LUND UNIVERSITY

Experiments with an Expert System Interface

Larsson, Jan Eric; Persson, Per

1987

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Larsson, J. E., & Persson, P. (1987). Experiments with an Expert System Interface. (Research Reports TFRT-
3196). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/36733c38-8a17-413b-9a05-5cf2051f3465

CODEN: LUTFD2/(TFRT-3196)/1-11/(1987)

Experiments with an Expert System Interface

Jan FEric Larsson & Per Persson

Department of Automatic Control
Lund Institute of Technology
September 1987

Document name

Department of Automatic Control Final report,

Lund Institute of Technology Date of issue
P.O. Box 118 September 1987
5-221 00 Lund Sweden Document Number
CODEN: LUTFD2/(TFRT-3196)/1-11/(1987)
Author(s) Supervisor

Jan Eric Larsson

Per Persson Sponsoring organisation

The National Swedish Board for Technical
Development, {STU), contract no. 85-3042

Title and subtitle
Experiments with an Expert System Interface

Abstract

This is the final report of the project “Experiments with an Expert System Interface.” It describes an
expert system interface for system identification, when using the interactive identification program Idpac.
The interface works as an intelligent help system, using the command spy strategy. It contains a multitude
of help system ideas. The knowledge representation is taken care of with scripts and rules. Scripts are used
to describe the procedural part of the knowledge in the interface. Production rules are used to represent
diagnostic knowledge. Conclusions of the project are given.

Key words
Expert Systerns, Help Systems, Intelligent Iront-Ends, Man-Machine Interfaces, Scripts, System Identification

Classification system andfor index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
Language Number of pages Reciplent’s notes
English 11

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
5-221 03 Lund, Sweden, Telex: 33248 lubbis lund,

Experiments with an Expert System Interface

(ihs)—Help in every situation

Experiments with an Expert System Interface

Final Report to STU
Contract number 85-3042

Jan Eric Larsson
Per Persson

Department of Automatic Control
Lund Institute of Technology
September 1987

Department of Automatic Control
Lund Institute of Technology

Box 118

5-221 00 LUND

Sweden

© 1987 by Jan Eric Larsson and Per Persson. All rights reserved

Published 1987
Printed in Sweden

Contents

Introduction
Description of the Problem
The Research Programme

......

Description of the Implemented System

Conclusions . . .
List of Publications .
Other References . .

LA ST O)

Introduction

Knowledge-based computer programs, expert systems, are rapidly being developed and will
probably be quite common in the near future. When the techniques used in these programs
grow mote reliable and become better known, it will be obvious for a CAD program to
use them. This project has been aimed at using knowledge-based programming techniques
to build an intelligent help system, and building a small knowledge database for system
identification. The target program used is Idpac, an interactive, command-driven program
package for system identification.

The project is part of the Computer-Aided Control Engineering project, running at
the Department of Automatic Control at Lund Institute of Technology. An intelligent help
system like the one described here would be an essential part of any modern man-machine
communication, But in addition to this, the project has provided additional input to the
CACE project. It has given valuable knowledge about the design and use of knowledge-based
programs and programming tools. Several demands on the design of high-level problem-
solving langnages have been stated. Finally, the project has shown the need for designing
open and modular tools instead of closed program packages like Idpac.

Description of the Problem

The project has been centered around the solution of the following problems.

An inexperienced user often has a general idea of what he wants to do, but does not
know exactly how to do it. He will need guidance. This is not taken care of by an ordinary
“list all available commands” help system. Therefore a goal related help facility should be
available,

Sometimes a user does not wish to have any help, or the help system has no help to
give. In such cases help should not be foreced upon the user. For this reason the help system
should be totally non-invasive, i.e., only come into action on the user’s request.

Idpac uses a flexible and powerful command dialog and several users have already learnt
to use it. Therefore this communication should be kept when the expert system is added,
instead of using a question and answer dialog. To do this a flexible and casy-to-use front-end
must be developed and interfaced to an expert system framework.

A large part of the knowledge of an expert interface for running Idpac concerns sequences.
Sequences may be represented using production rules to implement a state machine, but this
will become cumbersome when the number of states grow. Therefore we have introduced the
concept of scripts, as a data structure for describing sequences,

The help system needs not only procedural knowledge about Idpac, but also knowledge
of system identification in general. This is required for it to be able to diagnose problems,
estimate the validity of results and propose further tests. This function can be taken care of
by an ordinary preduction rule system.

Part of the practical difficulties of running Idpac is keeping track of details, such as
remembering file names, what operations have been performed on what data, values of pa-
rameters, and so on. The help system should aid the user in this and keep the information
about details in a database.

One important task for the help system is to support retrieval of knowledge from the
knowledge database to the user. Several facilities for this must be provided. The system
should help the user with interpreting results and suggest what to do next. It should prompt
for parameters in commands and give thorough explanations of them in the process. There
is also an on-line dictionary to explain the vocabularies of system identification and Idpac.

The Research Programme

The project originally started with a masters project, Larsson [1984], Larsson and Astrom
[1985 a]. In this, an overview of the problem area was given and several demands on a solution
given. A small system based on a standard expert system shell using backward-chaining was
also written, and a small knowledge database developed.

The masters project provided valuable inspiration for the STU project. First, a small
prototype was developed. It contained the basic ideas of a database built with both scripts
and rules, and a non-invasive command spy. This prototype has been described in Larsson
and Persson [1986 b]. Experiments with this program showed that the concepts were good,
and thus provided the base for the next phase.

After the testing of the prototype, a full fledged system was implemented. This effort
formed the main part of the project. This implementation has been described in Larsson and
Persson [1987 a]. The result is a system useful for demonstrations and testing by selected
users. It has also been used in the undergraduate course “Process Identification,” given in
the fall of 1687. However, to make the system into a robust product would still be another
major effort.

In the final stage, a knowledge database for a realistic example was developed. This
enables the system to handle a session of parameter estimation with the maximum likelihood
method. A technical report describing the knowledge database was written, Larsson and
Persson [1987 ¢], in addition to the user’s manual, Larsson and Persson [1987 b].

Description of the Implemented System

The implementation of the expert interface has formed a crucial part of the project. It
contains all essential parts, as a command parser, script matcher, and production rule system.
In addition to this there are several utilities that must be present if the program is to work as
a realistic example. These are a query module, a file system, and interfaces to the user and
Idpac. There are some limitations, though. The interface currently handles only a subset
of all the Idpac commands, and there are some irregularities in the syntax of some Idpac
commands that are not fully supported.

The methods used include an extensive use of formal language definitions, compiler
techniques, standard expert system shell techniques, and object oriented programming. Each
Idpac command is described in a formal granumar, which is used by the parser. This makes
it very easy o enter a new command or macro. The script language definition is closely
reflected in the design of the script matcher, and the script langnage can be extended with
some programming effort.

The project has implied the design of a new programming language, the script language.
The design of this language and the experimentation with i, i.e., writing scripts and rules has
meant a large effort. At the later stage of the project, the building of a realistic knowledge
database for maximum likelihood estimation has been another large effort.

The expert interface is made up from several parts. Most of the parts work on a common
database.

The user interface reads a command from the user and transforms it into a Lisp list.
It provides all the input and output functions used by the other parts of the interface. In
this way, all of the system’s dependence on terminal types, graphics, etc., is collected in one
place.

The command parser checks the commands for syntactical correctness and supplies de-
faults in the same way that the parser of Idpac does. In this process it transforms the
commands into a more convenient form. The parser accepts commands with argnments left

out, as the other routines will fill information in, by defaulting from scripts or asking the
user.

_,] PARSER .| MATCHER |, QUERY -

USER IDPAC
INTERFACE INTERFACE

4 [

¥ A d
COMMAND SUPER- FILE
«| | GRAMMAR SCRIPTS SYSTEM

Layout of the system.

The script matcher incrementally keeps track of the seript data structures and updates them
according to the incoming commands. The commands are transformed, and files may be
defaulted with the help of knowledge from the scripts.

Each script object inherits a YAPS database. When a command has been successfully
matched against a script and the seript is updated, facts may be put in its database. This
takes care of all information that is not directly available in the scripts, e.g., the results of
different commands, ete.

The system allows any number of different scripts to be followed in parallel. The super-
scripts are used to accomplish this, Fach superseript contains the current state of a session
with one or several scripts. One of the superscripts is currently active and the others, if any,
are waiting in a suspended state. When a command does not match any script in the cur-
rent superscript, the system tries to find a new current superscript by testing the suspended
superscripts and also a superseript in the initial state,

The query module goes through the command description and tries to fill in the remain-
ing unknown entries by asking the user about them. In this way the user may give only the
command name, and then he will be prompted for all the arguments left out. The query
module also sends messages to the file system about created and deleted files.

The file system keeps track of all the files created and used during an Idpac session. 1t
does this by storing data about the files in a directed graph structure. This enables the file
system to show the ancestors or descendants of a file, i.e., the files used in the creation of
and the files created with the use of a specific file.

The database contains the command grammar used by the parser, the scripts and rules
used by the script matcher, the file tree of the file system, and state variables for keeping
track of the user state, internal tracing, and so on.

The Idpac interface handles the communication with Idpac. It transforms the commands
delivered by the query module into text strings which are read by Idpac. The expert interface
and Idpac reside in two different VMS processes. The Idpac interface sends the processed
commands to Idpac via a VMS mailbox. In this way no changes had to be done to the Idpac
program itself. The routines for interprocess communication are written in C.

The system is written in Franz Lisp, Foderare and Sklower [1981}, extended with Flavors,
Allen et ol [1984], and YAPS, Allen [1983]. It consists of about 6000 lines of code and runs
under VMS, Digital [1984], and Eunice, Kashtan [1982], on a VAX 11/780.

Conclusions

The general idea of building a help systemn based on expert system techniques and including
it in a CAD program has been presented and a solution given. This solution includes the
development of scripis, a data type for describing sequences, and an implementation of an
expert interface, A small knowledge database for system identification has also been devel-
oped. As far as we know, the implemented system is unique in its use of a non-invasive
strategy based on a knowledge database containing both scripts and rules.

‘The project has given a valuable input to the CACE project, and an intelligent help
system is an essential part of a modern CACE program.

Also, the project has given experience and insight in the use of knowledge-based pro-
gramming tools, the demands of high-level problem-solving languages, and the design of
CACE tool-boxes.

In particular, the following conclusions seem important. First, a conclusion of the project
is that it is indeed possible to use an expert system and still retain a command style dialog.
A second conclusion is that not all knowledge in a database for system identification using
Idpac need be implemented with production rules. Scripts are a better way to represent
sequences, particularly in problems where both methods and goals are well known. A good
rule is to use as much as possible of the structure of the problem in the solution. The use
of scripts supported by rules in a forward chaining strategy will probably reduce the overall
size of the knowledge databases considerably. Finally, our experiences of running the system
clearly shows that an intelligent help system is clearly useful for all, except maybe for expert
users, It seems particularly well suited for casual users of Idpac, and therefore become unused
to it in the intervals between uses.

In addition, some demands on the tools used in a project of this kind may be stated.
1t is important that user communication follow a consistent formal grammar. In Idpac each
command has its own peculiarities, a thing which has caused much trouble. Also, there is a
strong need for software hooks, e.g., to be used when an error occurs in a program called by
another. Without them, it is very difficult to connect different PIOEFaIms.

List of Publications

Larsson, J. E, (1984): An Expert System Interface for Idpac, Master thesis, TFRT-5310,
Department of Automatic Control, Lund Institute of Technology, Lund.

Larsson, J. E. and K. J. AsTROM (1985 a): “An Expert System Interface for Idpac,”
Proceedings of the 2nd IEEE Control Systems Society Symposium on Computer-Aided
Control System Design, Santa Barbara, Califoraia.

LarssoN, J. E. and K. J. AsTrém (1985 b): “An Expert Interface for Idpac—Paper
Presented at Santa Barbara ’85,” Technical report, TFRT-7308, Department of Automatic
Control, Lund Institute of Technology, Lund.

Larsson, J. E. and P. PERssoN (1986 a): “Itt expertsystemsnitt for Idpac, (An Expert
System Interface for Idpac),” Proceedings of the SAIS '86 Workshop, The Swedish Al
Society’s Annual Workshop, Linkoping, April 24-25, 1986.

Larsson, J. E. and P. Persson (1986 b): “Knowledge Representation by Scripts in
an Expert Interface,” Proceedings of the 1986 American Control Conference, Seattle,
Washington.

LaAmrssoN, J. E. and P. PeErssoN (1986 c¢): “Knowledge Representation by Scripts in
an Expert Interface—Paper Presented in Seattle 1986, Technical report, TFRT-7332,
Department of Automatic Control, Lund Institute of Techuology, Lund.

LARsSsON, J. E. and P. PErsson (1987 a): An Expert Interface for Idpac, Licentiate thesis,
TFRI-3184, Department of Automatic Control, Lund Iustitute of Technology, Lund.

LARssoN, I. E. and . PERSsON (1987 b): “The (ihs) Reference Manual,” Technical
report, TFRT-7341, Department of Automatic Control, Lund Institute of Technology,
Lund.

Larsson, J. E, and P. PERssoN (1987 c¢): “A Knowledge Database for System Identifica-
tion,” Technical report, TFRT-7342, Department of Automatic Control, Lund Institute
of Technology, Lund.

LarssoN, J. E. and P. PerssoN (1987 d). “Ett intelligent grinssnitt for systemidentifier-
ing, (An Intelligent Interface for System Identification),” Proceedings of the SAIS '87 Work-
shop, The Swedish Al Society’s Annual Workshop, Uppsala, May 18-19, 1987.

Other References

ALLEN, E. M. (1983): “YAPS: Yet Another Production System,” Technical report,
TR-1146, Department of Computer Science, University of Maryland, Baltimore County,
Maryland.

ALLEN, E. M., R. H, TrigG and R. J. WooD (1984): “The Maryland Artificial Intelli-
gence Group Franz Lisp Environment,” Technical report, TR-1226, Department of Com-
puter Science, University of Maryland, Baltimore County, Maryland.

DiGITAL EQUIPMENT CORPORATION (1984): Introduction to VAX/VMS System Routines,
VAX/VMS Version 4.0, Digital Equipment Corporation, Maynard, Massachusetts.

Foberaro, J. K. and K. L. SKLoWER (1981): The Franz Lisp Manual, University of
California, Berkely, California.

KasHTAN, D, L. (1982): “EUNICE: A system for porting UNIX programs to VAX/VMS”
Artificial Intelligence Center, SRI International, Menlo Park, California.

