LUND UNIVERSITY

Genetic heterogeneity of autoimmune disorders in the nonobese diabetic mouse.

Johansson, Asa C M; Lindqvist, Anna-Karin B; Johannesson, Martina; Holmdahl, Rikard

Published in:
Scandinavian Journal of Immunology

DOI:
10.1046/j.1365-3083.2003.01235.x

2003

Link to publication

Citation for published version (APA):

Johansson, A. C. M., Lindqgvist, A.-K. B., Johannesson, M., & Holmdahl, R. (2003). Genetic heterogeneity of
autoimmune disorders in the nonobese diabetic mouse. Scandinavian Journal of Immunology, 57(3), 203-213.
https://doi.org/10.1046/j.1365-3083.2003.01235.x

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY
PO Box 117

221 00 Lund
+46 46-222 00 00

Download date: 17. May. 2025


https://doi.org/10.1046/j.1365-3083.2003.01235.x
https://portal.research.lu.se/en/publications/0eb191a7-23c5-41dd-a6b1-af1822f5e89c
https://doi.org/10.1046/j.1365-3083.2003.01235.x

REVIEW

Genetic Heterogeneity of Autoimmune Disorders in the

Nonobese Diabetic Mouse

A. C. M. Johansson, A.-K. B. Lindgvist, M. Johannesson & R. Holmdahl

Abstract

Section for Medical Inflammation Research,
Department of Cell and Molecular Biology,
University of Lund, Sweden

Received 8 August 2002; Accepted in revised
form 4 December 2002

Correspondence to: Dr A. C. M. Johansson,
Department of Cell and Molecular Biology,
Section for Medical Inflammation Research, 111,
BMC, SE-221 84 Lund, Sweden. E-mail:
asa.johansson@inflam.lu.se

Introduction

Autoimmune disorders are regarded as chronic diseases in
which immune responses are directed against self-antigens.
The aetiology is unknown, but a genetic predisposition to
autoimmunity has been observed. The first genes that
came into focus in autoimmunity were the genes in the
major histocompatibility complex (MHC) region based on
their important functions in immune responses, and asso-
ciation with certain MHC haplotypes has been reported
for most autoimmune diseases such as rheumatoid arthritis
(RA), type I diabetes and systemic lupus erythematosus
(SLE) [1-3]. However, besides the MHC region, it has
been difficult to identify the loci associated with auto-
immune diseases in humans. This is probably because of the
complex nature of autoimmune diseases with several
disease-modifying and interacting genes. Moreover, the pos-
sibility that various sets of alleles are of importance in
different individuals adds to the complexity. Additionally,
a broad range of environmental factors like diet, infections,
toxic chemicals as well as age, gender and emotional stress
are thought to affect the susceptibility to autoimmune
diseases. In animal models, it is possible to limit the
influence of all these factors. Obviously, animal models
can never be directly comparable with the human diseases,
but they provide a tool to study biological pathways
involved in the pathogenesis of autoimmunity.

The nonobese diabetic (NOD) mouse strain spon-
taneously develops polyendocrine autoimmunity with
chronic inflammation in several organ systems and is

The nonobese diabetic mouse is highly susceptible not only to diabetes but to
several autoimmune diseases, and one might suspect that these are controlled by
a shared set of genes. However, based on various gene-segregation experiments,
it seems that only a few loci are shared and that each disorder is influenced also
by a unique set of genes.

used as a model for type I diabetes, thyroiditis and
Sjogren’s syndrome [4-10]. The diabetes is the most well-
characterized manifestation in the NOD mouse, and the
first signs of inflammation in the islets of Langerhans
(insulitis) are found at about 4 weeks of age. Nearly all
NOD mice develop insulitis, but a substantial number of
mice never proceed to the diabetic stage. In high-incidence
colonies, 80—90% of the females and 40—50% of the males
become diabetic after 3—7 months, because of extensive
B-cell losses in the pancreas.

The insulitis precedes the development of inflammation
of the salivary glands (sialadenitis), which is not apparent
until the age of 8-12 weeks in females and >12 weeks in
males. As in humans, the incidence of sialadenitis is higher
in females than in males. The sialadenitis process seems
not to be secondary to the diabetes development, as the
MHC congenic strains NOD.B10.H2b and NOD.Q,
which are protected from diabetes, develop sialadenitis
[11-13]. Moreover, NOD is the only strain described
that, like patients with Sjogren’s syndrome, shows a
decrease in tear and saliva flow rate because of the inflam-
mation in submandibular and parotic glands [9].

In addition, a mild thyroid inflammation that is already
evident at 1 week of age has been described in the NOD
strain (I-A¥), with an incidence ranging from a few per
cent up to 80% [6]. Interestingly, the diabetes-resistant
MHC congenic NOD strain, NOD.H2M (1-A¥), shows an
extensive infiltration in the thyroid gland, resembling
Hashimoto’s thyroiditis [14, 15], suggesting an important
role for the MHC region in the disease development.
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Although the tissue-specific response against, i.e. B-cells
is the most prominent autoimmune response in NOD
mice, they also develop systemic autoimmunity against a
number of antigens in salivary glands, B-cells, thyroid,
adrenal glands, testis, thymus and red blood cells. More-
over, a majority of aged NOD mice develop antinuclear
antibodies (ANAs) and haemolytic anaemia [5].

Furthermore, the NOD mouse has been shown to be
susceptible to induced autoimmune models such as experi-
mental allergic encephalomyelitis (EAE) [16, 17], and it
has also been used to study some features of lupus [18].
However, it is completely resistant to collagen-induced
arthritis (CIA), a frequently used model for RA [19].

The aim of this review is to clarify the present know-
ledge of the genetic control of autoimmune disorders in the
NOD strain. As the NOD mouse is subjected to several
autoimmune diseases, one hypothesis has been that a cer-
tain set of alleles together with a complex interplay of
various environmental factors could be responsible for
many disease phenotypes. This is in line with the common
gene hypothesis put forward by Becker, based on the
identification of a set of gene clusters potentially involved
in the development of a number of different autoimmune
disorders [20, 21]. This is certainly relevant to the com-
parison of related autoimmune disorders like arthritis and
encephalomyelitis [22, 23], but it is unclear whether
genetic susceptibility to more diverse autoimmune diseases
is shared. To address this question, the NOD mouse is a
particularly interesting model because of the coexistence of
different types of autoimmune diseases such as diabetes,
sialadenitis and encephalomyelitis. Based on the data pre-
sented by various gene-segregation experiments published
so far, it seems, however, that each of the autoimmune
disorders of the NOD mouse is mainly controlled by
unique sets of disease-promoting alleles (Figs1 and 2),
but that some disorders are more similar than others.

Genetic control of autoimmune disorders in the
NOD mouse

Type | diabetes

The genetic contribution to type I diabetes in the NOD
mouse has been extensively studied, and several loci con-
tributing to the development of diabetes or insulitis have
been identified in crosses involving the diabetes-resistant
C57Bl/6 (B6) or C57B1/10 (B10) (Fig. 2). IddI located in
the MHC region on chromosome 17 is a major locus for
diabetes [12, 24]. The H2¢” haplotype of the NOD mouse
promotes the development of diabetes, whereas other
haplotypes have a dominant protective effect. The various
penetrances of diabetes compared with sialadenitis or thy-
roiditis in NOD (I-A¥”), NOD.Q (I-A9), NOD.B10.H2b
(I-AY) and NOD.H2"4 (1-A¥) suggest an important
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genetic difference affecting the presentation of autoanti-
gens by the MHC class II molecules in these diseases.

In addition to the MHC region, several other diabetes-
associated loci have been identified (Fig.2), and several of
these loci have been confirmed to affect the diabetes devel-
opment using congenic strains. Besides the MHC region,
the /dd3 locus mapped to a <1cM interval on chromo-
some 3 shows the strongest influence on diabetes this far,
as the disease-resistant B6 allele could reduce the disease by
70% in females and by 95% in males on the NOD back-
ground [25, 26]. The underlying genes for diabetes have
not yet been determined, but the tightly linked 7/2 gene on
chromosome 3 [27], the genes encoding the costimulatory
molecules CTLA-4 and CD28 on chromosome 1 [28] and
CD30, TNFR2 and CD137 on chromosome 4 [29] have
been proposed to be important. These genes encode pro-
teins involved in T-cell expansion and activation, and there
is strong evidence that T-cell-mediated pathways are
important for the development of diabetes.

Moreover, the complexity of diabetes in the NOD mouse
was clearly demonstrated by the observation that combin-
ations of Idd loci, that on their own showed minor or no
protection, provided a nearly complete resistance [29-31].

Sialadenitis

The genetic basis of sialadenitis is largely unknown. Asso-
ciations of Sjogren’s syndrome with certain MHC haplo-
types are observed in humans, but no clear evidence for the
MHC region has been demonstrated in animal models.
However, a genetic component of sialadenitis is evident, as
only a few strains develop the disease spontaneously.

Two separate gene-segregation experiments have
recently been performed in crosses with NOD and B6 or
B10 with different results [13, 32]. Boulard e 4/ identi-
fied one locus on chromosome 1 linked to sialadenitis in
both sexes and one locus on chromosome 3 linked to
sialadenitis in females [32] (Fig. 2). These two loci overlap
with the two diabetes loci, /dd5 and 1dd3, respectively,
which have earlier been suggested to contribute to some
sialadenitis-associated phenotypes from the analyses of
congenic strains [33]. Recently, double congenic B6 mice
carrying two NOD fragments, one covering /dd5 and one
covering Idd3 and most likely /dd10 and 1dd17, have been
reported to have most of the Sjogren’s syndrome-
associated phenotypes found in the NOD strain, such as
decreased saliva and lacrimal flow rate, increased salivary
protein content, decline inamylaseactivity and focal lympho-
cytic infiltrations in submandibular glands [34].

In contrast to Boulard ef al, we did not identify the
1dd3 and Idd5 regions as being linked to the sialadenitis in
our (NOD.Q x B10.Q)F2cross. Instead, alocus on chromo-
some 4, NssI, which was associated with the severity of
sialadenitis, was found [13]. No /dd loci are located in the
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Figure 1 Genetic heterogeneity of autoimmune disorders in the nonobese diabetic (NOD) mouse. The chromosomal maps show the location of reported
quantitative trait loci associated with type I diabetes, sialadenitis, systemic lupus erythematosus (SLE) or arthritis in the NOD mouse [13, 19, 24, 31, 38,
42,71, 74-81]. Type I diabetes loci are indicated in red, loci associated with sialadenitis in green, SLE-associated loci in orange and arthritis loci in blue.

Chromosomal positions are based on the map from the Jackson Laboratory (http://www.informatics.jax.org).

region that contains Nssi, thus indicating that this is a
unique sialadenitis locus in the NOD mouse in compari-
son with diabetes. The different results obtained in the
two gene-segregation experiments could be because of
different experimental set-ups. We studied the association
of arthritis with sialadenitis after the induction of CIA,
whereas Boulard ez 2/ used unimmunized mice, and an
effect of the arthritis induction on the sialadenitis pheno-
type could not be excluded. Moreover, the definition of

sialadenitis was slightly different; Boulard ez 4/. defined an
inflammatory focus as the accumulation of 10 mononuc-
lear cells, whereas we put the lower limit to 50 mono-
nuclear cells. Furthermore, the age of the mice differed in
these two studies, and as the incidence of sialadenitis
increases with age in the NOD mouse, an effect on the
linkage analysis results is possible.

In addition, another unique sialadenitis locus in the
NOD mouse has been identified on chromosome 7 in

© 2003 Blackwell Publishing Ltd. Scandinavian Journal of Immunology 57, 203-213
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Figure 2 Quantitative trait loci (QTLs) identified in crosses with the nonobese diabetic (NOD) strain. The chromosomal map shows the location of
autoimmunity-associated QTLs identified in the NOD mouse [13, 19, 24, 31, 37, 41, 70, 73-80]. Chromosomal positions are based on the map from

the Jackson Laboratory (http://www.informatics.jax.org).

males from an (NOD x NZW)F2 cross [32]. Even though
the genetic control of sialadenitis and diabetes is overlapping
in a few cases, there are unique sialadenitis loci present,
indicating that the genetic control of the disease is separated
from that of diabetes. The linkage to the MHC haplotype
H2¢" is one of the strongest diabetes-associated loci in the
NOD mouse, but interestingly, there is no published evi-
dence for an influence of the MHC region on the develop-
ment of sialadenitis in the NOD.

Collagen-induced arthritis

CIA is induced by intradermal injections of type II collagen, a
major component of joint cartilage, together with an adjuvant
and resembles RA in many clinical, histological and genetic
aspects [35]. The genetic contributions to CIA susceptibility
have been investigated during a number of years, and crosses
between resistant and susceptible inbred strains have demon-
strated that CIA is a complex polygenic trait. As in humans,
the MHC-encoding genes are important for arthritis develop-
ment in mice [35], as CIA is mainly associated with the H27
and H2" haplotypes. However, several other genetic loci have
been reported as being linked to CIA susceptibility (reviewed

in [36]). To investigate whether NOD genes also promote
autoimmune-mediated arthritis, we established an NOD
strain with an MHC class II fragment containing the A1
class II gene predisposing to CIA (NOD.Q). Surprisingly,
this mouse was resistant to arthritis in contrast to other A9-
expressing strains such as C57B1/10.Q (B10.QQ) and DBA/1.
However, we recently identified a NOD locus on chromo-
some 1, Ciz9, in an F2 cross with NOD.Q and B10.Q strains
that enhanced arthritis severity in CIA (Fig. 2). Interestingly,
another NOD locus, Stial, overlapping with Cia9 has been
shown to confer susceptibility to serum transfer-induced
arthritis in an (NOD x B6)F2 cross [37] (Fig.2). Further-
more, an arthritis-protective NOD allele on chromosome 2
was identified through gene-mapping experiments both in the
CIA model and in the serum-transfer model (Fig. 2) [19, 37,
38]. These arthritis loci are unique in comparison with the
published 74d loci, suggesting a different genetic control of
arthritis in comparison with diabetes (Fig. 1).

SLE-associated phenotypes

SLE is a systemic autoimmune disease characterized by
the presence of pathogenic antibodies to a variety of

© 2003 Blackwell Publishing Ltd. Scandinavian Journal of Immunology 57, 203-213
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Figure3 Colocalization of non-/dd loci on chromosomes 1, 2 and 4 in the nonobese diabetic (NOD) strain with quantitative trait loci (QTLs) associated
with autoimmune disorders in other strains. The figure shows the colocalization of non-/dd loci in the NOD strain with QTLs associated with
autoimmune disorders in other strains in selected parts of (A) chromosome 1 [19, 37, 41, 43-45, 47-49], (B) chromosome 2 [19, 37, 56, 81] and (C)
chromosome 4 [13, 43, 63-65, 69, 71]. Chromosomal positions are based on the map from the Jackson Laboratory (http://www.informatics.jax.org).

self-proteins, in particular nuclear antigens. It is clinically
manifested by unpredictable exacerbations and remissions
of manifestations from several organ systems such as kid-
neys, skin, joints, lungs, brain and heart.

Systemic autoimmunity in the mouse has been used as a
model for human SLE for a considerable amount of time.
The three main lupus-prone strains are: the
(NZB x NZW)F1 and the related NZM2410 recom-
binant strain; the MRL//pr strain carrying the Jpr spon-
taneous mutation in the FAS receptor gene; and the BXSB
strain carrying the Y chromosome autoimmune accelerator
(yaa) gene. All these strains develop spontaneous systemic
autoimmune disease, with several features resembling the
human SLE [39, 40].

The NOD mouse spontaneously develops some features
of SLE with age such as ANA and haemolytic anaemia [5].
However, the systemic autoimmunity in NOD mice
appears at carlier age and is markedly increased when
treating with Mycobacterium bovis (bacille Calmette—

Guérin (BCG)). Administration of heat-killed BCG to
prediabetic NOD mice prevents the development of type
I diabetes. It was discovered, as a result of the investi-
gations of the mechanisms of BCG treatment of the diabetes
in NOD mouse, that BCG instead induces a lupus-like
disease characterized by mild focal nephritis, haemolytic
anaemia and ANA directed against double-stranded DNA
and Smith/ribonucleoprotein complex, as well as increased
severity of sialadenitis [18]. This is one of the few models
for autoimmune diseases, where the environmental trigger
is known. And, as the BCG treatment does not seem to
induce ANA production in other strains [18], the genetic
background of the NOD mouse plays a role in the aeti-
ology of the induced lupus-like disease. Therefore, using the
BCG-induced lupus model in NOD mice, Jordan ez 4l
[41] performed gene-segregation  experiments  in
NOD x (NOD x BALB/¢)-backcrossed mice to investi-
gate the genetic susceptibility to lupus in NOD mice in
the light of the common gene hypothesis [20, 21, 42].

© 2003 Blackwell Publishing Ltd. Scandinavian Journal of Immunology 57, 203-213
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Surprisingly, the only gene region that influenced the
development of both diabetes and the autoantibody pro-
duction of BCG-induced lupus in NOD mouse was the
H2 region. This indicates that the environmental agent,
BCG, triggers distinct pathways inducing systemic auto-
immune response, overriding the tissue specificity of the
type 1 diabetes. In addition to the H2 region, three gene
regions were identified on chromosomes 1, 10 and 16,
controlling haemolytic anaemia, ANA or autoantibodies
(ANA or Coombs’) (Fig. 2). The region on chromosome 1,
found to control autoantbody production, has pre-
viously been implicated as susceptibility loci for ANA pro-
duction and nephritis in other lupus models (Fig. 3A)
[43—45]. No gene region of significant linkage was found
controlling glomerular nephritis in the cross.

In addition to the BCG-induced lupus, a similar disease
may be induced in NOD mice by transferring human anti-
DNA monoclonal antibodies carrying the pathogenic 16/6
idiotype [46]. Just as the BCG treatment, the 16/6 idio-
type treatment resulted in a significant reduction in dia-
betes incidence (25% versus 90%). This model again
points towards the fact that a change in induction or
regulation of the immune system in the NOD mouse
may cause a shift in autoimmune response, resulting in
different autoimmune diseases. The situation in NOD
mouse may be applicable to the human situation, where
more than one autoimmune disease may segregate in a
family.

Colocalization of loci associated with
autoimmunity — importance of certain pathways
involved in the pathologic process

As mentioned already, several gene-segregation experi-
ments have been reported using the NOD strain (Figs 1
and 2), and the genetically best-characterized disease is
type I diabetes. Surprisingly, most of the other disease
manifestations in the NOD mouse seem to be under a
unique genetic control in comparison with diabetes, even
though a few regions are shared, such as the MHC (Figs 1
and 2). Perhaps, that could be explained by the use of
different pathogenic pathways leading to disease in dia-
betes, compared with the other disorders. Below, we go
through and discuss the importance of some disease path-
ways that seem to be vital for disease development in
recently described non-I/dd loci on chromosomes 1, 2
and 4 in the NOD mouse and compare them with non-
NOD-associated loci located in the same positions.

Antibody-associated autoimmune disorders are
linked to the distal part of chromosome 1

Several phenotypes associated with autoantibodies are
linked to the distal part of chromosome 1 in the NOD

mouse as well as in other strains, with related disorders as

A. C. M. Johansson et al.

seen in Fig. 3A, indicating the importance of this region in
antibody-dependent autoimmune disorders [41, 43-45,
47, 48]. Cia9, Orch4 and Stial are not directly associated
with autoantibody phenotypes but rather with the overall
disease incidence or severity in each model [19, 37, 49].
However, in serum-transferred arthritis, autoantibodies
against glucose 6-phosphate isomerase provoke the arthri-
tis [38], and in CIA, autoantibodies play an important role
in the pathogenesis of arthritis [50]. Moreover, autoanti-
bodies against testicular antigens have been identified in
the development of orchitis [51]. Interestingly, no diabetes
loci are located in this region (Fig.2), and perhaps that
could be because of a minor role of autoantibodies in the
pathogenesis of diabetes.

The colocalization of genetic loci associated with the
production of autoantibodies as well as with susceptibility
to antibody-dependent diseases indicates that the distal
part of chromosome 1 harbours genes either important
for autoantibody formation or associated with the effector
phase of pathogenic antibodies. The linked fragment is
big, and most likely it contains several genes or gene
clusters of importance for the development of the various
autoimmune disorders.

The most carefully characterized locus on distal chromo-
some 1 is Slel, which is associated with the breakdown
of tolerance to chromatin, preferentially the H2A/H2B/
DNA nucleosomes. The Slel locus has been further sub-
divided into three separate loci, Slela, Slelb and Slelc, and
each of them independently affects the loss of tolerance to
chromatin [48].

The complement receptor (CR) 1- and 2-encoding
gene, Cr-2, has been proposed as a candidate gene for
Slelc [52]. CR1 and CR2 are expressed on the surface of
follicular dendritic cells and B cells and bind complement
factor 3 or 4 that is covalently bound to antigens or
immune complexes. Furthermore, CR1 and CR2 have
been implicated in the pathogenesis of SLE, as patients
with SLE have approximately 50% lower levels of CR1
and CR2 on B cells.

The Fc receptor (FcR) gene cluster, containing the
inhibitory Fegr2b, the immunoglobulin G immune com-
plex binding Fegr3 and Feerlg genes, is highly polymorphic
and has been postulated to play a role in autoantibody-
mediated autoimmune diseases, although concluding data
are missing. A deletion of the Fcgr2b backcrossed into the
DBA/1 mouse led to a more severe CIA [53], whereas a
deletion of the Fegr3 protected the mice from CIA [54].
The same effects were observed using a model in which
arthritis was induced with anti-CII antibodies (Nanda
Kumar ez al, in preparation). Interestingly, based on
both knockout and congenic experiments, the FcR gene
cluster has been excluded as candidate genes for the Stia!
locus in serum-transferred arthritis [37], suggesting that
only transfer with and-CII antibodies is associated with
FcR  polymorphism. Moreover, the FcR gene cluster,
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which is closely linked to Slelaand Slelb, has been excluded
as a major candidate for these loci [47], although it may
operate as an epistatic modifier to a gene within Slel [55].

Could C5 deficiency mediate protection against
arthritis?

Resistance to arthritis mediated by NOD alleles has been
linked to the proximal part of chromosome 2 in two
separate models of arthritis, the CIA model (Cia2) and
the serum transfer-induced model (Stiz2), as seen in
Fig. 3B [19, 37, 56]. In addition, a SWR/]J allele mapped
to the same region showed a protective effect in gene-
segregation experiments involving (DBA/1 x SWR/])F2
crosses (Fig.3B) [56-58]. Furthermore, the rat Ciall
locus, identified in an F2 cross with DA and NB rats, is
homologous with Cia2 [59], and thereby further strength-
ens the importance of this region in modulating CIA.
Interestingly, both NOD and SWR/] mice are naturally
deficient in C5, through gene deletions, and the arthritis-
protective alleles derived from NOD and SWR/] mice
cover the location of the C5-encoding gene (Hc). The
lack of C5 in the NOD mouse seems not to affect the
development of diabetes, as no known /dd loci are linked
to this region (Fig. 2), indicating that arthritis and diabetes
are controlled by different alleles and most likely use
various pathogenic pathways.

The importance of C5 in arthritis development was
supported by the findings that DBA/1 mice lacking C5,
through targeted gene deletion, were relatively resistant to
CIA [60], and that treatment with anti-C5-neutralizing
antibodies efficiently blocked the development of arthritis
[61]. However, this does not necessarily mean that C5 is
an absolute requirement for arthritis. We have recently
described that a few C5-deficient mice in an
(NOD.Q x B10.Q)F2 cross developed arthritis [19].
This is in accordance with an earlier finding in a cross
involving the highly susceptible DBA/1 strain and the
resistant SWR/J strain [62]. In addition, congenic mice,
carrying one NOD allele and one B10 allele at the Cia2
locus, were protected against arthritis, even though they
had normal serum levels of C5 [19]. This protective effect
in heterozygous mice could be explained by a decreased C5
production in the inflamed tissue, which is difficult to
measure in the serum. Alternatively, there is another linked
gene that modifies the development of arthritis.

A cluster of immune-regulating genes on
chromosome 4?

As has already been discussed in the present review, certain
regions in the genome seem to harbour genes or clusters of
genes controlling autoimmune pathways. One such region
may be located on chromosome 4. In this region, several
loci have been mapped that are involved in the develop-
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ment of systemic autoimmune disease, in particular fea-
tures of lupus, as shown in Fig. 3C: Sbw2 and Lbw?2 [43],
Lprml [63], Lmbl [64], Sle2 [65], Nbal [66] and Lmhl
[67]. There may even be at least three distinct lupus
clusters, although there is still not enough fine mapping
information to draw that conclusion. It should also be
mentioned that two loci involved in the development of
autoimmune gastritis have been located on chromosome 4,
Gasal and Gasa2 [68].

Three loci originating from NOD have been located on
the same chromosome — the telomeric /dd11 [69] and
1dd9 [70] and the centrally located sialadenitis locus Nss/
[13]. The diabetes and sialadenitis in NOD mouse is
probably driven by different pathways, as has been shown
in the BCG treatment of NOD mouse. This is also sup-
ported by the probable nonoverlap by the /dd and Nss loci
in the region.

An additional sialadenitis locus has been located on
chromosome 4 — Asm2 (Fig. 3C) [71]. Asm2 was identified
in a cross with MRL/lpr mice. It should be emphasized
that the sialadenitis in the MRL and NOD strains are most
likely two different diseases and thereby partially con-
trolled by different sets of genes [72]. Interestingly, the
Asm2 region overlaps with dd11.

Concluding remarks

The suggestion that autoimmune disorders may be con-
trolled by a common set of susceptibility genes/gene clus-
ters is known as the common gene hypothesis [42]. To
certain extent, this seems to be the case for experimental
models of arthritis and encephalomyelitis. In a comparison
of gene-mapping studies of arthritis and encephalomyelitis
in mouse and rat, approximately 50% of the identified
gene regions were shared between the disease models when
using similar strains [23] (Fig.4). Notably, there is also a
clear genetic correspondence between species, including
mouse, rat and human, for these diseases. However,
when increasing the spectra of autoimmune diseases to
include disorders such as type I diabetes, SLE and sialade-
nitis, the picture of shared genetic regions does not hold to
the same extent as seen in Fig.4. It is most relevant to
believe that the pathogenesis of these diseases is more
divergently controlled.

On the other hand, there are some aspects of auto-
immunity, such as inflammatory effects caused by autoanti-
bodies, which are influencing many different autoimmune
disorders. This has become apparent by the colocalization
of the loci associated with the production of autoanti-
bodies or with other autoantibody-related phenotypes in
several disease models to the telomeric part of mouse
chromosome 1 (Figs 3A and 4). It is, however, not likely
that a single gene controls this autoantibody effect. Rather,
the work by Wakeland er 4l on the Slel locus clearly

points towards a cluster of several genes, all influencing
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Figure4 Map of Quantitative trait loci (QTLs) identified in various autoimmune disorders. A chromosomal map of QTLs associated with diabetes,

experimental allergic encephalomyelitis, various forms of arthritis, sialadenitis or with systemic lupus erythematosus. These loci are identified in many
different crosses of mice [13, 19, 24, 31, 35, 37, 41, 43, 47, 48, 56, 64, 66, 70, 71, 73-100], and the map shows the approximate locations as several of

these loci cover several centimorgans. Chromosomal positions are based on the map from the Jackson Laboratory (http://www.informatics.jax.org).

the loss of tolerance to nuclear antigens. And, as more and
more disease-associated loci dissolve, the situation of genes
of similar function segregating as clusters is often seen.

The NOD is in many aspects an autoimmune-prone
strain. It spontaneously develops several autoimmune
tissue-specific diseases, and it is also susceptible to induced
diseases. The coexistence of several autoimmune disorders
in the NOD strain opens the possibility of investigating to
what extent these diseases are controlled by a shared set of
alleles. An earlier comparison between genetic loci asso-
ciated with arthritis and encephalomyelitis suggested a
relatively high overlap between the different diseases [23].
The gene-segregation experiments published to date indi-
cate, however, that the genetic control is more distinct for
each autoimmune disorder in the NOD mouse.

The use of different pathogenic pathways, in the various
diseases, in the NOD mouse, is the most obvious explan-
ation for the unique genetic control of each disorder. The
MHC haplotype, for example, seems to be vital for
diabetes, arthritis and encephalomyelitis development,
whereas no major influence of MHC has been reported
for sialadenitis development, and there is no clear evidence
for the role of MHC class II genes in the development of
lupus (Fig. 4).

Notably, the use of the different autoimmune pathways
in the NOD mouse can in some, but not all, cases depend
on the initial events triggering the immune system. ‘Exter-
nal’ disease triggers, such as the introduction of an adju-
vant, can provoke a different autoimmune response than
‘internal factors’, i.e. the status of inhabitant microorgan-
isms, sex hormones and stress, that are important for the
development of spontaneous diseases.

Interestingly, however, within the NOD strain, there
seem to be genes or clusters of genes that are involved in
pathways shared between autoimmune diseases of different
types. Such examples are the regions of Idd3 and Idd5 on
chromosomes 1 and 3, respectively. These loci have been
suggested to contribute to the development of both dia-
betes and sialadenitis.

It is important to remember that the search for genes
associated with autoimmunity is still in its infancy. New
quantitative trait loci (QTLs) are to be found, and many of
the identified QTLs need to be confirmed in congenic
strains, sequenced and cloned. The identification of the
different disease-associated genes localized in crosses with
NOD mice will unravel the autoimmune disposition of
this strain and increase our knowledge on the difference in
tissue-specific and systemic autoimmune diseases.
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