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*
OUTPUT REGULATION AND INTERNAL MODELS - A FREQUENCY DOMAIN APPROACH

by

Gunnar Bengtsson'r *

ABSTRACT

The algebraic regulator problem is formulated and solved in a transfer
matrix setting. It is shown that, provided the closed loop system disre-
garding disturbances is stable, a necessary and sufficient condition for
output regulation to take place is that the open loop path consisting of
the plant and compensator in cascade, contains a suitably defined internal
model of the environment. The disturbance model ié more general than the
ones used before. The results alsc generalize earlier results on internal
models since they are necessary and sufficient under weaker assumptions.
The internal model property is used to construct a compensator which
achieves output regulation and internal stability. It is shown that any
such compensator can be obtained in two steps: (a) create an internal mo-
del of the environment in the forward path and (b) stabilize the system.
Our concept of internal model generalize earlier definitions and, unlike
earlier results, is valid even if structural stability (robustness) is

not imposed.
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1. INTRODUCTION

A Basic requirement on a closed loop system must be its ability to regu-
late against disturbances and/or track reference signals, described by
suitable dynamic model classes. One aspect of this problem is the so
called algebraic regulator problem, which has attained much interest
during the last few years, see e.g. [2, 3, 4, 6, 11, 14, 16]. With a
few exceptions, see e.g. [14], the problem has been treated in a state
épace gsetting. In this paper we give a freguency analog and generalize

some earlier results.

The concept of internal models plays a crucial role in regulator prob-
lems. The internal model principle can intuitively be expressed as:

"Any pood regulator must create a mxdel of the dynamic structure of the

environment in the closed loop system'.

The necessity of internal models is discussed in [8] and more abstract-
ly in [1}. In {41, and implicitly in [2], it is shown that a regulator
which is to achieve steady state regulation despite of certain small per-—
turbations in system data (structural stability) must contain a certain
duplicated model of the environment in the feedback part. This feature

is thus necessary under the perturbations considered.

To egtablish the intermal model principle mathematically it is desirable

to formalize the problem under as weak assumptions as possible both on

the concept of regulation and the model classes considered. In this pa-
per, the existence of intermal models is established in a frequency do-
main setting. This is done under weaker assumptions {(structural stabili-

ty is not imposed) and using a more general disturbance model than be-




fore. We assume that the regulated variables coincide with the variables

accessible for feedback. It is then both necessary and sufficient for

output regulation to take place that the open loop path, consisting of
the plant and the compensator in cascade, contains a suitably defined
internal model of the envircnment. Our definition of the concept of in--
ternal model is different from that of [4], especially in that it is pro-
perty of the open loop path rather than the regulator alone., The diffe-
rence is, of course, due to the requirement of structural stability used
in [y). If this requirement is not imposed, there seems to be no reason
to differ between the "plant" and the "regulator' in the feedback loop.
Note alsc, that our definition of internal model is directly related to
output regulation. The internal model criterion is stated in some diffe-
rent ways to show the relationships between different representations of
a linear system and to illustrate the presence of an internal model in a

signal flow graph.

An important feature of the internal model property is that it provides
insight into the regulation problem without too much algebraic detail.
Such considerations are of great importance in synthesis. Based on the
internal model criterion, a compensator which achieves oﬁtput regulation
and internal stability is constructed. It is shown that any such compen-
sator can be obtained as a cascade of two compensators, one which crates
an internal model of the environment in the forward path and one which
stabilizes the system. The first one will be of minimal order. This di-
rect use of internal models for compensation is believed to be new. Also
the results generalize earlier results since they are valid for a more

general disturbance model.




The order of a rational matrix T(s), written 9T(s), is defined as the
sum of the degrees of the denominator polynomials in the Smith-McMillan
form of T(s). For proper rational matrices, the order of a raticnal mat-
rix equals the order of a minimal state realization (and also the McMil-
lan degree).

An arbitrary rational matrix T(s) can uniquely be written as

T(s) = T(s)C + T(s)p (2.1)

where T(s)C 1s strictly proper and T(s)P a polynomial matrix.

Many arguments from realization theory [5, g] are used in the sequel.

Polynomial Fraction Representations.

The following results can be found in {5, 12, 13]. The exposition given
here follows basically that of [5]. A (left) fraction representation of
a rational matrix T(s) is a pair of polynomial matrices P(s) and Q(s)

such that
T(s) = s) TPes)

Such a representation is said to be minimal if deg(det Q(s)) is the least

possible. The characteristic polynomial for T(s) is defined as det(Q(s))

where Q(s), P(s) is minimal.




The following result is taken from [51].

Lemma 1. The following statements are equivalent:

(i) Q(s)-TP(s) is a minimal fraction representation of T(s).

(ii) Q(s) and P(s) are relatively left prime.

(iii) 3T(s) = deg(det Q(s))

(iv) There are polynomial matrices X(s) and Y(s) such that

Q(s)X(s) + P(s)¥(s) = I o
Furthermore, 1if Q1(s)-?P1(s) and QQ(S)_iPz(s) are two minimal fraction
representations of T(s) then there exists a unimodular matrix M(s) such
that Q,(s) = M(s)Q,(s) and Py(s) = M(s)P,(s). The analogous results can
directly be given for (right) fraction representations

T(s) = N(s)D(s) ™

where N(s) and D(s) are polynomial matrices (consider the transpose).

3. FORMALIZATTION
The Model.
The plant and its environment is described by one commen linear, time in-

variant system. Unlike [u], where an internal (state space) model is used,

the total system is in this case described by an external (transfer mat-




rix) model:
y(s) = T(s)uls) + D(s)w(s) (3.1)

where y(s) is the g-dimensicnal regulated output, u(s) the m-dimensional
contrel input and w(s) an r-vector comprising all exogenous signals act-
ing on the system. In (3.1), D(s) is a proper raticnal matrix and T(s) a
strictly proper rational matrix. We assume that the regulated variables
coincide with the variables accessible for feedback. The rational matri-
ces T(s) and D(s) represent dynamic models of how the regulated variables
are influenced by the control inputs and the exogenous inputs respective-
ly. Therefore, we regard T(s) as the plant model and D(s) as the disturb-
ance model.

To give physical interpretation to the concept of regulation below, the
exogenous signal w can be either an impulse, the initial condition of a
linear, time invariant system or the laplace transform of a bounded sig-

nal. It also makes sense to regard w as a white noise process.

A distinction should be made between the exogenous signal w and the actu-
al disturbance or reference signal. The difference may be best illustrated
by comparing with the state space formulation in [4]1. In [*] the overall

system is described by a state equation

5{1 = A‘Ix'i + A3x2 + B,]u

ky = Ayx, %, (0) = x.. (3.2)
2 20 .

y = C,}x1 + C2X2




In (3.2) x4, is the state of the plant and X, the disturbance. A laplace

transform of (3.2) yields the description (3.1) with

T(s) = C',](s—A,])_‘tB1
Dis) = (C,(s=A) A, + C,) (s, (3.3
w(s) = X,

In this case the exogenbus signal is the initial state X5 while the ac-
tual disturbance is x?. Working with external descriptions, there is no

need to identify the internal variable x, unless more specific properties

2
such as e.g. internal stability is desired. Internal stability will be an
issue first when the conpensator design is discussed in Section 5. Here

we follow basically the same approach as is done for state space descrip-

tions in [16], i.e. identify the plant by a minimal realization of T(s)

and regard the disturbance as described by the "remaining" dynamics.
We also see that our disturbance model is more general than the one used

in (3.2) since D(s) is allowed to be an arbitrary proper rational matrix,

cf, also (3.3).

OQutput Regulation.

The class of admissible controls in (3.1) is
u(s) = ~ F(s)y(s) B (3.4)

where F(s) is a proper rational matrix. The purpose of control is to regu-




late y(s) against the exogencus signal w(s). Before giving a rigorous
definition of output regulation, consider the following simple example.

Assume the disturbance model in (3.1) is a ramp, i.e.

D(s) = —= 3 w(s) =wy € R

There is no steady state error in y for any w, if and only if the trans-
fer matrix from w to y in the closed loop system is gtable, i.e. if and

only if the poles of

I

L
2
s

(L + T(s)F(s))

are all within the open left halfplane of the complex plane.

With this simple example in mind, let

¢=¢" udg (3.5)
be a disjoint partion of the complex plane, where £ is symmetric with
respect to the real axis and contains at least one real point, Here, ¢
represents the "good" part and £ the "bad" part of the complex plane

as judged by the position of the poles of the transfer functicns. Note

that € is quite arbitrary and not just the open left halfplane, say.

A rational matrix T(s) can be written uniquely as the sum of two strict-

ly proper rational matrices T(s)+ and T(s)_ and a polynomial matrix T(S)p




T(s) = T(s), + T(s)_ + T(s)p (3.6)

where the poles of T(s), and T(s)_ are all within the regicns ¢ and &
respectively. Such factorizations are discussed in more detail in [71
and can easily be done e.g. using partial fracticn expansions. A ratio-
nal matrix T(s) having all its poles within (¢ can then be expressed as
T(s), = 0. A rational matrix with this property is said to be stable

with respect to € .

In analogy with the simple example above, it is required for output re-
gulation that the closed loop transfer matrix from w to y obtained with

feedback (3.1) is stable w.r.t. C , i.e.

[[I + TD(S)]-1D(S)J = 0 (3.7)
+

where

TO(S) = T(s)F(s) (3.8)

This formulation simply reflects the fact that the environrent has an
unsatisfactory dynamic behaviour, e.g. too slow, oscillative, unstable
ete., in coﬁpaﬁison with what is required from the closed loop system,.
Paysically, (3.7) can be intermreted in different ways d=p2nding on e
signal w a1d tas 2noles of stasie region ¢ . IF 7 i3 an impulse and ¢
the open left half plane, (3.7) is equivalent to that vy tends to zero
when time tends to infinity. The same is true if w represents an initial

condition as in (3.3). Classical control problems such as steady state
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regulation against steps, ramps, sinusoids ete. ars therafor: inclads i
Also (3.7) is equivalent to y being bounded for all bounded signals w.

If w represents white noise, (3.7) implies that we "shape" the frequen-
cy spectrum for y by insisting that the poles of the closed loop trans-

fer matrix are all within ¢ .

L., OUTPUT REGULATION AND INTERNAL MODELS.

The purpose of this section is to establish some principles for output
regulation against modelled disturbances. It is shown that a model of
the environment must be included in the feedback loop in a specified

way. This is both necessary and sufficient for output regulation to take

place, provided the closed loop system disregarding disturbances.is stabie.

Qutput Regulation.

Consider the total system (3.1) with feedback control (3.4). The signal

flow for the closed loop system with exogenous signals is shown in fig. 1.

w D(s)
\

u T(s) #y

- Fls) -

Fig, 1 - Signal flow for the closed loop system with exogenous signals.

L -
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In fig. 1 let TG(S) = T(s)F(s) be the open loop cascade of plant and
compensator. Assume that I(s) must be chosen so that the loop in fig. 1
disregarding disturbances, is stable for a signal injection at node y,

i.e.
(T + TO(S));1'= 0 (4.1

where (-)+ is defined with respect to (3.5), i.e. all the poles of (4.1)

must be within ¢ . The property (4.1) is denoted loop stability. Note

that loop stability is a weaker assumption than internal stability since
unstable cancellations may occur in the cascade T(s)F(s). Loop stability
is, however, sufficient to establish the existence of an internal model

as will be seen below. It is also required that output regulation takes

place, i.e.

[[I + *r[](s))""D(s)]Jr =0 (4.2)

It is now possible to establish the following result.

Theorem 1. Assume that F(s) ischosen. so that loop stability holds. Out-

put regulation takes place if and only if

3T (s) = 9[Ty(s) Dis),]

where 3(+) is the order of a raticnal matrix and (-}+ is defined with

respect to (3.5).
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To prove this theorem, the following lemma is used.

Lerma 2. Let R1(s) and Rz(s) be two arbitrary rational matrices with mi-

nimal fraction representations Qq(s)~1P1(s) ggg_Qz(s)-1P2(s) respective-

ly._Then 3R, (s) = 3[Ry(s) "Ry(s)] if and only if Q,(s) is a right divi-

sor of Q1(S).
Proof. For brievity in exposition, we omit the argument s.

. (if) There is a polynomial matrix D such that Q, = IQ,. Hence,
[R, R,]=0Q [P, DP,]
1 2 1 1 2

is a fraction representation. Therefore, by lemma 1 (iii), B[R,i Rz] <
¢ deg det Q1 = 3R,. Since the inequality trivially holds in the other

direction, equality must be the case.

(only if) Let Q"1P = Q,]Q;P2 for a minimal fraction representation Q—1P.

Then
[R1 R2] = (QQ1)—1[QP1 P] : (4.h4)

is also a fraction fepresentation. By lLemma 1, there are polynomial mat-
: . X = - X =

rices Xi, i=1, 2, 3, 4, such that QXﬁ + PXé I and Q1X3 + Pq“q I.

Multiply the second expression from right by X1 and from left by Q and

substitute QX1 from the first expression. This yields

Q4 (¥3%)) + [QP1 p =1

[
X

2
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i.e. (4.4) is a minimal fraction representation according to Lemma 1.
Therefore, by Lemma 1 (iii)

3[R R2] = deg det(QQ1) = deg det Q + deg det Q

1

oR, = deg det Q,E

1
Since equality holds, deg{det Q) = 0, i.e. det Q must be a nonzero real
number since Q_1 exists. Hence, Q is unimodular and therefore Q1Q;1P2
is a polynomial matrix, and since Q, and P, are relatively left prime,

Q,lQ;I is a polynomial matrix. -

Proof of Theorem 1. Write D = D_ + D_ + Dp analogous to (3.6). Then
(+1.)" D = (14T )", + (T+T,) " (D_+D)
0 4] + 0 - P

Since (I+TO)—1 is stable w.r.t. € by assumption, the second term must

always be stable. Therefore, (4.2) is equivalent to

((I+TO)_1D+]+ = 0

Now, let Tg = Q51PO and D_ = QT‘P1 be minimal fraction representations.

Then
(1470”1 = (Q P )"1Q
0 00 0
which shows that det(Q0+P0) has all its zeros within ¢ . Furthermore,

L -“1n 5 v=14 o1
T = (I+Ty) D, = (Qy*Py) 'QuQ Py
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5ince (Q0+p0)"1 iz stable and 0;1 camnpdetely unstable, ™is stable if QOQilPl is
a polynomial matrix. Since Q1, P1 is relatively left prime, ™ is stable
if QDQ;1 is a polynomial matrix, which by lemma 2 is equivalent to the

condition in the theorem. o

The relationship between the result of Theorem 1 and internal models is

discussed in more detail below.

Internal Models.

Conditien (4.3), which thus is necessary and sufficient for output regu-

lation to take place under loop stability, can be viewed as a property of

the open loop paths of the signal flow shown in fig. 1, i.e.

W Dis), .
*—

Tols)
o Y
Uy

Fig. 2 - Open loop paths from the signal flow in fig. 1 where TO(S) =
= T(s)F(s).

The rational matrix TO(S) is here the open loop cascade of the plant and
the compensator and D(s)+ represents the "unstable" part of the disturb-
ance model as determined by the expression (3.6). Condition (4.3) says
that a minimal state realization of the total signat flow in fig. 2 yields

the same dynamic order as a minimal realization of TO(S) alone. In other
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words , TO(S) contains a model of D(s)+ in the sense that, given a mini-

mal state realization of T.(s) in fig. 2, no extra state variables have

to be introduced to realize the total signal flow including D(s) .

Let us therefore take the following definition.

Definition 1. Let T(s) and D(s) be arbitrary rational matrices. Then T(s)

is said to contain an internal model of D(S).ii

aT(s) = 3[T(s) R(s)] ' o
To illustrate the internal medel criterion for different representations
of a linear system and to illustrate the presence of an internal model in

a signal flow graph, the following theorem is given.

Theorem 2. Let R(s) and H(s) be arbitrary proper rational matrices with

the same number of rows. The following statements are equivalent.

(1) R(s) contains an internal model of H(g).

(ii) A minimal (state) realization of

b
y = [H(s) R(s)]

)

is controllable from u, alone.

(ii1)  Let R(s) = Q,(s)7'P,(s) and H(s) = Q,(s)” P,(s) be minimal frac-
tion representations. Then QQ(S) is a right divisor of Qq(s).
(iV) _ _I-_lit_ (AR, BR’ CR, DR) E-Q_q (A}I’ BH: CH’ DH) be minimal state rea-

lizations of R(s) and H(s) respectively. let their state dimen-

sions be np and e There is a menomorphism P such that the fol--
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lowing diagram commutes
n

R
R A,
P
n A
R H
R
{v) There are rational matrices Ri(s), i=1, 2, 3, such that

R(s) = (Ry(s) + H(sIR,(s)Ry(s)

-3
BR(s) = [ 8R.(s) + 3Hls)
i=1
(vi) There is a real matrices E and proper rational matrices Rq(s)

and R,(s) such that

R(s)

l}]

R1(S)R2(S); aR(s) = aRj(s) + aRz(s)

H(s)

1l

Ry(s)E
Proof. The equivalence between (i) and (iii) is proven in Lemma 2.
((1) = (41)) Let

32], C, {D,1 D1 (4.6)

@, (B D,

1

be a minimal state realization of [R(s) H(s}], i.e.

R(s) = C(s-A) 1B, + D,

-1
H(s) = C(s-A) B2 + D2

Then (i) implies that (A, Bys Cy D1).is a minimal realization of R(s),
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i.e. (A, B1) is a controllable pair. Conversely, if (4.6) is a minimal
realization with (A, B1) controllable, then (A, Bys c, D1) is a minimal
pealization of R(s) since (A, C) is an cbservable pair. This yields the

same order of the minimal realization and therefore (i) holds.

((ii) @ (iv)) First, (iv) implies that (Ag, E , Cys D) is a realiza-
tion of H(s) with E = PBy. Therefore, (Ap, [B, E], Cg» Dy Dyl is a
minimal realization of [R(s) H(s)] with (AR, BR) being controllable. Con-
versely, let (A, [BR El, C, [Dg D 1) be a realization of [R(s) H(s)]
with (A, BR) being controllable. Then (Af, By C, DR) ig a minimal rea-
1ization of R(s). Moreover, let R be the controllable subspace for the

n
pair (A , E) and let P be the inclusion of R into R R, Define (Ay» By

o D) B

AP

13

PAH:, E = PBH‘, Cy = CP (4. 7)
By = 2

Tt is easily verified that (AH, BH’ Cyp DH) is a realization of H(s). Al-
80, (AH, BH) is controllable by construction. Since (A, C) is observable,
go is (AH, CH). Therefore, the realization is minimal. The diagram com-
mutes by (4.7). Since‘all mnimal realization are isomorphic, there ob-
vicusly exists a P such that the diagram commutes for arbitrary minimal

realizations.

((iii) ﬁ'(v)) let D be a polynomial matrix such that Q = D, There are
polynomial matrices X and Y such that QX + P1Y = I. Multiply from left by

Q;1 and from right by Dﬁ1P1. Then




18,

R = pr,l = CGHYD P,

and

2 + 3 + 9D B, + 8 = 0+ 0 + deg det D + deg det Q, =

H]

deg det(DQ,) = aR

((vi) = (i)} The conditions in (1) imply that [R H] = R,[R, E]. Let
(&;, Bss Css Di) be minimal realizations of Ri(S)’ i=1, 2, with state

dimensions n;. A vealization (A, B, Cy, D) of [R H] is then given by

A B.C B,D B.E
A {1 1% . 11 2 B }

0 A2 32 0
C= (C,] D'ICZ) D= (Dqu D,1E)

with dimension n = n, + n,. Hence, R = R, + 3R, = ng + n, > o[R H] and
equality must hold since the inequality always holds in the other direc-

tion.

((ii) = (vi)) Let (A, [B, B,], C, [D, DB,1) be a miniml realization

with (A, 131) controllable. Let

Ry(s) = [c(e-A)1 1]
B B
RQ(S) = 1 E = i
D1 D2

By this choice, all the conditions in (vi) are satisfied. o
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iet us briefly discuss the implications of this theorem by illustrating
the condition (4.3), i.e. put R(s) = TO(S) and H(s) = D(s)_ in Theorem 2.
Condition (v) implies that TO(S) can be represented by the following sig-

nal flow graph.

u, R3($) R1(S) y
.

R,(s) - Dis),
>

Fig, 3 - Signal flow for TO(S) with internal model D(s),.

In fig. 3 the order of TD(S) equals the sum of the orders of the compo-
nent transfer matrices. The latter condition guarantees that no cancella-
tion occurs. The presence of a model of D(s)  in TO(S) is apparent. Note,

however, that Ri(s), i=1, 2, 3, are not necessarily proper.

To have a description with proper rational matrices, condition (vi) can
be used. This condition implies that the signal flow in fig. 2 can be gi-

ven the following alternative form.

%

u, Ryls) R,(s)
. pe Y

Fig, 4 - Alternative signal flow for the system in fig. 2 if To(s) con-

tains internal model of D(s)+.
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In Figh, To(s) = R1(S)R2(S) and D(s)+ z R1(S)E and no cancellation oc-
curs in the cascade R1(s)R2(s). In this case R1(s) contains an internal

model of D(s)+.

Pinally, (iv) represents the state space analog and implies that there "

exists a nonsingular matrix T such that

A A
TAUT“1 - { 11 12
0 A,

-1
COT = (C1 c,)

for some real matrices A11, A12 and C1.
Some immediate necessary conditions for output regulation to take place
can be derived using Theorem 2. If do(s) and d+(s) are the characteristic
polynomials for Tj(s) and D(s), respectively, a necessary condition for

output regulation is obtained directly from Theorem 2 (ii) as
d+(s)id0($) (4.8)
This is also sufficient if m = q = 1. If in the state space model (3.2)

the eigenvalues of'A2 are all within C+, a necessary condition for output

regulation is also

d2(s)ld0(5)
dZ(S) = dég(s-Az?A'

(4.9)
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These results can be strengthened using the following observation, which

follows from Theorem 2 {1ii).

Proposition 1. If R(s) contains an internal model of H(s) then also

M(s)YR(s) contains an internal model of M(s)H(s) for any polynomial matrix

M(s) such that the matrix products are defined.

1

Proof. Let R = Q_1P and H = D 'N be minimal fraction representations. Then

by Theorem 2(iii), QD-1 = 8 is a polynomial matrix.

Consider
R, = 1Q7'P
H, = v~y

et M1 = Q;'lM1 and M7 = Q;’M2 where the right hand sides are minimal

fraction representations. Then

ey
P
fly = Qp MA

are also minimal fraction representations. Since, Q, and M, are relatively
left prime, there are polynomial matrices X and Y such that sz + M2Y =TI,
By some straightforward calculations
=1 _ a1
X + Qy MY = Q |
-1 _ -1
QX+ Q@ MyT = Q4
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-1
QX + QMY

Q1Q;1
Q1Q;1

-1
QX + MQD Y

which shows that Q1Q.2-1 is a polynomial matrix since QD_1 is a polynomial

matrix. The result then follows by Theorem 2 (iii), o

This proposition shows that if in the composite system shown in fig. 2,

TD(S) contains an internal model of D(s),, all subsystems of the form
y(s) = M(sly(s) = M(S)TO(S)uO + M(s)D(s) W

where M(s) is a polynomial matrix, are such that MQS)TO(S) contains an inter-
nal model of M(s)D(s)+. Especially, we can take M(s) = eg, where ey is
the unit vector with a nonzero element in the i:th position only. Combi-

ning this with (4.8) shows that
{
di+(s)ldi0‘s)

where di+(8) and did(S) are least common denominators of the i:th rows

of D(s)  and TO(S) respectively.

For synthesis, it is necessary to find a compensator F(s) which creates
"an internal model of D(s), in the forward path. This is the topic of the

next section.

Remark. Theorem 1 holds even if D(s) and T(s) are not proper rational mat-

rices. The properness assumptions were introduced merely to restrict the

attention to causal systems. Also Theorem 2 holds (except condition (vi))
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if R(s) and H(s) are nonproper if we by a minimal realization of a non-
proper rational matrix R(s} mean @A, B, C, R(s)p) where (A, B, C) is a

minimal realization of R(s)c, cf. (2.1).

5. COMPENSATOR DESIGH

T this section it is shown how a compensator F(s) can be designed using

the internal model property. First, the following concept of internal sta-

bility is introduced. In the composite system shown in fig. 1, let

% = Ax + Bu
(5.1)
y = CX
be a minimal realization of the plant T(s). Also let
¥ =Ax +B
o TN T N (5.2)

u = chc + Dcy

be a minimal realization of the compensator F(s). The closed loop system

is said to be internally stable with respect to ¢ if the composite sys-

tem (5.1) and (5.2) is stable w.r.t. ¢, i.e. if the following matrix

A-BD C  -Bg
(5.3)

BC A
c o]

has all its eigenvalues within € . A compensator F(s) with this property
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is said to be a stabilizator for T(s). It is well known from observer and
pole assignement theory, see e.g. [0, 17], that stabilizators always exist

and can be fairly easily constructed.

The effect of closing a system with a stabilizator is explained in the

fellowing proposition.

Proposition 2. Assume that To(s) is strictly proper and contains an inter-

nal medel of D(s), and let F (s) be a stabilizator for T (s). The T (s)F_(s)

contains an intermal model of D(s) +°

Proof. Using Theorem 2 (vi), the composite system shown in fig. 2, closed

by Fs’ can be represented by the following signal flow graph.

w

U, R,ls) R,(s)

-Fs (s)

Fig. 5 - Signal flow for composite system shown in fig. 2 with a stabili-

zator Fs(s ).

Here? R,] and R, are proper and 3(R1R2) = 3R, + 8R.. Since P‘3 is a stabili-

2 1 ?
zator fof TO = RJIR2 , the transfer matrix from w to y must be stable. More-

over, loop stability holds. By Theorem 1, T FS contains an internal model

0

of R1E =D, | o
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The purpose of design is to find a proper compensator F(s), connected
as in fig. 1, such that (a) output regulation and (b) internal stability
hold. Since internal stability implies loop stability, there follows by

Theorem 1 that F(s) has the desired properties if and only if

(a) F(s) creates an internal model of D(s)+ in the
cascade T(s)T(s) (5.4)
(b) F(s) is stabilizator for T(s)

To proceed, note that any F(s) which is a candidate for (b) must avoid

unstable cancellation in the cascade T(s)F(s), or more precisely
3(T(s)F(s)), = 3T(s), + BF(s), (5.5)

Otherwise, there appear eigenvalues in (5.3) which are within £, Con-
versely, if there is no unstable cancellation in T(S)Fq(s) and T(s)F1(s)
contains an internal model of D(s)+= there follows from.Propositién 2

that we can take an arbitrary stabilizator FS(S) for T(s)F (s} and
F(s) = F1(S)FS(S)

satisfies (5.4). Hence, the problem of finding a proper F(s) satisfying
(5.4a) and (5.4b) can be solved if and only if there is a proper F(s) sa-

tisfying (5.4a) and (5.5).

Finally, the following proposition shows that if we can find any (inclu-
ding nonproper) compensator F(s) satisfying (5.4a) and((5.5) we can also

find a proper compensator of the same order satisfying (5.4a) and (5.5).
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Proposition 3. Assume there exists a vational matrix F(s), not necessari-

1y proper, such that (5.4a) and (5.5) are satisfied. Also let

F(s)_ = cc(s—Ac}"1BC (5.6)

where F(s)c is defined as in (2.1) and (AC, Bc’ Co) is a minimal state

realization of F(S)C- Then the following proper compensators also satis-—

fy (5.4a) and (5.5)

LE

F,(s) [1 Fc(s)]

1 (5.7
[T csa) ']

1t

Fz(s)

Lemma 3. Assume that 3R(s) = 3[R(s) H(s)]. Then also 3[R(s) S(s)] =

= 3[R(s) S(s) H(s)] for an arbitrary rational matrix S(s).

Proof. Let R = Q; Py, D = Q,'P, be minimal fraction representations. By
lemma 2, Q,iQ'z'1 = M is a polynomial matrix. Also, let Q,5 = Q;193 be a

minimal fraction representation., Then [R S] = (Q3Q1)_1[Q3P1 P.] is a
minimal fraction representation. Moreover, Q3Q1Q;1 = Q3M and the lemma

follows by Lemma 2. o

Proof of Proposition 3. By Lemma 3, it follows directly that 3[T[I F1] =

3[T(T Fl D, Iso T[T T] contains an internal model of D . Write F =

FC + Fp. Generally, if R1 caentaing an internal model of RZ’ then also
R1M contains an intermal model of R2 if'M is a unimcdular matrix. This

follows e.g. from Lemma 2. Now |

I ~F
ol Fl| - Pl =7t F] (5.8)
0 I

/

I&f
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Since we have multiplied with a unimodular matrix, T[L F.] contains an
internal model of D . Again, using lemma 3, T{I CC(S—AC)—1] containg
both satisfy (5.4a).

an internal model of D and therefore F1 and F

+ 2

Next, it is obvious that if TF does not contain any unstable cancella-
tion, neither does T{I F]. Furthermore, by (5.8) there follows that
T[T F_] does not contain any unstable cancellation and the same is true

-1,
for T[T C(s-A )" . o

The original design problem has now been converted to a pure mathemati-

cal preblem: find a rational matrix F(s) such that

{a) T(s)F(s) contains an internal model of D(s)+ {5.9)

(b) aCT(s)F(s)]+ = 3T(s), + BF(S)+

Once such & compensator has been found, a proper compensator of the same
order is directly constructed using Proposition 3 and a stabilizator
using Proposition 2.

Represent T(s) and D(s)_ by minimal fraction representations:

T(s) = Q(s)"1P(s)

p (5.10)
D(s), = Q1(s) P1(s}
Also, let
(s)Q, S‘“ = ()P (s) (5.11)
Qle)Qq(s) ~ = Qs) P (s S

where the right hand side is a minimal fraction representation.
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Theorem 3. There is a compensator F(s) such that (a) T(s)F(s) contains

an_internal model of D(s), and (b) T(s)F(s) contains no unstable cancel-

lation, if and only if there is a polynomial solution X(s), Y(s) to the

linear equation

P(s)X(s) + ¥(s)Qy(s) = T ' (5.12)

Furthermore, if a solution X(s), Y(s) to (5.12) exists, a compensator of

least possible order satisfying (a) and (b) is given by

F(s) = [I, X(s)Qu) '] (5.13)

A corresponding proper compensator is directly obtained using Proposition

3.
To prove this theorem, the following lemma is used.

Lemma 3. If T(s)H(s) | contains an internal model of D(s), and H(s) is a

polynomial matrix such that det H(s) is nonzero and has all its zeros

within € , then also T(s) contains an internal model of D(s)+.

Proof. let T = Q—1P and D, = Q;'IP1 be minimal fraction representations.
Now
m =g e = QR (5.14)

-1

where 5_15 = PH * and the left hand side is a minimal fraction representa-

tion. Then, (5.14) is also minimal. By Theorem 2 (ii), 5QQ;1 = M, where M




is a polynomial matrix. Hence, 3—1M = QQ;q. Now det D divides det H
which implies that the left hand side is stable. Aléo, the righthand side is co-

1M and QQ;'1 must be polynomial mat-

mpletely unstable. Therefore, both D
rices, i.e. Q4 is a right divisor of Q which proves the result by Theo-

rem 2 (ii). o

Proof of Theorem 3. (If) First consider

TF = @ 'P[I XQ(?]
-1 o)
=Q '[P Px] =Q PQ
0 Qd'
Using (5.12) we have
\ Y
Q I of(r O I 0
[P pX]+ =
i P Y0 Q 0o I
Fd

S

and therefore PQ_1 is minimal by lemma 1. Since Q-1P is minimal, so is

Q—1P. Hence

5(TF) = deg(det Q) + deg(det Q)
= deg(det Q) + deg(det Qd) = 3T+ oF (5515)

which shows that no canceilation occurs {and therefore no unstable one

Rewrite (5.12) as
e
PXQd = Qd (I-QdY)

Then




TF = Q—1Q51[QdP (1-Q0 ]

This fraction representation is minimal by (5.15) and Lemma 1. Using
(5.11), we have QdQQ;1 = Pd and therefore TF contains an internal model

of D(s)+, cf. Theorem 2 (ii).

(Cnly if) Let T be a compensator such that (a) and (b) are satisfied and
let F = NR~1 be a minimal fraction representation. Also represent T by
(5.10). Fagtorize Rand Q as R = R2R1 and Q = Q1Q2, where the zeros of
det Q, and det R, are within ¢" and the zeros of det Q, and det R, within
€. Now

-1

P P 1
TF = Q, Q, PR,

R2 | {5.16)

Since TF contains an internal model of D, there follows by Proposition 1
and lemma 3 that

P

contains an internal medel of Q2D+, i.e. of Q2Q51P1. By (5.16), Q5 PN
are relatively left prime and PN,.R1 are relatively right prime, since
otherwise an unstable cancellation oceurs. Now, write'ﬁ-1$ = PNR_‘1 where

1
%?15 is a minimal fraction representation. A substitution into (5.17)

= . . . . .
P which is also a minimal fraction representation. Since

yields T, = Q;1§7
T1 contains an internal model of QQQ;1P1, Theorem 2 {(ii) implies that
§Q1Q2Q;1 = ﬁQQ;j = §Q51Pd is a polynomial matrix. This can only be true

if Q4 is a right divisor of R i.e.

R = R, ) ‘ (5.18)
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“ ~r n
for some polynomial matrix R. Since R and P are relatively left prime,
there are polynomial matrices Z and W such that Bz + R = I. Some straight-

forward manipulations give

1 1

PNR, 'Z + W = R

1

PNR?Z’RJ +WR =1

This shows that PNR;1Z§ is a polynomial matrix. Since PN and Ry are rela-
tively right prime, R;1ﬁﬁ = M is a polynomial matrix. This together with
(5.18) yields
PNM + WRQy = I

ive, X=NMand Y = WR is a solution to (5.12).

Finally, to see that the compensator (5.13) is minimal, we note that for

any compensator (5.18) holds, i.e.

3F = deg(det R) = deg(det Rq) = deg det R

3 deg det Qd
However, deg(det Q;) is the order of the compensator in (5.13). =

The compensator design is now complete. The synthesis is summarized in

fig. 6 which shows the final compensator.




w Dis)

—

E. (s) u Tis)

Falst
F,(s) )

Fig, 6 - Signal flow for the final compensator.
In this compensator structure, the components are obtained as follows.

{1) By solving the linear matrix equation (5.12) we directly obtain a
compensator F(s) = [Im X(S)Qd(s)_’]] of least possible order which cre-
ates an internal model of D(s), in T(s)F(s) without unstable cancella-
tions. Minimal proper compensators with the same properties are obtained

via Proposition 3 as

B (s) = [T, R(s) D5 R(s) = X(8)Q,(s) " (5.19)
or

\ 3
F(s) = [T C.(s-A) ] . (5.20)

where R(s) o is the strictly proper part as in (2.1) and (A, B, Cc) is

a minimal state realization of _R(s)c_ Hence

Foy(s) = R(sJ,




a3.

or
‘ = C (s-A )“1 ' (5.22)
FIM(S) = LB :

The sole purpose of FIM is thus to create an internal model without un-
stable cancellation with the least possible dynamics.

(2) With Fpy defined as in (1), find a stabilizator

I

F..(s)
E(s) = 51 (5.23)
FSQ(S)

for T(s)[I Fpyl. This stabilization can be done using any standard tech-
nique, e.g. pole assignement and observers or generalized Nyquist crite-
ria. To have as much freedom as possible available in the stabilization
step, it is advantageous to select the second form (5.22) for Fpy. If we
use a minimal dual cbserveril0], the order of the final cormpensator be-

comes n + n, = M where n = 3T, n, = aF .. and m is the number of control

™
inputs to the plant.

The main computational step is to solve the algebraic equation (5.12).
Since it is linear this is in principle simple. For instance, by identify-
ing thé coefficient matrices for different powers in s on both gides of
(5.12), we get a number of lineér equations for the coefficients in X(s)
and Y(s) which can be solved by standard techniques, see also Appendix.
Also, (5.12) can be solved by hand in many cases. Note that once (5.12)

is solved, we obtain the minimal compensator almost directly from the sO-

lution, cf. (5.13).
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The section is concluded by a simple example.

Example. Consider the system

g -1 2 1
82 S s + 1
y(s) = u{s) + wq(s)
?2s - 1 Z 2
2
k s SJ \S + 14

Find a compensator such that there is no steady state error in y for
ramp disturbances w,(s) = w/s?. This is a problem of type (H.1) and (4.2)

with € being the open left halfplane. In this case

(s - 1 2) (1]
s s % (s+1)
T(s) = D(s) =
25-1 2 2
| &% s) L52(5+1)J

D(s)+ =




Moreover, (5.11) becomes

s + 1 )
2 1 (s -1 1.0

Qo) (o) = -

i s 0 s 1 s
8

To obtain a compensator F(s) which creates an internal model in T(s)F(s)

with no unstable cancellation, solve (5.12) i.e.

1 2 .
X(s) + Y(s)
1 0

One sclution is

1 0 2{1-5) 17 0
X(s) = 5 ‘ Y(s) =
(1-8) s :

Then from (5.13)

x<s)Qd<s>"" -7
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Taking the strictly causal part yields

0 2
S
-1 1
Fry ° [X(S)QS(S))C =5
: 1 1 -8
L 2
8 s

Here Fry is a minimal compensator such that T[I FIM] contains an internal

model of D(s),, cf. fig. 6. The problem is the solved by taking any stabi-

lizator

\

{s)
(s)

Fo

Fo

in fig. 6. Since this is a standard problem, it is omitted here.
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Consider the linear equation (5.12), i,e.
P(s) X(s) + Y(8) Qy(s) = I | A1)

which shall be solved for same polynomial matrices X(s) and Y(s). Here,
Q4(s) is obtained via the minimal fraction representation (5.11).

Given one Qd(s), the set of allis:generated by N(s)Qd§§J,-N(s).unimodglar,
i.e. all polynomial matrices that are row equivalent with Q,(s). Since
Theorem 3 is independent of the choice of Qd(s) within the equivalent

class, we may assume that Qd(s) is such that the rational matrix

T(g) = Qd(s)"l (A.2)

is strictly proper. If we are given one Qd(s) vwnich does not satisfy
this condition, we may transform Qi(s) to row proper forms ({13], Th.

2.5.11) in which case (A.2) is strictly proper.
To proceed we need a different version of the division algorithm.

lemma A.1

Let P(s), mxr, and Q(s), mx*m, be polynomial matrices such that

det Q(s) # 0. There are polyriomial matrices H(s) ‘and R(s) such that

P(s) = H(s)Q(s) +R(s) where deg R(s) < deg Q(s) and R(S)Q(s)-l is

strictly proper.

Proof

Consider the rational matrix T = PQHl. Using conventional realization

theory, there are real matrices A, B and C and a polynomial matrix




40.

-1
1

a minimal fraction representation; then also T = (CP1 + DQl) Ql_l is

D(s) such that T(s) = C(s—A)_l B+D(s). Let P;Q = (S—A)“l B be
a minimal fraction representation. Therefore, there is anonsingular pol, matrix N
such that Q = ;N and P = CP;N + DQ;N = CP,N + IQ. Let R = CP,N and
H = D. Then P = HQ + R, By the equality (S—A)PlN = BQ, there follows
that deg(PlN) < deg Q, and since C is real, deg R < deg Q. Also,
RQ“l = CZPlN(QlN)”l = C(s—A)dlB which is strictly proper.
O

The following bainds on the degree of X(s) and Y(s) in (A.1) can now

be given,

Proposition A.1

Assume that Qj(s) has been chosen so that Qd(s)_l is strictly proper.

If there exists any solution to (A.1), there exists one with

deg X(s) < deg Q(s) and deg Y(s) < deg P(s).

Proof

Let Xy(s) and YD(S) be any solution to (A.1). Applying lemma A.1l, there
exists polynomial matrices X and D such that X = Xy - DQqs where

deg X < deg Q4 and XQ;1 is strictly proper. Then X = Xg - DQy and

Y = Y, + PD also satisfies (A.1) and we have satisfied the bound on

deg X. Next, by (A.1)

Adj Qq - P X Adj Qq
det Qd

-1 -1
Y=Q -PXQy =

Now, Q&l and,XQal are both strictly proper and therefore deg (Adj G4)<
< deg det Qd and deg (X Adj Qa)< deg det Qd Since Y is a polynomial

matrix, det Qdﬁust divide each element in Adj Qy” PX Ad]j Q
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Hence,

deg Y deg (Ad] Qf PX Ad] Qd)— deg det Q4

1/

deg P + deg X Adj Qdf deg det Qd

A

deg P

Since we can set a priori bounds on X(s) and Y(s) in (A.1) we can now
transform (A.1) to a linear equation with real numbers by identifying
the coefficients in (A.1). On substituting

i

P. s
1

Mo

P(s) =

i=0

4 i
Qqfs) = = Qs
i=0

and (using Prop. A.1)

q-1 4
XW(s) = £ X s

. i

1=0

p-1 :
Y(s) = ¥ Y, st

. i

1=0

into (A.1), i.e.

P Q-1 . p-1 . q .
(z Pisl)(i Xisl>+(2 Yisl)(z Qisl)=I (A.3)
i=0 i=0 i=0 i=0

we get a set of linear equations in the coefficients X, and Y. by
identifying the coefficients for different powers in s. Hence, by

arranging the data X;,Ys into a vector x, we can rewrite as

Ax=D> (A1)




