELIHOOD METHOD
The maximum likelihood method [1] may be used effectively to iden-
tify linear, single-output, time-invariant and discrete-time :

stochastic systems of the form

2 (g Hy ) = B (@ Hu) + ac (g He () (2.1)
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where u is the input, y is the output and {e(t)} is a sequence of
independent, normal (0,1) random variables. The variable e(t) is

also assumed to be independent of the input u(s) for all s and t.

. * =1 * =1 * =1

The shift operator is denoted q and A (g ), B (g )y and C (q 7)
are polynomials

% - - -
25 =1 +ag e+ ag?

1 n

* -1, _ ~1 -1

s . - .
gt =1+ ¢ d Lyt ca” (2.2)

where n is the order of the system (2.1).

" Following [1] and [4], the parameters of (2.1) are determined using
the maximum likelihood method. Given a record of input-output data
{u(t), y(t)| t=1,2, ..., N} of length N, the negative logarithm of

the likelihood function becomes
N N

-1nL(a,x) = —5 £ e (t) + N 1lnrx + 35 1n2n (2.3)
t

where the residuals e(t) are obtained recursively from

l)s(t) = A*(q‘l)y(t) - B*(q"l)u(t) (2.4)

* -
C (g

The likelihood function is considered as a function of o and 1,
where o is a vector whose components are the parameters ayr gy
a bl’ bz, e ooy bn’ C

dy, d

c cn and the n initial conditions

ll

_ o1 e
.. d of (2.4).
n

27 ¢

The maximization of L{o,A) can be performed separately with respect
to o and A. According to [1] and [4], the maximum of L(o,A) is ob-

tained by finding o which minimizes
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N
5
Vie) = 23 (e (2.5)
t .
The maximization with respect to A can then be done analytically

to yield

AZ =

m%n V(a) (2.6)

aZin

The estimation problem is thus equivalent to minimizing a function

of several variables.

Under the restrictive assumption that the data were actually gene-
rated by a system (2.1), where {e(t)} is a sequence of independent,
equally distributed gaussian random variables, it is possible to
pose and solve several statistical problems. With mild additional
assumptions, it can be shown [1] that the likelihood estimates are
consistent, asymptotically efficient and asymptotically normal

(uo, szaéuo), where o stands for the true parameter value. Some
means to detect possible violation of the prerequisities for the
maximum likelihood identification are given in [5], With mild addi-
tional assumptions, it follows from [5] that the maximum likelihood
method yields a model with correct input- and noise-transfer func-
tions if and only if r (1) = E{e(t+1)e(t)} = 0 for = > 1 and reu(T)=
= E{e(t+t)u(t)} for t > 0.

To test if the reduction of the loss function is significant, when
the order of the model (2.1) is increased from n to n+k, the fol-

lowing test quantity is used

Vn-’vn-i—k n-4 (n+k)

n+k 4k

tn+]<:,n Y

(2.7)

where Vn and Vn are the minimum values of the loss function for

+k

a model of order n and n+k respectively. It can be shown [2] that
2

the random variable 4k-t, for large N, is asymptotically x “(4k)

distributed under the null hypothesis



66

Ho # 8pe1 T 3pp0 = vve = a = Ppe1 = Py = cee = k0=
- Cn+l = cn+2 T T Chtk T dn+l - d‘n+2 = =
= dn+k =0 (2.8)

If the order of the model (2.1) is increased from n to n+l, then
k=1l. At a risk level of 1 %, the corresponding loss function is
significantly reduced if tn+l,n is greater than 3.3, This means that
the null hypothesis HO is rejected. The Fortran programs used for

the identification procedure are described in [6].

3. IDENTIFICATION RESULTS FROM THE SERIES S1

In this section typical maximum likelihood identification results
from the series S1 are presented. The experimental set-up, used to
obtain the data of this series, and the experimental conditions are
deséribed in Section 4 of Chapter 2. The identification results from
the input-output data (ul,yz), (ul,y4) and (ul,y6) will be presen-
ted.

In Tables A.1, A.2 and A.3 the results of identification are given
for successively increasing order of the model. The small values of
the estimated standard deviations of the a~parameters should be ob-
served. As the signal to noise ratio decreases with z, it is natural
that the relative errors of the b-parameters increases with z for a
model with given order. The large values of the d-parameters are due
to the initial nonzero temperature gradient of the rod. It should be
observed that the models in Tables A.1, A.2 and A.3 contain redun-
dant parameters at a risk level of 1 ¢g.

Below the values of the test quantities t are shown when test-

n+l,n
ing the reduction of the loss function for a model of order n+1l

compared to a model of order n.
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z = /4 z = 4/2 z = 3./4
e = 875 t = 2398 = 355
3, 7 3!
,3 = 758 t4, = 430 t4’ = 266
t5 4 = 4.7 t5 = 6,4 t5 4 = 1.4 (3.1)

The test quantities in (3.1) indicate that the models obtained for
z = /4 and 2/2 are at least of order 5. The prerequigities for the
order tests are, however, not fulfilled for these models (compare

Fig. 3.1 and 3.2). Therefore, the tests are not quite relevant. The

5th order models obtained for z /4 and &/2 have poles on the
negative real axis and, hence, have no continuous correspondences.
Moreover, the test quantities 1:5,4 for these models are relatively
low. Therefore, the orders of the models for z = L/4 and /2 are
chosen to n = 4. The prerequisities for the order tests are ful-
filled for the model obtained for z = 38/4 (compare Fig. 3.3) and,
consequently, by (3.1), the appropriate order of this model is n =
= 4,

In order to account for possible constant levels in the outputs

Yor Yy and Yo the parameters of the following model were estimated

* - * -
A @y = s !

i
(o)
+
o
Q
=
-~
+
>
Q
*
Q
®
”

(3.2)

for n = 4, In (3.2) the zero adjustiment error of the transducer

recording the temperature y is denoted by § The calculation of

0°
the residuals was also modified according to

e (t) le(t) | < 3x
e(t) =

3asign (e (t)) le(t) | > 3x (3.3)

where i denotes the current estimate of the standard deviation of
the residuals and sign denotes the signum function. Moreover, the
parameter b, in the model (3.2) for z = ¢/2 and z = 32/4 was put
equal to zero. This parameter is redundant (2.6 ¢ limit) in the
model (2.1) for n = 4, given in Tables A.2 and A.3.
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In Table 3.1 the final identification results are given for the
series S1. The models in this table are denoted by 811/4, 512/2
and Sl3g/4n Compared to the results in Tables A.l, A.2 and A.3

for n = 4, significant reductions of the loss functions occur when
the model (3.2) and the limitation (3.3) are used. Notice that the
moduluses of the zero adjustment errors in Table 3.1 are less than
0.02 °C. The roots of the A-, B~ and C-polynomials and the static

v/a Sty o
From this table it is seen that the A-, B~ and C-polynomials of

gains of the models Sl and 5132/4 are given in Table 3.2,
these models have no common factors and that the static gains are

estimated well.

The statistical properties of the residuals of the models Slﬁ/4,

Sl£/2 and 8135&/4 were examined. The sample auto-correlation function

of these residuals

CE(T) :
OE(T) = EZTET_ (3.4)
where
1 N—t _ _
c (1) ==X (e(t+tr)-e) (e(t)=¢) (3.5)
€ N £=1

are shown in Fig. 3.1l. Moreover, in this figure the sample cross-

correlation function of the input u, and the residuals

1
Ceul(T)
Peu (t) = p (3.6)
1 Ve _(0)cy, (0)
where
] N=1 ‘ _ _
Ceu (t) = T\I: PN (e (€+1)=-¢) (ul(t)—ul) . (3.7)

1 te=1
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Fig. 3.1. — Sample correlation functions for the models Slﬁ/a,
Slz/z and 8132/4. The dashed lines give the 99%

confidence intervals for pE(T) for t%#0 and for

peul(r) YT
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are shown for the considered models. In (3.5) and (3.7) the sample

means of the residuals ¢ and the input u, are denoted by e and Gl

respectively.

It is seen from Fig. 3.1 that the residuals of the models 512/4 and

512/2 are correlated and that the residuals of the model 8131/4 are

oe

uncorrelated at a risk level of 1 At the same risk level, this

figure also shows that the input Uy and the residuals of the models
812/4 and 512/2 are correlated and that the input uy and the re-
siduals of the model 8132/4 are uncorrelated. In particular, it is
found from Fig. 3.1 that the sample auto-correlation function of
the model 812/4 contains spikes for t = 1,2 and 3 min. The mini-
mum pulse length of the PRBS-signal was 1 min. Therefore, it

might be expected that the residuals of the model SlQ/4 assume large
values after that a shift has occured in the PRBS-signal. This ex-
pectation is confirmed by the plots of the input signal uy and the
residuals in Fig. 3.2. Owing to the special properties of the iden-
tification method [1], the sample cross-correlation function of the

model Slg/4 does not assume large values for small values of .

The residuals of the models 812/4, Slz/2 and Sl3ﬁ/4 were tested
for normality using a chi-square goodness-~of-fit test. The test

quantities of these residuals became

2 -
Xy a = 239

2 _
XQ/Z = 203

2
x32/4= 55 (3.8)

The number of degrees of freedom was 33. Provided that the test
quantity is less than 55, the hypothesis that the residuals are

normally distributed is accepted at a risk level of 1 %.

In Fig. 3.2, 3.3 and 3.4 the following signals are plotted
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o} the input signal uq

o) the output signal Yy SR |

o} the model error e, T Y - §§igjf) vy
o) the residuals ¢ A g ™)

for the models 812/4, Slg/2 and 8132/4. The model errors in all
these figures contain small negative transient parts in the begin=
ning of the experiment. These parts might be caused by the change
of the thermal equilibrium state in the rod that occured since the
initial temperature gradient of the rod was nonzero. The model

error and the residuals of the model S1 contain two spikes.

3/4
These spikes were probably due to transient in the AC-mains. Sum-~
ming up, it is found that the prerequisities for the maximum like-

lihood identification only were fulfilled for the model 8132/4,

4. IDENTIFICATION RESULTS FROM THE SERIES 83

In this section typical maximum likelihood identification results
from the series S3 are given. The experimental set-up, employed

in obtaining the data of this series, and the experimental condi-
tions are given in Section 4 of Chapter 2. The sampling period of
the series S3 is shorter than the one of the series S1. Moreover,
the number of sampling events of the series S3 is greater than the
corresponding number of the series S1. Finally, the power spectrum
of the input signal of the series 83 contains more energy at hig-
her frequencies than the corresponding power spectrum of the series
Sl. Therefore, it should be possible to identify the fast dynamics
of the process more accurately from the series S3 than from the
series Sl. The identification results from the input-output data

(ul,yz) will be presented.

The results of identification are shown in Table 4.1 for succes-
sively increasing order of the model. The shorter sampling period
of the series S3 yields a decrease in +the b-parameters, compared

to the b-parameters of the corresponding models of the series S1.
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At a risk level of 1 %, the models in Table A.4 ¢contain redundant
parameters.

Below the values of the test quantities tI are shown, when test-

‘ n+1,n
ing the reduction of the loss function for a model cof order n+l com-

pared to a model of order n

t4,3 = 192
t5,4 = 121
t6 5 = 0.2 (4.1)

The test quantities in (4.1) indicate that the appropriate order of

the model is n = 5.

The parameters of the model (3.2) for n = 5 were estimated using
the maximum likelihood method. Thereby, the residuals were limited
according to (3.3). Moreover, the parameters bl,b2 and Cg in the
model (3.2) were put equal to zero. These parameters are redundant

(2.6 ¢ limit) in the model (2.1) for n = 5, given in Table A.4.

The final results of identification are given in Table 4.1 for the
series S53. The model in this table is denoted by 832/4. According
to Tables 4.1 and A.4, a significant reduction of the loss function
occurs when the model (3.2) and the limitation (3.3) are used. From
Tables 3.1 and 4.1 it follows that the transducer recording the tem-
perature Yy indicates 0.0096 °c higher temperature during experi-
ment S3 than during experiment S1. This increase in the zero adjust-
ment error might be due to an incréase in the room temperature that

occured during the two experiments.

In Table 4.2 the roots of the A-, B- and C=-polynomials and the stat-
ic gain of the model 832/4 are given. From this table it can be seen
that these polynomials have no common factors and that the static

gain is estimated well.
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a; -3.5157+0.0002
aj 4,8648+£0.0004
a3 =3,3415+0,0005
aj 1.1599+0.0005
ag ~0.1673+0.0002 dq -0.7192
‘ dy 1.80693
by 0.0000 a3 -1.6896
b 0.0000 -3 dy 0.7147
b 0.5337°1073+0.0144-10 de -0.1186
bz 1.4695-1073+0.0299-1073 )
be ~1.9457-1073£0.0158°10"3 A 0.4532°10‘33
v 0.18773-10
cq ~2.4107+0.0229 55 ~0.36°10"2
<) 2.2588+0.0555
c3 ~1.0831%0.0549
<y 0.2362:0.0225
ce 0.0000

Table 4.1 - Maximum likelihood parameter estimates from the
input-output data (ul,yz) of the series S3. The

input-output variables are given in degrees centi-

grade.
A 0.4339%0.2488 B -3.7304
0.7202 0.9772
0.9397
0.9880 C 0.3686+10.4624
0.6796
0.9939
K 0.7448

Table 4.2 - Roots of the A-, B- and C-polynomials and the sta-
tic gain of the model 532/4.

The statistical properties of the residuals of the model 83£/4
were examined. The sample auto-correlation function (3.4) of the
residuals and the sample cross=-correlation function (3.6) of the
input uy and the residuals are shown in Fig. 4.1. From this figure

it can be seen that the residuals are correlated at a risk level of




1 %. At the same risk level, this figure also shows that the in-
put uy and the residuals are uncorrelated.

The residuals of the model 83 were tested for normality using

%/4
a chi-square goodness-of-fit test. The test guantity was

2
X"y sa = 195 (4.2)

The number of degrees of freedom was 41l. Provided that the test
quantity X2£/4 is greater than 65, the hypothesis that the resi-
duals are normally distributed is rejected at a risk level of 1 %.
In FPig. 4.2 the model error, the residuals and the input-output
variables of the model S3Q/4 are shown. The four spdikes in the re-
siduals were probably due to transients in the AC-mains. Summing
up, it is found that the prerequisities for the maximum likelihood

identification were not fulfilled for the mocdel 5332/45

YO (1)
4 EE(T) €uy
1.07 1.0-

0.5 | 05-

Db e W S — s

Fig. 4.1 ~ Sample correlation function for the model 832/4. The

dashed lines give the 99 % confidence intervals for

pE(T) for %0 and for peul(T) V1.
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5. DISCUSSION ON THE IDENTIFICATION RESULTS

In this section the continuous modal expansion of the identified
discrete time models are calculated. This expansion is compared
with the modal expansion of the corresponding infinite dimensional
model of the rod. According to (3.57) in Chapter 2, this model has

the transfer function

© Kk(Z)

G(z,s) = X - (5.1)
k=1 1 + Lks

where
2ﬂ(ml)k+lk sin &%E mk

K, (z) =

k b+ n2k2
T, = T/ (b+ n’k?) . (5.2)

For large values of k, the gain factors Kk(z) are inversely propor-
tional to k and thus decrease very slowly with k. Also, observe
that the poles of the transfer function (5.1) are negative and real.

In Table 5.1 the time constants T, and the gain factors Kk(£/4),

k
Kk(Q/Z) and Kk(32/4) of the expansion (5.1) are given for Tk>2/ﬂ.

Notice that the gain factors K, (3%¢/4) are obtained from the gain

k
factors Kk(%/Z) by changing sign of the 4th gain factor from the

second onwards.

In [3] and [7] the problem of choosing the sampling interval T for
parametric identification has been studied. The results in [7] are
restricted to the least squares and the white noise discrete-=time
model structures for white noise inputs. For a system with poles
Sy it is found in [7] that the variances of the estimates of these
poles increase rapidly as the product T ]sk! exceed T. Thefefore,

for a stable system, it should be expected that the poles s pos-

kl
sible to find by identification, should be located inside the fol-

lowing -closed region in the complex s-plane
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[é < /T

|
Re(sk) < 0 (5.3)
where n/T 1s the Nyquist frequency. The inverse Nyquist frequency
is T = T/m.

N
sampling interval recommended for ordinary spectral analysis. This

It is interesting to compare (5.3) with the choice of

choice of sampling interval must be small enough so that aliasing

will not be a problem.

Time Gain factors Kk(z)
constants

k Tk z=4/4 z=8/2 z=33 /4
1 175.906891 0.447307 0.632588 0.447307
2 44 .186586 0,317804 - -0,317804
3 19.655853 0.149947 -0,212056 0.149947
4 11.059841 - - -

5 7.079313 -0.,090009 0.127292 -0.090009
6 4.916573 -0.106085 - 0.106085
7 3.612345 -0.,064300 =0,.090934 ~-0.064300
8 2.765786 - - -

9 2.185358 0.050014 0.070730 0.050014
10 1.770167 0.063658 - -0.063658
11 1.462964 0.040921 =-0,057871 0.040921
12 1.229306 - - -

13 1.047463 =0.034620 0.048969 =0.034626
14 0.903174 -0.045471 - 0.045471
15 0.786769 -0.030010 =0.042440 -0.030010
16 0.691498 - - -

Table 5.1 - Time constants T, and gain factors Ky (2/4), Kk(z/Z)

and Kk(32/4) of the modal expansion (5.1) for Tk>T/n
T=2. Bars are used to indicate gain factors, which are
zero. The employed values of the thermal diffusivity
and the coefficient of surface-heat loss are a =

=1.159:10"% w%/s and n = 3.6-107° 1/s.
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Modal expansion of the models Sl£/4, sl and S1

38/4°

2/2

The sampling period of the series S1 is 10 s. Thus the inverse

Nygquist frequency become‘TN = 3,18 s. The continuous modal expan-

sion of the model 812/4 is

, . 0.47022 0.44255 )
Ggp(&/4,8) = 5= 1¢3.70s T T+ 33.373s
0.57792s + 0.17208

- 5 (5.4)
1 + 9.8491s + 33.195s

An inspection of Table 5.1 shows that the first term in the expan-
sion (5.1) is estimated rather well. It is also concluded from
this table that the 2nd and 3rd terms in (5.1) are identified as
a single term. This single term has the time constant T = 33.373.
Moreover, the sum of the gain factors of the two clustered terms
is approximately equal to the gain factor of this single term. The
model (5.4) also contains a second order term with complex poles.
The damping factor of these poles is 0.85. This second order term
approximates the infinite number of terms in (5.1) from the 5:th
onwards. It should be observed that the gain factors Kk(2/4) do

not form an alternating series.

The model Slz/2 has the following continuous modal expansion

_0.63337 _ 0.37123 0.28546
Ggy (8/2,8) = 75795008 ~ T ¥ 16,3145 © T+ 9.90145
0.05561
I % 5.31395 (5.5)

The model (5.5) has 4 real poles. From Table 5.1 it can be seen
that the first term in the expansion (5.1) is estimated well and
that the poles in this expansion are identified more accurately

than the corresponding gain factors.

The modal expansion of the model 8132/4 becomes
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o

o .45268  _ 0.27613
Ggqy (3%/448) = 7757 785 ~ T + 47.3805

N 1.03112s + 0.06739 (5.6)

1 + 30.584s + 330.1852

From Table 5.1, it is c¢lear that the first two terms in (5.1) are
identified rather well. Moreover, this table shows that the in-
finite number of terms, from the 3rd onwards, are represented by a
second order term in (5.6). This term has complex poles with a

damping factor of 0.84.

Modal expansion of the model 832/4

The sampling period of the series S3 is 2 s. The inverse Nyquist

frequency of this series become TN = 0.64 s. The model 831/4 has

the following partial fraction expansion

. _0.44988 0.46523 _ _ 0.25794
Ggy(v/4,8) = v g3 81s T T+ 32.251s ~ T + 6.0021s
, _ 0.12884s + 0.06642 5.7

1 + 3.68965 + 5.3260s2
A comparison with Table 5.1 shows that the first term in the expan-
sion (5.1) is estimated rather well. This table also shows that the
2nd, 3rd and 5th, 6th, 7th term in (5.1) are represented by the 2nd
and 3rd terms respectively in (5.7). Thereby, the gain factors of
these lumped terms are approximately eqgual to the sum of the gain
factors of the corresponding clustered terms. Moreover, the time
constants of the lumped terms equal an average value of the time
constants of the corresponding clustered terms. From Table 5.1 it
is also clear that the infinite number of terms from the 9th onwards
are identified as a second order term in (5.1). The damping factor
of the complex poles of this term is 0.80. It should be observed

that the gain factors Kk(2/4) do not form an alternating series.
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Clustering effect

The results above will now be summarized. It is found that the
first term in the modal expansion (5.1) is estimated rather well
in all models. Moreover, the conclusion is reached that successive
terms in (5.1) from the 2nd onwards, which have gain factors of

the same sign, are identified as a single term

K
1+sT

where K is approximately equal to the sum of the gain factors of
the clustered terms and T is an average value of the time constants

of these terms.

The investigation also shows that the infinite number of terms in
(5.1), whose time constants are close to or less than the inverse

Nyquist frequency T, = T/w, are ildentified as a first order term or

a second order term? depending on the relative differences of the
time constants Tka If this difference is large, then the rest terms
in (5.1) are represented by a first order term in the estimated
model. Otherwise, the rest terms in (5.1) are represented by a sec-
ond order term. The complex poles of this second order term are
well damped. These two phenomena explain the relatively low orders
of the identified models. In [8] it is shown that these conclusions
also are valid for maximum likelihood identification results from

simulated samples of a rod.

Nonlinearities of the temperature sexrvos

The conclusions stated here are important for the choice of experi-
mental conditions in Chapter 5 and the interpretation of the Kalman

filtering results in Chapter 7.

The identification results from the input-output data (ul,yz) of

the series S1 show that the prerequisities for the maximum likeli-
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hood identification are strongly violated. In particular, it is
found that this model does not describe the dynamics of the process
well, during the first sampling intervals after that a shift has
occured in the input signal. The identification results from the
data (ul,yé) of the series S1 still show: that the prerequisities
for the maximum likelihood identification are violated. However,

it is clear from Fig. 3.1 and 3.2 that the model Slz/2 describes
the fast dynamics of the process essentially better than the model
Sl£/4° It is also found that the prerequisities for the maximum
likelihood identification are fulfilled for the data (ul,y6) of the
series Sl. Especially, it is seen that the dynamics of the process
are well described by the model 8131/4.
The results are explained by the fact that the nonlinearities in
the response to the input Uq s introduced via the servo, are not
effectively filtered out by the process dynamics at z=¢/4 and /2.
Since the employed model (3.2) can be used to describe a very large
class of linear time-invariant stochastic processes and since the
choice of n is - bhased on order tests, it follows that there exists
no linear time-invariant stochastic model which describes the proc-
ess perfectly for z=%/4 and /2. However, such a model exists for
z=3%/4 and 8332/4 is one such model. This also implies that if an
extremely accurate model of the rod and the servos is required,
then this model must contain non-linear elements. The conclusions
above also apply to the identification results for the input-output

data (ul,yz) of the series S3.
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APPENDIX 4A

=3 n=4 n=

a, ~1.9603+0,0024 .=1.9437+0.0010 . —1.5215+0.0012
a, 1.2422+0.,0037 1.1845x0,0019 0.2957+0.0015
ag ~0.2620+0.0019 -0.2584+0.0015 0.3784+0.0014
a, 0.0300x0.0007 -0.1676+0.0014
3 0.0315+0.0007
bl 0.01154+0.0002 0.0107+0.0001 0.0107x0.0001
b2 0.0507+0.0004 ' 0.0526+0.0001 0.057040.0001
b3 -0.0480+0.0003 -0,0463+0.0001 -0.0247+0.0001
b4 -0.,0079+0.0001 -0.0308+0.0001
b5 0.0000+0.0001
= ~0.5109+0.0467 -0.3934+0.0346 0.0250+0.0337
c, -0.3272+0,0638 -0.6072+0.0407 ~0.8599+0.0361
c3 0.4647+0.0666 0.0885+0,0313 -0.1299%0,0378
cy 0.2457+0.0353 0.3448+0.0337
Cg 0.0627+0.0286
dl -0.6918 -0.6918 -0.6920
d2 0.6767 0.6633 0.3714
d3 ~0.1412 ~0.1091 0.2182
d4 ¢.0272 ~0.0669
d5 -0,0213

-2 -3 -3
Py 0.1867-10 ~5 0.8720-10 -3 0.8624-10 23
v 0.15023-10 0.32773°10 0.32054°10

Table A.1l - Models of successively increasing order, relating the
temperature Y, [°C] to the end point temperature u

[CC] for the series 81.

ll
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|

n=3 n=4 n=5

ay -2.1237+£0.0011 -2.0342+0.0007 -1.9329+0.0007
a, 1.4979+0.0020 1.4028+0.0016 1.1847+0.0015
asy -0.3632+0.0010 ~0.3958+0.0015 -=0.2282+0.0018
a, 0.04006+0.0006 0.0117+0.0015
g 0.0082+0.0006

v n™3 -3 -3 =3 -3 -3
bl nO,ll96,lO_3iOuO7Ol 10&3 0.021.9']_Om3i0.0260-10_3 0.0237°l()a3'l30.,0256~lO=__3
b2 —0.2136'10m310.l351 lOm3 0°4645°10_3i0.0516-10_3 0.4595'10m3i0.0490'10_?
b3 5.6447°10 “+0.0814 10 3.9032']_0“.”3ﬂ:0.0532"],O_W3 3.9506'10n3i0a056l°10_é
b4 2.3003°10 “+0.0300°10 2.7232‘10m3i0.0499'10‘3
b5 0.1290°10 7+0.0296-10
Sy -1.0332+0.0358 -0.8617+0.0358 -0,7653%0.,0351.
o 0.4407+0.0697 0.5379+0.0518 0.4371+0.0412
cy 0.1057+0.0503 =0.1516%+0.0498 -0.0248+0,0403
Cy 0.2445+0.0312 0.0681%0.0413
Ccg 0.1846+0.0311
dl =0.4605 * -0.4604 =0.4603
dz* 0.5172 0.4761 0.4297
d3 -0.1721 -0.1694 -0.1153
d4 0.01068 -=0.0065
d5 0.0036

er =3 g A=3 eq =3

A 0.6303°10 3 0.3620°10 —4 0.3565°10 4
i 0.17125°10 0.56465°10 0.54789°10

Table A.2 - Models of successively increasing order, relating the
temperature y, [°C] to the end point temperature uy [°c]

for the series Sl.
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n=3 n=4 n=5
aq -2.5868+0.0022 ~2,9647+0.00138 =2.2107+0.0020
a, 2.243940,0043 3.2909+0,0050 1.0425+0.0053
a3 -0.6546+0.0021 ~1,6323+0,0048 0.8836+0.0065
a, 0.3081+0.0016 ~0.9533+0.0052
ag 0.2415+0.0018
-3 1”3 -3 =3 -3 -3
bl 0.5086‘10w3i0.0511 10 5 —0.0154‘10_3i0.0330'10m3 -0.0120 lO__=3j0.0364«.].Om3
b2 ml.7476'10m3i0.1045°10E§ 0.1666'10_3i0.0934-10_3 ().]_375'lO_=3iO.O953'lO_==3
b3 1.8677°10 "+0.0586°10 -—0.4393‘10_”31“0.,0962'10_!_3 -0.2845 10_310.1163’10“3
b4 0.7897:10 "+0.0363°10 0.4457'10_3i0.0985'10m3
b5 0.5856°10 “+0.0402°10
¢y =1.5925+0.0364 =-2.3374+0.0372 =1.5773+0.0363
5 0.6325+0.0677 2.,137540.0910 0.3189+0.0621
Cy 0.0668+0.0411 -0.9249+0,0882 0.8192+0.0526
c, 0.2004+0.0341 -0.6335+0.0653
Cg 0.2056+0.0342
dl -~0.2267 -0.2267 -0.2266
d2 0.3602 0.4450 0.2736
d3 ~0.1498 -0.2996 0.0396
dy 0.0686 ~0,1629
d5 0.0541
-3 13 -3
A 0.7689-10 -3 0.5119°10 ~, 0.5101-10 -3
\Y 0.25483-10 0.11292°10 ~ 0.11216-10
Table A.3 - Models of successively increasing order, relating the
temperature y, [°C] to the end point temperature u, [°C]

for the series Sl.

1
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n= n=. '%' n=6

3y =2.5101%0.0008 -3,51554£0.0023 <2,5177+0.0009
a, 2.2999+0.0019 4.8639+0.0083 1.3577+0.0023
as ~0,9219+0.0018 -3.3402+0.0119 1.5070+£0.0016
8y 0,1362+0.0008 1.1590+0.0078 -2,1651+G.0017
ag ' -0.1671+0.0020 0.9836+0.0022
ac -0.1653+0.0008

-3 -3 i n3 a3 13 13
bl -==’O.0404-10._“3i0.0399"10___3 0.0420 10_310.0322 10__3 0.0529 10m3t0.0322 10_3
b2 0.0132‘10_310.0835°10m3 ~0.1142=10m3i0.1084'10_3 ~0.;lo9-10méi0.0804°low3
b3 0.5438-10_3i0.0843°10m3 O.6463~10__3i0.1543'10_3 0.5935'10"3i0.0784'10_3
b4 2.0224-10 “+0.0416°10 1.4163’10w3:tO.1131°10_3 2.0017-10_3¢O.O77O°10===3
b5 ~1.9316°10 “+0.0360°10 -==0.4:797'10“_,31;0.0830-lOm3
b6 =1.9405°10 "+0.0363°10
¢y -0.9927+0.0245 -2.3828+0.0235 -1.3843+0.0234
c5 0.7059+0.0378 2.2453+0.0605 -0.1316+0.04G0
C3 -0.1246+0.0369 -1.0767+0.0780 1.1566+0.0372
cy 0.1976+0.0221 0.2403+0.0645 -0.8210+0.0360
Cg- ~0.0027+0.0252 0.2255+0.0433
6 0.0016+0.0257
dl -0.7192 -0.7192 -0.7192
d2 1.0861 1.8092 1.0916
d3 -0.5680 -1.6893 0.1148
d4 0.0959 0.7142 -0.9681
d5 -0.1185 0.5911
d6 -0.1173

-3

A 0.6566°10 > 0.5236°107> 0.5233:40 -
\Y 0.39410°10 0.25056°10 0.25029°10
Table A.4 - Models for successively increasing orxder, relating the

temperature y, [OC] to the end point temperature Uy [°c]

for the series 83.

4+ This model has an indefinite matrix of second order

partial derivatives V

aa”
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CHAPTER 5

ESTIMATION OF THERMAL DIFFUSIVITY

1. INTRODUCTION

Several mathematical and experimental methods for determining

the thermal diffusivity of solid materials have been developed
during the past hundred years. A review of the mathematical de-
velopment may be found in e.g. Jakob [8] and Carslaw and Jaeger
[5]. Recent accounts for the experimental development have been

given by Danielson and sidles [6] and Touloukain et al. [13].

The methods fall into two main classes, periodic heat-flow me-
thods and transient heat-flow methods. In the periodic heat-flow
methods, the thermal energy supplied to the sample varies perio-
¢ically with a fix period. Consequently, the temperatures at all
points in the sample vary with the same period and the thermal
diffusivity is determined from measurements of the amplitude and
phase relationships. A steady-state condition prevails in the

sense that the temperatures are periodic.

In the transient heat-flow methods, the sample is initially in a
steady-state condition. Energy is then added or removed from the
sample which induces a transient temperature change. The thermal
diffusivity is determined from measurements of the temperature

as a function of time at one or more points on the sample. In this
class of experimental methods, it is often crucial to measure the
temperature a short time after that the perturbation is introduced
whereas in the other methods temperature measurements may be per-

formed at any time.

Following [13]1, the two main classes can be further classified,



according to the originator or the nature of the technique used,

in the following subclasses:

A, Periodic heat—flow methods:
Angstrdm's method, Temperature wave velocity method, Tem-
perature wave amplitude-decrement method, Modified Angstrdm's
methods, Phase-lag methods, Thermoelectric methods, Radial-

wave method and Cryogenic method.

B. Transient heat~flow methods:
Long bar methods, Moving heat-source method, Small-area-
contact method, Thermoelectric effect method, Semi-infinite
plate method, Radial heat-flow methods, High-intensity arc
method, Flash methods, Electrically-heated rod methods.

In this chapter two different methods are compared for determi-
ning the thermal diffusivity of the rod. The first method is a
modified Angstrdm's method which makes use of a long bar. In
1861 the Swedish physicist Angstrtm [2] published his method
for determining the thermal diffusivity of metals. This method
and its modifications are highly accurate methods for determi-
ning the diffusivity. The modified Angstrdm's methods, proposed
by Sidles and Danielson [12] and Abeleset al. [1l], make use of
a sinusoidal input signal and Lissajou's figure techniques to

determine the thermal diffusivity.

There are several interesting features in Angstrdm's original
method whose importance have not been clearly understood by the
rediscoverers of the method. The most prominent feature to be
mentioned is the least squares technique used by Angstrdm to fil-
ter out the first harmonics in the periodic temperature varia-
tion. In the author's experimental approach, the rod is excited
by a sinusoidal signal and a digital filter is used to filter
out the fundamental harmonics of the temperatures in two proper-

ly chosen points, using the correlation method [4].

The second method is a long bar method. This method resembles
in some respect the method proposed by Kennedy et al. [9] in

1962. Kennedy et al. made use of a guarded sample, attached in
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one end to an electrical resistance heater. Three thermocouples
were mounted at equally spaced intervals along the rod. After
the heater was turned on, the temperature changes occuring at
each thermocouple were recorded. The temperature at the two
outer thermocouples determined the boundary conditions for the
heat equation. The thermal diffusivity was determined such that

the following model error was minimized

N 2
(y(t) - y(t)) (1.1)

<
il
2
o1z

t=1
where y was the measured mid-point temperature, y was the cal-

culated mid-point temperature and N was the number of data points.

It is here proposed to use the principle of maximum likelihood

to estimate several parameters of the heat process. These para-
meters are the thermal diffusivity, the coefficient of surface-
heat loss, the slope and the zero adjustment errors of the mid-
point transducer. By including a heat loss term in the heat equa-
tion, it is possible to account for radial heat loss from the
rod. Moreover, the influence of the calibration errors of the
transducers are eliminated by estimating the slope and zero ad-
justment errors of the mid-point transducer. The rod is excited
by a PRBS-signal which is known to be a more effective input sig-
nal for system identification purposes than the step signal used
by Kennedy. By employing this method, it is also possible to as-

sign accuracies to the parameter estimates.

The experimental set-up employed differs from that of Kennedy

in two respects, the heating is done with Peltier elements and
thermistor sensors are used. By this arrangement, it is possible
to control the end temperatures of the rod more accurately and
to measure the temperature profile of the rod with better preci-

sion.
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2. MODIFIED ANGSTROM'S METHOD

Outline of the method

In a modified Angstrdm's method [1] and [12] one end of the rod
is subjected to sinusoidal temperature variations. This causes

a heat-wave to progress down the rod. The period of the tempe-
rature variations is chosen small enough for the free end tem-
perature of the rod to be unchanged. After the cyclic tempera-
ture variations have been continued for a sufficiently long time
for the heat-wave to become stationary, the thermal diffusivity
is determined by analysing the attenuation and phase shift of
the heat-wave. The conduction of heat in the rod is assumed to
be described by

2
2 28 238 g (2.1)

BZZ ot

It follows from [4] that the transfer function for a semi-infi-

nite rod (2.1), relating the temperature at a point zo+d to the
temperature at a point Zg on the rod, is given by
G(s) = exp<= dV(s+n)/a> (2.2)

Straightforward calculations show that

ln!G(iw)] = = d <Vm2+n2+n>/(2a)
arg G(iw) = = d (dw2+n2mn>/(2a) (2.3)

Though obtained in a neater fashion, multiplication now gives
the result discovered by Angstr&m [2] more than a century ago
d~w
2a

ln‘G(im)l . arg G(iw) = (2.4)

By measuring the value of the transfer function G(s) at one par-

ticular frequency w, the thermal diffusivity can thus easily be
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determined from the Angstrdm's formula (2.4), Rewriting (2.4),
it follows that

nd 2 (2.5)

Tp In|G(iw) | - arg G(iw)

where the period Tp of the sinusoidal input signal has been in-
troduced. i

Experimental approach

When measuring the thermal diffusivity, using the modified Ang-
strém's method, the transfer function G was determined for one
value of w by frequency analysis, employing the correlation me-
thod [4]. The diffusivity was then obtained from (2.5). The ex-
perimental arrangement is shown in Fig. 2.1. The synchronized
sine and cosine signals of the signal generator are generated
in software by a process computer. The sine signal is converted
to analogue form and this signal serves as input signal to the
process. The signals Y and Y, are converted to digital form,
and the multiplication and the integration are performed in

software by the computer.

If the influence of the disturbances is neglected, the signals
Yy, and y, are given by

Y =Yg sin(wt+mk), k=1, 2 (2.6)

k

The outputs of the integrators are functions of the integration
time T. These functions are only considered at discrete times,
where T is an integer multiple of w. Short calculations give
that
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cos wt

l¢—0
]
N

Fig. 2.1 - Block diagram of an experimental arrangement for de-

termining the thermal diffusivity.

T
Vg = é yk(t)sin wt dt

i
poji—

T yok cos wk

Yo, = E vy (E)cos ot dt = = T yo, sin @, k=1, 2 (2.7)
and

Yoy = % “Yék * ygk

9, = arctg(yck/ysk), k=1, 2 (2.8)

It follows from (2.8) that

lc(iw) | = V<y§2 + y§2>/<y§1 + ygl)

arg Giw) = arctgl (Ye,/¥s, = ve1/¥sy) /(1 + ye,/¥s, - Yoy/¥sy) |

(2.9)
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According to [4 ], the correlation method effectively eliminates
disturbances and, if oT is an integer multiple of 2m, constant
measurement errors. It can also be shown that continuous simple
nonlinearities [7] in the A/D-converters of the computer inter-
face do not affect the measurement of the phase shift arg G(iw),
provided that wT is an integer multiple of 2n. The influence of
continuous simple nonlinearities on the amplitude ratio lG(iw)l
can be eliminated either by repeating the experiment with the
A/D=-channels interchanged or by correcting the value of |G(ﬂw)|

with the result obtained for the transfer function G(s) = 1.

Results

The rod was excited by a sinusoidal input signal of amplitude
2.3°C and period 60 s, and the system was allowed to reach equi-
librium. The amplitude of the free end temperature variations
may be estimated from (2.3), using the specification (3.13) in
Chapter 2. Provided that n << ®, an estimate of this amplitude
becomes 0.0002°C. This implies that the rod was effectively se-
mi-infinite. The integration was carried out during 5-10 periods.
The influence of simple nonlinearities in the A/D-converters was
eliminated by correcting the value of lG(im)| with the result
obtained for the transfer function G(s) = 1.

The thermal diffusivity was determined from the signals Y1 and
Vo The amplitude ratio lG(im)l and the phase shift arg G(iw)
and their standard deviations obtained from 8 different experi-

ments were
|G(iw)| = 0.3032 & 0.0001
arg G(iw) = - 1.1939 = 0.0004 rad (2.10)

The reproducability was thus very good. However, the measurements

were not free from systematic errors.

Since the influence of simple nonlinearities in the A/D-conver-
ters was eliminated, it follows from (2.5) and (2.9) that the




9%

systematic errors were due to errors in the sensor position, er-

rors in the period Tp and errors in the calibration of the trans-
ducers. According to (2.5) and (2.9) the maximal systematic error
in the diffusivity becomes

AT
Aa - Ad 1
o I o T e AR vt L LR A
nax max p 'max IniG(iw) | max max

(2.11)

where 681 and 552 are the slope errors of the transducers record-
ing the signals Y1 and Yo respectively. From (2.1) in Chapter 2,

it follows that the sensor separation and its maximal error were

d = 0.05625 m and 0.3 % respectively. Moreover, by (2.5) in Chap-~
ter 2, the maximal errors in §S and 6Sq were both 0.2%. Neglecting
the error in the period Tp, it %hen follows from (2.5), (2.10) and

(2.11) that the thermal diffusivity and its maximal error become

a = 1.163 £ 0.009 (2.12)

It should be observed the random errors were small compared to
the systematic errors. Also observe that the errors in the phase
shift arg G(iw) were negligible. Finally, notice that the errors
in the sensor position (0.6%) dominated over the calibration er-
rors of the transducers (0.3%). These calibration errors could
therefore not be eliminated by simply repeating the experiments

with the thermistor sensors interchanged.

A process computer PDP-15/35, with floating point arithmetic in
hardware, was used in the experiments. The sampling rate was 20 ms
and the time delay between the readings of two arbitrary analogue
input channels, during the same sampling period, was 20 us. The
resolutions of the A/D- and D/A-converters corresponded to 0.002°C
and 0.02°C respectively. A storage capacity of 1.8 K words was re-
quired for the program, including the system subroutines but ex-

cluding the executive and the programs for data acquisition.
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3. MAXIMUM LIKELIHOOD METHOD

Method of identification

Consider a linear, single-output, time-invariant and discrete-

time system
x(t+l) = dx(t) + Tu(t)
y(t) = Cx(t) + 60 + e(t) (3.1)

where x is an n-vector, the input u is m-vector, the output y
is a scalar, {e(t)} is a sequence of independent normal (O,AZ)
random variables and 60 is a constant level in the output. The
variable e(t) is also assumed to be independent of the input

u(s) for all s and t.

Following Section 2 of Chapter 4, the parameters of (3.1l) are

determined using the maximum likelihood method. Given a record
of input-output data {u(t), y(t)lt =1, 2, ..., N} of length N,
the negative logarithm of the likelihood function for the sys-

tem (3.1) becomes

1 ¥ N
- 1n L(a,r) = —=5 J e“(t) + N 1ln a» + = 1n 2n (3.2)
227 t=1 2

where the residuals ¢(t) are obtained recursively from

e(t) = y(t) - Cx(t) - 5,

x(t+l) = dx(t) + rul(t)

x(0) = x4 (3.3)
The likelihood function is considered as a function of g and A

where & is a vector whose components are the unknown elements

of the matrices ®, T, C, 60 and the n initial conditions Xg -
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From Section 2 of Chapter 4, it follows that the maximum of the

likelihood function is obtained by finding o which minimizes

g2 (t) (3.4)
1

o~

1
Vi{ie) = =
2 t

An estimate of A is then given by

;2

2o

min V() (3.5)
o

A number of properties of the maximum likelihood estimates and
some means to detect possible violation of the prerequisities
for the maximum likelihood identification are given in Section
2 of Chapter 4. The maximum likelihood identification for a ge-
neral multiple=output system (3.1l) are discussed in [3], [10]
and [14].

The estimates were computed by minimizing the loss function V
numerically. The accuracy of the vector & was estimated from the

2

matrix A Véi according to Section 2 of Chapter 4. The matrix V&&

was computed by means of difference approximations.

State-space model of the rod

The lumped model ROD2 of the rod is used for maximum likelihood

identification. This state-space model is given by

% = Ax + BV (3.6)

where the matrices A and B are defined by (2.10) in Section 2
of Chapter 3. The state vector x approximates the temperature
in n-1 equidistant nodal points along the rod whereas the compo-
nents the input vector v are the boundary temperatures of the

rod.,

The discrete model corresponding to (3.6) becomes
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X (t+l) = ®X(t) + TV (t) (3.7)
where
o = eA
1
r = [ P%as B (3.8)
0

The sampling period T is for convenience chosen as the time unit.
At the sampling instants the responses of the models (3.6) and

(3.7) are the same to a piecewise constant input vector.

The input vector is not piecewise constant in the particular case.
By approximating the input signals with polynomials in t, of or-
der k, and by enlarging the state space vector with 2k components,
it is possible to set up an enlarged continuous state-space model
of the rod with a piecewise constant input vector. Thereby, the
new components of the state vector consist of the approximated
input signals and their k-1 first derivatives. Moreover, the new
input vector consists of the k:th derivatives of the approximated
input signals. In the time interval j < t < j+l1 Lagrange polyno-
mials of order 3 defined by

P, (3) = v, (3)
P, (3+1) = v, (§+1)
P, (3+2) = v, (3+2), i=1, 2 (3.9)

are emploved to perform the approximation.

The enlarged state-space model becomes



103

0 0 0 | 1 0]
1 0 0 0 | 0 0 0
0 1 0] ] 0 0
0 0 ap o 0o o 0 0
0 0 by l o 0o o 0 0
0 0 o| | o 0o o0 0 0
: | | A o
X = | A | % + v = Ax + Bv
| |
0 0 oI |0 0 o0 0 0
0 0 oI |-b3 0 0 0 0
0 0 0 0 0 0 0
R T |22 0 9
| T To0 1 0 0 0
0 | |l o o 1 0 0
i l Lo o o] 0 1] (3.10)

where the matrix A and the parameters a, and b3 are defined by
(3 6) and (2.11) in Chapter 3 respectively. The null matrix is
denoted by 0.

Given a record of input-output data {v(t), y(t)\t =1, 2, «.., N},
the parameter vector a and the parameter A are estimated from the
model (3.1). Thereby, the matrices ® and T of (3.1l) are obtalned
from (3.8) with A = A and B = B Moreover, the input vector u = v
of (3.1) is calculated from the given input vector v in accordance
with (3.9). Finally, the components X1 Xgr Xgp X o0 X4 and x
of the state-vector x of (3.1) are updated conformably with (3.9)
at each sampling instant. The order of the model used for identi-

fication was n = 21.

Results

The objective of the identification was to determine the diffusi-
vity a and the coefficient of surface-heat loss n of the model
(2.1). In order to eliminate the influence of the calibration er-
rors of the transducers, the slope error 6S and the zero-adjust-
ment error 60 of the output transducer was also estimated. The

slope errors could not be eliminated in the Angstrdm's method.
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The signals Yor Yy and Y of the series S2, defined in Section 4
of Chapter 2, were used for identification. The boundary condi-
tions for the heat equation was thus determined by Yo and Ygr and
Yy, was chosen as the output variable. This selection of boundary
conditions eliminated the influence of nonlinearities of the ser-
vos, discussed in Section 5 of Chapter 4, and is therefore cru-

cial for the choice of experimental conditions. The matrix C in
(3.1) became

C=4(0 ... 0 l+6S 0 ... 0) (3.11)

To save computer time the computations were based on a record of
length N = 205. The transient caused by the initial nonzero tem-
perature gradient in the rod was eliminated by not using the
first part of the series S$2. The chosen record contained 18 bad
readings. These readings were substituted using Lagrange inter-

polation.

The resultsof the identification were

a = 1.1589.10"% £ 0.0001-10"% m?/s
n o= 3.56-10"° % 0.05-10"° 1/s
6, = 3.92:107° + 0.01:10 > °c
6, =6:107° = 1.107°
| A - 1.42.107% °¢ (3.12)

The random errors were thus very small. However, the measure-
ments were not free from systematic errors. The model used for
identification were based on the partial differential equation
(2.1). From (2.1) it is immediate that the only quantities in-
volved in the estimation of the thermal diffusivity are the time
t, the length z and the temperature 6. Since the slope and zero

adjustment errors of the output transducer were estimated, the
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errors in the measurement of the temperature 8 were eliminated.

To be more specific the identification was based on the lumped |
model (2.10) with the parameters (2.11) in Chapter 3. From (2.10)
and (2.11) it follows that a systematic error in the length scale
influenced a quadratically whereas a systematic error in the time
scale influenced a and n linearly. In this experiment the sensor

separation was D = 2d. Since the parameters were determined using
an optimization algorithm, it follows that the maximal systematic

error in a and n become

a max D max T max
An = |AT (3.13)
N max T max

From (2.1) in Chapter 2 it follows that the maximal error in D
was 0.15%. Moreover, the errors in the sampling period were neg-
lectable. Therefore, by (3.12) and (3.13) the values of a and n

-

and their maximal errors become

4 4 2

m”/s

o
i

1.159-10 ° & 0.003-10

5 5

3.6:10 ° & 0.1-10°

1/s | : (3.14)

Tt should be observed that the random errors were negligible,
compared to the systematic errors in this experiment. It fol-
lows from (3.12) that the standard deviation of the residuals

is 0.0001°C. This means that the state-space model ROD2 describes
the conduction of heat in the rod extremely well.

The statistical properties of the residuals of the identified

model were examined. The sample auto-correlation function (3.4)
in Chapter 4 of the residuals and the sample cross-correlation
function (3.6) in Chapter 4 of the inputs Uyr Uy and the resi-
duals are shown in Fig. 3.1. From this figure it is clear that

the residuals are uncorrelated. Moreover, by this figure, the
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inputs ul, u, and the residuals are uncorrelated.

The residuals were tested for normality using a chi-square good-
ness-of~fit test. The test quantity was x2 = 34, The number of
degrees of freedom was 21. Provided that X2 is less than 39 the
hypothesis that the residuals are normally distributed is accep-
ted at a risk level of 1%.

b 2 (D) P ()
I(,OE(T) t Le, €u,
1.0 1.0 1.01
0.51 0.5 0.5]
. R I I T i ocons o, T
min - - 1
Fig. 3.1 - Sample correlation functions of the identified model.

The signals uy and u, are the boundary temperatures
Yo and Ve whereas the signal Y is the output tempe-
rature. The dashed lines give the 99% confidence in-
terval for pe(T) for 1 # 0 and for psul(T) and psuz(T)
¥V T

The results of identification are illustrated in Fig. 3.2. This

figure shows:

0 the boundary temperaturesy, and Y
) the output temperature Ya

0 the model error emy T Y4 ” ym4, where Ym4 is the output of
the model
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~ A

X = Ax + Bv

= Cx + &

with parameters (3.12)

for the identified model. Summing up, it is found that the pre-
requisities for the maximum likelihood identification were ful-

filled at a risk level of 1% (compare the results for the model

812/4 in Section 3 of Chapter 4).

2

yg Boundary temp y
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< ,

—'].O T — 1
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| 4.
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-0.0015 4 8 12
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Fig. 3.2 - The boundary temperatures Yo and Ver the output tem—
perature y,, and the model error emy of the identi-

fied model.
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On a Univac 1108 computer the storage capacity required for the
programs and the data was 5.6 K words and 9.9 K words respective-=
ly. The system subroutines required extra 4.4 K words. The time
required to compute the optimum parameter vector o was 6 min for
a reasonable initial guess. The algorithm used for the numerical

minimization was based on [11].

4. CONSISTENCY AND CONCLUSIONS

Consistency

In [13] the recommended value of the thermal diffusivity for well-
4 s 0.04-107% n?/s. The
values of a estimated by the Angstrdm's method and the maximum

annealed high-purity copper is a = 1.17-10

likelihood method are consistent with this result, according to
(2.12) and (3.14). Moreover, by (2.12) and (3.14), the value ob-
tained from the Angstrdm's method and the maximum likelihood me-
thod are also mutually consistent. According to (3.46) in Chapter
2, a lower bound of n is given by n = 2.0:107° 1/s. The lower
bound applies to a case when the end point temperatures of the

rod are perturbed very slowly. From (3.14) it can be seen that

the heat loss from the rod only is increased by a factor 1.8, com-
pared to this case, in the experiment S2. By (3.12), the estimated

values of 60 and 55 are consistent with (2.5) in Chapter 2.

Conclusions

The modified Angstrdm's method and the maximum likelihood method
are very accurate methods for determining the thermal diffusivi-
ty. Errors in measuring the diffusivity originate mainly from
systematic errors in the sensor position and the calibration of
the transducers. Angstrdm's method applies to a semi~infinite rod
and, therefore, requires a smaller sensor separation than the
maximum likelihood method. This is a distinct disadvantage of the
Angstrdm's method. The influence of the calibration errors of the

transducers can be eliminated by estimating the slope and zero ad-
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justment errors of the output transducer using the maximum like-
lihood method. These errors effect the determination of the

thermal diffusivity in Angstrom's method.

In both methods the random errors are very small compared to the
systematic errors. The measurement times used in both cases are
relatively short. Therefore, these methods possess a possible po-
tential for determining the thermal diffusivity even more accu-
rately. The results in this chapter indicate that the thermal
diffusivity can be determined more accurately if thermistor sen-
sors of smaller sizes are used. In the present apparatus, errors
in determining the thermal diffusivity are of the order of 0.9%
and 0.3% for the Angstrdm's method and the maximum likelihood

method respectively.
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CHAPTER 6

MULTIVARIABLE DEAD-BEAT CONTROLLERS

1. INTRODUCTION

During the past two decades the state space approach to dead-
beat control theory has been given much attention. Early contri-
butions to the topic were given by Kalman et al. [2] and [10] in
1958 and 1960. Kalman solves the problem of transferring the
state of a single-input sampled~data system from any initial
state to equilibrium with zeéro error in a minimum number of time
sﬁeps. The solution was given as a linear state feedbéck. In solv-
ing this problem Kalman [10] introduces the concepts of reachabi-
lity and observability. The possibility to design a sampled-data
regulator in such a way that the error in the response to a step
input is identically zero in the sampling instants after a cer-
tain number of time steps was first pointed out by Bergen and Ra-
gazzini [5] in 1954.

Bertram and Sarachik [6] relaxed the minimality condition, in-
troduced by Kalman, and demanded that the output of the system
from any initial state should be transferred to the origin, pos-
sibly with a small error, in a given a number of time steps. In-
stead the control strategies were made to satisfy other deside-
‘rata, for instance, minimizing the energy consumption required

for the transfer. The strategies were control programs appli-
cable to multivariable systems. Dead-beat regulators that for-

ce the state of a multivariable system to zero were first derived
by Farison et al. [7] and Kufera [12] in 1970 and 1971. The prob-
lem of constructing a linear state feedback which forces the out-
put of a single-input, single-output system from its initial state

to zero in a minimum number of time steps was considered by Kudlera
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in [137].

The dead-beat regulators are intimately connected to canonical
structures of linear systems. In fact such regulators which for-
ce the state of a multivariable system to the origin can be ob-
tained directly from one controllable canonical form [14] of the
system. This fact was used by Ackerman [1] to obtain dead-beat
response. However, there exist no canonical structures which
give the corresponding controllers for the output case. The com-
putation of the canonical structures which yield the dead-beat
regulators is numerically ill-conditioned for systems with a

large number of state variables.

In this chapter a unified approach to the theory of multivariable
dead-beat control is given. The approach covers and extends all
results on the topic given in the cited literature. Special atten-
tion is given to the connection between dead-beat control strate-
gies and the solution of a éingular optimal control problem which
gives time-variable dead-beat controllers. Some of the algorithms
which yield the dead-beat regulators are numerically ill-condi-
tioned if the sampled-data system has eigenvalues close to the
origin. It is shown how the condition can be improved by split-
ting of these eigenvalues of the system. The algorithms may be
viewed as special algorithms for pole assignement. The approach
is basically geometric and much inspiration comes from Wonham and
Merse [15], [17] and [18]. ‘

2. PRELIMINARIES

Notation
Below, capital italic letters A, B, C, ... denote linear maps and
script letters X, VY, Z, ... denote linear vector spaces. Elements

of a vector space are denoted by lower case italic letters X, Vo
Z,... .The same letter is used to denote both a matrix and its
map. All maps, matrices and spaces are defined over the field of

real numbers. Transpose it denoted by a prime. The orthogonal com-
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plement of a subspace l is written ¢t. The dimension of a sub-
space V is denoted by dim(V). A matrix V is said to be a basis
matrix for V if the column vectors of V are linearly independent
and span V. The symbol 0 stands for a number, a vector or a sub-

space which is zero.

Assume that k is a positive integer. Then k and k, are the set of

integers {1, 2, ..., k} and {0, 1, ..., k} respectively. A set of
, \ k

elements {al, Bor esey ak} is written {ai}ieg or {ai}i=l' The emp=-

ty set is written ¢. The symbol 0. is used to denote a null matrix

with n-columns, whose number of rows is to be understood from the

context. To represent a nxn unit matrix the symbol In is used.

Background algebra

Assume that X and Y are linear vector spaces and assume that
A:X-Y is a linear map. The kernel of A is the subspace Rer () =
::{XlXEX , Ax=0} and the image of A is the subspace Im (A) =

= {y|y€Y, 3Ix€X:y=Ax}. Sometimes the image of A is written A. The
nullity and the rank of a map A are defined according to v (A) =
= dim (Ker (3) ) and rk(A) = dim (Im(A) ) respectively. The image of
VeX under A is the subspace AV = {y|y€Y, 3Ix€lV:y=Ax}. Moreover,
the subspace Amlw = {x|x€X, Rx€W} is the inverse image of WY un-
der A.

Assume that A:X=X is a linear map. Let V<X and let AV<ElY. The sub-
space U is then said to be an A-invariant subspace. Assume that
V is a basis matrix for V. Then the map corresponding to the mat-
rix A which satisfies AV = VA is called the restriction of A to
V. This map is denoted by A|V. If there exists a subspace (<X
such that AWcW and Vel = X, then A is said to be reduced by the
pair (V,W) which is written A = A|V ® A[W. The subspace {A|B} is
defined by {A|B} =B + AB + ... + AnwlB where B<X and dim(X) = n.

Let X and U be linear vector spaces and let A:X-X and B:U-X be
two linear maps. A subspace V is called an (A,B)-invariant sub-

space if AVcV+B. According to [15], there exists a map L:X-U
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such that (A+BL)V<V if and only if Aycy+B. Associated with an
(A,B)-invariant subspace V, there are many linear maps L such
that (A+BL)VcV. The feedback class L(V) is the set of all such E
linear maps, i.e.

L(y) = {LI(A+BL) V=V} (2.1)

A set of (A,B)-invariant subspaces Wi}iEk is said to be compa-=
tible if -

k
nL(V) o+ ¢ (2.2)
i=1

Let A:X»X and B:U»X be two linear maps. Assume that ¥ is a given
subspace in X. Then, according to [15], there exists a unique maxi-
mal (A,B)-invariant subspace ¥ contained in W, Thus if V is any
(A,B)-invariant subspace, then U=U*cW. From [15] it follows that

the maximal subspace v* is génerated by the following sequence

1

V. = WnAa (Vi“l+B) = Vi na +B), i=1, 2, ... (2.3)

The sequence converge in at most dim(W) steps and if k is the

. . . ] = * =
least positive integer such that Lk+l %{ then V “k'

Assume that X is a linear space and that A:X»X is a linear map.
m

ml 2 mpg ‘ . . .
Let a()r) = *g (A)GZ (A) ..o %p (1) be a prime factorlzatloﬁ over

R of the minimal polynomial (m.p.) of A and let N, = Ker (o,  (a))
for i€f. Then

1 2 £
ANiCNi, ieg (2.4)
and the m.p. of AINi is o; for i€l. Moreover, X = Nl ® N, ® ... @

3 Nﬂ provides a modal decomposition of X, relative to A, which is

unique. The index vy of an eigenvalue A; of A such that ai(xi) =0
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vs +1 : :
= NI where NYLI =
i i i

= Ker(ai(A)Vi) for i€f. Henceforth, Ni is said to be a generalized

is the least positive integer satisfying N

eigenvector space of A of index vy = my associated with the eigen-
*
value AiER or Ai,Ai€¢ for i€,

Moore~Penrose pseudoinverse

Let X and Y be linear vector spaces and let A:X+Y be a linear map.
. . . +
The Moore-Penrose pseudoinverse of A is the linear map A :Y-X

uniquely defined by the following four axioms [2] and [11].

anta = a (2.5a)
ataat = 2t (2.5b)
+y + :
(AA ) ' = AA (2.5¢)
+ +
(A An)'" A A (2.54d)
It can be shown [2] that these axioms imply
+
@n®t = @hH (2.6a)
AT = a'mTa = a0 (aan”? (2.6b)
a‘ta is the orthogonal projection of X on Im(A'") (2.7a)
1-A%A is the orthogonal projection of X on Ker (A) (2.7b)
AA+ is the orthogonal projection of ¥ on Im(a) (2.7c)
ImAA+ is the orthogonal projection of VY on Ker(A') (2.74)
Ker(A+) = Im(A’)'=L = Ker (3) (2.8a)
Im(a7) = Rer(a)T = Im(a') (2.8b)

The Penrose inverse can be used to give an explicit representa-

tion for the minimum norm solution to a least squares problem.
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Lemma 2.1: Given two linear vector spaces X and VY, a constant
vector z€Y and a linear map A:X-Y, Then x = A+z is the vector
of minimum norm among those x€X which minimize
[l Ax~z H2 (2.9)
The minimum value of || Ax-z ' is given by

- ~ 4
Hax-2 1% = 1z 0% - agn = | (1-2a*)z || (2.10)
Moreover, a value of x that minimizes (2.9) is unique if and on-

ly if Rer(p) = 0.

System description

Consider a finite dimensional, time~invariant, linear and disc-

rete-time system describedkby the difference equation

Ye = Cxt (2.11)

wherez%ﬁX is an nmvector,lﬁﬁu is an m-vector and yteyis a p-vec—
tor. The Buclidean spaces X = mn,;u = R ang v = P are the state,
the input and the output spaces reépectively. The system (2.11)

is denoted by S(2,B,C). When the complete state is considered,

the shorter notation S(A,B) is used. The system S(A,B,C) is

called completely reachable if {AlB} = X. The maximal (A,B)=in-

variant subspace in Ker (C) for the system S(A,B,C) is denoted by
V o
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System classes

In order to simplify the mathematics all results in this chapter
will not be given in its most general form but different restric-
tions will be made on the considered systems. The consequences of
these restrictions will be discussed in detail in Section 7. The
following four system classes will in the sequel be devoted much

attention.

st = (s(a,B,0)}

s? = {S(A,B,C) | Ker(B) = Ker(c') =0, {AlB} = x}
s3 = {S(A,B,C) | S(A,B,C)ESz, A invertable}
st = {S(A,B,C) | sa,B,00es®, vMhaTte = o} (2.12)

3. STATE DEAD-BEAT CONTROLLERS

Consider a system S(A,B) in the class 33 controlled by linear
time-invariant state feedbacks

u, = Lx t =0, 1, <. (3.1)

t t’

such that the state of the system from any X, at t = 0 1is forced
to the origin in a finite number of time steps. A state dead-beat
controller is such a controller which for each X requires the
minimum number of time steps. This number depends on Xg - It should

be observed that the state feedback L must not depend on Xg
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Preliminaries
Assuming that the state of the system S(A;B)€S3 is X at t = 0,
the state at the k:th sampling instant is

= a2k 4+ wop 21
¥ T A% k" k (3.2)

] ¥ i .

where Bk = [ukml’ ukmz, oo sy uo} contains the sequence of control
vectors and Wk is the reachability matrix, i.e.
w, = [B, 2B, ..., Ak'lB]
WO = 0 (3.3)

Since A is invertable, it follows from (3.2) that the set of
states (subspace) which can be transferred to the origin in no
more than k time steps for some choice of the input sequence Bk
is 7 = Im(Z,),

1 2

Z [A""B, 2™°B, ..., a7 ¥g]

k
0 0 (3.4)

It

Z

This fundamental result was first pointed out by Kalman [10]. The
reachability index v of the system S(A,B) is the least positive
integer such that rk(wv) = n, It is clear that dim(Zv) = rk(Wv),
since A is invertable. Therefore, the state of a system S(A,B 683
can be driven to zero in no more than vy time steps for any initial
state Xo+ Moreover, by (3.2), v is the smallest positive integer

for which this is true.

Selection procedure

The first step in the development of a state dead-beat control-
ler is the selection of n linearly independent column vectors
from the full rank matrix Zv. Procedures which accomplish such a
selection are discussed in [14]. In the selection here the column
vectors of z, should be examined in the following order
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-1 1 -1 2 -2
A bil' A le, coey A bim’ A bil' A bi2' ooy
=10
ey eceey A bim (3.5)
where the integers {i. }jem is a permutation of m. It tends
to produce several chalns A lbj, A“ij e so g Amribj, j€m, of ne-

arly equal length. The essential restrlctlon on the selection
procedure is that no vector of the form A bJ ig selected un-

less all lower powers of A - times bj are selected.

The sequential selection of vectors from (3.5) is made according
tc the following scheme:

(i) select one of the columns of A“lB

(ii) select another column vector of AmlB(m>l). If the vector
is linearly independent of the previously selected vectors,
keep it, otherwise omit it from the selection

(iii) at any stage of the process, select a new vector of the

form A“lbj where all lower powers of A”l

times bj have al-
ready been kept. If the new vector is linearly independent
of the previously selected vectors, keep it, otherwise omit

it from the selection

(iv) the selection procedure terminates when n linearly indepen-
dent vectors are selected.
(sP1)

It is clear that the outcome of the selection procedure may depend
on which permutation of the vectors in B that is used. In [14] it
is shown that the process does not terminate until n linearly inde-
pendent vectors have been selected.

The notation A lB(l), Asz(Z), onoyg A“kB(k) is used to denote the
linearly independent column vectors selected from the matrices
AwlB, AGZB, ooy AnkB respectively for k€y. By construction, the

selection is carried out such that
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| Im<B(l)> = Im(B)

Im(B(k)>rc Im(B(kml)>mc ceo Im/B(l)>, kev (3.6) b

\

Introduce the following compact notation

[A“la(l), Asz(Z), ooy A”kB(k”

e, = rk<s(l)>, iek  kev (3.7)

where rl = m and

The selection procedure is constructed so that

7, = Im(R), kEy (3.8)

which means that Rk is a basis matrix for Zk for all kewv.

Main result

The theorem stated below gives an algorithm for constructing a
state dead-beat controller. For a multivariable system special
cases of the theorem is given in [7] and [12]. The results in

[7] apply to systems where the columns of the reachability mat-

rix form a basis for X. For such systems no selection procedure

is required to obtain the state dead-beat controller. The general
case is studied in [12], but here the author only proves that the
state of the system can be forced to zero in no more than v time
units for any initial state. Below, it is shown that, in fact, it
is possible to construct a controller which brings the state of

the system from each initial state xj to zero in the minimum number
of time steps. An example which illustrates the use of the theo-

rem is also given.
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Theorem 3.1: Assume that S(A,B)€S3. Then a state dead-beat con-

troller is given by the mxn matrix solution to

(1) 2_(2) - (v)] _

¥ Am B 7 e o o g Ax B - ’-w Irl, Or2’ © s o p Or] (3.9)

i
i

L[A“lB
Moreover, the matrix A+BL is nilpotent of index wv.

Procf: Let k€v be a positive integer. Then (3.9) implies that

ra"is(3) < o, 1=2,3, ..., 3 (3.10)
since, by (3.6), Im(B(j)]c Im(B(jml)) < ... c Im(B<l)) and Im(B(l))

= Im(B) for j€k. Therefore, it follows from (3.9) and (3.10) that

(a+L) 1" (371 g (O =

o ¢ o -

(A+BL)kA“jB(j)

(a+pr) XTIt () o (A+BL)kmj(B(j)wB(j)> =0

vj€k (3.11)
Hence, R, = Im([A—lB(l), A—ZB(Z), cey A-kB(k)]> belongs to the
generalized eigenvector space of A+BL associated with the eigen-
value A = 0 and chKer<(A+BLﬂf>for:k€2.

Let X be arbitrary. Since Zv = X, there exists an integer k>1
such that x ¢z, .

choice of Bk such that the state is forced to zero in k time steps

and XO€Zk. Then, by (3.4), there exists some

for the considered X and k is the least positive integer for which
such a choice exists. But, according to (3.8), Rk = Zk for all ke€v.
Therefore, by (3.11), the controller L forces the state to zero in
k time steps for the given Xy. But X is arbitrary and, consequent-
ly, L is a state dead-beat controller. Moreover, since RV = X, it

follows from (3.11) that 24BL is nilpotent of index v.
o

Remark l: The theorem is a straightforward generalization of the

scalar case discussed in e.g. [12].
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Remark 2: Let k€v be an integer. Then (3.11) implies that

(A+BL)ZiCZiwlf i=1, 2, ..., Kk

ZO = 0 (3.12)

Remark 3: Assume that there exists a sequence of inputs By which
drives the state of a system S(A,B)ES2 from a given X to zero in
the minimum number of time steps k. Then there also exists a li-
near state feedback (3.1) which forces the state to zero in k time

steps for the considered x,.

Example 3.1l: Consider the linear and discrete—-time system

1 0 1 1
Xigq = 0.9 O X, + {1 0 Uy
0 0.8 2 1 (3.13)

It is straightforward to verify that the system (3.13) belongs to
the system class 83. The reachability index of the system is v = 2.
To construct a state dead-beat controller invoke the selection pro-

cedure (SPl). The follcwing two outcomes of the procedure exist

1 1 1
["lB, Amzbl] - |1.11111 o 1.23457
2.5 1.25 3.125 (3.14)
and
1 1 1
1. =2 ~
A"ls, 2%, | = |1.11111 o0 0
2.5 1.25 1.5625 (3.15)

According to (3.9), the outcomes (3.14) and (3.15) correspond to

the controllers

L =

{ 2.85714 -3,47143 2.2857]]
1

0.71429 1.15714 0.22857 (3.16)

and



0
I =
2 -5

respectively.
trollers Ll

=-0.9 ¢
=2.7 3.2
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(3.17)

The closed loop systems associated with the con-

and L2 become

=2.57143 =2.31429 2.05714
Xep1l = |72.85714 =2.57143 2.28571 X,

-6.42857 =5.78571 5.14286 (3.18)
and

=4 =3.6 3.2
Kipl = 0 0 0

-5 =4.5 4 (3.19)
respectively. The ch.p. of those systems are
d(z) = det(zI - (A+BL1)> = det(zl -~ (A+BL2)> = z3 (3.20)
For Xg = (lll)l the trajectories and the input sequencés of the

system controlled with the linear feedbacks Ll and L2 become

t 0
[1 -2,
Xe =3,
L. -7,
1 (-4,
Xy 1 0
1 |-5.
respectively.

the system (3.

1 2 t 0 1
82857 fb 4.04286 2.82857
14286 0 u,

0714 . 0.21429 0
4

o O

{-o.%}
u
t
5 0 -4.,5

4.4 (3.21)

Both the controllers Ll and L2 force the state of

13) to zero in v = 2 time steps.
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4., OQUTPUT DEAD-BEAT CONTROLLERS

Consider a system S(A,B,C) in the class 84 controlled by li-

near state feedbacks (3.1) such that the output is forced to zero
and kept zero for any ihitial state X in a finite number of time
steps. Let k(L) be the number of time steps required at most for

a certain feedback L. Define p = min k(L). An output dead-beat
controller is then a linear state %eedback (3.1) which forces the
output of the system S(A,B,C) to zero in at most u time steps and
thereafter keeps it zero for any initial state Xg e If in addition
the controller for each X actually requires only the minimum num-
ber of time steps then the controller is said to be a strict out-

put dead-beat controller.

If the system S(A,B,C) is obtained by sampling a continuous system
then the output of this system need not be zero between the samp-
ling points after u time steps. However, for a state dead-beat con-
troller it was required that the complete state should reach the

equilibrium point. As a result the state would remain zero.

Preliminaries

The subspace VM plays a fundamental role when constructing dead-
beat contollers. For any LE&(VM) the subspace VM is an unobservable
subspace to the pair (C,A+BL). The'unobservability is introduced
into the system by applying a linear state feedback (3.1). The sys-
3 such that VMﬂA@lB =

= 0., A technical consequence of this restriction is given in the

tem class 84 consists of all systems S(A,B,C)ES

following lemma.

Lemma 4.1: Assume that S(A,B,C)€S4. Then the restriction of A+BL to

VM (A+BL)1UM is invertable for all L€Q(VM).
The proof of the lemma is given in the Appendix 6A.

The construction of dead-beat controllers is simplified when the

system S(A,B,C) is left invertable. A neat geometric condition for



125

a system to be left invertable is given in [15]:

S(A,B,C) is left invertable if and only if

Ker(B) = 0 and VB = o (4.1)

M

For a non left invertable system the decomposition V= = V@UM

na
yield a subspace VCVM which is compatible with VM and has the
property VNB = 0.

Lemma 4.2: Let
{ M

M= U+ vMag

be a decomposition of VM. Then

V and B are independent (4.2a)
V is an (2,B)-invariant subspace (4.2b)
V and VM are compatible (4.2c)

dy(z) = ch.p. of (A+BL)|V divides d,(z) = ch.p. of (a+BL) IV, if
rer (V) nr (VM) (4.2d)

The Appendix 6A contains a proof of the lemma.

The following lemma gives a lower bound for the number of time
steps required to force the output of a system S(A,B,C) from any
initial state Xy to zero and thereafter keep the output zero

using a linear state feedback (3.1).

Lemma 4.3: Assume that S(A,B,C)€S4. If there exists a linear

state feedback (3.1) which brings the output of the system S(A,B,C)
from any initial state to zero in at most k time steps and there-

after keeps the output zero, then X = Zk + VM.

Proof: Assume that L:X~»U is a linear state feedback which forces

the output of the system S(A,B,C) from any initial state X to zero
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in at most k time steps and thereafter keeps the output zero. Let

X = N169N2$..°®N£

(A+BL)NicNi, i€x ‘ (4.3)
be a modal decomposition of X, relative to A+BL. Assume that Ny

is a basis matrix for N and assume that (A+BL) is the induced

matrix representation for (A+BL)|Ni. Putting

M, = (A+BL)kNi, i€l (4.4)

it then follows +that

k-1

li

N; (BFBL) = ... = v (FBD)*, ieg (4.5)

Mi = (A+BL)
Since by hypothesis, Vi = C(A+BL)kx0 = 0 for all erNi, it fol-
lows that MicKer(C). Moreover, (4.5) implies that Mi is an (a&,B)-
invariant subspace. Therefore, the maximal property of VM yvields
that

i

M;eV™, i€ (4.6)
(i) Assume that N, is associated with Ay # 0.
Then (A+BL) is invertable. Thus, by;(4.5) and (4.6), N; = v
(ii) Assume that N; is associated with Ay = 0.
First assume that Mi = 0. Then by (4.5), X = (A+BL)kxO = (0 for

all XOENi° Therefore, by (3.4), Niczk. Now assume that My % 0.
Since Mi is a generalized eigenvector space of A+BIL associated

with the eigenvalue Ay o= 0, there exists a 0 =* vEMi such that
(A+BL)v = 0 (4.7)

This implies that v = = AmlBLv and, hence, VEAGlB. Therefore, by

(4.5), 0 = VMﬂAmlB, since v # 0., This contradicts that S(2,B,C)ES

4
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Hence NiCZk.

Together (1) and (ii) imply that X = Nj@N,e...eN,cZ, + oM,

Since 7, + vMex, it then follows that X = 7, + VM.
£l

Remark: If there exists a linear state feedback (3.1) which for-
ces the output of the system S(A,B,C) to zero in at most k time
steps and thereafter keeps the output zero, then erzk + V.

Let p be the least positive integer such that

(4.8)
Then by Lemma 4.3, there does not exist a linear feedback (3.1)
which forces the output of the system S(A,B,C) from any initial

state to zero in less than u time steps and thereafter keeps the

output zero.

Selection procedure

By Theorem 3.1 there exist linear maps L:X-U such that Zu belongs

to the generalized eigenvector space of A+BL associated with the
elgenvalue X = 0. According to Lemma 4.1, there also exist linear
maps L:X-U such that VM belongs to the sum of the generalized eigen-
vector spaces of A+BL associated with the eigenvalues X + 0. In
general, there exists no common map L such that Zu and VM have the
two properties. However, by invoking a selection procedure similar
to (SP1l) it isApos§ible to split X = Zu + VM into two independent

subspaces X = Ru$ V which have these properties.

Some results are needed before the selection procedure can be gi-
ven. Let L, be a given element in E(VM). If vl is a basis matrix
for VM then

(A+BLO)VM = vM(iﬁiﬁ%p (4.9)

where - (A+BL0) is the induced matrix representation for (A+BL)[VM.
By (4.9), it follows that



lpr vM (4.10)

Vo o= A&lVM(A+BLO) - A 0

Decompose VM according to Lemma 4.2
WM = ve Mg (4.11)

and let ﬁ be a basis matrix for 0. Then

X = Im<[A“lB, 27%8, ..., a7V, VM]>
= Im([A“lB, 2728, ..., 2"V, 2" (BFBT) - AmlBLOVM]>
= 1m<[A”lB, 2728, ..., A"¥B, A“lvM]>
= 1m<[A“lB, 272, ..., a7Vm, A”1§]> (4.12)

where the first equality follows from (4.8), the second equality
follows from (4.10), the third equality follows from Lemma 4.1
and Im(GH)cIm(G) and the fourth equality follows from (4.11).

In the selection procedure it will be required that n linearly
independent column vectors are selected from the full rank mat-

rix

[27's, a7%, ..., 27", 71V (4.13)

Thereby the column vectors of (4.13) should be examined in the

following order

-1 =1 =1~ ~1, -1 -1
A lvl, BTV eews AUTVL, ATDig, BBy, we.y A Tby o
-2 -2 -
A bil, A bizl e o & f LI ] o o o g A ubim (4-1-4)
where s = rk (v) and {ij}jEm is a permutation of m. The essential

restriction on the selection procedure is that no vector of the
form A“lbj is selected unless all lower powers of Aml times bj

are selected.
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The sequential selection of vectors from (4.14) is made according

to the following scheme:

12

(1) select all the column vectors A ~V
(ii) select one of the column vectors of AmlB
1

(iii) select another column vector of A "B (m>l). If the vector
is linearly independent of the previously selected vectors,

keep it, otherwise omit it from the selection

(iv) at any stage of the process, select a new vector of the
form Amibj where all lower power of A”l times bj already
have been kept. If the new vector is linearly independent
of the previously selected vectors, keep it, otherwise omit

it from the selection

(v) the selection terminates when n linearly independent vec-

tors are found (SP2).

It is shown in Lemma 4.4 in the Appendix6A that this selection pro-
cedure does not terminate until n linearly independent vectors have

been selected.

=lé(l) =k (k)

The notation A ’ AMZB(z), aosy A B is used to denote the
linearly  independent column vectors selected from the matrices
-1 -2

A "B, A

(4.2a) the selection procedure has the properties

Im(é(l)> = Im(B)

Im(é(k)}:m<é(k"l))c...cim(é(l)), Key (4.15)
/

B, ¢, AukB respectively for k€u. By construction and by

Introduce the following compact notation

R, = [t a728(2) o, aTkg ()

£, = rk(B(l)>, i€k, key

s = rk(V)

~ U ~

q= ] r; (4.16)
i=1
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where £1 = m and n = ; + &.

The subspaces ﬁ and D are independent and span X, since
u

X = Im[A"lé(l), 2”282, A () A“lv]

= m[a"ts ), 272D, AW, ATy @) - 2 'BL V]
= m[a 8, am25 ) ameg) g7 2 éue& (4.17)

where the second equality follows from Lemma 4.1 and Im(GH)cIm(G)
and the third equality follows from (4.10).

Main results

The theorem stated here gives a nice way to construct an output
dead-beat controller. A sufficient condition for this controller
to be a strict dead-beat controller is given in the corollary.
In [13] an output dead-beat controller is proposed for a system
with one input and one output. An example which illustrates the
use 0f the theorem is also given.

Theorem 4.1: Assume that S(A,B,C)€S4. Then an output dead-beat

controller is given by the mxn matrix solution to

na”ls), am25(2) At Aty -

= [mxfl, Ofyr weer OF o;] (4.18)
Moreover, LEE(O) and
d(z) = ch.p. of A+BL = z7d, (z) (4.19)

where dl(z) = ch.p. of (A+BL)I& divides do(z) = ch.p. of (A+BLO)IVM
for any Ly€L(V)nL(vh).

Proof: Analogous to (3.12), it is possible to show that
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(A+BL)%{C@le, k=1, 2, ..., p
RO = 0 (4.20)

Therefore, Ru belongs to the generalized eigenvector space of
A+BL associated with the eigenvalue ) = 0 and ﬁucKer<(A+BL)“>.

Assume that LOQE(Q)RQ(VM) + 0. Let V be a basis matrix for | and
let (A+BLO) be the induced matrix representation for (A+BLO)IO.
Then

(A+BLO)§ = ﬁ(A+BLO) (4.21)

which inmplies

“lG(A+BLO) NS (4.22)

V = A 0

Therefore, by (4.18), it follows that

(A+BL)V = AV + BLV
A ,,,_l/\ et ———— ml A~
= AV + BL{A "V(BFBL;) - AT BL,Y
= AV + BLO§ = (A+BLO)§ = §(A+BLO) (4.23)

A

Hence LEL(V).

Let XOEX be arbitrary. Since by (4.17), X = R @l there exists a
u
uniqgue decomposition of X, such that

Xq = Xq + xéz) (4.24)

where Xél)éﬁ and xéz)éa. Then (4.20) and (4.23) imply that
u

= M+k _ utk (1) + +pp ) Mk (2)
xu+k = (A+BL) Xy = (A+BL) X (A+BL) X

= (A+BL)“+kxé2)c0cKer(c), k>0 (4.25)
By (4.25), yu+k = Cxu+k = 0 for all k>0. Since Xy is arbitrary,
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it is clear that L is an output dead-beat controller.

From (4.23) it follows that d;(z) = ch.p. of (A+BL)|V = ch.p. of .

(A+BL,) | V. Therefore, since Uet™, (4.24) implies that dy(z) ai-

vides dy(z). By (4.17), (4.20) and (4.23), the pair (&u,&) re-
duces A+BL. Hence
d(z) = ch.p. of (A+BL) = ch.p. of (A+BL)|}A2u

ch.p. of (A+BL)|V = z%d, (2) (4.26)
where dl(z) divides do(z), This establishes (4.19).
Remark 1: For a left invertable system the zeroes of dl(Z) coin-

cide with the zeroes [3] of the system S(2,B,C).

Remark 2: If dl(z) has zeroes outside the unit circle, then the
closed loop system S(A+BL,B,C) will be unstable.

In general the dead-beat controller (4.18) is not a strict out-

put dead-beat controller. A sufficient condition for this to be

the case is given in the corollary.

Corollary 4.1: If the system S(A,B,C)ES4 is left invertable, then

the controller (4.18) is a strict output dead-beat controller.

Proof: Assume that S(A,B,C) is left invertable. Then by (4.1),

VMnB = 0. Therefore, Theorem 4.1 implies that

A

v = yM

rer (v (4.27)

By construction of (SP2), it follows that




R, + vM=z + oM, ix0
Since UV = VM,
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(4.28)

it follows from (4.25) and (4.29) that the con~-
troller L forces the output of the system S(A,B,C)

to zero in

k>0 time steps and thereafter keeps the output zero, if xO€Zk +

+ UM Hence,

a strict output dead-beat controller.

it is clear from the remark of Lemma 4.3 that L is

Example 4.1: Consider a linear system with the transfer function

2° - 1.8z + 0.8
3 2
z27 = 1.927 4+ 1.5z - 0.4
G(z) =
23 - 1.32 + 0.4
|23 - 1,922 + 1.52 - 0.4 | (4.29)
A minimal realization of G(z) is given by
1.9 -1.5 0.4 1
= A
X1 1 0 Xy + |0 u, = Axt + But
0 0 0
1 -1.8 0.8 A
YV, = X, = Cxt
£ 1 -1.3 0.4 F (4.30)
It is straightforward to verify that the system (4.30) belongs

to the class 33.

subspace in Ker (C) becomnes

BAccording to (2.3),

the maximal

(&,B)=-invariant

0.64
VM = Imj0.8
1 (4.31)
The system (4.30) belongs to the class 84, since S(A,B,C)683 and
since UMﬂAﬁlB = 0. Moreover, the system is left invertable, since
M

Ker(B) = 0 and V'NB = 0.
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The least positive integer such that X = Zu + VM is u= 2. To
construct an output dead-beat controller invoke the selection

procedure (SP2). The outcome of this selection procedure becomes

0 0 0.8
[AmlB, A“ZB, A”lvﬂ = |0 2.5 1
2.5 9.375 1.55 (4,32)

M

where VM is a basis matrix for V. Then, by (4.18), the corre-

sponding output dead-beat controller is
L= [-1.1 1.5 =-0.4] (4.33)

The closed loop system associated with the controller L is

0.8 0 0
_ A
Xegqg = 1 0 0 X, = (A+BL)Xt
0 1 0
1 ~1.8 0.8

Ve = | X

t 1 ~1.3 0.4| © (4.34)
Since

(a+Br) v = vM . 0.8 & VM(ETED) (4.35)

it follows that L€£(VM). Moreover, since the system (4.30) is left
invertable, [3] gives that the system has a zero z = 0.8. The

ch.p. 0f the closed loop system (4.34) is
2
d(z) = z"(z-0.8) (4.36)

Thus the zero z = 0.8 appears as a pole of the closed loop system

(4.34). This is a simple consequence of (4.19).

i
For x5 = (111) the trajectory, the input and output sequences of
the system (4.30) controlled with the linear state feedback (4.33)
become
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ot 0 1 2 3 4 5 6
1 0.8 0.64 0.562 0.4096 0.32768 0.26214
. |1 1 0.8 0.64 0.512 0.4096 0.32768
|1 1 1 0.8 0.64 0.512 0.4096
0 [~ o
7. i 0.2 0 0 0 0 0
0.1 0.1 0 0 0 0 0
u 0 .
: 0.22 0.096 0.0768 0.6144 0.04915 0.03932

(4.37)

It should be observed that the output Vi becomes zero after y = 2
time steps whereas the trajectory Xy slowly tends to the origin.
Since the system (4.30) is left invertable, it follows from Corolla-

ry 4.1 that the controller L 1s a strict output dead-beat controller.

5. CONSTRAINED OUTPUT DEAD~-BEAT CONTROLLERS

In the previous section it was found that the output dead-beat
control strategy gives an unstable closed loop system if any of
the zeroes [3] of the system S(A,B,C) is located outside the unit
circle. If the system is obtained by sampling a continuous systen,
the output of this system will oscillate between the sampling in-
stants with an exponentially growing amplitude. Moreover, if the
dead~beat controller is computed from a model which does not de-
scribe the continuous system exactly the output will also deviate
considerably from zero in the sampling instants after some time.
This means that the closed loop sampled-data system is extremely
sensitive to parameter variations. Clearly, in this case, the out-
put dead-beat controller cannot be used successfully to control the

system.

When the system S(A,B,C) has any zero outside the unit circle,

it is of interest to search for linear state feedbacks (3.1) which
forces the output of the system from any initial state X to zero
in at most n€{(u,v] time steps and thereafter keeps the output zero
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and which give a stable closed loop system. Clearly, the state
dead-beat controller is an example of such a state feedback. It
will be shown below that there also exist other linear state
feedbacks (3.1) with the mentioned properties. Henceforth, all
such feedbacks will be called constrained output dead-beat con-

trollers.

Preliminaries

Consider a system S(A,B,C) in the class 34. Agssume that LO is a
given element in the feedback class E(VM). Let

M_
gy o= V1$V2®"‘@V£

(A+BLy) V<V, , i€L (5.1)

be a modal decomposition onyM, relative to A+BLg . According to

[3]1, this decomposition is independent of the choice of LOEQ(VM)
if and only if the system S(2,B,C) is left invertable. Introduce
the subspace

VM = {Vilvi is associated with |Ai!<l, ViﬂB = O} (5.2)

which is contained in the subspace of stable modes of VM, rela-
tive to A+BL0. Let VM be a basis matrix for yM and let (A+BLO)
be the induced matrix representation for (A+BLO)IVM . Then (5.1)

implies that

(A+BLO)VM_ = yM (A+BL;) (5.3)

By (5.3), it follows that

vl = A“lva(A+BLO) - a1t

BLOVM (5.4)

Define n as the least positive integer such that

K=1 + yM” (5.5)
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It is clear from (5.4) and (5.5) that

><
I

Im([A”lB, A7%s, ..., a7"p, VM ])

Im([A”lB, A28, ..., a7 "B, A“lvM"]> (5.6)

i

Selection procedure

In order to select n linearly independent column vectors from

the full rank matrix

2 -1

[271B, 27%B, ..., 27", A" M ] (5.7)

the selection procedure (SP2) is invoked where the matrix V is

replaced by the matrix VMW. The notation A“lg(l), Ang(z)

A“ng(h)

7 o e o p

is used to denote the column vectors selected from the

1 2

matrices A "B, A “B, ..., A "B respectively. By construction and

by (5.2) the selection of vectors in (SP2) is performed such that

Im(B(l)> = Tm(B)

Im(B(”>>cIm<B(””1)>c e CIm(B(l)) (5.8)

The following compact notation is introduced

Bo=[a7ist, a2 g

T, = rk<§(i)>, i€n

s = rk(VMm)

[l n a

g= 1 T (5.9)
i=1

where ?l =mand n =g + S. Employing (5.4), it can be shown si-
milar to (4.17) that

X = ﬁu@vM“ (5.10)
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Main result

A constrained output dead-beat controller is given by the theorem
below. It is also given an example which illustrates the use of
the theorem.

4

Theorem 5.1: Assume that S(A,B,C)eS Then a constrained output

dead-beat controller is given by the mxn matrix solution to

~l§(l) Am2§(2)’

LA AU Nl =L L Dl 2V iy I

7

= [- IZ 0%, evey O, 07] (5.11)

Moreover, LEE(VMW) and

d(z) = ch.p. of A+BL = zqdl(z) (5.12)

where dl(z) = ch.p. of (A+BL)|VMM.

Proof: The theorem may be proved analogous to Theorem 4.1.
O

Remark l: Notice that V‘W== depends on the choice of L €£(VM),

0
Remark 2: If the system S(A,B,C) is left invertable then n and the

zeroes of d,(z) are independent of the choice of L EQ(VM).

0
Remark 3: For a left invertable system there exists no linear
state feedback (3.1) which forces the output of the system

s(a,B,c)€s

steps and thereafter keeps the output zero and which gives a

from any initial state to zero in less than n time

stable closed loop system.

Example 5.1: The continuous linear system with the transfer func-

tion
- 5
s + 1 s + 3
G(s) = (5.13)
1 1
s + 1 s + 1]
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has been used by Rosenbrock [16] to illustrate non-minimum phase
behaviour of multivariable systems. A minimal realization of G(s)

is given by

-1 0 0 1
x =10 -1 0{x + |0 1{u
0 0 -3 0 2
1 0 1
y = % (5.14)
1 1 0
For the sampling period T = 0.8 s the discrete-time system corre-
gponding to (5.14) becomes
[0.44933 0 0
Fe+l = |0 0.44933 0 x, +
0 0 0.09072
0.55067 0
A
+ 10 0.55067 u, = Ax, + Bug
0 0.60619
1 0 1 A
y, = X, = Cx (5.15)
t 1 1 0 t t

It is straightforward to verify that the system (5.15) belongs to
the system class 33. The maximal (A,B)-invariant subspace in
Ker (C) is ‘

1
UM = Imj|-1
-1 (5.16)
The system (5.15) belongs to the class 34, since S(A,B,C)€S3 and
since VMnAmlB = 0. Moreover, the system is left invertable, since
Ker(B) = 0 and VMnB = 0,

A
The least positive integer u such that X = Zu + VN is u =1. In-
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voke the selection procedure (SP2) to construct an output time-

optimal controller. The outcome of the process (SP2) becomes

1.22554 0 2.22554
-1 =-1;M s
A "B, A~V 0 1.22554 -2.22554
0 6.68212 ~-11.0232 (5.17)

M

where VM is a basis matrix for V". According to (4.18), the cor-

responding output dead-beat controller is

-0.81597 -8.90951 1.63406
L =
0 8.09354 -=1.63406 (5.18)
The closed loop system associated with the controller L is
0 =4.90621 0.89983
Xip1 = 0 4,90621 ~0.89983 X,
: 0 4.90621 -0.89983
1 0 1}
y, = %
E 11 o ¢ (5.19)
Since
(A+BL) VT = V'« 4.00638 ‘ (5.20)
it follows that LEE(VM). The ch.p. of A+BL becomes
d(z) = z°(z-4.00638) (5.21)

Hence, the closed loop system (5.19) is unstable.

For Xy = (lll)‘ the trajectory, the output and the input sequence
of the system (5.15), controlled with the linear state feedback
(5.18) become
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t 0 1 2 3 4 5
1] -4.00638 =16.0511 =64 .3067 =257.637 ~1032.19

X 1 4.00638 16.0511 64.3067 257.637 1032.19
1 4.00638 16.0511 64.3067 257.637 1032.19

(2] 0 0 0 0 0
N
t 2] 0 0 0 0 0
-8,09141 -25,8791 -103.682 -415,388 -1664.20
6.45948 25.8791 103.682 415,388 1664.20 (5.22)

The output of this system becomes zero in p = 1 step. However,

[\

e+

since the unobservable mode of the pair (C,A+BL) is located out-
side the unit circle the trajectory and the input sequence are

growing unboundedly.

In this particular case VM% = 0 for all LOEQ(VM). This follows
since the decomposition (5;1) is unique for a left invertable sys-
tem. Therefore, all constrained output dead-beat controllers of
the system (5.15) are state dead-beat controllers. These control-
lers may be calculated by means of the selection procedure (SP1)

and Theorem 3.1. One state dead-beat controller is given by

=0.81597 0 0

0 -1.02238 0.03786 (5.23)

For Xy = (lll)' the trajectory, the output and the input sequence
of the system (5.15) controlled with linear state feedback (5.23)

is

t 0 1 2
0 0
Xy 1 ~0,09282
-0.50609 0
2 -0.50609 0
Y
2 ~0.09282 0
|-0.81597 0
Ye
’«0.98452 0.07574 (5.24)
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The constrained output dead-beat controller drives all state va-

riables of the system (5.15) to zero in v = n = 2 time steps.

6. MINIMUM GAIN DEAD-BEAT CONTROLLERS

Time—-invariant dead-beat regulators were derived in the previous
sections. In this section time-variable dead-beat controllers are
considered. The regulators are obtained by constructing control
laws for systems S(A,B,C) which give input signals minimizing the

criterion

. 1
glnu thQOxtl’ ngo (6.1)
R R

It turns out that these control laws are not unique. To obtain

a unique sequence of control laws the minimum gain dead-beat con-

troller is chosen.

Preliminaries

The solution to the problem (6.1) is given by the following lemma.

A similar result has been proved in [11].

Lemma 6.1: Assume that S(A,B,C)Esl. The gsolution to the optimiza-

tion problem

s 1
mlnu . thQOxtl’ QO>O (6.1)
Uer t+1"° T -1

is given by
s = t, t+tl, ..., tlwl (6.2)

where
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L, = - (B's

4+
t e+1B) B S4B (6.3)

and St is given by the recursive equation

_ ] _ ! i 4+ 1
Sg = B Sy qh A St-I»J_B(B St+1B) B Sinh
= (A+BL, ) 'S, .A = '
= | ) S T (A+BLt) St+l(A+BLt)
S¢; 7 Qo (6.4)
If us = sts for s = ¢, t+1, ..., tlml is any other solution to
the optimization problem,
min(min (... (min x" QOX ) e )) (6.1a)
' t t
Ye Yl He,-1 1 1
then
1] 1
FPF2LLL, s = &, t+l, ..., -1 (6.5)

Moreover, the minimum value of the performance index (6.1) is

given by

o 1
V(xt,t) = XtStXt (6.6)

The lemma is proved in the Appendix 6A,

In order to rewrite the Riccati equation (6.4) the following lem-

ma is useful.

Lemma 6.2: Assume that U Ul’ o ouy Uﬁﬂl is a sequence of nxp mat-

OI
rices. Let

¥ -+
- PkUk(U P.U ) U

1Pk k=20, 1, .., £-1

14
kPk’

Py =1 (6.7)
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+
Q =1~ 7T, k =0, 1, 2, «ou, £ (6.8)
where
k'“'l i 1]
T = 100305 = [0gr Ups eens U g M0G0 Uy ey Uy ]
Ty = 0 (6.9)

Then Pk = Qk and Qk is the orthogonal projection of X = 2" on
1
Im([UO, Ul’ ooy Ukwl]) for all kEéO.

The Appendix A contains a proof of the lemma.

By means of Lemma 6.2 it is now straightforward to obtain an ex-

plicit solution to the Riccati equation (6.4).

Lemma 6.3: Assume that S(A,B,C)ESl. Let
S = 2's A-1a's B(B'S B)TB'S A
tyj=k 7 Ytp-(k-1) ty=(k=1) t1-(k-1) ty-(k=1)
k=l, 2, o 6 7 /@
S.. = c'c (6.10)
1
and let
_ _ +
9 = T = T Ty
k-1 i i ! k=1 k-1 ' A
T, = ] CAB(CA™B) = [CB, CAB, ..., CA  ~B][CB, CAB, ..., ca" "B] =
i=0
P, ‘/‘l
= Mkﬁk
T, = Mg = 0 (6.11)
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s - 2% cak k =0, 1 L 1
tl‘“‘k - Qk 7 - ] P ooy (6. 2)

where Q is the orthogonal projection of X = 1" on Im(Mk)"L for %

all keL,.

The lemma is proved in the Appendix A.
Consider a system S(A,B,C)ES3. By (3.2), the output of this sys-
tem at the k:th sampling instant is

k ’

Y = CA'xy *+ MkBk, (6.13)

where Bk = [uiél, u£“2' coay ué] contains the sequence of control
vectors and X is the state at t = 0. Necessary and sufficient
conditions for the existence of a sequence of control vectors Bk
which forces the output of the system S(A,B,C) from any initial
state to the origin in at most k time steps is given by the fol-

lowing lemma.

Lemma 6.4: Assume that S(A,B,C)€S3. Then k is a positive integer

such that S = 0 if and only if rk(Mk) = p.

t1-k

The lemma is proved in the Appendix A.
Define & as the least positive integer such that

Sgy-g = O (6.14)

It follows from Lemma 6.1 that a minimum gain dead-beat control-
ler drives the state (output) of the system S(A,B,C) from any
initial state x; to zero in at most ¢ time steps and that ¢ is

the least positive integer for which this is true.

3

Properties of the sequence {Ltl“k}k=l

Some properties of the sequence {Ltl“k}i=1 will be exploited here.
It will be assumed from now on that the system S(A,B,C) belongs
3

to the class S7.
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Lemma 6.5: Assume that S(A,B,C)ESB. Then

, — -15 (k) = (k) _ ' +
Ker(A+ELtl“k)— Im<A ! ), B B (B stl_(k“l)B) ,  keg
-2 -3 -k _
Ker(Ltl_k)DIm [A “B, A "B,...,A "Blj, . k =2, 3, &
Ker(A+BLtl~k) nKer(Ltlnk) = 0, k=2, 3,¢..,8

The lemma is proved in the Appendix 6A.

Introduce the following notation

keg

Since Ker(B) = 0, it follows from (2.8b) that

- _ 1 + _ [}
r = rk((B Stl—(kmlf” > = rk (B Stlw(kml)B)’ keg

Lemma 6.6: Assume that S(A,B,C)ESB. Then

k) - Im([A"lE(k), afp) A"kﬁ(k)]>
k\
v((A+BLtl_k) ) =k - Ty, KEg

A proof of the lemma is given in the Appendix 6A.

(6.15a)

(6.15b)

(6.15¢c)

(6.16)

(6.17)

(6.18a)

(6.18b)

The sequence {fk}izl reflects some fundamental properties of the

reachability matrix W

following lemma.

£ when QO = I. This is established by the
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Lemma 6.7: Let S(A,B,C)ES3 and let QO = I, Then

- 3
{ri}ig=l is a non-increasing sequence of integers (6.19a) !
- k-1 k-2 _

r, = me In(A B)NIm|[B,AB,...,A Bl |J]= 0,k€{2,3,...,£} (6.19b)

. . £-1 (6.19¢)

rg =m ® X = BeABe® ... @A B .19¢c
The lemma is proved in the Appendix 6A.

Main result

When QO = I the theorem stated here gives necessary and sufficient

conditions for the gain Ltl“g of the time-variable dead-beat con-
troller to be a time-invariant dead-beat controller. Apart from
being a curiosity, the result is practically useful because it
gives an alternative methoa for computing a state dead~beat con-
troller. When using Theorem 3.1 to construct such a controller, it
is necessary to select a number of linearly independent column vec-
tors from the reachability matrix W _which requires tests. If Theo-
rem 6.1 may be used, the state dead-beat controller is obtained
simply by iterating the Riccati equation (6.4). This is a numeri-
cally well conditioned procedure. Tt is still an open problem if

the output dead-beat controller may be obtained in a similar way.

Theorem 6.1: Let S(A,B,C)683 and let QO =
state dead-beat controller if and only if

Then Ltlmg is a

I.
r = m.

Proof: (only if) Assume that Ltlwg is a state dead-beat control-
ler. Then, by (3.4), £ is the smallest positive integer such that

n = rk([B, BB, ..., Ag“lB]> (6.20)

Moreover, (6.18a) implies that

=
i

rk([Amlﬁ(E), A“2§(E)’ el A“EE(E)]>

I

rk([ﬁ(g), ag(&), .., Ag“lé(g)]> (6.21)
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since A is invertable. Together (6.20) and (6.21) give r = m.
(if) Assume that EE = m., Then (6.19c) yields that

X = BoABe ... oat 1g (6.22)

Therefore, by (6.18a), it follows that
v<(A+BLtlmg)E> = g er_ = E sm=n (6.23)

Hence Ltlmg is a state dead-beat controller.

Remark: For a single-input system S(A,B,C) the gain Ltlmg is al-
ways a state dead-beat controller.

Example 6.1: A state dead-beat controller for the following sys-

tem was constructed in Example 3.1.

0 1 1
Xt+l = {0 0.9 0 Xy + |1 0 Uy
0 0.8 2 1 (3.13) = (6.24)

In that example it was found that the system belonged to the class

33, and that v = 2. Here a minimal gain dead-beat controller which

drives the state of the system (6.24) from any initial state to ze-
ro in at most v = 2 time steps will be constructed. Provided that

QO = I, Lemma 6.1 yields that

1 0
s, = 0
€
0 1
0.33333 0.3 ~0.26667]
Sg,-1 = [70-3 0.27 -0.24
~0.26667 ~0.24 0.21333
S = 0 (6.25)
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and
70.33333 -0.6 -0.26667
Ltl“l =
-1 0.9, 0
~2.30769 -1.86923 1.47692
Ltl“2 =
| —-1.53846 -1.24615 0.98462 (6.26)
The matrix Stl“k becomes zero in k = 2 time steps. The matrices

A+BLq -1 and A+BLq-p become

-2.84615 -3.11538 2.46154

A+BLt -1 = -2.30769 -0.96932 1.47692
1
-6.,15384 -4,98461 4,73846 (6.27)
and (
0.33333 0.3 -0,.26667
A+BLtlm2 = 0.33333 0.3 -0.26667 Xy

-0.33333 -0.3 0.26667 (6.28)

respectively. The ch.p. of (6.27) and (6.28) are

d(z) = z°(z-0.92308) | (6.29)
and
d(z) = z%(z~0.9) (6.30)

respectively. By (6.30), Ltlmz is not a state dead-beat control-
ler.

For Xy = (lll)' the trajectory and input sequence of the closed

loop system
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1 0 0 1 1
= {0
xt+l 0.9 Xt + |1 0 ut‘
0 0 0.8 2
U, = tht (6.31)
becomes
t 0 1 2 t 0 1
1 =-3.5 0 -2.7 1.62
X, 1 -1.8 0 Uy
1 -6 .4 0 -1.8 1.88 (6.32)
where tl = v have been used.
In the table below the norms of the input signals‘{ui}ézo of the
system (6.24) are shown for g = (lll)' when the system is con-

trolled with the state dead-beat controllers Ll and L2 in Example
3.1 and the minimum gain dead-beat controller'{Ltl__k}2

k=1"
| uce) || = Vul<t)2 + uy () 2 £=0 £=1
Controller
State dead-beat controller Ll 4.,04853 2.82857
(Example 3.1) L2 4.58912 4.4
Minimum gain dead beat
controller {Ly,-3}2_) 3.245 2.48169

Notice that the norms of the input vectors {ut}i=0 are smaller
when the system (6.24) is controlled by the minimum gain control-

ler compared to the time-invariant controllers.

Example 6.2: An output dead-beat controller was derived for the

following system in Example 4.1
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1 -1.8 0.8
Ve = %, (4.30) = (6.33)
t L_ ~1.3 0.4} t

In that example it was found that the system belonged to the class
3
S

forces the output of the system (6.33) from any initial state to

and that u = 2. Here a minimal gain dead-beat controller which

zero in at most p = 2 time steps will be constructed. When QO =
= Cc'C Lemma 6.1 yields that

2 -3.1 1.2
Sy, = -3.1 4,93 -1.96
1
1.2 -1.96 0.8
| { 0.125 -0.1 0
Stlﬂl = |-0.1 0.08 0
L o 0 0
Stlm2 = 0 (6.34)
and
Ltl“l = [~0.35 0.9 =0.4]
Ltl~2 = [-1.1 1.5 -0.4] (6.35)
The matrix Stlmk become zero in k = 2 time steps. The matrices
At+BLy, -1 and A+BLi -2 become
1.55 -0.6 0
A+BLtlml = |1 0 0
0 1 0 (6.36)

and
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0
AHBLy _, = |1 0 0
0 0 (6.37)

respectively. The ch.p. of (6.36) and (6.37) are

d(z) = z(z-1.55) (2z+0.6) (6.38)
and

2
d(z) = z°(z=0.8) (6.39)

respectively. Notice that the controller Lt1“2 is equal to the
controller L in Example 4.1. Hence LtlmZEE(VM)-

7. DISCUSSION ON SYSTEM CLASSES

The theory in the previous sections has arisen from efforts to
find synthesis methods for designing multivariable sampled-data
control systems. The plant is assumed to be governed by linear

differential equations with constant coefficients of the form

X = Acx -+ Bcu
y = ch (7.1)

It is also assumed that the sampling period is constant. At the
sampling instants the behaviour of the system (7.1) is described
by the equation (2.11). This means that any sampled-data system

(7.1) will at least belong to the system class Sl,

System class 82

In this class it is assumed that the system S(A,B,C) has no re-
dundant inputs or measurements and that an arbitrary state xlEX
can be reached from the origin. Geometrically these conditions

correspond to Ker (B) = Ker(C') = 0 and {AlB} = X respectively.
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The two first assumptions are introduced merely for notational
convenience. If the third assumption is not satisfied, then the
results, given in the previous sections should be applied to the
reachable subspace {AlB} instead of the Space X

System class S3

It is well known that the matrix A of any system S(A,B,C) obtained
by sampling the continuous system (7.1) is invertable. Therefore,
it seems very natural to consider only systems S(A,B,C) which be-
long to the class 33. However, it might also be of interest to
control linear time-invariant systems with time delays. These sSys-—
tems will in general not belong to the class 33. The different
chains of time delays associated with such a system will give nil-
potent submatrices in the Jordan canonical form of the A-matrix of

the system.

It is, however, possible to construct suboptimal controllers for
a discrete-time system with a singular A-matrix. According to [8]

any map A:X+X can be reduced in the following way
A =AlT o AN 7.2
[Ty @ BINg (7.2)

where ¢ is the least positive integer such that Ker(Aq) = Ker(Aq+l)
Tq = Im(Aq), NCf = Ker(Aq), Z—\|TG is invertable and A|Nq is nilpotent
. Z 3 op . _
of index g. Let {ei}i=l and {ei}i=£+l be bases for Tq and Nq respec
tively and choose {ei}?=l as a basis for X. Then, in this basis, the

system (2.11) takes the form

A, 0 B,
Zes1 T Ze t+ Uy
0 A, B,
ve = [C1 Cylzy (7.3)

where Al is invertable and A, is nilpotent of index q.

By construction the system S(Al’Bl’cl) belongs to the class 83,

Let Ll be a linear feedback from the state variables of the sub-




154

system S(Al'Bl’Cl)° The system (7.3) controlled with this feed-
back becomes

Al+BlLl 0
Zee1 T %t
B,L; A
Ye = (€7 Colzy (7.4)

A suboptimal state dead-beat controller of the system (7.3) can

now simply be obtained by letting Ll be a state dead-beat control-
ler of the subsystem S(Al,Bl,Cl). Provided that Al+BlLl is nilpo-
tent of index s any initial state of (7.4) will become zero in at
most s+g time steps. Specially, it is possible to show that for

a system (7.3) with only one input then n = s + g and there exists
no linear feedback (3.1) which forces any initial state of the sys-

tem (7.3) to zero in less than n time steps.

Consider the problem of constructing a suboptimal output dead-beat
controller for the system (7.3). In the special cases when B2 = 0
or C, = 0 such a controller is obtained by choosing L, as an out-
put dead-beat controller of the subsystem S(Al'Bl’Cl)' However, in
the general case this procedure will not work, since A1+BLl is not
nilpotent. This means that the state variable of the subsystem
S(Al,Bl,Cl) will not decay to zero and, consequently, the output may
remains different from zero for all future times. It should be
pointed out that by letting Ll be a state dead-beat controller of
the subsystem S(Al,Bl,Cl), then the output of the system (7.4) will
always become zero in no more than s+q time steps for any initial
state. Therefore, this controller is a suboptimal output dead-beat
controller.

System class 84

The class 34 consists of all systems S(A,B,C)ES3 which satisfy the

condition VMﬁAmlB = (0, This condition is a technical condition

which guarantees that no generalized eigenvector space of A+BL, con-

tained in VM, is associated with the eigenvalue A = 0 for any
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LQQ(VM). For a left invertable system the condition is equivalent
to that the system has no zeroes [3] at the origin. If the disc-
rete-time system is obtained by sampling a continuous system, then
in general only very special choices of the sampling period will
give systems S(A,B,C) with zeroes at the origin. However, for other
discrete-time systems zeroes at the origin arise quite naturally.
It is natural to introduce the restriction VMnAﬂlB = 0, since the
algorithms for computing output dead-beat controllers are essen-

tially clarified and simplified when a system fulfils the restric-
tion,

Consider the problem of constructing suboptimal output dead-beat
controllers for left invertable systems which belong +to the class
33 but not to the class 84. Let LO be a given element in the feed~
back E(VM). Agsume that dy(z) = ch.p. of (A+BLO)|VM. Factor do(z) =
= do(z)d+(z) SO that the complex zeroes of do(z) and d+(z) belong
to ¢0 = {z|2=0} and ¢ = {z|lz1>0} respectively. Then there exists
a unique decomposition of VM such that

oM = VM oM

0 0
(A+BLO)VM cvM

+ +
(a+BL,) VM <yt (7.5)
and

0
do(z) = ch.p. of (A+BLQ)lVM

a*(z) = ch.p. of (A+BLO)IUM+ (7.6)

By construction no generalized eigenvector space of A+BLO, con-
tained in UM+, is associated with the eigenvalue X = 0, Since yM
belongs to the generalized eigenvector space of A+BLO associated
with the eigenvalue ) = 0, there exists a smallest positive inte-
ger £ such that

yMlcp=lg . 27%8 4+ .. 4 NG (7.7)
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Define y is the least positive integer such that

X =7 +V (7.8)

Now assume that £<p. Then (7.7) and (7.8) imply that

>
Il
=
=)
TN
| ]
i
o
g
o

-1 "2 .., A" "B, VM])

il

- - - +
Im([A s, a7%, ..., a7¥p, V" ]) (7.9)

s Mt . . M M*

where and V' are basis matrices for V" and V respectively.
If (A+BL ) is the induced matrix representation for (2A+BIL )IUM ’
then (7. 5) gives that

+ o+
(A+BLO)VM = v (A¥BLy) (7.10)
Therefore

+ o _ +
v o= ATl (B+BLy) - A lBLOVM (7.11)

By (7.9) and (7.11)

- - +
X = Im<[A B, a7%, ..., a7¥p, a"LyM ])

(7.12)
since (A+BL ) is invertable. Moreover, since (A+BL ) is invert-
able, the selectlon procedure (SP2) may be used to select n li-

nearly independent column vectors from the full rank matrix

{A“lB, A™2

- -1 M+
B, ..., A"Mg, a”1yM ] (7.13)
Then a suboptimal output dead-beat controller can be calculated
by means of Theorem 4.1. This controller will force the output
of the system S(A,B,C) to zero in at most K time steps and there-
after keep the output zero for any initial state XOEX.
It can be shown that for any single-input system S(A,B,C)€S3 this

procedure gives a dead-beat controller which forces the output of
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the system S(A,B,C) from any initial state to zero in a minimal
number of time steps and thereafter keeps the output zero. The
minimum number of time steps required is always less than

u - dim(VM0)¢ This means that the suboptimal dead-beat controller
is in fact a strict output dead-beat controller.

Example 7.1: Consider a system with one input and one output

2
_ z
G(z) = 3 5 (7.14)

27 - 1.9z + 1.5z = 0.4

A minimal realization of the system is given by

9 -1.5

X

1.
e+l =L
0

(7.15)
It is straightforward to show that the system belongs to the class

33. According to (2.3), the maximal (A,B)-invariant subspace in
Rer (C) becomes

0 0
VM = Imi0 1

1 0 : (7.16)
The system (7.15) is left invertable, since Ker(B) = 0 and VMHB =

= 0. Straightforward calculations give that

0 0 2.5
-1, _ -2 _ -3, _
A B—Im O 7 A B- Im 2.5 7 A B —Im 90375
2.5 9.375 23.2813 (7.17)

By (7.17) and (7.18)

M

1% cAml

B + A 2R (7.18)
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An element in the feedback class E(VM) is

Ly = [0 1.5 =0.4] (7.19)
since (A+BLO)VMCUMo Moreover, (A+BLO)2VM = 0 and, consequently
MO

VAR (7.20)

Thus the suboptimal output dead-beat controller of the system
(7.15) is a state dead-beat controller. The state dead-beat con-
troller of this system is

L =[-1.9 1.5 -0.4] (7.21)

The closed loop system associated with the controller L is

0 0 0
Xipq = 1 0 0 Xy

0 1 0
Ye = [1 0 0]xt (7.22)
Assume that VM is a basis matrix for VM. Then since

y 0 0 0 1
(A+BL)V = |0 1
1 ol 0 (7.23)

it follows that L€£(VM). The ch.p. of A+BL becomes

3
d(z) = z (7.24)

According to (7.17) and (7.18), u = 3 is the least positive inte-
ger such that X = Zu + VM. However, C(A+BL) = 0 and, thus, the
output of the system (7.15) is forced to zero in at most 1 time
step for any initial state Xg» This clearly demonstrates that the
condition S(A,B,C)ES3 is crucial for Lemma 4.3 to hold. It should
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be observed that in this particular example the suboptimal dead-

beat controller is a strict output dead-beat controller.

8. ENGINEERING ASPECTS

In this section some engineering aspects on the dead-beat control-

lers are gathered.

Zeroes

When using output dead-beat controllers the behaviour of the closed
loop system is drastically influenced by the zeroces [3] of the sys-
tem. As shown by Theorem 4.1 those zeroes always appear as poles of
the closed loop system. This means that the closed loop system is
unstable 1f any of the zeroes are located outside the unit circle.
According to Theorem 5.1, it is always possible to construct con-
strained output dead~-beat controllers which yield a stable closed
loop system. Example 5.1 demonstrates the fundamental role playved

by the zeroes when using output dead-beat control strategies.

Choice of sampling period

In some cases the dead-beat controllers may give unacceptably large
control signals. If the plant has real poles or well damped domi-
nant complex poles, the magnitude of the control signals can be de-
creased by choosing a larger sampling period. Thereby satisfactory
control may be achieved. However, if the dominant complex poles of
the process are poorly damped or if the process is unstable, then
the aliasing effect or the instability give upper bounds for the
length of sampling period possible to use. Such systems might only
be well controlled by using other types of control strategies than
the dead-beat control strategy. A nice example showing the influ-
ence of the length of the sampling period on the dead-beat control

strategy is given in Section 4 of Chapter 7.
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Reference values and state dead-beat controllers

A state Xrefex is said to be an equilibrium point of the system

(7.1) if there exists an input U, e€U such that

Acxref + Bcuref = 0 (8.1)
Then putting
e
v =Uu - u (8.2)

ref

(7.1) may alternatively be written

7 = Acz + Bcv (8.3)

Therefore, if Ve = Lyx., t =0, 1, ..., t;, is a sampled-data con-
troller which transfers the system (8.3) from its initial state Zg
to the origin, then the controller

u, = Lt(xwxref) + u (8.4)

ref’

transfers the system (7.1) from its initial state zg * X, g tO the
equilibrium point X of" The strategy (8.4) is used in Section 4 of

Chapter 7 to control the profile of the diffusion process.

Numerical aspects

The algorithms for computing the time-invariant dead-beat control-
lers may be numerically ill-conditioned when the system S(A,B,C)ES3
has eigenvalues close to the origin. In such a case the decomposi-
tion (7.3) offers a neat way to overcome the numerical difficul-
ties. Let the m.p. of the matrix A of the system S(A,B,C) be a(2z)
and factor a(z) = ao(z)a+(z) where the complex zeroes of ao(z) and
a+(z) belong to ¢O = {zllzlgs} and ¢+ = {z‘lz|>s} respectively.
Then choose the matrix Ay and A2 in (7.3) according to
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=
]

1 Al Rer a+(A)>

A A|Ker aO(A))

2

i

TN TN

which are the restrictions of A to Ker(a+(A)> and Ker(aO(A)).

By a proper choice of ¢ the matrix Ay will always be numerically
well-conditioned. The eigenvalues of the matrix A located in ¢O
correspond to the fast modes of the underlying continuous sys=
tem. In general, the gain factors of these poles will be very

small and, therefore, the matrix B2 in (7.3) will be almost zero.
This means that the modes of the matrix AZ will only be slightly
excited by the input u, . Thus a controller constructed for the sub-~
system S(Al,Bl,Cl) can be satisfactorily used to control the com-
plete system S(A,B,C). The proposed method may be regarded as a
method for model simplification. An example which illustrates the

use of the method is given in Section 4 of Chapter 7.
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APPENDIX 6A

PROOFS OF THE LEMMAS

Proof of Lemma 4,1

Assume that (A+BL)IVM is singular for some LEE(VM). Then there
exists a vector 0 # VEVM such that

(A+BL)v = 0 (A.1)

which implies that 0 = vEA_lB. Thus 0 =« VevMﬂA“lB. This contra-
diction completes the proof.

0

Procf of Lemma 4.2
(4.23) Clearly

_ " M oM 0
0 = Un(v'nB) = (iny JNB = Ung (A.2)

/{ A

(4.2b): Since VNDV is an (A,B)winvariant Subspace

~ M o M .
AVcy™ + B=Vov'nB + B =@ + R (A.3)

(4.2c) By (4.2b), VMﬂ& = | is an (A,B)-invariant subspace and,
therefore, it follows from [4] that 0 and QM are compatible.,

(4.24): According to (4.2c) there exists a0 = LEQ(O)OQ(UM), Then
& and VM are two (A+BL)minvariant subspaces. Since OCVM, [4] im=
plies that d1(z) = ch.p. of (A+BL) | V divides d5(2) = ch.p. of
(a+BL) | VM,
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Lemma 4.4: Let S(A,B,C)€S>. If rk[A™1B, a7%B, ..., a""s, a"1y] =
= n, then the selection procedure (SP2) does not terminate until

n linearly independent vectors have been selected.

Proof: Assume that the selected vectors are

-1" -17 -15 -1 -2
2"y, A lvz, ceey ATV, BBy, BBy, Ll
Tt -1 -2 ”fm
A bl’ A b2, A b2, e e o g ° e o g o o o j A bm (Ao4)
and that each of the wvectors
-rq=1 -Fo=1 -t 1
A L by, A 2 by weer & ™ b (A.5)

are linearly dependent on the selected vectors in (A.4), so that

the process (SP2) terminates. Then

—fp =2 -£ -1

k _ a—1 k -
A bk = A TA bk =

- .
s m i .
= a1 ) aOiAsl%l + )y 7 ai.A"Jb, ,  k€m (A.6)
i=1 i=1 j=1 *J 1

where GOl’ 002, e ooy “oé' Gll’ Glz, ssey eseog eeoey Gmfm are sca-
lars.

By hypothesis;, Awl times any selected vector

-1 - ~r] -1 -2 o
N A 2 17 reer A TBy, ATby, A by, il, wan, el A mbm

(A.7)

is a linear combination of the vectors in (A.4). By multiplying

(4.10) with Aml and rearranging terms it follows that
R -1z -2 -
A V(A+BLO) = A "V + A BLOV (A.8)

Then
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Im(a~4V)

i

Im(A"‘Z{f(A-a-BLO) )
S Im([Aml\Af, A“ZBLO%]>
= 1m<[A”l\7’, a2~ A_ZB(Z)]> (A.9)

Where the first equality follows since (A+BLO)is invertable, the
second equality follows from (A.8) and the third equality follows
from Im(GH)<Im(G) and (SP2). Therefore, Acl times any vector

[ IS =.l'\ ~
A lvl, L lv; (A.10)

is also a linear combination of the vectors in (A.4),

1

Since A * times any vector in (A.7) and (A.10) is a linear, combi-

kb o P
nation of the vectors in (A.4), then (A.6) implies that A k bk
is contained in the subspace spanned by the vectors in (A.4) for
all k€m. Therefore, by rewriting
-“rk“j -1 -1 ”’rk“l

b, =2a"" - a™" ... a"T"a , 322 (A.11)

A

it follows that any power of Aml times A kbk is also a linear

combination of the vectors in (A.4) for all kém. Then the remain-
ing vectors in (4.14) are linearly dependent on the selected vec-
tors in (A.4). But since the vectors in (4.14) span X, the selec-
tion procedure cannot terminate until n linearly independent vec-

tors have been selected. This completes the proof.

Proof of Lemma 6.1

Introduce the optimal return function

V(xt,t) = min
UprUp qr ooy

1 e
thQOth’ Q420 (6.1) = (A.12)
t1~-1

associated with the starting point (xt,t). By the principle of

optimality it follows that
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= ; 1
V(xt,t) m:Lnu . xtlQOxtl
SerPeerr ey

= min[min

1] e :
%L Qoxt } = min V(xt+l,t+l)
u 1 1

R N o A I | Yt (A.13)
It is claimed that the functional equation (A.13) has a solution

V(xt,t) = x'S . x

tTtTt (A.14)

where St is a non-negative definite matrix. This assertion will

be proved by induction. The statement is true for s = tl’ since

V(th’tl) = xé@oxt - Assume that the assertion is true for g =
= t + 1. Then there exists a unique non-negative symmetric mat-
rix Pt+l such that
S+l T Pea1Pran (2.15)
From (A.13) and (A.14) it then follows that
. _ _ , v
V(xt,t) = min V(xt+l,t+l) = mln[(Axt+But) St+l(Axt+But)]
u, u
t t
= mlnlipt+l(Axt+But) l| = ﬁin][Pt+lBut + PoAx || (A.16)
t t

By Lemma 2.1, the least squares minimum norm solution of (A.16)

is given by

+P Ax

Up = 7 (P 1B) Py qBx

= - (B's B)+B'st+le 21 x (A.17)

t+1 t t7t

and the minimum value of the performance index is given by
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_ -+
Vg0 = (1 - BBy, B ey e |
= (A 2 B (P BYFP A
= Xy £\ t+1\ PrarBPegr® Peggh =
_ ] ] 4 1
= x (A s A'S,,,B(B'S, ;BB St+lA)xt (A.18)

where (A.15) and (2.6b) have been used. Therefore, (A.1l4) is ful-
filled with

I

i +
A's B) B St+lA (A.19)

St t+1

A= Algi BB S,

By (A.18), St is a non-negative definite matrix. This completes

the induction.

Employing (A.15), (2.5b), (2.6a) and (2.6b), it follows that

: 1 _ 1 ' ! 4+t
(A+BLt) St+lB = (A A St+lB(B St+lB) B >St+lB

ot B ! ' 4o ¥
= AP 1Pei1B T A PP 1B P PeB) B PP B
= AP, .P ' B)T(p. .B)
= A t4+1 t+lB A Pt+1(Pt+lB)(Pt+l ) t+1
? ]
=a'p_ P B-AP_ P _.B=0 (A.20)

t+1" t+1

Therefore, S, may alternatively be written

1]
St = (A+BLt) St+lA
1
= (A+BL,) St+l(A+BLt) (A.21)
Let ug = sts’ s = t, t+l, ..., tl-l, be any other solution of
the optimization problem (6.1la). Then since uo = L_X s = t,

S sTs’
t =1, «.., tlal, is the minimum norm sclution of (6.1la), it fol-

lows that

S 0 - ;
I FPgxg | = ug [IZ2llug [ = [T gx [, s = &, w41, o) -1

(A.22)
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which implies that

FLF2LL,, s =€, t+l, ..., t;-1 ‘ (A.23)

s 1

The minimum value of the loss function is given by V(xt,t) =

= xtstxt. This completes the proof.

Proof of Lemma 6.2

It suffices to show that Qk and Pk are both the unique orthogonal
projection of X on Im([UO, Upr wees Up g
O is the orthogonal projection of X on Ker(Tﬁ) for all k€£o. But

¥ _ _L . 1
Ker(Tk) = Im(Tk) = Im([UO, Ul’ oo oy Ukml]> ’ kE&O (A.24)
This proves the first part.,

It remains to show that Pk is the orthogonal projection of X on
4 . . ,

Im([UO, Ups ooy Ukml]) for all kely. This assertion is proved

by induction. The statement is true for k = 0, since PO = QO = I,

Assume that the statement is true for index k, i.e.

2 _
Pk = Pk
' ey
Pk = Py
Ker(Pk) = Im([UO, Upr ooey Uk—l]> (A.25)

By hypothesis, (2.5b) and (2.6a), it follows that

2 _ (s _ ' +o _ ' +
Prar = (P 7 PPk UkPr ) UkPk><Pk PV (Ui Pr Uy Ukpk>

1 E ' + ¥
= - 7 - T
Pk PkUk(UkPkUk) UkPk PkUk(UkPkUk’ UkPk

' +ot 1 + ¢
+ P Uy (U Py UL) Uy Py U (U PLUL) U P

f + .t
Py = PrUp (U P Uy ) Py = Py (A.26)

1" for all kef,. By (2.7d)



170

and

A

! — - ’ 1 toog - :
P+l <Pk PkUk(UkPkUk).UkPk) Pr+1 (A.27)
Moreover, the hypothesis and (2.6e) imply that
_ _ ' TN
Ker(Pk+l) = Ker(Pk PkUk(UkPkUk) UkPk>

+
Ker((l - PkUk(PkUk) )Pk)

RKer (P) + Im(Uy) = Im([UO, Upr eees Uk]) (A.28)

u

since Ker (GH)oKer (H) and since, by (2.5a) (z - PkUk(PkUk)+)PkUk =
= O.

But by hypothesis
(® ) = ({1 - p o, (p,u)t)p

YV k41’ TV k k ko k

_ . +

= v(Pp) + dlm(Im<PkUk(PkUk) >nIm(Pk)>

= v(P) + dim(Im(PkUk)nIm(Pk)>

= v(Py) + rk(PU ) <rk[Uy, Uy, ..., Uy ] (A.29)
where the second equality follows from v(GH) = v(H) + dim{Ker (G)n
NIm(H)) and the third follows from (2.7¢c) . It follows from (A.28)
and (A.29) that

Ker (P, ) = Im([UO, Upr eees Uk]> (A.30)

This completes the induction and the proof.
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Proof of Lemma 6.3

The assertion is proved by induction. The assertion is true for
k =0, since C'QOC = St

index k. Then

1° Assume that the assertion is true for

tk+1 s k+1
A C Qk+lCA

H

CAkB(B'A'kCQkC'AkB)+.

1 sk I/ -
A'ATTCN O - 0

B'A'kc'gk)CAkA

_ |/ _ [} 4% -
A'(Bpp ok 7 SpqkB (B8 BB Stl“k>A

= Stlw(k+l) (Aa3l)

since, by Lemma 4.2, Qk satisfies the recursion (6.7) with U, =

I k
= CA"B for k>0.
o
Proof of Lemma 6.4
According to Lemma 6.3
_ vk k
stl“k = A TC QCAT, k>0 (A.32)

where Qk is the orthogonal projection of X on Im(Mk)'L° Since A

is invertable and since Ker(C') = 0, it then follows that

rk(stl=k) = rk(Qk) =p = rk(Mk), k>0 (2.33)

Hence, k is an integer such that Stluk = 0 if and only if rk (M
= p’

1)
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Proof of Lemma 6.5

(6.15a): Assume that 0 # xEKer(A+BLtlmk) for ke€g. Then.

(A+BLtl_k)x = 0 ‘ (A.34)

which implies that

L -1 Lo -1 ¥ +_ 1
x = = A BLtlmkk = - A "B(B Stlw(k=1)B) B Stln(kml)AX €
e tma 18 (k) (A.35)
But by (2.5b)
-1=(k) _ —(k)_ v +_ 4 1 +
(A+BLtl_k)A B =B B(B Stlu(knl)B) B Stlm(knl)B(B Stlw(kal)B)
-5 Ll o (A.36)

Together (A.35) and (A.36) establish (6.15a).
(6.15b): By Lemma 6.3

1]
Lk = 7 B 8¢ o (x-1)B

By picrarkl cak (A.37)

=- (B's Q-1

t1- (k=1)
where 01 is the orthogonal projection of X on I:m(l\/ik_._,:l_)'L for
all k€. Assume that xEIm([AM2B, Am3B, coey A-kB]) for k€{2, 3,

ee; £}. Then by (A.37), x€Ker(Ltlwk). This proves (6.15b).

(6.15c): Assume that x€Ker (A+BL ) NKer (L ) for any ke€{2, 3,
tl"'k tl“’k
..., &}. Then

0 = (A+BL Y% = AxX (A.38)

t1~k

Since A is invertable, it follows that x = 0. This establishes

(6.15¢) . o
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Proof of Lemma 6.6

Assume that k€g. Then by (6.15a) and (6.15b)

=1z (k)
(A+BLtlmk)A B

25 (k) _ 1= (k)

(A+BLtlmk)A
(A+BL, nk)AWkE(k) = atk-l g ) (A.39)
1
) =i=(k) -1 L
since Im(A B JyeIm(2 "B) for 1 =2, 3, ..., £. Therefore,
Im[[Amlg(k), szﬁ(k), ceoy Amkg(k)]) belongs to the generalized

eigenvector space of A+BLtl~k associated with the eigenvalue
A =0 and

S ) (. L I LR

“15(K) e linearly independent, it

can be shown from (A.39) that the subspaces {Im(Aulﬁ(k))}Ezl are

linearly independent. Consequently

Since the column vectors of A

rk([A“lE(k), a2k A”kﬁ(k)]> =k « I (A.41)

But

(A.42)

since v (GH)<v(G) + v(H). Together (A.40), (A.41l) and (A.42) estab-
lish (6.18a) and (6.18b).
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Proof of Lemma 6.7

(6.19a): Since C = I, Lemma 6.3 implies that

_ ik—-1 k-1

stlm(kul) A Q2 (A.43)
where Q _, is the orthogonal projection of X on Im(wkml)‘L for
all k€ g. Therefore
[ _ [ +
Iy —rk((B stl_(kml)B) >

_ 1o1k-1 k-1

= rk(B A Q12 B)

_ k-1

= rk(Qk_lA B)

= m = dim (Im(ﬁkwlB)ﬂIm([B, AB, .oy Aksz]>)é

A -

=m - Zk’ ke{2, 3, ..., &} (A.44)

since Ker(A) = Ker(B) = 0 and since rk(GH) = rk(G) - dim (Rex (G) n
NIm(H) ). Assume that Akb.EIm([B, BB, «..y Ak"lB]) for any Jj€m.
Then Ak+lbj61m([B, AB, ,?,, 2¥p1). Therefore, {Ei}§=2 is a non-
decreasing sequence. Hence, by (A.44), {Ei}§=l is a non-increas-

ing sequence.

(6.19b): Let k€{2, 3, ..., &}. Then by (A.44)

r, =m®e Im(Ak”lB)nIm([B, BB, eo.y Ak“ZB]) = 0 (A.45)

(6.19¢c): According to (6.19a) and (6.19b)

]C'g = m =
Im(AkB)nIm<[B, AB, ..., Ak“lB]> =0, k=1,2, «ooy g=1 =&
el g kL
) @jMA Bin ] Im(a'B) ) =0 (A.46)
k=1 120




Since C = I, Lemma 6.4 gives that

X =B+ AB + ... + N

Tt follows from (A.46) and (A.47) that

X = BeABe ... oA° 1B
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(A.47)
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CHAPTER 7

OPTIMAL FILTERING AND PROFILE CONTROL

1. INTRCDUCTION

In this chapter the multivariable dead-beat controllers, developed

in Chapter 6, are used to drive the profile of the rod from an arbi-
trary initial value to a given equilibrium point in a minimum number
of time steps. The controllers are computed from the lumped models

of the rod given in Chapter 3. In some experiments the state of these
modéls is measured directly whereas in other experiments only the

end temperatures of the rod are measured. In the latter case the state
of the lumped model is reconstructed from the end temperatures, using
Kalman filtering techniques., It turns out that it is enough to measure
the end temperatures of the rod to obtain a satisfactory profile cont-

rol.

The investigation also shows that the profile of the rod may be
estimated very accurately from the end temperatures of the rod. It
is also found that if the end temperatures of the rod are measured
and additional measurements of the temperatures in the mid-section
of the rod are made, then the estimation of the profile is only im-
proved marginally. This is of great interest since in a practical
application it may only be possible to measure the boundary tempe-

ratures of the thermal process.

The study also shows that there 1s no need to use very elaborate
models of the rod for control purposes. This is explained by the
fact that the use of dead~beat controllers make it possible to
employ a relatively long sampling period, compared to the sampling
period required by conventional DDC-controllers. Therefore, it is
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not necessary to describe the fast dynamics of the rod very accu-
rately. In fact this points at one of the most interesting features
of the dead-beat controllers. Moreover, it is found that it is pos-
sible to construct dead-beat controllers for the diffusion process
which meet very restrictive requirements on the maximal permissible
magnitude of the control signals. These controllers are obtained

by choosing a sufficiently long sampling period.

2., A STOCHASTIC MODEL

In this section a stochastic model is set up for the diffusion
process tied to a process computer. The result (3.12) of the maxi-
mum likelihood identification experiment in Chapter 5 shows that

the disturbances acting on the rod are extremely small. Moreover,
this result shows that the relative errors of the temperature trans-
ducers are very small. In fact, the process disturbances and the
transducer errors are negligible compared to the errors of the A/D-
and D/A-converters of the computer interface and the exrors of the
temperature servos. Therefore, to obtain a stochastic model of the
diffusion process, tied to the process computer, it is only neces-

sary to model the conversion errors and the errors of the servos.

The conversion errors of the A/D- and D/A-converters are modelled
as sequences of uncorrelated and equally-distributed random vec-

tors {g (t)} and {ED/A(t)} respectively. The components of these

A/D
vectors are assumed to ke uncorrelated. Moreover, the vectors

EA/D(t) and ED/A(
Measurements show that the components of g

s) are assumed to be uncorrelated for all s and t.
A/D and ED/A have the
probability function shown in Fig. 2.1. According to this figure

the mean values and the variances of the components of EA/D and

gD/A are given by

Blep/p, (B = E[gD/Aj(t)] =0
V[aA/Di(t) =V [gD/Aét)] = 0.6 az, i=1,2; 3 =1,2,.0., P (2.1)
a = 0.005 °C
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where p denotes the number of measured signals and a denotes the
resolution of the converters. The quantization errors of the con-
verters are quite small. On the assumptidn that these errors are
equally-distributed in the interval [-a/2, a/2] their variance
become a2/12. This variance is neglected compared to the variance

. 2
of the conversion errors 0.6 a“.

?pg(X)
0.4
0.3 0.3

X

Fig. 2.1 = Probability function pg(x) of the conversion errors of
the A/D- and D/A-converters. One bit error in the con-

verters corresponds to & = za.

In the performed experiments the two control signals will be se-
quences of uncorrelated random variables. The two sequences will
also be uncorrelated. In such a case the errors of the servos ¢
may be modelled as a sequence of uncorrelated and equally-distri-
buted random vectors. The components of these vectors are assumed
to be uniformly distributed in the interval [~b,b] and to be con-
stant over the sampling period. On this assumption the mean wvalues

and variances of the components of 7 become

Elz;(£)] =0

p2/3, i=1,2 (2.2)

vig, (£)]

O

b = 0.006 C
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Moreover, the conversion e€rrors of the b/A=-converters £ (t) are
assumed to be uncorrelated with the errors of the servos ¢ (s)

for all s and t.

Consider the deterministic model of the diffusion process

b4 Ax + By
Cx (2.3)

where x is the state-vector, u is the control vector and y is the
measured vector. Since the stochastic process {ED/A(t) + ()} is
constant over the sampling period T, it is simple to set up a

stochastic difference equation for the diffusion process tied to

the process computer. Putting

(=)
Il

e
T ,

ro=f e™®as - B (2.4)
0

the difference equation become

® (£+T) = ox(t) + Tu(t) + v(t)
y(t) = Cx(t) + e(t) (2.5)

where v(t) = F(gD/A(t) + z(t)) andie(t) = aA/D(t) have been in-
troduced. The means and the covariances of the second order sto-

chastic processes {v(t)} and {e(t)} are

Elv(t)] = Ele(t)] =0
[?.6 2% + v%/3 0 }
Ry =T 0 0.6 a2 + p2/3] T

0.6 a2 7

0.6 a2 0

coviv(t),v(t)]

covlie(t) ,e(t)]
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3. OPTIMAL FILTERING

Basic theory

Consider the discrete time stochastic system which is described

by the state equation

x(t+l) = ®x(t) + Tu(t) + v(t)
y(t) = Cx(t) + e(t) (3.1)

where x is an n-~dimensional state vector, u is an m~dimensional
vector of control signals, y is a p-dimensional vector of observed
signals, {v(t)} and {e(t)} are sequences of uncorrelated and e-
qually-distributed stochastic vectors with zero mean values and
covariances Ry and R, respectively. The vectors v(t) and e(s) are
also assumed to be independant for all s and t. It is required that
the predictor é(t+l) of x(t+1l) at time t is a linear function of
the set of observation Vt = {y(t),y(t=1), ..., y (tg)} on the in-
terval [to,t]. Then it follows from [1] that the optimal predictor

in the sense of mean square is given by the Kalman filter.

X(t+1) = Ox(t) + Tu(t) + K(£) (v (£) -Cx(£))
x(tg) = m = Elx(t;)] (3.2)

The matrix K(t) is given by

K(t) = ®P(t) C~(CP(t)C~+ RZ)"l (3.3)

where P (t) is the covariance of the estimation error obtained from

P(t+l) = @P(£)@7+ Ry = OP(t)C™(CP(t)C "+ RZ)EICP(t)@‘
P(ty) = Ry = covix(tp),x(tg)] (3.4)
The estimation error x(t) = x(t) - ﬁ(t) is governed by the stochas-

tic difference equation
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% (t+l) = (@-K(£)C)x(t) + v(t) - K(t)e(t) (3.5)
The innovations e(t) = y(t)-Cx(t) form a sequence of uncorrelated

and equally-distributed random vectors with mean value and co-

variance given by

Ele(t)] =0
covlie(t),e(t)] = CP(t)C~+ R, (3.6)

Since the estimation is done for a long time before the control

is applied, the assymptotic Kalman gain K_r corresponding to the

stationary solution P_ of the Riccati equation (3.4), is used

Description of filters

All Kalman filters are based on the lumped 7th order model ROD?2
or the llth order model ROD4. The two servos are modelled by second

order systems with the transfer functions

CiS + wzoi
Gi(s) = - 5 ’ i=1,2 (3.7)
s + 2;iwoi + wp

i

The coefficients cyr &y and wg, are determined by parameter adjust-

i
i
ment techniques so that the peak time, the overshoot and the sett-
ling time of the transfer functions G, and G, and the corresponding
servos agree well. The following values of the parameters are there-

by obtained

c; = 0.753
T

L = 2.1

wg, = 0.18 (3.8)
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c, = 0.586

CZ = 2.1

wy = 0.14 (3.9)
2

for the servo 1 and the sexrvo 2 respectively. From simulations it
is seen that the rise times of the servos are considerably smaller

than the rise times of the transfer functions Gl and GZ’

The continuous lumped state-space model based on ROD2 becomes

0 *wg I l ] iﬁl 0 ]
12 I 0 , 0
l“zclwol’ l_— Cl 0
0 a. | T T T 0 o 0 0
2 |
0 by | |
|
| l
| | o 0
| b, o
| | 3
oo L ___ %2 0 0 0
T | ~20,00 1 0 o,
o | 0 2
| | 2 2
o 0 0 wo
B l | 2 L 2] (3.10)

where the matrix A2 and the coefficients a, and b3 are defined
by (2.10) and (2.11) respectively in Chapter 3. The null matrix

is denoted by Q.

Moreover, the continuous lumped state-space model based on ROD4

becomes
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rO wg I , ] r-wé 0
1 0 | 0 1
leClmOll —L C]_ 0
0 a, | | 0 0 0 0

0 -by | |
0 0 | |
|
0 -cy | | 0 0
X = 0 d4 : A4 | d4 0 x + u
0 0 | l —Cy 0
| | 0 0
| |
-b 0
| s
0 0 | | a, 0 0 0
R ————
| | Zgzwoz 1 0 <,
0 l 0 2 2
L 2 i 2] (3.11)

where the matrix A4 and the coefficients 2y b3, Cy and d4 are
defined by (2.14) and (2.15) in Chapter 3. The null matrix is
denoted by 0.

In order to denote an asymptotic Kalman filter based on the model
RODI the four-tuple (FII, GAI, THIJ, AKIJ) is used. The literal

J denotes the number of measured signals. The investigated filters
are listed in Table 3.1

Filter n g Measured signals
(FI2, GA2, TH22, AK22) 7 20 Yo, ¥g
1 "2
(EI2, GAZ, TH24, AK24) 7 20 yel,y3,y4,ye2
(FI4, GA4, TH42, AK42) 11 20 Ye 1Ye
1
Table 3.1 - Kalman filters used for estimation of the profile of

the rod.
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The diagonal elements of P_, the gain K_, the eigenvalues of

©-K_C and the covariance matrix of the innovations R800 for the
filters in Table 3.1 are given in TablesA.l, A.2 and A.3. The
forms of the gain matrices K show that the measurements y correct
the estimates % mainly where they are measured and that the cor-
rections are largest at the ends of the rod. This is natural since
the process disturbances are introduced at the ends of the rod

and take on small values when they reach the mid-section of the
rod, compared to the measurement errors o = 0.004 °C. In particular
it is found that the variance of the measurement errors 02 =

= 0.15 lOm4 OC2 are considerably larger than the variances of the
estimation errors in all internal measurement points on the rod.
The theoretical standard deviations of the estimation errors are
approximately 0.005 °C in the end points of the rod and 0.0005 °C

in the mid-section of the rod for all filters in Table 3.1.

When the end temperatures of the rod are measured and additional
measurements of the temperature in the mid-section of the rod are
made Tables A.l and A.2 show that the estimation errors are only
decreased slightly. Tables A.l1 and A.3 show that the theoretical
estimation errors in any given point on the rod are approximately
the same if these errors are computed from the 7th order model ROD2
or the 1llth order model ROD4. This means that no elaborate model

of the rod is needed to give estimates of the estimation errors.

The lumped models (FI2, GA2) and (FI4, GA4) are controllable. How-
ever, these models are not observable from the signals Yeq and Yeo e
The unobservable modes of the pairs (TH22, FI2) and (TH42, FI4)
belong to the set of eigenvalues of FI2 - AK22-TH22 and FI4 - AK42-
*TH42 respectively. The lumped model (FI2, GA2) is observable from
the signals Ye1:¥Y31Yy and Yeq: This implies that the eigenvalues
of FIZ2 and FI2 - AK24°TH24 should be disjoint. The eigenvalues of
FI2 and FI4 are given in Table A.4.
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Experimental results

The asymptotic Kalman filter (3.2) was implemented on a process
computer PDP-15/35. The computer generated two sequences of in-
dependent normal (0, 0.5) random variables. The two sequences

were also uncorrelated. These sequences were used as control sig-
nals. In the experimental set-up used the resolution of the A/D-

O

and D/A-converters were a = 0.005 ~C. Moreover, the errors of the

servos were estimated to b = 0.006 °c.

A typical plot of the control signals, the measured signals and

the innovations are shown in Fig. 3.1 for the filter (FI2, GA2,
TH24, AK24). The number of sampling events is N = 50. From Fig. 3.1
it is seen that the probability function of the innovations €
and €4 is rather well described by the function in Fig. 2.1. More-
over, it is seen that the innovations €eq and ey contain several
spikes. The spikes in €eq and €g, OCCuUr after a large change in
the control signals uq and u, respectively. This means that the
models Gy and G, in (3.7) only describe the servos well for small
changes in the control signals. It should be observed that the

innovations are only defined at the sampling instants.

The null hypothesis that the process is described by the system
(2.5) is tested statistically. The test quantity

5
X = VN £ o (1) : (3.12)
T

is used to test if the innovations are uncorrelated. Under the
null hypothesis this test quantity is asymptotically X2(5). To
test if the control signals are uncorrelated with the residuals

the following test quantity is employed

X = x P_Tx (3.13)
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1.0 7

-1.0 -

o I I Y L
IRt U

Control signals and measured signals [°CJ

-1.0
0.0
Y3
_05 i
00
Y,

Innovations [°C]

Time [minl

Fig. 3.1 - Kalman filtering experiment with the filter
(FI2, GA2, TH24, RAK24)




psﬁ(l)
_ peu(Z)
X =
00y (5)] (3.14)
and
'bu(O) Py (1) ... Py (4]
o (1) »p pu(S)
p = 1
X : : : N
fu(4) pu(3) . o pu(Ol (3.15)

This test guantity is asymptotically X2(5) under the null hypothe-

sis.

In Table 3.2 the chi-square test gquantities for the filter (FI2,
GA2, TH24, AK24) are shown

Innovation

£ € € £
Test quantit ©1 3 4 €2

2 5.4 8.8 7.0 | 2
Xac . . . .0

2 input u 2.6 ’20 5 8

Xao P 1 . . .7 5.8

2 input u 2.3 3.5 4.3 | 4
Xoe p 2 . . . .2

Table 3.2 - Chi-square test quantities for the residuals of the
filter (FI2, GA2, TH24, AK24).

At a risk level of 1 % the regions of acceptance for the chi-

2 < 15.0 and X2 < 15,0. From Tabkle
ac — cc -

3.2 it is seen that the control signal Uy and the innovationse3

square test quantities are y

are not uncorrelated. In Section 5 of Chapter 3 it was found that

this correlation was due to the nonlinearities of the servos.
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The estimated covariance matrix RE of the filter (FI2, GA2, TH24,
AK24) becomes

0.35:107%  -0.16-107°  0.324:107%  -0.25-107°

5 o|-0.16°107°  o0.12:107%  -0.21°107®  0.50°107°

fo | 0.34-107%  -0.21-107%  0.45-107° -0.38°107°
~0.25-107°  0.50-107°  0.38-107°  0.46-10 % (3.16)

The theoretical covariance matrix of this filter is given in Table
A.2, From this table it is seen that the standard deviations of
the innovations feqr E3 and te, agree quite well with the theo-
retical values. However, the standard deviation of the innovation
€4 is about half of the theoretical value. This may be explained
by the fact that the signal Y4 only range over a small interval of
the characteristic of the A/D-converter. Summing up, it is found
that the diffusion process is rather well described by the model
(2.5). (

4. PROFILE CONTROL

The dead-beat regulators in Chapter 6 will be used to control the
profile of the rod. The controllers are computed from lumped models
of the rod. It is required that all state variables of these models
reach the given equilibrium point. Therefore, the state dead-beat
controller and the minimum gain dead-beat controller are the only

regulators of interest.
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All computations of the dead-beat controllers are based on the

7th order model ROD2 or the llth

order model ROD4. The state

of the former model may be measured. However, there are not mea-

surement points for all state variables of the model ROD4. The

dynamics of the servos will be neglected here. This simplifica-

tion is realistic since the dynamics of the servos are approxi-

mately 100 times faster than the dynamics of the rod. In the

Kalman filters it was not straightforward to neglect the dyna-

mics of the servos, since the state of the lumped model of the

diffusion process was reconstructed from the end temperatures

of the rod. This means that these temperatures should be linear

combinations of the state variables of the lumped model. Both

time~invariant and time-variable controllers will be studied.

The former are calculated by means of Theorem 3.1 in Chapter 6

whereas the latter are calculated from Lemma 6.1 in Chapter 6

with Qo = T,

A discrete-time system obtained by sampling the model RODI with
the sampling time T = J min is denoted by S(FIIJ, GAIJ). To de-

note a time-invariant (time=-variable)

controller computed from

the system S(FIIJ, GAIJ) the notation FTIIJ (FTVIJ) is used. The

investigated controllers are listed in Table 4.1.

. T Type of
Controller n min controller
FTI21 1 time-invariant
FTV21 1 time-variable
FTV23 3 time-variable
FTV41l 11 1 time=-variable

Table 4.1 = Dead~beat controllers used

riments.

The model simplification (8.5)

ing the controller FTIZ2L.

for profile control expe-

in Chapter 6 is used when comput-

The eigenvalues of the matrix FI21 are
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Ap = 0.711317

Ay, = 0.263492

A3 = 0.576040-107%
Ay = 0.890062-10 2
g = 0.103496-107 2
g = 0.105942-107°
A, = 0.166351-10 % (4.1)

Choosing g = 5'10“”3 it follows from (4.1) that the orders of

the matrices Aq and Az in (8.5) in Chapter 6 are 4 and 3 respec-
tively. Then it is possible to force any initial state of the
subsystem S(Al, Bl) in (7.3) in Chapter 6 toc zero in at most 2
time steps. Since the gain factors of the fast modes of the mo-
del ROD2 are small the modes of the subsystem S(AZ’ BZ) in (7.3)
in Chapter 6 will only be excited slightly. Therefore, it should
be expected that the model‘simplification (8.5) in Chapter 6

work well here. The controller FTT21 becomes

[m0.357398 ~0.493344 =0.588792 -0.531629

L =
~0.110783 =0.222208 ~-0.388699 -0.531629
-0.388699 -0.222208 -0.110783 .
-0.588792 -0.493344 -0.357398 (4.2)
¥
For Xg = (L1 ... 1) the trajectory and the input sequence of

the system S(FI21, GA21) controlled with the state feedback DTI21

become

t 0 1 2 3
‘17 [-1.32762 ] [ 0.198716-10 1] [0.192789-10 %]
1 -0.267383 ~0.247777 -107 % ~0.217418-10""
1 0.366035| [-0.165373-107%| |-0.735297-10"°>

x, |1 0.570888 0.188904 -10" 1 0.258069°10 "
1 0.366036 ~0.165373 102 ~0.735267-107°
1 -0.267383 ~0.247777 *107* ~0.217422-10"%
1] [-1.32762 | | O.l987l6'lOQ¥J I 0.192788-107%
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t 0 1 2

~2.69285] [0.151595] [0.186853-10"
Y -7

~-2.69285 0.151595 0.180057-10 (4.3)
Notice the large steps in the absolute values of the control sig-
nals after 2 time steps. These steps occur since the state of the

subsystem S(Al, Bl) is forced to zero in 2 time steps for the con-

sidered initial state.

In Table A.5 the matrices Stl“l' Stl_z and Stl“3’ defined by (6.4)
in Chapter 6, are given for the controller FTV2l. Since the largest
diagonal element of the matrix Stl“3 is 0.61'10"11, it suffices to
use 3 sampling intervals to drive the profile of the rod close to
the origin. The matrices Lgq~1r Ltlwz and Ltlu3, defined by (6.2)

in Chapter 6, specifying the controller FTV21 become

L _ [-0.216124 ~0.264749 ~0.274409
:tl""l -0.263994.10"Y  -0.618784-.10"1  -0.127741
-0.208980 ~0.127741 -0.618784-10"1
~0.208980 -0.2744009 ~0.264749
~0.263994 .10 17
-0.216124
0 _ [-0.354382  -0.488244 -0.581453 -0.523726
t172 ~0.108449  -0.217929 -0.382006 ~0.523725
-0.382006 -0.217929 =0.108449
~0.581453 -0.488244 -0.354382
. _ [-0.357715  -0.493873  -0.589542  -0.532425
£1-3 -0.111003  ~0.222618 =-0.389353 =0.532415

~0.389363 -0.222625 ~0.111008
-0.589533 -0.493866 -0.357710 (4.4)
Choosing Xy = (L1 ... l)' the trajectory and the input sequence

of the system S(FI21l, GA21l) controlled with the regulator FTV21
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become

t 0 1 2 3
17 [-1.32999 7 [ 0.212137-107 -] [-0.572191.107 °1
1 -0.268675 ~0.245411-10" % 0.269890-10 >
1 0.365394 ~0.202261-10"2 -0.573247-10"°

x, |1 0.570465 0.183445.10 % 0.718930+10 >
1 0.365424 ~0.201210-10"2 ~0.568340-10°
1 -0.268600 ~0.245341-10" L 0.265990:10 >
i1 -1.32985 | 0.211956-10“1_ Lj0.56l853°10—6_

t 0 1 2

“ ~-2,69662 0.154440 0.150569- 1073

t 1.2.69640 0.154379 -0.150092- 1073 (4.5)

It should be observed that the simulation results (4.3) and (4.5)
are almost identically. This is explained by the fact that the

first seven column Vectors!in the reachability matrix of the sys-
tem S(FI21, GA2l) are linearly independent. Also notice that the
origin is reached with higher precision when the controller FTV21

is used compared to the controller FTIZ1.

The sampling period of the controller FTV23 is T = 3 min. When
this relative long sampling period is used, it can be seen from
Table A.6 that it is possible to drive the profile of the rod
close to the origin in 2 time steps. The matrices Ltlml and
Ltlmz, defined by (6.2) in Chapter 6, specifying the controller
FIV23 become

. _ -0.454905-10"%  -0.66535610"%  -0.864988-10
£l ~0.346797 10"  -0.546867.10"%  -0.777743-10""
-1 -1 -1

~0.890482 10 ~0.777743 10 ~0.546867 +10
~0.890482°10"Y  -0.864988-10"%  -0.665356.10 ©

~0.346797-10" %
~0.454905-10" T
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. _ [-0.561038-1071  -0.822729-10"1  -0.107301
€172 ~0.436581-10"%  -0.686319°10"%  -0.972565.10 *
~-0.110899 ~0.972565°10 Y  -0.686319-10 %
~0.110899 . -0.107301 -0.822729-10"*
~0.436581 -10 *
~0.561038 -10"* (4.6)
Putting Xy = (L1 ... l)‘ the trajectory and the input sequence

of the system S(FI23, GA23) controlled with the regulator FTV23

become

£ 0 1 2
1] [-0.289839 T T 0.814465°10°]
1 ~0.564912.10 1 ~0.186946 104
1 0.991834.107% | 0.173622°107°

x, |1 0.153805 0.181553-10 %
1 0.991834 .10 % 0.173611.10"°
1| 1-0.564911.10"% ~0.186947 .10 4
1] |[-0.289839 | 0.814474-10°]

t 0 1

[~0.566122] [0.952664.10”4]
U

-0.566122 O.,95266l-].,0m4 (4.7)

Notice that the inputs are considerably decreased as the sampling

interval is increased from T = 1 min to T = 3 min.

Finally the controller FTV41l is discussed. This controller is
based on the model ROD4 which is a more accurate model than the
model ROD2. From Table A.7 it follows that it is possible to
drive the profile of the rod close to the origin in 3 sampling
intervals even when the temperature at more points are required
to be close to zero. The matrices Lgq-1 Ltlﬂz and Lt;-3, defined
by (6.2) in Chapter 6, specifying the controller FTV41l become
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L _ [-0.405497-10"%  -0.568116:10"1  -0.405497-10"
tr-1 ~0.359537°10 2  -0.598089°10 2  -0.359537-10"
~0.179236 -0.167688 ~0.126097
~0.336965°10" %  -0.708518°10"%  -0.126097
~0.708518-10" %  -0.336965-10"%  -0.359537.10"
~0.167688 -0.179236 -0.405497.10"
-2 -2
~0.598089°10 ~0.359537-10
~0.568116-10"%  -0.405497-10"1
0 _ -0.960250-10"%  -0.138444 ~0.960250-10
£1-2 ~0.290930°10"%  -0.457472-10"1  -0.290930-10"
-0.487473 ~0.543600 ~0.504473
-0.215681 -0.358450 -0.504472
-0.358450 -0.215682 ~0.290930- 10"
~0.543600 ~0.487473 ~0.960250° 10"
| -1
-0.457472° 10 ~0.290930° 10
~0.138444 ~0.960250° 10"+
L _ ~0.987715.10"%  -0.142569 ~0.987715.10"
€173 1.0.310763.10"%  -0.488018-10"%  -0.310763.10"
-0.504145 ~0.565797 -0.528748
~-0.229079 -0.378327 -0.528749
-0.378325 ~-0.229078 ~0.310762 10"
~-0.565798 ~0.504146 -0.987716° 10
-1 -1
~0.488016°10 ~0.310762-10
~0.142569 ~0.987716-10*

For x

back FTV41l become

1
2

2
1

1
1

1
1

1
1

1
1

(4.8)

0 = (L 1 ... l)' the trajectory and the input sequence of
the model S(FI4l, GA4l) controlled with the time-variable feed-




t 0
[
1
1
1
1
Xe 1
1
1
1
1
1]

-2.65717

1

[~1.9674l 1
-1.31758
-0.740175
-0.259125
0.377504
0.584030
0.377503
-0.259128
~0.740178
-1.31759

[ 0.667318-10

~1.96741

t=0

u [”2-65716} [0.128506] [~0.241430-1o’4}
t

0.128508

2

0.165423-10
-0.146216-10
=0.243674-10
-0.,177607°10

0.182185°10
-0.177641°10

-1
-1
-1
-1
-2
=1
=2

~0.243676-10 %

-~0.146215°10
0.165428:10

0.667329°10

1
1
1

2
I

-0.241461°10"

2
-

[-0.383822-10
0.575654°10
0.313165°10

~0.535614°10

-0.380748°10
0.824057°10

~0.381034°10

-0.535689°10
0.313242°10
0.575749°10

|-0.383871°10

4
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=5
=5
-5
-5
-5
=5
=5
-5

-5
-5
-5

(4.9)

The simulation results (4.5) and (4.9) are quite similar. This

shows that even for control purposes there is no need to use

very elaborate models of the rod.

The reachability index of the model ROD4 is v=6. Therefore, 6 time

steps are required to drive the state of the model ROD4 to zero

for any initial state. When the Riccati equation is iterated

backwards a good feeling is obtained of how close to the origin

it is possible to come in each time step.rThiS is of course spe-

cially important when dealing with distributed parameter systems.

Tt should be observed that the model simplification (8.5) in

Chapter 6 is automatically done in the Riccati equation.
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Experimental results

The time-invariant and the time-variable dead-beat control stra-
tegies were implemented on a process computer PDP=-15/35. An asymp-
totic Kalman filter was also implemented. By a simple command it
was possible to base the computation of the control signals either
on the measured signals or the signals reconstructed from the Kal-
man filter. In the experimental set-up used the resolution of the
A/D-and D/A-converters were a = 0.005°C. Moreover, the errors of

the servos were estimated to b = O,OOGOC.

First the experimental results for the controllers FTI21, FTV21
and FTVZ23 are given when the signals required to run the control-
lers are measured. In Fig. 4.1 and Fig. 4.2 the control signals
and the measured signals are shown for the controllers FTI21 and
FTV23 respectively. The figure showing the corresponding signals
for the controller FTV21l is omitted, since it is almost identi-
cally to Fig. 4.1. The initial profiles of the rod were constant
and egual to 0.5 (25.50C) and 1 (26.0°C) at each end. The desired
terminal profile was in all cases 0 (25.50C). From Tables 4.1, 4.2
and 4.3 it is seen that the experimental results and the simulated
results (4.3), (4.5) and (4.7) agree quite well. Moreover, these
tables show that the desired terminal profile is reached to within
the resolution of the A/D-and D/A-converters a = 0.005°C.

Thereafter the results for the controller FTV21 are given when the
signals required to run the controller are reconstructed with the
Kalman filter (FI2, GA2, TH22, AK22) from the end temperatures of
the rod Yeq and Ye,: Before the control experiment started there
had elapsed sufficient long time for the Kalman filter to become
stationary. The experimental results are given in Table 4.4. A com~
parison with the results in Table 4.2 shows that almost the same
performance of the system is obtained when the state of the model
S(FI21, GA21l) is measured or reconstructed from the end tempe-
ratures of the rod. Since in many practical applications, it is
only possible to measure the boundary temperature of a thermal

process this result is of great interest,
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109

Control signals and measured signals [°C]

U1JU2\
=20 T T )
0 1 2 3
Time CminJ

Fig. 4.1 - Dead-beat control experiment with the controller
FTI2l. The signals required to run the controller
are measured directly. All temperatures are referred

to T, = 25.0°%C,
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-1.0%

¥y

Control signals and measured signals [°C]

U1 ,Uz
krkz
20 ‘
0 2 4 5

Time [min]

Fig. 4.2 - Dead-beat control experiment with the controller FTV23.
The signals required to run the controller are measured

directly. All temperatures are referred to T, = 25.0°C.
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Initial control variables uj = up = 0.5°¢C
El oy %W | Yy ¥y, Y3 Yy Y5 Y Y7 Yep Ve
min Oc oc oc oc oc oC oc oC oc oC oc
0 | ~1.315 -1.315| 0.488 0.488 0.488 0.488 0.488 0.488 0.488 0.493 0.488
1 0.086 0.085|-0.674 -0.142 0.181 0.288 0.181 -0.142 -0,669 -1.338 -1.333
2 0.003 0.002| 0.015 ~0.010 =0.005 0.000 0.000 -0,010 0.015 0.073 0.078
3 0.000 0.000{ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000{ 0.000 0.000 0.000 0,000 0.000 0.000 0.000 0.000 0.000

Table 4.1 - Control
Ve, at the sampling instants for the control experiment with the regu-

signals uy, u, and measured signals yy, Yor oo Y71 Yoy

lator FTT121. The signals required to run the regulator are measured

directly. All temperatures are referred to Ty = 25.0°C.

Initial control variables uj = up = 0.5°C
t Yy U, Yl Yo Y3 Yy Yg Yg Y9 Yeq Ye
min| ©C ¢ ¢ °c °c °c °c °c °c °c
0 | -1.317 -1.317] 0.488 0.488 0.488 0.488 0.488 0.488 0.488 0.493 0.488
1 0.093 0.0901-0.679 -0.,142 0.176 0.288 0.176 -0.142 -0.669 ~-1.338 -1.338
2 1-0.001 -0.001; 0.020 -0.005 -0.005 0.000 0.000 =0.010 -0.020 0.088 0.078
3 0.000 0.000{ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 4.2 - Control signals Upr Uy and measured signals Yir Yor ecer Yqi yel'

Yeo at the sampling instants for a control experiment with the regula-

tor FIV21l. The signals required to run the regulator are measured di-

rectly.

All temperatures are referred to T, = 25.0°C.

Initial control variables uy; = up = 1.0%

t Uy U, ¥y Y5 bE Yy Y Ye Y Yep Ye,
mn| % ©°% | % % % % % % % °% %

0 | -0.562 -0.562] 0.991 0.991 0.991 0.996 0.991 0.991 0.991 0.996 0.996
3 0.004 0.004|-0.298 -0.063 0.083 0.146 0.088 -0.063 -0.293 -0.566 -0.566
6 0.000 0.000| 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 4.3 - Control signals u, u, and measured signals yy, Yy, «««r Ygr Yoqr
Ye, at the sampling instants for the control experiment with the regu-

lator FIV23. The signals required to run the regulator are measured di-

rectly.

All temperatures are referred to 25.0°C.
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Moreover, the results for the controller FTV4l are given. The sig-
nals required to run this controller cannot be measured and there-
fore a Kalman filter is used to estimate these signals. The em-
ployed filter is (FI4, GA4, TH42, AK42). The measured signals of
the filter are Yeq and Yooy« The Kalman filter had become stationa-
ry before the control experiment was started. The experimental re-
sults are given in Table 4.5. A comparison with Table 4.2 shows
that the performance of the system is almost identically to the
one obtained when the controller and the filter are calculated
from less accurate models of the diffusion process. This result

is interesting since it shows that there is no need to use very

elaborate models of the rod for control purposes.

Finally one experiment was performed where the profile of the rod
was controlled between several stationary values. The employed
controller was FTV23., The signals required to run the controller
were measured directly. In the experiment the profile was initial-
ly at 0 (25.0°C). Then the profile was forced to a linear profile
with the end temperatures 1 (26.OOC) and -1 (24.OOC). Thereafter,
the profile was driven back to the value 0. This is illustrated in
Fig. 4.3. |

5. REFERENCE

[1]: Astrdm, K.J.: "Introduction to stochastic control theory",

Academic Press, New York, 1970.
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Initial control variables uj = up = 0.5°C

t

min

1
OS¢

uz Y1 Yy Y3 Ya Yg Ys Yo YQl Yez
Sc Sc Oc °c Oc °c Cc °c Sc Cc

B W N O

-1.328
0.087
0.002
0.004
0.001

-1.327| 0.488 0.488 0.488 0.488 0.488 0.483 0.488 0.493 0.488
0.087|-0.688 -0.146 0.176 0.283 0.176 -0.142 -0.679 -1.348 -1.348
0.002y 0.015 -0.010 -0.010 0.000 -0.010 -0.010 0.015 0.078 0,078
0.004| 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0,000

Table 4.4 -

Control signals Uyr Uy and measured signals Vs y2/"f" Y Yel,

Yeo at the sampling instants for the control experiment with the regu-

lator FIV21l. The signals required to run to regulator are reconstructed
with the Kalman filter (FI2, GA2, TH22, AK22), All temperatures are re-

ferred to T, = 25.0°C.

O

Initial control variables uj = up = 0.5°C

t

min

bt
oc

Uy Yl Yy Y3 Y4 Yg Yo Y4 Yel Yez
OC OC OC C)C OC OC OC OC OC OC

B WO

=1.308
0.074
0.001
0.004
0.001

-1.307| 0.488 0.488 0.488 0.488 0.488 0.488 0.488 0.493 0.488
0.074{-0.669 -0.137 0.186 0.288 0.181 -0.137 -0.664 -1.328 -1.328
0.001} 0.010 -0.010 -0.005 0.000 0.000 -0.010 0.010 0.068 0.068
0.004} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.001} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 4.5 -

Control signals Ups U, and meagured signals Yir Yor eeer Yo eli

Yeo at the sampling instants for the control experiment with the re-
gulator FIV4l. The signals required to run the regulator are recon-
structed with the Kalman filter (FT4, GA4, TH42, AK42). All tempera-

tures are referred to TO = 25,OOC.




202

Ye
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Fig. 4.3 - Dead-beat control experiment with the regulator FTV23,
The signals required to run the controller are measured

directly. All temperatures are referred to 25.0°C,
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APPENDIX 7A

Gain K_:

‘mo.696360»1o“§ 0.0
~0.980206-1077 0.0 iy
0.978711- 10 ~0.112541-10_ 3
0.889481-10"1  0.158369:10_
0.416401-10"2 0.211934.1077
0.122026-10"7  0.118669-10 7
0.224704-10"%  0.412806-1077
0.191904-10"2  0.897022:10
~0.274344.107° 0.100340  _,
0.0 ~0.102565-10_7
L 0.0 ~0.567255:10 “|

Covariance matrix RE

oo

E}.434107 104 0 __{l
0 0.437493 1074

Eigenvalues of ®-K_C and diagonal elements of P_:

k Ak (Pw)kk

1 0.892663 0.135805;10'7
2 | 0.641095 0.284107,10"4
3 | 0.502173 0.471670+1072
4 |0.411453 0.703249:107¢
5 | 0.386205 0.294280-10" 2
6 | 0.207240 0.236862:10"°
7 |1 0.101152 0.294158.107°
8 oa473177@10ji 0.693014»10:2
9 | 0.255379-107; 0.465014+ 10

10 | 0.532957-10 0.287493.107%
11| 0.227671-1076 0.113562+ 10"/

Table A.1 - Gain K_, covariance matrix R€ ; elgenvalues of oK _C

@«

and diagonal elements of P_ for the Kalman filter
(FI2, GA2, TH22, AK22).
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Gain K_:
~0.696002+1072  ~0.400262+1073  -0.121917.1073  -0.829713.10"
uo.979702.10“§ ~0.56343310 ~0.171619-10 ~0.116795.10~6
0.977732-10" 0.110580-10"1  0.615597:1072 -0.826621.102
0.888047-10"1  0.162348-10"1  0.104187.10"%1  0.163010.1073
0.414987.10"1  0.160472.10°1  0.124640-107%  0.212429.107%
0.120830-10"%  0.135873-10°  0.130720-1071  0.118713.107%
0.215256-1o:§ O.lO706l~lOZ% 0.126656+10 0.412842.1071
0.124063-10";  0.765351.10 0.107128-10"1  0.897048-10~1
~0.389744-107¢  0.406997-102 0.634325:1072  0.100341 1
0.943303-107) ~0.100698-1073  -0.285403:10"3  -0.10256510
| 0.521201-10 ~0.556385-10"4  -0.157699:10"3  ~0.567256 1072 ]
Covariance matrix R€
0.434107-10"%  -0.390272.10°®  0.943320.107%  -0.207621-10"11
0.390272-1076  0.152641-107%  0.205512-10°  -0.897757-10~8
0.943320-1078 .205512-.1076 0.152059-107% 0.467780-10~8
~0.207621.10"11  =0.897757.10"%  0.467780-107°  0.437493-107%
Eigenvalues of ©-K_C and diagonal elements of P_:
k e (o) e
1 | 0.864608 0.135772.10~7
2 | 0.637866 0.284107-107%
3 | 0.502069 0.470930+10
4 | 0.410446 0.682042.107°
5 | 0.388991 0.264137.107°
6 | 0.207752 0.205952.1070
7 | 0.101155 0.269494.10°°
8 | 0.472932.107% | 0.678735.107°
9 | 0.255323-10"1 | 0.464591-.10"5
10| 0.533126-1075 | 0.287493.107%
11| 0.220095-107° | 0.113556-1077
Table A.2 - Gain K_, covariance matrix R_ » eigenvalues of @-K_C

and diagonal elements of P_ fgr the Kalman filter
(FI2, GA2, TH24, RAK24). '
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Gain K_:
~0.696360-10"2  0.000000
-0.980206-107%  0.000000 .
0.577590-10 ~0.454750.1077
0.100771 ~0.556420.10"7
0.110556 0.158121-10

0.937885-10°  0.117587.10_ 3
0.423085-107%  0.169345:10

0.112720.107% 0.109084-10"1

0.181077:10°2  0.418592.1071

0.145580+107 7 0.946522+10

0.298411-10 0.112694

0.157488-107°2 0.103748 1
~0.142180.1072 0.600137.1077

0.000000 -0.102565107
. 0.000000 . -0.567255+10

Covariance matrix R€

oo

0.434107 1074 0
0 0.437493 10”4

Eigenvalues of ?-K_C and diagonal elements of P_:

k k (P kx

1 | 0.892551 0.135805-10
2 | 0.637133 0.284107.107 %
3 |0.502173 0.128456-107;
4 | 0.411453 0.475772:10

5 | 0.366359 0.163500.1072
6 |0.171334 . | 0.686009.10 "
7 | 0.728442.1077 | 0.297172.107°
8 | 0.334716-10 0.238524+107°
9 |0.167406.1077 0.297163-10

10 | 0.284685:10 0.676431-107¢
11| 0.284685-107F | 0.159743.10

12| 0.124558:10 0.467801-1072
13| 0.124593.10"% | 0.128197.107%
14| 0.532866-1072 | 0.287493.10"4
15| 0.226479-1076 | 0.113562-107/

Fig. A.3 = Gain K_, covariance matrix R eigenvalues of @-K_C

€'
and diagonal elements of P_ for the Kalman filter (FI4, GA4,
TH42, AK42).
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Eigenvalues of FIZ:

k ~ Xk

.892663
.641095
.491906
401650
.386205"
.207240
.101152
.473177.10"1
.255379.107%
.158682.104
.665087:107°

Ll S o R oo 30N S AN G2 Rt =S RE UP RN O I o

= O
QO OCOOODOOODOO0O

Eigenvalues of FI4:

k Ak

.892551
637133
491906
. 401650
.366359
171334
.728443.1071
.334716-1071
.167406-10"L
28468510
. 28468510
.158698- 10
.124546-10
.124596-10"4
.667195:10

W00~ Ul W N

OO OO OO COOOOOO

Table A.4 - Eigenvalues of the matrices FI2 and FI4.




(Se1-1)3

Sga o)
(S¢,-2)kx

SO Ut s W B

OO0 OO

.128238.10"+
.329892.10" %
.652552.1071
.788635-10_7
.652552:10

.329892.1071%
.128238.10"1

O C OO OO

.113201-10
.347300.107%
.776640+10_
.985260-10
.776640+10 _
.347300:10
.113201:10

4

4
4
-4
4
-4

.697599.10 12
.214582-10" 11
.480771- 10777
.610664-10777
.481675+ 10

.215468. 10711
.702408.10712

OCOOOCOOO

Table A.5 -

207

Diagonal elements of the matrices Stl“ll Stl“Z and

5
t, -
1 3

for the controller FIV2l. The value of St

K (Se -1k

(St -2)kx

Table A.6 -

SN0 W

C OO O OO0

.138664-10"2
.317127-1072
.582516:10_
.684740-10°
.582516-10
.317127.1072
.138646-10" %

2
2
2

OO OCOOCO

.894522.107 %1
.205372"
.378317-
445206 -
.378238 "
.205292.
.894047-10711

-10
10
lo"'lo

=10
10

10710

Diagonal elements of the matrices St _
the controller FIV23. The value of Stl

is I.

is

and Stlmz for
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k (St1-D gy (Se1-2)5x (Se1-3)xk
1| 0.181529.1072 | 0.242735-1072 | 0.114769.10712
: ey ) -5 : TTo-12
2 | 0.385760-1075 | 0.559085:10_2 | 0.264491-10772
3| 0.181529-10°F | 0.242735:1077 | 0.114771.10712
4 | 0.529801-10°7 | 0.979611.1025 | 0.464125-10711
5 | 0.820816-10 0.191638:10_3 | 0.909650.107
6 | 0.100253 . | 0.255120.10_3 | 0.121300-10_y)
7 | 0.820816-1077 | 0.191638-1077 | 0.912562.1077]
8 | 0.529801-107; | 0.979611.10 ¢ | 0.467018-10 1%
9 | 0.181529-1022 | 0.242734-1077 | 0.115812-10712
10 | 0.385760-10_5 | 0.559085:10°7 | 0.266694-10°12
11 | 0.181529:10 0.242734:10 0.115810:10

Table A.7 - Diagonal elements of the matrices Stl_l and Stl—Z for
the controller FIV23. The value of Stl is TI.
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page line
12 15+
15 1+
25 5
26 R
40 §-
44 5w
44 5~
67 8+
67 14+
71 2+
99 16~
115 6+
115 7t
115 4 -
118 10~
119 2+
120 5+
121 3+
123 15=-
125 8+
128 4~
177 2~
185 12+
185 13+
187 16—
187 18-
187 4
198 1+
198 2+
198 3+

B. LEDEN: IDENTIFICATION AND DEAD-BEAT CONTROL OF
A HEAT DIFFUSION PROCESS

20<T<30

compesator

3.1 and 3.2

3.3

L/4 _
a=1.163%0,009

A:X+Y be a linear map
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