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ABSTRACT

The concept of persistently exciting signals is treated
in the frequency domain. Necessary and sufficient con-
ditions for a signal to be persistently exciting are
given. The effect of filtering a persistently exciting

signal is discussed.

This work has been supported by the Swedish Board for
Technical Development under Contract 71-50/U33,




1. INTRODUCTION.

In connection with identification problems it is ne-
cessary to have some conditions on the input signals
which will ensure consistent estimates. For the de-
termination of transfer functions by correlation tech-
niques it is e.g. necessary to have an input, satis-
fying a condition such as ¢u(w) > 0, where ¢ is the
spectrum of the input. In parametric identification
it has been shown that the notion of persistent exci-
tation is useful, see [1] and [2]. In this paper ne-
cessary and sufficient conditions for a signal to be
persistently exciting of finite order are given. The
notion of persistent excitation of infinite order is

briefly discussed.

It is also shown how the property of persistent exci-
tation of a given order is transformed when the sig-

nal is filtered. Relations between the hotion of per-
sistent excitation and the possibility to predict the

signal ahead are also given.




2. PRELIMINARIES AND NOTATION.

Let {u(t), t = 0, 1, 2, ...} denote a discrete time

signal, i.e. a sequence of real numbers. Assume that

_ 4N
u o= lim g ) u(t) (1)
N>o ' +=0
and
N
r(k) = 1im L §  (uCt) - 3) (uCt+o - @) (2)
N+ o =0
exist.

The function r(k) is non-negative definite, which means that

the NxN covariance matrix

r(0) r(1) r(2) v r(N=1)
r(1) r(0) r(1) ces r(N-2)

Ry = (3)
r(N=-1) . . . . r(0) )

is non-negative definite.

DEFINITION:

If R, is positive definite the signal u is said to

N

If r(k) is a non-negative definite function the tri-

gonometric moment problem



T
r(k) = _,[ e ar(x) K= 0, £1, ... ()

has a unique solution F(x). F is then a non-decreasing,
right continuous function, whose derivative F' exists
almost everywhere. Furthermore, since F is non-decrea-
sing it has at most denumerable discontinuities, which
are all points where F(x) makes a Jjump. Conversely,

any such function defines a non-negative finite func-
tion r(k) through (4). With suitable conventions as to

points of discontinuity the function F is given by

F(x) = r(0)x + 2 )

Proofs of these statements can be found in [4] and [7].

For the continuous case the corresponding results are

known as the Bochner-Xhinchine theorem.

In terms of u F can also be expressed as

X N 2
F(x) = 1lim f % Yo (utx) - ﬁ)elkp do (5)
N-e0 6 k=0

The support of F is denoted by
supp F = {xl-w<xsﬂ ¥e>0 F(x+e) - F(x-¢) > O}

The support could equivalently be defined as the
smallest closed set outside which the distribution
F' vanishes. Since F is an odd function, supp F will
be symmetric about the origin except possibly for

the point x = .




The following formula will be much used in the sequel:

Let a = col (ao, dqs cevs aN—1)' Then

NI [ ilk-s)x
a¥Ryas= ) a,a rik-s) = I N aagce” dF(x) =
k,s=0 - k,s
T N=1 2
- [ 13 ape” MK darGo (6)
J 0 <
=
Remark

If u is a realization of a second order, ergodic
stochastic process, then (1) and (2) can be identi-
fied with the mean value and autocovariance function
for the process, In this case F is the spectral

distribution function for the process.




3. PERSISTENT EXCITATION OF FINITE ORDER.

Using equation (6) the following relationship between

properties of R and F(x) is obtained.

THEOREM 1

A necessary and sufficient condition for u to be
persistently exciting of order n is that supp F con-

tains at least n points.

Proof

Necessity

o > o

Since u(t) is persistently exciting of order n, R/

is positive definite. Thus

2
dF(x) > 0 for all a,. (7

na’ a eikx
k

o 1k=0

(Since R, is a symmetric matrix, it is immaterial

whether we choose a to be real or complex.)

Assume that supp F has less than n points. By choo-

sing the vector a the n-1 zeroes of

can be placed anywhere in the complex plane. Now

choose a such that




is zero for x € supp F. The integral (7) then vanishes.

Hence a contradiction and supp F has at least n points.

for at least one point x,€ supp F for any choice of a.

If X is an isolated point of supp F, it is & jump

point and the integral (7) consequently gets the strict-
ly positive contribution me(F(xO+) - F(xo—)). If x

is not an isolated point, F is strictly increasing in a

neighbourhood of Xg and since

is continuous, the integrand is strictly positive in
a neighbourhood of x,. Hence (7) gets a strictly posi-
tive contribution from an interval around X In any
case (7) is thus non zero for all choices of a (diffe-
rent from the null vector) and the positive definite-

ness of Rn follows.

Corollary

The signal u is persistently exciting of order n

but not of order n+1 if and only if supp F contains
exactly n points. In this case F is a jump function
with n jumps, and the spectrum F' is a sum of n delta

functions.




Example 1

Let u(t) = sin w,t, t = 0, 1, 2, ... | w € MM,

0 Ol

The spectrum of the signal u is known to be

d(w) = %{é(w-wo) + 6(w+m0)} - < w £ M

Consequently this signal is persistently exciting of

order 2 but of no higher order. Notice that this result
holds irrespectively of wg, 0 < |ug| < m. However,

by proper choice of Wy the sequence of numbers u(t)
can be periodic with any desired period greater than

2 or even non-periodic. With wy =T the period is 2
and the signal persistently exciting of order 1, since

then only the point 7 belongs to supp T.
Example 2

For identification purposes often certain pseudo ran-
dom signals are chosen as inputs. These signals are
mostly, like e.g. the PRBS signal, periodic. They

will consequently have a discrete spectrum.

Fig. 1a shows one such signal and in Fig. 1b its spect-
rum is given. From Fig. 1b it is inferred that the sig-
nal is persistently exciting of order 6 but of no high-

er order.
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Fig. 1b.

Fig. 1 a) A PRBS-signal with period 7.

b) The spectral distribution function fa this signal.

The spectrum is thus a sum of 6 delta-functions.
(The mean value level -1/7a has been subtracted
in accordance with (2); hence there is no con-

tribution at w = 0).




4. SIGNALS, THAT ARE PERSISTENTLY EXCITING OF ANY
FINITE ORDER.

For identification purposes signals that are persistently
exciting of any finite order are of special interst, since
they allow for models of any order. According to the pre-
vious section such signals are characterized in the fre-
quency domain as signals for which supp F contains an in-
finite number of points. The behavious of Rn as n tends

to infinity, however, requires further analysis.

For example, the least squares estimate uses a matrix in-
verse. For noisy data this inverse exists if and only if the
input is persistently exciting of the model order. Now,

even if all Rn are positive definite the smallest eigenvalue
may tend to zero as n » «, so the matrix may be impossible

to invert numerically for large n.

We will therefore distinguish between the following three
classes for a signal u, that is persistently exciting of

any finite order.

Let

a = col (1, ays Ags e an_l)




10.

T, .
.a. Rna
Class A: inf 7 =m > 0
aa
,aTRna T
Class B: inf T = 0 and inf a Rna >0
aa
Class C: inf aTRna = 0 and R, positive definite

for all n

where the infimum is to be taken over a and n.

Clearly, class A precisely corresponds to the case
when Rrl - mI is . non-negative definite for all n (m

independent of n).

There is a close relationship between the number of m

for class A and the spectrum of the signal.

THEOREM 2

u  belongs to class A, with greatest lower bound m,

if and only if F'(x) 2 m almost everywhere.

Proof

Define a function r,(k) = r(k) - mé, 4. Clearly,

9

— =

™ i
r1(k) = elkXdF(x) - m J elkxdx z J elkXdF1(x)

=T el

i
=

where F1(x) = F(x) - mx is a right continuous function.

Now, if F'(x) 3z m, then F, is non-decreasing and r,
is non-negative definite according to Section II. Con-

sequently, R_ is of class A.
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Conversely, if r1(k) is non-negative definite, F1 is

the corresponding uniquely determined right continuous
function and consequently it is non-decreasing. Hence
F'(x) » m almost everywhere (i.e. where the derivative

exists).

COROLLARY
Suppose that N observations of the signal {u(t),

t=0,1, ..., N=1} are available.

Let v(k) be an estimate of the autocovariance func-

tion r(k):

k
. N uls)  uls+k) N>k >0
r(k) = 5=

~

and let R denote the corresponding covariance matrix.
(The mean value is without loss of generality set to

Zero. )

Form the periodogram estimate of the spectrum:

2

T ou(k)e kX
k=0

Then R 2 81 (meaning that R - 81 is non-negative de-

finite) for all m if and only if f(x) % ¢ for all x.

Proo§

Straightforward calculation yields

ki)
ACK) = J Fx)etix g,

-1
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and the corollary follows from the theorem.

For the distinction between classes B and C we use a
result to be found in text-books on analytic func-
tions, see e.g. [5]. As discussed in the next section

the result is well-known in prediction theory [31].

THEOREM 3

u is of class B if and only if
™
f log F'(x)dx exists (> -=)

=T

and inf F'(x) = 0.
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5. SUMMARY AND CONNECTION WITE PREDICTION THEORY.

Together with the classes A, B and C defined in the
previous section we introduce the class D:n for sig-
nals that are persistently exciting of order n, but

not of order n+1t.

Then Theorems 1, 2 and 3 make it possible to asso-
ciate every signal uwith properties (1) and (2)

with one of these classes.

The classes can be characterized in the time domain
as well as in the frequency domain. The time domain
characterization is more suitable for parametric
identification purposes, since the covariance matri-
ces then arise naturally. On the other hand frequen-
cy domain characterization, i.e. properties of the
spectrum of the signal, is easier to understand in-
tuitively. It is also more suitable for considera-

tions on certain transformations of the signal.

Classes A, B and C correspond to signals that are
persistently exciting of any finite order. However,
only class A gives uniform lower bounds on the eigen-
values of Rn' The classes A and B have, as shown in
the next section, strong invariance properties with
respect to linear filtering, and if seems reasonable
to call signals belonging to these two classes per-

sistently exciting of infinite order.

Similar distinctions apply in prediction theory. It
was shown by Wold [7] that classes A and B, characte-
rized by

1im det R
n

Nn--+ro

+1/det Rn > 0

correspond to stochastic processes that cannot be pre-

dicted with any desired degree of accuracy. The crite-
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rion

v
J log F'(x)dx > =w

-

for these classes is due to Kolmogorov [6].

Class D:n consists of signals that can be predicted
exactly if n former values are known. However, as in-
dicated in example 1 there is no direct implication
between periodicity and persistent excitation other
than that a periodic signal with period n is not per-
sistently exciting of order n. Class C is kind of a
limiting case of D:n as n tends to infinity. These
signals can also be predicted exactly, but it re-

quires knowledge of infinitely may previous values.

Classes A and B consist of signals that, apart from
a possible component from class C or class D:n, can
be considered as filtered white noise., This is the
Wold decomposition theorem [71. The signals belong

to A if and only if the filter in question has no ze-
roes on the unit circle,

In Table 1 the properties of the classes are summa-

rized.
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6. PERSISTENT EXCITATION OF FILTERED SIGNALS.

As an example of the application of the results ob-
tained in the previous sections we will here consi-
der what happens when the signal u is digitally
filtered through exponentially stable filters:

h(k)ulr-k) (8)
0

y(r) =
k

He~18

In(x)| < o a < 1

The function

H(z) = ) h()z"
k=0

will thus be analytic on the unit circle. In particu-
lar the set of zeroes of H(z) on the unit circle has

no cluster point. Consequently H(eix) has only & fi-

nite number of zeroes in the interval -m < x < .

Furthermore,

" 2
J log|H(e™)| ax

=

is integrable. (The latter property is true also for

weaker conditions on h(k), e.g. I h(k)2 < o, see [51.)

Let Fy(x) and Fu(x) be the spectral distribution func-
tions for y and u respectively. A straightforward cal-

culation using (2) yields

r(‘)—Tlm iEHZdF() (9)
y X T e ut®

m
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Furthermore
5 2
Fi(x) = [H(e™™) | FI(x) a.e, (10)

From (9) we infer that x belongs to supp Fy(x) if and
only if either x is an inner point of suppiFu(x) or x

belongs to supp F (x) and lH(e™™)| > 0.

From these observations we conclude that:

THEOREM 4

Let u and y be related through (8). If H(z) has
no zeroes on the unit circle then y belongs to the
same class A, B, C or D:n as u. In particular: if u

is persistently exciting of order n then so is y.

If no restriction on the zeroes of H(z) is made, then
the transitions A - B and D:n » D:k (k £ n) and only

these are possible.

Remagk

The invariance of class C is a result of our restric-
tions on h(k). If we require only I h(k)2 < = then
also the transition C » D:n is possible. However, we
may not, even with such a filter, cross the border
line B » C. This is natural in light of the predic-

tion interpretation of Section V.
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