Lifetime measurements and calculations in singly ionized ytterbium

Biemont, E; Quinet, P; Dai, Zhenwen; Jiang, ZK; Zhang, Zhiguo; Xu, Huaiyang; Svanberg, Sune

Published in:
Journal of Physics B: Atomic, Molecular and Optical Physics

DOI:
10.1088/0953-4075/35/22/315

2002

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Lifetime measurements and calculations in singly ionized ytterbium

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
(http://iopscience.iop.org/0953-4075/35/22/315)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 130.235.188.41
The article was downloaded on 29/07/2011 at 08:41

Please note that terms and conditions apply.
Lifetime measurements and calculations in singly ionized ytterbium

E Biémont1, 2, P Quinet1, 2, Zhenwen Dai3, 4, Jiang Zhankui3, 4, Zhang Zhiguo4, 5, Huailiang Xu3, 4 and S Svanberg4

1 IPNAS, Bât. B15, Université de Liège, Sart Tilman, B-4000 Liège, Belgium
2 Astrophysique et Spectroscopie, Université de Mons-Hainaut, 15, Rue de la Halle, B-7000 Mons, Belgium
3 Department of Physics, Jilin University, Changchun 130023, China
4 Department of Physics, Lund Institute of Technology, PO Box 118, S-221 00 Lund, Sweden
5 The Center for Condensed Matter and Technology, Harbin Institute of Technology, Harbin 150001, China

Received 12 July 2002, in final form 3 October 2002
Published 8 November 2002
Online at stacks.iop.org/JPhysB/35/4743

Abstract
New radiative lifetimes, measured by time-resolved laser-induced fluorescence spectroscopy, are reported for five Rydberg states of singly ionized ytterbium. Free Yb+ ions were produced in a laser-induced plasma. The experimental results have been compared with HFR calculations, taking core-polarization effects into account, and a good agreement (within 25%) between theory and experiment is observed for four levels. HFR results are also proposed for np (n ≤ 7) and nf (n ≤ 8) Rydberg states and compared with available data.

1. Introduction

The ytterbium ion has attracted much attention from physicists in recent years for several reasons. It has special interest for atomic clocks and trapped-ion frequency standards in relation to the structure of the low-lying levels giving rise to optical, infrared or microwave frequency standards (Tamm et al. 1995, Fisk et al. 1995, Gill et al. 1995, Roberts et al. 1997, Taylor et al. 1998). Among the transitions of particular interest, the electric octupole 2S1/2–2F7/2 467 nm transition, belonging to the isotopes 172 or 171 of Yb+, which has a lifetime of around 10 years, has attracted special attention, both experimentally (Roberts et al. 1997, 2000) and theoretically (Biémont and Quinet 1998). The lifetimes of the 4f145d 2D3/2 and 2D5/2 levels, usable as a basis for an optical frequency standard, have recently been investigated by Yu and Maleki (2000). The Yb+ ion is also well suited for cavity QED studies and for quantum computation tests with the help of trapped ions (Yu and Maleki 2000).

Up to now, the lifetime values measured in the Yb+ spectrum concern mostly the low-lying levels. Accurate cascade-free experimental measurements have been reported by Lowe et al. (1993), Li et al. (1999a), using laser-induced fluorescence, and by Berends et al. (1993) and...
Pinnington et al (1994, 1997), using a beam-laser technique. Electric-dipole amplitudes, lifetimes and polarizabilities of the low-lying levels of atomic ytterbium have been also considered by Porsev et al (1999). A compilation of the lifetimes available up to 1992 has been published by Blagoev and Komarovskii (1994).

The Rydberg states of Yb+ have been the subject of recent, but very limited, investigations. More specifically, the abnormal branching ratios in laser-excited series of this ion have been investigated by Zhao et al (1996) and by Xu et al (1997). Laser lifetime measurements, however, for highly excited levels along the series, are missing so far.

Data on the Yb II spectrum are needed in astrophysics, because the Yb+ ion has been observed in the sun (see e.g. Grevesse and Blanquet 1969, Gorshkov and Komarovskii 1986) and in chemically peculiar stars (see e.g. Cowley and Adelman 1983, Cowley 1984). The lack of reliable atomic data for many transitions observed, e.g. with the Hubble space telescope, has stimulated an extensive theoretical work by Fawcett and Wilson (1991). Additional theoretical efforts have been reported in different papers (Migdalek 1982, Biémont et al 1998, Li et al 1999a). In a recent paper, Migdalek and Siegel (2000) have addressed the difficult problem of the collapse of d and f orbitals along the isoelectronic sequence of Yb+.

In view of the complexity of the configurations involved in lanthanides, theoretical calculations need, however, whenever possible, to be tested by accurate experimental measurements. In particular, the discrepancies observed between experiment (Li et al 1999a, Yu and Maleki 2000) and theory (Fawcett and Wilson 1991) for some specific states call for additional theoretical and experimental investigations.

The purpose of the present paper is to provide new experimental laser lifetime measurements for selected levels along the Rydberg series of Yb+ for which no measurements are available. They extend the measurements reported recently by Li et al (1999a), using time-resolved laser-induced fluorescence spectroscopy. Comparisons with pseudo-relativistic Hartree–Fock (HFR) calculations, taking configuration interaction and core-polarization (CP) effects into account, are also reported in the present paper. As a consequence, the limits and the accuracy of the theoretical calculations for higher excitation levels, not yet considered experimentally, are more clearly assessed.

2. The calculations

The radiative lifetimes, τ_i, of the Yb II Rydberg states were calculated, using the well known expression

$$\tau_i = \frac{1}{\sum_j A_{ij}}$$

where A_{ij} represent the Einstein coefficients corresponding to all the possible radiative transitions depopulating the level i of interest. The method adopted for the calculations of these parameters is the so-called HFR approach described by Cowan (1981). In fact, for high Z (i.e. for all the lanthanide atoms and ions), it becomes desirable to include, in addition to the correlation effects, the most important relativistic corrections (mass–velocity effects and Darwin operator) in the non-relativistic differential equations in order to obtain the required radial wavefunctions. This can be done by considering a Pauli-type approximation to the Dirac–Hartree–Fock equations (see Cowan (1981) for more details).

The theoretical approach followed here is thus similar to that adopted in our recent papers concerning the same ion (Biémont et al 1998, Li et al 1999a) and the details will not be repeated here. In particular, CP effects, which are expected to play an important role in the
singly ionized heavy element Yb\(^+\), were introduced in the calculations in the way described previously (see e.g. Biémont et al 1998). The static dipole polarizability of Yb III was that computed by Fraga et al (1976), i.e. \(\alpha_d = 7.35 \alpha_0\), where \(\alpha_0\) is the value of the first Bohr orbit of the hydrogen atom. The cut-off radius \(r_c\) was chosen equal to 1.462 \(\alpha_0\). These parameter values are close to those adopted by Migdalek and Siegel (2000), i.e. \(\alpha_d = 6.39 \alpha_0\) and \(r_c = 1.492 \alpha_0\).

The configurations used in the calculations are similar to those previously used (Biémont et al 1998), but, as we were interested in Rydberg states, the configuration sets were extended to higher members of the series (in fact up to \(n = 13\)). The configurations considered were finally \(4f^{14}ns (n = 6–13) + 4f^{14}nd (n = 5–13) + 4f^{13}5d6p + 4f^{15}6s6p + 4f^{13}6p5d\) and \(4f^{14}np (n = 6–13) + 4f^{13}6s^2 + 4f^{13}6p^2 + 4f^{13}5d^2 + 4f^{13}6d^2 + 4f^{13}6s6d + 4f^{13}5d6s + 4f^{13}5d6d\). In view of the computer limitations, it was decided not to include in the final step the five configurations with an open 5p shell which were considered in our previous calculation (Biémont et al 1998). Their effect on the final oscillator strengths is expected to be small and is partly taken into account by the scaling down of the Slater integrals and by the consideration of the CP model potential.

In the present work, the parameters deduced from the least-squares optimization procedure minimizing the discrepancies between observed and calculated energy levels and described previously (Biémont et al 1998) have been adopted for the low-lying configurations. The scaling factors of the \(F_k\), \(G_k\) and \(R_k\) integrals were chosen to be equal to 0.85 while the spin–orbit parameters were left at their \textit{ab initio} values. The parameters describing the additional configurations with higher energies were obtained from a new fitting procedure. The experimental energy levels were taken from the NIST compilation (Martin et al 1978). In fact, 342 energy levels are known experimentally, belonging to the configurations \(4f^{14}ns (n \leq 10), 4f^{13}5s^2, 4f^{14}nd (n \leq 11), 4f^{13}5d6s, 4f^{14}np (n \leq 7), 4f^{13}6s6p, 4f^{13}5d^2, 4f^{13}5d6p, 4f^{14}nf (n \leq 14)\) and \(4f^{14}ng (n \leq 6)\).

The theoretical HFR lifetime values obtained in the present work are summarized in table 1 (column 4), where we also report the theoretical values calculated up to \(n = 8\) for levels which are known experimentally. We also quote, in the same table, the theoretical results obtained previously (Biémont et al 1998).

3. The measurements

In the present work, the radiative lifetimes of five even-parity levels of Yb II have been measured, at the Lund Laser Centre (Lund, Sweden), by time-resolved laser spectroscopy (for a detailed description of the experimental set-up, see e.g. Li et al 1999a, 2001). These levels are \(8s^2S_1/2, 6d^2D_{3/2}, 6d^2D_{5/2}, 7d^2D_{3/2}\) and \(7d^2D_{5/2}\). A two-step excitation scheme was used to populate these levels, in which the first excitation step is from the ground state \(6s^2S_{1/2}\) to the \(6p^2P_{3/2}\) state \((30\,392.23\,\text{cm}^{-1})\) and the second step is from \(6p^2P_{3/2}\) to the studied level. The relevant information on the levels considered, the excitation transitions and the observed wavelengths is presented in table 2.

Two Q-switched Nd:YAG 532 nm lasers were used in our experiment. The pulse widths of both lasers are 8 ns. One of the Nd:YAG lasers was pumping a dye laser operating with DCM dye and then, by frequency-doubling in a KDP crystal, it was used to produce a beam of 328.937 nm light for the first excitation step. The second Nd:YAG laser beam was compressed to about 1.5 ns by a SBS compressor (Li et al 1999b). This beam of shorter pulses pumped another DCM dye laser for the second excitation step. To obtain the desired UV radiation, we used KDP and BBO crystals, and Raman shifting techniques (Li et al 2000). A laser-induced plasma, produced by an ablation laser, was used as an ion source. The ablation and excitation pulses were synchronized by external triggering from the same delay generator.
Table 1. Radiative lifetimes (in ns) for 4f\(^{14}\)nl\(^{(nl = 7–8s, 6–8d, 6–7p, 5–8f)}\) Rydberg levels in Yb II. Both the HFR results and the experimental results obtained in the present work are shown.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>(J)</th>
<th>(E) (cm(^{-1}))</th>
<th>HFR</th>
<th>Expt(^b)</th>
<th>Previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>7s</td>
<td>1/2</td>
<td>54 304</td>
<td>4.91</td>
<td>3.9 ± 0.3(^c)</td>
<td>4.60(^a), 4.9(^k), 35 ± 3(^f)</td>
</tr>
<tr>
<td>8s</td>
<td>1/2</td>
<td>73 040</td>
<td>7.65</td>
<td>5.1 ± 0.5</td>
<td></td>
</tr>
<tr>
<td>6d</td>
<td>3/2</td>
<td>62 174</td>
<td>3.12</td>
<td>3.1 ± 0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/2</td>
<td>62 559</td>
<td>4.04</td>
<td>3.6 ± 0.5</td>
<td>4.04(^a), 4.7(^k), 4.9 ± 0.2(^f)</td>
</tr>
<tr>
<td>7d</td>
<td>3/2</td>
<td>76 517</td>
<td>5.28</td>
<td>5.3 ± 0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/2</td>
<td>76 676</td>
<td>3.40</td>
<td>4.1 ± 0.4</td>
<td></td>
</tr>
<tr>
<td>8d</td>
<td>3/2</td>
<td>83 840</td>
<td>5.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/2</td>
<td>84 016</td>
<td>5.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6p</td>
<td>1/2</td>
<td>27 062</td>
<td>7.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/2</td>
<td>30 392</td>
<td>6.61</td>
<td></td>
<td>7.23(^a), 8.4(^k), 5.0(^l), 7.3 ± 0.6(^c), 7.2 ± 0.8(^e), 5.5 ± 0.3(^f), 6.3 ± 0.3(^g), 6.1 ± 0.6(^h)</td>
</tr>
<tr>
<td>7p</td>
<td>1/2</td>
<td>63 706</td>
<td>29.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/2</td>
<td>65 594</td>
<td>37.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f</td>
<td>5/2</td>
<td>70 502</td>
<td>3.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7/2</td>
<td>70 580</td>
<td>4.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6f</td>
<td>5/2</td>
<td>80 459</td>
<td>5.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7/2</td>
<td>80 472</td>
<td>6.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7f</td>
<td>5/2</td>
<td>85 898</td>
<td>9.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7/2</td>
<td>85 906</td>
<td>9.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8f</td>
<td>5/2</td>
<td>89 176</td>
<td>11.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7/2</td>
<td>89 185</td>
<td>15.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^b\) This work, except when otherwise indicated.
\(^c\) Li et al (1999a) (time-resolved laser-induced fluorescence).
\(^e\) Burshtein et al (1975) (delayed-coincidence measurements).
\(^g\) Andersen et al (1975) (beam–foil spectroscopy).
\(^i\) Rambow and Shearer (1978) (Hanle effect). Result corrected for hyperfine structure effects (cf Lowe et al 1993).

Table 2. Levels measured and excitation schemes.

<table>
<thead>
<tr>
<th>Level</th>
<th>Excited level(^a) (cm(^{-1}))</th>
<th>Excitation wavelength in air (nm)</th>
<th>Observed fluorescence (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6d(^{2})D(_{3/2})</td>
<td>62 174.10</td>
<td>314.554</td>
<td>282</td>
</tr>
<tr>
<td>6d(^{2})D(_{5/2})</td>
<td>62 559.02</td>
<td>310.789</td>
<td>296</td>
</tr>
<tr>
<td>8s(^{2})S(_{1/2})</td>
<td>73 039.61</td>
<td>234.409</td>
<td>217</td>
</tr>
<tr>
<td>7d(^{2})D(_{3/2})</td>
<td>76 517.21</td>
<td>216.734</td>
<td>299</td>
</tr>
<tr>
<td>7d(^{2})D(_{5/2})</td>
<td>76 676.31</td>
<td>215.989</td>
<td>511</td>
</tr>
</tbody>
</table>

\(^a\) Martin et al (1978).
fluorescence was collected by a fused-silica lens, filtered by a monochromator and finally detected by a Hamamatsu 1564U microchannel plate (MCP) photomultiplier tube. Transient signals were acquired by a Tektronix TDS 602 oscilloscope. The detector risetime is 0.2 ns, and the oscilloscope has a 1 GHz bandwidth and a 2 gigasamples/s sampling rate. The second excitation laser pulse needed also to be recorded for the convolutional fitting of the fluorescence curve in order to evaluate the lifetime value. For each level studied, a series of measurements, under different conditions, was performed to eliminate the possibility of systematic errors. More precisely, the delay time, the intensity of the excitation laser and also that of the ablation laser were modified during the experiments. This resulted in a change of the fluorescence signal magnitude. However, it was found that the lifetime values remained constant (within the statistical scattering). In addition, for most measurements of each level, a homogeneous magnetic field was added in the region of the ion source to optimize the detection of the signal (Zhang et al. 2001).

The five experimental lifetimes measured in this work are reported in the fifth column of table 1, where they are compared to the theoretical HFR results.

4. Results and discussion

For the \(4f^{14}nd \) \((n = 6–7)\) levels, the experimental lifetimes obtained in the present work agree well (the differences reaching 0.6, 12.2, 0.4 and 17.1%, respectively) with the theoretical predictions, the largest discrepancy being observed for the \(7d^2D_{5/2} \) level. The theory also predicts rather well the large difference between the two fine-structure levels \(n = 7 \). Looking at the details, it appears that a stronger mixing occurs for \(J = 5/2 \) (the purity of the level being 59%, while it does reach 92% for \(J = 3/2 \)). Consequently, the corresponding lifetime is more sensitive to the eigenvector composition and could eventually be less accurately determined. A similar behaviour is also observed, to a lesser extent, along the np series, where the eigenvector purities are found to be equal to 85% \((6p_{1/2})\), 70% \((6p_{3/2})\), 79% \((7p_{1/2})\) and 56% \((7p_{3/2})\). On the other hand, the purities of the \(ns_{5/2,7/2} \) \((n = 6–8)\) levels are nearly constant (~99%), which explains the very small variation of the \(J \)-lifetimes along the \(nf \) Rydberg series. For the ns levels, the HFR values appear systematically larger than the experimental measurements, the new result for \(n = 7 \) even increasing the difference slightly. For \(7s^2S_{1/2} \), the agreement with the previous theoretical result (Biémont et al. 1998) remains reasonable, the discrepancy between theory and experiment reaching 25%. There is no clear explanation for the larger difference (50%) appearing for \(8s \). It is reasonable to consider that the HFR values are possibly less accurate for larger values of \(n \) than for the low excitation states, because many levels belonging to the higher configurations \((4f^{13}5d6p, 4f^{13}6p6d, \ldots) \) might possibly play an increasing role in the configuration mixings. This hypothesis is confirmed by the fact that the dominant eigenvector components are rather different for the two 8d levels (61 and 77%, respectively) and differently sensitive to the configuration set adopted. It is also observed that the ratio between the theoretical values for \(7s \) and \(8s \) (i.e. 1.31) is somewhat different from the experimental result (i.e. 1.56). Much larger configuration sets would probably be necessary to definitely settle this question, but would require a substantial computational effort combined with laboratory analyses for determining additional levels.

We also present in table 1 our theoretical HFR results for the odd parity levels up to \(n = 8 \). Many measurements are available for the two \(6p^2P^o \) levels, but they are characterized by a rather large scatter. Our HFR result for \(6p^2P_{1/2}^o \) is in close agreement with the laser measurements of Berends et al. (1993) and of Lowe et al. (1993), which are expected to be accurate. For \(6p^2P_{3/2}^o \), our theoretical lifetime agrees well with the value published by Lowe et al. (1993), with the Hanle effect measurement by Rambow and Shearer (1978) corrected for
hyperfine structure effects, and it is within the error bars affecting the beam–foil measurement of Andersen et al. (1975). No results are available for comparison for $n f (n \leq 8) ^2$Fo states.

An independent test of the present theoretical model is additionally provided by the consideration of the lifetimes of the $4f^{14}5d ^2D_{3/2}$ and $^2D_{5/2}$ levels. The $4f^{14}5d ^2D_{3/2}$ metastable level can decay to the $4f^{14}6s ^2S_{1/2}$ ground state through M1 and E2 transitions, the M1 contribution appearing, however, negligibly small when compared to the E2 one. These lifetimes have been measured using a technique based on the consideration of ion clouds in buffer gases (Gerz et al. 1988), but this method can lead to considerable errors, particularly for long-lived states (Yu et al. 1997). More recent measurements are due to Yu and Maleki (2000) using single ytterbium ions confined in an rf trap. This technique has the advantage of eliminating all possible pressure effects. The experimental lifetimes of Yu and Maleki (2000), i.e. $\tau = 52.7 \pm 2.4$ and 7.0 ± 0.4 ms for $^2D_{3/2}$ and $^2D_{5/2}$ levels, respectively, agree well with previous experimental data, i.e. $\tau = 52 \pm 1$ ms (Gerz et al. 1988) and $\tau = 7.2 \pm 0.3$ ms (Taylor et al. 1997). These authors emphasize the discrepancies between their results and theoretical estimates (Fawcett and Wilson 1991). Another theoretical value, however, not considered by Yu and Maleki (2000), obtained for $^2D_{5/2}$ (Biémont and Quinet 1998), i.e. $\tau = 51.8$ ns, was in agreement with their measurement. It is interesting to compare the results obtained using the present theoretical model with the accurate measurements of Yu and Maleki (2000). They are $\tau = 52.8$ and 6.9 ms, respectively, and appear in excellent agreement with the experiment.

5. Conclusions

New radiative lifetimes have been calculated and also measured by time-resolved laser-induced fluorescence spectroscopy for Rydberg states of Yb II. The A-values of the transitions depopulating the levels of interest will be useful for analysing the spectra of chemically peculiar stars, because the line identification and profile analysis in astrophysical spectra have been prevented up to now mostly by the lack of relevant radiative parameters. The excitation energies of the depopulating channels of the levels measured are comparable to those of the transitions recently observed in the visible spectral range of astrophysical spectra like those of the Przybylski star (Cowley et al. 2000) and, consequently, these transitions are expected to appear in stellar spectra. The present paper provides also useful information for assessing the theoretical methods usable for atomic processes calculations in this metrologically important ion. The new theoretical lifetimes obtained for the nf series also call for additional experimental work on this ion.

Acknowledgments

This work was financially supported by the Swedish Natural Science Research Council and by the EU-IHP Access to Large-Scale Facility Programme (contract HPRI-CT-1999-00041). Financial support from the Belgian FNRS is also acknowledged by EB and PQ; corresponding support from the National Natural Science Foundation of China is acknowledged by Z-WD, JZ-K, H-LX and ZZ-G.

References
