
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Simnon Tutorial

Åström, Karl Johan

1985

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Åström, K. J. (1985). A Simnon Tutorial. (Research Reports TFRT-3176). Department of Automatic Control,
Lund Institute of Technology (LTH).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/d961f43e-a711-4851-a356-747329200147

coDEN: LUTFD2/(TFRT-3176) I r-87 I Fe85)

A SIMI\ON TUTORIAL

o

Karl Johan Aström

ï b

I ?

,,|úr}urtment of Automatic Control
Lund Institute of Technology

July 1985

A SIMT{OT{ TIJTORIAL

Karl Johan Aström

r
l' t

Department of Automatic Control
Lund Ins+içute of Technology

l1 t 'tlt¡

Revised edition, July 1985

Department of Automatic Control
Lund Institute of lechnology
P.O. Box 118

5-227 00 Lund Sweden

The rcpoft m4y be o¡dered from the Department oi autom¿tíc control o¡ bottovcd through the UnÍvenÍty Líbrary 2, Box 7070,
5-221 03 Lnnd, Sweder, Telex: 33216 tlubbis funil"

Documcni ramë
REPOR,T

D¿te ol ícsuc

July 1985

CoDEN: LUTFD2/(TFRÎ-3176)/t-82/(1e85)
Documctt Numbe¡

SupewÍsarAuthor(s)

Karl Johan Å,"ttõ-
S p o ns o rín g or;'enisa úíoa

Title and subtitle
A Simnon Thtorial

Abstract

The purpose of this report is to give a tutorial introduction to the simulation language SIMNON

Key words ¡
i

\
t'

Clas-"ifcaúiø¡r syetem aad/or inilex tcrms (i¡ q)

,i ,,
Srrpple.urenúary bibliographicalínfo¡matíon l¡ t ' l.

ISSN and hey tìtle ISBN

Languagc

English
Numbe¡ of pzgec

87

Seurìty cl¿ssífrc¿tìon

RecípÍenú't n.oles

Contents

1. Introduction 5

2. T}re Conceptual Framework 6

3. Differential Equations 10

4. Difference Equations 22

5. Combination of Systems 29

6. Advanced Features 35

7. Implementation 42

8. References 45

Appendix A - Syntax for Simnon Commands 47

Appendix B - Syntax of System Descriptions 59

Appendix C - Standard Systems 61

Appendix D - Intrac and Simnon Commands 74

Appendix E - Macros for Generating the Figures 79

Index 81

l
, l' I

,r*; f

3

1. lntroduction

Simnon is a special programming language for simulating dynamical systems.

Systems may be described as ordinary differential equations, as difference

equation or as combinations of such equations. Models of this type are common

in mathematics, biology, economics and in many branches of engineering. Simnon

requires a computer with a graphics terminal. The results are displayed as

curves on the terminal. The language has an interactive implementation which

makes it easy for a user to work with the system. Simnon may be used in a very
simple way to find solutions to difference or differential equations. This requires

only six commands. There are 38 additional commands in the system. They also

allow optimization, introduction of experimental data and parameter fitting"

The purpose of this report is to provide an introduction to the simulation

language. The conceptual framework is first described in Chapter 2. Thre report
then proceeds by examples. Chapter 3 describes how to solve simple differential

equations. Solution of difference equations is described in Chapter 4. Chapter 5
describes simulation of more complicated systems which are obtained by

combining subsystems described by differential or difference equations. It is

useful to note that all of this can be accomplished by about a dozen commands.

Some advanced features are described in Chapter 6. A few remarks on the

implementation are given in Chapter 7. Eæh chapter is provided with exercises.

Do not forget to experiment and test at a terminal as you prog."r, with the

reading. Remember that you
""r,

l.¡*"ys' type HELP and that there is also a
t

manual which gives a detailed description of the language constructs. Also

remember that a good way to learn the language is to start by learning how to
master a few commands and expana i¡e vocabulary gradually.

f¡
l1 n f ,

5

2. The Conceptual Framework

Simnon is an interactive language for simulating dynamical systems. The system

may be described by ordinary differential equations, or difference equations. It is
also possible to simulate systems which consist of interconnected subsystems.

This is useful in order to structure a large system. Simnon may also be used for
other purposes e.g. to graph functions to fit models to data etc.

The simulation language has facilities to edit system descriptions, to integrate

differential equations, to store and retrieve data, to show the solutions as graphs,

and to change parameters and initial conditions.

DESCRIPTIONS OF DYNAMICAL SYSTEMS

To use Simnon it is necessary to have a basic understanding of dynamical

systems. In particular to be familiar with the notions of input, output and state.

The generic form of a continuous time system is

$f = r(*, .',)

Y = g(x, u)
(2.11

where u is a vector of inputs, y a vector of outputs and x is the state vector. A
system like (2.1) is specified as a CONTIITIUOUS SYSTEM in Simnon. The analogous

form for a discrete time system is I

*(.r*r) = r(x(t¡), u(t¡)),
v(tr) =s(x(tt) ,u(t¡))., k-1,2,.. (2.21

A system like (2.21is specified/

.t
,i

as a'ÐISCRETE SYSTEM. Simnon allows a system

or a subsystem to be described by either of the forms (2.1) or (2.2). lt is also

6

possible to have interconnected systems where each subsystem has the form (2.1)

or (2.21. Connections are described as a CONNECTING SYSTEM.

INTERACTION PRINCIPLES

Simnon gives information to the user via a graphical screen which can show

curves, text and numbers. It is also possible to get a hard copy of a picture and

to list system descriptions and data. Simnon receives information from the user

by commands from the keyboard. The commands have the forrn

CHND argl arg2

where CMND is the name of the command and argl, arg2, etc. are the arguments.

The name is a combination of up to eight characters. The arguments may be

identifiers or numbers. Spaces are used as separators. A command is terminated

by carriage return (CR).

Default values

It is deslrable that commands are both short and flexible. One possibility to

achieve these conflicting goals is to allow variations of a command which are

selected by the arguments. A description of the simulation command illustrates

the idea.

The simulation command

The different forms of the command SIMU which executes a simulation of a

system are illustrated in the syntax diagram Fig. 1. The diagram implies that any

form of the command which is obtained by..traversing the graph in the directions

of the arrows is allowed. For example the command

SIHU O 1oO ï ,,
' l' t

simulates a system from time 0 to time 100. If we want to repeat the simulation a

second time with different parameters it suffices to write

SIHU

The previous values of the

commands are provided with default arguments. These arguments are then used

unless otherwise stated,

"4 .û

afB¡rr6e¡ts, i.e. O and 100, are then used. Most

7

Time increment

Stop time

SIMU

@

@

Fiqure 1. Syntax diagram for the command SIMU.

It follows from Fig. 1 that start and stop times and the initial time increment may

be specified. It is also possible to mark curves by the optional argument MARK.

A simulation may also be continued by using the end conditions of a previous

simulation as initial values. This is done by the command option CONT. The

results of a simulation may also be stored in a file. The time spacing between the

stored values is specified by increment.

The syntax for the simulation command may also be described as follows

SIHU t
t

t
t

<start time> <stop time>
-{coNT l}IARK}l [/<f ilename>

(increment>
(increment>

llll
This description is called the Backus-normal form (BNF), or the Bachus-Naur

form. (...> denotes an argument i.e. a number or an identifier. [al a2...1 denotes

optional arguments which may be omitted and {al1"21...} denotes that one of the

alternative arguments must be chosen. An asterisk (*) after an argument denotes

that it may be repeated. ffre synta|,foç åny command is obtained by typing the'rl
command HELP followed by the name of the command. The syntax is then shown

in the Backus-Naur notation. The syntax of the commands is given in Appendix

A

4,¡
l', ".

8

T

CON

Filename Store increment

EXERCISES

1. Learn how to log in and log out of your computer system and how to get
access to mass storage areas. Get help from your systems manager if
necessary. Document what you are doing so that you can repeat it on your
own.

2. On the Vax implementations you start Simnon simply by typing Simnon.
Simnon answers by the prompt >. You can exit Simnon by typing STOP.
Practice this.

3. Try to find out about Simnon by using the command HELP.

4" Use the HELP command to find out how the command AXES works. F;<periment
with the AXES command to find out how it works.

tï
' It t

tl tt,
Itn

9

=-

3. Differential Equations

Solution of ordinary nonlinear differenüar equations is a simpre apprication ofsimnon' In such apprications simnon can be viewed simpty as a carcurator fordifferential equations' There are two minor differences compared to a calcurator.Simnon can dispray curves. rn a carcurator a function is activated by pushing adedicated key' In simnon functions are activated by typing a command on thekeyboard' How sirnnon may be used to generate sotutions to an ordinarydifferential equation is illustrated by an example.

THE PROBLEM

::iï::,,tÏt
we would like to know the character or the sorurion to the van der

.2

#.^þ2-b)åT+y=o (3.1)

for different initial conditions and different values of the parameters a and b. Thevan der pol equation is a model for an elqctronic oseillator.

The path toward:

steps.
s the solution tolthe Pçoblem can be divided in the following

, lt I

i. Enter system descriptions2. Simulate

nditions

il a satisfactory result is obtained. Thedifferent steps will now be described in some detail.

10

continuous system \|DPOL
"The van der Pol equation
state x y
der dx dy
dY=x
dx=a*x* (b-y*y)-y

Listine 1. A Simnon system for Equation (3.2)

ENTER THE SYSTEM DESCRIPTION

The equation (3"1) is first rewritten in the standard state space form (2.1). Since

the equation (3.1) is of second order an extra variable is introduced. The

equation (3.1) can then be written as

a:1
b:1
END

dv
ãî=*

(3.21

The equations are now in standard state space form, which is the format

necessary to use Simnon" A file which describes the system should now be

prepared. This file which is labeled VDPOL is listed in Listing 1. The first line

indicates that it is a continuous time system with the name VDPOL. The state

variables x and y and their derivatives dx and dy are declared. The differential

equations are then defined. Notice the strong similarity with (3.2)" Finally values

are assigned to the parameters a and b.
-Simnon

separates between @g!g!Ë
and variaÞþÞ. Parameters may be assigned values in a system'description using

the notation ':' for assignment. Parlmetqrrvalues may be reassigned interactively

using the command PAR. Variables åíe áefined using the notatio¡l '='.

The file can be edited using any editor you are familiar with. Assuming the

standard editor you type EDIT VDPOL,.T if you are in VMS and $EDIT VDPOL.T if

you are in Simnon. In the VÆf/VlfS system all Simnon system files have the
l1 r t /

extension'.T'. This also appliesTto Mdcro files (Chapter 6). There is also a simple

line oriented editor built into Simnon which can be used to enter the file. This

1L

editor is invoked by the command

EDIT <filename>

where the argument <filename> is an identifier i.e. a letter possibly followed by

letters or digits. The facilities in the editor are described in Appendix A. The

syntax of the system descriptions is given in Appendix B. The command

LIST <filename>

lists a system description on the terminal.

SIMULATION

To run a system it must first be activated. This is done by the command

SYST VDPOL

lf there are any errors during the compilation an error message is given and the

system enters the Simnon editor so that the eror may be corrected. If you want

to use another editor simply type LEAVE to exit Simnon's editor.

If we would like to see the solution curves as they are integrated we must first
draw axes on the screen. This is done with the command

AXESH020V-66

which means that the ranges of the horizontal (H) and vertical (V) axes are

chosen as (0,20) and (-6,6).

The command

PLOT x y

instructs the program to plot the våniables' x and y as functions of time.

' l' '
To perform a simulation it is necessary to give appropriate initial conditions to

the state variables. The command

INIT x: 1
,l

assigns the initial value 1 to thþ tÞ variable x. lnitial values are automatically

made. We are now ready to perform a

tf
t'atp

set to zero if no assignments are

simulation. The command

L2

6

4

2 2

2

1

2

1

0

ot
!
c
c

H

!
c)

J
L
ß
E

tì
!
E
a!

x
o
a,

¡
C.;
G

(,
+t
.l
+)
al,

1

2-2

-4

-6
0 t0 15 20

Timc t

Figure 2. Simulation of the van der Pol equation for a=l and b=l with initial
values x(0)=1 and Y(O)=g.

SIHUO20-HARK

activates a simulation from time O to time 20, and the result shown in Fig. 2 is
obtained. The argument -MARK implies that the curves are labeled with integers

L,2u.. in the order they appear in the plot command.

5

HOW TO INTERRUPT A SIMULATIOfr

' I'
b

I

Some times when you make a simulation you will find that the results are wrong

at the beginning. It is then useful to'be able to break the simulation immediately.

There are facilities for doing this in Simnon. The details are implementation

dependent

CTRL-C.

On the standard V"¡"!y4¡"rns the simulation is interrupted by typing
ltt

13

CHANGING PARAMETERS

Suppose that it is of interest to explore how the character of the solution is

influenced by the parameters a and b. The command

PAR b:2

assigns the value 2 to the parameter b. The command

SIHU

now generates a new simulation. Notice that it is not necessary to specify any

arguments in the command SIMU. The previously given values 0 and 20 are

automatically used as default values. The use of default values simplifies the user

interaction considerably.

It is now easy to continue to explore how the solution is influenced by the

parameters of the solution by a repeated use of the commands PAR and SIMU.

Curent values of all states, derivatives, variables and parameters may be

displayed. The command

DISP

displays all curent data. Selective displays of the parameter a, the state x and

the variable y is done by the command

DISPaxy

The display may also be directed to the line printer. A simple way to find out

how the command DISP works is to type

HELP DISP

The help function can be applied to all commands

I'
, l' t

STORING AND EDITING RESULTS OF A SIMULATION

tt may be useful to store some results, to compare results from different

simulations and to plot different,'J-ta/e- variables in different diagrams. Suppose for' |*,
"example that we would like to compare the results for the parameter sets a=1,

b=l with a=!, b=2. Two data files are first generated. The command

T4

PAR a:1
PAR b:1

sets the parameters. The command

STORE x y

tells that the state variables x and y should be stored. The command

srHU/B1

then performs a simulation and stores x and y in a file called 81. The value of b
is set to 2 by

PAR b:2

and the command

srMU/82

simulates and stores the results in file 82. The command

SPLIT 2 1

splits the screen into two windows. The command

ASHOI{ x/82

plots the variable x from file 82 in the first window using automatic scaling. The

command

SHOI{ x/81

plots the variable x from file 81 in the same window. The commands

ASHoll y/82
SHorl vlBL

plots the variable y frorn files 82 and 81 þ the second window. To document the

results it is useful to generate a hardcopy of the curves obtáined. The details

depend on the hardware. On a norrLal insNallation the command
, l' t

HCOPY

sends a copy of the picture on thg screen to the plotter queue. The results

shown in Fig" 3 are then obtained. Thê command

sPLIT 1 I ,"î, f,l'*
clears the screen and resets plotting to one window which covers the full screen.

t5

6

0

x
o
¡
al.;
3!

o
+t
lt
{J
U' -6.

0 10 15 20

Ti¡ne t

-3.
0 15. 20

Timc t

Fisure 3. Solution of the van der Pol equation for b = 1 and b = 2.

PHASE PLANE PLOTS

For two-dimensional differential equations it is useful to visualize the results as

phase plane plots. This may be done simply by

AXESH-44V-33
SHot{ y(x)/41

which generates Fig. 4.

+ , I

' l' t

GENERALITIES

The general way of using Simnon as a 'calculator for differential equations" will

now be given. The generic for?'{f drsystem description is given in Listing 2. Trre

system description starts with CONTINUOUS SYSTEM <Identifier>. It is terminated

by a line which contains END. An identifier is a a sequence of letters and digits

5

3

0

a,

Itc.;
o

o
+t
n
4J
U)

105

16

3

2

1

0

3

'l
@

.o
o.;
I

o
+t
ñ
+t
al,

-1.

-2.

-4"
Statc variable ¡

-2

Figure 4. Phase plane plot of the van der Pol equation for a = 1, b = 1, x(0) = 1,

Y(o) = o.

420

CONTINUOUS SYSTEH <Identif ier>
"GeneraI differential equation
state <Identifier>. . .<Identifier>
der <Identifier>. . .<Identifier>
time <Identifier>
computation of auxiliary variables
computation of derivatives *
parameter assignment
initial value assigrunþnt ,
END , t, I

Declarations

tenComm

vBod

Listine 2. Generic form of system description for simulation of differential
equations.

where the first character mus letter. Both upper and lower case letters

may be used although the compiler does not distinguish between them. The

'4 ,t
fi,,!'|lt,itbea

T7

system description has two parts, a declaration and a body

There are three types of declarations. A time variable may be declared for

simulation of time varying differential equations. This is done by the keyword

TIME followed by an Ídentifier. The state variables and their derivatives are

declared by the keywords STATE and DER followed by a list of the state variables

and the derivatives. associated by their sequential order in the lists.

The body of the system description specifies the derivatives of the state variables

in terms of state variables and parameters. Auxiliary variables may also be used.

The body also contains assignment of parameters and initial values. The order of

the statements in the body is unimportant. A variable may only be defined once.

Expressions and operators

The expressions available in Simnon are similar to those in a procedural language

like Algol or Pascal. An expression may be a string, a numeric constant or a

variable. It may also be combinations of variables, operators and functions.

Conditional expressions of the form ¡F...THEN...ELSE are also permitted. Simnon

has arithmetic, relational and logical operators. All variables are floating point

numbers. The numbers are written in the conventional way as 4, 1.1 or 6E7. The

result of boolean expressions is 1.0 if it is true and 0.0 if it is false.

Arithmetic operators

The arithmetic operators are addition, subtraction, multiplication, division and

exponentiation. They are denoted as

+-* |

respectively.

Relational operators + I

, l' I

There are three relational operators, namely equal, greater than, and smaller

than. They are denoted bY

=><

Logical operators

The logical operators are AND, OR and NOT.

t,¡
| ^, ' ',

18

Functions

The following functions are available:

abs (x) absolute value

sign(x)

int
mod
max
min(x,y
sqrt (x)
exp (x)
Itr (

log

sin
cos
tan

{l
x<0
x=0
x>0

)

x)
xrY
X,Y

largest integer less than x
xmody
Iargest of x and y
smallest of x and y
sguare root of x, x)0
exponential function
natural logarithm of x
logarithm (base 10) of x

sine of x (x is in radians)
cosine of x (x is in radians)
tangent of x (x is in radians)
arcsine
arccos
arctangent of x result in (-n12,
arctangent of x/y result in (-n,
hyperbolic sine
hyperbolic cosine
hyperbolic tan

x)
(*)

(*)
(*)
(*)

arcs in
erccos

(")
(*)

atan (x)
atan2 (

sinh(x
cosh (x
tanh (x

dx
Ar = f (x,t).

"l 2l
r)x,Y)

)

)

)

SUMMARY

It has been demonstrated that Simnon may be used to generate solutions to

ordinary differential equations in a very simple way. To do this the differential

equations are first written as a system of first order equations like

+

, l'
I

4

A continuous time system is then generated in Simnon by declaring the state

variables and the derivatives. The fuhction f, which defines the right hand side of

the differential equation, is

expressions and assignments

equations must be written in scalar notation. Any editor may be used. There is

also a special editor incorporated into Simnon, which is invoked by the command

then introduced using ordinary mathematical,l ,,
of pah¡meters. There is no vector notation so all

I t. tl

19

EDIT. The command LIST can be used to list files. A simulation is executed using

six basic commands: SYST, AXES, PLOT, IIJIT, P.A'R and SIMU.

In order to edit, manipulate and document results from several different

simulations it is, however, also useful to use six additional commands, namely

STORE, SHOW, DISP, SPLIT, AREA and HCOPY.

The HELP command is useful in order to see what the commands do.

EXERCISES:

t Learn how to use an editor on your system. Practice by editing the system
in Listing 1.

2. Learn how to enter and exit from Simnon. Use the command LIST to list the
system you have edited on the screen and on the line printer. (Note in the
Vax implementation you may invoke a program called PRG from Sir:nnon by
typing $PRG without leaving Simnon.)

Repeat the simulation described in this chapter on your own.

Change parameters with the command PAR and initial conditions with the
command INIT and investigate how the solutions to the van der Pool
equations change.

5. Experiment with the commands AXES, SPLIT, SHOW, ASHOW and AREA.

6. Use the HELP command to investigate the basic simulation commands AXES,
PLOT, INIT, PAR, SYST and SIMU.

7. Introduce a formal error in the program in Listing I by changing the
assignment of dx to dx = ar,x*(b-y*y-y. Try to simulate the incorrect
program. (When an error is detected the command EDIT is automatically
executed. You may corect the mistakê using the line editor. The simulation
is then automatically continued when you exit the editor by iyping E" You can
also leave the editor by the cq¡nman{ LEAVE and use your favqurite editor
forthecorrection.) ,It t

8. Use the HELP command to investigate the auxiliary commands STORE, SHOW,
DISP, ASHOW, SPLIT and AREA.

3

4

9. Look at the commands LIST, LP eind HCOPY and learn how to get hardcopies
of listings and plots on youtî,fsYftem.

h,,! r|
10. Consider the following van /dejr Pbl equation

€t+ (v2-t) ü*Y=a

20

Investigate the limit cycles obtained for e = 0.05 and 0.993 (a (1.

11. The following equations called the Volterra Lotka equations represent a
simple model for the development of two competing species

dx
ä=(a_by)x

åT=(cx-d)y
Make a Simnon program to study the equations. Start with the following
nominal values: a o 2.7,b = 0.7, c = 1 and d = 3.

72. A simple model for a satellite orbit is given by

d2" la'12 kl-l=_-

dtz ldtj .2

&
dt2

2+-r
dr d<p

dt dt =Q

where r is the radius from the center of the earth, g the azimut angle and k
a gravitational constant. Simulate the equations.

13. Learn how to interrupt a simulation on your installation.

L4. Simulate the differential equation

dx
ä="(v-*) , x(o) =-a

dy
dt
dz
ãT

= bx - y - xz, y(o) = -a

=-cz *xy, zl9l=24

where a = 10, b = 28 and c = 813, Look in particular at z as a function of x.
The equation, which is called the Lorenz equation, is an example of a
deterministic system, which has a very, irregular (chaotic) behavior.

\
, l'

¡
.l

tf .¡

Itc l',

2t

4. Difference Equations

There are also facilities for simulating difference equations in simnon. This is
done analogously to simulation of differential equations. An example is first given
and the general principles are then stated.

EXAMPLE

Consider the following difference equation

*k*1 = *k *. * xk * (l-xk) , k = 0,1,... (4.1)

This is a simple model of a population dynamics. The variable xu denotes the
number of individuals at time k in a normalized scale. There is an equilibrium
value x=l at which the population remains constant. For xnæo the population
increases with the factor 1+r in each generation. For xu>l the population will
decrease' Assume that it is of interest to investigate how the population changes
with time.

A difference equation is characterized as a DISCRETE SYSTEM in Simnon. The
description of a system which simulates the difference equation (4.1) is given in
Listing3. + , !

The state variable x is declared in',rl"'
""1" way as for continuous time sysrem

using the srATE declaration. The declaration NEW is used to declare the variable
nx, which denotes the new value of the,state variable. NEW is thus the analog of
DER for continuous time systems. ,{ ,i

l',f'
when simulating difference equations it is necessary to provide a mechanism for
making the state variables change at certain sa¡npling times. For example the state

22

discrete system POPDYII

"Simple model for population dynamics
state x
new nx
time k
tsamp ts
nx=x+r¡r x* (t-*)
15=tç+1
x: 0.5
r:2
END

Listins 3. A Simnon system for simulation of the difference
equation (4.1).

variable in equation (4.1) changes periodically at k = !,2, In the general case

there may, however, be irregular sampling. The mechanism used to describe this

in Simnon is to introduce a variable TSAMP which gives the next sampling time.

In Listing 3 the first assignment statement is simply a definition of the right hand

side of the difference equation (4.1). The second line: ts=k+l assigns the value

k+l to the TSAMP variable ts. This tells that the system will be activated next at

time k+1.

SIMULATION

Discrete time systems are run in the same way as continuous time systems. A

simulation is thus executed by the commands

syst popdyn
split 3 1

axes H080V01
plot x X ,r
simu 0 80 , l) t

This generates the uppermost curve in Fig. 5. The commands

axes
par r:2.7O
s imu
axes
par r:2.83
simu

f,,t
t,,

23

x
c
o
;
a
f
CL
o
o-

0

t
o
;
ñ
aê
o
ô-

0

c
o
;
ñ
fê
o
o-

0.75

0

0 20 40. 60 80

0.75

0 20 40 60

0.75

60 80

Fisure 5. Simulation of population dynamics.

repeats the simulation for r = 2.7O and r = 2.83, and plots the corresponding

curves shown in Fig. 5. Notice that the behaviour of the solutions change

drastically with moderate changes in the parameters"

80

0.
Gcneration k

4020

GRAPHS OF FUNCTIONS ï ,)

, l' .t

Simnon is conveniently used to obtain a graph of a function. Assume for example

that we want a graph of the polynomial

f (*) = x(x+3) (x+2) (*-21(x-e) J.ti
This is accomplished by the folloþtr,f tçyst"-.

24

150.

f (x)

100.

50.

- 100

- 150

-4

Fieure 6. Graph of the function f(*)
Simnon.

discrete system POL
time x
tsamp z
¡=(x+3)* (x+2)*x* (x-2)* (x-3)
2=¡*dX
dx:0.05
END

The commands
th

syst pol
store f
simu -3.6 3.6
ashow f

, l'

2 4

x(x+3)(x+21(x-21(x-3) generated by

0

-50

0
x

t
I

will then generate Fig. 6.
"t

'f
Simnon is also convenientfy î.Éeå/tto generate level curves, field plots and

conformal maps. To illustrate such applications consider for example the problem

25

;t"jt"ot"t
the image of the lines arg z ; trr2 and arg z = 3rr.in the conformar

G(z) = ", = "*=iy = "*("os y + i sin y).
This may be accomplished by the s!¡stem

discrete system El(pZ
time r
tsamp s
fi=atfa*pi/ tg}
x=r*cos (fi)y=r* s in (fi)
ReG=exp (x) * cos (y)
ImG=1xp(x)*siniyj
s=r*dr
dr:0.01
pi: 3. 74t5926
alfa: g0
END

The commands

syst EXpZ
axesh-11v0l.s
plot ImG(Rec)
srmu 0 3.14
par alpha: 13S
simu 0 4.44

then generate the graph shown in Fig. Z.

GENERALITIES

SUMMARY

The generar form of a description of a discrete'.rime system is given in Listing 4.It is analogous to the continuous tim,
the sampting variabte TsAMp must b: :1t-Ï ,Tlre

onlv semantic difference is thar
e assjøneC and that der is replaced by new.

Difference equa ions are simutated in rl, (r,n" way as differentiar equarions. TheSYSTEM dESCriPtiON DISCRETE SYSTEM iS USEd iNStEAd Of CONTINUOUS SYSTEM.

26

1.5

Im0

L.25

0.75

0.5

o.25

Fisure 7. Graph of
map G(z)

1

0

1 -0.5 0.5
ReG

thermap of the rays arg z = r.II and arg z = 3rl4 in the
=e.

0 1

discrete system <identifier>
"general difference equation
state <identifier>...<identifier>
new <identifier>. . .<identifier>
time <identifier>
tsamp <identif ier> 'É

computation of auxiliary variables
computation of new vafues of the states
update the variable T¡gmpr
parameter assignmeni'
initial value assignment
END

comment

declarations

body

Listins 4. Structure of Simnon ï/tF* for simulating difference equations

l¡n 'Il't

27

The simulation commands are the same as for differential equations, i.e. six basic

commands AXES, PLOT, INIT, PAR, SYST and SIMU and six auxiliary commands

STORE, SHOW, DISP, SPLIT, AREA and HCOPY.

t
)

, lr

lr
|','"

28

EXERCISES

1. The difference equation

a+-*k

is a well known algorithm for computing the square root of a. Write a
discrete system in Simnon and explore the algorithm"

2. Modify the simulation program in exercise 1 so that the stationary solution to
the equation is cornputed and plotted.

3. The following is a simple Keynesian model of a macro economic system

= c(t) * i(t) + g(t)
= â Y(t-t)
= b [c(t) -.(t-1)]

where y is the gross national product, c consumption, i investment and g
government expenditures. Write the equations as a system of first order
equations and simulate the equations. Investigate the response of the system
to a sudden increase in government spending. What are the influences of the
parameters a and b? Try the values a = 0.75 and b - 0.5, 1 and 2.

4. Investigate the properties of the following difference equation

2 yzl exp [-o .t(*2

*r*r = å (*r

(t)
(t)
(t)

v
c
i

r
x

x(t+l)
y(t+r)

x + + v2)f
t)

for different values of the pararneter r.

r
, l' .t

f,f
I

29

5. Combination of Systems

It is often useful to structure a large problem into smaller subproblems. In

simulation this is done by decomposing a large system into interconnected

subsystems. A subsystem is often represented as a box with inputs and outputs

and the interconnections are represented by directed lines between the boxes.

Such a structure can be represented in Simnon. This is done by adding

declarations of inputs and outputs to the system descriptions. The subsystems

can then be described as a CONTINUOUS SYSTEM or a DISCRETE SYSTEM. A

special type of system is used to describe the interconnections. This system is

called a CONNECTING SYSTEM.

Consider the control system shown in Fig. 8 which is a combination of two

subsystems

discrete system REG

input yref y
output u

END

continuous system PROC

input u
output y I

, ì'
t

?

END

and the system which describes the iriterconnection is given by
.t ,,

ll'l f'
lt

30

PROCREG
r

Figure 8. Block diagram of an interconnected system'

connecting sYstem CON

"Connecting system for simulation of process PROC

"with PI regulation by system PIREG

time t
yrIpireg] =1
yIpireg]=yIproc]
uI proc] =uIpireg]
END

Notice that states, variables, and parameters are local variables in each

subsystem. Variables in different subsystems may be specified by adding the

system name in square brackets after the identifier. Also notice that expressions

may be used to describe the interconnections. constructions like

y[reg] = if t<l then 0 else sin(k*v[proc])

are thus possible.

The simulation of an interconnected system is done using the same commands as

was used to simulate difference or differential equations. The only difference is

that it is necessary to activate all subsystems that describe the interconnected

system. This is done bY the command

SYST SYS1 SYSz CON

The connecting system must be the last system in the list' The order of the

systems is otherwise irrelevant. Contir,trä,'r, and discrete system may be mixed

freely. + , ¡

, lt t

AN EXAMPLE - SIMULATION OF A COMPUTER CONTROL SYSTEM

A continuous time process ïtÍtv¡ computer control system is conveniently

described as an interconne"t"h'=yJtem. The process may be represented as a

CONTINUOUS SYSTEM and the control computer as a DISCRETE SYSTEM'

31

discrete system PIREG
"PI regulator with anti-windup
input yr y
output u
state i
new ni
time t
tsamp ts
e=yr-y
v=k* e+i
u=if v<ulow then ulow else if vcuhigh then v
ni=i+k* erh/ ti+u-v
ts=t+h
k:1
ti: I
h: 0.5
ulow: -1
uhigh: 1

END

else uhigh

connecting system CON

"Connecting system for simulation of process PROC

"with PI regulation by system PIREG
time t
yrIpireg]=1
yIpireg]=yIproc
uIproc]=uIpireg
END

l
l

Listins 5. Sirnnon descriptÍon of a simple control loop consisting of a continuous
time process and a discrete time PI regulator.

Listing 5 describes a feedback loop consisting of a continuous time process called

PROC and a digital PI regulator called PIREG" The process is an integrator with

input saturation. The interconnectþns ,ar,e described by the connecting system

coN. , t' t

4.t
ln f I

32

Command

syst proc pireg con

store yr y[proc] tpt
simu 0 40

split 2 1

ashow y yr

The following annotated dialogue illustrates how Simnon is used.

ashow upr

Action

Activate the system.

Select variables to be stored.

Simulate.

Form two screen windows.

Draw y and yr with automatic scaling in first
window.

Draw upr with automatic scaling in second window.

Notice that the names are local to each subsystem. To distinguish between

variables that occur in different subsystem the name of the subsystem is written

in square brackets as in y[proc]. Variables can be transmitted between subsystem

by declaring them as inputs and outputs.

The results of the simulation are shown by the oscillatory curves in Fig. 9. The

discrete nature of the control actions generated by the computer are clearly

visible in the curves. These curves show that there is a considerable overshoot

due to windup at the integral. This is avoided by telling the regulator what the

process limitations are. The commands

par ulow: -0.1
par uhigh: 0.1

changes the necessary parameters. The commands

simu 0 40
area 1 I
show y yr
area 2 L

show upr
\ ,,

shows that the overshoot is reduceflrsignificantly. Compare Fig. 9"

GENERALITIES ¡

."t f
Simnon allows three types of sþ3terl,. descriptions, namely CONTINUOUS SYSTEM,

DISCRETE SYSTEM and CONNECTING SYSTEM. The discretE ANd thc CONtinUOUs

33

0

la-
o
L

!
c
o

+t
f
e
+)
J
o

T,2

0"6

0 10 20. 30. 40

0.1

-0"1
0 10 20 30 40
Time t

Figure 9. Results of simulation of process control with a pl regulator. The
curves with a large overshoot correspond to an ordinary regulator.
The other set of curves are obtained with a regulator with overshoot
inhibition.

systems may be simulated individually provided that no inputs and outputs are
declared. Interconnected systems may also be described by using the connecting
system. The complete syntax for the system descriptions is given in Appendix B.

EXERCISES

0

J

o
á
o.;
n

ã
L
{t
c
o
Lì

I

2

Look at the syntax of the comnTands SIST and SIMU using the help command.
what are the differences, údtwåen simulation of single systems and
interconnected systems.

The HELP command has
experimentally.

an hierarchical structure. Explore this

y',"f
âI

34

3. Use the command HELP LANGUAGE STRUCT to find the form of the different
system descriptions.

4. Assume that the variable y is used in two subsystems in an interconnected
system. Construct a simple test example to find out what happens. What
diagnosis is produced? How can the variables be separated?

5. Consider the system in the example. Repeat the simulation on your own
computer. Investigate the consequences of changing the sampling period.

6. Study the structure of the system descriptions.

t
, l) t

4
ñ

I
f,,

35

6. Advanced Features

Simnonmaybeusedinmanydifferentways.sofarwehavedescribedproblems
whichmaybesolvedbyusingonlyadozencommands.Thisissufficientfor
many applications' For more demanding problems there are however several

additionalfeatures.ThesemayallbeexploredbyusingtheHELPcommandorby
readingthemanual.Abriefdescriptionofsomeusefulfeatureswillbegiven
here to indicate some possibilities'

MACROS

Commandsarenormallyreadfromtheterminal.ltis,however,usefultohave
theoptionofreadingasequenceofcommandsfromafileinstead.The
construction

HACRO NAME

Commandl
Command2
Command3
END

thusindicatesthatthecommandsl,2and3arenotexecuteddirectlybutstored
onafile.Thecommandsequenceis"thenactivatedsimplybytypingNAME"

AsanillustrationwegivettrtfoltowingmacrowhichgeneratesFis.9.
, l' t

macro FIG9
"Generates Fig ' 9

syst Proc Pireg-con
store Yr Y[Proc] tPr^

simu 0 40/wuP "1, .,
par ulow: -0'1 ll ^.

f
'.

Par uhigh:0'1 | t

simu /nowuP

36

split 2 I
ashow y/rurp
show yr y/nowup
ashow upr/wup
show upr/nowup
mark a 2.5 O

mark "Time t
markall
mark v "Control variable u
mark a t 7.5
mark v "output y and yref
END

Notice that lower case letters may be used to get a more readable code, although

Simnon does not distinguish them from upper case letters. Macros for generating

all figures for this report are given in Appendix D.

Macros are useful for documentation. They are also convenient for simplification

of a dialogue. Command sequences, that are commonly used, may be defined as

macros. A simple macro call will then activate a whole sequence of commands.

Macros may also be used to generate new commands.

The usefulness of macros may be extended considerably by introducing

commands to control the program flow in a macro, facilities for handling local and

global variables and by allowing macros to have arguments. By having commands

for reading the keyboard and for writing on the terminal it is also possible to

implement menu driven dialogues using macros.

Even a casual user is strongly recommended to learn simple uses of the macro

facility.

INTEGRATIONALGORITHMS f , r

, lt I

Differential equations are solved in Simnon using numeric integration routines. A
predictor corector formula by Hamming with auto¡natic step length adjustment is

normally used. The initial value of the' step length is chosen as one hundredth of

the integration interval. A differ¡ífrt firitial step size may be chosen by an optional
l¡n '|

argument in the command SIMU1 lh tde algorithm the step length is reduced until

the difference between the prediction and the correction is sufficiently small. The

tolerance may be set by the command ERROd.

37

It is also possible to choose other integration algorithms by the command

ALGoR {r{AHPc I RK I RKFrx I DAS}

where HAMPC is Hammings predictor corrector method, RK is a fourth order

Runge-Kutta algorithm with automatic steplength adjustment. RKFIX is also a

fourth order Runge-Kutta algorithm but it has a fixed step length. DAS is an

algorithm for integration of stiff equations, i.e. differential equations with both

slow and fast modes. Further details on the different algorithms are given in the

Simnon manual.

FORTRAN SYSTEMS

The Simnon language is simple, easy to use and reliable because of all the

diagnostics that is built into it. The language has however a limited expression

power. There are no possibilities to control program flow, there are no arrays

or other data types and there are no procedures. For models whose descriptions

require a more powerful language it is possible to interface Fortran routines to

Simnon. This also makes it possible to use library subroutines like Eispac and

Linpac in the simulations. The Simnon manual describes in detail how to do this"

STANDARD SYSTEMS

There are several standard systems in Simnon. A list of the available systems is

normally displayed on the screen when.*the system is started. A few of the

systems are listed below.

- time delay \ ' '
- nonlinearity defintá Uf " t"ut"
- logging of stored variables
- white gaussian noise generator
- optimizer
- discrete system which reads output variables from file

DELAY
FUNCl
LOGGER
NOISEl
OPTA
IFILE

There are also more sontris¡iÉaÉg systems tike linear quadratic gaussian

regulators, self-tuning regulatoÉs in some implementations. A description of the

standard systems is given in the manual. The command HELP SYSTEMS also gives

38

information about the systems. The standard systems are often implemented as

Fortran systems.

GLOBAL VARIABLES

All variables in Simnon systems are local. When using Fortran systems or
standard systems it may, however, be necessary to transfer global data. Global

variables are used for this purpose. The global variables are set by a LET

command. An example illustrates the use of global variables and standard

systems.

Example 6.1 - Use of standard systems

Assume that we want to include a function defined by a table in a simulation. This

is conveniently done by the function FUNCI. This function has one input u and

one output y. The function has one global parameter N.FUNCI which gives the

number of entries in the table. The arguments are specified by the local

parameters uit, ui?, The corresponding function values are specified by the

arguments gil, giZ,... . The local parameter ORDER specifies staircase (order = 0)

or linear (order = 1) interpolation.

The following dialogue illustrates how the function may be used.

Iet n.funcl = 4
syst FUNC1 FUNCPLOT
par uil: -3
par gi1: -1
par ui2: -1
par gi2: -2.8
par ui3:
par gi3:
par ui4:
par gi4:
par order: 1

The global parameter n.funcl must, be assigned a value before the system is

activated by the SYST command. The local parameters may be changed by the

PAR command as parameters in f4inary Simnon systems.
frn Í,
Itt

I

I
1.5
4
2

\
, l'

39

f (x)

3

2

-1

-3

1

0

-2

20 4
-4 2

x

Fisure 10. Graph of a function defined by a table generated using the Simnon

function FUNCI.

with

connecting system FUNCPLOT

time x
uIFUNCl]=x
yp=yIFUNCl]
END

the commands

axesh-44v-33
plot yp
simu -4 4

I
, ì' I

then generates a graph of the function, see Fig. 10'

t

,11, 1,.

40

ORGANIZATION OF LARGE SIMULATIONS

There are several facilities which are useful when working with large systems or
with large amounts of data. System descriptions and macros are stored as text

files. These files have the file extension .T on the VAX/VMS system. The

subsystems also have a name which is the identifier given on the first line of the

system description. See Appendix B. Notice that the file name and the system

name may be different. This is very useful when simulating different versions of

a model because the same macros and the same connecting systems may be used.

The selection of a particular model is done when the systems are activated by the

command SYST. An illustration is given in the macro FIG9 which is listed in the

appendix. A PI regulator with the name REG is stored in a file called PIREG and a

system with the name PROC is stored in a file called INTEGR. The systems are

activated by the command

SYST INTEGR PIREG CON

The variables of the system are labeled by [REG] and [PROC] respectively. This

makes it possible to use a standard connecting system for different processes and

regulators.

SAVING AND RETRIEVING PARAMETERS AND INITIAL VALUES

The command SAVE stores parameters and initial values in a file. The values may

be retrieved by the command GET. These commands are very useful when

working with large models, because parameters and initial values are not

introduced manually. Assume for example,that the systems FUNC1 and FUNCPLOT

have been activated as in bcample 6.1 by the command

SYST FUNcI FUNcPLoT 1 ',t
The command

SAVE FUNCPAR

then generates a file FUNCPAR.T,,pf the form
.t(

t',

4L

IFUNC1]
UIl: -3.
UL2: -1.
UI3: 1.
UI4:4.
GI1: -1.
GT.2: -2.8
GI3: 1.5
GIA:2.
order: 1.
IFUNcPLor]

It is convenient to edit files of this type for parameters and initial values when

simulating large systems.

DOCUMENTATION

It is often useful to keep a running log of an interactive session. The command

SY{ITCH LOG ON

generates a file of all commands in a session.

The scale factors in the graphs are computed by an algorithm. The same axes are

obtained in horizontal or vertical direction if the horizontal range is divisible by

four and the vertical by 3. It is possible to get scale factors 1, 2 and 5 only by

the command

TURN 5125 ON

It is possible to add text to the axes by the command MARK. This is used in the

macros which generate the curves in the report.

It is also useful to have access to operating system commands under Simnon. In
I

the Vax implementation this is done]gimply' bV typing $ followed by any operating

system command.

t
t', f,

42

7. lmplementation

When using Simnon it is helpful to have some insight into how the program

works and how it is implemented. A brief description is given in this chapter.

HOW A SIMULATION IS ORGANIZED

When the command SYST is given the equations describing the system to be

simulated are first sorted so that all calculations are done in the correct order. It
is possible to store the sorted equations in a text file by using the optional

argument [/<filename>]. The command

SYST INTEGR PIREG CON/DUHHY

generates a file called DUMMY with the content:

SORTED INITIAL EQUATIONS

SORTED TIME-INDEP. EQUATIONS
cON yr[REG] = 1

SORTED DERIVATIVE EQUATIONS
PROC Y=xcoN y[REc] = y[PRoC]
REG e=yr-y 1+ ¡

v = k*e + i , l, t
u = IF v(ulow TllEll ulow EI-SE IF v<uhigh THEN v ELSE uhigh

coN u[PRoc] = uIREG]
PROC üpr = IF u<-0.1 THEN -0.1 FrsE IF u<0.1 THEN u EISE 0.1

dx = upr

SORTED CONTINUOUS EQUAT,XONS
ln f

'
SORTED DISCRETE EQUATIONS
REG ni=i+k*erh/ti+u-v

ts=t+h

43

The subsystem name is given to the left and the equation to the right. The
equations are sorted so that the calculations may be performed in sequential
order. The equations .are then brought to the standard form of a system of first
order differential equations, which are then integrated using the chosen
integration routine. The state variables of discrete time systems are constant
between the sampling instants. They may change discontinuously at the sampling
instants. The integration is therefore carried out only to the nearest sampling
instant. The states of the discrete systems are then changed ahd the integration is
continued.

ALGEBRAIC LOOPS

When systems are interconnected it may happen that the equations can not be
sorted so that the variables may be obtained by sequential computations. A simple
example, which illustrates what may happen is given below.

continuous system Sl
Input u
Output y
V=u
END

continuous system 52
Input u
Output y
V=u
END

connecting system C
yr=1

S1
32

0
END

When the command

SYST 51 52 C

is given the error diagnosis

sort the equations result in

]=y.+k*y[s2]
I = v[sl]
.5

uI
uI
k x

, l'

'4,
"{Cçbhqic loop detected" is given. The attempt to

44

In it io lize

Keyboord

Reod commond

Decode commond

Commond ST0PCommond SYST
oaa

Doto bose

ñi,*--
. Normol

Mocro

Fisure 11. Skeleton flow chart for Simnon

51 Y=u
c u[S2] = u[Sl]
SZ Y=u
C u[S1] = yr * k*y[S2]
51 Y=u

The variable u[Sl] thus can not be solved sequentially. A simple calculation

shows that the variable is given by the following algebraic equation:

u[S1]=]F*k*u[Sl]

This explains the name algebraic loop. In this particular case it is easy to solve

the equation if k # 1. In the general case the algebraic equation may be nonlinear.

It is then difficult both to determine if a solution exist and to find it if it does.

Simnon will not attempt to find a solution. It will just give an eror message. The

presence of an algebraic loop is often an indication of poor modeling. Models with

algebraic loops may be integrated with the qroutine DAS.

t
, l'

HOW THE PROGRAM IS ORGANIZED

A schematic flow chart for Simnon is shown in Fig. 11. The main loop reads a

command, decodes it and nerforry¡ the required actions. All parts of Fig. 7 except

the action routines are impler$ntdd,, as a package of subroutines called Intrac.

These subroutines perform command decoding, file handling, listing and plotting.

Intrac also contains the macro facility. A supmary of the commands in Intrac and

I
I

45

Simnon is given in ApPendix E.

The source code for lntrac is about 7000 lines of Fortran code, which compiles to

about 90 kbytes of code. Simnon itself has a source code of about 25 000 lines of

Fortran code, which compiles into 360 kbytes of code.

It
, l'

î,n
4

t',

46

8. References

Simnon was developed in connection with a project for computer aided design of

control systems. See

Ã,ström, K J (1983):
Computer aided modeling, analysis and design of control systems - A
perspective. Control Systems Magazine, May, pp 4-16.

Simnon inherited many ideas from the tradition of analog and digital simulation in

the control engineering field. When the work on Simnon was started there were

a number of digital simulation languages like CSSL and CSMP available. These are

described in the book

Korn, G" A. (1978):
Digital Continuous Systern Simulation. Prentice Hall. Englewood Cliffs,
New Jersey

which contains much useful information on simulation. Languages like CSMP and

CSSL were, however, implemented using batch calculations. Since the languages

largely were inspired by analog simulation techniques they also inherited several

constraints imposed by the analog hardware. For example the state space notation

which is so natural was not supported 6y p.op"r language constructs. When

Simnon was developed the main idça was, to provide a tool which s¡tpports the

state space notation with good,rnBh-rffachine interaction based on interactive

computing.

The first version of Simnon was defiped and implemented by Hilding Elmqvist as

an MS dissertation in 1972. The,çwgrk was continued by Elmqvist and a usable

language and a manual were av{lâbfe',in 1975:

Elmqvist, H (1975):
SIMNON, an interactive simulation pfogra¡¡ for nonlinear systems.

47

Report TFRT-3091, Dept of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

A good description of Simnon is also found in

Elmqvist, H (19771:
SIMNON - An interactive simulation program for nonlinear systems
Simulation '77, Montreux, Switzerland, June 1977.

A new Simnon manual by Elmqvist is in preparation.

The Simnon language has been used extensively in teaching at the department of

Automatic Control at Lund Institute of Technology ever since. It is increasingly

being used at other schools and industries.

An innovative use of Simnon is given in the textbook

.A,ström, K J and Wittenmark, B (1984): Computer Control Theory

All graphs for simulation results in the book are generated by Simnon Macros

which are accessible to the students. They can then easily change parameters and

modify graphs.

The interaction principles used in Simnon, which are based on commands and

macros were developed in a more general CAD context. See

Wieslander, J (1979):
Interaction in computer aided analysis and design of control systems.
PhD thesis, Report TFRT-1019, Dept of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

and

Wieslander, J (1980a):
Interactive programs - Gençral guide. Report TFRT-3156, Dept of
Automatic Control, Lund Instif¡rrte gf Technology, Lund, Sweden.

'l
The program Intrac, which is the core of the interaction with the user, is
described in

Wieslander, J and ElmqvisUfH 11978):
INTRAC, A communicatiorf pdd¡rle for interactive programs. Language
manual. Report TFRT-3149, Dept of Automatic Control, Lund Institute
of Technology, Lund, Sweden.

48

APPENDIX A
Syntax for Simnon Commands

A list of the commands, their syntax and brief descriptions are given below.

Some Intrac commands (denoted bV t) are also included in the list. More details

about the commands are obtained using the command HELP. All Intrac commands

are listed in Appendix D. The list is valid for implementations on VAX-11

systems. The following notations are used:

{op1 1... loptt}

t....1

Defines different alternatives of which one must be given.

Parts within squared brackets are optional and can be
omitted.

{ }* A star indicates that the previous part can be repeated"

Defines arguments for the commands.

*
, l,

f,4

l^,

49

ALGoR {HAMPC IRK lRKFrx IDAS}
To select integration routine.
HAMPC - Hamming predictor corrector (default)
RK - Runge-Kutta variable step size
RKFIX - Runge-Kutta fixed step size
DAS - Integration routine for stiff systems

AREA <row> (column)

To define the plotting area to be used next, see SPLIT

Row Column

ASHOW {[<start><stop>] {<variable>}* [(<variable>)l [-MARK]l-LIST]
[/<ritename>]

To plot stored variables with automatic scaling. Similar to SHOW

o

Ø

o
Ø

HAMPC

ALGOR

RKFIX

DAS

1

1

AREA

2
3

Start Stop Varidble

ASHOW Var

Lt sr

MARK Filename

50

Min value Max volue

Min value Max value

AXES [<axis spec> [<axis spec>]l

To draw axes.
<axis spec>"= {HlV} <min value> <max value>
H - horizontal, V - vertical

DISP [({DISITPILP}[{FFILF}])l [{<variable>}*]
To display variables.
DIS - display (default)
TP - teleprinter
LP - line Printer
FF - form feed (default when no variables are specified)
LF - line feed (default when variables are specified)
If no variables are given all variables are displayed.

I
l'

f,4

t',

DIS FF
Variable

rP LF

LP

DISP

51

EDIT <filename>

To edit a file. The editor has two modes, INPUT and EDIT. The mode is
changed by entering an empty line. In the edit mode it is possible to change
the current file. The following commands are available:

AIPPEND] <string>
Blorrl
clHANGl l"lvl
D[EL] <integer>
Drs [oNloFF]
EIxrr]
F[lND] <string>
I[NS] <string>
L[OC] <string>
LEAVE
N[EXT] <integer>
OIVERL] <integer>
PIRINT] <integer>
RIETYP] <string>
rloPl

Append string to current line
Line pointer to bottom
Replace string x by string y
Delete n lines
Echo check enable/disable
Leave editor with updated file
Find string at the beginning of a line
Insert a line below current line
Locate string anywhere in a line
Leave the editor without uPdate
Move line pointer down n lines
Overlay n lines by new text
Print n lines on display
Retype current line
Move line pointer to the top of the file

ERROR <error bound>

To choose eror bound for integration routine. Default value is 0.001.

GET <filename>

To get parameter values and initial values from a file that previously has

been stored using SAVE or edited.

+

, l)

i .,t

|' ' '.

File nameEDTT

Error boundERROR

GET File name

52

HcoPY {[<MoDE>] | [<factor>] |
<swlTcH>]

MoDE::=(Q lLlRlLP)'iwirCn'
ì= 1bÑ ¡ örÉ¡sHow)

Make a hardcopy of curves on display' The

<factor), *nillil"v be in the interval (0.5, 1.6)

on the hardcoPY too'

hardcoPY is scaled with
The cómment is obtained

T

, l, I

f,,t
I

Factor

HCOPY

ON

OFF

sH0w

53

HELP [([DEv] IFEED] [PRoMrINSLASK]l)l IKEY1 IKEY2..l..l
DEV::={DISILPITP}
FEED::={LFIFF}
PROMT::={ASKICONT}
*6y1';={SIMNON COMMAND IINTRACISYSTEM}
KEY2::={DETAIL OF SIMNNON¡INTRAC COMMAND}

To get more information about the commands, the editor, Intrac, Simnon, and
the standard systems. A menu of commands is obtained by typing HELP.

o

INIT <state variable>: {<number>l<variable>}

To change the initial value of a state îrariable.

T

I

o

ú

i /,,

NsloskDts
ASKLF

FF T

fP

HEL

Detail of simnon

Simnon command Intrac command

INTRAC

SYSTEM

.Number

INIT State voriable

Varioble

54

LET {<variable>=}* {<number> [<operator> <number>]

l{+l-} <number>l <identifier> [+<integer>]
lcdelimiter> lcunassigned variable>)
<operator>::= {* l-l- l/l ^}

An Intrac command that also is used to set global parameters for the
standard systems.

LISr [({DISITPILP}[{FFILF}])l {<filename>}*
To list textfiles. The first arguments are the same as for the command DISP.
When typing the command LIST the files are sent to a print file. Type the
command LP to initiate the printing. ,*

\
I

I t

Number

LET Variab le

Number

I nlege r

ldent if ier

Delimiter

Unassigned varioble

@

Dts LF

rP FF

LP

FilenameLtsr
n

55

LP

Initiate listing on lineprinter of the print file generated by the commands
DISP, LIST, LOG or PRINT.

MARK

To introduce text into a plot. For syntax type HELP INTRAC MARK.

NEWS

To obtain news about Simnon.

PAR <parameter> : {<number>lcvariable>}
To change a parameter value.

PLOT [{<variable>} * [(<variable>)] l
To select variables to be plottå when making the command SIMU:
Examples: PLOT XL X2 give5 ¡Xl ând X2 as functions of time while PLOT
X1(X2) gives Xl as function of X2.

MARK

NEWS

Number

PAR Porameter

Var ia ble

Vorioble

VarÌable

i
PLOT

56

PRINr [({DISITPILP} [{FFILF}])l <filename> [<lines>l
[/<start time>]

To list file generated with the commands STORE+SIMU. <lines> lines starting
from (start time> will be printed. The other parameters are the same as for
DISP.

@

@

SAVE <filename> [<systemname>] [-{PARllNtT}]

To save parameter values and initial values for a given system
<systemname> on a file named <filename> to be used by the command GET'

only parameters or initial values are saved with the option PAR or INIT.

LFDts

FFTP

LP

F ilenome
PRINT

Stort timeLines

PAR

System identif ier
lN lr

Filenome

¡\
, t' I

f,"t
l*,

57

SHOW {[<start><stop>] {<variable>}* [(<variable>)] [-MARK]l-LIST]
[/<filename>]
To plot stored variables from file <filename>. To be used with the command
STORE. The specified variables are plotted frorn <start> to <stop> time. If
MARK is used the different variables are numbered on the plot. The
LlST-option lists the names of all variables.

\

@

@

@

@

l' t

hI ít,

VoriableStop

Variable

LI ST

@

MARK Filename

58

SIMU [<start time> <stop time> [<time increment>]]
[-{coNT¡MARK}[CONTIMARKI¡ [/<filename>] [<store increment>]

To simulate the system from <start time> to <stop time> using the maximum
stepsize <increment> (default (stop time - start time)/100). Using MARK the
variables defined by PLOT are numbered. With CONT the simulation is
continued with the previously obtained state variables as initial values.
When specifying <filename> then the plotted variables are stored in
<filename> with <increment> as sampling interval.

@

@

SPLIT <rows> <columns>

To split the screen into maximum six plotting areas
<rows>:={1 | 2l 3} default
<colums>:={112} default 1

1

Row # Column #

f.r
tl ^,r

Time increment

Stort time Stop time

SIMU

CONT

coNr

Filename Store increment

59

STATE {{<variable>}* [(<variable>)] þ<option>ll
-CHECK <time increment> I-STATUS)
<option>: :={SLOW IFAST I SOLVE}

A special command, which is only used with the integration routine DAS.

STOP I
To leave Simnon.

SToRE [{<variable>}* [-ADD]l
To select variables to be stored at each simulation. With ADD new variables
can be added to a previously defined list of variables. The variables can be
displayed using ASHOW or SHOW and printed using PRINT.

.t(,
i

I
l',

FASTVarid ble

Voridble

Time increment

STATUS

sfoP

ADD

,l

STORE

@

60

swrrcH {cLocKlDArElEcHolEXEClLoGlrRAcE} {oN¡oFF} t
To control the execution of Intrac.
CLOCK - Adds time to hardcupy output. Default OFF.
DATE - Adds date to hardcopy output. Default OFF.
ECHO - Macro commands are echoed. Default OFF.
EXEC - Commands executed while typed during macro generation.

Default OFF.
LOG - Executed commands are logged on line printer. Default OFF
TRACE - Affects ECHO and LOG.

SYST {<identifier>}* [
(option):={EDIT

I

-<option>l [/<filename>l
EXIT}

To define the system. The subsystems are compiled. If there are several
subsystems the last one has to be a connecting system. EDIT means that the
compiler goes into the editor for each file. If filename is specified the sorted
equations are written into a text file.

TEXT '<any string not contai.,irrs,s$gle ¡qdote>'

To include text on paper plot.

CLOCK

DATE

ON
ECHO

SWITCH

EXEC
OFF

LOG

TRACE

ED

EXIT F ilename

SYST I d ent if ier

TEXT Any string not contgining singte quote

4

ln,

61

ruRN {DARKlDrslNocoDElovFLO|PLCOMlsl25lrrMrNG} {oNloFF}
To turn on and off switches.

5125 Selects a limited set of scale factors (1., 2.,5.1when
choosing scales on exes. Default OFF.

DARK ON means that plotted curves will not be connected between the
sampling instants. Default OFF.

DIS lnforms SIMNON if the user has a graphic display. Default ON.

OVFLO ON means that the simulation stops if overflow occurs in the
calculations. Default OFF"

t
, l'

I
I

f,,4

l^,

DARK

Dt5

ON

rURN OVFLO

OFF
PLCOM

s 125

TIMING

62

APPENDIX B

Syntax of System Descriptions

Simnon allows three types of systems: CONTINUOUS SYSTEM, DISCRETE SYSTEM
and CONNECTING SYSTEM. The following Bachus-Naur notations are used to
describe the syntax.

syntactic unit
denotes
exclusive or
optional element
compulsory element
repetition

The following syntactic elements are needed to describe the systems.

LETTERS

I

t
{
*

I
)

<Ietter>:: =AlB
alb

<digit>::= 011

c
c
2

E
e
4

D

d
3

G
oð
6

F
f
5

I
i
8

H
h
7

J I KlLl ll I N lo I
plolRls lr lu I vlx I Yl z

j lk I I lm ln I o lp lq l'l " I t lu lv I x ly I z
I

IDENTIFIERS

<identifier>: : =(letter) | <identifier><letter> |

<identifier><digit>,F

VARIABLES 1h
'

, ,t 't

<system identif ier): : =(identifier>
<simple variable>: : =(identifier>
<variable>: : =<simple variable> | <simple variable>[system

identifier>]

t.t
l', (

63

The generic form of the system descriptions are:

CONTINUOUS SYSTEI{ <system identifier>
t
t
t
t
t

INPUT <simple
OUTPUT <simple
STATE <simple
DER <simple
TIME <simple

variable>*
vari abl e>*
vari abI e>*
vari abl e>*
variabl e>]

variable*]
variable>*
variable>*
variable>*
variable>]

t
t
t

t
t

l
l
l
l

l
l
l

fturrtrl 1

ls8ilî"."tton
of initial values for state variablesl

Computation of auxiliary variables]
Computation of output variables]
Computation of derivatives]

Parameter assignment
IInitial value assignment]
END

DISCRETE SYSTEH

IINPUT <simple
[OUTPUT <simple
ISTATE <simple
INEfl <simple
ITIHE <simple

<system identifier>

TSAHP <simple variable>

"denotes the new values of
the states

"denotes the next sampling
instant

initial values for state variables]
initial values for output variables]
initial values for the TSAHP-variable]

Computation of auxiliary variables]
Computation of output variabl

fComputation of new values of
Updating of the TSAHP-variablé
IHodification of states in continuous subsystems]
Parameter assignment
IInitial value assignment]
END

ef]¡
ttrg slatesJ

tl r

64

t
t
t
t

CONNECTING SYSTET{ <system identifier>
TIHE <simple variable>]
Computation of auxiliary variables]
Computation of input variables]
Parameter ass i gnments]

END

Note that the order of the computations and assignment is unimportant because
the equations will be sorted automatically. The section Initial makes it possible to
compute initial values to state outputs and TSAMP. These variables can normally
not be assigned an expression.

T I

It t

r', f

65

APPENDIX C

Standard Systems

This appendix describes the standard systems DELAY, FUNCI, IFILE, LOGGER,

NOISEI, OPTA, and STIME. These systems are written in Fortran and linked into

Simnon.

DELAY

This discrete time system simulates pure time delays. Old values of the signal to

be delayed are stored in a vector. Delayed values are then generated by

interpolation. The system admits two interpolation schemes due to Hermite and

Aitken. In Aitken's scheme a Lagrange polynomial is fitted to the stored values. In

Herrnites method the values of the derivatives are stored together with the

function values. The delayed values are then determined using an interpolation

polynomial, which agrees with the function and its derivative at the stored points.

Hermite's method requires that derivatives of the function are also stored.

The function admits delay of many signals. It has the following global variables.

nl.delay

n2.delay

space.delay

These variables

activated.

Number of variables using Hermit interpolation

Number of variableS ..rring'Aitken interpolation

Number of elemeátj t" 'tlie
a[ocation area to be used for saving

old values. Try to use as many as possible, SIMNON gives an
error message if too much space is used.

must be assigned ÉV a LET command before the system is
t^r

I

66

a

INPUT:
u1,u2,...
du1du2,..
td1,td2,...

The system has the following local variables

Variables to be delayed (n1+n2)
Derivatives of the variables (n1)
Delay times (see below) (nl+n2)

OUTPUT:
yL,y2... The delayed variables (n1+n2)

The outputs from the system DELAY are all zero for t<td, but other values can

easily be set in the equations (see example below). The following example

illustrates how the system DELAY can be used.

Example: Assume that the following systems have been defined

continuous system SYSI

END

connecting system CONN

time t
td1[detaY]=t-5
u1 [de I aY]=s in (t)
u[sysl] = if t<5 then 1 else yl[delay]
END

The global variables for the system delay are assigned by the commands

let nl.delay=g
Iet n2.delay=1
Iet space.delay={5g

The systems are activated by the command

syst sysl delay conn

The signal u[sysl] is then given by*
t

u[sys1] (t) =

I

sin(t-5)

lt t
ift<5

ift>5

,r'^ f

67

FUNCl

This is a continuous time function which makes it easy to introduce functions in

tabular form. The system has one global variable:

n. funct

which gives the number of tabulated function values. The local variables are:

INPUT:
u

OUTPUT:
v

PAR:
uil, ui2, ...
git, gi2, ...
order

Argument value

Function value

Table of argument values
Table of function values
Order of interpolation (0 or 1)

The following example illustrates how the function is used

Example: Assume that the following systems are defined.

continuous system SYS1

END

connecting system CONN

time t
func 1]=¡
sys 1]=yI func I]

END

The global variable of the system FUNC1 is assigned by the command

let n.funcl=S

The systems are activated by the
"o.*"nif

syst sysl funcl conn ï ,

, t' '
The parameters of the system FUNCI are defined by the commands

t
t

u
u

4
ûï

rt

68

n.ifile

fname"ifile

The local variables are

ui1:0
gil:0
ui2: 1

gi2: I
ui3: 2
gi3: 4
ui4: 3
gi4: 9
ui5: 4
gi5:16
order: 1

lst colu4n in the file
2nd column in the file

par
par
par
par
par
par
par
par
par
par
par

The parameters of the system FUNC1 are saved on file TAB1.T by the command

save tabl funcl

Another illustration is given in Example 6.1.

IFILE

This is a discrete time system which reads variables stored in a datafile. It is

useful for example when comparing simulation models with real data. The system

has two global variables:

"Use linear interpolation

Nurnber of columns to be read from file or equivalently the
number of output variables

File name for input data file

OUTPUT
c1
c2

PAR:
dt
dt

1

TSAMP:

Time for first input relahve to the start time (default: O.O) '

Distance between inputs {deffult: 1.0)

ts Time for next input

The actual value of n.ifile

value of fname.ifile can be

is fixed during the execution of the SYST command. The.t .'
charlged þetween simulations. The simulation terminates't 'rif the input file is exhausted.

69

Several systems with different system identifiers can be active simultaneously.

The global variables should then contain actual system identifiers. The following

example illustrates the use of IFILE.

Example. Assume that data is stored in the file FDAT.D, which has 10 columns

and that we want to use the third column as input to a simulation. Let the

following systems be defined.

continuous system SYS1

END

connecting system CONN

time t
u[sYs1]=s3[ifile]
END

The global variables of the system IFILE are assigned by the comrnand

let n. ifile=10
Iet fname. ifile=fdat

and the systems are activated by the command

syst sysl ifile conn

The file used as input to IFILE can be created in Sirnnon using a store command.

It can also be generated in the system identification package ldpac.

LOGGER
,F

This is a discrete time system which can be used to sample
"t

d "".t" arbitrary

Simnon variables on a file. X ', t' t

The system has one global variable:

file.npoint

which gives the number of dat{ qoints stored in the current STORE file with
Jt; t

'name <file>. The global variableT is set by LOGGER after each simulation. It can be

displayed by the WRITE command. (This value rnust be known if the generated file

70

is to be used by ldpac.)

The local variables are:

dt

Time for first sampling relative to the start time
(default: 0.0)
Sampling interval. If dt=0.0, no fixed sampling is done,
and all points are saved (default: 0.0)

TSAMP:
ts

PAR:
dt1

Time for next sampling

When it is desired to store data the system LOGGER should be included as a

system in the SYST command. Since it has neither INPUTs nor OUTPUTs, it need

not be connected in the CONNECTING SYSTEM. A connecting system must,

nevertheless, be present even if only one system is compiled together with

LOGGER. The connecting system can then be empty (3 lines). The following

example illustrates how the system LOGGER can be used.

Example. Assume that a system SYS1 is simulated, which has a variable x and

that it is desired to store the values of x every 10th second starting at time

| = 2.O. Assume that the following systems are defined.

continuous system SYS1

END

connecting system CONN

time t
END

The systems are activated by the cornmand

syst sysl logger conn

The parameters of the system LOclfn -arë set by the commands

par dt[Iogger]:10
par dt1[loggerf:2

The command request the

store x[sys1]

variabp of SYS1 to be stored.

The following simulation command executes the simulation with the option that the

x
/t',

71

variable is stored in FIL1

simuO1500/fifl

Notice that the number of stored variables are available as the global variable

fill.npoint. The value of this variable is found as follows:

write fill.npoint
149

NOISEl

This is a discrete time system, which generates a sequence of independent

random vectors" The components of the vector have either a normal or
rectangular distribution. The system has the global variables

n.noisel

nodd.noisel

The local variables are

OUTPUT:
e7, e2, .,.

PAR:
stdevl, stedv2, .

dtl
dt

same

rect

TSAMP

Number of outputs

Initial value for the generator (should be an odd,
positive integer)

The noise vector

Standard deviations for the outputs (defautt: 1.0)

Time for first output relative to start time (default: 0.0)

Distance in time between outputs (default: 1.0)

Reset switch. When same > 0.5, the noise generator
is reset (default: 1.0)

Type switch. If rect t0.5, rectangular noise in
the interval (0, stdev) is generated instead of
white noise (default: 0.0)

l¡
Time for ne¡t ¡otrtptrtts

Note that the switches g-æ and g! influence the entire noise vector. Control of

individual components is not possible.

The global variable nodd.noise|'1r/.na"ted at the end of each simulation. The

value of nodd.noisel can be changed between the simulations. The following

72

example illustrates how to use the noise generator.

Example. Generate two white noise input signals to the system SYSI. The signals

should start at t = 0.5 and change with a sampling period of 3 time units. Assume

that the following systems are available.

continuous system SYSI

END

connecting system CONN

time t
u1
u2

t
t

l
l

t
t

sys 1

sys 1

=e1 noisel
=e2 noisel

l
l

END

The global variables of the system NOISE1 are assigned by the commands

let n.noisel=2
Iet nodd.noisel=25831

The systems are activated by the command

syst noisel sysl conn

and the parameters dt and dtl of NOISE1 are set by

par dt:3
Iet dt1: 0. 5

STIME

This system stores clocktime and cpu-ti."'ìr, the two Simnon variables MSCLOCK

and MSCPU. lt is useful for tlming rof simulations and for investigating

computational efficiency. No conrr""/iåg !yrt"* is needed. It is sufficient to include

STIME in the SYST command" The variables MSCLOCK and MSCPU are set to zero

at the start of each simulation.

I
II

73

OPTA

This discrete time system is a tool for the problem of minimizing the function J(p)

subject to the constraints

st(n) f o i = 1, ..., lrl.

The system OPTA performs the minimization recursively. The system has old

values of the parameters as states. It accepts values of J and g as inputs and it
generates new values of the parameters, which will give a smaller loss function

as outputs.

The global variables are:

npar.opta
ncons.opta

The major local variables are:

INPUT:
loss
con1,con2

OUTPUT:
pr,p2
tbeg

PAR:
tinc

TINC

HH

EPS

Number of parameters (max 10)
Number of constraints (max 10)

The value of the function to be optimized
The values of the constraints

The new values of the parameters
This variable is set to the sampling time

Sampling period

There are also several additional parameters,

optimization. They are listed below.

which will influence the

XMl XM2 .". (1 1 ..) Scaling factors, see HH and EPS

LAM1 LAM2 ... (0 0 ..) Lagrange muftipüers, initial values

DFN (-0.5) Controls initial st+ at thB first linear minimization; ,should give
an estimate of the likely ¡edtrction in function value, Af; there are two
possibilities:
DFN<O DFN itself is an estimate of Af
DFN<O ABS(DFN).f is taken as an estimate of Af

(1) Length of sampling interval of OPTA
,t

(0.005) Step length fpf 'téalculation of the gradient by differences; the
step length for each component Pi is XMI.HH

74

(0.01) Stopping criterion for unc,onstrained minimization - is satisfied

PRIN

EVMAX

CEQ

c

when the change in each component Pi is less than XMi.EPS

(1) Controls printout on line printer; every ABS(PRIN):Ih iteration is
printed; if PRIN<O only function values are printed; if PRIN>O also P
and the gradient are printed; if PRIN=O there is no printout

(10000) Maximum number of function evaluations

(0) Number of equality constraints

(1) Constant used in the modified function; only used for constrained
problems

DELTA (0.01) Stopping criterion for constrained minimization - satisfied when
TEST is less than DELTA

RESET

DARK

(1) The states are reset to their initial values if RESET>O

(1) There is no trace on the display at the sampling points of OPTA if
DARK>O

MODE (1) Controls the initialization of the approximation of the second
derivative, H
MODE=I H is set equal to the identity matrix initially
MODE=3 the H-matrix from the previous minimization is used

LPLOT There is no plotting on the display when the optimization routine is
calculating derivatives by differentiation if lplot>O.0

For a detailed discussion of these parameters and their use we refer to Glad

(1e74).

The system OPTA can be used in many different ways. Typical applications are to

adjust regulator parameters for optimized performance and to adjust model

parameters in connection with model fitting. In such cases it is necessary to

perform a simulation in order to obtain the values of lossfunctions and

constraints.

\,A starting value of the parameter yçctqr p is given to initialize the optimization.

The system is then simulated for this parameter value. The criterion and the

constraints are evaluated. The optimization routine then uses the value of the

loss function J and the constraint g to compute a new value of the parameter

vector. The process is then repqat7d with the new parameter. The procedure is

illustrated by Fig. C-1. The critÉfioh'J and the constraint vector g are connected

from the system to the optimizer while the output of the optimizer is the

parameter vector p, which is an input to tþe system. At each sampling point of

75

System

0ptimizer I

P

Figure C-l

the optimizer it uses the current values of J and I to compute the next value of

p. If the criterion or constraints depend explicitly on the parameter vector p, a

vector pd, containing delayed values of p, is used. The system can consist of a

nurnber of subsystems. The connections between these subsystems, as well as

connections needed to forrn J and g frorn output of the subsysterns, are made in

the connecting sYstem.

An example illustrates how OPTA is used.

Example. Consider a control system, whose block diagram is shown in Fig. C-2.

Let the purpose of the controller be to keep x, as small as possible despite the

disturbance v, which is an impulse disturbance. This is equivalent to setting

xr(o)=1. The criterion is

T
2J= x
2

dr

It is also assumed that the total control effort is limited

I
0

T

s=[
0

2
u

I
T)dt - u-. < 0llm -

I
t u-.Ilm = 0.5

The gains KO and KO should be chosen to satisfy these demands. The Simnon

prograrns required to solve the problem are given below..tl
aI

76

x1 xu

Figure C-2

continuous system IHP
state xl x2 z w

der dxl dx2 dz dw
input kd kp
output y
output y=1!
Y=x2
dlmamics
u=-kd*x1-kp*x2
dx1=-x1+u
dx2=xl
dz=u*u
dw=x2*x2
END

connecting system CONN

time tim
wt: 1O

I oss Iopta]=wtr,wI imp]
ulim: .5
conl I opta]=z I imp]-uI im
kdI imp]=p1[opta]
kdI imp]=p2[opta]
t=tim-tbeg[opta]
END

lt

, l,
¡

I

To do the optirnization the

commands

I ,,
(rariables of OPTA are first assigned by thesloþaf

77

let npar.opta=2
Iet ncons.opta=l

The systems are then activated by the command

syst imp opta conn

Initial values of states and parameters are assigned by

init xl: 1

init pil:2
ínít pi2:2

The sampling period of the system OPTA is set by the command

par tinc:10

The command

par prin:5

tells that parameters, function values and gradients are printed. The optimization

is then executed by

plot y conl (t)
axesh010v-.1 .5
simu O 10000 I

ï
l' t

4t
t',' ,

78

APPENDIX D

Macros for Generating the Figures

This appendix gives Simnon macros for generating the figures in the report

macro FIG2
"Generates Fí9" 2
syst vdpol
split 1 1

axesh020v-66
plot x y
store x y
init x: I
simu 0 20 -mark/bl
mark a 2.5 O

mark "Time t
markall
mark v "State variables x and y marked I and 2
END

continuous system VDPOL

"The van der PoI equation
state x y
der dx dy
dY=x
dx=a*x* (b-y*y) -y
a:1
b:1
END \

l' t

macro FIG3
syst vdpol
init x: L

store x y
simu 0 2Ûlb7
par b:2
s imu/ b2
split 2 I
axesh020v-66
show x /b1

4

I

79

show
axes
show
show
mark
mark
mark a 2.5
mark "Time
markall
mark v "State variable y
mark a L 7.5
mark v "State variable x
END

macro FIG4
"Phase plane for the van der Pol equation
syst vdpol
init x: 1

split 1 1

axesh-44v-33
plot y(x)
simu 0 20
mark a 2.5 O

mark 'oState variable x
markall
mark v "State variable y
END

macro FIGS
"Simulation of population dynamics 0 20
syst popdyn
split 3 1

axesh080v01
par r:0.2
plot x
simu 0 80
mark a 2.5 O

mark "Generation k
markall F

mark v "Population x
a I 5.5
v "Population x
a110
v "Population x

par r:2.7O
simu
axes
par r:2.83
s imu
END

x
v
v
Y
a
tl.T.¡

lb2
-33
lbt
lb2
2.5 0

t
6.5
t

lme

¡nark
mark
mark
mark
axes

\,
, lt ''

rr,

80

discrete system POPDIN
"Simple model for population dynamics
state x
new nx
time k
tsamp ts
nx=x+r+x* (1-")
ts=k+1
x: 0.5
r:2
END

macro FIG6
syst POL
store f
simu -3.6 3.6
split 1 1

ashow f
mark a 17 0
mark ttx
mark a O.5 12
mark "f(x)
END

discrete system POL
time x
tsamp z
¡= (x+3) r (x+2) +x* (x-21* (x-3)
z=x+dx
dx: 0.05
END

macro FIGZ
"Generates Fig. 7
syst EXPZ
split 1 1

axesh-11v01.5
plot ImG (ReC)
simu 0 3.14
par alfa:135
simu 0 4.44
mark a 17 0
mark "Re G

mark a O.5 72
mark "Im G

END

discrete system EXPZ
time r
tsamp s
fi=alfa*pi/ 180
x=r* cos (fi)

1t

It I

tf
I

81

y=r* s in (f
ReG=exp (x
ImG=exp (x
5=¡*dr^
dr:0.01
pi:3. t'4L5926
alfa: 90
END

(v)
(v)

os
in

i)
)*"
)*t

macro FIGO

"Generates Fig. 9

syst Proc Pireg-con

"io."-
yr Y[Proc] tP'

simu O 40/wuP
par ulow: -0.1
par uhigh:0.1
simu /nowuP
split 2 1

ashow Y/vruP
show Yr Y/nowuP
ashow uPr/wuP
show uPr/nowup
mark a 2"5 O

mark "Time t
markall
*u.f. " "Control variable u

mark a 7 7-5
rurf " "OutPut Y and Yref
END

discrete sYstem PIREG
iil-t"guf aior with anti-winduP
input Yr Y
output u
state i .,f ¡
new ni t¡

time t l'" '
tsamP ts
e=yr-y
9=lç¡ s+i
u=if vculow then ulow else if v<uhigh then v

continuous sYstem PROC

;;;;;;;;;o' *itt' inPut saturation
input u
output Y
state x

ffii=îi u<-0.1 then -0'1 else if u<0'1 then u else 0'1

dx=upr
V=x
END r

, t' I

82

else uhigh

ni=i+k* e*h/ t i+u-v
ts=t+h
k:1
ti: 1

h: 0.5
ulow: -1
uhigh: 1

END

connecting system COll
"Connecting system for simulation of process PROC

"with PI regulation by system PIREG
time t
YrIpireg]=1
y[Rireg] =yIproc]
uIproc] =uIpi reg]
END

macro FIG10
"l{acro for generating Fig. 10
let n.funcl=
syst FUNCI FUNCPLOT
get funcpar
split 1 1

axesh-44v-33
plot yp
simu -4 4
mark a 17 0
mark ttx
mark a I 12
mark "f (x)
END

connecting system FUNCPLOT
time x
u[FUNCl]=x
yp=yIFUNCt]
END

IFUNC1]
UI1: -3.
UIZ: -L.
UI3: 1.
UI4:4.
GI1:-1.
GI2: -2.8
GI3: 1.5
Gl(:2.
order: 1.
IFUNCPLoT]

\
l, 't

¡

83

APPENDIX E

lntrac and Simnon Commands

This appendix lists all the eommands in Intrac and Simnon

INTRAC COMMANDS

1. Input and output

- Read variable from keyboard
- Write variables
- Utility command
- Stop execution and return to OS

2. Assignment

FREE - Releases assigned global variables
LET - Assigns global variables

3. Control of program flow

READ
WRITE
SWITCH
STOP

LABEL L
GOTO L
IF..GOTO
FOR..TO
NEXT V

4. Macro

DEFAULT
MACRO
FORMAL
END
SUSPEND
RESUME

- declaration of label
- transfer control
- Transfer control
- Loop

F

Assigns default values
Macro definition
Declaration of formal

"în.r."rìt,End of macro definitiory'
7 '

Suspend execution of macro
Resume execution of macro

SIMNON COMMANDS

1. Input and output

EDIT - Edit system description
DISP - Display parameters

84

GET - Get parameter and initial values
LIST - List files
PRINT - Print files
SAVE - Save parameter values and initial values in a file
STOP - Stop

2. Graphic output

Select window on screen
Plot stored variables with automatic scaling
Draw axes
Hardcopy of the screen
Write text on axes of graphs
Plot stored variables
Split screen into windows
Transfer text string to graph

3. Simulation

AREA
ASHOW
AXES
HCOPY
MARK
SHOW
SPLIT
TEXT

ALGOR
ERROR
INIT
PAR
PLOT
SIMU
STATE
STORE
SYST

4. Auxiliary

HELP - Gives guidance
NEWS - Gives news about Simnon
TURN - Set switches

\

Select integration algorithm
Choose emor bound for integration routine
Change initial values of state variables
Change parameters
Choose variables to be plotted
Simulate
Special command for the integration routine DAS
Choose variables to be stored
Activate systems

I

It t

,rr^ f

85

lr¡dex

advanced features, 36
algebraic loop, 45
aigebraic loops, 44
ALGOR, 38, 49, 85
AREA, 20,29,50, g5
arithmetic operators, 18
ASHOW,50, g5

AXES, 72,20, 28, 51., 85
Backus-normal form, I
BNF, 8
changing parameters, 14
combination of systems, 30
command, 7
command syntax, 8, 49
cornputer control, 3i
coN, 83
conformal maps, 25
connecting system, 7, 33, 65
connecting system., 30
continuous system, 6, 30, 33, 64
CSMP, 47
CSSL, 47
DAS, 38, 45
DEFAULT, 84
default values, 7
DELAY, 38, 66
DER, 18
difference equations, 22
differential equations, 10
discrete system, 6, 26,30, 33, 64
DISP, 14,20,29, 51, g4

documentation, 42
EDIT, T2, T9,51, 84
edit mode, 11
edit mode: how to leave it, 12
END, 84
ERROR, 37,52, 85 "4

experimental data, 69 | ''
experimental data in simulations, 69
expression power, 38
expressions, 18

EXPZ, 81
field plots, 25
FIGIO, 83
FlGz,79
FIG3, 79
FIG4, BO

FIGs, BO

FIG6, 81
FIG7, 81
FiGg, 36, 82
file, 69
FOR..TO, 84
FORMAL,84
Fortran, 38
Fortran systems, 38
FREE, 84
FUNCI,38,39, 41,66,68
FUNCPLOT, 41, 83
functions, 19
functions in tabular form, 68
GET, 41, 52,85
global parameter, 39
global variables, 39
GOTO L, 84
graphs of functions, 24
HAMPC,38
hardcopy, 15
HCOPY, 15,20,28,52,95
HELP, 20, 53, 85
IDENTIFIERS, 63
IF..GOTO, 84
IFILE, 38, 66, 69
INIT, 12, 20,29,54, g5
integration algorithms, 37
interaction principles, 7
Intrac, 45
LABEL L, 84
large simulations, 41
LEAVE, 12
LET, 54, 84
LET,TERS, 63

*
, tt

,fr

86

level curves,25
LIST, 12, 19, 55, g5
local parameter, 39
local variables, 33, 39
LOGGER, 38, 66, 70
logical operators, 18
lower case letters, t6, 37
LP, 56
MACRO, 36,94
macros, 36
Macros for generating the figures, 79
MARK, 42,56,85
minimization, T4
NEWS, 56, 85
NEXT V, 84
NOISE, 38
Ì'IOISEI, 66,72
numeric integration, 37
operators, 18
oPTA, 39,66,74
optimization, TS
PAR, 11, 14,20,28, 56, g5
parameter adjustment, 75
parameters, 11
phase plane plots, 16
Pl regulator,32
PLOT, 12,20,29, 56, 85
POL, 81
POPDYN, 80
population dynamics, 22
PRINT, 56, 85
FROC, g2
READ, 84
REG, 82
relational operators, 18
RESUME, 84
retrieve parameters, 41
RK, 38
RKFIX, 38
SAVE, 41,57,85
scale factors, 42
sHow, 20,29,57,85
Simnon commands, 84 |
Simnon language, 38 , I'
slMU, 7, 72, 20, 29, 59, g5
simulation, 12.
simulation command, 7
sorting, 43
source code,46
SPLIT, 20,2g,5g, g5 ."4 f
standard systems, use of, 39 | ', a

STATE, 18,59,85
STIME, 66, 73
sToP, 60, 94, g5

sToRE, 15,20,29,60,95
store parameters, 41
subsystem, 30
SUSPEND, 84
SWITCH, 42,60,84
syntax, 8, 49
syntax diagnam, 7
SYST, 72,20,29, 37,61, g5
system description, 10, 64
table nonlinearities, 38
TEXT, 61, g5
TIME, 18
time delay, 66
timing of simulations, 73
TSAMP,23
TURN, 42,6I,85
upper case letters, 16
van der Pol equation, 10
variables, 11, 63
variables local, 33
variables transmission to other systems, 33
VDPOL, 79
vector notation, 19, 38
WRITE,84
[FUNCl], 83

,t

87

