Influence of factor V Leiden on the development of neovascularisation secondary to central retinal vein occlusion.

Lindberg, Charlotte; Hillarp, Andreas; Larsson, Jörgen

Published in:
British Journal of Ophthalmology

DOI:
10.1136/bjo.87.3.305

Published: 2003-01-01

Citation for published version (APA):
Influence of factor V Leiden on the development of neovascularisation secondary to central retinal vein occlusion

C Hvarfner, A Hillarp, J Larsson

Aims: To investigate if the presence of factor V Leiden has an influence on the prognosis in central retinal vein occlusion (CRVO).

Methods: 166 patients with CRVO were studied retrospectively. They were tested for factor V Leiden using DNA analysis. The presence of the mutation was studied in correlation with the development of neovascular complications 1 year after the thrombotic event.

Results: 56 of 166 patients [34%] developed neovascular complications after 1 year. In the patients who had the studied mutation 11 of 20 [55%] had developed neovascular complications after 1 year, compared to 45 of 146 patients [31%] in the group without factor V Leiden [p=0.04].

Conclusion: The presence of factor V Leiden seems to enhance the risk of developing neovascular complications in CRVO.

Glaucoma, hypertension, arteriosclerosis, and diabetes are factors that are well known to be associated with central retinal vein occlusion (CRVO). These conditions affect vascular flow or cause vascular wall abnormalities, thereby contributing to the development of CRVO. Hereditary alterations in the coagulation/anticoagulation pathways can result in thrombophilia, increasing the risk for thrombosis. Activated protein C resistance is the most common genetic cause of venous thrombosis. A point mutation in factor V (factor V Leiden) renders it resistant to the normal inactivation by activated protein C. This “activated protein C resistance” produces a mild thrombophilic state. Although it has not been found to be an important genetic risk factor for CRVO, it may have a more important role during the recanalisation phase after the thrombotic event. Neovascular complications were defined as any retinal, disc, iris, or chamber angle neovascularisations. Clinical information was derived from the patient records.

DNA analysis
Preparation of genomic DNA from EDTA blood and determination of the factor V Leiden mutation (G to A at nucleotide position 1691), which causes activated protein C resistance, was performed as described earlier.

RESULTS
After a year 56 of 166 patients [34%] had developed neovascular complications. Factor V Leiden was present in 20 of 166 patients (12%). The patients with factor V Leiden did not significantly differ in age or sex compared to the patients without the studied mutation. The patients with factor V Leiden, 10 men and 10 women, ranged in age between 22 and 86 years (mean 58 years; median 64 years). The patients without factor V Leiden, 76 men and 70 women, ranged in age between 22 and 91 years (mean 65 years; median 68 years).

In the patients with factor V Leiden, 11 of 20 (55%) developed neovascular complications. In the patients without the mutation 45 of 146 patients (31%) developed neovascular complications (p=0.04; Fischer’s exact test) (Fig 1). This gives an odds ratio of 2.7 (CI 95% 1.1 to 7.1).

DISCUSSION
In this study we have shown that the presence of factor V Leiden seems to increase the risk for neovascularisation secondary to CRVO.

All patients were followed for at least 1 year. This time was chosen as we know that the majority of the patients who develop neovascular complications after CRVO have done so within this time period. The end point was the development of neovascular complications or not, 1 year after the thrombotic event. Neovascular complications were defined as any retinal, disc, iris, or chamber angle neovascularisations. Clinical information was derived from the patient records.

PATIENTS AND METHODS
Patients
A total of 190 consecutive patients with CRVO examined in the eye clinic of Lund University Hospital from 1994 to 2000 were invited to take part in the study; of these, 166 patients agreed to participate. Venous blood samples were collected after informed consent was obtained. Of the 166 patients, 86 were men and 80 were women. The patients were aged between 22 and 91 years (mean age 64 (SD 15) years).
recirculation, and thereby possibly a more severe ischaemia resulting in a higher risk for neovascular complications. Our study points towards an almost threefold risk of developing neovascular complications after CRVO with factor V Leiden present. We have not seen other studies in the literature which confirm that factor V Leiden mutation showed a more pronounced retinal ischaemia, as detected by fluorescein angiography, but a weakness of this study being retrospective is that this information is not complete. This would preferably be dealt with in another prospective study.

The incidence of neovascular complications in our patients during the first year after the thrombotic event is in accordance with earlier reports.26-29 It would have been of interest to see if the patients presenting with factor V Leiden mutation showed a more pronounced retinal ischaemia, as detected by fluorescein angiography, but a weakness of this study being retrospective is that this information is not complete. This would preferably be dealt with in another prospective study.

In conclusion, the presence of factor V Leiden seems to enhance the risk of developing neovascular complications in CRVO.

Authors’ affiliations
C Hvarfner, J Larsson, Department of Ophthalmology, Lund University Hospital, Sweden
A Hillarp, Department of Clinical Chemistry, Malmö University Hospital, 211 85 Malmö, Sweden

References

Figure 1 The presence of factor V Leiden correlated with the development of neovascular complication in CRVO. The result points towards an almost threefold risk of developing complications with the mutation present.