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1

Introduction

1.1 Motivation

Embedded microcomputers are increasingly being deployed in mod
ern engineering applications, and realtime control systems constitute
an important subclass of these embedded systems. Modern automo
tive systems, e.g., contain several embedded ECUs (electronic control
units) used for various feedback control tasks, such as engine per
formance control, antilock braking, active stability control, exhaust
emission reduction, and cruise control.
Realtime control systems have traditionally been relatively static

systems operating in closed environments under welldefined load con
ditions. However, this situation is changing rapidly. The complexity of
the control systems is increasing, and the design process of these sys
tem often involves many conflicting objectives, including cost, perfor
mance, reliability, and safety.
Market requirements, such as reduced timetomarket and lower

development costs, often is the decisive factor in the process. Hence,
as a result of economic considerations, many embedded control sys
tems are subject to resource constraints, manifesting itself by limited
CPU speed, memory, and network bandwidth of the target platform. In
addition, a strong trend within industry today is to use commercially
available IT technology and commercialofftheshelf (COTS) compo
nents deeper and deeper in the realtime control systems.
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Introduction

Limited resources combined with nonoptimized hardware and soft
ware components introduce nondeterminism in the realtime system.
For control systems this is of particular concern. Timing variations in
sampling periods and latencies degrade the control performance and
may in extreme cases lead to instability. Further adding to the non
determinism is the fact that most embedded control systems are im
plemented using distributed architectures, where the sensor, actuator
and control functionality is located on different nodes connected by a
communication network.
In highly safetycritical applications, such as nuclear power plants

and flybywire systems, the main objective in the software design is
to maximize the determinism in order to guarantee predictable behav
ior. This requires static design methodologies, including scheduling by
static, cyclic executives [Locke, 1992], and timetriggered architectures,
such as TTA [Kopetz, 1997].
For the majority of control systems, however, the drawbacks of us

ing a static design vastly outweigh the benefits. While the static tech
niques increase the predictability and allow for offline guarantees,
they also reduce the flexibility and limit the possibilities for dynamic
modifications. Instead less rigid approaches are called for, including
dynamic task scheduling, communication protocols, and memory man
agement. The projected advantages of using this approach include:
more efficient use of the available resources thereby allowing the use
of cheaper hardware, the possibility to dynamically adapt to changing
load conditions, and higher obtainable control performance under the
given resource constraints.
The key in obtaining flexibility is codesign of the control system

and the realtime system. Integrating control theory and realtime
scheduling theory [Cervin, 2003], it is possible to take the constraints
of the target platform into consideration in the controller design, and
to develop scheduling schemes specially tailored towards control tasks.
One promising approach is dynamic runtime flexibility by the in

troduction of feedback in the realtime system. Treating the control
performance as a qualityofservice parameter that should be maxi
mized, resources may be dynamically allocated to the controller tasks
based on measurements of actual resource consumption. A method for
manipulating execution times in order to maximize performance for
model predictive controllers is presented in this thesis.

10



1.2 Outline and Related Publications

To aid in the development process, computerbased tools for simula
tion, analysis, and synthesis of realtime control systems are needed. A
simulator that allows complete simulation of the interaction between
realtime tasks, network transmissions, and continuoustime plant dy
namics, is another topic of this thesis.

1.2 Outline and Related Publications

This section contains the outline of the rest of the thesis, together with
references to related publications.

Chapter 2: Background

This chapter gives a short overview of computerbased control and
realtime scheduling and their interaction. This includes control loop
timing issues, control and scheduling codesign, and a summary of
existing simulation tools for realtime control systems.

Chapter 3: Feedback Scheduling

The chapter deals with dynamic runtime scheduling techniques for
realtime control systems. A general feedback scheduling structure is
detailed and possible sensors and actuators are identified. Schedul
ing techniques specially tailored for certain control algorithms are de
scribed.

Publications

Årzén, K.E., A. Cervin, and D. Henriksson (2003): “Resource
constrained embedded control systems: Possibilities and research
issues.” In Proceedings of CERTS’03 – Codesign of Embedded Real
Time Systems Workshop. Porto, Portugal.

Chapter 4: Flexible Implementation of Model Predictive Control

This chapter describes a flexible implementation and scheduling ap
proach for model predictive controllers (MPCs). The control signal of
an MPC is computed by online optimization of a cost function in ev
ery sample. The iterative nature of the control algorithm allows for a
tradeoff between computational delay and the quality of the obtained
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Introduction

control signal. The tradeoff is quantified by a delaydependent ter
mination criterion rendering a suboptimal, yet stabilizing, MPC for
mulation. Unlike traditional MPC, the effects of computational delay
is taken into consideration in the optimization. A dynamic scheduling
policy based on the MPC cost functions is also described.

Publications

Henriksson, D., J. Åkesson, and K.E. Årzén (2004): “Flexible real
time implementation of model predictive control using suboptimal
solutions.” Submitted to the 2004 American Control Conference,
Boston, MA.

Preliminary simulation studies were presented in

Henriksson, D., A. Cervin, J. Åkesson, and K.E. Årzén (2002): “Feed
back scheduling of model predictive controllers.” In Proceedings of
the 8th IEEE RealTime and Embedded Technology and Applica
tions Symposium. San Jose, CA.

Henriksson, D., A. Cervin, J. Åkesson, and K.E. Årzén (2002): “On
dynamic realtime scheduling of model predictive controllers.” In
Proceedings of the 41st IEEE Conference on Decision and Control.
Las Vegas, NV.

The work in this chapter represents joint work with Johan Åkesson.
Åkesson provided the tools used for implementation and analysis of
the MPC controller. Henriksson conducted the realtime simulations,
using the TrueTime simulator. The delay compensation and dynamic
scheduling schemes were developed in close collaboration between the
authors.

Chapter 5: The TrueTime Simulator

In this chapter the simulation tool TrueTime is presented. The simu
lator is based on MATLAB/Simulink and allows for cosimulation of
controller task execution in realtime kernels, network communication,
and continuoustime plant dynamics. A general description of the sim
ulator is given and the eventbased kernel implementation is detailed.

12



1.2 Outline and Related Publications

Publications

Henriksson, D., A. Cervin, and K.E. Årzén (2002): “TrueTime: Sim
ulation of control loops under shared computer resources.” In Pro
ceedings of the 15th IFAC World Congress on Automatic Control.
Barcelona, Spain.

Cervin, A., D. Henriksson, B. Lincoln, J. Eker, and K.E. Årzén (2003):
“How does control timing affect performance?” IEEE Control Sys
tems Magazine, 23:3, pp. 16–30.

Henriksson, D. and A. Cervin (2003): “TrueTime 1.1—Reference man
ual.” Technical Report ISRN LUTFD2/TFRT7605SE. Depart
ment of Automatic Control, Lund Institute of Technology, Sweden.

Henriksson, D., A. Cervin, and K.E. Årzén (2003): “TrueTime: Real
time control system simulation with MATLAB/Simulink.” In Pro
ceedings of the Nordic MATLAB Conference. Copenhagen, Den
mark.

The simulator work represents joint work with Anton Cervin, who
also implemented the first prototype of TrueTime together with Johan
Eker. Cervin has implemented the major parts of the network block,
whereas Henriksson has implemented the TrueTime kernel block. The
publications have been written in close collaboration between the au
thors.

Chapter 6: Simulation Case Studies

This chapter contains two simulation case studies performed using the
TrueTime simulator. The first case study simulates networked control
of a robot system. It is shown how transport layer network protocols
such as TCP may be implemented on top of the MAC layer protocols
provided by the TrueTime network block. The second case study uses
TrueTime to simulate a web server application. A feedback scheduling
scheme based on schedulability results for aperiodic tasks is used to
control the delays of individual connections to the server. The perfor
mance of the scheme is evaluated using the simulator.

13
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Publications

Henriksson, D., Y. Lu, and T. Abdelzaher (2004): “Improved prediction
for web server delay control.” Submitted to the 16th Euromicro
Conference on RealTime Systems, Catania, Sicily, Italy.

Chapter 7: Conclusions

The thesis concludes with a summary and suggestions for future work
in the field.
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2

Background

2.1 Introduction

The advances in microelectronics, and the increasing speed of micro
processors during the last 30 years, has led to a situation where today
almost all control algorithms are realized by computers. The design of
realtime control systems, therefore, requires interdisciplinary knowl
edge of both control engineering and computer science and especially
their interrelations.
In the early days of computer control, implementation issues re

lated to the computing hardware were wellknown problems among
control engineers [Hanselmann, 1987]. However, as the computing pow
er has increased and is continuing to increase, implementation issues
such as, e.g., realtime scheduling are often dismissed as nonproblems.
While this might be true for desktop computers, the situation is differ
ent when it comes to embedded systems and embedded control systems
in particular.
Embedded control systems are most often subject to limited com

puter resources as a result of economic considerations. This combined
with the trend of having more and more functionality being realized
in software, make resource scheduling and its effect on control per
formance a relevant issue. However, traditionally, there has been a
separation between the control and computer science communities in
their view of realtime control systems.
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Chapter 2. Background

Algorithm Process

Clock

A−D D−A

Computer

y(t )u(t)y(tk ){ } u(t k){ }

Figure 2.1 Schematic diagram of a computercontrolled system.

In the control community timing effects caused by the hardware
platform are generally not taken into account in the controller de
sign. Instead, computerbased control theory is based on assumptions
of equidistant sampling instants and a zero or constant delay between
sampling of the measurements and actuation of the control signal.
Realtime scheduling theory, on the other hand, is concerned with

providing hard timing guarantees, and often use control tasks as their
prime example of a hard realtime system. The objective is to make
sure that no deadlines are missed, and the actual impact of the schedul
ing on the timing performance of the application is seldom considered.
Given this, it should come as no surprise that large improvements

in control performance can be achieved by considering the control de
sign and the realtime scheduling design at the same time. This way it
is possible to make maximum use of limited computing resources and
to optimize the control performance.
This chapter recaptures basic concepts of computerbased control

and implementation of realtime control systems. This includes tim
ing variations and their effect on the control system performance and
stability, traditional realtime scheduling design, and a section on in
tegrated approaches to realtime control and scheduling. The chap
ter concludes with a summary and comparison of available simulation
tools for realtime control system codesign.

16



2.2 ComputerBased Control and Implementation

2.2 Computer-Based Control and Implementation

The basic structure of a computerbased control system is shown in Fig
ure 2.1. The continuous process output is sampled at regular time in
tervals and converted to digital form by an A/Dconverter. The control
algorithm reads the sampled process output and computes a control
signal that is converted back to analog form by a D/Aconverter. The
D/Aconversion is usually performed by keeping the output constant
between conversions, so called zeroorderhold.
The standard implementation of a periodic control loop is given by

the pseudo code in Listing 2.1. The control algorithm is often designed
using sampleddata control methods, see, e.g., [Åström and Witten
mark, 1997]. Normally, the reading of inputs and writing of output
signals correspond to direct calls to external A/D and D/A conversion
interfaces. However, it is also possible to have the sampling and actu
ation being performed by dedicated tasks, in which case buffers often
are used to communicate the values between the tasks. In the case
of a networked control system the reading and writing of signals also
involve communication with other nodes in the network.
To minimize the inputoutput delay, the control algorithm is often

divided into two parts, where the first part computes the control signal
based on current measurements and previous states. The second part
then updates the internal states of the controller for the next sample.

Listing 2.1 A standard implementation of a periodic control loop.

t = currentTime();

LOOP

Read Inputs;

Control Calculation;

Write Outputs;

Update Internal States;

t = t + h;

waitUntil(t)

END

17



Chapter 2. Background

rk−1 rk rk+1

Lk−1io Lkio

hk−1 hk

Lk−1s Lks

t

III OO

Figure 2.2 Controller timing.

2.3 Controller Timing

Computerbased control theory is based on idealized assumptions about
perfect sampling periodicity and constant or negligible control delays.
This can, however, seldom be achieved by the practical implementation
in a resourceconstrained system.
Within individual computer nodes, e.g., tasks interfere with each

other through preemption and blocking when waiting for common re
sources. The execution times of the control tasks may be datadepend
ent or vary due to hardware features such as caches. On the distributed
level, the communication gives rise to delays that can be more or less
deterministic depending on the communication protocol.
The resulting timing properties between the reading of the inputs

and the generation of the outputs is a crucial factor for the perfor
mance of the controlled system. The timing variations introduced by
the computer system may lead to substantial performance degrada
tion, and even instability. The basic timing variations experienced by
control tasks are depicted in Figure 2.2.

Input-Output Latency

The delay between the sampling of the measurement signal and the
output of the control signal is called the inputoutput latency, denoted
Lio. This delay has the same effect on the closedloop system as a
process input delay, and may compromise the overall system stability
if not handled properly.
Inputoutput latency is primarily caused by preemption from higher

priority tasks, and by the execution time of the control algorithm itself.

18



2.3 Controller Timing

The traditional way to minimize inputoutput latency is by sep
aration of the control algorithm into calculate and update parts, as
shown in Listing 2.1. Inputoutput latency can also be reduced by us
ing nonpreemptive scheduling. With the increasing speed of modern
computers it can be argued that the relative execution times of differ
ent tasks will become smaller and smaller, thus making this approach
realistic also from a schedulability pointofview.

Jitter

The periodic task that implements the control algorithm is released at
equidistant time intervals given by rk = hk, where h is the sampling
interval of the controller. However, the scheduling may cause the actual
start of the task to be delayed some time. This time is known as the
sampling latency of the task, denoted Ls. Variation in the sampling
latency is called sampling jitter. Sampling jitter will also cause jitter
in the actual sampling period.
Another source of jitter is variations in the inputoutput latency,

called inputoutput jitter. This is often caused by variations in the
execution time of the control algorithm. For simple controllers such
as PIDcontrollers these variations are negligible, whereas more ad
vanced algorithms may have very large execution time variations. One
example is model predictive controllers (further treated in Chapter 4),
where a constrained quadratic programming problem is solved online
in every sample. The effects of varying delays are often very difficult
to analyze. [Lincoln, 2003] treats methods for analyzing stability prop
erties of systems with varying delays. Dynamic compensation schemes
are also presented.
One way to remove the sampling jitter altogether is by performing

the sampling operation in a dedicated highpriority task. This way the
sampling is always performed at the right time instants. However,
while this technique removes the sampling jitter it instead increases
the inputoutput latency.
Using this approach, the inputoutput jitter can also be eliminated

by always delaying the output to the end of the period, thus introduc
ing a constant onesample delay in the system. This delay may then
be compensated for in the controller design. However, as shown in
[Cervin, 2003], the compensation may only recover a part of the loss
introduced by the added inputoutput latency. Therefore, for controllers

19



Chapter 2. Background

with highly varying execution times, designing and compensating for
the worstcase execution time is not a viable option.

2.4 Real-Time Scheduling

Realtime scheduling theory is concerned with the problem of, given a
set of tasks, finding an execution order that guarantees that all tasks
meet their timing constraints. Realtime scheduling algorithms fall in
two basic categories; static and dynamic scheduling.
Static scheduling is an offline approach, where an optimized execu

tion order is determined once and for all before the system is commis
sioned. This execution order is then repeated cyclically at runtime.
The main benefit of this approach is that it is easy to analyze and
thereby guarantee all timing requirements. The main drawback is that
the cyclic schedules may be very long and difficult to obtain. They also
need to be recalculated every time changes are made to the realtime
system.
In dynamic scheduling schemes, the decision of which task to run

is taken at runtime. The standard and still most commonly used dy
namic scheduling schemes were presented in the seminal paper [Liu
and Layland, 1973]. The schedulability theory is based on a task model
where all tasks are periodic and where each task, i, is characterized
by the following parameters

• a fixed period, Ti,

• a hard deadline, Di,

• and a fixed and known worstcase execution time (WCET), Ci.

Fixed-Priority Scheduling

Fixedpriority scheduling is the most common scheduling mechanism
and is supported by all major commercial realtime operating systems.
Using this approach, each task is assigned a fixed priority value. Dur
ing runtime, the ready task with the highest priority gets access to
the CPU. If a task with a lower priority is currently running, this task
is preempted by the higher priority task.

20



2.4 RealTime Scheduling

For control tasks it is natural to assume that the relative deadlines,
Di, of the tasks are equal to their periods, Ti. In this case the most
common priority assignment is the ratemonotonic assignment, where
the priorities are set according to the periods of the tasks. The shorter
the period, the higher the priority.
It is shown in [Liu and Layland, 1973] that this is an optimal

scheduling policy, i.e., if the task set is not schedulable using rate
monotonic assignment it is not schedulable using any other fixed
priority assignment either.
Assuming a set of n tasks, a sufficient condition for schedulability

using the ratemonotonic priority assignment is that the utilization
factor

U =
n

∑

i=1

Ci

Ti
≤ n(21/n − 1) (2.1)

In the more general case where Di ≤ Ti, deadlinemonotonic priority
assignment is optimal [Liu and Layland, 1973]. Here the priorities are
assigned according to the relative deadlines of the tasks.
For any fixed priority scheduling assignment, an exact schedulabil

ity analysis may be performed by computing the worstcase response
times, Ri, for each task, see [Joseph and Pandya, 1986].

Earliest-Deadline-First Scheduling

Using fixedpriority assignment the priorities of the tasks are static
and not changed during runtime. An alternative approach is earliest
deadlinefirst (EDF) scheduling which exploits dynamic priority as
signment based on the absolute deadlines of the tasks. At any point
in time, the task with the shortest remaining time to its deadline will
get access to the CPU.
EDF is more resourceeffective than ratemonotonic scheduling and

a necessary and sufficient condition for schedulability (given Di = Ti)
is that the utilization factor is below one:

U =

n
∑

i=1

Ci

Ti
≤ 1 (2.2)

A benefit of deadlinebased scheduling over prioritybased scheduling
is that it is usually more intuitive to assign deadlines to tasks than

21



Chapter 2. Background

to assign priorities. To assign priorities, global information about the
relative importance of all tasks in the system is needed, which is not
required to assign deadlines.
The main drawback with EDF is that it offers no guarantees at

all during overload. In that case all tasks will miss their deadlines,
which is known as the domino effect [Stankovic et al., 1998]. For hard
realtime systems this may be fatal. However, the result during over
load under EDF, is that the effective periods of the tasks will be scaled
in such a way that the utilization of the system is still 100 per cent
[Cervin et al., 2002]. Under reasonable overload, this fair distribution
of resources will for most control systems still give reasonable perfor
mance for all loops.

Scheduling of Aperiodic Tasks

In many applications, the assumption of purely periodic tasks does not
hold. An important example is web server systems, which handle large
volumes of aperiodically arriving requests. With individual requests
are often associated specific qualityofservice (QoS) requirements re
lated to their deadlines. Motivated by this, schedulability bounds for
aperiodic tasks has been an active research area during recent years.
Schedulability bounds for aperiodic tasks were presented in [Abdelza
her and Lu, 2001].
The bounds are based on a measure called synthetic utilization,

Uζ (t), defined as

Uζ (t) =
∑

i∈Vζ (t)

Ci

Di
(2.3)

where Vζ (t) is the set of current tasks at time t, i.e., tasks that have
arrived but whose deadlines have yet to expire.
It can be proven that deadlinemonotonic scheduling is an optimal

policy for aperiodic tasks. Using this assignment all tasks will meet
their deadlines if, ∀t

Uζ (t) <
1
2

+
1
2n

, for n < 3

Uζ (t) <
1

1+
√

1
2 (1− 1

n−1 )
, for n ≥ 3

(2.4)
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2.5 Integrated Control and RealTime Scheduling

2.5 Integrated Control and Real-Time Scheduling

Many of the assumptions made in the control and realtime scheduling
communities are either too restrictive or too idealized to describe the
actual behavior of realtime control loops.
E.g., the standard hard realtime task model used in the realtime

scheduling community does not capture the special requirements of
control tasks. While it is true that most hard realtime systems are
control systems, most control systems are not hard realtime systems.
For almost all controllers, single missed deadlines are not critical for
the system performance or system stability.
On the other hand, the assumptions made in computerbased con

trol theory do not consider the effects of the actual implementation of
the controller as a task in a realtime system. The timing variations
introduced by the computer system are crucial for the performance of
the control system and must be taken into account at design time.
Consequently, we realize that design of realtime control systems

is essentially a codesign problem. For optimal use of limited comput
ing resources and for optimal control performance, the controller de
sign and the software design need to go hand in hand. Two promising
approaches to control and scheduling codesign are reservationbased
scheduling and feedback scheduling. For more on integrated control
and realtime scheduling, see [Cervin, 2003].

Reservation-Based Scheduling

The concept of serverbased scheduling has recently gained much inter
est in the realtime scheduling community. In the constant bandwidth
server (CBS) [Abeni and Buttazzo, 1998], e.g., the CPU is conceptu
ally divided into a number of virtual subCPUs with given capacities,
Us. The CBS then guarantees that tasks running in the virtual CPUs
never consume more than the alloted capacity.
The control server, an extension of CBS tailored for control tasks,

is presented in [Cervin, 2003; Cervin and Eker, 2004]. A control server
creates the abstraction of a control task with a specified period and a
fixed inputoutput latency shorter than the period. The control server
model is well suited for codesign in that the single parameter linking
the scheduling design and the controller design is the task utilization
factor.
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Chapter 2. Background

Feedback Scheduling

Feedback scheduling is an approach to achieve flexibility in the run
time scheduling of control tasks. The objective is to optimize the control
performance for control loops under resource constraints. In feedback
scheduling, the available resources are scheduled dynamically based on
measurements of actual timing variations and control performance. An
elaborate discussion of feedback scheduling will be given in Chapter 3.

2.6 Simulation Tools

To aid in the development process, new, computerbased tools for real
time and control system codesign are needed. However, the separation
between the control community and the realtime scheduling commu
nity is also apparent when it comes to existing simulation tools for this
type of systems.
The main simulation tool used for control system design and sim

ulation is MATLAB/Simulink [The Mathworks, 2001b]. Also, during
recent years, Modelica [Tiller, 2001] has emerged as a strong alterna
tive to MATLAB/Simulink when it comes to physical modeling and
simulation. However, neither of these simulation environments have
sufficient support for simulation of realtime implementation issues.
RealTime Workshop [The Mathworks, 2001a] allows prototyping and
implementation of realtime control systems, but has very limited sup
port for simulation of shared CPU resources and no support for simu
lation of networks.
On the other hand, several tools exist for simulation of realtime

scheduling. Examples include STRESS [Audsley et al., 1994] and PERT
S/DRTSS [Storch and Liu, 1996]. These tools are typically used to
prove feasibility of task sets and to perform cosimulation of task ex
ecution and hardware architecture and kernels. The simulations do
not capture the effects of the scheduling on the performance of the
application implemented by the various tasks.
So, while numerous tools exist that support either simulation of

control systems or simulation of realtime scheduling, very few tools
support cosimulation of control systems and realtime scheduling.
However, during the last years a few cosimulation tools have emerged.
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The TrueTime simulator, which will be described thoroughly in
Chapter 5, is a complete cosimulation tool based on MATLAB/Simu
link. In its current version it supports task scheduling by arbitrary
scheduling policies, network simulation by standard MAC layer pro
tocols, and a variety of realtime primitives used for experimentation
with flexible scheduling and compensation schemes.
An early, tickbased version of TrueTime was presented in [Eker

and Cervin, 1999]. The eventbased C++ implementation of the cur
rent version has decreased simulation times by orders of magnitude.
This early version had no support for interrupt handling and being
tickbased it could not handle finegrained simulation details. Also,
there was no support for simulation of networks.
The RTSIM realtime scheduling simulator (a standalone C++

program) has recently been extended with a numerical module (based
on the Octave library) that supports simulation of continuous dynam
ics, see [Palopoli et al., 2000]. However, it lacks a graphical plant mod
eling environment, and so far its network capabilities are limited.
The Ptolemy system developed at Berkeley, has recently added sup

port for timed multitasking [Liu and Lee, 2003]. This makes it possi
ble to model fixedpriority scheduling of tasks with constant execution
times.
Another tool similar to TrueTime is the XILO toolset presented in

[Elkhoury and Törngren, 2001]. This tool is entirely graphical and
currently limited to a number of predefined scheduling policies and
network protocols provided in the tool libraries.
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3

Feedback Scheduling

3.1 Introduction

The objective of feedback scheduling is to increase flexibility and to
master uncertainty with respect to resource scheduling. A general feed
back scheduling structure is shown in Figure 3.1. The idea is to feed
back the actual use of critical resources to the scheduler and to contin
uously adjust the tasks’ demands of resources according to the current
situation. The reactive feedback may also be combined with proactive
feedforward actions, such as, e.g., task admission control schemes.
The feedback scheduled resources may be any computer resource,

such as CPU time, network bandwidth, or memory allocation. E.g.,
an approach to achieve adaptive garbage collection and incorporate
GC scheduling into a general feedback scheduling framework was pre
sented in [Gestegård Robertz, 2003]. However, here we will focus on
the scheduling of CPU time for realtime controller tasks.
The main motivation for the introduction of feedbackbased schedul

ing for control tasks is the highly varying execution time characteris
tics associated with many control algorithms. Examples include model
predictive controllers, controllers using visionbased sensor informa
tion, and hybrid controllers switching between different modes. For
these control schemes, the execution time variations are inherent in
the algorithms. Other sources to the variations may be external, such
as changing environments or load conditions.
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Feedback
scheduler Tasks Resources

Feedforward

Feedback

Figure 3.1 A general feedback scheduling system. The scheduler adjusts the
tasks’ demands based on feedback from the current use of critical resources.
The tasks may also inform the scheduler that they are about to consume more
resources (feedforward).

The varying execution times make traditional task scheduling as
described in the previous chapter infeasible. Algorithms such as rate
monotonic and earliestdeadlinefirst are both openloop scheduling al
gorithms, in the sense that the schedulability results are obtained off
line, assuming complete knowledge of the tasks and their constraints.
Since the execution time may vary significantly, the main limitation

lies in the assumption of known worstcase execution time bounds for
all tasks. A design based on worstcase bounds will likely become far
too pessimistic, and lead to severe underutilization of the computer
resources. In reality these bounds are also very difficult to obtain.
A feedbackbased approach for task scheduling is presented in [Lu

et al., 2002], where control theory is used to provide performance guar
antees for dynamically changing realtime systems. The guarantees
are, however, related to deadline missratios and utilization levels, and
have no direct connection to the actual application performance.
For control systems, the decisive factor should be the control per

formance, and to distribute the resources in a way that optimizes the
global control performance. For control tasks, there are two main ways
to control the CPU demand: by manipulating the task periods, or by
manipulating the execution times. The feedback should contain infor
mation related to the timing behavior and control performance of the
controlled system.
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3.2 Task Period Rescaling

The most commonly explored way to dynamically adjust CPU utiliza
tion for control tasks is by changing sampling periods. The classical
ruleofthumb, see, e.g., [Åström and Wittenmark, 1997], for selection
of sampling interval in a digital control system is that

ω ch = 0.2− 0.6, (3.1)

whereω c is the bandwidth of the closedloop system. This means that a
computerbased control system may operate according to specifications
also using another sampling interval than originally designed for.
Dynamic resource allocation by means of task period rescaling has

been explored in several papers. An adaptive rate control mechanism
based on an elastic task model is presented in [Buttazzo et al., 1998].
The task period adjustment is based on elasticity coefficients, ei, re
lated to the utilization factors of the tasks.

[Beccari et al., 1999] considers modulation of sampling rates for
robot systems. A range of admissible rates is identified for each task,
and different ratemonotonic schemes are presented and evaluated.

[Shin and Meissner, 1999] studies resource adaptation in multipro
cessor systems. Reallocation of control tasks and online adjustment
of sampling rates is used to optimize a quadratic performance index
related to the global control performance.
A feedback scheduled system manipulating sampling intervals can

be viewed as a special case of a hybrid control system. An interesting
example is given in [Schinkel et al., 2002], which considers switching
between two LQcontrollers designed with different sampling intervals.
Although both closedloop systems are stable, it is shown that a special
switching sequence between the systems will lead to instability.

Optimization-Based Approaches

An optimal strategy for rescaling sampling periods for LQcontrollers
was presented in [Eker et al., 2000; Cervin, 2003]. Here it was shown
that simple linear

J(h) = α + γ h (3.2)
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or quadratic

J(h) = α + βh2 (3.3)

cost functions are good approximations of how the actual control per
formance depends on the sampling interval. The sampling interval is
denoted by h and α , β , and γ are constants.
Based on these functions an optimal feedback scheduling strategy

was developed that minimized the global cost while meeting certain
utilization setpoints. The utilization was computed online based on
execution time measurements.
The resulting optimal feedback scheduling scheme consisted of a

simple rescaling of the nominal sampling periods, where all periods
were changed by the same factor. This is a nice property, since it is fast
and easy to implement. It also preserves the ratemonotonic ordering
among the control tasks, and thus avoids priority changes of the tasks.
However, the cost functions only concern the sampling periods and

not the actual inputoutput latencies. The feedback should ideally also
contain feedback from the actual control performance and not only ex
ecution time measurements. Another problem arises when scheduling
tasks that are described by both linear and quadratic cost functions.
In this case the optimization becomes harder, and the linear rescaling
property would be lost.

Mode Changes

In certain applications it is possible to combine the feedback scheduling
with feedforward. In these schemes, the tasks themselves inform the
scheduler that they are about to consume more resources. In [Cervin
et al., 2002], a case study with hybrid controllers is presented, where
the sampling rates are adjusted to avoid CPU overloads. The controller
changed between ordinary PID control and an optimal control mode
with very different execution times. In this scheme, the controller tasks
notified the scheduler when they were about to change mode.
From a schedulability aspect, mode changes may cause transient

overloads, i.e., a system that is schedulable both before and after the
mode change may still miss deadlines during the transient phase. This
mode changing problem is treated in [Buttazzo et al., 1998; Tindell
et al., 1992].
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Figure 3.2 Scheduling of imprecise computations are based on a task model
where each task can be divided into two parts; a mandatory part and an optional
part. The optional part may be aborted to meet scheduling constraints or to
optimize performance.

3.3 Scheduling of Imprecise Computations

For certain classes of control algorithms an alternative to sampling
time adjustments is manipulation of the actual execution time of the
control signal computation. These types of algorithms are generally re
ferred to as anytime algorithms or imprecise computation algorithms.
The main characteristic of anytime algorithms is that they always

generate a result, but with a quality level that increases with the
execution time. This means that there is a tradeoff to consider between
the computational time and the result generated by the algorithm.
The basic task model for scheduling of imprecise computations [Liu

et al., 1991; Liu et al., 1994] assumes that all tasks can be divided
into two subtasks; a mandatory subtask and an optional subtask, see
Figure 3.2. An imprecise result may be returned by the algorithm as
long as the mandatory subtask has completed.
In [Liu et al., 1991], imprecise calculation methods are categorized

into three main types; sieve function methods, multiple version meth
ods, and milestone methods.
Sieve functions constitute optional computation steps that may be

skipped to save processing time. Obvious examples of sieve functions
for control algorithms include the updating of the estimated parame
ters in an adaptive controller, or the observer step in an LQGcontroller.
Multiple version methods exploit several versions of the algorithm,
with different processing times and result quality.
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Figure 3.3 Imprecise computation model for model predictive control tasks.
The mandatory part (M) consists of finding a feasible starting solution and
iterating the QPsolver until the stability requirement is fulfilled. The additional
QPiterations constitute the optional part and may be skipped.

Milestone methods are based on monotone algorithms, ensuring
that the quality of intermediate results increases monotonically with
time. This type of algorithms can be found in many application areas,
including numerical optimization, estimation, and prediction. Schedul
ing of monotone imprecise tasks is treated in [Chung et al., 1990]. In
this scheme, each mandatory subtask is scheduled to complete before
the deadline of the task, and the optional parts refine the results to
minimize the total error. Both average error between consecutive jobs,
and cumulative errors are considered.

Application to Model Predictive Control

An example of a control methodology that fits the milestone method
very well, is model predictive control (MPC), which is the topic of
Chapter 4. This control strategy is based on online minimization in
every sample of a quadratic cost function subject to constraints on
control signals and controlled variables. In the MPC formulation used
in Chapter 4, the optimization problem is solved by an iterative QP
solver that guarantees that the value of the cost function is reduced
by each step in the algorithm.
The mandatory part of the control algorithm consists of finding a

starting solution that fulfills the constraints of the QPproblem, and
to iterate the solver until the solution guarantees closedloop stability.
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The optional part consists of the remaining QPiterations that further
reduce the value of the cost function. These iterations may be skipped
if computing time is scarce.
Figure 3.3 illustrates a situation of two MPC tasks running concur

rently. A dynamic scheduling strategy schedules the mandatory parts
using distinct high priorities and the optional parts of the tasks using
the cost functions as dynamic task priorities. By constantly executing
the task with the highest cost we aim at achieving as low global cost
as possible before the optional parts are terminated. Dynamic resource
allocation for MPC tasks will be treated in detail in Chapter 4.

3.4 Direct Feedback Scheduling

A drawback with many dynamic resource allocation schemes is that
the control performance is only affected indirectly by adjusting task
parameters and assuring certain timing properties. The true effect
on the control performance is often not easily determined from these
parameters. Another approach is direct feedback scheduling, where
scheduling decision are made based on instantaneous cost measures
related to the control performance.
E.g., the previously described MPC approach with scheduling based

on cost functions can be seen as a direct feedback scheduling strategy. A
general direct feedback scheduling approach would typically be based
on an instantaneous cost related to the control error. This includes
derivatives and the integral of the control error, and quadratic cost
terms of the error and control signal.
Just like in the imprecise task model, an implementation of a task

used in a direct feedback scheduling context, would consist of two parts.
The first part should contain the sampling of the process and evalua
tion of the instantaneous cost. The second part should then be optional
and scheduled based on the value of the cost measure.
The resulting control system will run in open loop between invoca

tions of the optional part, see Figure 3.4. A new control action is applied
when the instantaneous cost causes the control task to be scheduled
and not periodically as in traditional computerbased control.
The problem with the resulting control system is thus that it will be

eventtriggered and will therefore not follow the traditional model of
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Figure 3.4 Direct feedback scheduling where scheduling decisions are made
based on instantaneous cost measures for each controller tasks. The system runs
in open loop between scheduling points and the resulting controlled system is
eventtriggered.

equidistant sampling instants for which the theory is well developed.
Although many systems, including combustion engines and satellite
control by thrusters, are naturally treated using an eventbased ap
proach, very little theory exist in the area. Eventbased control systems
have been explored in, e.g. [Åström and Bernhardsson, 1999; Årzén,
1999].

3.5 Quality-of-Service

Feedback scheduling is closely related to qualityofservice (QoS) ap
proaches. Qualityofservice techniques for soft realtime activities, such
as multimedia applications, have been an active research area during
recent years.
For control systems it would be desirable to also treat the con

trol performance as a qualityofservice parameter, or qualityofcontrol
(QoC). This means that it would be necessary to specify reasonable
ranges for the performance metrics, including, e.g., rise times, over
shoots, and steadystate variances. The online resource negotiation
could then, e.g., be specified using contracts [Eker and Blomdell, 2000]
relating the control performance to the available resources.
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One example is [Abdelzaher et al., 2000], which considers quality
ofservice negotiation in flight control systems. Here task periods and
deadlines are treated as negotiable parameters between tasks in the
system, allowing graceful QoS degradation under conditions where tra
ditional schedulability analysis fails.
The use of feedback control theory has also recently emerged as a

promising foundation for performance control in large, complex soft
ware applications. One prominent example is contemporary web serv
ers, which typically operate under very unpredictable and poorly mod
eled load conditions. Managing this uncertainty by means of control
theory has proven successful in order to provide qualityofservice guar
antees for these systems [Abdelzaher et al., 2003; Robertsson et al.,
2003].

3.6 Summary

This chapter has treated feedbackbased approaches for scheduling of
realtime controller tasks. The potential benefits of feedback schedul
ing are, e.g.,

• the possibility to relax the requirements on known worstcase
execution time bounds,

• increased flexibility,

• higher resource utilization, and

• better control performance under the given resource constraints.

Feedback scheduling approaches that use task period rescaling, ex
ecution time manipulation, and scheduling based on instantaneous cost
functions were treated. Qualityofservice based methods for control
systems were also discussed.
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4

Flexible Implementation of

Model Predictive Control

4.1 Introduction

Model predictive control (MPC), see, e.g., [Garcia et al., 1989; Richalet,
1993; Qin and Badgwell, 2003], is a control methodology that has been
widely accepted industrially during recent years, mainly because of its
ability to handle constraints explicitly and the natural way in which
it can be applied to multivariable processes.
The computational requirements of MPC, where typically a quad

ratic optimization problem is solved online in every sample, have pre
viously prohibited its application in areas where fast sampling is re
quired. Therefore MPC has traditionally only been applied to slow pro
cesses, mainly in the chemical industry. However, the advent of faster
computers and the development of more efficient optimization algo
rithms, see, e.g., [Cannon et al., 2001], has recently led to applications
of MPC also to processes governed by faster dynamics. Some recent
examples include [Dunbar et al., 2002; Dunbar and Murray, 2002].
Still, from a realtime implementation perspective the execution

time characteristics associated with MPC tasks poses many interest
ing challenges. Execution time measurements show that the compu
tation time of an MPC controller varies significantly from sample to
sample. The variations are due to, e.g., reference changes and exter
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nal disturbances. To cope with this, an increased level of flexibility is
required in the realtime implementation. Because of the variations,
a static compensation for the worstcase execution time would be too
pessimistic and lead to unnecessary reduction of the obtainable control
performance.
As described in the previous chapter, the MPC algorithm is of any

time nature, and fits nicely into the general framework of scheduling
of imprecise computations. The milestone characteristics of the opti
mization algorithm makes it possible to abort the optimization before it
has reached the optimum, and still fulfill the stability conditions. The
key observation is that computational delay may significantly degrade
control performance, and premature termination of the optimization
algorithm may be advantageous over actually finding the optimum.
Stability of model predictive control algorithms has been the topic

of much research in the field. For linear systems, the stability issue
is well understood, and also for nonlinear systems there are results
ensuring stability under mild conditions. For an excellent review of
the topic, see [Mayne et al., 2000]. In summary, there are two main
ingredients in most stabilizing MPC schemes; terminal penalty and
terminal constraint. These two tools has been used separately or in
combination to prove stability for many existing MPC algorithms. It is
also well known that feasibility, rather than optimality, is sufficient to
guarantee stability, see, e.g., [Scokaert et al., 1999]
In this chapter, the tradeoff between computational delay and op

timization is quantified by the introduction of a delaydependent cost
index. The index is based on a parameterization of the cost function in
the MPC formulation. The objective of the optimization is then to min
imize the cost index instead of the original cost function. This results
in a delayaware MPC formulation. The cost index is also applied in a
realtime scheduling context.
The chapter concludes with two simulation case studies, where the

suggested approaches are evaluated on a doubleintegrator process.
The first simulation treats the tradeoff between computational delay
and optimization of a single MPC task. The second simulation consid
ers scheduling of two MPC tasks concurrently on the same CPU.
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Figure 4.1 The basic principle of model predictive control.

4.2 MPC Formulation

The MPC formulation is based on [Maciejowski, 2002] and assumes a
discrete linear process model on the form

x(k+ 1) = Φx(k) + Γu(k)

y(k) = Cyx(k)

z(k) = Czx(k) + Dzu(k)

(4.1)

where y(k) is the measured output, z(k) the controlled output, x(k)
the state vector, and u(k) the input vector. The function to minimize
at time k is

J(k, ∆U, x(k)) =

Hp
∑

i=1

iẑ(k+ ihk) − r(k+ i)i2Q

+

Hu−1
∑

i=0

i∆û(k+ ihk)i2R

(4.2)

where ẑ is the predicted controlled output, r is the current set
point, û is the predicted control signal, Hp is the prediction horizon,
Hu is the control horizon, Q ≥ 0 and R > 0 are weighting matri
ces, and ∆u(k) = u(k) − u(k − 1). It is assumed that Hu < Hp and
that û(k + i) = û(k + Hu − 1) for i ≥ Hu. See Figure 4.1. ∆U =
(

∆û(k)T . . . ∆û(k+ Hu − 1)T
)T
is the solution vector.
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Introducing sequences U and Z equivalently to ∆U, the state and
control signal constraints may be expressed as

W∆U ≤ w FU ≤ f GZ ≤ n (4.3)

This formulation leads to a convex linearinequality constrained quad
ratic programming problem (LICQP) to be solved at each sample. The
problem can be written on matrix form as

min
θ
V (k) = θTH θ − θTG + C s.t. Ωθ ≤ ω . (4.4)

where θ = ∆U and the matrices H , G , C , Ω, and ω depend on the
process model and the constraints, see [Maciejowski, 2002]. Only the
first element of ∆U is applied to the process and the optimization is
then repeated in the next sample. This is referred to as the receding
horizon principle.

Feasibility and Optimality

The problem of formulating stabilizing MPC schemes has received
much attention in the last decade. For linear MPC, the conditions
for stability are well understood, and several techniques for ensuring
stability exist including terminal penalty, terminal equality constraint,
and terminal sets, see [Mayne et al., 2000]. For simplicity, we will use
a terminal equality constraint to ensure stability, see, e.g., [Bemporad
et al., 1994].
The following theorem (adopted from [Bemporad et al., 1994]) sum

marizes the important features of a stabilizing MPC scheme based on
a terminal equality constraint. Without lack of generality we assume
that r(k) is zero.

THEOREM 1
Consider the system (4.1) controlled by the receding horizon controller
based on the cost function (4.2), subject to the constraints (4.3). Let
r(k)=0. Further assume terminal constraints x̂(k + Hp + 1)=0 and
û(k+Hu)=0, Q≥0 and R>0 and that (CzQ

1
2 , A) is a detectable pair. If

the optimization problem is feasible at time k, then the origin is stable,
and z(k)TQz(k) → 0 as k→ ∞.
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Proof. Let ∆U∗
k=(∆û∗

k(k), ∆û∗
k(k+ 1), . . . , ∆û∗

k(k+ Hu − 1)) denote
the optimal control sequence at time k. Obviously, ∆Uk+1=(∆û∗

k(k +
1), . . . , ∆u∗

k(k+ Hu − 1), 0) is then feasible at time k+ 1. Consider the
function V (k)=J(k, ∆U∗

k, x(k)) with r(k)=0. Then we have the follow
ing relations:

V (k+ 1) = J(k+ 1, ∆U∗
k+1, x(k+ 1))

≤ J(k+ 1, ∆Uk+1, x(k+ 1))

= V (k) − z(k+ 1)TQz(k+ 1)

− ∆u(k)TR∆u(k).

(4.5)

Since V (k) is lowerbounded and decreasing, z(k)TQz(k) → 0 and
∆u(k)TR∆u(k) → 0 as k→ ∞. Further, using the fact that (CzQ

1
2 , A)

is a detectable pair, it follows that ix(k)i → C < ∞ as k→ ∞.

REMARK 4.1
To prove the stronger result that the origin is asymptotically stable, the
additional assumption that the system (4.1) has no transmission zeros
at q = 1 from u to z could be imposed. Notice also that the sensible
assumption that Q > 0 implies that z(k) → 0 as k → ∞, which is,
however, automatically achieved if the transmission zero condition is
fulfilled.

The important feature in the proof of this theorem is embedded in equa
tion (4.5). In order for the stability proof to work, it must be ensured
that V (k) is decreasing, which, however, does not require optimality of
the control sequence ∆U. See, e.g., [Scokaert et al., 1999] for a thorough
discussion on this topic. Rather, having fulfilled the stability condition
V (k+1) < V (k), the optimization may be aborted prematurely without
losing stability. In the case study in Section 4.5, the terminal constraint
û(k+ Hu)=0 has been relaxed, in order to increase the feasibility re
gion of the controller. To remove this complication, the control signal,
u, rather than the control increments, ∆u, could be included in the cost
function. Notice, however, that the important feature of the stability
proof that will be explored is the inequality (4.5) and that other, more
sophisticated, stabilizing techniques may well be used instead.
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QP-Solver

There are two major families of algorithms for solving LICQPs; ac
tive set methods [Fletcher, 1991] and primaldual interior point meth
ods, e.g., Mehrotra’s predictorcorrector algorithm, [Wright, 1997]. Both
types of methods have advantages and disadvantages when applied
to MPC, as noted in [Bartlett et al., 2000] and [Maciejowski, 2002].
Rather, the key to efficient algorithms lies in exploration of the struc
ture of the optimization problem generated by the MPC algorithm.
Recent research has also suggested interesting, and fundamentally

different MPC algorithms, see, e.g., [Kouvaritakis et al., 2002] and
[Bemporad et al., 2002], known as explicit MPC. Here, the optimization
problem is solved offline for all x(k), resulting in an explicit piecewise
affine control law. At runtime, the problem is then transformed into
finding the appropriate (linear) control law, based on the current state
estimation. However, when the complexity of the problem increases, so
does the complexity of the problem of finding the appropriate control
law at each sample.
An MPC algorithm based on the online solution of a QPproblem is

used. The value of the cost function at each iteration in the optimiza
tion algorithm is of importance. Specifically, if the decay of the cost
function is slow, it may be a good choice to terminate the optimiza
tion algorithm, and use the suboptimal solution, rather than allowing
the algorithm to continue and thereby introduce additional delay in
the control loop. In the scheduling case, long execution times will also
affect the performance of other control loops.
From this point of view, there is a fundamental difference between

an active set algorithm and a typical primaldual interior point method.
The active set algorithm explicitly strives to decrease the cost func
tion in each iteration, whereas a primaldual interior point algorithm
rather tries to find, simultaneously, a point in the primaldual space
that fulfills the KarushKuhnTucker conditions. In the latter case, the
duality gap is explicitly minimized in each iteration, rather than the
cost function. With these arguments, and from our experience using
both types of algorithms, we conclude that an active set algorithm is
preferable for our application.
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4.3 Termination Criterion

To be able to determine when to abort the MPC optimization and out
put the control signal, it is necessary to quantify the tradeoff between
the performance gain resulting from subsequent solutions of the QP
problem, and the performance loss resulting from the added compu
tational delay. This will be achieved by the introduction of a delay
dependent cost index, which is based on a parameterization of the cost
function (4.2).
Assuming a constant time delay, τ < h, the process model (4.1) can

be augmented (see, e.g., [Åström and Wittenmark, 1997]) as

x̃(k+ 1) = Φ̃ x̃(k) + Γ̃u(k)

y(k) = C̃y x̃(k)

z(k) = C̃zx̃(k) + Dzu(k)

(4.6)

where

x̃(k) =


 x(k) u(k− 1)




T

Φ̃ =









Φ Γ1(τ )

0 0








, Γ̃ =









Γ0(τ )

1









C̃y =


Cy 0


 , C̃z =


Cz 0




Γ0(τ ) =

∫ h−τ

0
eAsds B

Γ1(τ ) = eA(h−τ )

∫ τ

0
eAsds B

where A and B are the continuous system matrices of the plant. The
matrices H ,G , C , Ω, and ω in (4.4) all depend on the system matrices
and thus on the delay. Ideally, these matrices should be updated from
sample to sample based on the current computational delay.
However, using the representation (4.6) it is possible to evaluate the

cost function (4.2) assuming a constant computational delay, τ , over the
prediction horizon. The assumption that the delay is constant over the
prediction horizon is in line with the assumptions commonly made in
the standard MPC formulation, e.g., that the current reference values
will be constant over the prediction horizon. Thus, for each iterate,
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Figure 4.2 The solid curve shows the delaydependent cost index Jd, and the
dashed curve shows the original cost function used in the QPalgorithm.

∆U i, produced by the optimization algorithm, we compute

Jd(∆U i,τ ) = ∆UT
i H (τ )∆U i − ∆UT

i G (τ ) + C (τ ) (4.7)

This cost index penalizes not only deviations from the desired reference
trajectory, but also performance degradation due to computational de
lay. There are two major factors that affect the evolution of Jd. On one
hand, an increasing τ , corresponding to an increased computational
delay, may degrade control performance and cause Jd to increase. On
the other hand, Jd will decrease for successive ∆U i:s since the quality
of the control signal has improved. Figure 4.2 shows the evolution of
Jd during an optimization run. In the beginning of the optimization,
Jd is decreasing rapidly, but then increases due to computational de
lay. In this particular example, the delayed control trajectory seems to
achieve a lower cost than the original. This situation may occur since
the cost functions are evaluated for nonoptimal control sequences,
except for the last iteration. Notice, however, that for the optimal so
lution, Jd is higher than the original cost. The proposed termination
strategy is then to compare the value of Jd(∆U i,τ i) with the cost in
dex computed after the previous iteration, i.e., Jd(∆U i−1,τ i−1), where
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τ i denotes the current computational delay after the ith iteration. If
the cost index has decreased since the last iteration, we conclude that
we gained more by optimization than we lost by the additional delay.
On the other hand, if the cost index has increased, the optimization
is aborted. Notice that the matrices needed to evaluate Jd should be
calculated offline.
In the MPC formulation we are assuming a process model without

delay. Another possible approach would be to include a fixedsample de
lay in the process description. However, since the computational delay
is highly varying, compensating for the maximum delay may become
very pessimistic and lead to decreased obtainable performance. We will
also assume that the control signal is actuated as soon as the optimiza
tion algorithm terminates, not to induce any unnecessary delay.

4.4 Dynamic Real-Time Scheduling of MPCs

The cost index described above, will now be applied in a dynamic real
time scheduling context. The basic ideas of the dynamic scheduling
scheme were given in Section 3.3.
MPC tasks do not fit the traditional task model very well, mainly

because of their highly varying execution times. On the other hand,
MPC offers two features that distinguish it from ordinary control algo
rithms from a realtime scheduling perspective. First, as we have seen
in the previous sections, it is possible to abort the computation and
thereby reduce the execution time. Second, the cost index contains rel
evant information about the state of the controlled process. Thus, the
cost index can be viewed as a realworld qualityofservice measure for
the controller, and be used as a dynamic task priority by the scheduler.
This also enables a tight and natural connection between the control
and the realtime scheduling.
The MPC algorithm can be divided into two parts. The first (manda

tory) part consists of finding a starting point fulfilling the constraints
in the MPC formulation (constraints on the controlled and control
variables and the terminal equality constraint) and to iterate the QP
optimization algorithm until the stability condition of Theorem 1 is
fulfilled. The second (optional) part consists of the additional QP
iterations that further reduce the value of the cost function.
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Based on this insight, the MPC algorithm can be cast into the
framework of scheduling of imprecise computations presented in Chap
ter 3. The mandatory subtasks will be given the highest priority,
whereas the optional subtasks will be scheduled based on the values
of the MPC cost indices. Listing 4.1 contains pseudo code of a dynamic
scheduling scheme of the optional subtasks. The strategy also exploits
the tradeoff between optimization and computational delay.
It should be noted that comparing cost indices directly may not

be appropriate when the controllers have different sampling intervals,
prediction horizons, weighting matrices, etc. In those cases, it would
be necessary to scale the cost indices to obtain a fair comparison. The
scheduling could also use feedback from the derivatives of the cost
functions, as well as the relative deadlines of the different controllers.

Listing 4.1 Dynamic scheduling strategy for MPC tasks.

determine MPC sub-task i with highest J_d;

schedule sub-task i for one iteration;

now = currentTime;

if (optimum_reached_i) {

actuate plant_i;

} else {

delay_i = now - start_i;

if (J_d(u_i,delay_i) > prev J_d) {

abort optimization;

actuate plant_i;

}

}
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4.5 Case Study

The proposed termination criterion and dynamic realtime scheduling
strategy have been evaluated in simulation using a second order sys
tem, a doubleintegrator:

ẋ =









0 1

0 0








x +









0

1








u

y =


 1 0


 x

(4.8)

The plant was discretized using the sampling interval h = 0.1 s. In
the simulations, z = x1 was set to be the controlled state and the
constraints huh ≤ 0.3 and hx2h ≤ 0.1 were enforced.
The MPC controller used in the simulations was implemented as

described in Section 4.2, with prediction horizons Hp = 50 and Hu = 20
and weighting matrices Q = 1 and R = 0.1.

Simulation Environment and Implementation

Realtime MPC control of the doubleintegrator process was simulated
using the TrueTime toolbox (see Chapter 5). Using TrueTime it is pos
sible to perform detailed cosimulation of the MPC control task execut
ing in a realtime kernel and the continuous dynamics of the controlled
process. Using the toolbox it is easy to simulate different implementa
tion and scheduling strategies and evaluate them from a control per
formance perspective.
In the standard implementation, the MPC task is released period

ically and new instances may not start to execute until the previous
instance has completed. This implementation will allow for task over
runs without aborting the ongoing computations. The control signal is
actuated as soon as the task has completed.
In the dynamic scheduling scheme, the MPC task is divided into

a mandatory and an optional part as described in Section 4.4. The
mandatory part is scheduled with a distinct high priority, whereas the
priority of the optional part is changed depending on the current value
of the cost index compared to other running MPC tasks.
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Figure 4.3 Control performance when the optimization algorithm is allowed to
finish in every sample. The bad performance is a result of considerable delay and
jitter induced by the large variations in execution time. During the transients
the long execution times cause the control task to miss its next invocation,
inducing sampling jitter. The dashed lines in the velocity and control signal
plots show the constraints used in the MPC formulation.

Simulation of One MPC Controller

The first simulations consider the case of a single MPC task imple
mented according to the standard task model described in the previous
section. Figure 4.3 shows the result of a simulation where the optimiza
tion is allowed to finish in each sample. Delay and jitter induced by
the large variations in execution time compromise the optimal control
performance. The constraints are shown by the dashed lines in the ve
locity and control signal plots. As seen in the plots the constraints are
violated at some points. This is due to the computational delay, which
is not accounted for in the MPC formulation.
Figure 4.4 shows a simulation utilizing the termination criterion of

Section 4.3. The cost index (4.7) is evaluated after each iteration, and
if it has increased since the last iteration, the optimization is aborted
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Figure 4.4 Control performance obtained using the proposed suboptimal ap
proach where the QPoptimization may be aborted according to the termination
criterion described in Section 4.3. The performance is increased substantially
compared to Figure 4.3.

and the current control signal is actuated. As can be seen from the
simulations, the control performance has increased significantly.
Figure 4.5 shows a comparison of the number of iterations needed

for full optimization (top) and the number of iterations after which the
optimization was aborted due to an increasing value of Jd (bottom).
The execution time of each iteration in the simulation was 10 ms. Av
erage values for computation times and the number of iterations in
the QP optimization algorithm in each sample is summarized in Table
4.1. The number of necessary iterations denotes the number of QP
iterations needed to fulfill the stability condition. It can be seen that
the total execution time of the MPC task is reduced by 35 percent
by using the proposed termination criterion. The execution time for
the mandatory part of the algorithm is roughly constant for both ap
proaches. In the full optimization case, the execution time will exceed
the 100 ms sampling period during the transients, causing the control
task to miss deadlines and experience sampling jitter.
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Figure 4.5 Number of iterations for the QPsolver. The top plot shows the
number of iterations to find the optimum. The bottom plot shows the number
of iterations after which the optimization is terminated and the suboptimal
control is actuated.

Table 4.1 Average timing values per sample for a simulation.

Optimization Full Suboptimal

Total time [s] 0.1055 0.0692

Mandatory time [s] 0.0302 0.0297

Number of iterations 8.87 5.66

Number of necessary iterations 1.70 1.89

To quantify the simulation results, the performance loss

J =

∫ Tsim

0

(

iz(t) − r(t)i2Q + i∆u(t)i2R
)

dt (4.9)

was recorded in both cases. The weighting matrices, Q and R, were
the same as those used in the MPC formulation. The performance loss
was scaled with the loss for an ideal simulation. The ideal case was
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Table 4.2 Performance loss comparison in the single MPC case.

Strategy Loss

Ideal case 1.0

Full optimization 1.35

Suboptimal 1.09

obtained by simulating full optimization and zero execution time in
each sample. The results are given in Table 4.2.

Dynamic Scheduling of Two MPC Tasks

In the following simulations the dynamic scheduling strategy proposed
in Section 4.4 will be compared to ordinary fixedpriority scheduling.
Two MPC controllers are implemented and executed by two different
tasks running concurrently on the same CPU controlling two differ
ent doubleintegrator processes. Both MPC controllers are designed
with the same prediction and control horizons, sampling periods, and
weighting matrices in the MPC formulation.
Both controllers were given squarewave reference trajectories, but

with different amplitudes and periods. The reference trajectory for
MPC1 had an amplitude of 0.3 and a period of 10 s. The corresponding
values for MPC2 were 0.4 and 12 s. The different reference trajecto
ries will cause the relative computational demands of the MPC tasks
to vary over time. Therefore, it is not obvious which controller task to
give the highest priority. Rather, this should be decided online based
on the current state of the controlled process.
The simulation results are shown in Figures 4.64.8. The first two

simulations show the fixedpriority cases. MPC1 is given the highest
priority in the first simulation, and MPC2 is given the highest priority
in the second simulation. It is seen that we get different control perfor
mance, depending on how we choose the priorities. By giving MPC2 the
highest priority, the performance in this particular simulation scenario
is considerably better than if the priorities are reversed.
The performance using dynamic scheduling based on the cost index

(4.7) is shown in Figure 4.8, and the performance is improved signifi
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Figure 4.6 Control performance using fixedpriority scheduling where MPC1
(solid) is given the highest priority. MPC2 (dashed) is constantly preempted by
the higher priority task, consequently degrading its performance.

cantly. Figure 4.9 shows a closeup of the computer schedule during one
sample. After both tasks have completed the mandatory parts of their
algorithms, the execution trace (the dynamic priority assignments) is
determined based on the values of the cost functions of the individual
tasks. These values after each iteration are shown in the figure. The
termination criterion aborts both tasks at time 0.08.
The scaled performance loss (4.9) was recorded for the individual

control loops and added up to obtain a total loss for each of the different
scheduling strategies. The results are summarized in Table 4.6. It can
be seen that the improvement using the dynamic scheduling is less
significant in the case where MPC1 is given the highest priority. This
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Figure 4.7 Control performance using fixedpriority scheduling where MPC2
(dashed) is given the highest priority. Comparing with Figure 4.6 it can be seen
that the performance is worse using this priority assignment.

is, however, due to the particular reference trajectories applied in this
simulation.
Using the proposed dynamic scheduling strategy we arbitrate the

computing resources according to the current situation for the con
trolled processes, and the varying computational demands caused by
reference changes and other external signals are taken into account
at runtime. It should be noted that the control performance obtained
using the dynamic costbased scheduling would have been the same
if the reference trajectories for the two controllers had been switched.
As we have shown this would not have been the case using ordinary
fixedpriority scheduling.
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Figure 4.8 Control performance using the dynamic scheduling approach.
Scheduling based on cost functions makes sure that the most urgent task gets
access to the processor, thus increasing the overall performance.

4.6 Summary

This chapter has presented a flexible implementation approach for
model predictive controllers (MPCs). Premature termination of the
optimization algorithm was exploited to improve control performance.
The resulting stabilizing MPC control sequences were suboptimal from
an optimization pointofview, but optimal from a control performance
perspective when taking the computational delay into account.
A delaydependent cost index was presented to quantify the trade

off between improving control signal quality resulting from successive
iterations in the optimization algorithm and potential control perfor
mance degradation due to computational delay. The cost index provided
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Figure 4.9 Computer schedule in a sample using the dynamic scheduling
approach (high = running, medium = preempted, low = idle). The figure shows
the completion of the mandatory part, as well as the value of the cost index
after each iteration of the QPsolver.

Table 4.3 Performance loss for the different scheduling strategies.

Strategy Loss

Ideal case 2.0

Fixed priority / MPC1 highest priority 2.47

Fixed priority / MPC2 highest priority 2.79

Dynamic costbased scheduling 2.43

guidance for when to terminate the optimization algorithm, while pre
serving the stability properties of the MPC algorithm.
It has also been shown how the cost index can be used in the con

text of dynamic realtime scheduling. The cost index has been used
to provide the scheduling algorithm with information to be used for
deciding which of two MPC controllers should be allocated execution
time. Using the index for scheduling, it has been shown how the overall
control performance may be significantly improved compared to tradi
tional fixedpriority scheduling.
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5

The TrueTime Simulator

5.1 Introduction

To achieve good performance of control systems subject to limited com
puter resources, the constraints of the implementation platform should
be taken into account at design time. The true effects of timing non
determinism, e.g., delay and jitter, on control performance are, how
ever, often very hard to investigate analytically. A natural approach is
then to instead use simulation. However, today’s simulation tools make
it difficult to simulate the true temporal behavior of control loops. What
is normally done in, e.g., Simulink, is to introduce time delays in the
control loops representing average or worstcase delays.
A more detailed simulation can be performed using TrueTime, which

is a MATLAB/Simulinkbased toolbox facilitating simulation of the
temporal behavior of a multitasking realtime kernel executing con
troller tasks. The tasks are controlling processes that are modeled as
ordinary Simulink blocks. TrueTime also makes it possible to sim
ulate simple models of communication networks and their influence
on networked control loops. Different scheduling policies may be used
(e.g., the prioritybased preemptive scheduling and earliestdeadline
first (EDF) scheduling described in Chapter 2). A comparison between
a TrueTime simulation model and a traditional simulation model of a
distributed control system is shown in Figure 5.1.
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DelayDelay
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Figure 5.1 Left: Traditional simulation model of a distributed control system.
Computers and network are modeled as simple delays. Right: TrueTime model
where the execution of tasks and the transmission of messages are simulated
in parallel with the plant dynamics.

TrueTime can be used in several ways, e.g., to study compensation
schemes that adjust the control algorithm based on measurements of
actual timing variations (i.e., to treat the temporal uncertainty as a
disturbance and manage it with feedforward or gain scheduling). It is
also easy to experiment with flexible approaches to realtime schedul
ing of controllers, such as, e.g., the feedback scheduling approaches
described in Chapter 3.
This chapter contains a general overview of TrueTime and a de

tailed description of the kernel implementation and eventbased sim
ulation using Simulink. For a detailed description of how to use the
simulator, see [Henriksson and Cervin, 2003].
The TrueTime development has been ongoing since 1998, and an

early version of the simulator was presented in [Eker and Cervin,
1999]. Modifications and extensions to the simulator are being made
regularly and are posted at the TrueTime web page1.

1TrueTime is available for download at http://www.control.lth.se/˜dan/truetime
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Figure 5.2 The TrueTime block library. The Schedule and Monitor outputs
display the allocation of common resources (CPU, monitors, network) during
the simulation.

5.2 Simulator Overview

TrueTime consists of a block library with a computer kernel block and
a network block, as shown in Figure 5.2. The kernel block executes
userdefined tasks and interrupt handlers representing, e.g., I/O tasks,
control algorithms, and network interfaces. The scheduling policies of
the individual kernel blocks are arbitrary and decided by the user. The
network block distributes messages between computer nodes according
to a chosen network model.
The level of simulation detail is chosen by the user—it is often nei

ther necessary nor desirable to simulate code execution on instruction
level or network transmissions on bit level. Execution times of tasks
and transmission times of messages can be modeled as constant, ran
dom, or datadependent. Furthermore, TrueTime allows simulation of
context switching and task synchronization using events or monitors.
The block inputs are assumed to be discretetime signals, except

the signals connected to the A/D converters of the kernel block, which
may be continuoustime signals. All outputs are discretetime signals.
The Schedule and Monitors outputs display the allocation of common
resources (CPU, monitors, network) during the simulation.
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Both blocks are eventdriven, with the execution determined both
by internal and external events. Internal events are timerelated and
correspond to events such as “a timer has expired,” “a task has finished
its execution,” or “a message has completed its transmission.” External
events correspond to external interrupts, such as “a message arrived
on the network” or “the crank angle passed zero degrees.”
The blocks are implemented as variablestep, MATLAB Sfunctions

and are written in C++. The Simulink engine is only used for timing
and for interfacing with the rest of the model (i.e., the continuous dy
namics). It should thus be easy to port the blocks to other simulation
environments, provided that these environments support event detec
tion (zerocrossing detection).

5.3 The Kernel Block

The kernel block Sfunction simulates a computer with a simple but
flexible realtime kernel, A/D and D/A converters, a network inter
face, and external interrupt channels. Internally, the kernel maintains
several data structures that are commonly found in a realtime kernel:
a ready queue, a time queue, and records for tasks, interrupt handlers,
monitors and timers that have been created for the simulation.
The execution of tasks and interrupt handlers is defined by user

written code functions. These functions can be written either in C++
(for speed) or as MATLAB mfiles (for ease of use). Control algorithms
may also be defined graphically using ordinary discrete Simulink block
diagrams.

Tasks

The task is the main abstraction in the TrueTime simulation environ
ment. An arbitrary number of tasks can be created to run in the True
Time kernel. Tasks may also be created dynamically as the simulation
progresses. Tasks are used to simulate both periodic activities, such as
controller and I/O tasks, and aperiodic activities, such as communica
tion tasks and eventdriven controllers. Aperiodic tasks are executed
by the creation of task instances (jobs). All pending jobs are inserted
in a job queue which is sorted by release time. For periodic task, an
internal timer is set up to periodically create jobs for the task.
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Each task is characterized by a number of static and dynamic at
tributes. The static attributes of a task include

• a relative deadline,

• a priority,

• a worstcase execution time, and

• a period (if the task is periodic).

These attributes are kept constant throughout the simulation, unless
explicitly changed from the application code. The worstcase execution
time is only used if an executiontime overrun handler is attached
to the task (see below). Also note that the worstcase execution time
does not determine the actual execution time of the task. Rather, this
is specified by the user in the code function of the task.
In addition to these attributes, each task instance has a number

of dynamic attributes associated with it. These attributes are updated
by the kernel as the simulation progresses, and include

• an absolute deadline,

• a release time, and

• an execution time budget (by default equal to the worstcase ex
ecution time at the release of the job).

These attributes may also be changed from the user code during simu
lation. Depending on the scheduling policy, changing an attribute may
lead to a context switch. E.g., under EDF scheduling, changing the ab
solute deadline of a task will result in a resorting of the ready queue.
In accordance with the RealTime Specification for Java (RTSJ)

[Bollella et al., 2000], it is furthermore possible to attach two overrun
handlers to each task: a deadline overrun handler (triggered if the task
misses its deadline) and an execution time overrun handler (triggered
if the task executes longer than its worstcase execution time).
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Interrupts and Interrupt Handlers

Interrupts may be generated in two ways: externally or internally.
An external interrupt is associated with one of the external interrupt
channels of the kernel block. The interrupt is triggered when the signal
of the corresponding channel changes value. This type of interrupt
may be used to simulate engine controllers that are sampled against
the rotation of the motor or distributed controllers that execute when
measurements arrive on the network.
Internal interrupts are associated with timers. Both periodic timers

and oneshot timers can be created. The corresponding interrupt is
triggered when the timer expires. Timers are also used internally by
the kernel to implement the overrun handlers that may be associated
with each task.
When an external or internal interrupt occurs, a userdefined inter

rupt handler is scheduled to serve the interrupt. An interrupt handler
works much the same way as a task, but is scheduled on a higher pri
ority level. Interrupt handlers will normally perform small, less time
consuming tasks, such as generating an event or triggering the execu
tion of a task. An interrupt handler is defined by a name, a priority,
and a code function. External interrupts also have a latency during
which they are insensitive to new invocations.

Priorities and Scheduling

Simulated execution occurs at three distinct priority levels: the inter
rupt level (highest priority), the kernel level, and the task level (lowest
priority). The execution may be preemptive or nonpreemptive; this can
be specified individually for each task and interrupt handler.
At the interrupt level, interrupt handlers are scheduled according

to fixed priorities. At the task level, dynamicpriority scheduling may
be used. At each scheduling point, the priority of a task is given by
a userdefined priority function, which is a function of the task at
tributes. This makes it easy to simulate different scheduling policies.
For instance, a priority function that returns a priority number implies
fixedpriority scheduling, whereas a priority function that returns the
absolute deadline implies earliestdeadlinefirst scheduling. Predefined
priority functions exist for ratemonotonic, deadlinemonotonic, fixed
priority, and earliestdeadlinefirst scheduling.
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1 2 3

Simulated execution time

Execution of user code

Figure 5.3 The execution of the code associated with tasks and interrupt
handlers is modeled by a number of code segments with different execution
times. Execution of user code occurs at the beginning of each code segment.

Code

The code associated with tasks and interrupt handlers is scheduled
and executed by the kernel as the simulation progresses. The code is
normally divided into several segments, as shown in Figure 5.3. The
code can interact with other tasks and with the environment at the
beginning of each code segment. This execution model makes it pos
sible to model inputoutput latencies, blocking when accessing shared
resources, etc. The number of segments can be chosen to simulate an
arbitrary time granularity of the code execution. Technically it would,
e.g., be possible to simulate very finegrained details occurring at the
machine instruction level, such as race conditions. However, that would
require a large number of code segments.
The simulated execution time of each segment is returned by the

code function, and can be modeled as constant, random, or even data
dependent. The kernel keeps track of the current segment and calls
the code functions with the proper argument during the simulation.
Execution resumes in the next segment when the task has been run
ning for the time associated with the previous segment. This means
that preemption by higherpriority activities and interrupts may cause
the actual delay between execution of segments to be longer than the
execution time.
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Listing 5.1 Example of a standard code function written in MATLAB code.
The local memory of the controller task is represented by the data structure
data. This stores the controller gain and the control signal between invocations
of different code segments.

function [exectime,data] = myController(segment,data)

switch segment,

case 1,

data.y = ttAnalogIn(1);

data = calculateOutput(data);

exectime = 0.002;

case 2,

ttAnalogOut(1,data.u);

data = updateState(data);

exectime = 0.003;

case 3,

exectime = -1; % finished

end

Listing 5.1 shows an example of a code function corresponding to
the time line in Figure 5.3. The same example implemented as a C
function is shown in Listing 5.2. The function implements a standard
controller with a calculate part and an update part. In the first seg
ment, the plant is sampled and the control signal is computed. In the
second segment, the control signal is actuated and the controller states
are updated. The third segment indicates the end of execution in this
sample by returning a negative execution time.
The data structure data represents the local memory of the task

and is used to store the control signal and measured variable between
calls to the different segments. A/D and D/A conversion is performed
using the kernel primitives ttAnalogIn and ttAnalogOut.
Note that the inputoutput latency of this controller will be at least

2 ms (i.e., the execution time of the first segment). However, if there
is preemption from other highpriority tasks, the actual inputoutput
latency will be longer.
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Listing 5.2 The C implementation of the code example in Listing 5.1.

double myController(int segment, void* data) {

Ctrl_Data* d = (Ctrl_Data*) data;

switch (segment) {

case 1:

d->y = ttAnalogIn(1);

calculateOutput(d);

return 0.002;

case 2:

ttAnalogOut(1, d->u);

updateState(d);

return 0.003;

case 3:

return FINISHED; // end of execution

}

}

Graphical Controller Representation

As an alternative to textual implementation of the controller algo
rithms, TrueTime also allows for graphical representation of the con
trollers. Controllers represented using ordinary discrete Simulink
blocks may be called from within the code functions, using the builtin
function ttCallBlockSystem.
A block diagram of an ordinary PIcontroller is shown in Figure 5.4.

The block system has two inputs, the reference signal and the process
output, and two outputs, the control signal and the execution time.
The use in a code function is given by Listing 5.3.

Synchronization

Synchronization between tasks is supported by monitors and events.
Monitors are used to guarantee mutual exclusion when accessing com
mon data. Events can be associated with monitors to represent con
dition variables. Events may also be free (i.e., not associated with a
monitor). This feature can be used to obtain synchronization between
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Figure 5.4 Controllers represented using ordinary discrete Simulink blocks
may be called from within the code functions. The example above shows a PI
controller.

tasks where no conditions on shared data are involved. The example
in Listing 5.4 shows the use of a free event input_event to simulate
an eventdriven controller task. The corresponding ttNotifyAllcall
on the event is typically performed in an interrupt handler associated

Listing 5.3 Example of a code function calling the PIcontroller block diagram
in Figure 5.4 to compute the control signal.

function [exectime,data] = PIController(segment,data)

switch segment,

case 1,

inp(1) = ttAnalogIn(1);

inp(2) = ttAnalogIn(2);

outp = ttCallBlockSystem(inp, ’PI_Controller’);

data.u = outp(1);

exectime = outp(2);

case 2,

ttAnalogOut(1,data.u);

exectime = 0.003;

case 3,

exectime = -1; % finished

end
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with an external interrupt port. (An alternative implementation of an
eventbased task, using the kernel primitive ttCreateJob, will be given
in Listing 5.5.)

Output Graphs

Depending on the simulation, several different output graphs are gen
erated by the TrueTime blocks. Each kernel block will produce two
graphs, a computer schedule and a monitor graph, and the network
block will produce a network schedule. The computer schedule will
display the execution trace of each task and interrupt handler during
the course of the simulation. If context switching overhead is simu
lated, the graph will also display the execution of the kernel.
For an example of such an execution trace, see Figure 5.7. If the

signal is high it means that the task is running. A medium signal in
dicates that the task is ready but not running (preempted), whereas
a low signal means that the task is idle. In an analogous way, the
network schedule shows the transmission of messages over the net

Listing 5.4 Example of a code function implementing an eventbased con
troller.

function [exectime,data] = eventController(segment,data)

switch segment,

case 1,

ttWait(’input_event’);

exectime = 0.0;

case 2,

data.y = ttAnalogIn(1);

data = calculateOutput(data);

exectime = 0.002;

case 3,

ttAnalogOut(1,data.u);

data = updateState(data);

exectime = 0.003;

case 4,

ttSetNextSegment(1); % loop back

end
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work, with the states representing sending (high), waiting (medium),
and idle (low). The monitor graph shows which tasks are holding and
waiting on the different monitors during the simulation. Generation of
these execution traces is optional and can be specified individually for
each task, interrupt handler, and monitor.

5.4 The Network Block

The network block is eventdriven and executes when messages enter
or leave the network. When a node tries to transmit a message, a trig
gering signal is sent to the network block on the corresponding input
channel. When the simulated transmission of the message is finished,
the network block sends a new triggering signal on the outport chan
nel corresponding to the receiving node. The transmitted message is
put in a buffer at the receiving computer node.
A message contains information about the sending and the receiv

ing computer node, arbitrary user data (typically measurement signals
or control signals), the length of the message, and optional realtime
attributes such as a priority or a deadline.
The network block simulates medium access and packet transmis

sion in a local area network. Six simple models of networks are cur
rently supported: CSMA/CD (e.g. Ethernet), CSMA/AMP (e.g. CAN),
Round Robin (e.g. Token Bus), FDMA, TDMA (e.g. TTP), and Switched
Ethernet. The propagation delay is ignored, since it is typically very
small in a local area network. Only packetlevel simulation is sup
ported, i.e., it is assumed that higher protocol levels in the kernel
nodes have divided long messages into packets.
Configuring the network block involves specifying a number of gen

eral parameters, such as transmission rate, network model, and prob
ability for packet loss. Protocolspecific parameters that need to be
supplied include, e.g., the time slot and cyclic schedule in the case of
TDMA. For an example of how to configure the individual TrueTime
nodes for network communication, see Listing 5.5.
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Figure 5.5 TrueTime simulation model of the networked control system.

5.5 Example: A Networked Control System

As an example of a simulation in TrueTime, we consider a general sim
ulation of a distributed control system, wherein the effects of schedul
ing in the CPUs and simultaneous transmission of messages over the
network can be studied in detail. The TrueTime model of the system
is shown in Figure 5.5.
The model contains four computer nodes connected by one network

block. The timedriven sensor node contains a periodic task, which
periodically samples the process and transmits the sample package to
the controller node. The controller node contains an eventdriven task
that is triggered each time a sample arrives over the network from
the sensor node. Upon receiving a sample, the controller computes a
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control signal, which is then sent to the eventdriven actuator node,
where it is actuated. The model also contains an interference node with
a periodic task generating random interfering traffic over the network.

Initialization of the Actuator Node

As a complete initialization example, Listing 5.5 shows the code needed
to initialize the actuator node in this particular example. The kernel
block contains one task and one interrupt handler, and their execution
is defined by the code functions actCode and rcvCode, respectively.
The task and interrupt handler are created in the actuator_init ini
tialization function. The node is “connected” to the network using the
function ttInitNetwork by supplying a node identification number and
the name of the interrupt handler (’rcv_hdl’) to be executed when
a message arrives to the node. In the ttInitKernel function the ker
nel is initialized by specifying the number of A/D and D/A channels,
the scheduling policy, and the simulated time for a full context switch
(zero in this case). The builtin priority function prioFP specifies fixed
priority scheduling.

Simulations

In the following simulations, we will assume a CANtype network
where transmission of simultaneous messages is decided based on
package priorities. The controller node contains a PDcontroller task
designed for a 10 ms sampling interval. The sampling interval is en
forced by the timedriven task in the sensor node sending samples
periodically to the controller node.
The execution time of the controller is 0.5 ms and the ideal trans

mission time from one node to another is 1.5 ms. The ideal roundtrip
delay is thus 3.5 ms. The packages generated by the interference node
have high priority and occupy 50% of the network bandwidth. We fur
ther assume that an interfering, highpriority task with a 7 ms period
and a 3 ms execution time is executing in the controller node. Colliding
transmissions and preemption in the controller node will thus cause
the roundtrip delay to be even longer on average and timevarying.
The resulting degraded control performance can be seen in the simu
lated step response in the top plots of Figure 5.6. The execution of the
tasks in the controller node and the transmission of messages over the
network can be studied in detail in Figure 5.7.
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Listing 5.5 Complete code for the actuator node in the networked control
system example. Instances of the aperiodic actuator task are created using
ttCreateJob.

%% Code function for the actuator task

function [exectime,data] = actCode(segment,data)

switch segment,

case 1,

data.u = ttGetMsg; % read from network input buffer

exectime = 0.0005;

case 2,

ttAnalogOut(1, data.u);

exectime = -1;

end

%% Code function for the network interrupt handler

function [exectime,data] = rcvCode(segment,data)

ttCreateJob(ttCurrentTime, ’act_task’);

exectime = -1;

%% Initialization function

function actuator_init

nbrOfInputs = 0;

nbrOfOutputs = 1;

ttInitKernel(nbrOfInputs, nbrOfOutputs, ’prioFP’, 0);

priority = 5;

deadline = 0.010;

ttCreateTask(’act_task’, deadline, priority, ’actCode’);

ttCreateInterruptHandler(’rcv_hdl’, 1, ’rcvCode’);

ttInitNetwork(2, ’rcv_hdl’); % node number 2 in the network

A simple compensation is introduced to cope with the delays. The
packages sent from the sensor node are now timestamped, which
makes it possible for the controller to determine the actual delay from
sensor to controller. The total delay is estimated by adding the expected
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Figure 5.6 The top plot shows the degraded control performance resulting
from interfering network messages and an interfering task in the controller
node. The bottom plot shows the improved performance resulting from the im
plementation of delaycompensation in the controller node.

value of the delay from controller to actuator. The control signal is then
calculated based on linear interpolation among a set of controller pa
rameters precalculated for different delays. Using this compensation,
better control performance is obtained, as seen in the bottom plots of
Figure 5.6.
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Figure 5.7 Closeup of schedules showing the allocation of common resources:
network (top) and controller node (bottom). A high signal means sending or
executing, a medium signal means waiting, and a low signal means idle.

5.6 Kernel Implementation Details

This section will give a brief description of the implementation of the
TrueTime kernel. The main data structures will be described as well
as the kernel implementation. It will also be shown how to achieve
eventbased simulation in Simulink, using the zerocrossing detection
mechanism.

Kernel Data Structures

The main data structure of the TrueTime kernel is a C++ class called
RTsys. An instance (rtsys) of this class is created in the initialization
step of the kernel Sfunction. The rtsys object is stored in the UserData
field of the kernel block between simulation steps. Among others, the
RTsys class contains the following attributes:
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class RTsys {

public:

double time; // Current time in simulation

double* inputs; // Vector of input port values

double* outputs; // Vector of output port values

Task* running; // Currently running task

List* readyQ; // Contains tasks ready for execution

List* timeQ; // Contains tasks and timers

List* taskList; // A list containing all created tasks

List* handlerList;

List* monitorList;

List* eventList;

double (*prioFcn)(Task*); // Priority function

};

The ready queue and time queue are sorted linked list. The elements
in the time queue (tasks and timers) are sorted according to release
times and expiry times. The tasks in the ready queue are sorted accord
ing to the priority function prioFcn, which is a function that returns
a (possibly dynamic) priority number from a Task instance.

The Task class contains the following basic attributes:

class Task {

public:

char* name;

double wcExecTime;

double deadline;

double assignedPriority;

double priority; // dynamic priority (priority inheritance)

void *data;

double (*codeFcn)(int, void*); // Code function written in C++

char* codeFcnMATLAB; // Name of m-file code function

Handler* deadlineORhandler; // deadline overrun handler

Handler* exectimeORhandler; // execution-time overrun handler
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Job* currentJob; // Job currently served

List* jobQ; // List of pending jobs

};

The kernel implements priority inheritance to avoid priority inversion.
Therefore each task has a dynamic priority value that may be raised
while executing inside a monitor. The code function of the task is rep
resented either as a function pointer in the C++ case or the name of
a MATLAB mfile. The currently running job is given by the pointer
currentJob. Pending jobs are stored in the job queue of the task.

The Job class contains the following basic attributes:

class Job {

public:

double execTime; // remaining execution time of current segment

double lastStart; // last time the job was resumed

double absDeadline; // absolute deadline of job

double release; // release time of job

double budget; // remaining execution time budget

int segment; // current segment of the code function

};

All dynamic attributes of a task are contained in the Job class. The
variable lastStart is used to store successive resume times of the
job. This is used to set up the timers that are used to implement the
executiontime overrun handling (see scheduling hooks below).

The Handler class contains the following basic attributes:

class Handler {

public:

char* name;

double execTime;

double priority;

int segment;

void *data;

double (*codeFcn)(int, void*); // Code function written in C++

char* codeFcnMATLAB; // Name of m-file code function

};
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Figure 5.8 The various scheduling hooks that can be used to attach arbitrary
functionality to the scheduling algorithm.

Writing a Priority Function

Based on the above data structures it is straightforward to write pri
ority functions implementing arbitrary scheduling schemes. E.g., the
priority function implementing standard EDF scheduling is given as

double prioEDF(Task* task) {

return task->currentJob->absDeadline;

}

Scheduling Hooks

To facilitate arbitrary dynamic scheduling mechanisms, it is possible
to attach small pieces of userdefined code (scheduling hooks) to each
task. These hooks are executed at different stages during the simu
lation of the task, as shown in Figure 5.8. The hooks can, e.g., be
used to monitor different scheduling schemes and keep track of con
text switches and deadline overruns. By default, the hooks contain code
to trigger the worstcase execution time and deadline overrun handlers
possibly associated with the different tasks. This is summarized below.

• Release hook: If the released task has an associated deadline
overrun handler, a timer is created. The expiry of this timer is
set to the absolute deadline of the task. It may be the case that,
because of previous overruns, the absolute deadline of the task
has already expired when the task instance is released. In this
case the overrun handler is activated immediately.

• Start hook: If the task has an associated executiontime overrun
handler, another timer is created. The expiry of the timer is set
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to the current time plus the remaining executiontime budget.
The start time of the task is recorded.

• Suspend hook: The executiontime budget is decreased based
on the time elapsed since the task last began execution. The
executiontime overrun timer is removed.

• Resume hook: The executiontime overrun timer is created again.
The new start time is recorded.

• Finish hook: The executiontime budget is updated. Both overrun
timers are removed.

The Kernel Function

The TrueTime realtime kernel is implemented in a function runKernel
that is called by the Simulink Sfunction callback procedures at ap
propriate times during the simulation. See next section for timing im
plementation details.
This function manipulates the basic data structures of the kernel,

such as the ready queue and the time queue. It is also from this func
tion the code functions for tasks and interrupt handlers are called.
The kernel keeps track of the current segment and updates it when
the time associated with the previous segment has elapsed. The hooks
mentioned above are also called from this function.
A simple model for how the kernel works is given by the pseudo

code in Listing 5.6. Note that interrupt handlers are not treated in the
pseudo code. However, they are handled essentially in the same way
as the tasks.

Simulink Timing Details

The TrueTime blocks are eventdriven and support external interrupt
handling. Therefore, the blocks have a continuous sample time, and the
timing of the block is implemented using the Simulink zerocrossing
functionality [The Mathworks, 2001b].
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Listing 5.6 Pseudocode for the TrueTime kernel function.

double runKernel() {

// Compute time elapsed since last invocation

timeElapsed = currentTime - prevHit;

prevHit = currentTime;

nextHit = 0.0;

while (nextHit == 0.0) {

// Count down execution time for current task instance

// and check if it has finished its execution

if (there exists a running task) {

Decrease remaining exec. time with timeElapsed;

if (remaining execution time == 0.0) {

Execute next segment of the code function;

Update remaining execution time;

Update execution time budget;

if (remaining execution time < 0.0) {

// Negative execution time = Job finished

Remove the task from the ready queue;

Execute finish-hook;

Simulate saving context;

if (there are pending jobs) {

Move the next job to the time queue;

}

}

}

}

// Go through the time queue

// (sorted after release and expiry)

for (each task) {

if (release time - currentTime == 0.0) {

Move the task from time queue to the ready queue;

Execute release-hook;

}
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Listing 5.6 (Continued)

}

for (each timer) {

if (expiry time - currentTime == 0.0) {

Activate handler associated with timer;

Remove timer from timer queue;

if (timer is periodic) {

Increase the expiry time with the period;

Insert the timer in the timer queue;

}

}

}

// Dispatching

Make the first task in the ready queue the running task;

if (the task is being started) {

Execute the start-hook for the task;

Simulate restoring context;

} else if (the task is being resumed) {

Execute the resume-hook for the task;

Simulate restoring context;

}

if (another task is suspended) {

Execute suspend-hook of the previous task;

Simulate saving context;

}

// Determine next invocation of the kernel function

time1 = remaining execution time of the current task;

time2 = next release of a task from the time queue;

time3 = next expiry time of a timer;

nextHit = min(time1, time2, time3);

} // loop while nextHit = 0.0

return nextHit;

}
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As seen in Listing 5.6, the next time the kernel should wake up
(e.g., because a task is to be released from the time queue or a task
has finished its execution) is denoted nextHit. If there is no known
wakeup time, this variable is set to infinity. The basic structure of the
zerocrossing function is

static void mdlZeroCrossings(SimStruct *S) {

Store all inputs;

if (any external interrupt input has changed value) {

nextHit = ssGetT(S);

}

ssGetNonsampledZCs(S)[0] = nextHit - ssGetT(S);

}

This will ensure that the Simulink callback function mdlOutputs

executes every time an internal or external event has occurred. The
kernel function (runKernel) is only called from mdlOutputs since this
is where the outputs (D/A, schedule, network) can be changed.
Since several kernel and network blocks may be connected in a

circular fashion, direct feedthrough is not allowed. We exploit the fact
that, when an input changes as a step, mdlOutputs is called, followed by
mdlZeroCrossings. Since direct feedthrough is not allowed, the inputs
may only be checked for changes in mdlZeroCrossings. There, the zero
crossing function is changed so that the next major step occurs at the
current time.

Commands and Real-Time Primitives

To give an overview of the functionality of TrueTime, a summary of
the available functions and commands is given in Table 5.1. The table
is divided into three sections. The first section contains commands
that are typically used in the initialization script of a simulation. The
second section contains commands for setting and getting task (or job)
attributes. Finally, the third section contains realtime primitives that
may be used in the task code.
Based on the kernel data structures it is easy to extend the True

Time functionality with new functions. As examples, follows below
the TrueTime implementation of the standard realtime primitives,
sleepUntil, sleep, and setPriority.
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void ttSleepUntil(double time) {

// Set new release time

rtsys->running->currentJob->release = time;

// Insert into time queue

rtsys->timeQ->insertSorted(new TaskNode(rtsys->running));

// Remove from ready queue (running is first in queue)

rtsys->readyQ->deleteFirst();

rtsys->running = NULL;

}

void ttSleep(double duration) {

ttSleepUntil(rtsys->time + duration);

}

void ttSetPriority(double prio) {

Task* task = rtsys->running;

if (task->priority - task->assignedPriority < 0.0) {

// Priority inheritance, do not change the priority now

} else {

task->priority = prio;

}

task->assignedPriority = prio;

// Possible reordering of readyQ

TaskNode* tn = rtsys->readyQ->getFirst();

rtsys->readyQ->removeNode(tn);

rtsys->readyQ->insertSorted(tn);

}

5.7 Summary

This chapter has described TrueTime, a MATLAB/Simulink toolbox
that facilitates cosimulation of continuous plant dynamics, controller
task execution in realtime kernels, and network transmissions. Arbi
trary scheduling policies and various network protocols may be eval
uated from a control performance perspective. The eventbased kernel
implementation was detailed.
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Table 5.1 Summary of the TrueTime commands.

Command Description

ttInitKernel Initialize the kernel.

ttInitNetwork Initialize the network interface.

ttCreatePeriodicTask Create a task with periodic jobs.

ttCreateTask Create a task (but no jobs).

ttCreateInterruptHandler Create an interrupt handler.

ttCreateExternalTrigger Associate an interrupt handler with an external
interrupt channel.

ttCreateMonitor Create a monitor.

ttCreateEvent Create an event variable, possibly associated
with a monitor.

ttCreateMailbox Create a mailbox for intertask communication.

ttNoSchedule Switch off the schedule output graph for a spe
cific task or interrupt handler.

ttNonPreemptable Make a task nonpreemptable.

ttAttachDLHandler Attach a deadline overrun handler to a task.

ttAttachWCETHandler Attach a worstcase execution time overrun han
dler to a task.

ttAttachPrioFcn 2 Attach an arbitrary task priority function to be
used by the scheduler.

ttAttachHook 2 Attach a scheduling hook to a task.

ttSetDeadline Set the relative deadline of a task.

ttSetAbsDeadline Set the absolute deadline of a job.

ttSetPriority Set the priority of a task.

ttSetPeriod Set the period of a periodic task.

ttSetBudget Set the execution time budget of a job.

ttSetWCET Set the worstcase execution time of a task.

ttGetRelease Get the release time of a job.

ttGetDeadline Get the relative deadline of a task.

ttGetAbsDeadline Get the absolute deadline of a job.

ttGetPriority Get the priority of a task.

2Available in the C++ API only.

82



5.7 Summary

Table 5.1 (Continued)

Command Description

ttGetPeriod Get the period of a periodic task.

ttGetBudget Get the execution time budget of a job.

ttGetWCET Get the worstcase execution time of a task.

ttCreateJob Create a job with a given release time.

ttKillJob Kill the running job of a task.

ttEnterMonitor Attempt to enter a monitor.

ttExitMonitor Exit a monitor.

ttWait Wait for an event.

ttNotifyAll Notify all tasks waiting for an event.

ttTryFetch Fetch a message from a mailbox.

ttTryPost Post a message to a mailbox.

ttCreateTimer Create a oneshot timer and associate an inter
rupt handler with the timer.

ttCreatePeriodicTimer Create a periodic timer and associate an inter
rupt handler with the timer.

ttRemoveTimer Remove a specific timer.

ttCurrentTime Get the current time in the simulation.

ttSleepUntil Put a task to sleep until a certain point in time.

ttSleep Put a task to sleep for a certain duration.

ttAnalogIn Read the value of an analog input.

ttAnalogOut Write a value to an analog output.

ttSetNextSegment Set the next segment to be executed in the code
function.

ttInvokingTask Get the name of the task that invoked an inter
rupt handler.

ttCallBlockSystem Call a Simulink block diagram from within a
code function.

ttSendMsg Send a message over the network.

ttGetMsg Get a message that has been received over the
network.

83



Chapter 5. The TrueTime Simulator

84



6

Simulation Case Studies

6.1 Introduction

This chapter contains two simulation case studies performed using the
TrueTime simulator. The first case study simulates communication and
control of a threejoint robot system over TCP. The TCP communica
tion layer is emulated on top of the linklayer protocols provided by
the TrueTime network block. The second case study simulates a web
server application where individual server threads are emulated using
TrueTime tasks.

6.2 Network Communication and Control

This work was performed within the EU FP5 IST project Hard Real
time CORBA (HRTC). The objective of this project was to provide so
lutions that allow the distributed object model CORBA [Object Man
agement Group, 2003] to be applied in hard realtime applications.
The work was focused on replacing the standard communication

protocols used in ordinary CORBA and RTCORBA with protocols that
provide better temporal determinism. Ordinary CORBA communica
tion is based on the IIOP (Internet Interoperable Orb Protocol) which
is layered on top of TCP/IP. Within the project IIOP was replaced by
both TTP/C and by realtime switched Ethernet [Martinsson, 2002].
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The CORBA object interface was restricted to oneway invocations
only, i.e., a CORBA request from a client to a server does not gener
ate any reply message back from the server to the client. In order to
demonstrate the realtime properties of the different communication
alternatives TrueTime was used. Networked control of a threejoint
robot was used as the main example. In the sequel the experiment
involving ordinary CORBA over IIOP (TCP/IP) is described.

Simulating TCP in TrueTime

The TrueTime network block simulates the basic properties of standard
MAC (media access control) layer protocols. These protocols constitute
the link layer in the Internet protocol stack, and are typically imple
mented in a network interface card, see [Kurose and Ross, 2001].
It is, however, straightforward to also implement higher level pro

tocols using TrueTime. Transport layer protocols, such as TCP and
UDP, are usually implemented in software in the end systems, and
may be emulated directly in the various TrueTime computer nodes
using dedicated tasks or interrupt handlers.
A simple TCP implementation will be outlined below. In the simula

tion it is possible to specify TCP parameters such as sizes of the buffers
at the receiving and sending ends, receive windows, maximum segment
size (MSS), and acknowledgment timeouts. The receive windows are
used to implement flow control. The window gives an indication of the
free buffer space at the receiving side, and dictates how much data
that can be transmitted on that specific connection. The window size
is constantly updated by the receiving node, as messages are being
read from the application layer. This information is sent back to the
sender with each acknowledgment.

Opening a TCP Connection Since TCP is connectionoriented,
a socket connection must be established before two nodes can start
sending and receiving messages. When a connection is set up, sending
and receiving buffers are created at each end of the connection. Special
TrueTime sending and receiving tasks are also associated with each
connection. Using tasks for the processing of incoming and outgoing
TCP packets, it is possible to simulate overhead in the TCP layer. The
functionality performed by these tasks will be described below.
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Sending a TCP Data Message When sending a message over TCP
it is divided in segments of size MSS which are sent in sequence to
the receiving end, where the message is recreated. In addition to the
data, each TCP data segment includes a header containing fields for
source and destination identifiers, sequence number, acknowledgment
number, and window size. When a segment is transmitted, a timer is
created. If no acknowledgment has been received at the expiry of the
timer, the segment is resent. The sending of a message is summarized
in the following TrueTime pseudocode

double TCPSend_code(int seg, void *data) {

i = 0;

ready = false;

// Send all segments in send buffer and set up timers

while (!ready) {

// Take next segment from send buffer

segment = sendBuffer->get(i);

// Send if window allows

if (segment->seqNbr <= sendWindow) {

segment->ackNbr = lastRcv;

ttSendMsg (segment->destination, segment, segment->size);

time = ttCurrentTime() + TIMEOUT;

Create timer for resending at t = time;

} else {

// Send window full, can not send

ready = true;

}

// Increase buffer index

i++;

if (i == sendBuffer->currentSize()) {

// No more segments in send buffer

ready = true;

}

}

return i * SND_OVERHEAD_TIME; // task execution time

}
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Receiving a TCP Data Segment When a TCP segment arrives at
a node, it is handled by a receiving task. An incoming TCP segment
may be either a data segment or an acknowledgment of a previously
transmitted segment. In the first case, it is checked if all preceding
segments have been received. In this case the data is put in the receive
buffer, otherwise the segment is discarded. An acknowledgment, with
the latest received sequence number, is sent back to the source node.
When all segments of a message have been received, the application
layer is notified.
In the case that the incoming segment is a firsttime acknowledg

ment, it works as a cumulative acknowledgment of all previous data,
and the corresponding timers are removed. If we get a duplicate ac
knowledgment, however, this indicates that segments in between have
been lost. In this case a fast retransmit is performed, before the actual
expiry of the timers of the segments. The implementation is summa
rized in the following TrueTime pseudocode

double TCPReceive_code(int seg, void *data) {

// Get segment from data link layer

segment = ttGetMsg();

if (segment contains data) {

if (segment->seqNbr == lastRcv) {

// have got all previous segments, put in buffer

rcvBuffer->put(segment);

lastRcv = segment->seqNbr + segment->size;

Increase size of receive window;

} else {

// Out-of-order segment, ignore

}

// Send Ack

ack->seqNbr = -1;

ack->ackNbr = lastRcv;

ack->window = rcvWindow;

ack->source = segment->destination;

ack->destination = segment->source;

ttSendMsg(ack->destination, ack, ACKSIZE);
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} else {

// We received an acknowledgement segment

sendWindow = segment->window;

if (segment->ackNbr > lastAck) {

// new Ack

lastAck = segment->ackNbr;

Remove timeout timers;

Delete segments from send buffer;

} else {

// same Ack as previously received

Packets was lost, fast re-transmit;

}

}

return RCV_OVERHEAD_TIME; // task execution time

}

Communicating with the Application Layer The sending task
is triggered from the application layer when a user wants to send a
message on the specific connection. Then the message is divided in
segments and stored in the send buffer for subsequent transmission to
the receiver. When the message is later reassembled at the receiving
end the application layer is notified and the message can be read from
the receive buffer.
The following example shows the code function for a controller node

communicating with a sensor and actuator node over TCP.

double ctrl_code(int seg, void *data) {

double *m;

Task_Data* d = (Task_Data*) data;

switch(seg) {

case 1:

ttTCPReceive(sensConn); // Blocks on sensor connection

// until a message arrives

// Notified from TCP layer

return 0.0;

case 2:

m = (double*) ttTCPGet(sensConn); // Get TCP message data

// from receive buffer

d->y = *m;
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delete m;

r = ttAnalogIn(1);

// Compute control signal

d->u = d->K*(r - d->y);

return 0.0005;

case 3:

// Try to send a 4-byte message

if (!ttTCPSend(4)) {

// Send buffer full, can not send

ttSetNextSegment(1); // Loop and wait for new message

}

return 0.0;

case 4:

m = new double;

*m = d->u;

ttTCPPut(actConn, m, 4); // Send 4-byte message to actuator

// Triggers the sending TCP task

ttSetNextSegment(1); // Loop and wait for new message

return 0.0;

}

}

Simulations

The simulation setup included a sensor node, a controller node, and an
actuator node communicating over TCP to control a threejoint robot
system. The dynamics of the robot model was given by the standard
model

M(θ )θ̈ + C(θ , θ̇)θ̇ + G(θ ) = τ (6.1)

where θ = (θ1,θ2,θ3)
T is the vector of joint angles of the robot, M(θ ) is

the mass matrix, C(θ , θ̇) is the Coriolis matrix, and G(θ ) is the gravity
matrix. The simulation model also contained a friction term.
The robot was controlled using a computedtorque control law

τ =C(θ , θ̇)θ̇ + G(θ ) + M(θ )θ̈ r

− M(θ )Kd(θ̇ − θ̇ r) − M(θ )Kp(θ − θ r)
(6.2)

The underlying network protocol used in the simulations was or
dinary 100 Mbit Ethernet with the CSMA/CD protocol. This protocol
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Figure 6.1 The result of the robot simulation without disturbing network
traffic. Sensor values and control signals are communicated between a sensor
node, controller node, and an actuator node over TCP.

uses exponential backoff in the case of collisions, which may cause
long and unpredictable waiting times. The sampling frequency was 4
kHz, and enforced by the timetriggered task in the sensor node.
The results of the simulation were fed into the virtual robot envi

ronment presented in [Olsson, 2003] for visualization. The reference
trajectory corresponded to a circle and the result of a simulation is
shown in Figure 6.1.
By introducing disturbing traffic on the network, the effects of the

unpredictability in the network communication can be studied. The
schedule plots in Figure 6.2 and Figure 6.3 show the result of a net
work burst at time 0.2. As seen in Figure 6.2, the network traffic runs
smoothly prior to the burst with periodic communication between the
nodes. The communication in each period starts with the sensor node
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Figure 6.2 The network traffic just prior to the disturbance burst. Data mes
sages and acknowledgments are communicated without interference with a sam
pling frequency of 4 kHz.

sending a data message to the controller node, which responds with
an acknowledgment. The same pattern is seen in the communication
between the controller and actuator nodes.
Figure 6.3 shows the network schedule during and after the burst.

As a result of the collisions and the random waiting times of Ethernet,
considerable jitter and delays are introduced in the communication.
The resulting degraded control performance is shown in Figure 6.4,
and it is seen how the disturbed communication causes deviations from
the reference trajectory.
A communication scheme better suited for realtime traffic is swit

ched scheduled Ethernet [Martinsson, 2002], which combines the at
tractive features of Ethernet (fast and inexpensive) with realtime
guarantees. Using switched Ethernet each node has a full duplex con
nection to the switch, which isolates the collision domains. Still some
nondeterminism may be introduced by the switch, mainly caused by
buffering. However, by making certain restrictions on how much traf
fic each node is allowed to generate, it is possible to compute upper
bounds on the network latency. TrueTime was also used to simulate
this communication strategy, and the effects of the disturbing traffic
were eliminated.
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Figure 6.3 The resulting network traffic during and after a disturbance burst.
Random delays and jitter are introduced by the network communication.

Figure 6.4 The control performance as a result of disturbing network traffic.
Collisions causes delays that degrade the performance and leads to deviations
from the reference trajectory.
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6.3 A Web Server Application

The simulations described in this section were developed during a re
cent research visit to Tarek Abdelzaher at the University of Virginia.
The group in Virginia are working on qualityofservice in web servers
[Abdelzaher et al., 2003] and schedulability analysis for aperiodic tasks
[Abdelzaher and Lu, 2001]. This case study shows how these two areas
may be integrated.
The use of control theory to achieve qualityofservice guarantees

in modern web server applications, has been an active research area
during recent years [Robertsson et al., 2003; Sha et al., 2002]. There
are two main ways for the controller to influence the server load; by
manipulating the arrival rate and by manipulating the service rate.
The first approach is the most common, and is typically achieved by
various admission control schemes.
However, in the following we will assume a web server where it is

possible to modify the service rate by changing the CPU clock frequency
and thereby the processing speed of the incoming request. The use
of dynamic voltage scaling as an energysaving mechanism in high
performance web servers was first presented in [Bohrer et al., 2002].
The following case study will describe the simulation of a web server

using TrueTime, and the use of feedback scheduling to achieve timing
guarantees of incoming requests. The feedback scheduling scheme is
based on the synthetic utilization concept introduced in Section 2.4.

Simulation in TrueTime

In the simulations, a client application sends web requests to a server
emulating the basic properties of the HTTP/1.1 protocol. Using True
Time, it is, e.g., possible to experiment with different processing times
and priorities of the requests, different scheduling policies in the server
node, and different control strategies to change the processing speed
of incoming requests.

The Client The client node generates synthetic web requests that
are sent to the server. The interarrival times, i.e., the time between
the sending of each request on a connection, follows a bounded Pareto
distribution. The Pareto distribution has been reported to fit measure
ments of real web traffic well [Crovella and Bestavros, 1997]. When

94



6.3 A Web Server Application
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Figure 6.5 State diagram visualizing the processing of each web request by
a server thread.

sending the first request on a closed connection (a connection is closed
if no new requests are sent within the HTTP/1.1 TIMEOUT), the client
awaits an acknowledgment from the server before sending new re
quests. Thereafter, requests are pipelined on the connection, i.e., mul
tiple requests can be made without waiting for each response. Each
request has associated simulated processing times and blocking times
that it will consume on the server side. These are also Pareto dis
tributed.

The Server The server node contains a number of server threads,
and a highpriority thread that handles incoming requests. All incom
ing requests are timestamped, and are then either forwarded to the
socket queue of the server thread serving the connection, or put in a
global request queue if there is no idle server thread available. When
server threads are finished serving their current connection they check
the global input queue for new requests.
Each server thread operates according to the state diagram shown

in Figure 6.5. The times associated with the Running and Blocking
states are Pareto distributed and specified in each request. When the
server thread is finished it waits for a certain amount of time for new
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requests, before closing the connection. The TrueTime code function
implementing each server thread is given below

function [exectime, data] = threadcode(seg, data)

switch seg,

case 1,

request = ttTryFetch(data.socketQ);

if (isempty(request))

% Socket queue empty

ttSetNextSegment(5);

exectime = 0.0;

else

% Store request attributes

data.C = request.C;

data.B = request.B;

data.conn = request.conn;

data.arrival = request.arrival;

data.start = ttCurrentTime;

% Simulate processing phase 1

exectime = data.C;

end

case 2,

% Simulate I/O access (not using CPU)

ttSleep(data.B);

exectime = 0.0;

case 3,

% Processing phase 2

exectime = 0.001;

case 4,

% Request served

ttSetNextSegment(1); % loop back and serve next request

exectime = 0.0;

case 5,

% All requests served, block waiting for more

% requests from the same connection

now = ttCurrentTime;

% Create timer, terminates job on expiry

timeout = now + TIMEOUT;
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Figure 6.6 The synthetic utilization during a busyperiod.

ttCreateTimer(data.timer, timeout, data.timeoutHandler);

% Block until new request arrives or timer expires

ttWait(data.reqEvent);

exectime = 0.0;

case 6,

% New request arrived before time-out, serve it

ttRemoveTimer(data.timer)

ttSetNextSegment(1);

exectime = 0.0;

end

A Feedback Scheduling Scheme

The feedback scheduling scheme is aimed at controlling the average
synthetic utilization around the schedulability bounds given by Equa
tions (2.3) and (2.4) in Section 2.4. This way it is guaranteed that all
requests meet their deadlines and fulfill their QoS specifications.
A schematic diagram showing the synthetic utilization evolving

over time is shown in Figure 6.6. At each arrival, k, the synthetic
utilization is increased by Ck

Dk
. The absolute deadlines of each request

are denoted D̂k = Ak + Dk. At the deadline of the request, the syn
thetic utilization is decreased by the same amount. The instantaneous
synthetic utilization at any point in time, is given by the height of the
shaded area. When the processor becomes idle, the synthetic utiliza
tion is reset to zero. The time from the first arrival to the time when
the processor again becomes idle, is called a busyperiod.
For control purposes we want to obtain a relationship between the

processing speed and the average synthetic utilization, Ûζ , in the busy
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period. Since the contribution of each arriving request is Ck
Dk
, the area

of each rectangle in Figure 6.6 is exactly Ck. To obtain the average
synthetic utilization we sum up the areas and divide with the base
length, i.e., the difference between the largest absolute deadline and
the first arrival time in the busyperiod. For the example in the figure,
we get

Ûζ =

∑i=4
i=1 Ci

D̂4 − A1
(6.3)

We will consider a scheme where the control action is changed af
ter each departed request. Therefore we need to update the average
synthetic utilization between each departure. Assume that n request
have arrived at time, t1, of the first departure. Denoting the processor
frequency, µ, the average synthetic utilization, Ûζ

1 , at time t1 can be
written

Û
ζ
1 =

1
µ

∑i=n
i=1 Ci

max1<i≤n D̂i − A1
(6.4)

Then assume that m new requests arrive before the next departure
time, t2. The average synthetic utilization, Û

ζ
2 , at time t2 can then be

written

Û
ζ
2 =

1
µ

(

∑i=n
i=1 Ci +

∑i=m
i=n+1 Ci

)

max1<i≤n+m D̂i − A1
(6.5)

Combining Equations (6.4) and (6.5) we can write

Û
ζ
2 =

Û
ζ
1 ⋅ (max1<i≤n D̂i − A1) + 1

µ

∑i=m
i=n+1 Ci

max1<i≤n+m D̂i − A1
(6.6)

We thus arrive at a recursive update equation for the synthetic
utilization

Û
ζ
k = β kÛ

ζ
k−1 + ukγ k (6.7)
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Figure 6.7 Average delay for the highpriority class.

where

β k =
max1<i<n D̂i − A1
max1<i<n+m D̂i − A1

γ k =

∑n+m
i=n+1 Ci

max1<i<n+m D̂i − A1

uk =
1

µk
∈ [0.2, 1]

(6.8)

and n is the number of arrivals up until departure k− 1, and m is the
number of new arrivals between departure k− 1 and k.
The controller then uses the update equation (6.7) to compute the

average synthetic utilization at each invocation. An eventbased P
controller may then be used to control the system

uk = K ⋅ (Ubound − Ûk−1) (6.9)

The processing times, Ci, in the above equations will be estimated
online using the recursive firstorder filter

Ci = λ ⋅ Ci−1 + (1− λ) ⋅ ci (6.10)

where ci is the last measured processing time.

Simulations

A simulation with two classes of requests served by two server threads
was run and the results are shown in Figures 6.7 and 6.8. The requests
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Figure 6.8 Average delay for the lowpriority class.

for the two classes had different deadlines of 0.02 and 0.04 time units,
respectively.
The average input load during the simulation corresponded to a

300 per cent CPU utilization when running at the lowest speed, µ = 1,
and 60 per cent utilization running at the highest speed, µ = 5. The
server threads processing the requests were scheduled using deadline
monotonic scheduling based on the request deadlines. Running at a
constant low speed, the lowpriority requests are processed at a lower
rate than they arrive and thus the queues accumulate and the delay
increases. However, running constantly at the highest speed, the aver
age delay for both classes is well below the respective deadlines, and
the system is clearly underutilized.
The results using the proposed feedback scheduling technique are

shown by the dashed curves, and the deadlines are met for both classes.
The average synthetic utilization and the utilization setpoint are
shown in Figure 6.9. The synthetic utilization is reset to zero when
the system becomes idle.
The margin to the deadline is quite large even for the lowpriority

class. This is due to the pessimism involved when applying the schedu
lability results to such a small number of tasks. The results are ex
pected to provide better guidelines when the number of tasks increase.
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Figure 6.9 Average synthetic utilization and setpoint.

6.4 Summary

In the first part of the chapter it was shown how TrueTime could be
used to simulate the basic functionality of TCP. A simulation was de
scribed, where a robot system was controlled over TCP using ordinary
Ethernet as the underlying MAC protocol.
The second part described a feedback scheduling scheme used for

web server delay control. The scheme was based on the concept of syn
thetic utilization for aperiodic tasks. TrueTime was used to simulate
the web server system and evaluate the scheduling strategy.
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Conclusions

7.1 Summary

This thesis has been dealing with flexible approaches in the design of
realtime control systems. Two main contributions were presented: a
flexible implementation scheme for model predictive controllers, and a
simulator for realtime control system codesign. The thesis also con
tained a general discussion and overview of feedback scheduling tech
niques for realtime control systems. A summary of the contributions
is given below.

Flexible Implementation of Model Predictive Control

Many control algorithms exhibit large variations in their execution
time characteristics. One prominent example is model predictive con
trol (MPC) algorithms, where the control signal in each sample is ob
tained from the online solution of a constrained optimization problem.
The execution time of the optimization is often decided by external fac
tors, such as disturbances and changing reference values.
Since the optimization algorithm is iterative and may be aborted,

there exists a dynamic tradeoff between the computational delay and
the quality of the computed control signal. The standard cost function
used in the MPC formulation was modified to also contain effects of
the computational delay. By minimizing the new delaydependent cost
index, the computational requirement of the algorithm was adjusted
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in a way that significantly improved the control performance.
Another observation is that the cost index can be used in a dynamic

scheduling context. By always scheduling the MPC task with the high
est value of its cost index, a fair arbitration of the computing resources
is obtained. Given the highly changing computational requirements of
MPC tasks, a standard fixed priority assignment is clearly insufficient.

Simulation with TrueTime

TrueTime is a toolbox for MATLAB/Simulink that extends the tradi
tional control system simulation facilities with two Simulink blocks; a
kernel block and a network block. The functionality provided by these
blocks allows cosimulation of the continuous process dynamics, the
controllers implemented as tasks in the realtime kernel, and the ef
fects of network communication.
The flexibility of the kernel allows experimentation with dynamic

compensation and scheduling schemes, while evaluating the result on
the performance of the controlled plants. The evaluation of the MPC
schemes was performed using TrueTime, and the simulator was also
demonstrated in two simulation case studies.
The first case study described a simulation of TCP on top of the

datalink protocols provided by the TrueTime network block. Dedicated
tasks in the various nodes where used to implement the basic TCP
functionality. Networked control of a robot system using TCP on top of
ordinary Ethernet was described.
In the second case study TrueTime was used to simulate the basic

properties of a web server. The web server node contained a number of
server threads used to serve incoming requests. A feedback scheduling
scheme based on schedulability results for aperiodic tasks was used
to schedule the server threads and thereby guarantee that the timing
requirements of individual connections were not violated.
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7.2 Future Work

The work presented in this thesis can be extended in many ways. A
few suggestions of possible extensions are given below.

General Feedback Scheduling Structures

The basic feedback scheduling structure could be extended to also in
clude more involved combinations of tasks. One example would be to
combine control tasks of anytime nature with ordinary control tasks
where the control performance decreases monotonically with the input
output latency and sampling interval. In this case it is not trivial how
to assign the computation resources. It could also be possible to directly
control timing parameters such as delays and jitter.
Another possibility includes the direct approach to feedback schedul

ing, where the scheduling decisions are made based on the current cost
of the different control tasks. What is the best way to design the cost
functions and how should the resulting eventbased system be ana
lyzed?

MPC

The work on scheduling of MPC tasks may be extended in a number
of ways. One question is what happens if the task has not been termi
nated at the deadline. Is it then better to abort and output the control
signal or to continue the optimization into next sample. Another ex
treme is when there is no execution time available at all. In this case
it may be possible to use the previous solution sequence shifted one
step. The stability issue of MPC under varying time delays and using
suboptimal solutions is another interesting area.

Visual Servoing

Algorithms of anytime nature can be found in many other applica
tion areas than model predictive control. One example is visionbased
control in, e.g., robotics. In trackingbased algorithms there exist an
interesting tradeoff between the computational delay of the image
processing algorithm and the resulting quality of the image used for
feedback control.
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TrueTime Extensions

The TrueTime kernel could be extended and be made more realistic.
Currently it is possible to simulate context switch overhead, but the
kernel model could also include interrupt latencies and execution times
associated with the various realtime primitives. One major limitation
with TrueTime is the question of how to assign the execution times
of tasks. One possibility would be to integrate TrueTime with avail
able compiler/execution time analysis tools. Another obvious extension
would be to include support for more network protocols, e.g., wireless
communication protocols.
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