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ON THE CHOICE OF SAMPLING RATES IN PARAMETRIC IDENTIFICATION

OF TIME SERIES |

K.J. Astrdm

ABSTRACT

Aliasing gives a lower bound for the sampling rate in ordinary
spectral analysis of a time series. In parametric it appears at
first sight that no such limitations are present. In this note

we will get insight into this paradox by analysing a simple gauss-
markov process. We assume that a time series analysis is perfor-
med based on N samples of the series at equal spacing h. The re-
sult shows that there is an optimal choice of h and that the
variance increases rapidly when h increases from the optimal
value. The results obtained when a time series of fixed length

T is analysed with a different number of samples are also ana-

lysed.
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Technical Development under Contract 68-336-F




1. STATEMENT OF THE PROBLEM

Consider the stochastic differential equation

dx = - axdt + dw (1)
where {w(t)} is a Wiener process with variance parameter r i.e.
E w2(t) = rt

Assume that the values of x are observed at equidistant sampling
points with spacing h and that we analyse the stochastic process
{x(t)} using these values. We will then investigate how the re-

sult depends on the choice of sampling interval h.

According to the sampling theorem we find that using a sampling
interval h we get no useful information of the frequency content

above the Nyquist frequency

) ,
£, = 5% [Hz] (3)

Using ordinary spectral analysis we also have the effect of alia-
sing which means that the spectral density in the interval (—fc,
fc) can be distorted if the signal contains frequencies outside
this interval. Using common rules of thumb [Bendat-Piersol p. 288]

we get the following rule for the choice of h

1
2f
c

h <

When the stochastic process {x(t)} is analysed using parametric
models, we formulate the analysis problem as to estimate the pa-
rameters o and r which completely describe the process. After

the parameters have been obtained we can then compute the spec-
tral density using wellknown formulas. With this approach there
are no apparent limitations on the sampling interval due to alia-
sing. The accuracy of the parameter estimates will, however, de-
pend on the sampling interval. This dependence is analysed in

the next section.




2. ANALYSIS

The equation (1) gives
t+h

x(t+h) = e_ahx(t) + e_a(t+h—5)dw(s) w)
t

Hence

x(t+1l) = a x(t) + o e(t) (5)

where h is chosen as the time unit

a = e (6)

dw(s) dw(s”™)

a
1l
ns!
-
—
@

- L 1 - 7%l (7)

and {e(t)} is a sequence of independent normal (0,1) random
variables. In parametric analysis we thus estimate the parame-
ters a and ¢ from the sampled series {x(t), t = h, 2h, ...}.
The estimates of the parameters o and r are then computed from
the equations (6) and (7). It has been shown by Mann and Wold
that the maximum likelihood estimate is consistent and asympto-

tic efficient in this case. The likelihood function is given by

1 N

- log L = —= £ e°(t) + N log o + const (8)
20 t=1

where

e(t+l) = x(t+1l) - a x(t) (9)

To compute the Cramér-Rao lower bound of the variance [3] of a

and o we form

2 N
-2 log L= lﬁ I ox2(t+1)
da o} t=1
2 2 N
- log L = - =3 T oe(t) x(t-1)
3030 o} t=1
2 N
_ 2 5 log L = iﬁ g EQ(t) - N§
30 a t=1 o




Hence

2 ' N
lim - L3 5 log L = 1lim % z X2(t—l) S 5
N-eo N da N+ew o°N t=1 1-a

1 ? 5 N

lim - = log L = lim - 3 g oe(t) x(t-1) = 0
N->o0 N 3adc N-—o No t=1

2 N
lim - A log L = 1lim ( 34 ) 52(t) - 27 ) = 27
N N 3o N> No t=1 o o

where convergence is with probability one. For large N we thus

have the following estimates of the variances of the estimates

~

Var a = % (1 - a2) (10)
~ 2

Var o 3 — (11)
2N

Tt has been shown by Mann and Wold that the maximum likelihood
estimates achieve the lower bounds for large N. The estimate of

o 1s given by

o = - L log a

A (12)

which is the maximum likelihood estimate of . Using Carpenters

formula we get after elementary calculations

" 2
Var o = 32— f(oh) (13)
N
» 2r2
Var r = — (14)
N
where
e2X 1
f(x) = ; : (15)
ple

The graphs of the function f is shown in Fig. 1. We thus find

that there is a choice of the sampling interval
ah = 0.797
o

which gives the smallest variance to the o estimate

A 2

min Var o

= 6.177 %
N
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Fig. 1
Graph of the function f(x) = (e2X—1)X_2. The variance of the
estimate of o using N values with the spacing h is uzf(uh)/N.

~

Notice that the variance of o increases very rapidly with in-
creasing h 3 ho’ but that it increases more moderately with de-
creasing h. We have e.g. f(lOXO) = 213491f(xo) but f(O.lXo) =
f(O.lXO) = 4.009f(xo). The variance of r decreases monotonically

with increasing sampling interval.

Conclusion

If the parameters o and r of the process (1) are estimated using
N values of the process which equal spacing h, then there is an
opt%mal choice h, = 0.797/a which gives the smallest variance

of o. The variance increases rapidly for sampling intervals grea-
ter than h . The variance of v decreases monotonically with in-

creasing sampling interval.




3. COMPARISON WITH CONTINUOUS TIME ESTIMATION

It is of interest to compare the estimates discussed in the pre-
vious section with the estimates based on a continuous record of
the process. Let us therefore assume that a realization of the
process 1is known over the whole interval (0,T) and that we esti-
mate the parameters o and r from this record. Such estimation pro-
blems have been considered by Arato [1]. His results are based

on Striebels [6] explicit formulas for the conditional measure

of continuous processes. There is one drastic difference in com-
parison with the discrete time case namely that the parameter r

can be estimated without error. The likelihood function is given

by
1 2 2 T 2
- log L = =— a(x"(T) - »T) + o° [ x"(8) ds
2r O
- 1o or + L 10g w (16)

2 2

Routine calculations now give the following expression for the

A

variance of a
Var o v 2% (17)

T
The expression holds for large T. To be able to compare with the
results for discrete time system, we consider a process of length
T which is analysed using discrete data with equal spacing h.
From (13) and (15) we get the following asymptotic expression for

the variance in the discrete time case

Var o, = 2a g(ah)
d
T
where
2%
g(x) = -1
2%

A graph of the function g is shown in Fig. 2. As can be seen from
this figure the loss of accuracy due to sampling is moderate as
long as we have sampling intervals oh < 1. For ah = 1 we have

an increase in variance by a factor 3.2. The variance increases

rapidly with increasing sampling interval.
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Fig. 2

Graph of the function g. The variance of the estimate of «
based on equidistant sampling with spacing h of a record of
length T is 2ag(eh)/T.
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