Uttorkning av betong : inverkan av cementtyp, betongkvalitet och omgivande fuktförhållanden

Johansson, Niklas

2005

Citation for published version (APA):
UTTORKNING AV BETONG

Inverkan av cementtyp, betongkvalitet och omgivande fuktförhållanden

Niklas Johansson
UTTORKNING AV BETONG

Inverkan av cementtyp, betongkvalitet och omgivande fuktförhållanden

DRYING OF CONCRETE

Effect of cement type, concrete quality and outer moisture conditions

Niklas Johansson
Förord

Detta Licentiarbete har utförts vid Avd. Byggnadsmaterial vid Lunds Tekniska Högskola och ingått i forskarskolan Byggnaden och Innnemiljön. Arbetet har finansierats av KK-stiftelsen och Cementa AB.

Jag vill först och främst tacka min handledare Prof. Göran Fagerlund för all hjälp och vägledning under arbetets gång. Ett stort tack även till min biträdande handledare Lars Wadsö, LTH, min industrihandledare Christer Ljungkrantz, Cementa samt Prof. Lars-Olof Nilsson vid Avd. Byggnadsmaterial LTH.

Det är många som hjälpt mig med mitt arbete. Jag vill tacka Stefan, Bosse och Ingemar i labbet för all teknisk support. Jag vill även tacka mina examensarbetare Andreas, Kristian och Refik för alla värdefulla resultat ni levererat till mitt arbete.

Mina kollegor vid Avd Byggnadsmaterial har varit ett stort stöd och har bidragit till mitt sociala välbefinnande. Även kollegorna på Cementa och Cementa Research vill jag tåcka för uppmuntran och förståelse under arbetet.

Slutligen vill jag tacka min familj och framförallt Linda för allt stöd ni gett mig.

Lund, februari 2005

Niklas Johansson
Sammanfattning

Syftet med detta licentiatarbete har varit att komplettera tidigare forskning inom ämnesområdet. Praktiska frågeställningar från byggbranschen har legat till grund för de studier som utförts. Arbetet består av sju delstudier varav sex är utförda i laboratoriemiljö och en i fält. Nedan följer en sammanfattning av licentiatuppsatsen.

Kap. 1: Introduktion

I kapitlet görs en kort genomgång av bakgrunden till projektet och en beskrivning av syftet med detta.

Kap. 2: Betongs fuktegenskaper

I kapitlet beskrivs kortfattat betongens strukturutveckling och fuktegenskaper.

Kap. 3: Jämförelse mellan Byggcement och Std P-cement med avseende på uttorkning av betong

Resultaten visar att skillnaden i uttorkningsegenskaper mellan Byggcement och Std P-cement vid samma vct är liten. Byggcement kan således ersätta Std P-cement utan att uttorkningsegenskaperna försämras.

Kap. 4: Inverkan av cementtyp, vattencementtal och silikastoft på betongens självuttorkning

Låga vattencementtal (vct ≤ 0,40) ger stor RF-sänkning i betong till följd av självuttorkning. Andra faktorer som också kan påverka självuttorkningen är cementtyp samt inblandning av silikastoft. I studien jämförs självuttorkningen hos cementbruk där 3 cementtyper och 3 vct varieras. Inverkan av silikastoft undersöks för ett vct.
Sammanfattning

Resultaten visar att RF-sänkningen till följd av självtrottning är helt beroende av betongens vct. SH-cement ger något större självtrottningseffekt än Byggcement. Anläggningscement har klart sämst självtrottning av de undersökta cementtyperna. Silikastoft har enbart positiv inverkan på självtrottning tillsammans med Anläggningscement. Delvis kan skillnaden i självtrottning mellan cementen förklaras med så kallade ”alkalieffekten”.

Kap. 5: Inverkan av simulerat regn på uttorkning av nygjuten betong

Resultaten visar att vattenbelastning på nygjuten betong med vct \(\leq 0,40 \) inte har någon väsentlig inverkan på uttorkningstiden. För betong med högre vct har vattenbelastningen negativ inverkan. Den negativa inverkan ökar med ökat vct och ökad varaktighet hos vattenbelastningen. För vct 0,70 kan uttorkningstiden fördubblas vid sju dygns vattenbelastning om RF-kvaret är 85 %.

Kap. 6: Vatteninsugning i betong i samband med vattenskada

Resultaten visar att insugen vattenmängd minskar kraftigt med minskat vct. Vattenbelastningens varaktighet har liten betydelse för totalt uppsugna vattenmängd. Det tar ca. 1 månad för betong med vct 0,40 att torka ut till ursprunglig fuktstadium i klimatet +20°C och 60 % RF. Motsvarande torktid för en betong med vct 0,70 är ca. 4 månader. En golvkonstruktion av högvärdig betong är alltså betydligt mindre känslig för vattenläckage än en golfkonstruktion av normalbetong.

Kap. 7: Inverkan av avjämningsmassa på uttorkning av betonggolv

Resultaten visar att 10 mm golvvärmning höjer RF i betongen ned till ett djup av några cm. RF-ökningen är större ju högre vct betongen har. På 50 mm djup i betongen sker ingen RF-ökning. Betongen fortsätter att torka även efter golvvärme, men med något lägre hastighet. Fördjupningen av uttorkningen är dock tämligen liten. Ju tidigare avjämningsmassan appliceras desto mindre blir påverkan på den fortsatta uttorkningen.
Sammanfattning

Kap. 8: Uttorkning av prefabricerade betongbjälklag

Vid produktion av kontorshus, men ibland även av bostadshus, används ofta prefabricerade håldäcksbjälklag i kombination med massiva prefabricerade bjälklag. Hanteringen av prefabricerade bjälklag från tillverkning till inbyggnad kan variera starkt. Sättet att hantera elementen skulle kunna ha stor inverkan på uttorkningsförloppet. Syftet med denna studie var att studera uttorkning av de båda typerna av bjälklagselement under varierande klimatförhållanden (RF, regn, temperatur) före och efter montering. Klimaten valdes med utgångspunkt från hur bjälklagselement normalt hanteras.

Resultaten visar att uttorkningen sker långsammare i de massiva bjälklagen än i håldäcken. Klimatet som bjälklagen utsätts för innan de byggs in visade sig inte ha så stor inverkan. Bjälklagens uttorkning när ungefär samma RF-nivå efter ungefär samma tid när de placeras i ett varmt och torrt klimat oavsett de tidigare klimatförhållandena.

Kap. 9: Fältstudie av olika metoder att påskynda uttorkning av betong

I samband med ett verkligt byggprojekt undersöktes effekten av olika uttorkningsmetoder. Dessa var:

- Användning av betong med lågt vct (”självtorkande betong”)
- Värmning av betong med elslinga
- Inblåsning av varm, torr luft under platta på mark
- Sorptionsavfuktning av luften i rummet över betongplattan
- Infravärmning av betongplattan

Resultaten visar att betong med lågt vct (0,38) gav snabb och säker uttorkning utan någon särskild insats av arbetsplatsens personal. Värmning med elslinga gav också snabb uttorkning men metoden uppfattades som mera arbetskrävande. Flera av elslingorna gick sönder under byggtiden. De övriga metoderna gav inte tillfredsställande uttorkningsresultat.

Kap. 10: Slutsatser

Sammanfattningsvis visar alla de delstudier som genomförts i detta arbete att en sänkning av betongens vattencementtal till ≤ 0,40 har en mycket positiv inverkan på betongens uttorkning. Detta gäller såväl torkning av nygjuten betong som torkning av hårdnad betong efter en längre tids vattenläckage.
Summary

Drying of concrete is an issue that has been in focus for a long time. Through the years many damages have been linked to too damp concrete floors. It is not the concrete that is damaged but the material placed in contact with the concrete. One example is chemical decomposition of adhesive underneath PVC-flooring, which has led to chemical emissions in the indoor air. Microbial growth on wood that has been in contact with the concrete is another common damage.

All these cases of damage have amounted to the fact that the demands on drying have increased and moisture measurements are nowadays compulsory before you are to apply a moist sensitive floor material. It has become utterly important to develop drying methods that are robust and reaches the level of dryness required within the construction time.

The aim of this licentiate thesis has been to complement earlier research within the field of subject. Practical problems from the construction business have been the base for the studies concluded. The thesis consists of seven studies of which six have been concluded in the laboratory and one is a field study. Below you will find a conclusion of the licentiate thesis.

Chapter 1: Introduction.

This chapter gives a background to this licentiate project and a description of the aim.

Chapter 2: Moisture properties of concrete.

In this chapter the structure development and the moisture properties of concrete are described.

Chapter 3: Comparison between Portland Limestone cement and Ordinary Portland cement concerning drying of concrete.

In the fall of 1999 Portland Limestone cement (PLC) was introduced on the Swedish market to replace the earlier used Ordinary Portland cement (OPC). The PLC contains a greater part of non-reactive limestone filler. In strength this is compensated by a larger specific surface and an altered composition of the cement clinker. It was important that the drying properties were not deteriorated by the change of cement type.

The results show that the difference in drying properties between Portland Limestone cement and Ordinary Portland cement at the same water cement ratio is small. Therefore PLC can replace OPC without any impairments of the drying properties.

Chapter 4: The influence of cement type, water cement ratio and silica fume on the self-desiccation of concrete.

Low water cement ratio (w/c ≤ 0.40) lower the RH in concrete due to self-desiccation. Other factors that also influence the self-desiccation are cement type and addition of silica fume. This study compares self-desiccation in cement mortar where three cement types and three water cement ratios are varied. The influence of silica fume on one water cement ratio is also studied.
The results show that lower RH due to self-desiccation is completely depending on the water cement ratio of the concrete. Rapid hardening Portland cement provides a somewhat greater self-desiccation effect than Portland Limestone cement. The low alkali and sulphate resistant Portland cement has clearly the lowest self-desiccation of the studied cement types. Silica fume has only positive effects on self-desiccation in combination with the low alkali and sulphate resistant Portland cement. The difference between the cements can partly be explained by the so called alkali effect.

Chapter 5: The influence of simulated rain on desiccation of newly cast concrete.

Concrete is often exposed to rain when it is newly cast. There has been little knowledge of how this water affects the drying of the concrete. It was suspected that concrete with low water cement ratio was to absorb water when it is young. This water would then be difficult to dry out when the concrete has cured and has become highly dense. Concrete with five different water cement ratios were tested together with four different durations of the simulated rain.

The result shows that exposure to water on newly cast concrete with a water cement ratio ≤ 0,40 does not have any significant influence on the drying time. However early water exposure has a negative effect on concrete with w/c ≥ 0,45. This effect increases with increased w/c-ratio and increased duration of the water exposure. For w/c 0,70 the drying time at seven days of water exposure may be doubled if the RH-requirement is 85 %.

Chapter 6: Water absorption in concrete due to water leakage

Water leakage in a building often leads to uptake of a great amount of water in the concrete structure. The drying takes long time. By choosing a concrete quality, which absorbs a small amount of water, the drying process might be shortened. In this study five different water cement ratios at four different water durations were compared.

The result shows that the water absorption decreases significantly with a lower w/c-ratio. The duration of the water leakage has small influence on the total amount of absorbed water. It takes approximately one month at 20°C and 60 % RH for concrete with w/c 0,40 to dry to the original moisture level. The corresponding drying time for concrete with w/c 0,70 is approximately 4 months. A floor structure with high-quality concrete is thus considerably less sensitive to water leakage then a floor structure with normal concrete.

Chapter 7: The influence of self-levelling flooring screed on the drying of concrete floor structures

Concrete floors are often levelled with a self-levelling screed in order to retain an even surface that can be used for application of a flooring material. It was previously unknown how much moisture the levelling screed gave to the concrete and how the drying of this was affected. These factors were studied. The influence of the time when the levelling was done was also studied.
The result shows that a 10 mm screed raises the RH in the concrete somewhat down to a depth of a few centimeters. The increase of RH is greater the higher the w/c-ratio of the concrete. At a depth of 50 mm there is no increase of RH. The concrete continues to dry even after the levelling. The earlier the self levelling screed is applied the lesser is the effect on the continued drying.

Chapter 8: Drying of prefabricated concrete slabs

In the production of office buildings, but sometimes also of multi-dwelling buildings, prefabricated hollow core slabs are often used in combination with homogeneous prefabricated slabs. The treatment of prefabricated slabs from production to construction may vary considerably. This might have great influence on the drying time. The aim of this study was to compare the drying time between the two types of slabs during various climate conditions (RH, rain, temperature). The different types of climates were chosen in consideration to how the slabs are normally treated.

The results show that drying is slower in the homogeneous slabs then in the hollow core slabs. The climate that the slabs are exposed to before they are built in does not have any considerable effect. The drying of the slabs will reach almost the same RH level after the same time when they are placed in a warm and dry environment irrespective of the earlier climate conditions.

Chapter 9: A field study of different methods to increase the drying rate of concrete

This field study was carried out at an actual construction site. The following drying methods were tested.

- The use of concrete with low water cement ratio
- Heating of concrete with heat cable
- Blowing in warm and dry air underneath slab on ground
- Sorption drying of air above the concrete slab
- Infra-heating of the concrete slab

The results show that concrete with a low water cement ratio (0,38) gave a rapid and safe drying without any particular effort by the construction workers. The use of heat cable also produced rapid drying, but the method was considered to be more labour-intensive. Moreover, several of the heat cables broke during construction. The other methods did not produce any satisfactory results.

Chapter 10: Conclusions

In conclusion all the studies made in this work show that lowering the water cement ratio of the concrete to ≤ 0.40 has a very positive effect on drying. This is valid both for drying of newly cast concrete and for drying of hardened concrete after exposure to water leakage.
Innehåll

1. Introduktion 1
 1.1 Inomhusmiljö 1
 1.2 Fukt i betong 1
 1.3 Skadefall kopplade till betonggolv 2
 1.4 Kritiska fuktnivåer 4
 1.5 Fuktmätning 5
 1.6 Tidigare forskning 8
 1.7 Bakgrund och syfte 10

2. Betongs fuktegenskaper 13
 2.1 Allmänt 13
 2.2 Cementhydratation och strukturutveckling 13
 2.3 Fuktfixering 16
 2.4 Fuktkällor, byggfukt 18
 2.5 Självuttorkning 21
 2.6 Fuktttransport i betong och torkning utåt 23
 2.7 Vatteninsugning i betong 25
 2.8 Inverkan av betongtemperatur på uttorkning 27
 2.9 Inverkan av vattenlösli alkali på RF hos vattenmättad betong 27

3. Jämförelse mellan Byggcement och Std P-cement med avseende på uttorkning av betong 31
 3.1 Bakgrund 31
 3.2 Syfte 31
 3.3 Försöksuppläggning 31
 3.4 Betongtillverkning 32
 3.5 Tillverkning av provkroppar 34
 3.6 Lagring av provkroppar 35
 3.7 Fuktmätning 36
 3.8 Resultat 37
 3.9 Slutsatser 45
 3.10 Diskussion 45
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Inverkan av cementtyp, vattencementtal och silikastoft på betongens självuttorkning</td>
<td>47</td>
</tr>
<tr>
<td>4.1 Bakgrund</td>
<td>47</td>
</tr>
<tr>
<td>4.2 Syfte</td>
<td>47</td>
</tr>
<tr>
<td>4.3 Försöksuppläggning</td>
<td>47</td>
</tr>
<tr>
<td>4.4 Tillverkning av cementbruk</td>
<td>48</td>
</tr>
<tr>
<td>4.5 Tillverkning och lagring av provkroppar</td>
<td>50</td>
</tr>
<tr>
<td>4.6 Fuktmätning</td>
<td>50</td>
</tr>
<tr>
<td>4.7 Resultat</td>
<td>51</td>
</tr>
<tr>
<td>4.8 Slutsatser</td>
<td>56</td>
</tr>
<tr>
<td>4.9 Diskussion</td>
<td>56</td>
</tr>
<tr>
<td>5. Inverkan av simulerat regn på uttorkning av nygjuten betong</td>
<td>59</td>
</tr>
<tr>
<td>5.1 Bakgrund</td>
<td>59</td>
</tr>
<tr>
<td>5.2 Syfte</td>
<td>60</td>
</tr>
<tr>
<td>5.3 Försöksuppläggning</td>
<td>60</td>
</tr>
<tr>
<td>5.4 Betongtillverkning</td>
<td>61</td>
</tr>
<tr>
<td>5.5 Tillverkning av provkroppar</td>
<td>62</td>
</tr>
<tr>
<td>5.6 Lagring av provkroppar</td>
<td>64</td>
</tr>
<tr>
<td>5.7 Fuktmätning</td>
<td>64</td>
</tr>
<tr>
<td>5.8 Resultat</td>
<td>65</td>
</tr>
<tr>
<td>5.9 Slutsatser</td>
<td>73</td>
</tr>
<tr>
<td>5.10 Diskussion</td>
<td>73</td>
</tr>
<tr>
<td>6. Vatteninsugning i betong i samband med vattenskada</td>
<td>75</td>
</tr>
<tr>
<td>6.1 Bakgrund</td>
<td>75</td>
</tr>
<tr>
<td>6.2 Syfte</td>
<td>75</td>
</tr>
<tr>
<td>6.3 Försöksuppläggning</td>
<td>75</td>
</tr>
<tr>
<td>6.4 Provkroppar</td>
<td>76</td>
</tr>
<tr>
<td>6.5 Vattenbelastning och vägning</td>
<td>77</td>
</tr>
<tr>
<td>6.6 Fuktmätning</td>
<td>77</td>
</tr>
<tr>
<td>6.7 Resultat</td>
<td>77</td>
</tr>
<tr>
<td>6.8 Slutsatser</td>
<td>91</td>
</tr>
</tbody>
</table>
7. Inverkan av avjämningsmassa på uttorkning av betonggolv

7.1 Bakgrund 93
7.2 Syfte 93
7.3 Avjämningsmassa 93
7.4 Försöksuppläggning 94
7.5 Betongtillverkning 94
7.6 Tillverkning och lagring av provkroppar 94
7.7 Applicering av avjämningsmassa 95
7.8 Fuktmätning 96
7.9 Resultat 97
7.10 Slutsatser 103

8. Uttorkning av prefabricerade betongbjälklag 105

8.1 Bakgrund 105
8.2 Syfte 105
8.3 Försöksuppläggning 106
8.4 Tillverkning av betongbjälklag 106
8.5 Tillverkning och preparering av provkroppar 106
8.6 Lagring av provkroppar 108
8.7 Avjämning av provkroppar 109
8.8 Fuktmätning 110
8.9 Resultat 111
8.10 Slutsatser 119

9. Fältstudie av olika metoder att påskynda uttorkning av betong 121

9.1 Bakgrund 121
9.2 Syfte 121
9.3 Byggnadsbeskrivning 121
9.4 Uttorkningsmetoder 124
9.5 Uttorkningsbedömningar med datorprogram före byggestart 130
9.6 Mätning och registrering av temperatur och fukt 132
9.7 Betonggjutning 134
9.8 Torkklimat 135
9.9 Resultat 141
Innehåll

9.10 Jämförelse mellan uppmätta resultat och simuleringsresultat från datorprogrammet TorkaS 2.0 149
9.11 Slutsatser 152

10. Slutsatser 157

Referenser 161

Appendix
1. Introduktion

1.1 Inomhusmiljö

Det finns misstankar om att problemen skulle kunna orsakas av organiska ämnen i inomhusluften (Andersson et al. 1997). Eftersom det är okänt vilka ämnen eller kombinationer av ämnen som orsakar problemen tillämpas ofta försiktighetsprincipen. Exempel på detta är att man genom lämpliga materialval försöker se till att de kemiska emissionerna från material som är i kontakt med inomhusluften är så små som möjligt. En sammanställning av epidemiologiska studier (Bornehag et al. 2001) visar också att det finns ett samband mellan fukt i byggnader och ohälsa. En viktig orsak till detta kan vara att fukt stimulerar emission av skadliga ämnen från material. I Boverkets byggregler (BBR 2002) står följande att läsa angående skadlig fukt:

"Byggnader skall utformas så att skador, mikrobiell tillväxt, elak lukt eller andra hygieniska olägenheter till följd av byggfukt eller inträngande fukt inte uppkommer."

Det är framförallt i nordliga länder som Skandinavien, USA och Kanada som man fokuserat på emissionsproblematiken. En viktig orsak till detta kan vara att man i dessa länder tillbringar stor del av tiden inomhus samtidigt som man har höga krav på täthet och värmeisolering hos byggnaderna.

Betong är ett material som ofta innehåller stor mängd byggfukt vilken kan ge upphov till emission från material som den står i kontakt med. Den möjliga kopplingen mellan fukt i betong och inomhusmiljöproblem har därför uppmärksammats under de senaste decennierna. Detta gäller framförallt Sverige men även övriga nordiska länder. I Sverige ställer man i dag strikta krav på uttorkning av betong.

1.2 Fukt i betong

Vid uppförande av flerbostadshus och kontorsbyggnader är betong det mest använda stommaterialet. Betong används på grund av dess goda hållfasthetsegenskaper, ljudisolerande förmåga, brandbeständighet och andra positiva egenskaper. En översikt över betong som husbyggnadsmaterial ges i (Öberg 2002).

1.1 Introduktion

Vid golvläggning tillförs ofta vatten. I äldre byggnader kan ibland vattenläckage förekomma vilket medför att vatten sugs in i den torra betongen. Den nödvändiga uttorkningen kan gå mycket långsamt. Dessa olika källor till fukt i betong beskrivs närmare i kapitel 2.

1.3 Skadefall kopplade till betonggolv

Många skadefall finns där fuktiga betonggolv orsakat problem. Det är dock aldrig betongen som tar skada utan de material som placeras i direkt anslutning till betongen. Skador hos dessa material kan delas in i tre kategorier:

- Kemisk nedbrytning
- Biologisk påväxt
- Fuktrörelser

1.3.1 Kemisk nedbrytning

Många skadefall med limmade plastmattor på betong har förekommit genom åren. Nedbrytning av lim eller plastmatta kan orsaka förhöjd halt av kemiska emissioner i inomhusluften (Wengholt-Johnsson 1995). Vid täta golvläggningar kan nedbrytningsprodukterna även vandra ner i betongen och lagras upp i denna (Sjöberg 2001). Detta kan leda till ökade emissioner till inomhusluften då man byter det tidigare golvmaterialet mot ett mera diffusionsöppet golvmaterial. En sammanställning av fem olika laboratoriestudier (Gustafsson 1996) redovisar följande samband avseende plastmattor limmade direkt på betong:

- Golvläggning med plastmatta på fuktig betong medför risk för kemisk nedbrytning av limskikt och matta.
- Hög relativ fuktighet i underlaget/betongen ökar generellt risken för förhöjd emission.
- Emissionen utgörs huvudsakligen av nedbrytningsprodukter från golvlimmet.

Den kemiska nedbrytningen leder också ofta till att mattan lossnar från underlaget vilket visas i figur 1.1.

Figur 1.1 Mattlossning till följd av kemisk nedbrytning av limmad plastmatta. (Foto Leif Erlandsson 1976)
1.3.2 Mikrobiell påväxt

I betonggolv skall man undvika direktkontakt mellan betong och trä, eftersom trä är ett material som lätt utsätts för mögelpåväxt även vid tämligen låga värden på RF. Parkettgolv bör därför förses med underliggande plastfolie för att bli en säker lösning ur mögelsynpunkt. Det slarvas dock ofta med rengöringen av betongplattan innan plastfolien läggs på, vilket kan leda till att kvarliggande sågspån och annat organiskt material möglar under plastfolien.

Linmod linoleum matta direkt på otillräckligt uttorkad betong kan leda till mögeltillväxt i väven på undersidan av mattan.

Träreglar som gjuts in i betong som gränser mot fuktig miljö, t.ex. mark, har ofta visat sig ge mögelproblem. Man kan alltid förvänta att RF i sådan betong trots fukt skydd blir tillräckligt hög för mögelpåväxt.

1.3.3 Fuktrörelser

Fuktrörelser sker när ett material avger fukt eller tar upp fukt. Träbaserade material har stora fuktrörelser jämfört med andra material. Fuktrörelserna varierar med träets riktning, se figur 1.2.

![Figur 1.2 Maximal krympning/svällning för massiv furu vid torkning från vattenmättat tillstånd. (Nilsson 2004)]

Fuktrörelserna kan dämpas genom att träet lamineras. Moderna parkettgolv är därför i dag oftast uppygdda i skikt där träet lagts i lager med vinkelräta fiberärrningar. Trots detta finns vissa fuktrörelser.

Det krävs rörelsefogar i trägolv som kan ta upp den svällning/krympning som sker när träet uppfuktas/torkas. Även de fuktrörelser som sker på grund av inneluftens naturliga RF-variation måste kunna tas upp. Rörelsefogar måste vara särskilt stora vid användning av massiva trägolv och vid anslutning mellan golv och vägg.

3
1. Introduktion

Skador kan uppstå då trägolv limmas direkt på betong som är ofullständigt uttorkad (Follin 2004). Man kan få problem med kantresning till följd av ojämn fuktfordelning i trägolvet. Träets undersida är fuktigare än ovansidan vilket gör att golvet böjs uppåt vid ytterkanterna.

Trägolv på betong med golvvärme kan också leda till problem orsakade av fuktrorelser. I detta fall kan trägolvets undre del bli torrare än den övre. Detta leder till krympning i underkant vilket gör att golvet buktar uppåt.

Även PVC-baserade plastmattor kan ha avsevärda fuktrorelser (Hedenblad & Nilsson 1987), särskilt om de utsätts för fukt med högt pH-värde. Sådan fukt finns i bristfälligt uttorkad betong. Man kan då få mjukgörandeforvandring från mattan (kemisk nedbrytning) vilket leder till stor krympning. Vid långt tids exponering för vatten kan plastmattor få fuktsvällning. Svällning i kombination med att limmet bryts ned kan ge sådana bubblor som visas i figur 1.2.

1.4 Kritiska fuktnivåer

Till följd av alla skadefall som förekommit har rekommendationer utarbetats vad det gäller uttorkning av betonggolv. I HusAMA 98 (1998) redovisas följande högsta tillåtna fuktnivåer för RF i underlaget vid applicering av olika typer av golvmaterial:

- 60 % RF Trägolv utan fuktskydd av plastfilm
- 85 % RF Plastmatta, Gummimatta
- 90 % RF Linoleummatta
- 95 % RF Trägolv med fuktskydd av plastfilm

Sveriges Provnings- och Forskningsinstitut har på uppdrag av Boverket gjort en sammanställning av kritiska fuktställning med avseende på tillväxt av mikroorganismer, (Samuelsson 2004). Sammanställningen baseras på nyare litteratur. Resultatet från sammanställningen visar att kritisk relativ fuktighet för mikrobiell tillväxt på trä och smutsade material är ca. 75 % RF. Det finns dock materialgrupper som, förutsatt att de ej är förorenade med organiskt material, har högre kritiskt fuktställande. Exempel på detta är cellplast där kritisk RF är ca. 90-95 % RF för mikrobiell tillväxt.
1.5 Fuktmätning

1.5.1 Ekvivalent mätdjup

Mätning av RF skall normalt utföras på ekvivalent mätdjup. Fuktivån på det ekvivalenta djupet motsvarar den fuktivån man efter lång tid kommer att uppnå i betongens övertyta då man belagt denna med ett helt tätt ytmaterial. Det ekvivalenta mätdjupet beror på om uttorkningen är enkelsidig, se figur 1.4 eller dubbelsidig, se figur 1.5.

Figur 1.4 Bestämning av ekvivalent mätdjup vid enkelsidig uttorkning. (Hedenblad 1995)

Figur 1.5 Bestämning av ekvivalent mätdjup vid dubbelsidig uttorkning. (Hedenblad 1995)

Vid enkelsidig uttorkning skall således mätning utföras på 40 % av plattjockleken och vid dubbelsidig på 20 % av plattjockleken.

1.5.2 Borrhålsmätning med kvarsittande givare

1. Introduktion

I stället för att borra in ett mätrot i den hårdnade betongen kan mätrotet med givare placeras i formen före gjutning. Kvarsittande givare innebär därför att RF-givaren kan sitta monterad i betongen från gjutning fram till slutmätning. Vid kvarsittande givare kan avläsning ske när som helst och mätresultaten kan registreras under mätperioden.

RF-mätningen kompletteras alltid med en temperaturmätning på samma djup. Givarens utslag kan nämligen vara temperaturberoende varför korrektion kan bli nödvändig. Om temperaturen i betongen skulle ändras kort tid efter RF-mätningen kommer dessutom RF i betongen att ändras utan att någon fortsatt uttorkning skett. Genom kännedom om temperaturen kan justering för detta ske.

Mätprincipen kan även användas för andra mätartyper än Humi-Guard.

1.5.3 Borrhålsmätning med icke kvarsittande givare

Även vid denna metod används ett mätrör som kan borras in eller som fästs i formen före gjutning. RF-givaren placeras i mätröret då det är dags för mätning. Innan avläsning kan ske måste givaren sitta i borrhållet under så lång tid att den har uppnått jämvikt med betongens RF. Den erforderliga tiden beror på betongens täthet, d.v.s. på dess vct, och på givarens fuktkapacitet, d.v.s. på givarens egna fuktabsorberande förmåga.

Kapacitiva givare av typ Vaisala måste monteras minst 12 timmar före mätning för betong med vct ≥ 0,40, och 48 timmar för betong med vct < 0,40.

Erforderlig tid före mätning beror också på hur stor den avdunstande betongarean är, d.v.s. på rörets fria yta exponerad för betong. Röret bör utformas så att största möjliga yta erhålls.

För övrigt gäller samma förfarande som vid borhålsmätning med kvarsittande givare.
1.4 Mätning på uttaget prov

Med uttaget prov finns det möjlighet att bestämma en RF-profil ur samma mäthål genom att ta ut betongbitar från olika nivåer.

1.5 Kalibrering av RF-givare

![Kalibreringskurva för RF-givare av typ Vaisala HMP 44 vid 20°C](image)

Kalibrering av givare kan utföras med hjälp av saltlösningar eller fuktgenerator. För mätning i betong före ytbeläggning av olika slag bör kalibrering ske inom intervallet 75-100 % RF.

Vid RF-mätning måste avlästa mätvärden korrigeras med hjälp av kalibreringskurvan innan de presenteras.
1.5.6 Temperaturkorrigering av uppmätt RF

Ofta genomförs RF-mätningen vid annan temperatur än den som konstruktionen har vid mättilfället, eller kommer att få tämligen kort tid därefter. Det innebär att det uppmätta mätvärden skiljer sig från det verkliga värdet. Om temperaturen vid mätning är högre än i konstruktionen erhåller ett alltför högt mätvärde, och vice versa. Orsaken till detta är att betongens jämviktsfuktkurva har ett visst temperaturberoende. Korrektion kan göras med hjälp av diagrammet i figur 1.8.

![Diagram](image.png)

Figur 1.8 Korrektion av RF beroende på temperaturavvikelser från 20°C. (Nilsson 1988)

1.5.7 Mätosäkerhet

Vid RF-mätning i betong finns det flera faktorer som bidrar till osäkerheten i fuktmätningen. Enligt Hus AMA 98 (1998) får mätosäkerheten inte överstiga 2 % i RF vid uttaget prov och 3 % vid mätning i borrhål. Dessutom skall det redovisas hur mätosäkerheten bestäms. Ytterligare information om mätosäkerhet finns i rapporten ”Mätosäkerhetsberäkningar för relativ fuktighet i betong” (Hedenblad 1999).

1.6 Tidigare forskning

I detta avsnitt kommer viktiga delar av tidigare forskning inom området ”uttorkning av betong” att presenteras mycket kortfattat. Presentationen begränsas till forskning genomförd i Sverige och Finland.

Pionjär inom området var den finske forskaren Sven Pihlajavaara som studerade fukttransport i betong teoretiskt och experimentellt. Han undersökte även betongens uttorkning. Arbetet resulterade i en doktorsavhandling (Pihlajavaara 1965) som var ett pionjärrarbete, och som haft stor betydelse för den fortsatta forskningen inom fuktområdet.

Pihlajavaaras forskning uppmärksammades av forskare vid avdelning Byggnadsmaterial vid Lunds Tekniska Högskola i mitten på 1960-talet. Alltsedan dess har betonguttorkning utgjort ett viktigt forskningsområde vid LTH. Under ledning av dåvarande professor Sven Gabriel Bergström bedrev avdelningen teoretiskt och experimentellt arbete kombinerat med skadeutredningar och branschinformation. Lennart Ahlgren, som var en av de första fuktforskarna vid LTH, bedrev allmän forskning om fukt i byggnadsmaterial och då särskilt betong. Hans specialområde var fuktfixering i material inom vilket han också presenterade sin
doktorsavhandling (Ahlgren 1972). I en artikel (Ahlgren 1973) som handlar om fukt i betonggolv med tät ytbeläggning presenteras följande slutsatser:

- Vid jämförelse mellan olika betongkvaliteter ger fuktkvotsvärden och värden på relativa fuktigheten (RF) ofta en motsatt bild av fukttilståndet. En betong med hög fuktkvot kan ibland vara torrare, d.v.s. ha lägre RF, än en betong med lägre fuktkvot.
- Relativa fuktigheten, och inte fuktkvoten, bör därför användas som mått på fuktnivå och bedömning av t. ex. uttorkningsnivå måste ske med utgångspunkt från RF.
- Uttorkningstiden för betong före beläggning med t. ex. fuktkänsligt golvmaterial kan förkortas avsevärt genom att en högre betongkvalitet används.

Denna artikel var en av de första som visade att uttorkningstiden kunde förkortas vid val av högre betongkvalitet. Högre kvalitet än K 40 (vct ca. 0,50) användes dock mycket sällan vid den här tiden.

Kunskap som kommit fram genom all denna forskning, och då framförallt forskningen om den högvärdiga betongens uttorkning, har fått mycket stor betydelse i dagens byggande, där det ställs krav på snabb uttorkning.
1.7 Bakgrund och syfte

1.7.1 Bakgrund

Trots all tidigare forskning ansågs det vid projektets start att det kvarstod vissa oklarheter som gjorde att förutsägelser om betongens uttorkning var osäkra:

- I nästan alla tidigare uttorkningsförsök har betongen skyddats från fukt efter det att den gjutits. Oftast har den skyddats mot uttorkning utanför under de första dygnen men den har inte exponerats för vatten omedelbart efter gjutning. I verkligheten förekommer det ofta att nygjutet betong utsätts för regn. Det ansågs vara viktigt att undersöka hur varaktigheten av regn påverkar uttorkningsförloppet hos betong av olika kvalitet.

- I dag är det vanligt att betongen beläggs med en cementbaserad avjämningsmassa någon vecka innan golvläggning sker. Vatten från avjämningsmassan kan sugas in i den delvis uttorkade betongen varvid fuktinvasion möjlig blir alltför hög. Samtidigt kan det tänkas att avjämningsmassan försvårar den fortsatta uttorkningen. Därför ansågs det vara viktigt att undersöka hur avjämningsmassa påverkar uttorkningstiden hos betong med olika kvalitet.

- Ofta används prefabricerade håldäckselement i kombination med massiva bjälklag. Dessa två bjälklagstyper är inte tillverkade på samma sätt och hanteriingen av bjälklagen kan också variera. Uttorkningen behövde därför jämföras för att få reda på i vilken bjälklagstyp fukttemning bör utföras hur hanteringen påverkar uttorkningen.

- Byggherren ställer ofta strikta krav på uttorkning av betong. Entreprenören kan ha svårigheter att uppfylla dessa krav. Hans alternativ är inte så många; han kan värma betongen på olika sätt och därmed förvärva uttorkningen, eller han kan välja betong som torkar mycket snabbt. Effekten av olika torkmetoder och praktiska frågor i samband med dessa var dåligt utredda under verkliga fältförhållanden. Därför ansågs det vara viktigt att genomföra en större fältstudie av torkmetoder.
1.7.2 Syfte

Syftet med detta forskningsarbete har varit att öka kunskapen om de frågeställningar som beskrivs i föregående avsnitt, d.v.s.:

Arbetet skall ses som ett komplement till tidigare forskning inom området. Resultaten som framkommit skall vara tillämpbara i byggbranschen och underlätta vid valet av betongkvalitet och andra uttorkningsåtgärder. Resultaten bör kunna användas vid en eventuell kommande revidering av datorprogrammet TorkaS.
1. Introduktion
2. Betongs fuktegenskaper

2.1 Allmänt

Vid nyproduktion av lokaler och bostäder är uttorkningskravet ofta dimensionerande vid valet av betongkvalitet till stomsystemet. Tidplanen avgör hur lång uttorkningstid som är tillgänglig och valet av golvmaterial avgör hur torr betongen måste vara vid golvläggningen.

Betongs uttorkningshastighet och uttorkningstid påverkas av många faktorer. Nedan följer en lista på faktorer som har stor inverkan.

- Vattencementtal / vattenbindemedelstal, vct / vbt
- Cementtyp
- Tillsats av mineraliska tillsatsmaterial (silikastoft, flygaska, slagg.)
- Temperatur hos betong och omgivning
- Relativ fuktighet hos omgivning
- Härningsmetod
- Nederbörd
- Konstruktionsstyp

Den egenskap som har störst inverkan är vct / vbt som påverkar porstrukturen hos betongen. I avsnitt 2.2 beskrivs betongens porstrukturutveckling.

Uttorkning av betong beskrivs ofta genom mätning av den relativa fuktigheten i materialet. RF-förändringen som sker beror på två olika principer. RF-sänkning till följd av inre självuttorkning, se avsnitt 2.5, samt RF-ändring till följd av fukttransport utåt, se avsnitt 2.6. Uttorkningen sker som en kombination av dessa båda uttorkningsförlopp.

Betong utsätts för olika typer av vattenbelastning. Regn förekommer under produktionsskedet och vattenskador är relativt vanliga under en byggnads brukssked. Vatteninsugning beskrivs i avsnitt 2.7.

I avsnitt 2.8 beskrivs betongtemperaturens inverkan på uttorkningen.

Porvattnet i betongen har hög alkalitet pH 12-14. Detta påverkar RF i betongen vilket beskrivs i avsnitt 2.9.

2.2 Cementhydratation och strukturutveckling

När vattnet tillsätts i betongblandaren startar omedelbart en reaktion mellan cement och vatten varvid reaktionsprodukter bildas. De viktigaste reaktionsprodukterna kallas cementgel eftersom de består av en extremt finkornig porös massa, en s.k. ”fast gel”. Dessutom bildas en stor mängd kalciumhydroxid. Reaktionen sker först på cementkornens yta. Därefter ökar cementgelskiktet i tjocklek allteftersom reaktionprocessen fortskrider. Figur 2.1 visar schematiskt hur cementgelen utvecklas. Reaktionshastigheten avtar efter hand då gelen blir tätare och vattnet får svårare att nå den ohydratiserade cementen.
Cementgelens porositet är 28 %. Den utgörs av fina partiklar åtskiljda av fina gelporer. Normalt räcker inte volymen cementgel till för att fylla allt utrymme mellan cementkornen. Därför bildas ett grövre porsystem bestående av sk kapillärporer. Detta kapillärporsystem blir mindre i volym och tätare ju längre hydratationen forskrids. Teoretiskt sett kan all cement hydratiseras då vct > 0,39. Exakt vid vct 0,39, och när all cement reagerat, består cementpastan av enbart cementgel och kapillärporositeten är noll, se figur 2.2.

Då vct understiger 0,39 saknas utrymme för all cement att hydratisera. Därför kommer sådan betong alltid att innehålla en viss mängd oreagerad cement. Vid vct > 0,39 kommer det alltid att finnas en viss mängd kapillärporer även när all cement reagerat. Kapillärporositeten ökar med ökande vct.
Begreppet hydratationsgrad (α) används för att beskriva hur stor andel av cementen som reagerat. Den är 0 för den färska betongen och maximalt 1 efter oändligt lång tid för betong som har $vct > 0,39$. Utvecklingen av hydratationsgraden bestäms av vct. I figur 2.3 visas hur hydratationsgraden hos en typ av svenskt portlandcement utvecklas vid olika vct (Byfors 1980). Lägre vct ger högre hydratationsgrad vid låg ålder men lägre hydratationsgrad vid hög ålder.

Figur 2.3 Hydratationsgradens tillväxt hos betong tillverkad med portlandcementet Skövde Std P. Inverkan av vct. Temperatur +20°C. Vattenlagring. (Byfors 1980)

Som nämndes ovan stannar hydratationen av vid mycket låga vct. Exempel på detta visas i figur 2.4. Hydratationsgrad $\alpha = 4 \cdot \frac{w_t}{C}$.

Figur 2.4 Hydratationsgradsutveckling hos rena portlandcementpastor. (Taplin 1959)
2. Betongs fukttegenskaper

Figur 2.5 visar hur porositetsförhållandena påverkas av hydratationsgraden hos en cementpasta med vct 0,60. Den totala porositeten minskar, andelen gelporer ökar och andelen kapillärporer minskar med ökad hydratationsgrad. Porstorleken minskar dessutom med ökad hydratationsgrad, d.v.s. med ökad tid. Detta innebär att samtidigt som den totala porositeten minskar med tiden så förfinas det kvarvarande porsystemet. Cementpastan blir därför tätare med tiden.

![Totalporositet, Gelporer, Kapillärporer](image)

Figur 2.5 Porositetsförhållanden hos en cementpasta med vct 0,60 vid olika hydratationsgrader. (Fagerlund 1997a)

2.3 Fuktfixering

Det vatten som inte binds kemiskt kommer att vara fysikaliskt bundet i betongens porsystem. Det fysikaliskt bundna vattnet kommer dels att vara adsorberat på porytorna och dels vara bindet i porsystemet på grund av kapillärkondensation, se figur 2.6. Ju högre RF desto större mängd vatten binds.

![Adsorption och kapillärkondensation](image)

Figur 2.6 Adsorption och kapillärkondensation. (Ahlgren et al. 1976)

Hur hårt det fysikaliskt bundet vattnet är beror på porstorleken. Ju mindre porerna är desto hårdare bundet är vattnet, och vid desto lägre RF sker adsorption och kapillärkondensation.
2. Betongs fuktegenskaper

Följande ekvation visar sambandet mellan porradie och den RF vid vilken kapillärkondensation sker. Ekvationen gäller vid +20°C och förutsätter cylinderformade porer. Ekvationen gäller enbart inom kapillärkondensationsområdet, d.v.s. ned till ca. 45 % RF.

\[
\ln \Phi = -\frac{1.1 \cdot 10^{-9}}{r}
\]

\(\Phi\) = Relativ fuktighet
\(r\) = Porradien (m)

Några samhörande värden på porradie och RF ges i tabell 2.1

<table>
<thead>
<tr>
<th>(r) (m)</th>
<th>(r) (Å)</th>
<th>(\Phi) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (\cdot 10^{-7})</td>
<td>1000</td>
<td>99</td>
</tr>
<tr>
<td>5 (\cdot 10^{-8})</td>
<td>500</td>
<td>98</td>
</tr>
<tr>
<td>1 (\cdot 10^{-8})</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>5 (\cdot 10^{-9})</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>2 (\cdot 10^{-9})</td>
<td>20</td>
<td>58</td>
</tr>
</tbody>
</table>

Porstorleksfördelningen avgör alltså hur mycket vatten som binds i betongen vid jämvikt med olika värden på RF. Sambandet mellan betongens fuktinnehåll och dess RF beskrivs av jämviktsisoternen. Eftersom porstorleksfördelningen är olika för olika vct, kommer olika jämviktsfuktkurvor att gälla för olika vct. I figur 2.7 visas jämviktsfuktkurvor för betong vid uttorkning av denna.

Figur 2.7 Desorptionsisotemer för betong. Kurvorna gäller för följande hydratationsgrader: 0,50 för vct 0,30; 0,60 för vct 0,40; 0,80 för vct 0,50-0,80. (Nilsson 1980)

Figur 2.7 gäller för betong som är någon månad gammal. När betongen är ung har kurvorna annan form. Fuktalten är högre vid höga RF men lägre vid låga RF. Jämviktsfuktkurvor vid olika hydratationsgrad har redovisats i (Norling-Mjörnell 1997).
2. Betongs fuktegenskaper

Figur 2.8 visar principiellt hur jämviktsfuktkurvorna skiljer sig åt mellan en normal husbyggnadsbetong (vct 0,6-0,7) och en högpresterande betong (vct 0,3-0,4).

![Jämviktsfuktkurvor](image)

Figur 2.8 Principiella jämviktsfuktkurvor för normalbetong (vänster) och högpresterande betong (höger). W_e är mängden fysikaliskt bundet vatten, W_o är mängden blandningsvatten, W_n är mängden kemiskt bundet vatten. (Nilsson et al 2000)

Jämviktsfuktkurvan är mycket flack i området 80-100 % RF hos betong med lågt vct. Normalbetongens kurva lutar betydligt mer inom detta RF-område. Detta innebär att en viss sänkning av vattenhalten ger mycket större RF-sänkning för betong med lågt vct.

2.4 Fuktkällor. Byggfukt

2.4.1 Fukt som tillförs vid betongtillverkning

Vid tillverkning av betong tillsätts vatten. Totala vattenhalten uppgår normalt till ca. 160-180 liter per kubikmeter betong. En viss mängd vatten behövs för att cementen skall kunna reagera och utveckla betongens egenskaper. Ytterligare vatten behövs för att betongen skall kunna komprimeras. Total vattenmängd bestäms av vattencementtalet och cementhalten.

Vatten i den färska betongan kommer från följande fuktkällor:

- Tillsatt blandningsvatten exklusive spädvatten
- Ballastfukt
- Vatten från tillsatsmedel
- Spädvatten som tillsätts i blandaren för att justera konsistensen

Exempel:

Grusets fuktkvot är 4,0 %. Grushalten är 950 kg/m³
Stenens fuktkvot är 0,2 % Stenhalten är 800 kg/m³

\[W_{\text{ballast}} = 950 \cdot 0,04 + 800 \cdot 0,002 = 39,6 \text{ liter} \]

De flytande tillsatsmedel som används vid betongtillverkning har ett visst vatteninnehåll. Tillsatsmedlets koncentration anges i form av torrhalt (%). Detta innebär att vatteninnehållet är 65 % om torrhalten är 35 %. Enligt betongstandard (SS EN 206-1 2001) skall vatteninnehållet tas med vid beräkningen av vct om tillsatsmedelsmängden överstiger 3 liter per kubikmeter betong.

Exempel:

Tillsatsmedelshalt 1,5 % av cementvikten. Cementhalt 400 kg/m³
Torrhalt 35 %

\[W_{\text{tillsatsmedel}} = 0,015 \cdot 400 \cdot 0,65 = 3,9 \text{ liter} \]

Spädvatten kallas den vattenmängd som tillsätts under pågående blandning för att justera blandningens konsistens. Mängden spädvatten är ofta av storleksordningen 10 à 15 l/m³. Vid tillsats av blandningsvatten måste man ta hänsyn till mängden spädvatten för att betongen skall få rätt hållfasthet och vct.

Det uppvägda blandningsvattnet är det vatten som återstår att tillföra betongen då hänsyn tagits till de andra fuktåkorna.

\[W_{\text{blandning}} = W_{\text{total}} - W_{\text{ballast}} - W_{\text{tillsatsmedel}} - W_{\text{späd}} \]

En felaktig bedömning av fuktivån i ballasten kan leda till stort fel i vct. Antag att cementhalten är 400 kg/m³ i en betong med avsett vct 0,40. Total vattenhalt skall då vara 160 liter/m³. Vid blandningen antar man att fukthalten i gruset (950 kg/m³) är 3,5 %. Verklig fukthalt i gruset är 5 %. Det innebär att den verkliga vattenhalten blir:

\[160 + 0,015 \cdot 950 = 174 \text{ liter/m³} \]

Verkligt vct blir därför 0,44. Uttorkningstiden blir därför förlängd.

Om man dessutom försöker att ta hänsyn till vatten i tillsatsmedlet och använder mer spädvatten än vad som undanhållits från blandningsvattnet blir felet ändå större. Nya undersökningar (Nilsson & Olsson 2005) visar att hanteringen av spädvatten och ballastfukt kan ha negativ inverkan på den levererade fabriksbetongen.
2. Betongs fuktegenskaper

2.4.2 Fuktkällor under byggskedet

Vattenhärdning

Nygjuten betong vattenhärdas för att betongen skall få hög hållfasthet och täthet och för att minska risken för plastiska krympsprickor. För att undvika att betongytans jämnhet och utseende försämras bör vattnet tillföras i form av dimma (Möller 1997).

Nederbörd

Golvavjämning

Limfukt

Vattenbaserade limmer innehåller en viss mängd vatten. Vid limning på en betongytta är den tillförda vattenmängden ca. 0,07-0,10 kg vatten per kvadratmeter betongytta (Svenska Betongföreningen 1997). Fuktnivån i betongens övertyta kan därför bli så hög att fuktproblem uppstår hos golvmaterialet.

2.4.3 Fuktkällor under en byggnads bruksskede

Vattenläckage

Fuktskador till följd av vattenläckage är vanligt förekommande och kostar årligen miljardbelopp att åtgärda. Läckande rör är den vanligaste orsaken. I många fall drabbas betongkonstruktionen. Ofta upptäcks inte läckaget förrän stor mängd vatten hunnit sugas in i betongen.

Byggnadstekniske fuktskador

På grund av byggnadstekniske brister eller slarv kan betong utsättas för icke önskvärd fukt. Ett exempel är att avsaknad av kapillärbrytande skikt under en bottenplatta av betong på mark, i kombination med att värmeisolering saknas eller har placerats på ovansidan av plattan, kan leda till att markfukt sugs in i betongen.
2.4.4 Byggfukt

För att betongen skall vara gjutbar krävs mer vatten än vad som förbrukas i cementreaktionen. Detta överskottsvatten tillsammans med tillfört vatten under byggandet kallas byggfukt och kan påverka material som befinner sig i kontakt med betongen. I Fukthandboken (Nevander & Elmarsson 1994) definieras byggfukt som den mängd vatten som måste avges för att materialet skall komma i fuktjämvikt med sin omgivning. Detta är den s.k. ”totala byggfukten”.

För betonggolv är det aldrig aktuellt att låta betongen komma helt i jämvikt med omgivande luft före golvläggning. Detta skulle vara alldeles för tidskrävande. Istället anges en kritisk RF som beror på det golvmaterial som skall appliceras på betongen, se avsnitt 1.4. Man kan då definiera en ”farlig byggfukt” som den fuktmängd som måste avgå från betongen för att denna skall komma ner till kritisk RF.

Den farliga byggfukten, \(W_B \), kan beräknas med följande formel:

\[
W_B = W_0 + \Delta W - W_n - W_{krit} \quad \text{(kg/m}^3\text{)}
\]

\(W_0 \) = Färsta betongens vattenhalt
\(\Delta W \) = Härdningsvatten och nederbörd
\(W_n \) = Kemiskt bundet vatten
\(W_{krit} \) = Jämviktsfukthalten vid kritisk RF

2.5 Självuttorkning

Mängden kemiskt bundet vatten, \(W_n \), kan beskrivas med följande formel enligt (Powers & Brownyard 1948).

\[
W_n = 0,25 \cdot \alpha \cdot C \quad \text{kg/m}^3
\]

\(\alpha \) = hydratationsgrad \quad \text{kg/kg}
\(C \) = cementmängd \quad \text{kg/m}^3.

Cementhalten vid betongtillverkning ökar med minskande vct. Vid vct 0,70 används ca. 260 kg cement per m\(^3\) och vid vct 0,40 ca. 440 kg/m\(^3\).

Enligt figur 2.3 gäller följande hydratationsgrader efter 1 månad. Hydratationsgraden vid vct 0,70 har bestämts genom interpolation.

- ca. 0,80 vid vct 1,00
- ca. 0,70 vid vct 0,70
- ca. 0,65 vid vct 0,58
- ca. 0,55 vid vct 0,40
2. Betongs fukttegenskaper

Detta innebär att mängden kemiskt bundet vatten är relativt oberoende av vct vilket illustreras med följande räkneexempel baserat på hydratationsgrader och cementhalter enligt ovan. Effekten av lägre vct kompenserar av effekten av lägre hydratationsgrad.

\[
\begin{align*}
\text{vct} & = 0.70: \quad W_n = 0.25 \cdot 0.70 \cdot 260 = 45.5 \text{ kg/m}^3 \\
\text{vct} & = 0.58: \quad W_n = 0.25 \cdot 0.65 \cdot 320 = 52.0 \text{ kg/m}^3 \\
\text{vct} & = 0.40: \quad W_n = 0.25 \cdot 0.55 \cdot 440 = 60.5 \text{ kg/m}^3
\end{align*}
\]

Då vattnet binds kemiskt minskar dess volym med ca. 25 %. Det innebär att cementreaktionen skapar ett luftfyllt porutrymme i en betong som är fuktisolerad från omgivningen (membranhärdad). Fenomenet kallas "självuttorkning".

De luftfyllda porer som skapas kallas ibland ”självuttorkningsporer”. De är dock inga särskilda porer utan utgör endast en del av det vanliga kapillärporsystemet.

Volymen självuttorkningsporer är:

\[
V_s = 0.25 \cdot W_n = 0.25 \cdot 0.25 \cdot \alpha \cdot C = 0.0625 \cdot \alpha \cdot C \quad \text{liter/m}^3
\]

Självuttorkningen är alltså direkt proportionell mot hydratationsgraden. Den ökar därför med ökande betongålder.

Följande värden gäller för exemplet ovan (ca. 1 månads ålder):

\[
\begin{align*}
\text{vct} & = 0.70: \quad V_s = 0.25 \cdot 45.5 = 11.4 \text{ liter/m}^3 \\
\text{vct} & = 0.58: \quad V_s = 0.25 \cdot 52.0 = 13.0 \text{ liter/m}^3 \\
\text{vct} & = 0.40: \quad V_s = 0.25 \cdot 60.5 = 15.1 \text{ liter/m}^3
\end{align*}
\]

Storleken hos den tömda porvolymen är således ungefär densamma oavsett betongkvalitet.

Den gradvisa tömningen av porsystemet orsakad av självuttorkningen medför att fukthalten i betongen blir lägre än den som motsvarar fullständig vattenmättnad. Följaktligen minskar RF i betongen. Storleken på RF-sänkningen ges av jämviktsfuktkurvan.

Beton med lågt vct har en mera flack kurva än en betong med högt vct, se Figur 2.8. Följaktligen blir RF-sänkningen betydligt större hos betong med lågt vct trots att mängden självuttorkningsporer inte är större hos sådan betong.

Principen för RF-sänkning till följd av självuttorkning visas i figur 2.9 för en högpresterande betong och en normal betong.
2. Betongs fuktegenskaper

2.6 Fukttransport i betong och torkning utåt

2.6.1 Allmänt

Självutorkning beror på hydratation. Eftersom denna sker ungefär lika snabbt i alla delar av tvärsnittet kommer även RF-sänkningen att bli ungefär lika hög över hela tvärsnittet, se RF-nivå RFs i figur 2.10.

Enbart självutorkning kan ge tillräckligt låga RF-nivåer hos betong med lågt vct vilket visas i kapitel 4. Självutorkningen sker snabbt eftersom cementreaktionen normalt är snabb. Figur 2.3 visar att 50 % hydratationsgrad kan uppnås redan inom 1 vecka.

Torkning sker även utåt mot omgivande luft. Förutom av yttre klimat och betongens temperatur bestäms torkhastigheten av betongens fukttransportegenskaper. Utöverden leder till att en ojämn fuktprofil uppstår över tvärsnittet, se RF-nivå RFx i figur 2.10.
2. Betongs fuktegenskaper

Fuktprofiler förorsakade av självuttorkning (RFs) och kombination av självuttorkning och torkning utåt (RFx).

Hos betong med högt vct är självuttorkningen nästan försambar och så gott som all uttorkning måste ske utåt. Eftersom uttorkning utåt bestäms av hur fort fukt kan vandra i betongen kan det ta lång tid innan betongen torkat så mycket att det kritiska RF-värde underskrids.

2.6.2 Fukttransport i betong

Fukttransport i betong sker i huvudsak i ång- och vätskefas. Den totala fukttransporten utgörs av en kombination av dessa båda transporttyper. Diffusion dominerar vid låga RF och vätsketransport vid höga. Den totala fukttransporten, q, kan beskrivas med följande formel.

\[q = -\delta \cdot \frac{dv}{dx} \quad \text{kg/(m}^2\text{s}) \]

\[\delta = \text{fukttransportkoefficienten} \quad \text{m}^2/\text{s} \]
\[dv/dx = \text{ånghaltsgradienten} \quad \text{kg/m}^3/\text{m} \]

Fukttransportkoefficienten är en materialparameter som beror på betongens vct ochhydratationsgrad. Ju lägre vct och ju högre hydratationsgrad desto tätrare är betongen, och desto lägre är fukttransportkoefficienten. Denna beror också på RF i betongen. Vid höga RF (> 80 %) dominerar vätsketransport och därmed ökar fukttransportkoefficienten kraftigt när RF överstiger ca. 80 %.

Figur 2.11 visar fukttransportdata för betong med hög hydratationsgrad (Hedenblad 1993a). Av figuren framgår att vct spelar stor roll för fukttransporten inom RF-området över 80 % vilket är det mest intressanta området ur uttorkningssynpunkt. Vid lägre RF-nivåer är fukttransportkoefficienten mindre beroende av vct.

Tillsats av silikastoft torde minska fukttransportkoefficienten vid bibehållt vbt, d.v.s. uttorkningen utåt fördröjs.
2. Betongs fuktegenskaper

2.7 Vatteninsugning i betong

Betong utsätts ofta för fritt vatten som kan sugas in och därmed påverka uttorkningen. Vattenhärning, regn och vattenläckage är vanligt förekommande.

Betongens förmåga att suga vatten kan beskrivas genom motståndstalet, m (s/m²). Motståndstalet anger hastigheten med vilken vattenfronten tränger in. Det är beroende av betongens porstruktur men inte av dess totala porositet. Det är dessutom tämligen oberoende av fukttilståndet när insugningen startar.

Motståndstalet definieras av:

\[m = \frac{t}{z^2} \quad \text{(s/m}^2) \]

\(t = \) tiden från start av vattensugningen (s)
\(z = \) vattenfrontens djup från exponerad yta (m)
2. Betongs fuktegenskaper

Ju finare porsystem desto långsammare vandrar fuktfronten in och desto högre blir motståndstalet. Figur 2.12 visar motståndstalet m för cementbruk som funktion av den kapillära porositeten. Före provningen hade provkropparna konditionerats vid 50 % RF.

Den insugna vattenmängden kan beskrivas med kapillaritetstalet, k (kg/(m²·√s)). Kapillaritetstalet bestäms av porstrukturen, totala porositeten samt fukttillståndet då vatteninsugningen startar. Det definieras av:

\[
k = \frac{W}{\sqrt{t}} = \frac{1000 \cdot P_k}{\sqrt{m}} \quad (\text{kg}/(\text{m}^2\cdot\sqrt{\text{s}}))
\]

\[W = \text{upsugen vattenmängd (kg/m}^2\)]
\[1000 = \text{vattnets densitet (kg/m}^3\)]
\[P_k = \text{den porvolym som helt fyllts med vatten från det att sugningen startade (m}^3/\text{m}^3)\]

Genom användning av koefficienterna m och k och med kännedom om porvolymen P_k kan man beräkna vattenabsorption i betong med olika vct och hydratationsgrader.

![Figur 2.12 Motståndstal hos cementbruk. (Fagerlund 1982)](image-url)
2.8 Inverkan av betongtemperatur på uttorkning

Betongtemperaturen har stor inverkan på uttorkningshastigheten. Hög temperatur är generellt positivt. Cementhydrationens hastighet ökar med ökande temperatur. En snabb hydratationsgradsutveckling leder därför till snabb RF-sänkning på grund av självutttorkning, framsörande för betong med vct < 0,40.

Den drivande potentialen för fukttransport via diffusion är skillnaden i ånghalt mellan betong och omgivande luft. Höjs temperaturen i betongen höjs också ånghalten i betongen vilket gör att uttorkningshastigheten ökar.

2.9 Inverkan av vattenlöslig alkali på RF hos vattenmättad betong

Den relativa fuktighet som uppmätts i betong, som har en viss konstant fukthalt, påverkas av porvattnets alkalihalt (Hedenblad & Janz 1994). Alkaliteten, d.v.s. koncentrationen av OH⁻ joner, bestämmer främst av mängden kaliumhydroxid (KOH) och natriumhydroxid (NaOH) som finns löst i porvätskan. Om två betonger innehåller samma mängd fukt i kg/m³ så erhålls lägst uppmätt RF i den betong som har högst alkaliinnehåll.

Betongens innehåll av vattenlöslig alkali bestäms av cementtyp, cementhalt och eventuell användning av mineraliska tillsatsmaterial. Anläggningscement har lägre vattenlöslig alkalihalt än Byggcement och SH-cement. De båda sistnämnda cementen har ungefär samma alkaliinnehåll eftersom de tillverkas av samma klinker.

Inblandning av silikastoft innebär däremot att porvattnets alkali halt sjunker eftersom SiO₂ i silikastofset mycket snabbt reagerar kemiskt med OH⁻ joner från cementet.
RF-sänkningen till följd av alkali kan beräknas med Raoult´s lag som kan skrivas på följande sätt när det gäller RF hos en vattenlösning:

\[
\text{RF}_{\text{lösning}} = 100 \cdot (1-v) \quad (\%)
\]

RF_{lösning} : porlösningens RF
100 : RF (%) för det rena lösningsmedlet (vatten)
\(v\) : molandel lösta joner i porlösningen

Molandelen lösta joner beräknas utifrån cementets vattenlösliga alkalihalt. Denna uttrycks normalt som löslig (Na₂O)_{ekv} och anges i viktprocent. Följande exempel visar en beräkning av RF-sänkningen hos vattenmättad betong.

Exempel:

Byggcement: Vattenlöslig (Na₂O)_{ekv} = 0,7 % ; Molmassa: Na = 23g/mol, O = 16 g/mol, H = 1 g/mol.

I verkligheten innehåller cementet såväl K₂O som Na₂O vilka i vattenlösning övergår till NaOH resp. KOH. Genom att använda begreppet (Na₂O)_{ekv} har alla OH - joner som är kopplade till kaliumjoner i stället kopplats till fiktiva natriumjoner.

\[
\text{Mängden Na} = \frac{2 \cdot 23}{2 \cdot 23 + 16} \cdot 0,7 = 0,52\%
\]

\[
\text{Antal mol Na} = \frac{0,0052 \cdot 1000 \cdot C}{23} = 0,23 \cdot C \quad \text{där C är cementvikten i kg/m}^3
\]

I porlösningen finns både lösta Na⁺ och OH⁻ joner. Detta innebär att det totala antalet mol i lösningen är

\[
\text{Antal mol } (\text{Na} + \text{OH}) = 2 \cdot 0,23 \cdot C = 0,46 \cdot C
\]

Antal mol vatten vid vattenmättnad bestäms av betongens porositet -C·(vct-0,19·\(\alpha\))- och vattens molmassa.

\[
\text{Antal mol } H_2O = \frac{1000 \cdot C \cdot (\text{vct}-0,19 \cdot \alpha)}{(16 + 2 \cdot 1)} = 55,6 \cdot C \cdot (\text{vct} - 0,19 \cdot \alpha) \quad \alpha \text{ är hydratationsgraden}
\]

Molandelen joner i porlösningen kan nu beräknas

\[
v = \frac{0,46}{(55,6 \cdot (\text{vct} - 0,19 \cdot \alpha) + 0,46)}
\]

Om vct = 0,40 och hydratationsgraden antas vara 0,50 blir \(v = 0,026\)

Porlösningens RF blir då

\[
\text{RF}_{lösning} = 100 \cdot (1 - 0,026) = 97,4\%
\]
RF minskar med 2,6 % på grund av betongens alkalitet. Värdet gäller helt vattenmättad betong. Om betongen inte är helt vattenmättad ökar effekten av alkali något eftersom mängden porvatten därvid minskar. Följaktligen ökar molandelen OH⁻ joner i kvarvarande porvatten.

En beräkning av RF hos vattenmättad betong med olika vct och tillverkad av olika cementtyper redovisas i kapitel 4, tabell 4.4.
2. Betongs fuktegenskaper
3. Jämförelse mellan Byggcement och Std P-cement med avseende på uttorkning av betong.

3.1 Bakgrund

Hösten år 1999 introducerades ett nytt svensk tillverkat cement på den svenska marknaden. Det nya cementet fick namnet Byggcement och ersatte det befintliga Std P-cementet. Till skillnad från Std P-cementet innehåller Byggcementet ca. 12 % inmalt kalkstensfiller räknat på de så kallade huvudbeståndsdelarna, vilka utgörs av alla komponenter i cementet förutom gips och andra tillsatser. I Std P-cementet var mängden kalkstensfiller ca. 5 %.

Det nya cementet klassas enligt cementstandard (SS-EN 197-1 2001) som ett CEM II/A-LL cement och går under det officiella namnet Portland-kalkstenscement. Std P-cementet klassas som CEM I cement med det officiella namnet Portlandcement. Det kan nämnas att man enligt cementstandarden i ett CEM II/A-LL cement får ha upp till 20 % kalkstensfiller. I Sverige har man dock valt den lägre halten 12 %.

Skälen till bytet av cementtyp var flera. Det starkaste skälet var att Byggcementet har miljömässiga fördelar eftersom koldioxidutsläppen minskar i samband med cementtillverkningen. Tekniskt sett skulle cementen vara likvärdiga för att bytet inte skulle orsaka produktionsstörningar hos betongleverantörerna.

Uttorkning av nygjuten betong har blivit ett mycket viktigt och uppmärksammat område i samband med husproduktion. Korta byggtider ställer höga krav på snabb uttorkning av betongen. Det var därför av största vikt att Byggcementet inte försämrade betongens uttorkningsegenskaper jämfört med Std P-cementet.

3.2 Syfte

Syftet med denna studie var att jämföra Byggcement och Std P-cement, med avseende på uttorkning av betong.

3.3 Försöksuppläggning

I denna studie jämfördes uttorkningen för 6 olika betongkvaliteter baserade på Byggcement respektive Std P-cement De undersökta vatten cementtalen var 0,37; 0,40; 0,42; 0,45; 0,47 samt 0,50. En provkropp tillverkades för varje vet och cementtyp, vilket totalt gav 12 provkroppar.

Efter gjutning vattenlagrades provkropparna i två veckor för att därefter membranhärda ytterligare två veckor. Membranhärdning innebär att provkropparna förvaras inneslutna i plast. Efter detta torkade provkropparna dubbelsidigt i klimatet 20°C och 35 % RF. Temperaturen vid vattenlagring och membranhärdning var 20°C.

Provkropparnas uttorkning registreras med kvarsittande RF-givare av typen Humi-Guard. Dessa var placerade på sex olika mätjup i varje provkropp.
3.4 Betongtillverkning

3.4.1 Delmaterial

Cement

Tabell 3.1 Riktvärden för Slite Byggcement och Slite Standardcement

<table>
<thead>
<tr>
<th></th>
<th>CEM II A-LL 42,5 R</th>
<th>CEM I 42,5 R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifik yta</td>
<td>470 m²/kg</td>
<td>360 m²/kg</td>
</tr>
<tr>
<td>Bindetid</td>
<td>150 min</td>
<td>150 min</td>
</tr>
<tr>
<td>Lösningsvärm 7 dygn</td>
<td>320 kJ/kg</td>
<td>340 kJ/kg</td>
</tr>
<tr>
<td>Kalkstenshalt</td>
<td>ca. 12 %</td>
<td>ca. 5 %</td>
</tr>
<tr>
<td>Klinkersammansättning:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂S</td>
<td>14,5 %</td>
<td>11,0 %</td>
</tr>
<tr>
<td>C₃S</td>
<td>58,3 %</td>
<td>61,2 %</td>
</tr>
<tr>
<td>C₃A</td>
<td>5,7 %</td>
<td>6,4 %</td>
</tr>
<tr>
<td>C₄AF</td>
<td>9,2 %</td>
<td>7,8 %</td>
</tr>
</tbody>
</table>

Ballast

Ballasten som användes, levererades av Sydsten, och är den ballast som används som standard vid betonggjutningar vid avd. Byggnadsmaterial vid LTH.

Grus, Åstorp 0- 8 mm
Krossad Kvartsit, Hardeberga 8-12 mm, 12-16 mm

Tillsatsmedel

För att erhålla gjutbar betong användes Cementa Flyttillsats V33 som består av 33 % torrsubstans och 67 % vatten. V33 är ett vattenreducerande tillsatsmedel och är baserat på sulfonerad melaminpolykondensat.

Vatten

Normaltempererat kranvatten användes till gjutningarna.
3.4.2 Betongrecept

Betongrecepten som användes i denna studie varierar vct mellan 0,37 - 0,50. Totalt undersöktes 6 olika vct. recepten konstruerades genom att behålla vattenhalten konstant (190 liter/m³) och variera cementhalten. Ballastfördelningen utgjordes av 50 % grus, 25 % sten 8-12 mm samt 25 % sten 12-16 mm. Fullständiga betongrecept redovisas i tabell 3.2. Vattencementtalen är inte justerade med avseende på flyttillsatsens vatteninnehåll. Den fukt som fanns i gruset ingår i redovisad mängd blandningsvatten.

Tabell 3.2 Betongrecept angivet i kg/m³

<table>
<thead>
<tr>
<th></th>
<th>vct 0,37</th>
<th>vct 0,40</th>
<th>vct 0,42</th>
<th>vct 0,45</th>
<th>vct 0,47</th>
<th>vct 0,50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>514</td>
<td>475</td>
<td>452</td>
<td>422</td>
<td>404</td>
<td>380</td>
</tr>
<tr>
<td>Vatten</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>Grus 0-8</td>
<td>827</td>
<td>844</td>
<td>854</td>
<td>866</td>
<td>874</td>
<td>897,5</td>
</tr>
<tr>
<td>Sten 8-12</td>
<td>414</td>
<td>422</td>
<td>427</td>
<td>433</td>
<td>437</td>
<td>449</td>
</tr>
<tr>
<td>Sten 12-16</td>
<td>413</td>
<td>422</td>
<td>427</td>
<td>433</td>
<td>437</td>
<td>448</td>
</tr>
<tr>
<td>Flyttillsats V33</td>
<td>1,1 %</td>
<td>1,0 %</td>
<td>0,9 %</td>
<td>0,8 %</td>
<td>0,6 %</td>
<td>0,4 %</td>
</tr>
</tbody>
</table>

Tillsatt mängd flyttillsatsmedel anges i % av cementvikten.

3.4.3 Justerat vct med hänsyn till vattenhalt i tillsatsmedlet

Eftersom det använda tillsatsmedlet består av 67 % vatten så kan detta ha en viss inverkan på vct. Tabell 3.3 visar hur stor denna inverkan är.

Tabell 3.3 Justerat vct med hänsyn till vattenhalt i tillsatsmedlet

<table>
<thead>
<tr>
<th></th>
<th>vct 0,370</th>
<th>vct 0,400</th>
<th>vct 0,420</th>
<th>vct 0,450</th>
<th>vct 0,470</th>
<th>vct 0,500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Justerat vct</td>
<td>0,377</td>
<td>0,407</td>
<td>0,426</td>
<td>0,456</td>
<td>0,474</td>
<td>0,503</td>
</tr>
</tbody>
</table>

Tabellen visar att vattenhalten i flyttillsatsen har liten inverkan på betongens vct.

3.4.4 Blandningsmetod

30 liter betong tillverkades i en frifallsblandare. De torra delmaterialen blandades först i ca. 30 sekunder. Därefter tillsattes vatten och flyttillsats och blandningen fortsatte i ca. 3 minuter.
3. Jämförelse mellan Byggcement och Std P-cement med avseende på uttorkning av betong

3.5 Tillverkning av provkroppar

3.5.1 Gjutformar

Den kvarsittande formen till provkropparna utgjordes av ett polypropenrör med 310 mm i diameter och en godstjocklek som var 20 mm. Höjden var 180 mm, se figur 3.1. Under gjutningen var formen placerad på en bottenplatta. Denna platta togs bort efter ca. 1 dygn då betongen härdat.

Figur 3.1 Gjutformens dimensioner.

I formen borrades hål genom rörväggen på de aktuella mätdjupen (20;36;65;90;144;160 mm), se figur 3.2. Hålen försköts i sidled för att inte RF-givarna skulle störa varandra. I hålen monterades mätrör av plast och i mätrören monterades bultar för att förhindra betong att tränga in i röret i samband med gjutningen. Då provkroppen var gjuten och härdat tog man bort bultarna ur rören varvid betongytor blev exponerade i det uppkomna hålet.

Kvarsittande RF-givare monterades ca. 1 månad efter gjuttillfället.

Figur 3.2 Kvarsittande form med monterade mätrör.
3. Jämförelse mellan Byggcement och Std P-cement med avseende på uttorkning av betong

3.5.2 Gjutning

Vid varje gjuttilfälle tillverkades två betongsatser med samma vct. En blandning med Byggcement och en med Std P-cement.

Efter avslutat blandning mätttes sättmått, densitet samt lufthalt på den färska betongmassan. I samband med gjutningen registrerades sättmått, lufthalt och densitet hos den färska betongen. Resultaten redovisas i tabell 3.4.

Tabell 3.4 Den färska betongens egenskaper

<table>
<thead>
<tr>
<th>vct 0,37</th>
<th>vct 0,40</th>
<th>vct 0,42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bygg</td>
<td>Std P</td>
<td>Bygg</td>
</tr>
<tr>
<td>Sättmått (mm)</td>
<td>65</td>
<td>75</td>
</tr>
<tr>
<td>Lufthalt (%)</td>
<td>2,3</td>
<td>1,9</td>
</tr>
<tr>
<td>Densitet (kg/m³)</td>
<td>2380</td>
<td>2400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vct 0,45</th>
<th>vct 0,47</th>
<th>vct 0,50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bygg</td>
<td>Std P</td>
<td>Bygg</td>
</tr>
<tr>
<td>Sättmått (mm)</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>Lufthalt (%)</td>
<td>1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>Densitet (kg/m³)</td>
<td>2400</td>
<td>2390</td>
</tr>
</tbody>
</table>

Skillnaden i konsistens mellan de båda cementtyperna är anmärkningsvärt liten.

3.6 Lagring av provkroppar

Bottenplattan och plasten på ovensidan avlägsnades efter ca. 1 dygn då provkropparna härdat. Därefter vattenlagrades de i 2 veckor i 20°C. Vid vattenlagringen placerades provkropparnas botten i vattenbad medan övertytan täcktes med vattenmättade Wettex-dukar och plastades in.

Efter avslutad vattenlagring avlägsnades vattenbad och Wettex-dukar och provkropparna plastades in och membranhärdades ytterligare 2 veckor vid samma temperatur. En månad efter gjutning togs plasten bort och de fick torka dubbelsidigt i klimatet 20°C och 35 % RF.

Under uttorkningen förvarades provkropparna liggande på sidan så att både övertytan och undertytan blev exponerade för omgivande luft. I figur 3.3 visas en provkropp med monterade RF-givare.
3. Jämförelse mellan Byggcement och Std P-cement med avseende på uttorkning av betong

3.7 Fuktmätning

Kvarsittande RF-givare av märket Humi-Guard användes för att mäta den relativa fuktigheten. Givarna monterades ca. 1 månad efter gjutning. Givarens mätområde är begränsat till 75-95 % RF.

Alternativet hade varit att använda RF-givare av typ Vaisala. Det stora antalet mätningar som måste ske samtidigt gjorde detta praktiskt omöjligt eftersom tillgången på Vaisala-givare var begränsad.

RF mättes på 6 djup per provkropp, 20; 36; 65; 90; 144 samt 160 mm från provkroppens yta. 36 mm och 144 mm motsvarade det ekvivalenta mätdjupet från vardera sidan. Med ekvivalent mätdjup avses det djup från ytan på vilket RF är lika högt som den RF som efter lång tid skulle uppnås i övertytan av betongen om denna direkt efter mätningen av RF på ekvivalent djup beläggs med en fullständigt tät beläggning. Begreppet ekvivalent djup åskådliggörs i figur 3.4.

![Figur 3.3 Provkropp med RF-givare monterade på olika mätdjup.](image)

Figur 3.3 Provkropp med RF-givare monterade på olika mätdjup.

Figur 3.4 Definition av ekvivalent mätdjup vid dubbelsidig uttorkning. (Hedenblad 1995)

För en tvåsidigt torkande platta anses ekvivalenta djupet vara ca. 20 % av plattjockleken. Mätdjupet 90 mm motsvarar halva betongtjockleken.
3.8 Resultat

Mätning av RF i provkropparna startades ca. 50 dygn efter gjutning. All avläsning skedde manuellt De erhållna mätresultaten matades in i ett medföljande datorprogram för omräkning till RF vid 20°C. Det är dessa resultat som redovisas i detta kapitel.

Mätosäkerhet inkluderas inte i de redovisade resultaten. Den bedöms vara ca. ±2 procentenheter i RF (RBK 2001).

3.8.1 Uttorkningsprofiler

Enligt teorin skall fuktprofilen vid dubbelsidig uttorkning principiellt se ut enligt figur 3.5, d.v.s. den skall vara symmetrisk kring mittsnitte t. Ytorna har under hela uttorkningsförloppet samma RF som omgivande luft, d.v.s. i det aktuella försöket 35 %.

![Figur 3.5 Principiell fuktprofil vid dubbelsidig uttorkning.](image-url)

Figur 3.5 Principiell fuktprofil vid dubbelsidig uttorkning.

I figurer 3.6 till 3.11 presenteras uppmätta uttorkningsprofiler för Byggcement och Std P-cement.

De uppmätta fuktprofilerna redovisas vid 3 olika tidpunkter 50; 150 samt 300 dygn efter gjutning. Eftersom RF-givaren inte kan mäta lägre än 75 % RF så minskar mängden mätdata med tiden. Detta innebär att där mätdata saknas i uttorkningsprofilerna så understiger RF 75 %. I samtliga figurer utgör den övre ytan i figuren övertytan vid gjutningen.
3. Jämförelse mellan Byggcement och Std P-cement med avseende på uttorkning av betong

Figur 3.6 Uttorkningsprofiler för Byggcement och Std P-cement, vct 0,37.

Figur 3.6 visar att uttorkningen mitt i provkroppen sker något snabbare hos Std P-cementet. Efter 150 dygn är dock uttorkningsprofilerna lika för de båda cementtyperna vilket också är fallet efter 300 dygn. Uttorkningsprofilerna har ett normalt utseende med symmetri kring mittnittet.

Figur 3.7 Uttorkningsprofiler för Byggcement och Std P-cement, vct 0,40.

Figur 3.7 visar att vid vct 0,40 är uttorkningen större för Std P-cementet under hela mätperioden. Skillnaden minskar dock något med tiden. Uttorkningsprofilen är symmetrisk.
3. Jämförelse mellan Byggcement och Std P-cement med avseende på uttorkning av betong

Figur 3.8 Uttorkningsprofiler för Byggcement och Std P-cement, vct 0,42.

Figur 3.8 visar att vid vct 0,42 är uttorkningen ungefär densamma för de båda cementen. Annärkningsvärt är dock att högst RF inte erhålls på halva höjden utan något högre upp. Torkningen sker alltså snabbare mot den undre ytan.

Figur 3.9 Uttorkningsprofiler för Byggcement och Std P-cement, vct 0,45.

Figur 3.9 visar att även för vct 0,45 följs uttorkningsprofilerna för de båda cementtyperna väl åt. Profilerna är symmetriska.
3. Jämförelse mellan Byggcement och Std P-cement med avseende på uttorkning av betong

Figur 3.10 Uttorkningsprofiler för Byggcement och Std P-cement, vct 0,47.

Figur 3.10 visar att det för vct 0,47 är en viss skillnad i uttorkning på halva höjden mellan de båda cementtyperna. Profilerna för Std P-cementet är dessutom något osymmetriska.

Figur 3.11 Uttorkningsprofiler för Byggcement och Std P-cement, vct 0,50.

Figur 3.11 visar att vid vct 0,50 torkar Std P-cementet något snabbare under hela mätperioden. Detta gäller framförallt mätpunkterna mitt i betongen.
3.8.2 Uttorkning på halva betongtjockleken

Genom att jämföra uttorkningen mitt i betongen så får man en bild av hur stor effekten av självuttorkning är hos de båda cementtyperna. I följande figurer redovisas resultat för samtliga vct.

För att spara utrymme så redovisas resultaten parvis, med två vct i varje figur. För att figuren skall bli så lättlästa som möjligt så kombineras följande vct: 0,37 och 0,45 ; 0,40 och 0,47 ; 0,42 och 0,50.

Figur 3.12 Uppmätt RF på halva plattjockleken, vct 0,37 och 0,45.

Figur 3.12 visar att vid vct 0,37 och 0,45 är uttorkningen i stort sett lika för de båda cementen.

Figur 3.13 Uppmätt RF på halva plattjockleken, vct 0,40 och 0,47.
Enligt figur 3.13 är RF 2-3 % lägre hos betong med Std P-cement. Detta kan tyckas vara en liten skillnad, men uttryckt i erforderlig uttorkningstid för att nå en viss RF-nivå, t. ex. 90 % eller 85 %, är skillnaden tämligen stor.

\[\text{Figur 3.14 Uppmätt RF på halva plattjockleken, vct 0,42 och 0,50.} \]

Figur 3.14 visar att vid vct 0,50 torkar Std P-cementet något snabbare. Vid vct 0,42 är skillnaden mellan de båda cementtyperna liten.
3.8.3 Uttorkning på ekvivalent djup

Ur praktisk synpunkt är det intressant att jämföra uttorkningen på ekvivalent mätdjup. I följande figurer redovisas uppmätta RF på mätdjupet 36 mm för samtliga vct. Även i detta avsnitt redovisas resultaten parvis.

![Diagram](image)

Figur 3.15 Uppmätta RF på ekvivalent mätdjup 36 mm, vct 0,37 och 0,45.

Figur 3.15 visar att det inte är någon större skillnad mellan cementen vid vct 0,37 och 0,45.

![Diagram](image)

Figur 3.16 Uppmätta RF på ekvivalent mätdjup 36 mm, vct 0,40 och 0,47.
Resultaten i figur 3.16 visar att skillnaden mellan cementen är liten vid vct 0,47. Vid vct 0,40 är skillnaden ganska liten i början men ökar med tiden. Det är betongen med Std P-cement som torkar snabbast.

Figur 3.17 Uppmätt RF på ekvivalent mätdjup 36 mm, vct 0,42 och 0,50

Resultaten i figur 3.17 visar en liten skillnad i uttorkning mellan de båda cementen. Det är dock uppenbart att betongen med vct 0,50 torkar mycket snabbare än den med vct 0,42 på detta mätdjup. Detta tyder på att diffusion dominerar uttorkningen vid högre vct.

3.8.4 Erforderlig uttorkningstid

Ekvivalent mätdjup

Erforderlig uttorkningstid för att nå 85 % RF på ekvivalent djup redovisas i tabell 3.5. Värdena baseras på uppmätta RF-värden på 36 mm djup från övertytan.

Tabell 3.5 Ungefärlig erforderlig tid till att nå 85 % RF på ekvivalent djup.

<table>
<thead>
<tr>
<th>Cementtyp</th>
<th>Utfärdningstad till 85 % RF (dygn)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,37</td>
</tr>
<tr>
<td>Byggcement</td>
<td>55</td>
</tr>
<tr>
<td>Std P-cement</td>
<td>55</td>
</tr>
</tbody>
</table>

Resultaten i tabell 3.5 visar att skillnaden i uttorkningstid är liten mellan de båda cementsorterna. Tar man dessutom hänsyn till 2 % måtosäkerhet så kan man på detta mätdjup inte se någon skillnad mellan cementen.
3. Jämförelse mellan Byggcement och Std P-cement med avseende på uttorkning av betong

Halva plattjockleken

Erforderlig uttorkningstid för att nå 85 % RF i betongens mitt redovisas i tabell 3.6. Värdena baseras på uppmätta RF-värden på 90 mm djup från överytan.

Tabell 3.6 Ungefärlig erforderlig tid till att nå 85 % RF på halva plattjockleken.

<table>
<thead>
<tr>
<th>Cementtyp</th>
<th>Utterkningstid till 85 % RF (dygn)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,37</td>
</tr>
<tr>
<td>Byggcement</td>
<td>140</td>
</tr>
<tr>
<td>Std P-cement</td>
<td>115</td>
</tr>
</tbody>
</table>

Vid en jämförelse på halva plattjockleken så får man en mycket större skillnad i uttorkningstid mellan de båda cementen. Detta kan delvis förklaras med att uttorkningskurvorna är mycket flacka, vilket gör att små ändringar i RF ger stor effekt på torktiden. Verkliga tider kan skilja sig avsevärt från tabellvärdena eftersom osäkerheten i uppmätta RF-värden antas vara ca. ±2 procentenheter.

3.9 Slutsatser

Slutsatserna från denna studie kan summeras i följande punkter.

- Resultaten visar att skillnaden i uttorkningsförlopp mellan de båda cementen är liten. Std P-cementet torkar visserligen något snabbare på halva plattjockleken vid några vct (0,40; 0,47; 0,50). Skillnaden är dock inte större än den mätsäkerhet man normalt har i denna typ av mätningar (ca. 2 % RF).

- RF-givare av typen Humi-Guard visade sig fungera bra. Det är dock störande att givaren slås ut vid RF < 75 %. Å andra sida är sådana låga RF-nivåer inte av praktiskt intresse eftersom fuktskador då inte torde kunna uppstå.

3.10 Diskussion

Orsaken till att skillnaden i torkförlopp mellan de båda cementtyperna är så liten är inte alldeles lätt att förklara. Den ökade fillerinblandningen i Byggcement borde nämligen teoretiskt medföra en ökning av det ”effektiva” vct eftersom man kan förvänta sig att fillern är inert. I Std P-cement används 5 % filler. I Byggcement används 12 %. Rent teoretiskt innebär detta att förhållandet i effektivet vct mellan de båda cementtyperna är:

$$\frac{vct_{eff,bygg}}{vct_{eff,std}} = \frac{0,95}{0,88} = 1,08$$

Effektivet vct definieras av att enbart cementklinkern antas vara reaktiv:

$$vct_{eff} = \frac{vatten}{klin\ ker}$$
3. Jämförelse mellan Byggcement och Std P-cement med avseende på uttorkning av betong

Exempel:

\[\text{Beton med uppmätt vct} = 0,40 \]

\[\text{Std P-cement med 5\% filler:} \quad \text{vct}_{\text{eff,Std}} = \frac{0,40}{0,95} = 0,42 \]

\[\text{Byggcement med 12\% filler:} \quad \text{vct}_{\text{eff,Bygg}} = \frac{0,40}{0,88} = 0,45 \]

Rimligen borde en betong med 8\% högre effektivt vct torka något långsammare. Att skillnaden trots detta är så pass liten kan bero på någon av följande orsaker:

- Klinkerns finmalningsgrad har ökats, se tabell 3.1, vilket innebär att hydratationsgraden hos själva klinkern tillväxer snabbare.
- Klinkerns mineralogiska sammansättning är något annorlunda i Byggcement; se tabell 3.1. Denna åtgärd i produktionen gjordes för att kompensera för att fillerinblandningen minskar klinkermängden och därmed mängden reaktivt material.
- Fillern aktiverar cementreaktionen genom att tillhandahålla skärnbildningsställen för cementreaktionen.
- Fillern är inte helt inert utan bidrar i viss mån till reaktionen och därmed till strukturutvecklingen i cementpastan.

Att Byggcement trots fillerinblandning har ungefär samma reaktivitet som Std P-cement bekräftas av att den isoterma värmeutvecklingen är ungefär densamma för de båda cementtyperna vid samma vet, se figur 3.18.

![Figur 3.18 Värmeutveckling hos Std P-cement och Byggcement vid +20ºC (PK-cement var beteckningen på Byggcement under utvecklingsarbetet). (Johansson 1999)](image-url)
4. Inverkan av cementtyp, vattencementtal och silikastoft på betongens självuttorkning

4.1 Bakgrund

Självuttorkning är den dominerande orsaken till RF-sänkning i betongen vid låga vct (0,30-0,40). Andra faktorer som också kan påverka självuttorkningen är cementtyp samt inblandning av silikastoft. Exakt vilken inverkan olika faktorer har på självuttorkningen är dåligt känt vilket är orsaken till denna undersökning.

Vid högre vct är uttorkning utåt via diffusion den dominerande orsaken till minskningen av betongens RF-nivå. Denna typ av uttorkning har tidigare studerats systematiskt i en stor undersökning (Hedenblad 1995).

4.2 Syfte

Syftet med studien var att undersöka självuttorkningen hos cementbruk där cementtyp och vct varierades. Inverkan av silikastoft undersöcktes också för ett vct. Resultaten är avsedda att användas till att utveckla betongsammansättningar som ger önskat uttorkningsförlopp.

Med begreppet ”självuttorkning” menas i detta kapitel den utveckling av inre RF som sker i cementbruket. En viss del av den uppmätta RF-minskningen beror på att forlöstningen i cementbruket innehåller lösta joner, främst Na⁺, K⁺ och OH⁻. Denna RF-sänkande effekt inkludereras således i redovisade självuttorkningsförlopp.

4.3 Försöksuppläggning

I studie jämfördes tre olika cementtyper och fyra olika betongrecept med varierande vct/vbt (vattencementtal/vattenbindemedelstal). Detta innebar att totalt 12 blandningar provades enligt variationer i tabell 4.1.

<table>
<thead>
<tr>
<th>Tabell 4.1 Försöksmatris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cementtyp</td>
</tr>
<tr>
<td>Byggcement¹</td>
</tr>
<tr>
<td>SH-cement²</td>
</tr>
<tr>
<td>Anläggningscement³</td>
</tr>
</tbody>
</table>

¹) Slite Portland-kalkstensfillercement typ CEM II/A-LL, med 12 % kalkstensfiller.
²) Slite Portlandcement (snabbcement) typ CEM I, utan kalkstensfiller.
³) Degerhanncement typ CEM I, lågalkaliskt sulfatreseistent, utan kalkstensfiller.
I betongblandningar betecknade vbt 0,30 hade 10 % av cementvikten ersatts med silikastoft. Effektivitetsfaktorn för silikastoftet antogs vara 1, d.v.s. vbt definieras:

\[
\frac{\text{vatten}}{\text{cement} + \text{silika}} = 0,30
\]

Direkt efter blandning placerades cementbruket i väl förslutna plåtburkar för att inget fuktutbyte skulle ske med omgivningen. Dubbelprov tillverkades av varje recept, och samtliga prover lagrades i 20°C.

Fuktmätning utfördes med hjälp av kalibrerade RF-givare av typen Vaisala HMP 44. Kalibreringar genomfördes med hjälp av en fuktgenerator som finns vid avdelningen. Mätningarna påbörjades 4 dygn efter tillverkning och slutmätningen utfördes efter ca. 28 dygn.

4.4 Tillverkning av cementbruk

4.4.1 Delmaterial

Cement

Tabell 4.2 2003 års typvärden.

<table>
<thead>
<tr>
<th>Beteckning</th>
<th>Byggcement CEM II/A-LL 42,5 R</th>
<th>SH-cement CEM I 52,5 R</th>
<th>Anläggningscement CEM I 42,5 N BV/SR/LA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tryckhållfasthet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 dygn</td>
<td>20 MPa</td>
<td>36 MPa</td>
<td>10 MPa</td>
</tr>
<tr>
<td>28 dygn</td>
<td>55 MPa</td>
<td>64 MPa</td>
<td>54 MPa</td>
</tr>
<tr>
<td>Bindetid</td>
<td>170 min</td>
<td>120 min</td>
<td>150 min</td>
</tr>
<tr>
<td>Specifik yta</td>
<td>460 m²/kg</td>
<td>540 m²/kg</td>
<td>320 m²/kg</td>
</tr>
<tr>
<td>Densitet</td>
<td>3080 kg/m³</td>
<td>3140 kg/m³</td>
<td>3210 kg/m³</td>
</tr>
<tr>
<td>Kalkfillerhalt</td>
<td>12 %</td>
<td>0 %</td>
<td>0 %</td>
</tr>
<tr>
<td>Löslig (Na₂O)ₑkv</td>
<td>0,7 %</td>
<td>0,8 %</td>
<td>0,4 %</td>
</tr>
<tr>
<td>Klinkerkomponenter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₃S</td>
<td>58,3 %</td>
<td>58,3 %</td>
<td>52,6 %</td>
</tr>
<tr>
<td>C₂S</td>
<td>14,5 %</td>
<td>14,5 %</td>
<td>25,3 %</td>
</tr>
<tr>
<td>C₃A</td>
<td>5,7 %</td>
<td>5,7 %</td>
<td>2,0 %</td>
</tr>
<tr>
<td>C₄AF</td>
<td>9,2 %</td>
<td>9,2 %</td>
<td>12,9 %</td>
</tr>
</tbody>
</table>
4. Inverkan av cementtyp, vattencementtal och silikastoft på betongens självuttorkning

Silikastoft

Silikastoft av fabrikatet Elkem Microsilica användes i denna studie. Det är ett mycket finkornigt pulver huvudsakligen bestående av amorf kiselsyra. Det har en specifik yta på 15 000 -30 000 m²/kg.

Normsand

Som ballastmaterial användes normerad sand enligt SS-EN 196-1 (2001). Sanden har maximal stenstorlek 2 mm och levereras i plastpåsar om 1350 gram.

Tillsatsmedel

För att vissa recept skulle vara möjliga att gjuta användes Cementas flyttillsats 92 M som är baserad på sulfon erad melaminpoly kondensat. Torrhalt 35 %.

Vatten

Normaltempererat kranvatten användes i blandningarna.

4.4.2 Recept

I samtliga recept hölls vattenhalten konstant och cementhalten varierades för att åstadkomma skillnader i vct/vbt. Förförsök utfördes för att erhålla gjutbara recept. Flyttillsatsmedel tillsattes där det var nödvändigt för cementbrukets arbetbarhet. I tabell 4.3 redovisas de recept som användes i studien

Tabell 4.3 Cementbruksrecept

<table>
<thead>
<tr>
<th>Delmaterial</th>
<th>vct 0,30</th>
<th>vct 0,40</th>
<th>vct 0,50</th>
<th>vbt 0,30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>750 g</td>
<td>565 g</td>
<td>450 g</td>
<td>675 g</td>
</tr>
<tr>
<td>Silikastoft</td>
<td></td>
<td></td>
<td></td>
<td>75 g</td>
</tr>
<tr>
<td>Vatten</td>
<td>225 g</td>
<td>225 g</td>
<td>225 g</td>
<td>225 g</td>
</tr>
<tr>
<td>Flyttillsats F 92 M</td>
<td>10 g</td>
<td>5 g</td>
<td></td>
<td>10 g</td>
</tr>
<tr>
<td>Normsand</td>
<td>1120 g</td>
<td>1260 g</td>
<td>1350 g</td>
<td>1120 g</td>
</tr>
</tbody>
</table>

4.4.3 Blandning

4. Inverkan av cementtyp, vattencementtal och silikastoft på betongens självuttorkning

![Figure 4.1 Hobart-blandare för tillverkning av cementbruk.](image)

Efter detta stannades blandningen och torrt material som fastnat på kanterna och i botten av blandningskäret skrapades loss med en gummiskrapa. Därefter fortsatte blandningen på hög hastighet i 60 sekunder. Då tillsatsmedel användes tillsattes detta via blandningsvattnet.

4.5 Tillverkning och lagring av provkroppar

Fuktmätningen utfördes i 1-liters plåtburkar med tätslutande lock. Direkt efter blandning applicerades 800 gram cementbruk i varje plåtburk. Detta motsvarar ca. 40 % av satsens totala vikt. Därefter vibrerades burken och det tätslutande locket sattes på. Två burkar tillverkades av varje blandning så att dubbelprov erhölls. 800 gram cementbruk innebar att plåtburken var fylld till ca. en tredjedel.

Efter tillverkning märktes provkropparna och placerades i klimatrum (+20°C, 55 % RF) för lagring.

4.6 Fuktmätning

Genom att cementbruket var helt fuktisolerat kunde ingen uttorkning ske. Uppmätt RF i plåtburkarna återger därför den självuttorkning som sker när cementbruket hydratiserar.

Som nämntes i avsnitt 4.2 inkluderas den RF-sänkande effekten av lösta joner i de uppmätta RF-värdena. Denna effekt är störst för cement med högst mängd löslig alkali och ökar med ökad cementhalt. Den minskar med mängden silikastoft. Effekten av alkali diskuteras i avsnitt 4.9 och i kapitel 2.

RF-givare Vaisala HMP 44 användes för att mäta RF. RF och temperatur avlästes med hjälp av ett avläsningsinstrument kopplat till givaren. Innan mätningarna påbörjades kalibrerades givarna i intervall 79-95 % RF vid temperaturerna 5°C och 20°C. RF-givarna monterades två dygn efter tillverkningen. Vid montering öppnades locken till plåtburkarna under ca. 30 sekunder och RF-givaren monterades via en tätande gummi-packning genom burklocket. Figur 4.2 visar en provkropp med tillhörande RF-givare.
4. Inverkan av cementtyp, vattencementtal och silikastoft på betongens självvittorkning

Figur 4.2 Provkropp för mätning av självvittorkning.

Många av plåtburkarna hade kondens på lockets undersida som torkades bort i samband med monteringen av RF-givarna. Problem med kondens återfanns främst vid vct 0,50 och i de burkar där anläggningscement användes. Det borttorkade kondensvattnet uppgick till ca. 0,5 g - 2,0 g, vilket enbart motsvarar ca. 0,6 åt 2,3 % av total vattenhalt i provet. Mätningen av RF utfördes i luften mellan lock och cementbruk. Mätningarna startade efter 4 dygn och pågick under ca. 28 dygn.

4.7 Resultat

I detta kapitel redovisas resultaten av självvittorkningsmätningarna. De resultat som presenteras är uppmätta värden. Ingen hänsyn har tagits till mätosäkerhet vilken bedöms vara ±2 procentenheter i RF (RBK 2001). Kurvorna baseras på medelvärden av de dubbelprov som utfördes. Dubbelprovens enskilda resultat sammanföll väl ±1 %, se figur 4.3.

Figur 4.3 Självvittorkning hos cementbruk vct 0,40. Dubbelprov.
4. Inverkan av cementtyp, vattencementtal och silikastoft på betongens självuttorkning

4.7.1 Inverkan av vct och silikastoft

Figur 4.4 Inverkan av vct och silikastoft på självuttorkning hos cementbruk baserat på Byggcement (vbt 0,30 innehåller 10 % silikastoft, övriga saknar silikastoft).

Figur 4.4 visar att valet av vattencementtal är mycket starkt avgörande för hur stor effekten av självuttorkning blir. Inblandning av silikastoft har ingen positiv effekt under den uppmätta perioden, snarare verkar det minska självuttorkningseffekten. En orsak kan vara att silikastoftet minskar cementets alkalisänkande effekt genom att reagera kemiskt med alkali. Kurvans lutning för vbt 0,30 tyder dock på att silikastoftet på sikt kan vara gynnsam för självuttorkningen ned till mycket låga RF-nivåer. För övrigt kan man konstatera att det krävs vct 0,40 för att nå 85 % RF via självuttorkning under den första månaden. Vid vct 0,50 har inte ens 90 % RF nåtts inom en månad.

Figur 4.5 Inverkan av vct och silikastoft på självuttorkning hos cementbruk baserat på SH-cement.
Resultaten för SH-cement är principiellt lika med resultaten för Byggcementet. Silikastoftet ger även i detta fall en fördröjd uttorkningseffekt. Denna är dock mindre än för Byggcement. Vid vct 0,40 når cementbruk med SH-cement nivån 85 % RF snabbare än bruken med Byggcement.

![Diagram](image)

Figur 4.6 Inverkan av vct och silikastoft på självuttorkning hos cementbruk baserat på Anläggningscement.

Vid användning av Anläggningscement har silikastoftet en stor inverkan redan under de första tre veckorna. Tendensen är också att effekten blir större med tiden. Anläggningscement ger redan i sig en låg mängd löslig alkali. Följaktligen får inte silikastoftet lika stor RF-höjande effekt som de mer högalkaliska Byggcementet och SH-cementet.

För inget av de provade vattencementtalen nås gränsen 85 % RF under mätperioden. Detta beror med säkerhet på den långsammare hydratationen hos Anläggningscementet.
4.7.2 Inverkan av cementtyp

Figur 4.7 Cementtypens betydelse för självvuttorkning vid vct 0,30.

Vid vct 0,30 är självvuttorkningen hos cementbruket med Anläggningscement mycket lägre än för övriga cement. Skillnaden i RF är nästan 15 % under hela första månaden. Byggcement och SH-cement ger ungefär samma självvuttorkningsförlopp.

Figur 4.8 Cementtypens betydelse för självvuttorkning vid vct 0,40.

Anläggningscementet ger fortfarande klart lägst självvuttorkning men skillnaden till andra cement har minskat. SH-cementet ger vid detta vct något högre självvuttorkning än Byggcementet. En bidragande orsak till detta kan vara att SH-cementet har något högre alkalitet, 0,8 % jämfört med 0,7 % för Byggcement.
4. Inverkan av cementtyp, vattencementtal och silikastoft på betongens självuttorkning

Figur 4.9 Cementtypens betydelse för självuttorkning vid vct 0,50.

Vid vct 0,50 är självuttorkningen mycket lägre än vid de båda lägre vct-nivåerna. Detta gäller för såväl Byggcement som SH-cement. Anläggningscementets uttorkningskurva är tämligen oförändrad jämfört med vad den var vid vct 0,40. SH-cement ger även vid detta vct en större självuttorkning än Byggcement.

Figur 4.10 Cementtypens betydelse för självuttorkning vid vbt 0,30 med 10 % silikastoft.

I likhet med vad som gäller för samtliga bruk utan silikastoft är självuttorkningen lägst hos cementbruket med Anläggningscement. Skillnaden mellan Anläggningscement och Byggcement resp. SH-cement är dock mindre än när silikastoft saknas (se blandningar med vct 0,30, figur 4.7), vilket visar att silikastoftet har en positiv effekt tillsammans med Anläggningscement. Detta framgår även tydligt av figur 4.6 enligt vilken självuttorkningen i bruk med Anläggningscement sker mycket snabbare när silikastoft används. Även SH-cement visar större självuttorkning än Byggcement.
4.8 Slutsatser

Slutsatserna från denna studie kan summeras i följande punkter.

- Vattencementtalet har mycket stor inverkan på självuttorkningen hos cementbruk, och därmed med säkerhet även hos betong. För att kunna uppfylla kravet 85 % RF med hjälp av enbart självuttorkning krävs ett vct som är lägre än 0,40. Detta gäller för Byggcement och SH-cement. Vid användning av Anläggningscement krävs ånnu lägre vct samt inblandning av silikastoft för att nå 85 % gränsen.

- SH-cement ger något snabbare självuttorkning än Byggcement.

- Metoden att mäta självuttorkning med hjälp av fuktgivare, i detta fall av typ Vaisala, placerade i delvis cementbruksfyllda plåtburkar är mycket enkel att använda. Det enda negativa som observerats med metoden är den kondens som bildas under de första dygnen. I detta skede är emellertid även RF i betongen närmare 100 % varför kondensen saknar praktisk betydelse. Kondensvattnet måste dock avlägsnas för att de fortsatta RF-mätningarna, som ju sker i luften i burken, skall bli riktiga.

4.9 Diskussion

Silikastoft

Orsaken till att silikastoft har olika effekt på olika cementtyper av är inte klarlagd. Några icke verifierade hypoteser kan framföras:

2. Silikastoft ger en ”fillereffekt” vilken kan tolkas så att det tillhandahåller ett mycket stort antal nukleeringsplatser för cementreaktionen. Detta skulle kunna tänkas leda till att en mera välordnad struktur hos cementgelen utvecklas och att därmed porstrukturen förfinas. En liknande fillereffekt bör emellertid även andra typer av filler ha. SH-cementet och Byggcementet har i sig själva mycket hög specifik yta med ett stort antal fina partiklar (se tabell 4.2) vilket möjligt gör att silikastoftets fillereffekt vid dessa cement blir liten eller noll.

Alkalieffekten

Den s.k. ”alkalieffekten” kan delvis förklara varför skillnaden i självuttorkning är så stor mellan Anläggningscement och Bygg/SH-cement. Tabell 4.4 visar hur stor RF-sänkningen blir på grund av alkaliteten för de tre cementen och vid de tre vattencementtalen då cementbruket är 3 dygn gammalt och vattenmättat. Resultaten är beräknade enligt avsnitt 2.9. Värden på hydratationsgraden α är inte mätta utan antagna på basis av andra undersökningar.

<table>
<thead>
<tr>
<th>Cementtyp</th>
<th>$\alpha = 0.30$</th>
<th>$\alpha = 0.40$</th>
<th>$\alpha = 0.50$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anläggningscement</td>
<td>0,20 1,8 %</td>
<td>0,30 1,3 %</td>
<td>0,40 1,1 %</td>
</tr>
<tr>
<td>Löslig (Na2O)${ekv}$ = 0,4 %</td>
<td>0,30 3,3 %</td>
<td>0,40 2,5 %</td>
<td>0,50 2,0 %</td>
</tr>
<tr>
<td>Byggcement</td>
<td>0,30 3,3 %</td>
<td>0,40 2,5 %</td>
<td>0,50 2,0 %</td>
</tr>
<tr>
<td>Löslig (Na2O)${ekv}$ = 0,7 %</td>
<td>0,35 3,9 %</td>
<td>0,45 2,9 %</td>
<td>0,55 2,3 %</td>
</tr>
</tbody>
</table>

Alkalieffekten innebär alltså att en viss del av uppmätt RF-sänkning hos cementbruken inte behöver bero på verklig självuttorkning. Den stora skillnad i självuttorkning som finns mellan Anläggningscement och Bygg / SH-cement kan till viss del förklaras genom skillnaden i löslig alkali.

Inblandning av silikastoft medför att alkaliteten minskar genom reaktion med porlösningens OH⁻ joner. Vattenmättad betong med 10 % silikastoft kan förväntas ha RF 100 %.
4. Inverkan av cementtyp, vattencementtal och silikastoft på betongens självuttvorkning
5. Inverkan av simulerat regn på uttorkning av nygjuten betong

5.1 Bakgrund

Dagens krav på uttorkning av betong i kombination med ett högt byggtempo gör att det är viktigt att eliminera alla faktorer som kan fördöja uttorkningen. En sådan faktor är att bottenplattor och bjälklag av betong ofta utsätts för regn i samband med husproduktion.

Det är ovanligt att åtgärder vidtas för att skydda betongen mot nederbörd. Det är därför vanligt förekommande att regn ansamlas under en längre tid på betongytan, se figur 5.1. Detta innebär att betongen fritt kan suga in vatten som kan ta lång tid att torka ut.

Figur 5.1 Vattenansamling i samband med nyproduktion.

Det är allmänt känt att en väl härdad betong med lågt vattencementtal (< 0,40) är mycket tät och att den därför suger in liten mängd vatten jämfört med en normal husbyggnadsbetong (vct > 0,65). Det innebär att om en redan uttorkad betong utsätts för vatten så kommer vatteninsugningen att bli mindre i den högvärdiga betongen. I båda betongtyperna höjs dock den inre RF i betongen på grund av insugningen, ofta till samma höga nivå. Uttorkningen går sedan långsamt. Fallet behandlas i kapitel 6.

\[L = 0.0625 \cdot \alpha \cdot C \]

Där L är volymen skapade självuttorkningsporer (liter/m³), \(\alpha \) är hydratationsgraden och C är cementhalten (kg/m³).
5. Inverkan av simulerat regn på uttorkning av nygjuten betong

Exempel: \(vct \ 0,40: \ C = 420 \text{ kg/m}^3 \)
\[\alpha = 0,25 \text{ (ungefär 3 dygns ålder vid } +5 \degree C) \]
\[L = 6 \text{ liter/m}^3 \]
\[\alpha = 0,45 \text{ (ungefär 7 dygns ålder vid } +5 \degree C) \]
\[L = 12 \text{ liter/m}^3 \]

Exempel: \(vct \ 0,70: \ C = 250 \text{ kg/m}^3 \)
\[\alpha = 0,25 \text{ (ungefär 3 dygns ålder vid } +5 \degree C) \]
\[L = 4 \text{ liter/m}^3 \]
\[\alpha = 0,50 \text{ (ungefär 7 dygns ålder vid } +5 \degree C) \]
\[L = 8 \text{ liter/m}^3 \]

Beräkningen visar att 4 å 6 liter vatten per m\(^3\) teoretiskt sett skulle kunna sugas in under de första tre dygnen och 8 å 12 liter per m\(^3\) under den första veckan om temperaturen är +5\degree C. Vid högre temperatur är den möjliga insugningen några liter högre. Mera vatten kan i princip sugas in i den högvärdigare betongen. Insugningen får två negativa effekter:

1. Den självuttorkning i högvärdig betong som normalt skulle ha skett om betongen inte utsatts för vatten (se kapitel 4) kan eventuellt minska eller helt ubele.
2. Vatteninsugningen fördröjer starten av uttorkning utåt. Detta innebär även att betongen är tätare på grund av ökad hydratation när uttorkning väl startar.

Kunskapen om hur stor effekt en tidig nederbörd har på betongens uttorkning är dåligt känd vilket är bakgrunden till denna studie.

Det experimentella arbetet i denna studie har utförts av Andreas Abrahamsson och Kristian Tammo. Resultaten finns publicerade i examensarbetet (Abrahamsson & Tammo 2003).

5.2 Syfte

Syftet med denna studie var att undersöka hur betong med olika vct påverkas av regn i samband med gjutning. Inverkan av regnets varaktighet studerades också. Särskilt intressant ansågs det vara att undersöka mängden vatten som betong med låga vct tar upp innan den hunnit bli ”tät” på grund av hydratation.

5.3 Försöksuppläggning

I denna studie provades betong med 5 olika vattencementtal, vct. Dessa var 0,35; 0,40; 0,45; 0,55 samt 0,70. Av varje betong tillverkades 5 provkroppar. En av dessa fungerade som referens utan att utsättas för vatten. Övriga fyra provkroppar utsattes för vatten med olika varaktighet.

Vattnet påfördes 3 tim efter gjutning och hade en varaktighet av 1, 2, 4 resp. 7 dygn. Provkropparna lagrades i 5\degree C och 80 % RF under de första fyra veckorna, därefter skedde lagring i 20\degree C och 60 % RF.
5. Inverkan av simulerat regn på uttorkning av nygjuten betong

Uttorkningen av provkropparna registrerades med RF-givare placerade 15 mm från ytan samt på ekvivalent mätdjup vilket var 48 mm (Begreppet ekvivalent mätdjup definieras i avsnitt 1.5.1).

5.4 Betongtillverkning

5.4.1 Delmaterial

Cement: Slite Byggcement (CEM II/A-LL 42,5 R)

Ballast: Grus, Åstorp 0- 8 mm
Krossad kvartsit, Hardeberga 8-12 mm
Krossad kvartsit, Hardeberga 12-16 mm

Tillsatsmedel: Flyttillsats, Cementa F 92 M, Torrhalt 35 %

5.4.2 Betongrecept

Betongrecepten som användes presenteras i tabell 5.1. De baserades på recept som erhölls från en av Sveriges största betongtillverkare. De nominella vattencementtalen är inte justerade med avseende på flyttillsatsens vatteninnehåll. Verkligt vct som justerats med avseende på tillsatsmedlets vattenhalt framgår också av tabellen.

Tabell 5.1 Betongrecept angivet i kg/m3.

<table>
<thead>
<tr>
<th>Nominellt vct</th>
<th>vct 0,35</th>
<th>vct 0,40</th>
<th>vct 0,45</th>
<th>vct 0,55</th>
<th>vct 0,70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>500</td>
<td>435</td>
<td>400</td>
<td>340</td>
<td>260</td>
</tr>
<tr>
<td>Blandningsvatten</td>
<td>175</td>
<td>174</td>
<td>180</td>
<td>185</td>
<td>182</td>
</tr>
<tr>
<td>Vatten från tillsatsmedel</td>
<td>4,55</td>
<td>3,39</td>
<td>3,12</td>
<td>2,21</td>
<td>1,69</td>
</tr>
<tr>
<td>Verkligt vct</td>
<td>0,359</td>
<td>0,408</td>
<td>0,458</td>
<td>0,551</td>
<td>0,707</td>
</tr>
<tr>
<td>Grus 0-8</td>
<td>853</td>
<td>882</td>
<td>889</td>
<td>908</td>
<td>972</td>
</tr>
<tr>
<td>Sten 8-12</td>
<td>426</td>
<td>441</td>
<td>444</td>
<td>454</td>
<td>486</td>
</tr>
<tr>
<td>Sten 12-16</td>
<td>426</td>
<td>441</td>
<td>444</td>
<td>454</td>
<td>486</td>
</tr>
<tr>
<td>Flyttillsats 92 M</td>
<td>1,4 %</td>
<td>1,2 %</td>
<td>1,2 %</td>
<td>1,0 %</td>
<td>1,0 %</td>
</tr>
</tbody>
</table>

Tillsatt mängd flyttillsatsmedel (inklusive vatten) anges i % av cementvikten

5.4.3 Betongblandning

Betongen blandades i satser om 90 liter i en 150-liters tvångsblandare. Först blandades de torra delmaterialen i ca. 2 minuter. Därefter tillsattes vatten och tillsatsmedel och blandningen fortsatte ca. 5 min. Betongkonsistensen vid avslutad blandning var halvflyt, vilket motsvarade ett sättmått mellan 150 och 200 mm.
5.5 Tillverkning av provkroppar

5.5.1 Gjutformar

Den kvarsittande gjutformen bestod av ett polypropenrör med dimensioner enligt figur 5.2.

![Diagram av gjutformens dimensioner](image)

Figur 5.2 Gjutformens dimensioner.

Röret var fastskruvat i en bottenplatta av formplyfa, se figur 5.3. Skarven mellan rör och bottenplatta tätades med silikon. Med den kvarsittande bottenplattan skapades enkelsidig uttorkning för provkropparna. Höjden 120 mm motsvarar därför ett bjälklag som torkar dubbelsidigt och är 240 mm tjockt, vilket är representativt för ett normalt betongbjälklag i dagens byggande.

![Gjutform på bottenplatta med monterade mätrör och bultar](image)

Figur 5.3 Gjutform på bottenplatta med monterade mätrör och bultar.

I varje gjutform monterades mätrören till RF-givarna genom polypropenröret. Två mätrör placerades 15 mm respektive 48 mm från formens överkant. De försköts ca. 100 mm i horisontalled för att förhindra att givarna störde varandra.
5. Inverkan av simulerat regn på uttorkning av nygjuten betong

För att undvika att betong trängde in i mätröret i samband med gjutning monterades en lång bult genom varje mätrör, se figur 5.4. Bultarna avlägsnades genom att skruvas ut då betongen hårdnat.

![Diagram showing mätröret](image)

Figur 5.4 Principskiss över mätrörets montering. (Abrahamsson & Tammo 2003)

5.5.2 Gjutning

Vid gjutningen fylldes gjutformarna med betong. Provkropparna bordvibrerades och övertytan jämnades av. Ett plåtrör, 250 mm i diameter och ca. 40 mm högt, placerades centriskt på de provkroppar som skulle vattenbegjutas, se figur 5.5. Plåtröret trycktes ned ca. 5 mm i betongen för att förhindra att vatten som sedan hälldes i röret rann ut. Därefter vibrerades provkroppen på nytt så att betongen slöt tätt kring plåten.

![Provkroppar med vattenfyllda plåtrör](image)

Figur 5.5 Provkroppar med vattenfyllda plåtrör.
5.6 Lagring av provkroppar

Direkt efter gjutningen placerades provkropparna i klimatrum för lagring. Plåtröten fylldes med vatten ca. 30 minuter efter gjutningen för de provkroppar som skulle utsättas för vatten. Vattnets varaktighet var 1, 2, 4 respektive 7 dygn. Referensproverna membranhärdades första dygnet genom att svepas in i tät plast, se figur 5.6. Därefter togs plasten bort och referensproverna fick torka fritt.

Figur 5.6 Membranhärdning av referensprovkroppar.

För att efterlikna verkliga förhållanden på svenska byggplatser under kalla årstiden lagrades provkropparna de första fyra veckorna i klimatet 5°C och 80 % RF. Vissa bekymmer med klimatanläggningen förekom vilket gjorde att klimatet under vissa perioder blev något annorlunda. Det verkliga klimatet redovisas i appendix 1.

Efter 4 veckor flyttas provkropparna och placeras i klimatet 20°C och 60 % RF

5.7 Fuktmätning

RF-givare av typ Vaisala HMP 44 användes för att mäta RF i provkropparna. RF och temperatur avläsas med hjälp av ett avläsningsinstrument kopplat till givaren. Innan mätningarna påbörjades kalibrerades givarna i intervallen 75 - 95 % RF vid temperaturerna 5°C och 20°C. Kalibreringen gjordes i en fuktgenerator vid avd. Byggnadsmaterial vid LTH.

Givarna monterades i mätrören ca. 1 vecka efter gjutningen. På mätdjupet 15 mm fick givarna sitta kvar under hela tiden. På grund av att antalet givare var begränsat var det nödvändigt att flytta de givare som användes på mätdjupet 48 mm. Detta gjordes efter ett förutbestämt mätschema.

Givarna som flyttades monterades 24 timmar före avläsning vid de två högsta vct-talen (0,55 och 0,70). Vid övriga vct monterades givarna 48 timmar före avläsning. Skillnaden i tid berodde på att det tog längre tid för en betong med lågt vct att komma i jämvikt med den luft i mätröret vilken fuktmätningen utfördes.
5.8 Resultat

5.8.1 Uttorkning av icke fuktbelastade referensprover

I figurerna 5.7-5.8 redovisas uttorkningen för referensprovkropparna, vilka inte utsatts för vatten. Samtliga referensprovkroppar membranhärdades första dygnet för att undvika tidig torkning och plastiska krympsprickor. Därefter fick de torka fritt.

Figur 5.7 Uttorkningsförlopp hos icke regnbelastade provkroppar, mätdjup 15 mm.

Figur 5.8 Uttorkningsförlopp hos icke regnbelastade provkroppar, mätdjup 48 mm.
Resultaten visar att valet av vattencementtal har mycket stor betydelse för uttorkningsförloppet. De normala husbyggnadsbetongerna (0,55 och 0,70) torkar betydligt långsammare än betongerna med vct 0,45 eller lägre. På det ekvivalenta djupet 48 mm är betydelsen av vct tydligast. Denna effekt av vct bekräftar resultaten i kapitel 4.

I Figur 5.9 visas uttorkningen på båda mättnivåerna för det högsta och lägsta undersökta vct (0,70 respektive 0,35).

Figur 5.9 Jämförelse av uttorkningsförlopp för icke regnbelastade provkroppar med vct 0,35 och 0,70.

Figuren visar tydligt effekten av självuttorkning. Skillnaden är ca. 10 % de första 50 dygnen. Därefter lutar kurvorna mindre för betongen med lågt vct, vilket tyder på att självuttorkningen avstannat och uttorkning genom diffusion dominerar.

På grund av den öppnare porstrukturen har betongen med vct 0,70 högre ångpermeabilitet än betong med vct 0,35 vilket gör att uttorkningen utåt är snabbare. Det kommer dock att dröja mycket lång tid innan RF är lika för de båda betongerna.

OBS: Minskatt vct innebär att porlösningens alkalitet ökar, vilket i sin tur medför att RF minskar. En viss del av RF-sänkningen vid sänkt vct beror på denna effekt. Denna kommentar gäller även resultaten som redovisas nedan.
5. Inverkan av simulerat regn på uttorkning av nygjuten betong

5.8.2 Uttorkning av fuktbelastade prover

I detta avsnitt redovisas hur simulerat tidigt regn inverkar på betongens uttorkning. Proverna utsattes redan 3 timmar efter gjutning för fritt vatten under olika lång tid (1, 2, 4 resp. 7 dygn).

I figurerna 5.10 – 5.19 visas även resultatet för de ej fuktbelastade referensproverna för att åskådliggöra effekten av fukt.

Figur 5.10 Inverkan av simulerad regnbelastning på uttorkningen för vet 0,35, mätdjup 15 mm.

Figur 5.11 Inverkan av simulerad regnbelastning på uttorkningen för vet 0,35, mätdjup 48 mm.
5. Inverkan av simulerat regn på uttorkning av nygjuten betong

Vid vct 0,35 är inverkan av regnet påtaglig på 15 mm mätdjup. RF ökar med i förhållande till referensprovet med ca. 5 %. Ökad varaktighet hos ”regnet” ger ökad RF-nivå. Däremot är inverkan mera begränsad på 48 mm djup.

Figur 5.12 Inverkan av simulerad regnbelastning på uttorkningen för vct 0,40, mätdjup 15 mm.

Figur 5.13 Inverkan av simulerad regnbelastning på uttorkningen för vct 0,40, mätdjup 48 mm.

Vid vct 0,40 ger inverkan av regnet ca. 3 % RF-höjning vid 4 och 7 dygns belastning på 15 mm mätdjup. På 48 mm mätdjup är inverkan liten.
5. Inverkan av simulerat regn på uttorkning av nygjuten betong

Figur 5.14 Inverkan av simulerad regnbelastning på uttorkningen för vct 0,45, mätdjup 15 mm.

Figur 5.15 Inverkan av simulerad regnbelastning på uttorkningen för vct 0,45, mätdjup 48 mm.

Vid vct 0,45 är inverkan av regn mer beroende av varaktigheten än vad som gäller för vct 0,35. 7 dygns nederbörd ger ca. 7 % ökning av RF på 15 mm mätdjup. Även på det ekvivalenta djupet 48 mm märks ”regnbelastningen” genom en RF ökning på ca. 3 %.
5. Inverkan av simulerat regn på uttorkning av nygjuten betong

Figur 5.16 Inverkan av simulerad regnbelastning på uttorkningen för vct 0,55, mätdjup 15 mm.

Figur 5.17 Inverkan av simulerad regnbelastning på uttorkningen för vct 0,55, mätdjup 48 mm.

Vid vct 0,55 är regnets varaktighet av stor betydelse. På 15 mm mätdjup är RF-ökningen ca. 7 % vid 7 dygns regnbelastning. Även på 48 mm mätdjup har regnbelastningen en viss inverkan.
5. Inverkan av simulerat regn på uttorkning av nygjuten betong

Figur 5.18 Inverkan av simulerad regnbelastning på uttorkningen för vct 0,70, mätdjup 15 mm.

Figur 5.19 Inverkan av simulerad regnbelastning på uttorkningen för vct 0,70, mätdjup 48 mm.

Sju dygns regn vid vct 0,70 ger ca. 5 % ökning av RF på 15 mm djup i förhållande till icke regnbelastat prov, samt ca. 3 % på 48 mm djup. Även för detta vet ger den längsta fuktbelastningen störst inverkan på uttorkningen.
5. Inverkan av simulerat regn på uttorkning av nygjuten betong

5.8.3 Förlängd erforderlig uttorkningstid orsakad av regnbelastning

I detta avsnitt presenteras hur stor inverkan regnet har på uttorkningstiden för att nå de normalt tillämpade uttorkningskraven 90 % respektive 85 % RF på det ekvivalenta mätdjupet 48 mm.

Figur 5.20 Erforderlig uttorkningstid för att nå 90 % RF på ekvivalent djup.

Figur 5.21 Erforderlig uttorkningstid för att nå 85 % RF på ekvivalent djup.

Figuerna visar att när RF-kravet är 85 % RF så är regnets inverkan mycket stor för vct 0,55 och 0,70. Detta beror på att uttorkningskurvorna vid dessa vct är mycket flacka i området kring 85 % RF. En liten ökning av RF förorsakad av regn får därför en stor effekt på uttorkningstiden. För vct 0,35 och 0,40 är fördröjningen ungefär lika lång som regnets varaktighet.
5.9 Slutsatser

Slutsatserna från denna studie kan summeras i följande punkter.

- Betongens vattencementtal, vct, är den parameter som har störst inverkan på uttorkningen. Detta gäller oavsett hur lång tid betongen utsatts för "regnbelastning".

 Erforderlig uttorkningstid för att nå 90 % RF på ekvivalent djup är mindre än 3 veckor för vct 0,35 och 0,40. För vct 0,70 erfordras upp till 10 veckor vid lång regnbelastning.

Motsvarande torktider för att nå 85 % RF är 4 veckor resp 36 veckor.

- Vattenbelastning på betongytan i mycket tidig ålder (redan innan betongen härdat), t. ex. av regn, skapar inga väsentliga uttorkningsproblem hos betong med lågt vct (≤ 0,40). Det bör därför inte ge några uttorkningsproblem om man vattenhärder denna typ av betong för att t ex undvika plastiska krympsprickor. Denna slutsats bekräftas av en annan studie (Gränne 2004) som undersökt vatteninsugning i betong med låga vattenbindemedelstal.

- Regn eller annan vattenbelastning i mycket tidig ålder har stor inverkan om fuktbelastningen har några dygn varaktighet, och betongens vct är lika med eller högre än 0,45.

- Vid högt vct (0,70), och när kravet på RF är 85 %, kan uttorkningstiden fördubblas i förhållande till referensbetongen om konstruktionen utsätts för 7 dygnens vattenbelastning.

- Vid låga vct (0,35-0,40) motsvaras födröjningen i uttorkningstid ungefär av vattenbelastningens varaktighet.

5.10 Diskussion

Låga vct

Orsaken till att regnpåverkan är så liten vid låga vct torde bero på att självuttorkningen är den dominerande torkmekanismen hos dessa betonger. Teoretiskt kan, som visades i avsnitt 5.1, maximalt ca. 6 liter vatten sugas in i sådan betong under 3 dygn och 12 liter under 7 dygn. I verkligheten torde enbart den övre delen av betongen kunna nå dessa insugningsnivåer eftersom betongens snabbt ökande täthet gör det svårt för allt vatten som teoretiskt skulle kunna sugas in verkligen sugs in över hela betongtätheten.

När fuktbelastningen avbryts kommer fortfarande en stor självuttorkning att ske eftersom en stor del av hydratationen återstår. Inverkan av fuktbelastning på erforderlig uttorkningstid tycks vara i stort sett identisk med varaktigheten hos fuktbelastningen. Detta tyder på att självuttorkning fortgår trots att övertytan hålls fuktig.
Höga vct

Vid högre vct är den möjliga insugningen under 3 respektive 7 dygn enbart vara ca. 4 å 8 liter per m³. Den öppna strukturen i ung betong med högt vct gör att detta vatten troligen också sugs in varvid RF i betongen blir ca. 100 % under hela fuktbelastningstiden. Fuktbelastningen gör att verklig torkstart därför förskjuts motsvarande fuktbelastningens varaktighet. När fuktbelastningen avbryts och betongen därför börjar torka utåt har strukturen hunnit bli tämligen tät varför uttorkningshastigheten blir lägre än i referensbetongen, som ju torkar redan efter 1 dygn.

Ju längre betongytan varit fuktig, desto tätare är betongen vid torkstart, och desto långsammare går därför uttorkningen. Detta förklarar den stora effekten av fuktbelastningens varaktighet på erforderlig RF när vct är högt.

I betong med högt vct är dessutom självtuttorkningseffekten obetydlig, se kapitel 4.
6. Vatteninsugning i betong i samband med vattenskada

6.1 Bakgrund

Genom att välja lämplig betongkvalitet som tar upp liten mängd vatten vid skadetillfället, kan man minska torkåtgärdens varaktighet. En betong som inte suger in vatten är att vattenskadan kan uppstå och utstå tidigare vilket gör att den kan begränsas. En tänkbar nackdel med en tät betong kan emellertid vara att omgivande material kan utsättas för en högre fuktbelastning om inte vattenläckaget upptäcks i tid.

En delvis teoretisk analys av erforderliga torktider efter vattenskada har genomförts tidigare (Hedenblad 1993b). De torktider som anges där är oftast mycket långa, främst beroende på att man vid analysen antagit att skadan pågått så länge att hela eller en stor andel av betongkonstruktionen blivit vattenmättad över hela sin djuplek. Dessutom analyseras endast betong med vct 0,6 och 0,7 i ovan nämnda skrift. Det fanns därför behov att ta fram torktider för mer realistiska fall vilket var orsaken till att undersökningen startades.

6.2 Syfte

Syftet med denna studie var att undersöka storleken på vatteninsugningen och därefter uttorkningen hos gammal, välhydratiserad betong av olika kvalitet. Syftet var även att undersöka inverkan av vattenbelastningens varaktighet.

6.3 Försöksuppläggning

I denna studie användes samma provkroppar som tidigare hade använts i undersökningen av regnets inverkan på betongens uttorkning, se kapitel 5. Provkropparna var ca. 5 månader gamla vid starten av detta försök. Enbart provkroppar från kapitel 5 vilka i tidigt skede utsatts för viss tids fuktbelastning före torkning under de ca. 5 månader de lagrats i laboratorieluften användes. Hydratationsgraden var därför hög i samtliga prover. Möjliga var hydratationsgraden något högre i de prover som fukthärdats under 7 dygn och något lägre i de prover som bara fukthärdades under 1 dygn. För beskrivning av fukthärdning hänvisas till kapitel 5. Fukthärdning kallas där ”regnbelastning”.
6. Vatteninsugning i betong i samband med vattenskada

Betongerna i undersökningen hade följande vct: 0,35; 0,40; 0,45; 0,55 samt 0,70. Provkroppstjockleken var 120 mm. Vattnets varaktighet var 3, 7, 14 samt 28 dygn. Provkropparna lagrades i 20°C och 60 % RF under hela försöket. Fuktbelastning och uttorkning skedde ensidigt, mot övertan eftersom provkropparnas sidor och undersida var täckta med tät form. Uppfuktningen och uttorkningen av provkropparna registrerades med RF-givare placerade 15 mm från ovanytan samt på ekvivalent mätjup 48 mm. Dessutom vägdes provkropparna kontinuerligt för att registrera insugen och uttorkad vattenmängd.

6.4 Provkroppar

Till detta försök användes samma provkroppar som i ett tidigare försök med simulerat regn, se kapitel 5. Där framgår också betongrecept samt hur provkropparna tillverkades. Provkropparna hade tät botten och täta sidor. På övertan var en plåtring monterad vilken hade använts som vattenbassäng vid det simulerade regnförsöket. Provkroppstjockleken var 120 mm. Eftersom uttorkningen är ensidig uppåt motsvarar proverna ett bjälklag med 240 mm tjocklek.

Varje form var försedd med två horisontella rör för RF-mätning. De var belägna på 15 resp. 48 mm avstånd från övertan. 48 mm motsvarar det s.k. ekvivalenta djupet, se avsnitt 1.5.1.

Exempel på provkroppar visas i figur 6.1. Totalt användes 20 st. provkroppar, fyra per vct.

Figur 6.1 Provkroppar med vattenbassänger till vatteninsugningsförsök.

Provkropparna var placerade i klimatet 20°C och 60 % RF under hela försöket.
6.5 Vattenbelastning och vägning

Vägningarna fortsatte efter det att vattnet avlägsnats och provkropparna torkade ut.

Genom alla dessa vägningar kunde såväl vattenupptagningen som uttorkningsförloppet beräknas.

6.6 Fuktmätning

RF-givare av typ Vaisala HMP 44 användes för att mäta RF i provkropparna. RF och temperatur avlästes med hjälp av ett avläsningsinstrument kopplat till givaren. Innan mätningarna påbörjades kalibrerades givarna i intervallet 70-95 % RF vid temperaturen 20°C.

Givarna monterades i mätrören belägna på 15 och 48 millimeters djup tre dygn före avläsning av start-RF. Detta värde avlästes strax innan provkropparna utsattes för vatten.

6.7 Resultat

6.7.1 Fukt nivå före vattenbelastning

Provkropparna som användes till denna studie hade olika förhistoria eftersom de hade använts i en tidigare undersökning redovisad i kapitel 5. Det som skiljde dem åt var att de tidigare utsatts för vattenbelastning med varierande varaktighet och med start redan 3 timmar efter gjutning. Den varierande fukthärdningstiden kan ha en viss påverkan på resultaten.

Följande tabell visar hur provkropparna var numrerade samt vilken vattenbelastning de tidigare haft och kom att ha i detta projekt. Tabellen gäller för samtliga vct.

<table>
<thead>
<tr>
<th>Tabell 6.1 Beskrivning av provkroppar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provkropp nr</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

¹) Vattenbelastningen (d.v.s. vattenhärdningen) startade 3 timmar efter gjutning.
I figur 6.2 redovisas RF för samtliga provkroppar omedelbart före vattenbelastning.

Av figuren framgår att prover som haft längst varaktighet av tidig fuktbelastning har högsta begynnelse-RF. Detta gäller alla vct utom 0,35 och i viss mån 0,40 vilket troligen beror på att självuttorkningen i dessa betongtyper är den dominerande uttorkningsmekanismen.

Skillnaden i fuktnivå mellan de 4 proverna av varje vct är emellertid inte anmärkningsvärt stor för någon betongtyp. Som mest skiljer RF på samma nivå med ca. 4 % mellan prov 1 och prov 4. Detta innebär att den initiella porfyllnadsgraden, vilken är mer intressant vid vattenuppsugning än RF, är ungefär lika hög i alla de fyra proverna på samma nivå.
6. Vatteninsugning i betong i samband med vattenskada

För samtliga betongtyper gäller att "ytan" (15 mm djup) är torrare än "det inre" (48 mm) vilket visar att proverna inte är helt i fuktjämnvikt när insugningen startar. Skillnaden i RF mellan "ytan" och "det inre" uppgår som mest till ca. 7 % vid låga vct (0,45 och lägre) och ca. 10 % för de högre vct. Denna differens i RF ger en viss skillnad i initiell porfyllnadsgrad.

Med hjälp av desorptionsisotermen, se figur 2.7, kan man räkna ut porfyllnadsgraden utifrån de start RF som presenterades i figur 6.2. Här följer ett par exempel.

Exempel:

- Vid vct 0,70 är RF för prov 4 ca. 88 % för "inre" och 78 % för "yta".

 Detta ger porfyllnadsgrader av ca. 65 % och 49 %.

- Vid vct 0,40 prov 2 gäller följande värden: RF ca. 78 % (inre) och 72 % (yta).

 Motsvarande porfyllnadsgrader är ca. 68 % och 61 %.

Betongen med vct 0,70 har således något högre porfyllnadsgrad då vatteninsugningen startar.

Startfuktnivåerna och -profilerna är inte helt representativa för en gammal betongkonstruktion eftersom denna före vattenskadan kan förväntas ha kommit i jämvikt med omgivningen. När det gäller fuktnivån är emellertid skillnaden mellan prov och verklig konstruktion inte så stor. Medel-RF i prover på 48 mm djup är ca. 80 %. I en gammal konstruktion kan man förvänta sig något lägre RF.

6.7.2 Insugen och uttorkad vattenmängd

I detta avsnitt redovisas resultatet av de vägningar som utfördes för att undersöka dels hur mycket vatten som sögs in, och dels hur mycket vatten som därefter torkade ut. Mängden vatten uttrycks i kg/m². Ytan har därvid antagits motsvara arean hos "vattenbassängen" d.v.s. plåtcylindern. Denna är 0,049 m².

I verkligheten är effektiva sugytan något större eftersom vatten även sugs snett in i betongen som befinner sig utanför själva bassängen. Vid insugningen kan viss avdunstning ske genom betongytan som befinner sig utanför plåtröret. Betongytan utanför plåtröret borde ha varit förseglad vid försökets start. Vid uttorkningen efter avslutad vatteninsugning är effektiv yta hela provkroppsytan d.v.s. 0,057 m².

Resultaten bör justeras med avseende på effektiv sugarea om de skall användas i beräkningsanläggningar. Justeringen kan utföras med hjälp av datorverktyg som beräknar fuktflöden i två eller tre dimensioner. Liknande justering har gjorts i (Hedenblad 1993a).
Figur 6.3 Vattenabsorption och vattenavgång vid 3 dygns vattenbelastning.

Figur 6.3 visar att den insugna vattenmängden är vct-beroende. Ju högre vct betongen har desto större mängd vatten suger den in. Vct 0,70 suger in nästan 5,5 liter per kvadratmeter. Denna effekt av vct beror naturligtvis på att den för vatteninsugning tillgängliga porvolymen ökar med ökat vct.

Figur 6.4 Vattenabsorption och vattenavgång vid 7 dygns vattenbelastning.
Vid 7 dygns vatteninsugning är inverkan av vct principiellt densamma som för 3 dygns vatteninsugning bortsett från betong med vct 0,35 som har större vatteninsugning än betong med vct 0,40. En förklaring till detta kan vara mikro-sprickbildning. En annan möjlighet är att betongen med vct har en högre initiell uttorkningsgrad på grund av en högre självtorkning. Det finns helt enkelt mer porutrymme för vattenuptagning. Förklaringen är dock osannolik vilket visas av följande beräkning: Skillnaden i upptagen vattenmängd mellan vct 0,35 och 0,40 är ca. 0,6 kg/m². Den maximalt möjliga självtorkningen är ca. 20 liter/m³ vid vct 0,35 och ca. 18 liter/m³ för vct 0,40. Det innebär att skillnaden i tillgänglig porvolym i provet understiger 0,02 liter.

Huvuddelen av vattenabsorptionen sker redan under det första dygnet. Därefter sker en långsam absorption som pågår under hela sugtiden.

För de tre lägsta vct-nivåerna är totala vattenabsorptionen högre än vid tre dygns vattenbelastning. För betongerna med de båda högsta vct-nivåerna är insugningen ungefär densamma vilket visar att 3 dygn kan vara tillräckligt för att vattenmätta dessa mer öppna betonger.

Figur 6.5 Vattenabsorption och vattenavgång vid 14 dygns vattenbelastning.

Vatteninsugningen följer samma mönster som för sugtider 3 och 7 dygn. Även vid 14 dygns vattenbelastning suger betongen med vct 0,35 in mer vatten än betongen med vct 0,40.

För de båda högsta och båda lägsta vct är maximal fuktupptagning är ungefär densamma som för de kortare sugtiderna. För vct 0,45 är vattenupptagningen något lägre vilket inte är helt logiskt men kan förklaras om den initiella fuktnivån är högre. Figur 6.2 talar dock mot denna förklaring.
6. Vatteninsugning i betong i samband med vattenskada

Figur 6.6 Vattenabsorption och vattenavgång vid 28 dygn vattenbelastning.

Vid 28 dygn vattenbelastning suger betong med vct 0,35 betongen in mer vatten än betong med såväl vct 0,40 som vct 0,45. Ett annat svårforklarligt fenomen är att betongen med vct 0,35 minskar i vikt trots pågående vattenbelastning. Någon rimlig förklaring till dessa fenomen har inte hittats.

Uppsugnen vattenmängd kan översättas till ökning av porfyllnadgrad. Denna kan beräknas ur:

\[\Delta S = \frac{Q_w}{V_p} = \frac{Q_w}{C \cdot (vct - 0,19 \cdot \alpha) \cdot 0,12} \]

\(\Delta S \) = ökning av porfyllnadgraden (m³/m³)
\(V_p \) = total porvolym i betongen (m³)
\(Q_w \) = upptagen vattenmängd (kg/m²)
\(C \) = cementhalten (kg/m³)
\(\alpha \) = hydratationsgraden
0,12 = provets tjocklek (m)

Förutsättningen bakom ekvationen är att allt upptaget vatten fördelas jämnt över hela provkroppstjockleken vilket knappast är riktigt, åtminstone inte för betongerna med låga vct. Dessutom antas att insugning sker över en betongarea som motsvarar den sugarea som använts vid beräkningen av vattenupptagningen, d.v.s. ”bassängarean”.

Exempel:

- Vattenupptagningen 5,5 kg/m² för prov 1 av vct 0,70 ger \(\Delta S = 0,31 \) (C är 260 kg/m³ enligt blandningsreceptet, \(\alpha \) antas vara 0,70). Beräkningsmässigt enligt avsnitt 6.7.1 är tillgänglig porfyllnadsgrad baserat på 48 mm djup ca. 0,35. Den observerade vattenupptagningen är därför rimlig och provet har nästan blivit vattenmättat.
6. Vatteninsugning i betong i samband med vattenskada

- Vattenupptagningen 1,5 kg/m³ för prov 1 av vct 0,40 ger \(\Delta S = 0,10 \) (C är 435 kg/m³ enligt blandningsreceptet, \(\alpha \) antas vara 0,60). Tillgänglig porfyllnadssgrad baserat på 48 mm djup är ca. 0,32. I denna tät betong räcker därför inte 3 dygns vattenabsorption till att mätta porsystemet.

Figur 6.7 visar en sammenställning av den maximala vatteninsugningen för alla provkroppar.

![Figur 6.7](image)

Figur 6.7 Maximalt insugen vattenmängd vid olika lång tids vattenbelastningar för betong med olika vct.

Följande tabell visar hur mycket vatten som kan tas upp av respektive betontyp vid upp till 28 dygns vattenbelastning. Värdena baseras på en viss uttorkningsgrad när försöket startade. Om torkningen drivits längre hade säkerligen vattenabsorptionen ökat något medan en lägre uttorkningsgrad hade gett mindre mängd uppsugt vatten.

Tabell 6.2 Vattenuppsugningsförmåga hos olika betongtyper vid torknivå före absorptionens start enligt figur 6.2.

<table>
<thead>
<tr>
<th>Betontyp</th>
<th>Uppsugningsförmåga (l/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>vct 0,70</td>
<td>5,0-6,0</td>
</tr>
<tr>
<td>vct 0,55</td>
<td>3,0-4,0</td>
</tr>
<tr>
<td>vct 0,45</td>
<td>1,5-2,5</td>
</tr>
<tr>
<td>vct 0,40</td>
<td>1,0-1,5</td>
</tr>
<tr>
<td>vct 0,35</td>
<td>1,5-3,0</td>
</tr>
</tbody>
</table>
6. Vatteninsugning i betong i samband med vattenskada

6.7.3 Förändring av relativ fuktighet, RF

Figur 6.8-6.15 visar hur betongens RF påverkades av vattenbelastningen och den omedelbart därefter följande uttorkningen. Mätningarna är utförda på två olika mätdjup, 15 respektive 48 mm från den vattenbelastade betongytan.

![Figur 6.8 RF-förlopp vid 3 dygns vattenbelastning följd av uttorkning i 60 % RF, mätdjup 15 mm](image)

![Figur 6.9 RF-förlopp vid 3 dygns vattenbelastning följd av uttorkning i 60 % RF, mätdjup 48 mm](image)

Vid 3 dygns vattenbelastning sker en kraftig RF-ökning på 15 mm mätdjup. För betongerna med de tre högsta vattencementtalen stiger RF till mer än 95 %. På 48 mm mätdjup är RF ökningen mindre, men även på detta djup passeras RF 95 % för betongerna med vct 0,55 och 0,70.
Vid den efterföljande uttorkningen når betong med samtliga vct, förutom vct 0,70, tillbaka till sitt ursprungliga RF inom 100 dygn. Den kritiska fuktnivån 85 % på ekvivalent djup (48 mm) nås för betong med vct 0,45 redan inom 2 à 3 veckor efter torkstart. För betong med vct 0,55 och 0,70 dröjer det ca. 1,5 månader resp. ca. 3,5 månader (extrapolerat värde). Betong med vct 0,40 och lägre nådde aldrig upp till 85 % RF under vattensugningen.

Figur 6.10 RF-förlopp vid 7 dygns vattenbelastning följd av uttorkning i 60 % RF, mätdjup 15 mm.

RF-ökningen under vattensugningen är stor på båda mätdjupen för betongerna med vct 0,70 och 0,55. Betongen med vct 0,45 har låg RF-ökning på ekvivalent djup men stor RF-ökning på 15 mm djup. Betong med de två lägsta vattencementtalen uppvisar en viss RF-ökning på 15 mm djup medan ökningen på 48 mm djup är liten.

Figur 6.11 RF-förlopp vid 7 dygns vattenbelastning följd av uttorkning i 60 % RF, mätdjup 48 mm.
Liksom för 3 dygn vattenbelastning återgår alla betongerna, förutom den med vct 0,70, till sin ursprungliga fuktnivå inom 100 dygn. Kritiska nivån 85 % RF på ekvivalent djup nås för betong med vct 0,45 inom 1 månad och för betong med vct 0,55 och 0,70 inom 2 månader respektive ca. 4 månader (extrapolerat värde). Dessa tider är desamma som för 3 dygn vatteninsugning vilket troligen beror på att vatteninsugningen var ungefär lika stor i båda fallen. Betong med vct 0,40 och 0,35 nådde inte upp till nivån 85 % under vattenabsorptionsskedet.

Figur 6.12 RF-förlopp vid 14 dygns vattenbelastning följd av uttorkning i 60% RF, mätdjup 15 mm.

Figur 6.13 RF-förlopp vid 14 dygns vattenbelastning följd av uttorkning i 60% RF, mätdjup 48 mm.

Resultaten från försöken med 14 dygn vattenbelastning följer samma mönster som för 3 respektive 7 dygns vattenbelastning. RF ökar mest för vct 0,55 och 0,70.
6. Vatteninsugning i betong i samband med vatternskada

Den kritiska nivån 85 % RF på ekvivalent djup nås inom ca. 1 månad för betong med vct 0,45, 2 månader för vct 0,55 och ca. 4 månader för vct 0,70. Tiderna är räknade från torkstart. Betong med vct 0,35 och 0,40 når inte upp till 85 % RF under vattenupptagningen.

Figur 6.14 RF-förlopp vid 28 dygns vattenbelastning följd av uttorkning i 60 % RF, mätdjup 15 mm.

Figur 6.15 RF-förlopp vid 28 dygns vattenbelastning följd av uttorkning i 60 % RF, mätdjup 48 mm.

Vid 28 dygns vattenbelastning ökar RF i samtliga betonger kraftigt på 15 mm mätdjup. Även på mätdjupet 48 mm ökar RF mer än vid kortare tids vattenbelastning. För övrigt följer resultaten samma mönster som vid de andra vattenbelastningarna. Den kritiska nivån 85 % RF nås inom 1 månad för vct 0,45, ca. 2,5 månader för vct 0,55 och mer än 4 åt 5 månader för vct 0,70. Betong med vct 0,35 och 0,40 nådde inte upptill kritisk RF 85 % under vattenabsorptionsskedet.
6.7.4 Fuktprofiler

Genom att använda uppmätta RF från båda mätdjupen kan man visa hur fuktprofilen förändras med tiden. Fuktprofiler för samtliga vct och vattenbelastningar finns redovisade i appendix 2. Nedan ges några exempel för betong med hög resp. normal kvalitet (vct 0,40 respektive 0,70). Figur 6.16 och 6.17 visar hur fuktprofilen förändras vid 3 respektive 28 dygns vattenbelastning för betong med vct 0,40.

Enligt figur 6.16 ökar RF till 89 % på 15 mm mätdjup efter 3 dygns vattenbelastning. Vid samma tidpunkt har RF på 48 mm djup enbart ökat med 1 % vilket innebär att insugning under 3 dygn enbart sker i de översta centimeterarna. 25 dygns uttorkning har medfört att RF på 15 mm djup har minskat medan RF på det ekvivalent mätdjupet har ökat något vilket visar på en viss fortsatt omfördelning av insuget vatten nedåt i betongen. Efter 50 dygns uttorkning är RF-nivåerna över hela betongtvärsnittet ungefär desamma som omedelbart före fuktbelastningen. Efter 100 dygns uttorkning har RF sjunkit ytterligare och betongen är torrare än när försöket startades.

Vid 28 dygns vattenbelastning ökar RF till 91 % på 15 mm djup. Det sker även en RFökning på ekvivalent mätdjup med ca. 6 %. RF är emellertid fortfarande bara 84 %, d.v.s. den understiger normala kritiska fuktivärden. Efter 25 dygns torkning har RF sjunkit med ca. 11 % på 15 mm djup. På ekvivalent mätdjup har RF bara sjunkit 1 %. Efter 50 dygns uttorkning är RF-nivån något högre än när försöket startades. Efter 100 dygns uttorkning är betongen torrare än när försöket startades.
Figur 6.17 Vct 0,40, vattenbelastning 28 dygn. Fuktprofilens utseende före vattenbelastning (Start RF), efter 28 dygns vattenbelastning samt 25, 50 resp. 100 dygn efter påbörjad uttorkning.

Figur 6.18 och 6.19 visar hur fuktprofilen förändras vid 3 respektive 28 dygners vattenbelastning för betong med vct 0,70.

Figur 6.18 Vct 0,70, vattenbelastning 3 dygn. Fuktprofilens utseende före vattenbelastning (Start RF), efter 3 dygns vattenbelastning samt 25, 50 resp. 100 dygn efter påbörjad uttorkning.
Figur 6.18 visar att redan efter 3 dygn vattenbelastning har RF stigit till 100 % på 15 mm mätdjup och till 98 % på ekvivalent djup. RF-ökningen är alltså mycket högre än vid vct 0,40. 25 dygn efter torkstart har RF sjunkit på båda mätdjupen. Det krävs dock mer än 100 dygn torkning för att RF skall återgå till sin ursprungliga nivå.

Figur 6.19 Vct 0,70, vattenbelastning 28 dygn. Fuktprofils utseende före vattenbelastning (Start RF), efter 28 dygns vattenbelastning samt 25, 50 resp. 100 dygn efter påbörjad uttorkning.

Efter 28 dygns vattenbelastning har RF stigit till ca. 98 å 99 % både på 15 mm djup och på ekvivalent djup. 25 dygn efter torkstart har RF sjunkit på båda mätdjupen men fortfarande är värdet mycket högt (>90 % RF). Det krävs 100 dygns torkning för att RF skall återgå till sin ursprungliga nivå. Trots 28 dygns vatteninsugning nås inte 100 % RF i betongen. Orsaken är troligen den s.k. alkalieffekten, se avsnitt 2.9 och tabell 4.4. Enligt figur 6.14 når RF nästan 100 % omedelbart när betongen utsätts för vatten. Därefter sjunker RF ned till en konstant nivå av ca. 98 å 99 %, troligen beroende på alkali som lösts i porvattnet.

Samtliga figurer ovan och i appendix 2 visar att fuktprofilen snabbt återfår sin normala lutning när betongen börjar torka oavsett betongkvalitet eller varaktighet hos vattenbelastningen. Detta innebär att RF-värdet på ekvivalent mätdjup även bör kunna användas för betong som utsatts för vattenläckage när det gäller att bedöma risken för kommande fuktskador på täta golvmaterial.

Fuktprofilerna visar att vattenbelastningens varaktighet inte har någon större betydelse vid vct 0,70 eftersom vatteninsugningen sker snabbt. För betong med vct 0,40 har varaktigheten större betydelse eftersom vatteninsugningen sker långsamt. Den praktiska betydelsen är dock liten eftersom 85 % RF aldrig passeras på ekvivalent mätdjup trots 28 dygns kontinuerlig vattenupptagning.
6.8 Slutsatser

Slutsatserna från denna studie kan summeras i följande punkter.

- Betongens vct avgör hur mycket vatten som kan sugas in i en delvis uttorkad betong. Vid en tjocklek av 12 cm kan betong med vct 0,70 som torkat i laboratorieluft under 5 månader absorbera ca. 6 liter vatten per kvadratmeter. Initiera fuktivnivån motsvarar ca. 85 % RF 5 cm från fuktexponerade ytan. Betong med vct 0,40 tar under samma förhållanden upp ca. 1,5 liter/m².

- Vattenbelastningens varaktighet har liten betydelse för totalt uppsugen vattenmängd eftersom vattnet sugs in snabbt i betongen.

- Betong med vct 0,35 tar i denna undersökning ofta upp mer vatten än betong med vct 0,40. Orsaken är okänd men kan möjligen bero på mikrosprickbildning till följd av en ökad inre självkrympning. Sprickorna har i sig ingen större volym men de kan ”öppna” betongen för en snabbare absorption.

- För betong med vct 0,70 (vanlig ”Husbyggnadsbetong”) tar det mer än 100 dygn för RF att återgå till den ursprungliga nivå som rådde före vattenbelastningen. För betong med lägre vct är tiden något kortare.

- Av större intresse i praktiken är tiden det tar till dess RF på ekvivalenta djupet når ner till en kritisk nivå. Om denna sätts till 85 % RF krävs följande erforderliga torktider räknade från när vattenbelastningen avbryts:

<table>
<thead>
<tr>
<th>Vattenbelastningstid</th>
<th>Erforderlig torktid, månader</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,35</td>
</tr>
<tr>
<td>3 dygn</td>
<td>0</td>
</tr>
<tr>
<td>7 dygn</td>
<td>0</td>
</tr>
<tr>
<td>14 dygn</td>
<td>0</td>
</tr>
<tr>
<td>28 dygn</td>
<td>0</td>
</tr>
</tbody>
</table>

Resultatet är intressant eftersom det dels visar att vattenbelastningstiden har rätt marginell betydelse för uttorkningstiden, dels att denna ökar med ökat vct. Betong med mycket låga vct kräver i princip torktiden noll eftersom den kritiska fuktivnivån inte hinner uppnås.

- De erforderliga torktiderna är betydligt kortare än de tider som anges i (Hedenblad 1993b) vilket framgår av följande exempel:

 * 12 cm ensidigt torkande golv. Helt vattenmättad betong vid torkstart. Torkklimat 60 % RF. Betong med vct 0,7.

 Torktid enligt Hedenblad (1993b): 856 dygn ≈ 2,3 år.

 En viktig orsak till denna stora skillnad mellan nu genomförda försök och den teoretiska beräkningen är att betongen antas vara fullständigt vattenmättad. En noggrannare analys har inte kunnat göras eftersom beräkningsprinciperna bakom tabeller i Hedenblad (1993b) inte är kända.
6. Vatteninsugning i betong i samband med vattenskada
7. Inverkan av avjämningsmassa på uttorkning av betonggolv

7.1 Bakgrund

Det är idag vanligt förekommande att betonggolv avjämnas med en avjämningsmassa för att det skall få en tillräckligt jämn yta för att golvmaterial skall kunna appliceras. En annan positiv effekt är att man med avjämningsmssan får ett lågalkaliskt skikt som minskar risken för kemisk nedbrytning av limmade golvmaterial. Detta förutsätter dock att avjämningsmassan baseras på bindemedel med låg alkalitet, t.ex. aluminatcement.

Vid avjämningen av golvet används en cementbaserad avjämningsmassa med en underliggande ”primer”. Både primer och avjämningsmassa innehåller vatten som kan påverka fukttilståndet i den underliggande betongen. Dessutom kan den uttorkning som sker genom diffusion utåt försvåras av det nya skikt som påförs.

Det experimentella arbetet i denna studie har utförts av Andreas Abrahamsson och Kristian Tammo. Resultaten finns publicerade i examensarbetet (Abrahamsson & Tammo 2003).

7.2 Syfte

Syftet med denna studie var att undersöka hur golvvavjämning påverkar uttorkningen av betong med olika vct. Även inverkan av tidpunkten då avjämningen utförs skulle undersökas.

7.3 Avjämningsmassa

Avjämningsmassan blandas på byggarbetsplatsen och appliceras oftast genom pumpning enligt figur 7.1. Vattenbindemedelstalet är ca. 1,0 för en normal avjämningsmassa s.k. ”finavjämning”.
7. Inverkan av avjämningsmassa på uttorkning av betonggolv

Det finns även en avjämningsmassa som går under benämningen ”snabb finavjämning”. Den har ett vbt av ca. 0,7. Avjämningsmassan som användes i denna studie var Optiroc finavjämning ABS 148 baserad på Aluminatcement och Portlandcement.

7.4 Försöksuppläggning

I denna studie provades betong med 5 olika vct. De vct som användes var 0,35; 0,40; 0,45; 0,55 samt 0,70. Av varje betong tillverkades 3 provkroppar. En av dessa fungerade som referens, vilket innebar att den inte avjämmandes. De andra två provkropparna avjämndes vid två olika tillfällen, 1 månad respektive 2 månader efter gjutning.

Alla tre provkropparna membranhärdades i 14 dygn. Provkropparna lagrades därefter i 5°C och 80 % RF i fyra veckor. Därefter lagrades de i 20°C och 60 % RF. Utternigrationen av provkropparna registrerades med RF-givare placerade 15 mm från ovanytan av betongen samt på ekivalent mätdjup 48 mm.

7.5 Betongtillverkning

Betongen till denna studie tillverkades vid samma tillfälle som betongen till studien angående inverkan av simulerat regn, se kapitel 5. Läsaren hänvisas därför till kapitel 5 för information om delmaterial, betongrecept samt blandningsmetod.

7.6 Tillverkning och lagring av provkroppar

Även här hänvisas läsaren till kapitel 5 eftersom gjutformar och gjutningsförfarande är detsamma i denna studie.

Direkt efter gjutningen förseglades provkropparnas överyta med tjock plastfolie varefter proverna placerades i ett klimatrum (+5°C, 80 % RF) för lagring, se figur 7.2. Vissa bekymmer med klimatanläggningen förekom. Det verkliga klimatet redovisas i appendix 1.
7. Inverkan av avjämningsmassa på uttorkning av betonggolv

Figur 7.2 Membranhärdning av provkroppar genom försegling av överytan

Provkropparna membranhärdades under 14 dygn. Därefter togs plasten bort och de fick torka fritt uppåt. Efter ytterligare 2 veckor flyttades provkropparna och placerades i klimatet 20°C och 60 % RF.

För varje vet tillverkades 3 provkroppar varav en var referensprov som inte avjämnades och 2 användes för avjämning vid 28 respektive 56 dygns ålder. Såväl före som efter avjämning lagrades proverna i 20°C och 60 % RF.

7.7 Applicering av avjämningsmassa

Avjämningsmassan applicerades 28 dygn respektive 56 dygn efter gjutningen av provkropparna. Uttorkningsgraden hos betongen var alltså något olika vid de två tillfällena. Provkropparna belades ca. 4 timmar före avjämning med en primer av typ Primer MD 16. Primern avses öka vidhäftningen mellan betong och avjämningsmassa och minska vatteninsugningen från avjämningsmassan i betongen.

Figur 7.3 Blandning av avjämningsmassa i Hobart-bruksblandare.
Avjämningsmassan blandades i en Hobart-bruksblandare, se figur 7.3. Vid blandningen tillsattes vatten enligt tillverkarens anvisning till en färdig mix av det torra materialet. Den lättflytande avjämningsmassan applicerades därefter på den primerbelagda provkroppen.

En ”krage” i form av ett löst polypropenrör fungerade som gjutform för avjämningsmassan, se figur 7.4. Detta rör avlägsnades då avjämningsmassan stelnat. Avjämningens tjocklek var 10 mm vilket är en normal tjocklek vid praktisk användning.

Figuur 7.4 Applicering av avjämningsmassa på betongprover.

7.8 Fuktmätning

RF-givare av typ Vaisala HMP 44 användes för att mäta RF i de rör som är ingjutna i provkropparna. RF och temperatur avläses med hjälp av ett avläsningsinstrument kopplat till givaren. Innan mätningarna påbörjades kalibrerades givarna i inter vatet 75-95 % RF vid temperaturerna 5°C och 20°C.

Givarna monterades i mätrören ca. 1 vecka efter gjutningen. Givare på mätdjupet 15 mm satt kvar under hela försöktiden. På grund av att antalet givare var begränsat var det nödvändigt att flytta de givare som användes på mätdjupet 48 mm. Detta gjordes dock efter ett förutbestämt mätschema.

Givarna som flyttades monterades 24 timmar före avläsning för de två högsta vct-talen (0,55 och 0,70). För övriga vct monterades givarna 48 timmar före avläsning. Detta berodde på att det tar längre tid för en betong med lågt vct att komma i jämvikt med den luft i röret i vilken fuktmätningen sker.
7.9 Resultat

7.9.1 Inverkan av vct på uttorkning av obelagd betong

I figurerna 7.5 – 7.6 redovisas uttorkningen för de referensprovkroppar som inte avjämnades. Samtliga referensprovkroppar membranhärdades i 14 dygn. Resultatet kan jämföras med referensprover i kapitel 5. Proverna där var dock membranhärdade enbart 1 dygn.

![Figur 7.5](image1)

Figur 7.5 Utorkning av referensprovkroppar membranhärdade i 14 dygn, mätdjup 15 mm.

![Figur 7.6](image2)

Figur 7.6 Utorkning av referensprovkroppar membranhärdade i 14 dygn, mätdjup 48 mm.
7. Inverkan av avjämningsmassa på uttorkning av betonggolv

Figur 7.5 och 7.6 visar liksom resultaten i kapitel 5 (figur 5.7-5.8) den stora betydelse vct har för betongens uttorkning. Betong med låga vattencementtalt torkar mycket snabbt på grund av självuttorkning. Även betong med höga vattencementtalt torkar ganska snabbt. Detta beror troligtvis på att mätpunkten är placerad nära ytan.

På ekvivalent mätdjup är skillnaden mellan höga och låga vct tydligare än på mätdjupet 15 mm. Detta är logiskt eftersom fuktens transportväg är längre. Detta får större betydelse för betong med högt vct, vars uttorkning i huvudsak baseras på diffusion.

7.9.2 Inverkan av golvavjämning på uttorkning av betongproverna

Figurer 7.7-7.16 visar hur avjämningsmassan påverkar uttorkningen av betongen på de båda mätdjupen.

![Diagram](image)

Figur 7.7 Inverkan av golvavjämning på RF på mätdjupet 15 mm i betong med vct 0,35.

För betong med vct 0,35 ses på mätdjupet 15 mm ingen RF-höjning vid avjämning efter 28 dygn. Vid avjämning efter 56 dygn ses en RFökning med ca. 5%. Den fortsatta uttorkningen av betongen sker med viss fördöjning efter avjämning. 80 % RF nås med ca. 3 dygns fördöjning när avjämning sker efter 28 dygn och med ca. 2 månaders fördöjning när den sker efter 56 dygn.

En kritisk RF-nivå av 85 % RF underskrids redan innan 56 dygn och uppnås inte genom avjämning.
7. Inverkan av avjämningsmassa på uttorkning av betonggolv

Figur 7.8 Inverkan av golvavjämning på RF på mätdjupet 48 mm i betong med vct 0,35.

Även på 48 mm djup sker en viss begränsad uppbromsning av uttorkningen när avjämningsmassan appliceras efter 56 dygn. RF-ökningen är däremot försämbar.

Figur 7.9 Inverkan av golvavjämning på RF på mätdjupet 15 mm i betong med vct 0,40.

För betong med vct 0,40 ses en RF-höjning vid avjämning efter både 28 och 56 dygn. Vid avjämning efter 28 dygn är RF-ökningen ca. 3 % och vid avjämning efter 56 dygn ca. 7 %. Efter 100 dygn skiljer dock inte mer än ca. 2 % mellan de tre provkropparna. Inte heller vid detta vct överskrids den kritiska RF-nivån 85 %.
7. Inverkan av avjämningsmassa på uttorkning av betonggolv

Figur 7.10 Inverkan av golvavjämning på RF på mätdjupet 48 mm i betong med vct 0,40.

På 48 mm mätdjup syns en liten RF-höjning i samband med avjämningen. Inverkan är dock liten. Efter 100 dygn har provkropparna samma RF på ekvivalenta mätdjupet.

Figur 7.11 Inverkan av golvavjämning på RF på mätdjupet 15 mm i betong med vct 0,45.

För vct 0,45 sker en viss liten RF-ökning på 15 mm djup, såväl när avjämning sker efter 28 dygn, som när den sker efter 56 dygn. Ökningen är dock tydligare vid 56 dygn. Utan avjämning nås en kritisk RF-nivå av 85 % RF efter ca. 30 dygn (från gjutning). Vid avjämning efter 28 dygn nås 85 % RF först efter ca. 70 dygn. Vid avjämning efter 56 dygn är betongen så torr att fukttilskottet inte räcker för att 85 % RF skall uppnås. Däremot ger avjämning en klar fördröjning av den fortsatta uttorkningen.
7. Inverkan av avjämningsmassa på uttorkning av betonggolv

Figur 7.12 Inverkan av golvavjämning på RF på mätdjupet 48 mm i betong med vct 0,45.

En liten påverkan på RF av avjämningen kan också ses på det ekvivalenta mätdjupet.

Figur 7.13 Inverkan av golvavjämning på RF på mätdjupet 15 mm i betong med vct 0,55.

Inverkan av avjämningen är stor hos betong med vct 0,55 oavsett när avjämningen sker. Vid applicering efter 28 dygn är RF-höjningen ca. 5 % och efter 56 dygn ca. 9 %. Utan avjämning nås en kritisk RF-nivå av 85 % RF efter ca. 45 dygn. Vid avjämning efter 28 dygn nås 85 % RF först efter ca. 70 dygn och vid avjämning efter 56 dygn efter ca. 100 dygn.
7. Inverkan av avjämningsmassa på uttorkning av betonggolv

Figur 7.14 Inverkan av golnavjämning på RF på mätdjupet 48 mm i betong med vct 0,55.

På ekvivalent mätdjup märks enbart en liten RF-höjning vid avjämning efter 56 dygn. RF-höjningen är ca. 2 %.

Figur 7.15 Inverkan av golnavjämning på RF på mätdjupet 15 mm i betong med vct 0,70.

För vct 0,70 ses en påtaglig ökning av RF på mätdjupet 15 mm. Ökningen är som störst då avjämningen utförs efter 56 dygn (ca. 8 % i RF). På ekvivalent mätdjup är ökningen betydligt mindre (ca. 3 % i RF).

Avjämning vid 28 dygn innebär att tiden att nå en kritisk RF av 85 % fördröjs från 55 dygn hos obelagd betong till 100 dygn när avjämning sker efter 28 dygn, och 110 dygn (extrapolerat värde) när den sker efter 56 dygn.
7. Inverkan av avjämningsmassa på uttorkning av betonggolv

Figur 7.16 Inverkan av golvavjämning på RF på mätdjupet 48 mm i betong med vct 0,70.

På ekvivalent mätdjup är inverkan av avjämning på RF begränsad, såväl när den sker vid 28 dygn som vid 56 dygn.

7.10 Slutsatser

Slutsatserna från denna studie kan summeras i följande punkter.

- 10 mm golvavjämning av aktuell typ ger ett begränsat fukttillskott som höjer RF på ett djup av någon cm ner i betongen. RF ökningen är större ju högre vct betongen har.

- På 50 mm djup (ekvivalent djup) märks i stort sett ingen RF ökning oavsett betongkvalitet. Maximalt uppmät RF-höjning är 2,5 %.

- Betongen fortsätter att torka även efter applicering av 10 mm golvavjämning av aktuell typ. Avjämningsmassan förhindrar alltså inte betongens torkning. Däremot minskar uttorkningshastigheten något efter avjämning.

- Ju tidigare avjämningsmassan appliceras desto mindre blir påverkan på det fortsatta torkförförfallet. Det tycks därför vara gynnsamt att avjämma betonggolvet så snart det är möjligt.

- Maximalt tycks fördöjningen av torktiden ned till en viss konstant RF uppgå till ca. 1 månad.

OBS: Resultaten gäller för aktuell avjämningsmassa. Det är inte självklart att andra avjämningsmassor baserad på andra delmaterial ger samma resultat.
7. Inverkan av avjämningsmassa på uttorkning av betonggolv
8. Uttorkning av prefabricerade betongbjäklag

8.1 Bakgrund

Prefabricerade betongbjäklag används ofta i kontorshus och andra offentliga lokaler. Håldäcksbjäklag HD/F, se figur 8.1, är den vanligaste typen av prefabricerade betongbjäklag. HD/F tillverkas av jordfuktig betong med lågt vct och är förspända. Vid användning av HD/F är det oftast nödvändigt att i vissa begränsade partier komplettera bjäklaget med massiva prefabricerade betongbjäklag D/F. Dessa förspända kompletterande ”passbitar” har samma tjocklek som håldäcket och tillverkas ofta av självkompakterande betong.

Figur 8.1 Prefabricerade håldäcksbjäklag HD/F. (Foto Skanska Prefab)

Hanteringen av prefabricerade bjäklag från tillverkning till färdig byggnad kan variera kraftigt. Det är därför viktigt att man känner till hur hanteringen påverkar uttorkningen av betongbjäklaget.

Det experimentella arbetet i denna studie har utförts av Refik Salievski. Resultaten finns publicerade i examensarbetet (Salievski 2003).

8.2 Syfte

Syftet med denna studie var att studera uttorkningen hos två olika prefabricerade bjäklagstyper (håldäck och massiva) för att dels klargöra hur snabbt de torkar, dels klargöra var man bör utföra fuktmätning före golvläggning. Inverkan av omgivande klimat på uttorkningsförloppet skulle också undersökas.
8.3 Försöksuppläggnings

I denna studie provades två olika prefabiserade betongbjälklag, håldäcksbjälklag HD/F samt homogent bjälklag D/F. Båda bjälklagen tillverkades i fabrik och skickades till avd. Byggnadsmaterial, LTH för provning. HD/F-bjälklaget tillverkades av jordfuktig betong, vct 0,38. D/F-bjälklaget tillverkades av självkompakterande betong, vct 0,40.

Ur de två levererade bjälklagen utsågs totalt 16 provkroppar som lagrades i olika klimat. Klimaten valdes realistiskt med avseende på hur denna typ av bjälklag hanteras från tillverkning till mattläggning. Temperatur, RF samt regn valdes som klimatvariabler. Samtliga provkroppor belades med avjämningsmassa ca. 6 veckor efter tillverkningen.

RF i representativa punkter i proverna registrerades kontinuerligt under ca. 2 månader med givare av typ Vaisala HMP 44.

8.4 Tillverkning av betongbjälklag

Betongbjälklagen som användes i denna studie tillverkades vid en av Skanska Prefabs fabriker i Sverige. Ett HD/F-bjälklag samt ett D/F-bjälklag togs direkt ur ordinarie produktion för användning i denna studie.

Tabell 8.1 Teknisk specifikation (enligt uppgift från Skanska Prefab)

<table>
<thead>
<tr>
<th>Håldäcksbjälklag</th>
<th>Homogen bjälklagsplatta</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD/F H=185 mm</td>
<td>D/F H=185 mm</td>
</tr>
<tr>
<td>Betongtyp</td>
<td></td>
</tr>
<tr>
<td>Jordfuktig betong</td>
<td>Självkompakterande betong</td>
</tr>
<tr>
<td>Vct</td>
<td>0,38</td>
</tr>
<tr>
<td>Betongkvalitet</td>
<td>0,40</td>
</tr>
<tr>
<td>K 50</td>
<td>K 60</td>
</tr>
<tr>
<td>Cementtyp</td>
<td>SH-cement</td>
</tr>
<tr>
<td>Byggcement</td>
<td></td>
</tr>
<tr>
<td>Cementhalt</td>
<td>382 kg/m³</td>
</tr>
<tr>
<td>448 kg/m³</td>
<td></td>
</tr>
<tr>
<td>Vattenhalt</td>
<td>144 kg/m³</td>
</tr>
<tr>
<td>178 kg/m³</td>
<td></td>
</tr>
<tr>
<td>Storlek</td>
<td>Långd 5-9 m</td>
</tr>
<tr>
<td>Långd 5 m</td>
<td></td>
</tr>
<tr>
<td>Bredd 1,1 m</td>
<td>Bredd 1,0 m</td>
</tr>
<tr>
<td>Vikt</td>
<td>283 kg/m²</td>
</tr>
<tr>
<td>444 kg/m²</td>
<td></td>
</tr>
</tbody>
</table>

8.5 Tillverkning och preparering av provkroppar

8.5.1 Åtgärder vid fabrik

Ur produktionen utvaldes ett HD/F- samt ett D/F-bjälklag som skulle användas i denna studie. Ur de aktuella bjälklagen tillverkades de provkroppar som skulle skickas till LTH. Utsägningen av provkropparna gjordes direkt efter avformningen ca. 16 timmar efter gjutningen.

Ur HD/F-bjälklaget sågades 8 provkroppar ut. Provkropparnas bredd valdes så att de innehöll två kanaler vardera. Provkropparnas dimensioner var B=284 mm, H=185 mm, L=300 mm.
8. Utorkning av prefabricerade betongbjälklag

Ur D/F-bjälklaget sågades 8 provkroppar ut. Provkropparnas dimensioner var B=250 mm, H=185 mm, L=250 mm.

Omedelbart efter sågning förseglades provkropparna med plast för vidare transport till LTH.

8.5.2 Åtgärder vid LTH

Provkropparna levererades med lastbil ca. 2 dagar efter gjutningen. Vid LTH avlägsnades först plastförseglingen. Därefter försågs HD/F-provkropparna med plexiglasskivor på kortsidorna, se figur 8.2. Plexiglasskivornas kanter förseglades med tät aluminiumtejp för att förhindra att uttorkning kunde ske genom kanalerna. Långsidorna av provkropparna förseglades med polyetenfolie, 0,2 mm. Ovansida och undersida lämnads fria för att efterlikna dubbelsidig uttorkning.

![Figur 8.2 Provkropp av HD/F med plexiglasskivor och mätrör för RF-mätning.](image)

D/F-provkropparna fuktspärrades genom att samtliga sidor bortsett från ovan- och undersidan förseglades med plast.

90 mm djupa borrhål för RF-mätning borrades horisonellt från "provkroppsgaveln", 37 mm, under ovanytan på samtliga provkroppar. Detta motsvarar 20 % av bjälklagstjockleken vilket är det ekvivalenta mätdjupet vid dubbelsidig uttorkning. I HD/F-provkropparna placerades även en mätpunkt för mätning av RF i kanalluft. Placeringen av borrhålen i HD/F- och D/F-proverna ses i figur 8.3 och figur 8.4.

![Figur 8.3 Måttatt HD/F- provkropp med markerade mätpunkter.](image)
8. Uttorkning av prefabricerade betongbjälklag

De provkroppar som skulle vattenbelastas försågs med en ram av plexiglas runt randen på ovensidan så att en ”bassäng” bildades. De provkroppar som skulle membranhärdas var under den aktuella membranhärdningsperioden täckta med plast på ovensidan och undersidan.

8.6 Lagring av provkroppar

Direkt efter prepareringen hälldes vatten i bassängerna på vissa prover varefter samtliga provkroppar placerades i klimatrum för lagring. Proverna var då 3 dygn gamla. Två olika klimatrum användes:

Klimatrum 1: +5°C, 80 % RF
Klimatrum 2: +20°C, 60 % RF

Det visade sig vara svårt att hålla konstant temperatur i klimatrum 1. Klimatdata från detta klimatrum redovisas i appendix 1.

8.6.1 Klimatvariationer

Provkropparna utsattes för olika ”klimat” vilka avsåg att simulera vanliga lagringsförhållanden i fält. Variation gjordes därför med avseende på följande parametrar:

1. Temperatur; +5°C och +20°C.
2. Relativ fukt hos omgivande luft; 60 % RF under 14 eller 28 dygn, 80 % RF under 28 dygn, membranhärdning under 14 dygn.
3. Simulerat regn under 14 dygn eller 28 dygn.

Den tidsmässiga ordningsföljden mellan olika typ av exponering varierades.

Totalt användes 8 olika klimat. Dessa visas grafiskt i figur 8.5.
8. Uttorkning av prefabricerade betongbjälklag

<table>
<thead>
<tr>
<th>Klimat</th>
<th>0</th>
<th>14d</th>
<th>28d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5, regn</td>
<td>+5, regn</td>
<td>+20, 60%RF</td>
</tr>
<tr>
<td>2</td>
<td>+5, 80%RF</td>
<td>+5, 80%RF</td>
<td>+20, 60%RF</td>
</tr>
<tr>
<td>3</td>
<td>+20, regn</td>
<td>+20, regn</td>
<td>+20, 60%RF</td>
</tr>
<tr>
<td>4</td>
<td>+20, 60%RF</td>
<td>+20, 60%RF</td>
<td>+20, 60%RF</td>
</tr>
<tr>
<td>5</td>
<td>+5, regn</td>
<td>+20, 60%RF</td>
<td>+20, 60%RF</td>
</tr>
<tr>
<td>6</td>
<td>+20, regn</td>
<td>+20, 60%RF</td>
<td>+20, 60%RF</td>
</tr>
<tr>
<td>7</td>
<td>+20, regn</td>
<td>+20, membran</td>
<td>+20, 60%RF</td>
</tr>
<tr>
<td>8</td>
<td>+20, 60%RF</td>
<td>+20, regn</td>
<td>+20, 60%RF</td>
</tr>
</tbody>
</table>

Figur 8.5 Grafisk översikt över klimatvariationer.

8.7 Avjämning av provkroppar

Vid byggande med prefabricerade betongbjälklag av typen HD/F och D/F måste golven avjämnas. Detta beror på att bjälklagen alltid blir överhöjda på grund av de förspända linorna som är placerade i bjälklagets underkant. Överhöjningen kan vara något olika stor hos olika element vilket gör det färdiga bjälklaget ojämnt. Dessutom blir det skarvar mellan bjälklagen som man vill bli av med före golvläggning.

För att efterlikna verkligheten avjämnades samtliga provkroppar ca. 6 veckor efter tillverkningen. Avjämningsmassan som användes var Optiroc ABS 148 vilken är baserad på en blandning av Aluminatcement och Portlandcement. Primern som applicerades ca. 4 timmar före avjämning var av typ Optiroc MD 16. Avjämningen var ca. 10 mm tjock. För att kunna applicera avjämningen monterades en sarg på provkroppen, se figur 8.6.

Figur 8.6 Avjämning av provkroppar.
8.8 Fuktmätning

RF-givare av typ Vaisala HMP 44 användes för att mäta RF i provkropparna. RF och temperatur avläses med hjälp av ett avläsningsinstrument kopplat till givaren. Innan mätningarna påbörjades kalibrerades givarna i intervallet 79-95 % RF vid temperaturerna 5°C och 20°C.

Mätningen av RF utfördes på normenligt djup (20 % av betongtjockleken) på samtliga provkroppar. I håldäcksbjälklagen registrerades även RF i kanalerna, se figur 8.7.

Givarna monterades ca. 1 vecka efter tillverkningen av provkropparna. All fuktmätning har skett i enlighet med RBK:s manual fuktmätning i betong (RBK 2001).

Figur 8.7 Placering av RF-givare i HD/F-bjälklag.
8.9 Resultat

Samtliga resultat som presenteras i detta kapitel är baserade på klimat 1-4. Resultat ifrån mätningar utförda i klimat 5-8 presenteras i appendix 3. De resultat som presenteras är avlästa värden. Ingen hänsyn har tagits till eventuell mätosäkerhet vilken bedöms vara högst ±2 % i RF (RBK 2001).

8.9.1 Jämförelse av uttorkning mellan HD/F och D/F

![Figur 8.8 Uttorkning på ekvivalent djup av HD/F och D/F placerade i klimat 1.](image1)

![Figur 8.9 Uttorkning på ekvivalent djup av HD/F och D/F placerade i klimat 2.](image2)
Figur 8.10 Uttorkning på ekvivalent djup av HD/F och D/F placerade i klimat 3.

Figur 8.11 Uttorkning på ekvivalent djup av HD/F och D/F placerade i klimat 4.

Vid samtliga klimat sker uttorkningen snabbare hos HD/F-bjälklaget. Skillnaden i RF är genomgående ca. 5 % vid alla tidpunkter. Redan vid första mätningen, som sker efter cirka 14 dygn är RF i HD/F-elementet ca. 5 % lägre vilket inte är helt lätt att förklara. Båda betongtyperna har ungefär samma vct så hela skillnaden bör inte bero på olika grad av självuttorkning.
HD/F-elementet är visserligen tillverkat med SH-cement som har något snabbare hydratationsgradsutveckling än det Byggcemement som används för D/F-elementet, men den skillnad som detta medför i självutorkning borde i stort sett ha försvunnit efter 14 dygn och i varje fall ha helt försvunnit efter 28 dygn.

En annan tänkbar förklaring är skillnad i porlösningens alkalitet. I det aktuella fallet är emellertid de olika elementen tillverkade med cement med samma portlandklinker varför alkaliteten är ungefär densamma, se tabell 4.4. Den lilla skillnad som finns borde dessutom utjämnas av att cementhalten är lägre i HD/F-elementet.

Den snabbare torkningen hos HD/F-elementet skulle möjligen kunna bero på att volymen betong i HD/F-elementet är betydligt mindre på grund av kanalerna. Det innebär att torkning även sker mot hålen och därifrån mot ytan. Hypotesen motbevisas dock av att torkningen sker snabbare även i klimat 1 och 3 med långvarig fuktbelastning.

Ytterligare en teoretiskt möjlig förklaring till skillnaden i RF är att det utbildas olika porstruktur vid de två typerna av tillverkning. HD/F-bjälklagen tillverkas med jordfuktig betong medan D/F-elementen gjuts med flytbetong som är självkompakterande.

Frågan om orsaken till varför HD/F-elementen vid alla klimat torkar snabbare får anses vara olöst.

Massiva plattor som utsätts för klimat 1 och 3 (regnbelastning) når inte ner till RF 85 % inom 2 månader. Ytterligare lång tids torkning i torrt klimat krävs för att 85 % RF skall nås. Håldäck som regnutsätts når däremot 85 % RF inom ca. 1,5 månader.

8.9.2 Inverkan av simulerat regn

Figur 8.12 Uttorkning vid +5°C. Klimat 1 ("regn") jämfört med klimat 2 (80 % RF).
Figur 8.13 Uttorkning vid +20°C. Klimat 3 ("regn") jämfört med klimat 4 (60 % RF).

Resultaten visar som förväntat att tidig exponering för vatten (simulerat regn) har starkt fördröjande inverkan på betongens uttorkning under själva regnperioden oavsett den omgivande temperaturen. Det är märkligt att RF inte ökar trots 4 veckors kontinuerlig fuktbelastning. Enda sannolika förklaringen är att självuttorkningen dominerar över vattenupptagningen vilket kan bero på de låga vet.

En annan orsak till att RF är lägre än 100 % trots 28 dygns vattenbelastning kan vara alkalieffekten. Enligt kapitel 4 (tabell 4.4) kan man förvänta sig att RF blir ca. 97 % även i vattenmättad betong. Alkalieffekten kan därför inte vara hela förklaringen eftersom så låga värden som 87 à 94 % RF uppmätts i de "regnbelastade" proverna.

När samtliga provkroppar efter avslutad regnbelastning placerades i ett normalt inomhusklimat (+20°C, 60 % RF) fortsätter de att torka. För HD/F-bjälklaget som inte utsatts för "regn", utan som hela tiden lagrats i 20°C är dock RF-minskningen i inomhusklimatet inte lika stor som för de övriga provkropparna. Orsaken är oklar.
8. Uttorkning av prefabrerade betongbälklag

8.9.3 Inverkan av temperatur

![Diagram showing the effect of temperature on drying]

Figur 8.14 Uttorkning vid +5°C respektive +20°C för prover utsatta för 4 veckors simulerat regn (klimat 1 och 3).

Temperaturen har en viss betydelse för uttorkningen, särskilt vid 60 % RF då RF-skillnaden efter 28 dygn är ca. 3-4 %. När alla betongprover placeras i samma klimat efter 28 dygn (60 % RF, 20°C) närmar sig dock uttorkningskurvorna varandra.

![Diagram showing the effect of temperature on drying]

Figur 8.15 Uttorkning vid +5°C respektive +20°C för prover som hela tiden exponerats för luft med 80 % RF (klimat 2) och 60 % RF (klimat 4).
Man kan göra en viss kvantitativ analys av temperaturinverkan på uttorkning. I det aktuella försöket har såväl provkropp som omgivande luft samma temperatur. Om denna är +5°C blir ångtrycksskillnaden mellan betong (100 % RF) och luft (60 % RF) 360 Pa. Om temperaturen är +20°C blir skillnaden i stället 935 Pa. Följaktligen går uttorkning förorskad av diffusion snabbare vid +20°C. En annan orsak är att transportkoefficienten ökar något med ökande temperatur. Materialdata i (Hedenblad 1996b) visar att man kan förvänta sig att transportkoefficienten vid +5°C enbart är ca. 65 % av koefficienten vid +20°C.

En annan orsak till att uttorkning går snabbare vid högre temperatur är att hydratationsutvecklingen och därmed självuttorkningen går snabbare.

8.9.4 RF i kanaler i håldäck

![Diagram](https://via.placeholder.com/150)

Figur 8.16 Jämförelse mellan RF på ekvivalent djup i betongen och RF i kanalluften, HD/F klimat 1.

Figur 8.16 visar att RF som mäts på ekvivalent mätjup i betongen stämmer väl överens med den som mäts i kanalluften under de första 35 dygnen. Därefter sjunker RF i betongen snabbare under ett par veckor. Skillnaden kan bero på att provkropparna flyttas från +5°C till +20°C samt att vattenbelastningen avslutas efter 28 dygn. Efter 9 veckor är RF-skillnaden ca. 2,5 %.
8. Uttorkning av prefabrerade betongbjäklag

Figur 8.17 Jämförelse mellan RF på ekvivalent djup i betongen och RF i kanalluften, HD/F klimat 2.

I klimat 2 är RF mycket högre i kanalluften än i betongen under de första 3 veckorna. Därefter följer mätningarna samma utveckling som i klimat 1. RF i betongen sjunker snabbt när provkropparnas temperatur ökas. RF i kanalluften sjunker också men med en viss fördröjning i tid. Efter 9 veckor är RF-skillnaden ca. 1 %.

Figur 8.18 Jämförelse mellan RF på ekvivalent djup i betongen och RF i kanalluften, HD/F klimat 3.
Figur 8.18 visar att RF i betongen och i kanalluften följs åt ganska väl under hela mätperioden. Dessa provkroppar har befunnit sig i +20°C under hela mätperioden. Efter 9 veckor är RF-skillnaden ca. 3 %.

![Diagram](image)

Figur 8.19 Jämförelse mellan RF på ekvivalent djup i betongen och RF i kanalluften, HD/F klimat 4.

Bortsett från de fyra första veckorna så är RF i betongen i stort sett lika med RF i kanalluften. Efter 9 veckor är RF-skillnaden ca. 1,5 %.

Resultaten i detta avsnitt visar att RF i kanalluften stämmer väl överens med den RF man mäter på ekvivalent mätdjup i betongen, under förutsättning att temperaturen är stabil under en längre period samt att kanalluften ej står i kontakt med omgivande luft. I verkligheten sker alltid håltagningar i kanalerna (Brander 2003) vilket gör att det omgivande klimatet kommer att påverka kanalluftens RF. Dessutom är det vanligt med fritt vatten i håldäckens kanaler. Man kan därför inte ersätta RF-mätningar i betongen med mätningar i kanalerna.

8.9.5 Inverkan av golavjämning

Golavjämningen hade ingen inverkan på RF i betongen på ekvivalent mätdjup. Detta stämmer väl överens med resultaten i kapitel 7.
8.10 Slutsatser

Slutsatserna från denna studie kan summeras i följande punkter.

- Uttorkning sker långsammare i prefabricerade massiva betongplattor än i håldäck. Därför är det särskilt viktigt att mäta RF i massiva plattor före golvläggning när dessa används som komplement till håldäck. Av säkerhetsskäl bör man emellertid även mäta RF i håldäck.

- Håldäck visade sig nå en RF-nivå av 85 % på ekvivalent djup inom 1,5 månader trots att de utsattes för simulerat regn under de första 4 veckorna. För massiva plattor som tidigt utsatts för regn krävs ytterligare torkning under torra förhållanden och under rätt lång tid för att de skall nå 85 % RF.

- Klimatet som bjälklagen utsätts för innan de byggs in visade sig inte spela så stor roll för den praktiskauttorkningen i fält, eftersom bjälklagens uttorkningskurvor oavsett förhistorien vad avser fuktbelastning går mot samma nivå då de placeras i ett varmt och torrt inneklimat, d.v.s. efter det att väggar och tak monterats på bygget. Dock har temperaturförhållandena under lagring av elementen en viss betydelse. Under den kalla årstiden går torkningen något långsammare.

- Den betydligt snabbare observerade uttorkningen av håldäck jämfört med massiva element har inte fått någon teoretisk förklaring. Inte heller har det kunnat klarläggas varför håldäck kan få så låga RF-nivåer trots att de utsätts för kontinuerlig vattenbelastning från tidig ålder.
8. Uttorkning av prefabricerade betongbjälklag
9. Fältstudie av olika metoder att påskynda uttorkning av betong

9.1 Bakgrund

9.2 Syfte

Syftet med uttorkningsprojektet var att studera olika metoder att påskynda betongs uttorkning, för att därmed anvisa vilka valmöjligheter entreprenören kan ha i samband med byggnation. Om entreprenören har tillgång till flera alternativa uttorkningsalternativ kan kostnaderna för uttorkningen minskas genom att han kan välja den i varje enskilt fall ekonomiskt mest gynnsamma metoden.

Alternativa torkmetoder är betongtyper med snabbtorkande eller självtorkande egenskaper, värmning av golvet med elslinger eller infravärme samt sorptionsavfuktning av omgivande luft. Alla dessa metoder studerades i projektet.

Vidare var ett övergripande syfte med projektet att de inblandade parterna skulle få ökad kunskap som kunde utnyttjas i framtida projekt och att denna kunskap skulle föras vidare till hela byggnadsläns genom rapportering till SBUF och spridning av information till branschen.

9.3 Byggnadsbeskrivning

9.3.1 Allmänt

9.3.2 Tillbyggnadens utformning

Tillbyggnaden kan delas upp i en hotellbyggnad samt en förbindelsebyggnad mellan hotelldelen och den befintliga huvudbyggnaden, se figur 9.1.

Figur 9.1 Planskiss av Järavallens tillbyggnad.

Hotelldelen var en tvåplansbyggnad som skulle rymma 36 dubbelrum. De yttre måtten var ca. 42 x 17 m, vilket gav en yta av ca. 700 m² per våningsplan. Hotelldelen bestod även av en ca. 50 m² källare. I appendix 4.1 presenteras plan- och sektionsskisser för hotellbyggnaden. Figur 9.2 visar hotellbyggnaden under byggskedet.

Figur 9.2 Hotelldelen under byggnation. Plattbärlaget har just monterats.

9. Fältstudie av olika metoder att påskynda uttorkning av betong

9.3 3 Tillbyggnadens golvkonstruktioner

Nedan följer en detaljerad beskrivning av de golvkonstruktioner som förekom i projektet. I appendix 4.1 framgår var de olika golvkonstruktionerna förekom. Samtliga betonggolv avjämnades före golvläggning med ca. 10 mm finavjämning.

Bottenplan i hotelldel

Tre olika golvkonstruktioner förekom i hotellets bottenvåning. Den vanligast förekommande var 100 mm platsgjuten betong med 100 mm underliggande markskiva av mineralull, se figur 9.3.

![Figur 9.3 Platta på mark 100 mm.](image1)

I korridoren som löpte genom byggnaden bestod golvet av 150 mm platsgjuten betong med 100 mm underliggande mineralull, se figur 9.4.

![Figur 9.4 Platta på mark 150 mm.](image2)

Golvet över källaren, se appendix 4.1, bestod av 40 mm prefabricerat plattbärlag som pågöts med 180 mm platsgjuten betong, se figur 9.5.

![Figur 9.5 Bjälklag 220 mm.](image3)

Som golvläggning användes klinker i badrum och städrum samt parkettgolv med underliggande plastfolie i övriga utrymmen.
Plan 2 i hotelldel

Två olika golvtyper förekom på plan 2. Bjälklaget över den öppna ytan vid trappen bestod av 40 mm prefabricerat plattbärlag som pågöts med 210 mm platsgjuten betong, se figur 9.6.

Figur 9.6 Bjälklag 250 mm.

Resten av plan 2 bestod av samma bjälklag som användes över källaren, se figur 9.5.

Som golvbeläggning användes klinker i badrum och städrum samt parkettgolv med underliggande plastfolie i övriga utrymmen.

Voter och kantförstyvningar

Voter i botteplattan förekom under alla bärande väggar och kantförstyvningar fanns längs med ytterkanterna av plattan. Betongtjockleken i dessa varierade mellan 250 och 460 mm. Voter och kantförstyvningar isolerades på undersidan med 50 mm cellplast.

9.4 Uttorkningsmetoder

9.4.1 Allmänt. Krav på uttorkning

De ursprungliga förutsättningarna för byggprojektet bestämdes av konstruktören. I de allmänna anvisningarna angavs följande konstruktionsförutsättningar.

- Golv på mark utförs i hållfasthetsklass K 35.
- Betong till bjälklaget väljs i samråd med plattbärlagsleverantören. Uttorkningstiden skall beaktas.
- Övriga platsgjutna konstruktioner utförs i hållfasthetsklass K 35.
- Fukthalten i betonggolv får ej vara högre än 85 % RF vid mattläggning.
- Fuktämning skall utföras på halva Plattjockleken.

I enlighet med praxis ställdes inga uttorkningskrav på bärande innerväggar av betong, vilket egentligen var ologiskt, eftersom även dessa i det aktuella fallet skulle beklädas med fuktkänslig målad träpanel.

Gjutningen av bottenplattan var planerad att ske i början av september och bjälklaget skulle gjutas i slutet av oktober. Mattläggning var planerat till början av april. Tillgänglig planerad uttorkningstid före avjämning av betongen var således ca. 6 månader.

Det konstaterades snabbt att det skulle bli svårt att uppfylla uttorkningskravet med de förutsättningar som gavs, i synnerhet kravet att fukt skulle mätas på halva Plattans tjocklek.

9.4.2 Ökad betongkvalitet

Betongens vattencementtal, vct är den viktigaste betongparametern som påverkar uttorkningstiden. Detta framgår klart av kapitel 4, 5 och 6 i denna rapport. Normal husbyggnadsbetong i hållfasthetsklasser mellan K 25 och K 45 har normalt ett vct som ligger mellan 0,70 och 0,50. Uttorkningen av denna typ av betong domineras av ångtransport utåt via diffusion genom betongens porsysytem. Detta är mera öppet ju högre vct är. Därför är torkhastigheten högre vid högre vct. Torkhastigheten blir alltså högre vid vct 0,70 än vid 0,50, men å andra sidan är mängden fukt som måste torka ut för att erforderlig RF-nivå skall nås betydligt högre vid vct 0,70. Nettoeffekten blir att uttorkningstiden minskar med sänkt vct.

Eftersom uttorkning sker utåt styrs uttorkningshastigheten, förutom av betongens täthet, av ånghaltsskillnaden mellan betong och omgivande luft.

Betong med vct ≤ 0,40 kallas ofta för snabbtorkande eller självtorkande betong. Denna typ av betong har mindre mängd farlig byggfukt än normal husbyggnadsbetong. Farlig byggfukt är fukt som måste avgå för att golvet skall kunna beläggas med fuktäktningsmaterial. I det aktuella fallet är det enligt beställaren all fukt som överstiger 85 % RF inne i betongen. Orsaken till den minskande mängden farlig byggfukt är att porstrukturen är mycket fin hos betong med lågt vct. Detta gör att den sk jämviktsfuktkurvan blir flack vid höga RF-nivåer, se kapitel 2. En liten uttorkning ger därför en stor sänkning av RF. Detta medför att enbart den uttorkning som skapas av cementreaktionen, se kapitel 2, kan räcka för att sänka RF till ofarlig nivå. Ingen uttorkning av fukt utåt behövs alltså. Detta är bakgrunden till begreppet ”självtuttorkning”.

I fältprojekt Järavallen användes betong med tre olika vct enligt följande:

- vct 0,38 (K 60) Voter och kantförstyrvningar
- vct 0,50 (K 45) Korridoren i bottenplanet
- vct 0,62 (K 35) Bottenplattan i hotelldelen bortsett från korridoren

Fullständiga betongrecept redovisas i appendix 4.3.
9. Fältstudie av olika metoder att påskynda uttorkning av betong

Genom att först gjuta voter och kantförstyvningar med en hög betongkvalitet, se figur 9.7, och därpå gjuta bottenplattan med en lägre kvalitet, kunde man ur uttorkningssynpunkt behandla hela bottenplattan som en enhet med konstant tjocklek och med enkelsidig uttorkning uppåt. Vid bestämning av RF togs därför ingen hänsyn till betongen i voten, då man ansåg att den torkade genom inre självuttorkning. Det innebar också att voten vid fuktmätning antogs ha samma ekvivalenta djup som plattan.

Att uttorkningen ansågs vara ensidig uppåt trots att värmeisoleringen under plattan var genomsläpplig beror på att marken och isoleringen under hela uttorkningstiden antogs vara mycket fuktig (100 % RF). Detta är ett antagande på ”säkra sidan”.

![Figur 9.7 Gjutning av voter och kantförstyvningar dagen före gjutning av bottenplattan.](image)

9.4.3 Värmning med elslinga

En direkt uppvärmning av betongen är positiv på flera sätt när det gäller uttorkningshastigheten. För betong med lågt vct ger den tillförda värmen en snabb hydratations- och strukturutveckling i betongen. Det medför att relativa fuktigheten sjunker snabbt i betongen på grund av sk självuttorkning.

Vid Järavallen användes elslingor i källarbjälklaget, halva mellanbjälklaget samt i ca. 200 m² av bottenplattan i hotelldelen. De golvpartier där elslingor användes visas i appendix 4.2. I bottenplattan varierades slingornas placering. Vissa placerades i underkant medan andra fästes i den mittplacerade armeringen. I bjälklagen placerades samtliga slingor i underkant direkt på plattbärlaget.

Elslingor monterades före gjutning, se figur 9.8. Avståndet mellan kablarna var ca. 25 cm och varje slinga täckte ca. 30 m². Kablarna monterades från långsida till långsida. Styrningen av elslingorna skedde via en termostat med noggrannheten 0,5°C. Termostaten ställdes in för en kontinuerlig temperatur på 25°C.

I rum 1:19, se appendix 4.2, värmdes plattan intermittet. Detta innebar att elslingan var påslagen under natten och avstängd under dagen.

126
9. Fältstudie av olika metoder att påskynda uttorkning av betong

Elslingorna startades efter ca. 6 veckor i samband med att provisoriskt tätt hus erhölls, d.v.s. 2001-11-20 (bottenplan) och 2001-12-21 (plan 2).

En slinga var ur funktion redan innan värmning skulle startas och ytterligare tre gick sönder senare under byggskedet. Uppgift om tidpunkter för uppkomsten av dessa skador saknas.

9.4.4 HP-torkning (High Pressure)

Denna metod är vanligt förekommande i samband med sanering av fuktsubjekt i befintliga byggnader. Det fanns därför ett intresse att undersöka om tekniken gick att använda även vid nyproduktion.

HP-torkning provades på bottenplattan i ett antal begränsade ”fack”. Totalt användes metoden på ca. 190 m² av bottenplattan, se appendix 4.2.

Rör för inblåsning av torkad värmd luft monterades före gjutning genom det kvarsittande kantelementet, se figur 9.9. Rör för utblåsning placerades mitt i plattan i den tilltänkta korridoren i husets mitt.
Varm torr luft blástes in genom rören i makadamlagret under plattan för att torka markisoleringen samt för att värma betongen. Fiberduken som fanns under bottenplattan och makadamlagret ansågs vara tillräckligt tät för att hindra oönskat luftläckage nedåt i marken. Där HP-torkning var aktuellt placerades cellplast mellan voter och fiberduk, se figur 9.10, för att förhindra luftläckage i sidled mellan det fack där HP-torkning utfördes och angränsande fack. Det visade sig ganska tidigt att luften trots dessa åtgärder tog andra vägar än de tänkta. All tillförd luft spreds dock inte åt sidan eller nedåt eftersom ett visst flöde kunde mätas vid utblåsningsrören.

![Figur 9.10 Placering av cellplast under voter för att förhindra luftläckage mellan fack.](image1)

I ett av facken, se figur 9.11, startade torkningen direkt efter gjutning. Övrig HP-torkning startades ca. 6 veckor efter gjutning i samband med att man erhöll provisoriskt tätt hus.

![Figur 9.11 HP-systemet. Bilden visar turbinen som blástes in varm torr luft genom inblåsningsrören. Utblåsningsrören kan skymtas vid plattans mitt.](image2)

9.4.5 Sorptionsavfuktning

Sorptionsavfuktning innebär att RF i luften ovanför bottenplattan/bjälklaget sänks genom avfuktning och/eller värmning. Denna åtgärd får ingen högre effektivitet förrän man erhållit tätt hus.

Figur 9.12 Sorptionsavfuktare.

9.4.6 Torkning med infravärme

Infravärme ökar uttorkningshastigheten enligt samma princip som användning av elslingor, d.v.s. genom att genom att värma betongen öka ångtrycket i betongens porer. Infravärmen placeras oftast på betongytan och används vanligtvis i samband med uttorkning av betong efter vattenskador.

I den aktuella undersökningen var värming av betongen med hjälp av infravärme en metod som lades till i projektets slutskede för att forcera uttorkningen på vissa kritiska partier av byggnaden där fuktnivån några veckor före golvläggning bedömdes vara för hög. Värmen var ca. en meter lång, se figur 9.13, och värmdes upp ett område på ca. 2 m². Betongens temperatur var över 30°C vid uppvärmningen.

Figur 9.13 Infravärmare.
9.5 Uttorkningsbedömningar med datorprogram före byggstart

9.5.1 Allmänt

Det i förhandsbedömningen använda programmet TorkaS 1.0 har under projekttiden utvecklats till version TorkaS 2.0. Simuleringsresultaten är dock snarlika i de båda versionerna. Dessa baseras nämligen på samma materialdata. Den största skillnaden mellan programmen består av ändrad layout vad det gäller inmatning av indata och redovisning av utdata. Dessutom har materialdata för ett nytt cement av typ CEM II/A-L (Byggcement) inlagts.

9.5.2 Beräkningsförutsättningar

Beräkning med TorkaS förutsätter följande indata:

- Konstruktionstyp Alternativ: platta på mark eller fribärande bjälklag.
- Ensidig eller dubbelsidig uttorkning
- Betongtjocklek
- Cementhalt i betongen
- Tillsats av silikastoft
- Betongens vattencementtal, vct
- Gjutdatum
- Datum för ”tätt hus” Tätt hus erhålls då man skyddat betongen från nederbörd
- Torkstart Torkstart innebär ett styrt omgivande klimat
- Slutdatum Det datum då man anser att beräkning kan avslutas
- Klimatdata Det omgivande klimatet under torktiden, temperatur och RF. Antingen används normala klimatdata för orten i fråga (inlagda i programmet) eller också anges egna data
9.5.3 Simuleringsresultat

De aktuella simuleringarna utfördes vid LTH i samverkan med personal från byggentreprenören, vilkas uppgift var att ge relevanta kronologiska data för bygprocessen. Fallen med elslinga samt HP-torkning gick ej att simulera med TorkaS 1.0. Vid förhandsbedömningen ansågs dock dessa metoder vara gynnsamma än fallet med enbart sorptionsavfukning, vilket var ett fall som kunde simuleras.

Konstruktionstyperna som valdes för simulering var ”platta på mark med underliggande mineralull” samt ”plattbärlag”. I tabell 9.1 redovisas de byggtider som låg till grund för simuleringarna. De verkliga tiderna skiljer sig från de i tabell 9.1. Verkliga tider framgår av avsnitt 9.10.

Tabell 9.1 Förutsatta byggtider som användes vid uttorkningsbedömningen.

<table>
<thead>
<tr>
<th>Bottenplatta</th>
<th>Mellanbjälklag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gjutning</td>
<td>2001-09-10</td>
</tr>
<tr>
<td>Tätt hus</td>
<td>3 veckor efter gjutning</td>
</tr>
<tr>
<td>Torkstart</td>
<td>8 veckor efter gjutning</td>
</tr>
<tr>
<td>Slutdatum</td>
<td>28 veckor efter gjutning</td>
</tr>
</tbody>
</table>

I programmet användes i programmet inlagda normala klimatdata gällande Sturup. Dessa klimatdata är baserade på SMHI:s väderstatistik och utgör medelvärden för ett stort antal år. Det styrdas torkklimatet sattes till 21°C och 35 % RF. Inlagda värden på vct, cementhalt och plattjocklek anges i tabell 9.2.

TorkaS 1.0 redovisar RF på det så kallade ”ekvivalenta djupet”, d.v.s. 40 % av plattjockleken för ensidigt torkande bottenplatta och 20 % av plattjockleken för dubbelsidigt torkande bjälklag. Det innebär att de beräknade RF-värdena är något högre än RF på det mätdjup som angavs av beställaren, nämligen 50 % av plattjockleken oavsett konstruktionstyp. Den största skillnaden gäller framförallt mellanbjälklaget.

Tabell 9.2 Resultat av TorkaS 1.0-simulering. RF vid antaget slutdatum 2002-04-01

<table>
<thead>
<tr>
<th>Konstruktionstyp</th>
<th>vct</th>
<th>Cementhalt (kg/m³)</th>
<th>Betongtjocklek (mm)</th>
<th>RF vid slutdatum (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platta på mark</td>
<td>0,62</td>
<td>295</td>
<td>100</td>
<td>83</td>
</tr>
<tr>
<td>Platta på mark</td>
<td>0,50</td>
<td>360</td>
<td>150</td>
<td>85</td>
</tr>
<tr>
<td>Mellanbjälklag</td>
<td>0,38</td>
<td>410</td>
<td>220</td>
<td>86</td>
</tr>
<tr>
<td>Mellanbjälklag</td>
<td>0,38</td>
<td>410</td>
<td>250</td>
<td>86</td>
</tr>
</tbody>
</table>

En grafisk presentation av TorkaS-simuleringen återfinns i appendix 4.4.

Resultaten visade att det skulle vara möjligt att nå målet 85 % RF på det ekvivalenta mätdjupet med de angivna förutsättningarna vad avser val av klimat och byggtider. Däremot visar beräkningen att det kan vara svårt att helt nå målet 85 % RF på halva plattjockleken. Detta gäller särskilt för mellanbjälklaget. Man kommer dock mycket nära, nämligen 86 %.
9.6 Mätning och registrering av temperatur och fukt

9.6.1 Temperatur och RF-mätning i luft

Ett datalagringssystem bestående av ett antal separata enheter var monterat på byggarbetsplatsen. Detta system registrarade uppmätta värden på temperatur och relativ fuktighet i luften i rummen ovanför bjälklagen. En enhet var placerad utomhus alltsedan byggestarten. Ytterligare 12 enheter var placerade inne i byggnaden, 10 på bottenplanet och 2 på ovanvåningen.

9.6.2 RF-mätning i betong

Fuktmätningarna i betong påbörjades i mitten av januari 2002 ca. 3 månader efter gjutning, och avslutades tre månader senare. Personal från avd. Byggnadsmaterial vid LTH utförde trendmätningar av RF-utvecklingen under byggets gång, medan en RBK-auktoriserad fuktkontrollant utförde slutmätningarna, vilka av kontraktsenliga skäl erfordrades för att verifiera att fuktnivåer enligt bygghandlingar uppnåtts.

Trendmätning med kvarsittande givare av typ Humi-Guard

Avläsningen av RF och temperatur gjordes med ett lättkökt handinstrument. Avlästa värden matades in i ett datorprogram som innehåller givarens kalibreringskurva varvid man erhöll aktuell RF omräknad till det värde som gällt om temperaturen i betongen varit +20°C. Denna omräkning tar hänsyn dels till givarens egen temperaturkänslighet, dels till att betongens jämviktsfuktkurva har ett visst temperaturberoende.

Att omräkning till 20°C gjordes beror på att det är den temperatur som betongen kommer att få när byggnaden tas i bruk. Om omräkning inte skett hade uppmätte RF-värde underskattat verklig RF eftersom mindre vatten binds i betongen vid jämvikt vid högre temperatur.
9. Fältstudie av olika metoder att påskynda uttorkning av betong

Figur 9.14 Borrhålsätning med kvarsittande givare av typ Humi-Guard. (RBK 2001)

35 mätpunkter i 12 olika rum utnyttjades i detta projekt. Mätpunktens placering framgår av appendix 4.5. RF på halva plattjockleken registrerades i samtliga rum. Mätpunkterna skyddades under byggtiden med mineralull som täcktes med ett lock av Plywood enligt figur 9.15.

Figur 9.15 Skydd av mätpunkter under byggtiden.

Trendmätning på uttaget prov med Vaisala-givare

Enligt planerna skulle uttaget prov enbart utföras där elslinger används för uttorkning. Det genomfördes dock betydligt fler mätningar eftersom det ansågs vara viktigt att använda mätning på uttaget prov även för jämförelse med mätresultat från kvarsittande givare av typ Humi-Guard.
Slutmätningar på uttaget prov med Protimeter-givare

9.7 Betonggjutning

Betonggjutningarna påbörjades i slutet av september 2001 med gjutning av källare och källarbjälklag. Bottenplattan göts 1 vecka därefter och bjälklaget ytterligare 2 veckor senare. Förbindelsegången göts i slutet av oktober, d.v.s. ca. 5 veckor efter första gjutningen.

Samtliga voter och kantförstyvningar göts normalt en dag innan bottenplattan, se figur 9.16. Orsaken till den högre betongkvaliteten var att det inte var realistiskt att klara beställarens mycket höga uttorkningskrav vid användning av normal betongkvalitet.

![Figur 9.16 Gjutning av voter och kantförstyvningar i betong K 60.](image)

I tabell 9.3 redovisas gjutdatum och klimat för de olika gjutetapperna. Gjutetappens position framgår av appendix 4.2. Uppgifterna i tabellen baseras på dagbok som fördes på bygget av arbetsledningen.
9. Fältstudie av olika metoder att påskynda uttorkning av betong

Tabell 9.3 Gjutdatum och klimat i samband med gjutning.

<table>
<thead>
<tr>
<th>Konstruktionsdel</th>
<th>Gjutetapp</th>
<th>Gjutdatum</th>
<th>Temperatur</th>
<th>Nederbörd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Källarbjälklag</td>
<td>A-B</td>
<td>2001-09-26</td>
<td>12°C</td>
<td>-</td>
</tr>
<tr>
<td>Bottenplatta</td>
<td>K-M</td>
<td>2001-10-01</td>
<td>15°C</td>
<td>25 mm</td>
</tr>
<tr>
<td>Bottenplatta</td>
<td>F-H</td>
<td>2001-10-03</td>
<td>14°C</td>
<td>20 mm</td>
</tr>
<tr>
<td>Bottenplatta</td>
<td>B-D</td>
<td>2001-10-05</td>
<td>13°C</td>
<td>-</td>
</tr>
<tr>
<td>Bottenplatta</td>
<td>H-K</td>
<td>2001-10-08</td>
<td>12°C</td>
<td>-</td>
</tr>
<tr>
<td>Bottenplatta</td>
<td>D-F</td>
<td>2001-10-09</td>
<td>13°C</td>
<td>-</td>
</tr>
<tr>
<td>Bottenplatta</td>
<td>A-B</td>
<td>2001-10-09</td>
<td>13°C</td>
<td>-</td>
</tr>
<tr>
<td>Mellanbjälklag</td>
<td>H-M</td>
<td>2001-10-19</td>
<td>12°C</td>
<td>-</td>
</tr>
<tr>
<td>Mellanbjälklag</td>
<td>D-H</td>
<td>2001-10-26</td>
<td>11°C</td>
<td>-</td>
</tr>
<tr>
<td>Mellanbjälklag</td>
<td>A-D</td>
<td>2001-11-01</td>
<td>10°C</td>
<td>-</td>
</tr>
</tbody>
</table>

Den nederbörd som redovisas i tabellen gäller i samband med gjutning eller under natten före gjut tillfället. Ett kraftigt regnande i början av oktober innebar att markisoleringen var mycket blöt i samband med gjutningen av de första etapernna av bottenplattan.

9.8 Torkklimat

9.8.1 Utomhusklimatet

Uteluftens temperatur, relativa fuktighet och ånghalt registrerades från mitten av oktober till mitten av mars, d.v.s. från det den sista betonggjutningen gjorts och 5 månader framåt. Resultatet presenteras som månadsmedelvärden i figur 9.17-9.19. Noggrannheten i denna mätning var ± 3 % RF och ± 0,4°C.

![Uteluftens medeltemperatur](image)

Figur 9.17 Månadsmedeltemperatur utomhus.
9.8.2 Inomhusklimatet

Tidpunkt för tätt hus

De teoretiska uttorkningsberäkningar med TorkaS 2.0 som redovisas i avsnitt 9.8 kommer därför att baseras på att tätt hus erhölls då yttertaket var tätt, d.v.s. i mitten av december.
Möjligheten att styra torkklimatet

Den provisoriska plastinklädningen av väggarna gav en dålig värmeisolering. Detta innebar att inomhustemperaturen var starkt påverkad av utomhusklimatet eftersom värming saknades inne i huset. Först när sorptionsavfuktarna var på plats fick man ett gynnsamt inomhusklimat. De permanenta glaspartierna som monterades på bottenplan i mitten av januari och på plan 2 i mitten av februari gav ytterligare positiv effekt.

Inomhusklimatet, temperatur och RF

Temperatur och RF hos inneluften registrerades i hotellbyggnaden via 12 st. givare. Noggrannheten hos dessa givare var ± 5 % RF och ± 0,7°C. 10 givare var placerade på bottenplanet och 2 var placerade på plan 2. Följande figurer redovisar hur temperatur, RF och ånghalt varierade över tiden i hotellbyggnaden. Kurvorna redovisar dygnsmedelvärden.

Registrering av inomhusluftens temperatur ger värdefull information för bedömning av betongens uttorkning. Temperaturen ger också information om arbetsmiljön.

Figur 9.20 Dygnsmedeltemperatur på bottenplanet.

9. Fältstudie av olika metoder att påskynda uttorkning av betong

Figur 9.21 Dygnsmedeltemperatur på plan 2.

Klimatet på plan 2 började registreras i samband med att ytterväggar och yttertak monterats. Temperaturen varierade mellan +15°C och 25°C.

Registrering av relativ fuktighet, RF ger information om kondensrisk, arbetsmiljö samt uttorkningsklimat.

Figur 9.22 Dygnsmedel-RF på bottenplanet.

Figur 9.22 visar att den relativa fuktigheten på bottenplanet var mycket låg efter det att man fått huset tätt och temperaturen därmed ökat. Ökningen av RF i mitten av januari kan förklaras med ett fuktillskott orsakat av målningsarbeten. Ökningen i mars beror på fuktillskott i samband med golvvåjämning.
Fältstudie av olika metoder att påskynda uttorkning av betong

Figur 9.23 Dygnsmedel-RF på plan 2.

Även på plan 2 har RF varit lågt under byggtiden. De RF ökningar som förekommer kan förklaras med fukttskott i samband med målning och golvvävnad.

Ånghalt

Genom att jämföra ånghalten utomhus och inomhus kan man bestämma fukttskottet inomhus eftersom ett högre värde inomhus beror på sådant fukttskott. Ånghalten i omgivande luft har stor betydelse för betongens uttorkning eftersom det är ånghaltskillnaden mellan betong och omgivande luft som driver ångtransporten.

Figur 9.24 Dygnsmedelånghalt bottenplan.
Efter det att tätt hus erhållits var ånghalten inomhus ungefär lika hög som ånghalten utomhus. Detta visar att sorptionsavfuktningen tog hand om fukttillskottet från det torkande golvet. Vissa stora fukttillskott i samband med målning och golvvämning har dock inte kunnat avfuktas helt och hållet.

Figur 9.25 Dygnsmedelånghalt på plan 2.

Ånghalten på plan 2 ligger generellt något högre än på bottenplanet. Detta kan förklaras av att endast en sorptionsavfuktare fanns på plan 2. På bottenplanet fanns två avfuktare.
9.9 Resultat

9.9.1 Trendmätningar med kvarsittande givare av typ Humi-Guard

Nedan presenteras mätresultat från Humi-Guard mätningar uppdelade efter de olika golvkonstruktionerna. Resultaten som presenteras gäller halva plattjockleken och är ej justerade med avseende på mätsäkerhet, d.v.s. det är avlästa värden korrigerade för temperatur enligt avsnitt 9.6.2 som anges.

Platta på mark 100 mm

![Diagram](image.png)

Figur 9.26 Uppmätt RF på halva plattjockleken i mätpunkt 1:3; 1:4 och 1:5.

Figur 9.27 Uppmätt RF på halva plattjockleken i mätpunkt 1:8; 1:9 och 1:28.

I rum 1:8 värmades betongen med värmeslinga. Här skedde en snabb uttorkning som ligger i närheten av målvärdet 85 % RF.

Mätpunkten i rum 1:9 var placerad över kantförstyrningen. Betongen saknade uttorkningsåtgärd från gjutstart bortsett från sorptionsavfuktning. Efter ca. 130 dygn började betongen värmas med infravärme. Uppmätt RF i 1:9 ligger på en jämn nivå och stiger något under mätperioden.

Betongplattan i rum 1:28 saknade torkåtgärd från start bortsett från sorptionsavfuktning. Denna mätpunkt uppvisade mycket hög RF-nivå vid de tre första mätningarna. Därför beslutades att betongen skulle torkas med hjälp av infravärme. Infravärmen startades ca. 130 dygn efter gjutning och fick RF att sjunka med ca. 5 % på 30 dagar.
Platta på mark 150 mm

Figur 9.28 Uppmätt RF på halva plattjockleken i mätpunkt 1:11; 1:12 och 1:17.

I mätpunkterna i 1:11 och 1:12 borde uttorkningsförloppet ha varit lika eftersom båda betongplattorna haft HP-torkning som startats samtidigt. I mätpunkt 1:17 där betongen enbart torkas med sorptionsavfuktning sker enligt mätningarna ingen uttorkning.

Mellanbjälklag 220 mm

Mätningarna i 2:7 och 2:28 visar båda ett ologiskt beteende, där RF ökar med tiden. Betong med vct 0,38 borde dessutom ha en snabbare uttorkning än vad mätningarna med Humi-Guard visar.

Mellanbjälklag 250 mm

![Diagram](image)

Figur 9.30 Uppmätt RF på halva bjälklagstjockleken i mätpunkt 2:9.

Även i mätpunkt 2:9 sker en svår förklarlig ökning av RF.

Sammanfattningsvis kan man konstatera att de flesta mätningarna som utförts med kvarsittande Humi-Guard givare i självtorkande betong har gett resultat som måste vara felaktiga. Vad detta beror på har inte kunnat fastställas, men det finns misstankar om att givarna inte klarar de temperaturvariationer som förekommer på byggarbetsplatsen. De misslyckade fuktmätningarna med Humi-Guard innebar att fuktmätningar med uttaget prov ersatte mätningarna med kvarsittande givare, se nästa avsnitt.

9.9.2 Trendmätningar på uttaget prov med Vaisala-givare

Nedan presenteras mätresultat från RF-mätningar på uttaget prov, uppdelt efter de olika golvkonstruktionerna. Resultaten som presenteras gäller halva plattjockleken och är inte justerade med avseende på mätosäkerhet. Fuktmätningarna utfördes i klimatrum, +20°C.
Platta på mark 100 mm

De mätningar som utfördes i betong som värmdes med värmeslinga visade en snabb uttorkning (rum 1:6; 1:7; 1:18). Undantaget var mätpunkt 1:19 som torkad långsammare än de övriga. Detta kan förklaras av att värmeslingan i 1:19 var tidstyrd och enbart var i drift mellan kl.18.00-06.00 under dygnet.

Platta på mark 150 mm

Figur 9.33 Uppmått RF på halva plattjockleken i korridor 1:17.
9. Fältstudie av olika metoder att påskynda uttorkning av betong

Den del av korridoren som har beteckningen 1:17 göts på fuktig markisolering. Betongen har inte torkat på ett tillfredsställande sätt och infravärmare kunde inte användas på denna del av platten på grund av att de försvårade framkomligheten i byggnaden.

Mellanbjälklag 220 mm

Figur 9.34 Uppmätt RF på halva bjälklagstjockleken i rum 1:1; 2:2 och 2:28.

Bjälklagen med värmeslingor torkade på ett likartat sätt. Bjälklaget med högvärdig betong (vct 0,38) torkade dock snabbare.

Mellanbjälklag 250 mm

Figur 9.35 Uppmätt RF på halva bjälklagstjockleken i rum 2:9.
9. Fältstudie av olika metoder att påskynda uttorkning av betong

Höjd betongkvalitet till vct 0.38 gjorde att även det tjockare bjälklaget torkade snabbt trots att inga uppvärmingsinsatser gjordes.

9.9.3 Slutmätningar på uttaget prov med Protimeter-givare

Nedan presenteras mätresultat från den officiella slutmätningen av RF på uttaget prov. Resultaten som presenteras gäller halva plattjockleken och är inte justerade med avseende på mätosäkerhet. Mätningarna gjordes vid rumstemperatur (20°C).

![Graph showing RF measurements](image)

Av resultaten i figur 9.36 är det enbart betongplattan på 100 mm med värmeslingor (rum 1:6) som når det uppsatta kravet 85 % RF på halva plattjockleken. Övriga uppmätta betongplattor ligger dock mellan 85 – 90 % RF. Högst RF (90 %) har den betong (rum 1:9) som göts på fuktig markisolering och som utsattes för mycket regn dygnen efter gjetning.
9. Fältstudie av olika metoder att påskynda uttorkning av betong

9.10 Jämförelse mellan uppmätta resultat och simuleringsresultat från datorprogrammet TorkaS 2.0

9.10.1 Allmänt

Uppmätta klimatdata ligger till grund för de simuleringsar som i efterhand gjorts med datorprogrammet TorkaS 2.0. Simuleringsar med TorkaS 2.0 har dock inte varit möjliga där elslinger eller HP-torkning använts för att torka betongen eftersom programmet inte klarar av att ta hänsyn till starkt varierande temperatur. Samtliga TorkaS 2.0-simuleringsar redovisas i appendix 4.8.

Observera att mät djupen varierar för de resultat som presenteras i detta kapitel. TorkaS 2.0 redovisar RF på det ekvivalenta djupet, medan de flesta av de verkliga mätningarna utförts på halva platstjockleken. Ekvivalenta djupet är 40 % av tjockleken för platta på mark och 20 % av tjockleken för mellanbjälklaget och bjälklaget över källare.
9.10.2 Platta på mark

Tabell 9.4 visar jämförelser av uppmätta resultat och resultat som erhållits genom simuleringer med TorkaS 2.0. Flertalet mätningar utfördes som trendmätningar vid LTH. Vid beräkningen användes TorkaS-fallet platta på mineralullsisolering på mark.

Tabell 9.4 Platta på mark, 100 mm betong på underliggande mineralull.

<table>
<thead>
<tr>
<th>Mätpunkt</th>
<th>Mätddatum</th>
<th>Uppmätt resultat 50 % mätdjup</th>
<th>Simulerat resultat 40 % mätdjup</th>
<th>Skillnad verklig-beräknad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infravärm</td>
<td>2002-02-11</td>
<td>94</td>
<td>89</td>
<td>+5</td>
</tr>
<tr>
<td></td>
<td>2002-02-21</td>
<td>91</td>
<td>88</td>
<td>+3</td>
</tr>
<tr>
<td></td>
<td>2002-02-27</td>
<td>90</td>
<td>88</td>
<td>+2</td>
</tr>
<tr>
<td></td>
<td>2002-03-05</td>
<td>92</td>
<td>87</td>
<td>+5</td>
</tr>
<tr>
<td></td>
<td>2002-03-13*</td>
<td>90</td>
<td>86</td>
<td>+4</td>
</tr>
<tr>
<td>1:26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP-torkning + Infravärme</td>
<td>2002-02-11</td>
<td>96</td>
<td>89</td>
<td>+7</td>
</tr>
<tr>
<td></td>
<td>2002-02-21</td>
<td>90</td>
<td>88</td>
<td>+2</td>
</tr>
<tr>
<td></td>
<td>2002-03-05</td>
<td>88</td>
<td>87</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>2002-03-13*</td>
<td>86</td>
<td>86</td>
<td>0</td>
</tr>
</tbody>
</table>

* Slutmätning

De uppmätta resultaten ligger generellt högre än de simulerade. Detta förklaras till viss del med skillnaden mellan mätdjup och beräkningsdjup. En annan trolig orsak är att delar av bottenplattan är gjutna på blöt mineralull vilket gör att betongen kan uppfuktas under några månaders tid i stället för att torka nedåt, vilket är förutsättningen för det aktuella TorkaS-fallet.

Det regnade kraftigt i samband med gjutningen av bottenplattan till rum 1:9 samt 1:26. Enligt manualen till TorkaS 2.0 så skall detta beaktas genom att välja konstruktionstypen platta på mark med underliggande fuktspärr. Tabell 9.5 visar resultaten som erhölls med den nya förutsättningen.

Tabell 9.5 Platta på mark, 100 mm betong på underliggande fuktspärr.

<table>
<thead>
<tr>
<th>Mätpunkt</th>
<th>Mätddatum</th>
<th>Uppmätt resultat 50 % mätdjup</th>
<th>Simulerat resultat 40 % mätdjup</th>
<th>Skillnad verklig-beräknad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infravärm</td>
<td>2002-02-11</td>
<td>94</td>
<td>90</td>
<td>+4</td>
</tr>
<tr>
<td></td>
<td>2002-02-21</td>
<td>91</td>
<td>90</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>2002-02-27</td>
<td>90</td>
<td>89</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>2002-03-05</td>
<td>92</td>
<td>89</td>
<td>+3</td>
</tr>
<tr>
<td></td>
<td>2002-03-13*</td>
<td>90</td>
<td>89</td>
<td>+1</td>
</tr>
<tr>
<td>1:26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP-torkning + Infravärme</td>
<td>2002-02-11</td>
<td>96</td>
<td>90</td>
<td>+6</td>
</tr>
<tr>
<td></td>
<td>2002-02-21</td>
<td>90</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2002-03-05</td>
<td>88</td>
<td>89</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>2002-03-13*</td>
<td>86</td>
<td>89</td>
<td>-3</td>
</tr>
</tbody>
</table>

* Slutmätning
9. Fältstudie av olika metoder att påskynda uttorkning av betong

En jämförelse mellan tabell 9.4 och 9.5 visar att antagandet om förhindrad uttorkning nedåt när mineralullen är fuktig ger betydligt bättre överensstämmelse med mätvärdena. Avvikelsen är ofta 1% vilket låt förklaras med skillnaden mellan mätdjup och beräkningsdjup. De större avvikelsena 3 och 4% kan beror på att den våta mineralullen inte bara förhindrar uttorkning nedåt utan att den även ger ett fukttillskott till betongen.

Trots allt är överensstämmelsen överraskande god med tanke på att beräkningsprogrammet bygger på komplicerade teoretiska antaganden om hydratationsprocess och egenskaps-utveckling hos betongen.

En jämförelse av samma typ mellan mätning och beräkning har även gjorts för mätpunkt 1:17. Även denna del av plattan göts när det regnade. Tabell 9.6 samt 9.7 visar resultaten av denna jämförelse.

Tabell 9.6 Platta på mark, 150 mm betong på underliggande mineralull.

<table>
<thead>
<tr>
<th>Mätpunkt</th>
<th>Mätddatum</th>
<th>Uppmätt resultat 50 % mätdjup</th>
<th>Simulerat resultat 40 % mätdjup</th>
<th>Skillnad verklig-beräknad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:17</td>
<td>2002-02-21</td>
<td>90</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2002-03-05</td>
<td>90</td>
<td>89</td>
<td>+1</td>
</tr>
<tr>
<td>* Sorptions-avfuktning</td>
<td>2002-03-13*</td>
<td>91</td>
<td>88</td>
<td>+3</td>
</tr>
</tbody>
</table>

Tabell 9.7 Platta på mark, 150 mm betong på underliggande fuktspärr.

<table>
<thead>
<tr>
<th>Mätpunkt</th>
<th>Mätddatum</th>
<th>Uppmätt resultat 50 % mätdjup</th>
<th>Simulerat resultat 40 % mätdjup</th>
<th>Skillnad verklig-beräknad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:17</td>
<td>2002-02-21</td>
<td>90</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2002-03-05</td>
<td>90</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>* Sorptions-avfuktning</td>
<td>2002-03-13*</td>
<td>91</td>
<td>89</td>
<td>+2</td>
</tr>
</tbody>
</table>

9.10.3 Mellanbjälklag

Uppmätt RF i mellanbjälklaget som göts med betong vet 0,38 har också jämförts med beräknade RF enligt TorkaS 2.0. Resultaten av denna jämförelse visas i tabell 9.8 och 9.9. Observera skillnaden mellan mätningarnas mätdjup och beräkningsdjupet. I TorkaS 2.0 anses det ekvivalenta mätdjupet vara 25 % av bjälklagetjockleken vid användning av plattbärlag. Plattbärlaget bedöms vara något hämmande för uttorkningen nedåt.

Tabell 9.8 Mellanbjälklag 180 mm betong på 40 mm plattbärlag.

<table>
<thead>
<tr>
<th>Mätpunkt</th>
<th>Mätddatum</th>
<th>Uppmätt resultat 50 % mätdjup</th>
<th>Simulerat resultat 25 % mätdjup</th>
<th>Skillnad verklig-beräknad</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:28</td>
<td>2002-02-21</td>
<td>85</td>
<td>87</td>
<td>-2</td>
</tr>
<tr>
<td>2:7</td>
<td>2002-03-13*</td>
<td>78</td>
<td>86</td>
<td>-8</td>
</tr>
</tbody>
</table>

* Slutmätning
Trots att mätningarna utförts på halva plattjockleken så är den uppmätta relativa fuktigheten lägre än de simulerade resultaten på ekvivalent djup. Detta tyder på att TorkaS 2.0 underskattar uttorkningen hos betong med lågt vct.

Tabell 9.9 Mellanbjälklag 210 mm betong på 40 mm plattbärlag.

<table>
<thead>
<tr>
<th>Mätpunkt</th>
<th>Mättdatum</th>
<th>Uppmätt resultat 50 % mätdjup</th>
<th>Simulerat resultat 25 % mätdjup</th>
<th>Skillnad verklig-beräknad</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:9</td>
<td>2002-02-21</td>
<td>87</td>
<td>87</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2002-03-13*</td>
<td>85</td>
<td>86</td>
<td>-1</td>
</tr>
</tbody>
</table>

* Slutmätning

De uppmätta resultaten på 50 % djup stämmer här väl överens med de simulerade resultaten på 25 % djup. Även detta tyder på att TorkaS 2.0 underskattar uttorkningen hos betong med lågt vct.

9.11 Slutsatser

9.11.1 Generellt

Som i alla fältundersökningar kan inte allt som sker på byggarbetsplatsen förutses. Klimatförhållandena blir inte vad man önskat eller förutspått, byggtiderna följer inte planen etc. Trots detta har mycket värdefull information kommit fram från försöket. Det mest betydelsefulla är att det visat sig vara möjligt att nå låg RF-nivå i betongen trots svåra klimatförhållanden. Detta har varit möjligt genom användning av hög betongkvalitet eller genom värming av betongen.

Visserligen har inte beställarens krav på 85 % RF i mitten av plattan uppfyllts i alla mätpunkter, men vårdet har där endast överskridits med ett par procentenheter. Det måste påpekas att det uppställda kravet att RF skall mätas på halva plattjockleken är mycket hårt och på säkra sidan. Golvläggning kunde därför ske utan att riskera skador på golvmaterialen.

De följande avsnitten diskuterar de olika resultaten något mera i detalj.

9.11.2 Uttorkningsmetoder

Ökad betongkvalitet

Jämfört med de andra uttorkningsmetoderna så ger en betong med vct 0,38 en snabb uttorkning. Detta noteras framförallt vid RF-mätningar gjorda på uttaget prov, den mätmetod som borde ge säkrast resultat. Alla mätningar visade att nivån 85 % RF i plattmitt kunde nås inom utsatt tid. Fältstudien bekräftar således laboratorieundersökningarna som redovisa i kapitel 4 och 5.
Användning av betong med lågt vct skapar trygghet för produktionsledningen eftersom metoden är robust och ej fordrar tillsyn och merarbete i form av installationer och drift vilket de andra provade uttorkningsmetoderna gör.

Värmning med elslinga

Mätningarna visar på snabb uttorkning vid användning av elslinga. Kravet på 85 % RF uppfylldes i tre av fem fall vid slutmätningen. De övriga två mätningarna visade båda 87 % RF. Värmen som avges av betongen ger också en gynnsam påverkan på inomhusklimatet.

Risken med att förlita sig på elslingor är att de lätt skadas vid gjutningen eller under byggtiden till exempel i samband med håltagnings i betongen. I det aktuella projektet förstördes flera slingor.

Produktionsledningen ansåg att man fick lägga mycket tid och kraft på att kontrollera slingornas funktion, eftersom elsäkringar löste ut vid ett flertal tillfällen.

För att lokalisera elslingorna när de var ingjutna gjordes en termografering med hjälp av värmekamera. Denna termografering fungerade mycket bra. Termografering kan därför användas som metod att undvika att skada värmeslingorna i samband med håltagning. Metoden medför dock vissa kostnader.

HP-torkning

HP-torkningen gav ett visst positivt bidrag till uttorkningen av bottenplattan. Ingen av mätningarna uppfyllde dock uttorkningskravet. Resultaten från slutmätningen visade 86 - 88 % RF. Systemet bör dock utvecklas vidare för att effekten skall bli ännu större. Det visade sig att luftläckaget till omgivande mark var betydande.

Sorptionsavfuktning

Enbart sorptionsavfuktning var inte tillräckligt för att klara uttorkningskraven. Det krävdes kostsamma extra insatser i form av infravärme för att sänka RF till en rimlig nivå (90 %). Lackdelen med avfuktningen var att man skapade en arbetsmiljö med mycket torr luft (låg RF). Detta uppfattades som irriterande av vissa arbetare.
Torkning med infravärme

Infravärmarna användes inte från början utan sattes in under de sista veckorna för att kravnivån 85 % RF skulle uppfyllas i de delar av golv på mark som gjutits på fuktig mineralull och/eller där tidigare insatta torkåtgärder (HP-torkning, sorptionsavfuktning) inte räckte.

Uttorkningsresultaten tyder på att infravärmarna hade en positiv effekt på uttorkningen. Betongtemperaturen höjdes kraftigt vilket gav upphov till en stor fuktutdrivande ångtryckspotential. 85 % RF nåddes aldrig på den månad som infravärmen användes.

Infravärmarna värmer en ganska begränsad yta (ca. 2 m²). Detta innebar att de fick flyttas med jämna mellanrum. På så sätt skapades merarbete. En annan negativ effekt var att de var i vägen och störde byggnadsarbete i lokalen.

Jämförelse mellan olika torkmetoder

I tabell 9.10 och 9.11 görs en jämförelse mellan olika torkmetoder. Tabellen baseras på resultaten av de slutmätningar som utfördes av RBK-auktoriserad fuktkontrollant.

Tabell 9.10 Sammanfattning av torkmetoder för platta på mark.

<table>
<thead>
<tr>
<th>Typ av golv</th>
<th>Torkmetod</th>
<th>Uppnådd RF</th>
<th>Fördelar</th>
<th>Nackdelar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platta på mark</td>
<td>Sorptionsavfuktning</td>
<td>91 %</td>
<td>Skapar god miljö för uttorkning</td>
<td>Ej tillräcklig för att nå låga RF-nivär.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Skapar alltför torr arbetsmiljö</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Energikrävande</td>
</tr>
<tr>
<td></td>
<td>HP-torkning</td>
<td>86-88 %</td>
<td>Ger ganska god uttorkning</td>
<td>Energikrävande</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kräver mycket utrustning</td>
</tr>
<tr>
<td></td>
<td>Elslinga</td>
<td>79-87 %</td>
<td>Ger god uttorkning</td>
<td>Energikrävande</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lätt att förstöra</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kräver mycket kontroll</td>
</tr>
<tr>
<td></td>
<td>Infrafrämme</td>
<td>90 %</td>
<td>Ger snabb uttorkning</td>
<td>Torkar begränsad yta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Skapar alltför varm arbetsmiljö</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Energikrävande</td>
</tr>
</tbody>
</table>
9. Fältstudie av olika metoder att påskynda uttorkning av betong

<table>
<thead>
<tr>
<th>Typ av golv</th>
<th>Torkmetod</th>
<th>Uppnådd RF</th>
<th>Fördelar</th>
<th>Nackdelar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mellanbjälklag</td>
<td>Elslinga</td>
<td>83 %</td>
<td>Ger god uttorkning</td>
<td>Energikrävande</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lätt att förstöra</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kräver mycket kontroll</td>
</tr>
<tr>
<td></td>
<td>Självtorkande betong</td>
<td>78-85 %</td>
<td>Ger god uttorkning</td>
<td>Dyrare betong</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Är robust och torkar utan extra åtgärd</td>
</tr>
</tbody>
</table>

9.11.3 Fuktmätning

Borrhålsmätning med kvarsittande givare

Resultaten från mätningarna med Humi-Guard givarna har inte varit tillfredsställande. Det verkar som om enstaka avläsningar ger felaktiga resultat när temperaturvariationerna i betongen är stora. Loggning av mätningarna vilket hade gett möjlighet till medelvärdesbildning under längre tid hade möjligen givit mer riktiga mätvärden.

RF-mätning genom uttaget prov

Uttaget prov har i de flesta fall givit resultat som överensstämmer väl med värden som kunde förväntas på basis av beräkningar, av labundersökningar och av tidigare erfarenheter från mätning på byggen. Spridningen i uppmätta RF har dock varit stor i betong med lågt vct. Orsaken till detta är oklar och bör undersökas vidare. Möjliga är tiden mellan applicering av RF-givaren och avläsningen för kort för den mycket täta betongen. Metoden är tyvärr ganska tids och arbetskra kande och är således svår att använda om man kontinuerligt vill följa uttorkningen under en längre tid.

9.11.4 Jämförelser med datorprogrammet TorkaS 2.0

De simuleringar som gjorts mellan beräkningar med TorkaS 2.0 och de verkliga uttorkningstiderna med användning av verkligt uppmätta klimatdata, visar tämligen god överensstämmelse. De största avvikelserna har observerats för betong med vct 0,38, där flertalet uppmätta resultat legat långt under de simulerade. Det förefaller därför som om TorkaS 2.0 inte är så väl tillämpbart för mycket högvärdiga betongtyper.

9.11.5 Övriga slutsatser

Regn i samband med gjutning av platta på mark med underliggande mineralullsisolering verkar fördröja uttorkningen mycket starkt, tydligen pga. att mineralullen tillhandahåller ett ”vattenmagasin” till plattan. Detta fick i det aktuella projektet konsekvensen att man tvingades torka sådana ”fuktscadade” delar av bottennplattan med hjälp av infravärmare. Resultatet visar den stora vikten av att skydda markisolering från regn.

Möjlichen hade inte den negativa effekten uppkommit om betongen hade haft mycket lågt vct eftersom insugning av fukt från isoleringen då blivit försumbar.
9. Fältstudie av olika metoder att påskynda uttorkning av betong
10. Slutsatser

Följande slutsatser kan dras av detta Licentiatarbete. Slutsatserna är kopplade till de frågeställningar som presenterades i avsnitt 1.7.2.

1. Uttorkningsegenskaper hos Byggcement jämfört med Std Portlandcement

- Skillnaden i uttorkningsegenskaper mellan Byggcement och Std P-cement vid samma vct är liten.

- RF-utvecklingen på ekvivalent djup i en tvåsidigt torkande 18 cm tjock betongplatta är nästan identisk för de båda cementtyperna.

- RF-utvecklingen på halva plattjockleken sker något långsammare vid Byggcement men skillnaden vid samma torktid är mindre än 2,5 % RF.

2. Självuttorkning

- Självuttorkning hos betong är starkt beroende av vattencementtalet.

- Vid Byggcement och SH-cement kan 85 % RF uppnås efter mindre än 1 månads torktid enbart genom användning av betong med vct ≤ 0.40.

- SH-cement ger något större självuttorkningseffekt än Byggcement. Skillnaden kan delvis förklaras med den s.k.kalieffekten, d.v.s. effekten av att porvattnet innehåller lösta joner; K^+, Na^+ och OH^-.

- Vid Anläggningscement räcker inte ens en vct-sänkning till 0,30 för att självuttorkning skall ge 85 % RF. Däremot kan 90 % RF uppnås inom en månad. Skillnaden i självuttorkning mellan anläggningscement och övriga cement minskar dock med ökande vct.

- Inblandning av 10 % silikastoft ger ingen effekt på den första månadens självuttorkning vid Byggcement och SH-cement. Snarare minskar självuttorkningen.

- Inblandning av 10 % silikastoft ger stor effekt på självuttorkningen vid Anläggningscement. 85 % RF kan uppnås enbart på grund av självuttorkning om vbt $\leq 0,30$.
3. Inverkan av regnbelastning direkt efter gjutning på uttorkningen

- Vattenbelastning på nygjutna betongytor, av t.ex regn, skapar inga väsentliga uttorkningsproblem för betong med vct ≤ 0,40. 85 % RF kan uppnås redan efter 4 veckor från gjutning trots 1 veckas regn. En viss fördröjning sker, men den motsvarar i stort sett regnets varaktighet, d.v.s. ca. 1 vecka vid 1 veckas regn.

- Vid vct ≥ 0,45 förlängs uttorkningstiden väsentligt om betongen utsätts för några dagars regn. 7 dygns vattenbelastning på en betong med vct 0,70 innebär att uttorkningstiden för att nå 85 % RF på ekvivalent mätdjup fördubblas till ca. 36 veckor.

4. Uttorkning av hårdnad betong efter vattenskada

- Insugn vattenmängd minskar kraftigt med minskat vct. Vid vct ≤ 0,40 är insugn vattenmängd enbart ca. 25. % av den mängd som sugs in i normal husbyggnadsbetong med vct 0,70.

- Vid vct ≤ 0,40 räcker inte ens 1 månads vatteninsugning för att 85 % RF skall uppnås på ekvivalent djup i en 120 mm platta.

- Vattenbelastningens varaktighet har begränsad betydelse för totalt uppsugen vattenmängd. Även en kort vattenabsorptionstid (3 dygn) ger avsevärd insugning i betong med högt vct.

- Uttorkning till ursprunglig fuktnivå i en 120 mm tjock platta tar mer än 4 månader vid vct 0,70. Vid vct ≤ 0,40 krävs enbart ca. 1 månads torkning.

- Resultatet visar alltså att en golvkonstruktion baserad på högvärdig betong med lågt vct är betydligt mindre känslig för vattenläckage än om den baseras på en normalbetong.

5. Inverkan av avjämningsmassa på uttorkning

- 10 mm golfavjämning ger ett begränsat fuktılıskott som höjer RF på ett djup av någon cm ner i betongen. RF-ökningen är större ju högre vct betongen har.

- Betongen fortsätter att torka även efter det att avjämnningen applicerats. Uttorkningshastigheten minskar dock något.

- Ju tidigare avjämningsmassan appliceras desto mindre blir påverkan på det fortsatta torkförloppet.

- Maximalt kan fördröjningen av uttorkningen uppgå till ca. 1 månad.
6. **Uttorkning av prefabrikerade bjälklageelement**

- Uttorkning sker betydligt snabbare i prefabrikerade håldäcksbjälklag än i prefabrikerade massiva bjälklageelement med samma vct. Orsaken till detta är inte klarlagd.

- Trots att håldäcket utsätts för två veckors regn med start nästan direkt efter tillverkning nås 85 % RF på ekvivalent djup inom mindre än 1,5 månad. För massiva plattor nås 90 % RF efter ungefär samma tid.

- Klimatet som håldäcksbjälklag av aktuell kvalitet (vct ≈ 0,38) utsätts för innan de byggs in spelar därför inte så stor roll för den praktiska uttorkningen i fält. Oavsett förhistorien vad avser fuktbelastning under lagring, leverans och montering går RF snabbt mot samma nivå då elementen placeras i ett varmt och torrt inneklimat, d.v.s. efter det att väggar och tak monterats på bygget.

- Fuktmätning i kanalerna i håldäcket ger ungefär samma RF som på ekvivalent djup. Av säkerhetsskäl bör man dock göra mätningen på ekvivalent djup.

7. **Metoder att påskynda betongen uttorkning i fält**

- Höjning av betongkvaliteten till vct 0,38 gav snabb och säker uttorkning. Metoden är robust krävde ingen särskild insats av byggarbetsplatsens personal. Erforderlig uttorkningsnivå 85 % RF på halva tjockleken kunde nås inom stipulerad tid trots att denna var tämligen kort.

- Värmning av betongen med elslinking gav också snabb uttorkning. Metoden befanns dock vara känslig eftersom elslinger lått går sönder under gjutning. Byggarbetsplatsen upplevde dessutom metoden som arbetskrävande och i viss mån störande.

- Övriga metoder som provades, inblåsning av luft i mark under platta på mark och sorptionsavfuktning, gav inte tillfredsställande uttorkningsresultat.

- Fuktmätning med kvarsittande HumiGuard-givare visade sig fungera dåligt vilket möjligen kan bero på variationer i betongtemperaturen.

Sammanfattningsvis visade alla de delstudier som genomfördes att en sänkning av betongens vattencementtal har en mycket positiv inverkan på betongens uttorkning. Detta gäller såväl torkning av nygjuten betong som torkning av hårdnad betong efter en längre tids vattenläckage. Den verkligt stora effekten nås om vct sänks till 0,40 eller lägre. Då kommer enbart självtutorkningen att vara tillräcklig för att tillräckligt lågt RF skall uppnås inom kort tid. Detta gäller även vid oegensamma fuktförhållanden under byggtiden.
Referenser

BBR. Boverkets byggregler-föreskrifter och allmänna råd. Boverket, Karlskrona. 2002

Brome, P. Fuktrisker i håldäcksbjälklag – Förstudie. SBUF-rapport. Skanska Teknik, Malmö. 2003

Byfors, J. Plain concrete at early ages. CBI Research Fo 3:80. 1980

Gränne, F. Insugning av fukt i betong med lågt vattenbindemedelstal. SBUF Rapport. NCC Teknik, Stockholm. 2004

Hedenblad, G., Arfvidsson, J. TorkaS 1.0. Datorprogram för bedömning av uttorkning av betonggolv. Lunds Tekniska Högskola. 1998

Pihlajavaara, S.E. On the main features and methods of investigation of drying and related phenomena in concrete. Statens Tekniska Forskningsanstalt, Finland. 1965

SS-EN 196-1 Cement-Provning-Del 1: Bestämning av hållfasthet. Swedish Standard Institute, Stockholm. 2001

SS-EN 206-1 Betong-Del 1: Fordringar, egenskaper, tillverkning och överrensämne. Swedish Standard Institute, Stockholm. 2001

Appendix 1

Lagringsklimat för betongprover
Kap. 5, 7 och 8
Appendix 1

Uppmätt temperatur och RF i klimatrum

![Graph showing temperature and RF over time](image)
Appendix 2

Fuktprofiler
Kap. 6
Appendix 2

Fuktprofiler vid vatteninsugning och uttorkning

Vct 0,35 3 dygns vattenbelastning

![Graph](image1)

Vct 0,35 7 dygns vattenbelastning

![Graph](image2)
Appendix 2

Fuktprofiler vid vatteninsugning och uttorkning

Vct 0,35 14 dygn vattenbelastning

Vct 0,35 28 dygn vattenbelastning
Appendix 2

Fuktprofiler vid vatteninsugning och uttorkning

Vct 0,40 3 dygn vattenbelastning

![Graph showing humidity profiles for 3 days of water loading with different concrete thickness.]
Legend: Start RF, 3 dygn, 25 dygn, 50 dygn, 100 dygn

Vct 0,40 7 dygn vattenbelastning

![Graph showing humidity profiles for 7 days of water loading with different concrete thickness.]
Legend: Start RF, 7 dygn, 25 dygn, 50 dygn, 100 dygn
Appendix 2

Fuktprofiler vid vatteninsugning och uttorkning

Vct 0,40 14 dygns vattenbelastning

Vct 0,40 28 dygns vattenbelastning
Appendix 2

Fuktprofiler vid vatteninsugning och uttorkning

Vct 0,45 3 dygs vattenbelastning

![Graph 1]

Vct 0,45 7 dygs vattenbelastning

![Graph 2]
Appendix 2

Fuktprofiler vid vatteninsugning och uttorkning

Vct 0,45 14 dygs vattenbelastning

Vct 0,45 28 dygs vattenbelastning
Appendix 2

Fuktprofiler vid vatteninsugning och uttorkning

Vct 0,55 3 dygn vattenbelastning

Vct 0,55 7 dygn vattenbelastning
Appendix 2

Fuktprofiler vid vatteninsugning och uttorkning

Vct 0,55 14 dygs vattenbelastning

Vct 0,55 28 dygs vattenbelastning
Appendix 2

Fuktprofiler vid vatteninsugning och uttorkning

Vct 0,70 3 dygn vattenbelastning

Vct 0,70 7 dygn vattenbelastning
Appendix 2

Fuktprofiler vid vatteninsugning och uttorkning

Vct 0,70 14 dygn vattenbelastning

Vct 0,70 28 dygn vattenbelastning
Appendix 3

Uttorkning av bjälklagselement
Kap. 8
Jämförelse av uttorkning mellan HD/F och D/F

Klimat 5

Klimat 6
Jämförelse av uttorkning mellan HD/F och D/F

Klimat 7

![Graph showing comparison between HD/F and D/F in climate 7]

Klimat 8

![Graph showing comparison between HD/F and D/F in climate 8]
Appendix 3

RF i kanaler i håldäck

Klimat 5

Klimat 6
Appendix 3

RF i kanaler i håldäck

Klimat 7

Klimat 8
Appendix 4

Fältstudie av uttorkningsmetoder
Kap. 9
Planlösning Bottenplan

Källarbjälklag, 220 mm
Platta på mark, 100 mm
Platta på mark, 150 mm
Planlösning Plan 2

- Hotellrum
- Korridor
- Allrum
- Hiss

Mellanbjälklag, 220 mm
Mellanbjälklag, 250 mm
Rumsnumrering, Bottenplan. Använda torkmetoder

<table>
<thead>
<tr>
<th>1:1</th>
<th>1:2</th>
<th>1:3</th>
<th>1:4</th>
<th>1:5</th>
<th>1:6</th>
<th>1:7</th>
<th>1:8</th>
<th>1:9</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 45 El-uk</td>
<td>K 35</td>
<td>K 35 HP-1</td>
<td>K 35 HP-1</td>
<td>K 35</td>
<td>K 35 HP-2</td>
<td>K 35 El-m</td>
<td>K 35 El-uk</td>
<td>K 35</td>
</tr>
<tr>
<td>1:10</td>
<td>1:11</td>
<td>1:12</td>
<td>1:13</td>
<td>1:14</td>
<td>1:15</td>
<td>1:16</td>
<td>1:17</td>
<td></td>
</tr>
<tr>
<td>K 45</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K 35 El-m</td>
<td>K 35 El-m</td>
<td>K 35 HP-1</td>
<td>K 35 HP-1</td>
<td>K 35 HP-2</td>
<td>K 35 El-m</td>
<td>K 35 El-uk</td>
<td>K 35 El-uk</td>
<td>K 35</td>
<td>K 35</td>
<td>K 35</td>
</tr>
</tbody>
</table>

Plattjocklekar:
- 1:1 (källarbjälklag) = 220 mm
- 1:2 – 1:9 = 100 mm
- 1:10 – 1:17 (korridor) = 150 mm
- 1:18 – 1:28 = 100 mm

Teckenförklaringar

- **K 35** Betong med vct 0,62
- **K 45** Betong med vct 0,50
- **El-m** Elslingor placerade på halva betongtjockleken
- **El-uk** Elslingor placerade i underkant på betongen
- **HP-1** Varm torr luft blåses in under plattan, startas när tätt hus erhållits
- **HP-2** Varm torr luft blåses in under plattan, startasnarast möjligt efter gijtning
Rumsnumrering, Plan 2. Använda torkmetoder

<table>
<thead>
<tr>
<th>2:1</th>
<th>2:2</th>
<th>2:3</th>
<th>2:4</th>
<th>2:5</th>
<th>2:6</th>
<th>2:7</th>
<th>2:8</th>
<th>2:9</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 45 El-uk</td>
<td>K 60</td>
<td>K 60</td>
<td>K 60</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2:10</th>
<th>2:11</th>
<th>2:12</th>
<th>2:13</th>
<th>2:14</th>
<th>2:15</th>
<th>2:16</th>
<th>2:17</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 45 El-uk</td>
<td>K 60</td>
<td>K 60</td>
<td>K 60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K 45 El-uk</td>
<td>K 60</td>
<td>K 60</td>
<td>K 60</td>
<td>K 60</td>
<td>K 60</td>
<td>K 60</td>
</tr>
</tbody>
</table>

Plattjocklekar
- 2:1 – 2:8 = 220 mm
- 2:9 = 250 mm
- 2:10 – 2:28 = 220 mm

Teckenförklaringar
- K 45: Betong med vct 0.50
- K 60: Betong med vct 0.38
- El-uk: Elslingor placerade i underkant på betongen

Appendix 4.2
Betongrecept Järavallen

<table>
<thead>
<tr>
<th>Betongtyp</th>
<th>K 35</th>
<th>K 45</th>
<th>K 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>vct</td>
<td>0,62</td>
<td>0,50</td>
<td>0,38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>kg/m³</th>
<th>kg/m³</th>
<th>kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slite Byggcement</td>
<td>295</td>
<td>360</td>
<td>410</td>
</tr>
<tr>
<td>Silikastoft</td>
<td>-</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Vatten</td>
<td>182</td>
<td>180</td>
<td>154</td>
</tr>
<tr>
<td>Ballast</td>
<td>836</td>
<td>813</td>
<td>922</td>
</tr>
<tr>
<td>Grus 0-8</td>
<td>980</td>
<td>952</td>
<td>849</td>
</tr>
<tr>
<td>Sten 8-16</td>
<td>836</td>
<td>813</td>
<td>922</td>
</tr>
</tbody>
</table>

Flyttillsatsmedel

<table>
<thead>
<tr>
<th>Material</th>
<th>kg/m³</th>
<th>kg/m³</th>
<th>kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peramin F</td>
<td>4</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Peramin Compac 30</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
</tbody>
</table>
Appendix 4.4

Uttorkningssimuleringar med TorkaS 1.0

Platta på mark
Appendix 4.4

Uttorkningssimuleringar med TorkaS 1.0

Mellanbjälklag
Placering av Humi-Guard kvarsittande givare, Bottenplan

<table>
<thead>
<tr>
<th>1:1</th>
<th>1:2</th>
<th>1:3</th>
<th>1:4</th>
<th>1:5</th>
<th>1:6</th>
<th>1:7</th>
<th>1:8</th>
<th>1:9</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 45</td>
<td>K 35</td>
</tr>
<tr>
<td>El-uk</td>
<td></td>
<td>HP-1</td>
<td></td>
<td>HP-1</td>
<td></td>
<td>El-m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1:10</th>
<th>1:11</th>
<th>1:12</th>
<th>1:13</th>
<th>1:14</th>
<th>1:15</th>
<th>1:16</th>
<th>1:17</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP-1</td>
<td></td>
<td></td>
<td>HP-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP-1</td>
<td></td>
<td>HP-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K 35</td>
</tr>
<tr>
<td>El-m</td>
<td></td>
<td>HP-1</td>
<td></td>
<td>HP-1</td>
<td></td>
<td>El-m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plattjocklekar: 1:1 = 220 mm ; 1:2 – 1:9 = 100 mm ; 1:10 – 1:17 = 150 mm ; 1:18 – 1:28 = 100 mm

Mätdjup: Halva platjockleken
Placering av Humi-Guard kvarsittande givare, Plan 2

<table>
<thead>
<tr>
<th></th>
<th>2:1</th>
<th>2:2</th>
<th>2:3</th>
<th>2:4</th>
<th>2:5</th>
<th>2:6</th>
<th>2:7</th>
<th>2:8</th>
<th>2:9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K 45 El-uk</td>
<td>K 60</td>
<td>K 60</td>
<td>K 60</td>
<td>K 60</td>
</tr>
<tr>
<td>2:10</td>
<td>K 45 El-uk</td>
<td>K 60</td>
<td>K 60</td>
<td>K 60</td>
<td>K 60</td>
</tr>
<tr>
<td>2:18</td>
<td>K 45 El-uk</td>
<td>K 60</td>
<td>K 60</td>
<td>K 60</td>
<td>K 60</td>
</tr>
</tbody>
</table>

Plattjocklekar: 2:1 – 2:8 = 220 mm ; 2:9 = 250 mm ; 2:10 – 2:28 = 220 mm

Mätdjup: Halva plattjockleken
Mätpunkter för slutmätning, Bottenplan. Mätdjup = halva plattjockleken

<table>
<thead>
<tr>
<th>1:1</th>
<th>1:2</th>
<th>1:3</th>
<th>1:4</th>
<th>1:5</th>
<th>1:6</th>
<th>1:7</th>
<th>1:8</th>
<th>1:9</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 45</td>
<td>K 35</td>
</tr>
<tr>
<td>El-uk</td>
<td>El-uk</td>
<td>HP-1</td>
<td>HP-1</td>
<td>HP-2</td>
<td>El-m</td>
<td>El-uk</td>
<td>El-uk</td>
<td>El-uk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K 45</td>
<td>K 35</td>
</tr>
<tr>
<td>El-uk</td>
<td>El-uk</td>
<td>HP-1</td>
<td>HP-1</td>
<td>HP-2</td>
<td>El-m</td>
<td>El-uk</td>
<td>El-uk</td>
<td>El-uk</td>
<td>El-m</td>
<td>HP-1</td>
<td>HP-1</td>
<td>HP-1</td>
<td>HP-1</td>
<td>HP-2</td>
<td>HP-2</td>
<td>El-uk</td>
<td>El-uk</td>
<td>El-uk</td>
</tr>
</tbody>
</table>

Plattjocklekar: 1:1 = 220 mm ; 1:2 – 1:9 = 100 mm ; 1:10 – 1:17 = 150 mm ; 1:18 – 1:28 = 100 mm

Teckenförklaringar

- **K 35** Betong med vct 0,62
- **K 45** Betong med vct 0,50
- **El-m** Elslingor placerade på halva betongtjockleken
- **El-uk** Elslingor placerade i underkant på betongen
- **HP-1** Varm torr luft blåses in under plattan, startas när tätt hus erhållits
- **HP-2** Varm torr luft blåses in under plattan, startas snarast möjligt efter gjutning
Mätpunkter för slutmätning, Plan 2. Mätdjup = halva plattjockleken

<table>
<thead>
<tr>
<th>2:1</th>
<th>2:2</th>
<th>2:3</th>
<th>2:4</th>
<th>2:5</th>
<th>2:6</th>
<th>2:7</th>
<th>2:8</th>
<th>2:9</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 45</td>
<td>K 45</td>
<td>K 45</td>
<td>K 45</td>
<td>K 45</td>
<td>K 60</td>
<td>K 60</td>
<td>K 60</td>
<td>K 60</td>
</tr>
<tr>
<td>El-uk</td>
<td>El-uk</td>
<td>El-uk</td>
<td>El-uk</td>
<td>El-uk</td>
<td>El-uk</td>
<td>El-uk</td>
<td>El-uk</td>
<td>El-uk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2:10</th>
<th>2:11</th>
<th>2:12</th>
<th>2:13</th>
<th>2:14</th>
<th>2:15</th>
<th>2:16</th>
<th>2:17</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 45</td>
<td>K 45</td>
<td>K 45</td>
<td>K 45</td>
<td>K 45</td>
<td>K 60</td>
<td>K 60</td>
<td>K 60</td>
</tr>
<tr>
<td>El-uk</td>
<td>El-uk</td>
<td>El-uk</td>
<td>El-uk</td>
<td>El-uk</td>
<td>El-uk</td>
<td>El-uk</td>
<td>El-uk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K 45</td>
<td>K 45</td>
<td>K 45</td>
<td>K 45</td>
<td>K 45</td>
<td>K 60</td>
<td>K 60</td>
<td>K 60</td>
<td>K 60</td>
<td>K 60</td>
<td>K 60</td>
</tr>
<tr>
<td>El-uk</td>
</tr>
</tbody>
</table>

Plattjocklekar: 2:1 – 2:8 = 220 mm ; 2:9 = 250 mm ; 2:10 – 2:28 = 220 mm

Teckenförklaringar

- K 45: Betong med vct 0,50
- K 60: Betong med vct 0,38
- El-uk: Elslingor placerade i underkant på betongen
Sammanställning av uttorkningsmetoder. Startdatum samt ungefärlig varaktighet

<table>
<thead>
<tr>
<th>Rum</th>
<th>Betong</th>
<th>Plattjocklek</th>
<th>Gjutdatum</th>
<th>Sorptionsavfuktning</th>
<th>Elslingor</th>
<th>HP-torkning</th>
<th>Infravärme</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>K 45</td>
<td>220 mm</td>
<td>2001-09-26</td>
<td>2001-12-18 +12 v</td>
<td>2001-11-20 +16 v (2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1:2</td>
<td>K 35</td>
<td>100 mm</td>
<td>2001-10-05</td>
<td>2001-12-18 +12 v</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1:3</td>
<td>K 35</td>
<td>100 mm</td>
<td>2001-10-05</td>
<td>2001-12-18 +12 v</td>
<td>-</td>
<td>2001-11-20 +16 v</td>
<td>2002-02-11 +2 v</td>
</tr>
<tr>
<td>1:4</td>
<td>K 35</td>
<td>100 mm</td>
<td>2001-10-09</td>
<td>2001-12-18 +12 v</td>
<td>-</td>
<td>2001-11-20 +12v</td>
<td>-</td>
</tr>
<tr>
<td>1:5</td>
<td>K 35</td>
<td>100 mm</td>
<td>2001-10-09</td>
<td>2001-12-18 +12 v</td>
<td>-</td>
<td>2001-10-10 +17 v</td>
<td>-</td>
</tr>
<tr>
<td>1:6</td>
<td>K 35</td>
<td>100 mm</td>
<td>2001-10-03</td>
<td>2001-12-18 +12 v</td>
<td>2001-11-20 +16 v (2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1:7</td>
<td>K 35</td>
<td>100 mm</td>
<td>2001-10-03</td>
<td>2001-12-18 +12 v</td>
<td>2001-11-20 +16 v (1)</td>
<td>-</td>
<td>2002-02-25 +2 v</td>
</tr>
<tr>
<td>1:8</td>
<td>K 35</td>
<td>100 mm</td>
<td>2001-10-08</td>
<td>2001-12-18 +12 v</td>
<td>2001-11-20 +16 v (2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1:9</td>
<td>K 35</td>
<td>100 mm</td>
<td>2001-10-01</td>
<td>2001-12-18 +12 v</td>
<td>-</td>
<td>-</td>
<td>2002-02-11 +5 v</td>
</tr>
<tr>
<td>1:10</td>
<td>K 45</td>
<td>150 mm</td>
<td>2001-10-05</td>
<td>2001-12-18 +12 v</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1:11</td>
<td>K 45</td>
<td>150 mm</td>
<td>2001-10-05</td>
<td>2001-12-18 +12 v</td>
<td>-</td>
<td>2001-11-20 +16 v</td>
<td>-</td>
</tr>
<tr>
<td>1:12</td>
<td>K 45</td>
<td>150 mm</td>
<td>2001-10-09</td>
<td>2001-12-18 +12 v</td>
<td>-</td>
<td>2001-11-20 +12 v</td>
<td>-</td>
</tr>
<tr>
<td>1:13</td>
<td>K 45</td>
<td>150 mm</td>
<td>2001-10-09</td>
<td>2001-12-18 +12 v</td>
<td>-</td>
<td>2001-10-10 +17 v</td>
<td>-</td>
</tr>
<tr>
<td>1:14</td>
<td>K 45</td>
<td>150 mm</td>
<td>2001-10-03</td>
<td>2001-12-18 +12 v</td>
<td>2001-11-20 +16 v (2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1:15</td>
<td>K 45</td>
<td>150 mm</td>
<td>2001-10-03</td>
<td>2001-12-18 +12 v</td>
<td>2001-11-20 +16 v (1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1:16</td>
<td>K 45</td>
<td>150 mm</td>
<td>2001-10-08</td>
<td>2001-12-18 +12 v</td>
<td>2001-11-20 +16 v (2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1:17</td>
<td>K 45</td>
<td>150 mm</td>
<td>2001-10-01</td>
<td>2001-12-18 +12 v</td>
<td>-</td>
<td>-</td>
<td>2002-02-11 +5 v</td>
</tr>
<tr>
<td>1:18</td>
<td>K 35</td>
<td>100 mm</td>
<td>2001-10-09</td>
<td>2001-12-18 +12 v</td>
<td>2001-11-20 +16 v</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1:19</td>
<td>K 35</td>
<td>100 mm</td>
<td>2001-10-05</td>
<td>2001-12-18 +12 v</td>
<td>2001-11-20 +16 v (3)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1:20</td>
<td>K 35</td>
<td>100 mm</td>
<td>2001-10-05</td>
<td>2001-12-18 +12 v</td>
<td>-</td>
<td>2001-11-20 +16 v</td>
<td>2002-02-11 +2 v</td>
</tr>
<tr>
<td>1:21</td>
<td>K 35</td>
<td>100 mm</td>
<td>2001-10-09</td>
<td>2001-12-18 +12 v</td>
<td>-</td>
<td>2001-11-20 +12 v</td>
<td>-</td>
</tr>
<tr>
<td>1:22</td>
<td>K 35</td>
<td>100 mm</td>
<td>2001-10-09</td>
<td>2001-12-18 +12 v</td>
<td>-</td>
<td>2001-10-10 +17 v</td>
<td>-</td>
</tr>
<tr>
<td>1:23</td>
<td>K 35</td>
<td>100 mm</td>
<td>2001-10-03</td>
<td>2001-12-18 +12 v</td>
<td>2001-11-20 +16 v (2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1:24</td>
<td>K 35</td>
<td>100 mm</td>
<td>2001-10-03</td>
<td>2001-12-18 +12 v</td>
<td>2001-11-20 +16 v (1)</td>
<td>-</td>
<td>2002-02-25 +2 v</td>
</tr>
<tr>
<td>1:25</td>
<td>K 35</td>
<td>100 mm</td>
<td>2001-10-08</td>
<td>2001-12-18 +12 v</td>
<td>2001-11-20 +16 v (2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1:26</td>
<td>K 35</td>
<td>100 mm</td>
<td>2001-10-08</td>
<td>2001-12-18 +12 v</td>
<td>-</td>
<td>2002-02-11 +4 v</td>
<td>2002-02-11 +4 v</td>
</tr>
<tr>
<td>1:27</td>
<td>K 35</td>
<td>100 mm</td>
<td>2001-10-01</td>
<td>2001-12-18 +12 v</td>
<td>-</td>
<td>2002-02-11 +4 v</td>
<td>2002-02-11 +4 v</td>
</tr>
<tr>
<td>1:28</td>
<td>K 35</td>
<td>100 mm</td>
<td>2001-10-01</td>
<td>2001-12-18 +12 v</td>
<td>-</td>
<td>-</td>
<td>2002-02-11 +4 v</td>
</tr>
</tbody>
</table>

(1) : En elslinga ur funktion sedan byggstart.
(2) : En elslinga har gått sönder under byggskedet. Oklart när det hände.
(3) : Värmning enbart mellan 18.00 – 06.00
Sammanställning av uttorkningsmetoder. Startdatum samt ungefärlig varaktighet

<table>
<thead>
<tr>
<th>Rum</th>
<th>Betong</th>
<th>Plattjocklek</th>
<th>Gjutdatum</th>
<th>Sorptionsavfuktning</th>
<th>Elslingor</th>
<th>HP-torkning</th>
<th>Infravärme</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:1</td>
<td>K 45</td>
<td>220 mm</td>
<td>2001-11-01</td>
<td>2002-01-14 +8 v</td>
<td>2001-12-21+12 v</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:2</td>
<td>K 45</td>
<td>220 mm</td>
<td>2001-11-01</td>
<td>2002-01-14 +8 v</td>
<td>2001-12-21+12 v</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:3</td>
<td>K 45</td>
<td>220 mm</td>
<td>2001-11-01</td>
<td>2002-01-14 +8 v</td>
<td>2001-12-21+12 v</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:4</td>
<td>K 45</td>
<td>220 mm</td>
<td>2001-10-26</td>
<td>2002-01-14 +8 v</td>
<td>2001-12-21+12 v</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:5</td>
<td>K 45</td>
<td>220 mm</td>
<td>2001-10-26</td>
<td>2002-01-14 +8 v</td>
<td>2001-12-21+12 v</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:6</td>
<td>K 60</td>
<td>220 mm</td>
<td>2001-10-26</td>
<td>2002-01-14 +8 v</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:7</td>
<td>K 60</td>
<td>220 mm</td>
<td>2001-10-26</td>
<td>2002-01-14 +8 v</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:8</td>
<td>K 60</td>
<td>220 mm</td>
<td>2001-10-19</td>
<td>2002-01-14 +8 v</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:9</td>
<td>K 60</td>
<td>250 mm</td>
<td>2001-10-19</td>
<td>2002-01-14 +8 v</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:10</td>
<td>K 45</td>
<td>220 mm</td>
<td>2001-11-01</td>
<td>2002-01-14 +8 v</td>
<td>2001-12-21+12 v</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:11</td>
<td>K 45</td>
<td>220 mm</td>
<td>2001-11-01</td>
<td>2002-01-14 +8 v</td>
<td>2001-12-21+12 v</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:12</td>
<td>K 45</td>
<td>220 mm</td>
<td>2001-11-01</td>
<td>2002-01-14 +8 v</td>
<td>2001-12-21+12 v</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:13</td>
<td>K 45</td>
<td>220 mm</td>
<td>2001-10-26</td>
<td>2002-01-14 +8 v</td>
<td>2001-12-21+12 v</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:14</td>
<td>K 45</td>
<td>220 mm</td>
<td>2001-10-26</td>
<td>2002-01-14 +8 v</td>
<td>2001-12-21+12 v</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:15</td>
<td>K 60</td>
<td>220 mm</td>
<td>2001-10-26</td>
<td>2002-01-14 +8 v</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:16</td>
<td>K 60</td>
<td>220 mm</td>
<td>2001-10-26</td>
<td>2002-01-14 +8 v</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:17</td>
<td>K 60</td>
<td>220 mm</td>
<td>2001-10-19</td>
<td>2002-01-14 +8 v</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:18</td>
<td>K 45</td>
<td>220 mm</td>
<td>2001-11-01</td>
<td>2002-01-14 +8 v</td>
<td>2001-12-21+12 v</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:19</td>
<td>K 45</td>
<td>220 mm</td>
<td>2001-11-01</td>
<td>2002-01-14 +8 v</td>
<td>2001-12-21+12 v</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:20</td>
<td>K 45</td>
<td>220 mm</td>
<td>2001-11-01</td>
<td>2002-01-14 +8 v</td>
<td>2001-12-21+12 v</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:21</td>
<td>K 45</td>
<td>220 mm</td>
<td>2001-10-26</td>
<td>2002-01-14 +8 v</td>
<td>2001-12-21+12 v</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:22</td>
<td>K 45</td>
<td>220 mm</td>
<td>2001-10-26</td>
<td>2002-01-14 +8 v</td>
<td>2001-12-21+12 v</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:23</td>
<td>K 60</td>
<td>220 mm</td>
<td>2001-10-26</td>
<td>2002-01-14 +8 v</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:24</td>
<td>K 60</td>
<td>220 mm</td>
<td>2001-10-26</td>
<td>2002-01-14 +8 v</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:25</td>
<td>K 60</td>
<td>220 mm</td>
<td>2001-10-19</td>
<td>2002-01-14 +8 v</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:26</td>
<td>K 60</td>
<td>220 mm</td>
<td>2001-10-19</td>
<td>2002-01-14 +8 v</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:27</td>
<td>K 60</td>
<td>220 mm</td>
<td>2001-10-19</td>
<td>2002-01-14 +8 v</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:28</td>
<td>K 60</td>
<td>220 mm</td>
<td>2001-10-19</td>
<td>2002-01-14 +8 v</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Resultat från uttorkningsberäkning med TorkaS, 2.0

Projekt: Järnvägen
Namn: Ruta 1:9
Företag: Byggnadsmaterial LTH
2002-11-05

Förutsättningar
Platta på mark med underliggande mineralull

Gjutning : 1/10 2001
Tätt hus : 16/12 2001
Torkstart : 16/12 2001
Slutdatum : 13/3 2002
Ort : Sturup

Betonstövle: 10 cm
Vct: 0,62
Silika: 0 %
Vattenhalt: 183 l/m³
Cementhalt: 295 kg/m³

Torkklimat
Relativ fuktighet (%)

Temperatur (C)

Resultat från beräkning
Relativ fuktighet på 40% av stövleken.
Resultat från uttorkningsberäkning med TorkaS, 2.0

Förutsättningar

Platta på mark med underliggande tätt skikt

- Gjutning: 1/10 2001
- Tätt hus: 16/12 2001
- Torkstart: 16/12 2001
- Slutdatum: 13/3 2002
- Ort: Sturup

Betongjocklek: 10 cm
Vct: 0,62
Silika: 0 %
Vattenhalt: 183 l/m³
Cementhalt: 295 kg/m³

Torkklimat

Relativ fuktighet (%)

Temperatur (C)

Resultat från beräkning

Relativ fuktighet på 40% av tjockleken
Resultat från uttorkningsberäkning med TorkaS, 2.0

Projekt: Järavallen
Namn: Rum 1:17
Företag: Byggnadsmaterial LTH
2002-11-05

Förutsättningar
Platta på mark med underliggande mineralull

Gjutning: 1/10 2001
Tätt hus: 16/12 2001
Torkstart: 16/12 2001
Slutdatum: 13/3 2002
Ort: Sturup

Betongtjocklek: 15 cm
Vct: 0,50
Silika: 0%
Vattenhalt: 180 l/m³
Cementhalt: 360 kg/m³

Torkklimat
Relativ fuktighet (%)

Temperatur (C)

Resultat från beräkning
Relativ fuktighet på 40% av tjockleken.
Appendix 4.8

Resultat från uttorkningsberäkning med TorkaS, 2.0

Projekt: Järavallen Namn: Rum 1:17 Företag: Byggnadsmaterial LTH 2002-11-05

Förutsättningar
Platta på mark med underliggande tätt skikt

Gjutning : 1/10 2001
Tätt hus : 16/12 2001
Torkstart : 16/12 2001
Slutdatum : 13/3 2002
Ort : Sturup

Beton tjocklek: 15 cm
Vct: 0,50
Silika: 0 %
Vattenhalt: 180 l/m3
Cementhalt: 360 kg/m3

Torkklimat
Relativ fuktighet (%)

Temperatur (°C)

Resultat från beräkning
Relativ fuktighet på 40% av tjockleken
Resultat från uttorkningsberäkning med TorkaS, 2.0

Projekt: Järavallen Namn: Rum 2:7 Företag: Byggnadsmaterial LTH
2002-11-27

Förutsättningar
Mellanbjälklag med plattbärlag

Gjutning : 19/10 2001
Tätt hus : 14/1 2002
Torkstart : 14/1 2002
Slutdatum : 13/3 2002
Ort : Sturup

Betongtjocklek: 18 cm
Vct: 0,38
Silika: 5 %
Vattenhalt: 160 l/m3
Cementhalt: 421 kg/m3

Torkklimat
Relativ fuktighet (%)

Temperatur (C)

Resultat från beräkning
Relativ fuktighet på 25% av tjockleken.
Resultat från uttorkningsberäkning med TorkaS, 2.0

Projekt: Järavallen
Namn: Rum 2:9
Företag: Byggnadsmaterial LTH
2002-11-27

Förutsättningar
Mellanbjälklag med plattbärlag

Gjutning : 19/10 2001
Tätt hus : 14/1 2002
Torkstart : 14/1 2002
Slutdatum : 13/3 2002
Ort : Sturup

Betongjocklek: 21 cm
Vct: 0,38
Silika: 5 %
Vattenhalt: 160 l/m3
Cementhalt: 421 kg/m3

Torkklimat
Relativ fuktighet (%)

Temperatur (C)

Resultat från beräkning
Relativ fuktighet på 25% av tjockleken.