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Håkan Olsson, Swedish University of Agricultural Sciences, Umea, Sweden

Eberhard Parlow, University of Basel, Switzerland

Rainer Reuter, Carl von Ossietzky University of Oldenburg, Germany



More information about this series at http://www.springer.com/series/6477



Claudia Kuenzer • Stefan Dech •
Wolfgang Wagner

Editors

Remote Sensing Time Series

Revealing Land Surface Dynamics



Editors
Claudia Kuenzer
German Remote Sensing Data
Center, DFD

German Aerospace Center, DLR
Wessling, Germany

Stefan Dech
German Remote Sensing Data
Center, DFD

German Aerospace Center, DLR
Wessling, Germany

Institute for Geography and Geology
University of Wuerzburg
Wuerzburg, Germany

Wolfgang Wagner
Department of Geodesy
and Geoinformation

Vienna University of Technology
Vienna, Austria

ISSN 1567-3200 ISSN 2215-1842 (electronic)
Remote Sensing and Digital Image Processing
ISBN 978-3-319-15966-9 ISBN 978-3-319-15967-6 (eBook)
DOI 10.1007/978-3-319-15967-6

Library of Congress Control Number: 2015938907

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Responsible Series Editor: A. Marçal



Foreword

Our fragile planet experiences global change

at unprecedented speed. Much of this change

is man-made. We harness rivers and lakes,

clear-cut forests, transfer natural ecosystems

into agricultural land, and extract under-

ground resources. Through urbanization as

well as socio-economic transformation more

and more pristine habitats come under pres-

sure. Changes in climate variability impact

the dynamics of snow cover and water bodies,

soil moisture and vegetation phenology.

Satellite-based earth observation technol-

ogy allows us to monitor and quantify these

changes. Satellite remote sensing – and here

especially the analysis of long-term time series – enables us to reveal land surface

dynamics that otherwise might remain hidden to the human eye. The book Remote
Sensing Time Series Revealing Land Surface Dynamics focuses on exactly this

potential of space-borne earth observation.

What can earth observation contribute to the understanding of global change?

Which satellite sensors exist? Which data really allow for long-term monitoring and

time-series analysis? When is a time series long enough to shed light on climate

variability? Which challenges face scientists who use remote sensing satellite data to

further knowledge about our planet? How do different ecosystems change over time?

This book, which has been initiated by scientists of DLR’s German Remote

Sensing Data Center (DFD), addresses all these questions. Experts from all over

Europe, the USA, and China have contributed to this comprehensive volume.

In recent years many satellite data archives have been made available to the

public. The USA made nearly 40 years of Landsat data accessible free of charge.

Data archives like this one, which allow us to look into the past for several decades,
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are of immense value. Medium resolution data collected by the US AVHRR sensor

have also been available for several decades. Additionally, since the year 2000,

MODIS data also allow us to monitor our entire planet at daily intervals. Europe has

followed this lead to facilitate satellite data access. Free optical, thermal infrared,

and radar data from sensors on board the ESA research satellite ENVISAT, enabled

dense, multifaceted analysis of the land surface between 2002 and 2012. Further-

more, data of the novel and upcoming European Sentinel missions operated by

the European Space Agency on behalf of the European Union are currently being

made available free of charge both to scientific and commercial users.

Amongst other institutions, our German Remote Sensing Data Center will

provide and operate the processing and archiving facilities for the data from

Sentinel-1 C-band SAR sensors that grants continuity for ENVISAT-ASAR,

as well as for Sentinel-3 OLCI data, continuing the ENVISAT MERIS instrument.

Sentinel-5 precursor data will also be processed and archived at DFD.

However, the large amount of earth observation data contained in satellite

data archives globally also poses great challenges for the science community.

The analysis of time series of data is much more complex than just comparing

a few multitemporal satellite scenes. Time-series analysis requires the processing

of hundreds, thousands, or even a hundreds of thousands of data sets. This

“big data” needs to be calibrated, preprocessed, harmonized, interpolated, and

statistically analyzed. At frequent intervals – monthly or annually – time series

have to be re-processed to derive updated mean, minima, maxima, variability and

anomalies. This is an extremely demanding task. Additionally, the challenge of big

data and the challenge to fully exploit all the wealth of information that is contained

in data archives are getting bigger every day. More and more space nations launch

satellites into orbit. The life span of sensors increases. And data access is eased

further. The computer and programming literacy of scientists and young people in

general is rapidly increasing. Envisioning this trend, one of our technical answers

is that algorithms should rather come to the data instead of routing mass-data

archives to the analysts. So, hopefully, as the challenges grow, so will our means

to address them. I am confident that we will be able to manage the upcoming

challenges, and that the European Copernicus program will help to blaze the trail.

I hope that this book will trigger or deepen your interest in remote sensing

time-series analysis as a valuable means to assess the state of our Planet Earth.

I wish you stimulating reading.

Prof. Dr.-Ing. Johann-Dietrich W€orner
Chairman of the Executive Board

German Aerospace Center DLR

Cologne, Germany
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Chapter 1

Remote Sensing Time Series Revealing Land
Surface Dynamics: Status Quo
and the Pathway Ahead

Claudia Kuenzer, Stefan Dech, and Wolfgang Wagner

Abstract The face of our planet is changing at an unprecedented rate. Forest

ecosystems diminish at alarming speed, urban and agricultural areas expand into

the surrounding natural space, aquaculture is spreading, sea level rise leads to

changes in coastal ecosystems, and even without obvious land cover change, land

use intensity may change and complex ecosystems may undergo transient changes

in composition. Satellite based earth observation is a powerful means to monitor

these changes, and especially time series analysis holds the potential to reveal long

term land surface dynamics. Whereas in past decades time series analysis was an

elaborate undertaking mostly performed by a limited number of experts using

coarse resolution data, attention shifts nowadays to open source tools and novel

techniques for analyzing time series and the utilization of the same for numerous

environmental applications. The reasons are the pressing call for climate-relevant,

long term data analyses and value added products revealing past land surface

dynamics and trends, the growing demand for global data sets, and the opening

up of multidecadal remote sensing data archives, all at a time of considerably-

improved hardware power, computer literacy, and a general trend towards cloud

solutions and available open source algorithms and programming languages. This

chapter presents a comprehensive overview of time series analysis. We introduce

currently orbiting optical, radar, and thermal infrared sensors and elucidate which

of them are suitable for long term monitoring tasks based on remote sensing time
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series analysis. We briefly summarize the theoretical concept of time series com-

ponents and important seasonal statistical features and list the types of variables

usually analyzed as time series. Furthermore, we address data related, sensor

related, location related, and processing related challenges of time series analysis.

Lastly, we assess current developments and upcoming opportunities.

1.1 Introduction

Socio-economic transformation, urbanization, climate variability, and natural haz-

ards all shape the face of our planet. Socio-economic transformation leads – among

other consequences – to the intensification of agriculture and forestry, the cultiva-

tion of formerly non-arable land, and the expansion of infrastructure, all leading to a

decline of natural ecosystems. Deforestation of the planet’s last primary and

secondary forests aims at the provision of space for monoculture plantations or

pastures (Leinenkugel et al. 2014; Broich et al. 2011; Kuemmerle et al. 2009),

wetlands are drained to create space for cultivating livestock and crops (Rebelo

et al. 2009), rivers and lakes are harnessed (Grumbine and Pandit 2013), and

irrigation schemes extend the boundaries of cultivatable land at the cost of ground-

water depletion and surface subsidence (Fielding et al. 1998; Amelung et al. 1999;

Higgins et al. 2013). Urbanization leads to increasing pressure on natural ecosys-

tems (Taubenb€ock et al. 2012; Haas and Ban 2014) and brings with it soil, water

and air pollution (Duh et al. 2006; Ren et al. 2003). These consequences are

amplified by such climate related effects as global sea level rise, shifts in local

climate patterns, including changes in the frequency of storms, floods, droughts, or

pests, as well as habitat shifts (Lambin et al. 2003; Kuenzer et al. 2014). Natural

hazards such as earthquakes, tsunamis, volcanic eruptions, or forest fires are

singular events which also lead to changes on the land surface (Arnett et al. 2015;

Liu et al. 2012). To understand past land surface changes and to be able to predict

possible future developments, constant monitoring of our planet is critical. Numer-

ous bodies and initiatives such as the Intergovernmental Panel on Climate Change

(IPCC); the United Nations Framework Convention on Climate Change

(UNFCCC); the United Nations Environmental Program (UNEP); as well as

many other policy makers and stakeholders including national governments,

nongovernmental conservation and aid organizations call for reliable information

about global environmental change.

In this context, remote sensing based time series analysis is a powerful tool to

reveal land surface dynamics and to analyze the magnitude of these dynamics

within a defined monitoring time span (Lasaponara and Lanorte 2012). Time series

are usually understood as a real-value, continuous, or discrete series of data, where

the values refer to equidistant points in time and where the temporal variation

exhibits periodic, cyclic, transient, or random behavior – or a combination of these
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(Sch€onwiese 2008). Time series are commonly generated and analyzed in the

context of a variety of disciplines such as finance mathematics and econometrics

(e.g., stock values), demography (e.g., population development), oceanography

(e.g., tide tables), meteorology and weather forecasting (e.g., temperature and

precipitation analyses), astronomy and geophysics (e.g., sun spot activity analysis,

seismic analyses for earthquake characterization and prediction), and further

geosciences (e.g., time series analysis of earth observation data in geography and

geology).

This chapter focuses on the time series analysis of earth observation data from

spaceborne instruments. In land remote sensing science, time series analysis is

usually understood as the temporally dense monitoring of land surface dynamics

over a defined period of time. Earth observation based time series analysis has for a

long time been associated with studies employing freely available, coarse resolu-

tion data from spaceborne instruments offering near global daily coverage. How-

ever, in recent years several space agencies and data providers have adopted open

access policies leading to unprecedented access to – also higher resolution – data

and simultaneously triggering an increased interest in long term monitoring and the

development of creative, novel techniques to create densified time series.

In this chapter we assess currently orbiting sensors, discuss past and present

sensor preferences for time series analyses, shed light on the typical variables

analyzed, present time series analysis approaches, classify time series processing

challenges, and take a look at future opportunities and the pathway ahead.

1.2 Earth Observation Sensors for Time Series Analysis

In the past few decades, numerous multitemporal remote sensing studies have been

published, many of them focusing on the land cover classification of a few selected

time steps and consecutive post classification comparison (Yuan et al. 2005; Ban

2003; Bruzzone and Prieto 2002; Rogan et al. 2002). Such studies typically employ

a small number of data sets, and time series techniques for data analysis are not

applied. However, the opening up of many satellite data archives has led to free

access to several thousand up to several million space images (Woodcock

et al. 2008; Wulder et al. 2012; Lasaponara and Lanorte 2012). A milestone in

this respect was the opening up of the Landsat archives of the United States

Geological Survey, USGS, in 2008, enabling access to over four million Landsat

scenes in precision and terrain corrected format. This eased access, combined with

the ever growing programing literacy of scientists and increasingly powerful

hardware and software, has led to substantial growth of the remote sensing com-

munity exploiting space imagery with time series approaches (Müller et al. 2015;

Bontemps et al. 2012; Bonano et al. 2012; Gutman and Masek 2012; Hermosilla

et al. 2015; Fensholt et al. 2009).

While there are literally hundreds of earth observation satellites in orbit that

monitor our planet with optical, thermal infrared, or radar sensors, the fleet of

1 Remote Sensing Time Series Revealing Land Surface Dynamics: Status Quo and. . . 3



sensors suitable for time series analysis is actually quite limited. Figure 1.1 depicts

optical, including multispectral, satellite sensors launched from 1972 until today.

Green bars indicate the monitoring time span covered, and national flags indicate

the launching and/or operating country. It can be seen that only very few sensors

allow for time series analysis in an optical/multispectral domain covering several

decades. They include firstly the coarse resolution fleet of Advanced Very High

Resolution Radiometer (AVHRR) sensors operated by the National Oceanic and

Atmospheric Administration (NOAA) offering daily coverage, and secondly the

Landsat fleet with its sensor lines MSS (MultiSpectral Scanner), TM (Thematic

Mapper), ETM+ (Enhanced Thematic Mapper Plus), and OLI (Operational Land

Imager; also referred to as LDCM¼Landsat Data Continuity Mission). Within the

optical/multispectral domain only these two sensor lines allow us to take a look

back into our past for over three decades. Therefore, it is only based on these two

lines that time series analyses focusing on the derivation of climate relevant long

term trends can be undertaken. Now that NASA and USGS have both opened their

data archives to allow access to this data free of charge, these sensor lines are

currently being heavily exploited (Müller et al. 2015; Hermosilla et al. 2015;

Fensholt et al. 2009). Sensors such as the U.S. Moderate Resolution Imaging

Spectroradiometer, MODIS, on board the Terra and Aqua platforms, the

European Advanced Along-Track Scanning Radiometer (AATSR) and the Medium

Resolution Imaging Spectrometer (MERIS) both on board the European Environ-

mental Satellite (ENVISAT) are further instruments for which there is easy access

to coarse and medium resolution data. However, in contrast to AVHRR and Landsat

data these data are available only for the past decade. MODIS was launched on

Terra in 1999 and on Aqua in 2002, and the sensors on board ENVISAT collected

data only from 2002 to April 2012. From 1998 onwards selected French SPOT

(Satellite Pour l’Observation de la Terre) daily coverage VEGETATION data at

1 km are also available, and higher resolution SPOT data are currently also being

made available step by step (first for data older than 5 years) in the context of the

SPOT World Heritage Programme. The French Space Agency (CNES) announced

that in the last 28 years SPOT satellites have acquired over 30 million images.

However, as SPOT data had evoked little interest in the past due to the high cost of

the data (Lasaponara and Lanorte 2012), there is less knowledge about SPOT data

analysis and intercalibration than, for example, for the Landsat fleet. Since data

from sensors such as the Advanced Spaceborne Thermal Emission and Reflection

Radiometer, ASTER, (also on board the Terra platform) are only acquired when

tasked, time series can only be built up for a few selected places on Earth. Other

existing data and data now being acquired by many other sensors (Fig. 1.1) are not

available to the public. Therefore, next to the already mentioned workhorses

AVHRR and Landsat, it is mainly freely available data from MODIS, MERIS,

AATSR, VEGETATION and a few other sensors that are used for multispectral

time series analysis to reveal land surface dynamics.

Figure 1.2 depicts timelines of radar based earth observing satellites. Also here,

easy access to the data from the European Environmental Satellites ERS-1 and

ERS-2 with their Scatterometer (SCAT) as well as from the follow on European
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Meteorological Operational Satellites (MetOp) with their Advanced Scatterometer

(ASCAT) has led to their becoming the main workhorses for radar data based time

series analyses dating back to the early 1990s. ERS-1/2 and MetOp data have been

exploited to derive soil moisture time series (Wagner et al. 1999; Zhao et al. 2008;
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Fig. 1.1 Timelines of optical, including multispectral, earth observation satellites (Modified and

adapted from Kuenzer et al. 2014)
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Fig. 1.2 Timelines of radar earth observation satellites (Modified and adapted from Kuenzer

et al. 2014)
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Kuenzer et al. 2009; Dorigo et al. 2012; Naeimi et al. 2013), biomass information

(Wagner et al. 2003; Santoro et al. 2002; Askne and Santoro 2005; Cartus

et al. 2011), and crop growth parameters (Wooding et al. 1995; Le Toan et al. 1997).

From 2002 onwards, mainly ENVISAT Advanced Synthetic Aperture (ASAR)

data were employed to analyze SAR (Synthetic Aperture Radar) time series to

retrieve soil moisture information (Wagner et al. 2013; Dostálová et al. 2014;

Doubková et al. 2014), to monitor water body dynamics and flood events (Kuenzer

et al. 2013; Greifeneder et al. 2014; Bartsch et al. 2012), to investigate freeze-thaw

cycles (Park et al. 2011), and to detect forest disturbances and retrieve biomass

(Santoro et al. 2011, 2015). High hopes are now set on the European Sentinel-1

mission, which has provided SAR data since May 2014 with up to 5 m resolution.

Data from other radar sensors such as Radarsat or COSMO-SkyMed either come

only at high cost or can be obtained only for very limited areas. The same applies to

German TerraSAR-X data, which are available for the scientific community free of

charge, but only for small case-study areas, which hampers the generation of

national or global products. Furthermore, data acquisition for small study sites

can potentially conflict with commercial data requests, so extensive time series

can rarely be assembled.

Sensors with thermal infrared bands allowing the analysis of land surface

temperature (LST) patterns are listed in Fig. 1.3. In the context of LST it is mainly

the AVHRR, MODIS (Frey and Kuenzer 2014; Frey et al. 2012), AATSR, and

COMS - MI

FY-3A/B/C/D - MERSI

FY-2B/2C/2D/2E/2F/2G – IVISSR
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Fig. 1.3 Timelines of thermal infrared earth observation satellites (Modified and adapted from

Kuenzer et al. 2014)
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Landsat sensors (Song et al. 2015) which have been employed for time series

analysis. However, in general, the science community analyzing multiannual up

to multidecadal LST patterns and extracting hot spots and anomalies in the context

of urban heart islands, long-burning underground coal fires, and other phenomena

requiring long term monitoring is relatively small. Thus, the analysis of time series

of convincing length is rare in these contexts.

1.3 Remote Sensing Time Series Variables

Time series of remote sensing data from spaceborne sensors can be based on series

of raw digital numbers (DN) reflectance values (in %), or on variables commonly

derived from the original data prior to analysis (see Fig. 1.4). These variables can be

geophysical variables, index variables, thematic variables, topographic variables,

and texture variables (Kuenzer et al. 2014). Geophysical variables are defined by a

physical unit, a few examples being top-of-the-atmosphere reflectance (TOA),

surface reflectance, photosynthetic active radiation, PAR, fraction of absorbed

photosynthetic active radiation (FPAR), land surface temperature (LST), leaf area

index (LAI), or sediment content. By contrast, index variables are dimensionless,

such as the Normalized Difference Vegetation Index (NDVI), the enhanced vege-

tation index (EVI), the Leaf Area Index (LAI), the soil water index (SWI) and many

other indices or feature space components, such as Landsat Tasseled Cap

components.

Both geophysical variables and index variables can be used to create long term

time series, which can then be analyzed with respect to their daily, weekly,

Variables commonly analyzed
as Remote Sensing Time Series

Geophysical Variables 
(physical units)

Index Variables 
(dimensionless) Thematic Variables Topographic Variables Texture Variables

> TOA, PAR, FPAR, LAI, LST, SST, 
NPP, Cloud Top Temperature, 
Atmospheric Temperature, 
Chlorophyll Content, Sediment 
Content, Atmos. Gasses, etc.:

> Time series with  (daily, 
monthly, annual)
- min. & max.
- mean 
- standard deviation 
- variability 
- trends (depending 
on length of time series) 

> NDVI, EVI, SAVI, NDSI,  
Brightness, Greenness, 
Wetness, Drought Indices, 
Salinity, Soil Water Index (SWI), 
Tasseled Cap components 
(Brightness, Greenness,
Wetness)
> Time series with  (daily, 

monthly, annual)
- min. & max.
- mean 
- standard deviation 
- variability 
- trends (depending 
on length of time series) 

> Classification products  
(binary 1/0 data sets)
- vegetation cover
- snow cover 
- ice cover
- water area 
- urban area
- burnt area 

etc.

> Unit-less  time-series on a 
surface’s  min./max./av. extent

Spectral unmixing fractions 
(sub-pixel fraction of a certain 
surface type)

> Height
> Slope
> Aspect
> Surface roughness

Time series usually in the 
context of DifInSAR (surface 
subsidence or surface uplift)

> Object sizes
> Object shapes
> Compactness
> Homogeneity / heterogeneity
> Neighbourhood relationships
> Fragmentation
> Connectivity

Fig. 1.4 Variables commonly derived in the context of remote sensing based time series analysis.

We differentiate Geophysical Variables, Index Variables, Thematic Variables, Topographic Vari-

ables, and Texture Variables (Modified and adapted from Kuenzer et al. 2014)
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bi-weekly, monthly, annual, or decadal mean value, minima and maxima, standard

deviation, variability, anomalies, and trends.

A very commonly used index data set for time series analysis is the GIMMS data

set derived from AVHRR data provided by NOAA. GIMMS stands for “Global

Inventory Monitoring and Modelling Studies.” The spatial resolution of this global

area coverage data set is 4 km, and the data have been available since 1981. A

comparable vegetation index time series is the global S-10- product, a 10 day

synthesis of SPOT-VEGETATION images (VGT-S10) providing NDVI data and

all spectral bands in 1 km resolution from 1998 onwards. This data is freely

available 3 months after ingestion in the VEGETATION archives. Also from

MODIS a synthesized vegetation dataset (MODIS13) exists within the current

collection 5, providing NDVI and EVI data at 250 m resolution in 16-day intervals

since 1999 (Terra) and 2002 (Aqua).

Thematic variables are variables that are also derived prior to time series

analysis based on classification or regression approaches. Typically, data sets

with thematic variables are binary data sets with two classes, such as “urban/non-

urban,” “water / no water,” or “snow / no snow,” to give only three examples.

Stacked as a long term time series these data rows then allow derivations of further

statistical products such as mean, maximum, and minimum extent per year (e.g.,

mean water body extent, minimum water body extent, maximum water body

extent), deviations and variability (inundation frequency), as well as long term

trends. Several products exist that allow time series analysis based on such thematic

layers, such as the Global Snowpack data set (Dietz et al. 2012, 2013, 2014) and the

Global WaterPack data set (Klein et al. 2015), both developed by the Land Surface

Dynamics Group at the German Remote Sensing Data Center (DFD) of the German

Aerospace Center (DLR). As another thematic variable, surface type fractions

resulting from spectral unmixing analyses range from 0 to 100 % and indicate

how much of a pixel is covered with the respective fraction, and time series of

fraction images allow visualization of how sub-pixel components change over time

(Kuenzer et al. 2008).

Topographic variables include height, aspect, slope, and surface roughness.

However, usually only height is used for time series analyses, where stacks of

synthetic aperture radar (SAR) data are used to generate maps of surface deforma-

tion based on phase differences of the SAR return pulses (Bonano et al. 2012). The

technique applied to analyze SAR data time series in this way, called Differential

Interferometric SAR (DInSAR). DInSAR is frequently applied to monitor land

surface subsidence in areas of groundwater withdrawal, oil extraction, coal mining,

other mining activities, or in regions of ground compaction due to heavy urban

structures. Furthermore, DInSAR can be employed to monitor volcanic and tectonic

uplifts and glacial movement, amongst other applications. Texture variables are not

yet commonly applied in time series analysis, but novel spatial and temporal

segmentation approaches and increasing computing power will also lead to increas-

ing exploitation of the related variables.
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1.4 Remote Sensing Time Series Components and Features

Each long term remote sensing time series usually consists of three components (see

Fig. 1.5): Firstly, a long term directional trend, secondly, seasonal, systematic move-

ments, and thirdly, additional irregular, unsystematic, short term fluctuations. Remote

sensing time series analysis aiming at the revelation of land surface dynamics can

exploit each of these three components. For example, if we consider a long term time

series acquired over a savannah region, the time series will definitely contain a seasonal

component (greening and vegetation vigor decline depending on whether it is the rainy

or dry season), can contain short term fluctuations based on short term occurrences on

land (fire, grazing, etc.), in the atmosphere (e.g. clouds, haze, aerosols, or due to other

effects (e.g. bidirectional reflectance distribution function effects (BRDF effects),

surface anisotropy, illumination differences, sensor defects etc.), and will exhibit a

long term trend over many years (stable conditions, vegetation increase or vegetation

degradation). Depending on the research focus, it can be either the seasonal, short term,

or trend component which is of special interest – or all three simultaneously (Verbesselt

et al. 2010). Whereas climate scientists might be especially interested in long term

trends (land surface temperature, snow cover duration, sea level rise, etc.), short term

fluctuations are often relevant for an immediate response in managing natural resources

(plant disease, fires, natural hazards, etc.). Such short termfluctuations – sometimes also

called residuals – are the remaining component if the trend and seasonal components

have been removed from a time series. It should be mentioned that this short term

residual component of course also contains any noise in the data. An often applied tool

to extract time series component is the BFAST tool (Breaks For Additive Season and

Trend), which has been developed by Verbesselt et al. (2010). BFAST allows for the

Fig. 1.5 Conceptual sketch of the three components of a time series: trend component, seasonal

component, and residual component, all jointly forming the original time series. (Sometimes also

referred to as long term, seasonal, and short-term components)
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decomposition of time series into trend, season, and remainder components with

methods for detecting and characterizing change within time series.

Table 1.1 depicts exemplary types of earth observation application that rely on

the three components.

Common time series pre-processing operations include the application of

filters to smooth, for example, raw or variable data (Nightingale et al. 2009)

(e.g., a Savitsky-Golay filter to reduce the negative impact of clouds), to perform

harmonic analyses such as the HANTS (Harmonic Analyses of NDVI Time

Series) approach, which are based on Fourier Transformation, to identify different

seasonality types, to classify landcover and landuse based on temporal spectra, or

to apply algorithms for change detection or the characterization of change.

Especially in recent years tools have evolved, which look at the extraction and

characterization of change in time series of data. Sulla-Menashe et al. (2014)

developed the MODTrendr algorithm, which supports the detection of trends in

disturbance and recovery especially for forest cover related investigations, and

which is based on an algorithm called LandTrendr (Kennedy et al. 2010). Both

algorithms’ approach is to temporally segment a time series into distinct periods

representing stable conditions, disturbance periods, and recovery. LandTrendr

works at a much higher spatial resolution, and was also developed for forest

Table 1.1 Examples of earth observation applications relying on residual, seasonal, or trend

components of time series

Derivation of Residual component Seasonal component Trend component

Requires Temporally dense

observations with

respect to the process to

be observed (daily data)

An annual or multi-

annual time series with

dense temporal observa-

tions to enable the cov-

erage of all months/

seasons

Long term time series

with a sufficiently long

observation period to

derive a significant

trend. In the context of

geosciences a monitor-

ing period of several

decades is necessary

Thorough removal of

the trend component

and the seasonal com-

ponent to understand

the characteristics of

the residual signal

Application

examples

Identification of short-

term, intra-annual

anomalies such as local

weather events (strong

rain, flash floods, hail),

or other short term dis-

turbances, such as pests,

lightning, small fires

Annual land use classifi-

cation based on temporal

spectra (e.g., to differen-

tiate different vegetation

types or different crop

types, e.g., single-, dou-

ble-, and triple-harvest

irrigated rice crops).

Identification of annual

climate variations

Derivation of vegetation

trends (accelerated

greening, degradation,

shifts in the vegetation

period); derivation of

trends in inundation

dynamics (shift of inun-

dation onset and

retreat), derivation of

trends in snow cover

dynamics (start/dura-

tion/melt); trends in land

surface temperature,

LST
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disturbance assessment. LandTrendr (Landsat-based Detection of Trends in Dis-

turbance and Recovery) attempts to capture, label, and map change (Kennedy

et al. 2010) exploiting the Landsat archives to the fullest.

For multidecadal time series especially statistical analyses with respect to

climate related variations and trends if of interest. The most common statistical

parameters which are derived from time series include per pixel:

– mean

– minimum/maximum

– standard deviation

– variability

– anomalies

– turning points

– trends.

Allowing for daily coverage, these parameters can be derived from monthly,

annual, multiannual, decadal, or multidecadal time series especially from data from

instruments such as AVHRR and MODIS, or ERS and MetOp. Of interest is not

only the data value of the minimum, maximum or turning point, etc., but also the

timing, usually defined by the day of the year (DOY). Amongst others, DeBeurs and

Henerby (2005a) presented a statistical framework for the analysis of long image

time series.

In the context of vegetation analysis, one focus of time series analysis is on the

extraction of vegetation features, also called phenometrics (see Fig. 1.6), which are

metrics defining a plant’s vegetative cycle (Lieth 1974; J€onsson and Eklundh 2004).
A tool specifically tailored to such applications is TIMESAT, which is a software

package for analyzing time series of satellite data. TIMESAT supports the analyses

of the seasonality of time series with respect to the dynamic properties of vegetation

(J€onsson and Ekludh 2004). Amongst others, TIMESAT allows to extract the

following phenometrics from a time series:

– beginning of season (Fig. 1.6a)

– end of season (Fig. 1.6b)

– length of season (Fig. 1.6c)

– base value (Fig. 1.6d)

– time of middle of season (Fig. 1.6e)

– maximum value (Fig. 1.6f)

– amplitude (Fig. 1.6g)

– small integrated value (Fig. 1.6h)

– large integrated value. (Fig. 1.6h, i)

The beginning of season is defined here as the day of the year (and the

respective vegetation index value) identified as marking the inception of a con-

sistent upward trend in the vegetation index (e.g., NDVI) time series, depicted as

the beginning of measurable photosynthesis in the vegetation canopy. The end of
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season is the day of the year (with the corresponding index value) which marks the

end of a consistent downward trend in the time series, considered as the end of

measurable photosynthesis in the vegetation canopy. The maximum value is the

day of the year (and the respective index value) corresponding to the maximum

vegetation index value in an annual time series, which is considered to be the time

of maximum photosynthesis in the canopy. The length of the season is defined as

the number of days from the beginning to the end of the season and defines the

duration of photosynthetic activity, whereas the amplitude is defined by the

difference between the maximum value and the start of the season values,

characterizing the maximum increase in canopy photosynthetic activity above

the baseline. The integrated value is not a point in time, but an integral describing

the area below the smoothed index time series between the beginning and the end

of the season.

The output of TIMESAT is a compilation of files containing phenometric

parameters. Nowadays, Timesat can handle different types of remote sensing time

series (including MODIS) at different resolutions and can deal with up to two

growing seasons per year. Challenges for phenologic analysis are posed by regions

which depict a very low vegetation index amplitude over the course of a season or

long snow coverage during the winter months or in between the vegetation period,

as well as by vegetated areas with several growth cycles per year, such as double,

triple, and quadruple cropping cycles (Schwartz 2013; J€onsson and Eklundh 2004).
Furthermore, challenges arise from the fact that definitions of phenometrics can

Fig. 1.6 Phenometrics that can be derived from a time series of vegetation index data.

Figure supplied as a Creative Commons license figure by the developers of TIMESAT

12 C. Kuenzer et al.



vary. Especially Start of Season Time (SOST) and End of Season Time (EOST) can

be defined very differently (absolute threshold, maximum curvature, certain frac-

tion of amplitude. Further challenges arise from data availability, irregular obser-

vation intervals, or too long compositing periods; but challenges of time series

analyses will be addressed in depth at a later stage.

Numerous authors have analyzed phenological metrics over time for selected

case study areas, such as Fensholt et al. (2009), White et al. (2009), Ahl

et al. (2006), DeBeurs and Henebry (2005b) and Schwartz et al. (2002). Menzel

et al. (2006), for example, found that the response of metrics to climate change

matches the current global warming pattern. Time series of vegetation indices have

– independent of the derivation of phenological metrics – also often been employed

to extract an annual land cover classification where the differentiation of individual

classes is not based on spectral reflectance, but on annual temporal signatures.

Temporal signatures allow for the differentiation of deciduous versus evergreen

trees or shrubs as well as the differentiation of harvest cycles and crops types, and

therefore enable much more detailed differentiation especially of vegetation classes

compared to pixel based approaches (Friedl et al. 2002, 2010; Leinenkugel

et al. 2013; Lu et al. 2014).

1.5 Example Applications

An example for a typical display of statistical information derived from a time

series of a geophysical variable is displayed in Fig. 1.7. This figure presents the

mean monthly Net Primary Productivity (NPP) for China, covering the time span

from 1999 to 2012. NPP is the amount of carbon vegetation sequesters in a certain

time span (day, week, month, etc.) per unit area minus losses by respiration. NPP

was modelled with BETHY/DLR (Eisfelder et al. 2014). In this exemplary case we

can observe the following patterns with respect to NPP in China: the country’s arid
northwest and west exhibit very low year-round NPP values, and visualizes how

many days, over the course of 1 year, areas in the Ganges Delta (also known as the

Ganges-Brahmaputra Delta) have been inundated. The frequently flooded areas in

the Sundarban mangrove forests as well as along the floodplains of northeastern

Bangladesh can clearly be noted (Fig. 1.8).

Annual products such as this one informing about inundation length or snow

cover duration over the course of 1 year (Dietz et al. 2013) can, if derived for

several years, also be jointly analyzed to derive the mean, minimum or maximum

inundation or snow cover extent over the course of several years (decades), as well

as to derive variability and anomalies hinting at outlier months/years induced by

uncommon weather and climate.
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1.6 Challenges for Remote Sensing Based Time Series
Analysis

Challenges for remote sensing based time series analysis can be categorized

according to the cause of the challenge. We classify data availability or data policy

related challenges, sensor related challenges, location related challenges, and

processing related challenges (see Table 1.2). Time series analysis is not possible

if the number of available data sets for the area of interest is too small. This is the

case for many sensors, which do not have a global or long term acquisition plan.

Many sensors require special tasking, which generates high costs. For

noncommercial, scientific users it is, for example, unlikely that dense intra-annual

or even inter-annual time series can be built up based on high resolution optical

WorldView or QuickBird data.

Another data-inherent challenge is the relationship between temporal and spatial

resolution. Some satellite sensors delivering coarse-resolution data such as AVHRR

Fig. 1.7 Mean monthly NPP for China for the time period 1999–2012
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or MODIS allow daily coverage of our planet. This allows 365 observations per

year under cloud-free conditions. Even in areas with frequent cloud cover a large

number of useful observations will still be possible. However, these coarse- or

medium-resolution sensors only have spatial resolutions of 1 km to 250 m. On the

other hand, sensors offering higher spatial resolution can only cover a smaller part

of our planet in 1 day. Figure 1.6 illustrates this dilemma. For a single sensor such

as Landsat-7 ETM+, with a revisit rate of 16 days, only about 23 observations of a

certain area can be collected, given completely cloud-free conditions. However,

under realistic conditions (cloud coverage and past acquisition plans not covering

all continents equally) it might only be possible to obtain a handful of observations

per year (Fig. 1.9).

Fig. 1.8 Example of a value-added product derived from a time series of daily, binary thematic

products (water/no water) for the year 2013. Inundation (water cover duration) for the Ganges

delta (between 0 and 365 times)
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Last but not least also the way that datasets are generated and provided can pose

a challenge for analyses. Several products are provided as composited datasets –

e.g. MODIS 16 day composited NDVI or EVI products. Composite products have

the advantage that cloud gaps have been eliminated and that a homogeneous

composite can be supplied. However, it should be noted here that composited

data sets might not be able to resolve slight climate change related seasonal shifts

of only a few days over the course of a few decades. If, for example, we want to

detect for past decade’s changes which are in the order of a few days (e.g., an

on-average 5 day earlier onset of snowmelt, or an on-average 1 week earlier spring

greening, etc.), then composites comprising only 8, 10, or 16 days might not be

sufficient to resolve such climate related shifts.

Sensor related challenges such as orbital drift, erroneous sensor calibration,

sensor degradation, geolocation errors, long term inter-sensor calibration difficul-

ties, and changes in bandwidth or spatial resolution and geolocation accuracy of

successive sensors, as well as BRDF effects in data from sensors with a large field

of view (FOV), may cause numerous problems, but these can usually be overcome

if the related expertise and the time needed for corrective operations are available.

Table 1.2 Challenges for remote sensing based time series analysis

Challenge related to Possible manifestations

Data policy Limited number of acquisitions (acquisition plan / policy)

Restricted access to data (via costs or temporal and/or spatial limits)

Composite products

Sensor Orbital drift

Erroneous sensor calibration

Sensor degradation

Geolocation errors

BRDF effects

Long term sensor line calibration

Long term sensor line changes in bandwidths

Long term sensor line spatial resolution changes

Location Cloud cover

Water vapor and aerosols in atmosphere (lower NDVI values)

Polar night

Extreme terrain

Sunglint effects

Anisotropy effects

Sudden, disconnected subsidence

Processing Download and storage

Computing power

Technical/programming skills

Mathematical/statistical skills

Monthly or annual reprocessing

Long term preservation
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However, this is more challenging for some sensors than for others. Already Brest

et al. (1997) noted with respect to AVHRR that “Real decadal scale changes of the

earth are much smaller in magnitude than uncertainties in calibration changes and

cannot be reliably detected without significant improvements in instrument cali-

bration.” In this context Gutman and Masek (2012) reported that such improve-

ments have been achieved for MODIS and also Landsat data.

Location dependent challenges for time series analysis are frequent cloud cover,

the influence of water vapor and aerosols, and areas affected by polar night

(no sunlight for up to a full half year). Regions with extreme terrain (deeply incised

and shadowed valleys) also pose obstacles to time series analysis. Much more rare

location related challenges can be sunglint effects; compensation for the resulting

spikes or outliers in a time series is usually achieved with simple filter operations.

Furthermore, in some regions, very regular patterns (e.g. terraced rice field all

aligned in the same direction, sand dunes all aligned in the same direction) can

lead to effects of azimuthal anisotropy especially in coarse resolution radar data,

and thus can impede time series analyses in certain fields (Bartalis et al. 2006).

Another, very rare challenge affecting DInSAR based analysis is sudden land

subsidence (e.g., in karst landscapes). Sudden subsidence leads to a loss of

Fig. 1.9 The challenge of temporal coverage versus spatial resolution. The upper figure presents
the daily coverage of the MODIS sensor (250 m resolution in the VIS, nIR, 500 m resolution in the

mIR, 1 km resolution in the TIR), while the lower figure presents daily Landsat-7 (ETMþ)

coverage (30 m spatial resolution in the VIS, nIR, mIR, 60 m spatial resolution in the TIR)

(Source: IPF, TU Vienna)
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connectivity of fringes in an interferogram, so that the subsidence can no longer be

quantified (Bonano et al. 2012). For some selected variables snow cover or frequent

flooding hamper the generation of suitable time series, such as for the derivation of

soil moisture, which cannot be undertaken in near polar latitudes with lengthy snow

cover (Wagner et al. 1999). However, snow cover and flooding can also be

parameters, which shall be observed, so we do not include them in the list of

location related challenges. All these location related challenges can hardly be

influenced by the analyst. Prevailing cloud cover and the above mentioned effects

cannot be fully compensated, but a gapless time series can be approximated by

employing certain restoration and filtering techniques.

Further processing related challenges such as the availability of computing

power, storage space, archives for data preservation, and the mandatory mathemat-

ical/statistical, and programming skills can – theoretically speaking – be overcome

with sufficient financial means and capacity development. However, in reality, a

combination of only a few of the time series processing related challenges grouped

in Table 1.2 usually leads many scientists and remote sensing laboratories to not

engage in in-depth time series analysis and rather focus on multitemporal types of

applications.

1.7 Current Developments and Upcoming Opportunities

Whereas in past years time series based investigations of ecosystem properties was

mainly performed on coarse (medium) resolution satellite imagery from optical

sensors such as AVHRR, MODIS, VEGETATION or MERIS, or radar sensors such

as ERS-1/2 SCAT, MetOp ASCAT, and ENVISAT ASAR, more and more studies

exploit Landsat resolution type sensors. Recently, tools such as LandTrendr

(Landsat-based Detection of Trends in Disturbance and Recovery), which attempt

to capture, label, and map change (Kennedy et al. 2010) are made freely available to

explore the Landsat archives to the fullest. At the same time, the ESA Sentinel

missions will offer advantages and are expected to develop their capacity as future

workhorses. ESA Sentinel-1 data available since April 2014 enable the extension of

the ENVISAT ASAR archives, and Sentinel-3 will allow the extension of past

ENVISAT MERIS time series. Sentinel-2 supplies additional high resolution data

at the Landsat scale (Drusch et al. 2012), enabling monitoring approaches that can

be compared with temporally dense coarse resolution approaches.

Presuming the sound inter-calibration of different sensors, it is likely that more

and more multi-sensor time series will be generated utilizing data from two or more

different sensors to overcome data and location related challenges (data availability

and access, cloud cover, etc.). For optical instruments it is already common to

combine two or several data sets retrieved from Landsat TM, ETM+, and OLI.

Additionally, gaps in such data series can be filled with SPOT/Pléiades or future

Sentinel-2 data to create denser temporal coverage (time series densification). The

creation of time series using multiple sensors of completely different sensor
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families is a very demanding task which requires utmost adaptation and calibration

efforts to ensure that the extracted changes really refer to land surface dynamics and

not only to intercalibration related errors. Among others, multisensor time series

fusion approaches were already presented by Gao et al. (2006), Zhu et al. (2010),

and Hilker et al. (2009), who for example blended Landsat and MODIS surface

reflectance data.

Next to the densification of time series with data from sensors of comparable or

different resolutions (Landsat and MODIS, etc.), scientists are also starting to

exploit opportunities to build up time series with data acquired by passive as well

as active sensors (radar and optical data within one time series). For example, the

Japanese Advanced Land Observing Satellite (ALOS) which was launched in

January 2006 and operated until April 2011, delivers optical data at 10 m spatial

resolution with its AVNIR-2 radiometers, as well as L-band radar data at 10 and

100 m spatial resolution. Although ALOS communication failed in April 2011,

ALOS-2 was launched just recently in May 2014 and currently several groups

globally experiment with a combination of ALOS and Landsat data, including the

Web Enabled Landsat Data, WELD, data sets. WELD products are generated from

every available Landsat 7 ETM+ scene over the USA with cloud cover below 80 %.

The resulting weekly, monthly, seasonal, and annual products allow monitoring

tasks at dense temporal intervals. NASA currently also funds the generation of

global products centered on six 3-year epochs centered on 1985, 1990, 1995, 2000,

2005, and 2010, respectively. But other data are also suitable for time series

densification. Since 2004 the Brazilian Space Agency (INPE) has enabled free

access to China-Brazil Earth Resources Satellite (CBERS) data; the ASTER

archives have not yet been fully exploited; and missions such as SPOT and the

French Pléiades satellites might ease access to their data in the future. Within the

next decade the European Sentinels will deliver an unprecedented amount of data

that will also be accessible to the scientific community free of charge. Furthermore,

data access to imagery acquired by emerging space nations such as China, Thailand,

India, Vietnam, and others might be eased. Amongst other bodies, the Group on

Earth Observation, GEO, is advancing this goal.

It is the sheer amount of data that need to be automatically received, processed,

and archived that poses the greatest challenge over the next decade. The data

volume that space agencies and data providers have to safeguard and preserve is

enormous, and the amount of data that individual researchers process in the context

of their applied studies is also increasing year by year. In these challenging times of

“Big Data,” cloud solutions for data storage and processing, openly available (open

source) processing algorithms and code sharing platforms, and open source pro-

gramming languages have evolved rapidly. Additionally, novel schemes for

re-processing monthly or annual time series are in great demand. Nowadays we

can already observe the tendency that it is rather “the algorithms coming to the

data” than vice versa. This development holds great potential for international

cooperation, including product comparison and validation, and a minimization of

redundancies.
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Last but not least, the goal is to understand land surface dynamics and the

ongoing changes on our planet, and to generate value added products of relevance

for informed decision making by stakeholders. Lifting time series analysis from the

coarse and medium resolution scale to the Landsat scale is one important task.

Another is to fit models to long term time series so that past and present monitoring

activities can evolve to innovative forecasting. Such analytical forecasts are com-

monly undertaken in many disciplines, including economics and demographics. In

the geosciences community forecasts are mainly issued by climate scientists, who

release temperature, precipitation, or sea level rise projections. A large future

challenge for the land remote sensing community will be to realize projections of

future land cover and land use developments. This field is still in its infancy, but is

expected to develop rapidly over the next few years. Ultimately, any time series

analysis is a precursor activity to predicting the future based on trends derived from

past observations.
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Kienberger S, Brocca L,Wang Y, Bl€oschl G, Eitzinger J, Steinnocher K, Zeil P, Rubel F (2013)

The ASCAT soil moisture product: a review of its specifications, validation results, and

emerging applications. Meteorol Z 22(1):5–33

White MA, deBeurs KM, Didan K, Inouye DW, Richardson AD, Jensen OP, O’Keefe J, Zhang G,
Nemani RR, van LeeuwenWJD et al (2009) Intercomparison, interpretation, and assessment of

spring phenology in north America estimated from remote sensing for 1982–2006. Glob Chang

Biol 15:2335–2359

Woodcock CE, Allen R, Anderson M, Belward A, Bindschadler R, Cohen W, Gao F, Goward SN,

Helder D, Helmer E, Nemani R, Oreopoulos L, Schott J, Thenkabail PS, Vermote EF,

Vogelmann J, Wulder MA, Wynne R (2008) Free access to Landsat imagery. Science

320:1011

Wooding M, Attema E, Aschbacher J, Borgeaud M, Cordey RA, De Groot H, Harms J,

Lichtenegger J, Nieuwenhuis G, Schmullius C, Zmuda A (1995) Satellite radar in agriculture.

Experience with ERS-1. ESA Scientific Publications, Noordwijk, SP-1185. ISBN 92-9092-

339-3

Wulder MA, Masek JG, Cohen WB, Loveland TR, Woodcock CE (2012) Opening the archive:

how free data has enabled the science and monitoring promise of Landsat. Remote Sens

Environ 122:2–10

Yuan F, Sawaya KE, Loeffelholz BC, Bauer ME (2005) Land cover classification and change

analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote

sensing. Remote Sens Environ 98(2–3):317–328

Zhao D, Kuenzer C, Fu C, Wagner W (2008) Evaluation of the ERS scatterometer derived soil

water index to monitor water availability and precipitation distribution at three different scales

in China. J Hydrometeorol 9:549–562

Zhu XL, Chen J, Gao F, Chen XH, Masek JG (2010) An enhanced spatial and temporal adaptive

reflectance fusion model for complex heterogeneous regions. Remote Sens Environ 114

(11):2610–2623

24 C. Kuenzer et al.



Chapter 2

Time Series Analyses in a New Era of Optical
Satellite Data

Patrick Hostert, Patrick Griffiths, Sebastian van der Linden,

and Dirk Pflugmacher

Abstract Dense time series of optical remote sensing data have long been the

domain of broad-scale sensors with daily near-global coverage, such as the

Advanced Very High Resolution Radiometer (AVHRR), the Medium Resolution

Imaging Spectrometer (MERIS), the Moderate Resolution Imaging Spectrometer

(MODIS) or the Satellite Pour l’Observation de la Terre (SPOT) VEGETATION.

More recently, satellite data suitable for fine-scale analyses are becoming attractive

for time series approaches. The major reasons for this development are the opening

of the United States Geological Survey (USGS) Landsat archive along with a

standardized geometric pre-processing including terrain correction. Based on

such standardized products, tools for automated atmospheric correction and

cloud/cloud shadow masking advanced the capabilities to handle cloud-

contamination effectively. Finally, advances in information technology for mass

data processing today allow analysing thousands of satellite images with compar-

atively little effort. Based on these major advancements, time series analyses have

become feasible for solving questions across different research domains, while the

focus here is on land systems. While early studies focused on better characterising

forested ecosystems, now more complex ecosystem regimes, such as shrubland or

agricultural system dynamics, come into focus. Despite the evolution of a wealth of

novel time series-based applications, coherent analysis schemes and good practice

guidelines are scarce. This chapter accordingly strives to structure the different

approaches with a focus on potential applications or user needs. We end with an

outlook on forthcoming sensor constellations that will greatly advance our oppor-

tunities concerning time series analyses.
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2.1 Introduction

Over the past 50 years, anthropogenic ecosystem changes were more rapid and

extensive than in any comparable period in history (MEA 2005) and nowadays no

ecosystem is free of pervasive human influence (Vitousek 1997). Changes in land

surface characteristics mirror a multitude of processes induced by human alteration

of the Earth system as a whole. Earth observation (EO) allows for repeated,

synoptic and consistent measurement of the Earth surface and has long been used

for environmental assessments (Lambin and Strahler 1994). The process of moni-

toring changes and modifications of land surface characteristics by means of a

series of EO data is often referred to as time series analysis.

Approaches for time series analysis in remote sensing have long been restricted

to the domain of wide swath, coarse spatial resolution sensors. Such systems

commonly achieve complete global coverage on a (near-) daily basis. Image

products can be generated based on a defined temporal interval, such as the 8- or

16-day Normalized Difference Vegetation Index (NDVI) composites derived from

AVHRR data. This allows the direct utilization of time series methods, many of

which require equidistant observations and were more commonly used in econo-

metric or meteorological sciences. The temporal repeat frequency of higher spatial

resolution sensors, however, does not readily allow applying these types of

methods. On the one hand, orbital and engineering characteristics drive repeat

acquisitions on the order of 7–20 days. On the other hand, acquisition strategies

and cloud coverage govern the actual availability of scenes acquired with low or no

cloud cover contamination.

Recently, great advances have been made in the use of remote sensing data that

allow analyses at landscape to regional scales, such as Landsat’s Thematic Mapper

(TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager

(OLI). Generally, the availability of optical spaceborne imagery has tremendously

increased. This was achieved by numerous new sensors in space, but the sea change

is due to open access policies of governmental agencies. While coarse spatial

resolution data have traditionally been available free of charge, this was not the

case for higher resolution imagery. During 2004, the Brazilian Space Agency

(INPE) pioneered free and open access to medium resolution satellite imagery by

first providing China-Brazil Earth Resources Satellite (CBERS) data for free and

subsequently making the Brazilian Landsat data holdings available at no cost. Most

importantly, however, in 2008 the USGS adopted a free data policy for the

U.S. Landsat holdings, the largest archive of Landsat data (Woodcock

et al. 2008). The global Landsat archive constitutes a unique record of the way

humans modify the land surfaces (Roy et al. 2014), and Landsat’s spatial resolution
enables chronicling of anthropogenic and natural change at all scales (e.g. Gutman

et al. 2008). The USGS Landsat archive alone currently contains more than four

million scenes and Landsat 8 is currently contributing an unprecedented 650 scenes

daily. Additionally, the ongoing Landsat Global Archive Consolidation effort is

repatriating unique scenes from data holdings of the network of international
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receiving stations (Wulder et al. 2012). Next to data availability, providing ready-

to-use data is the second prerequisite to promote new time series analysis applica-

tions. Landsat data are distributed in precision terrain corrected (L1T) format

(Landsat Project Science Office 2010; USGS 2012), providing the radiometric

quality and spatial precision needed to directly employ the imagery in end-user

workflows. The new L1T processing of Landsat data has set a ‘gold standard’ for
the quality of absolute and relative geometric accuracy. Careful radiometric cali-

bration over the series of Landsat sensors has made consistent conversion of digital

counts to radiance and reflectance possible (Chander et al. 2009). Substantial user

input and interaction requirements have until recently prevented the correction of

atmospheric effects and the subsequent conversion to surface reflectance for large

amounts of Landsat data. Automated atmospheric correction algorithms and reli-

able cloud screening algorithms are available today that allow bulk processing for

creating time series of reflectance data (Ju et al. 2012; Masek et al. 2006; Zhu and

Woodcock 2012). This increasing availability of Landsat data as well as improved

data quality and newly emergent pre-processing algorithms has spurred consider-

able methodological innovation for time series analyses with Landsat data.

The open data model that was spearheaded with Landsat has since been adapted

for several sensor systems, including coarse resolution sensors such as MODIS or

MERIS, and higher resolution sensors such as SPOT (i.e. SPOT World Heritage

programme, CNES 2014) or the Sentinel programme (ESA 2014). Similarly, the

development of important pre-processing (Zhu and Woodcock 2012) and analysis

(e.g. Huang et al. 2010; Kennedy et al. 2010; Verbesselt et al. 2010) tools has

embarked on a trend towards open source and open access, fostered for example by

code sharing platforms and open source programming languages. Distributed and

hosted processing services have appeared recently by commercial or scientific

institutes (e.g. NASA’s Giovanni system, Berrick et al. 2009), several more have

been announced in order to address the big data challenges in remote sensing.

Simultaneously. Concern regarding observational continuity of long running pro-

grams (Wulder et al. 2011) has spurred the discussion regarding suitable imaging

systems as a replacement or for different systems to function in a virtual constel-

lation. Time series analytic capabilities can be considerably enhanced in terms of

temporal extent or observational density by taking advantage of tools for data

fusion (e.g. for merging Landsat and MODIS reflectances, Gao et al. 2006; Zhu

et al. 2010) or long term time series models (Jonsson and Eklundh 2004). While

these recent developments hold true for a wider range of sensor systems, in the

following we focus on Landsat data and time series analyses in the context of land

systems.
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2.2 Process Dynamics and Time Series Analysis
Requirements

Before implementing a time series analysis, it is important to understand which land

surface processes are better tackled with time series analyses rather than traditional

analyses such as multi-temporal image classification. Generally, analysing

phenology-driven, either highly dynamic or gradual and long-term, change pro-

cesses may profit greatly from the use of time series. Highly dynamic processes

require using time series with a sufficient observation density so that ‘hot moments’
can be captured, while a long-term gradual change signal can only be separated

from image or phenological noise when time series are long enough.

Typical processes inducing changes in or modifications of land surface charac-

teristics are manifold. They are often directly driven by human activity

(e.g. urbanisation, extension of agricultural areas, open pit mining, deforestation),

result partly or indirectly from human action (e.g. climate change-induced vegeta-

tion change or glacial melting) or arise from natural processes (e.g. forest windfall,

pests, landslides or geological processes, El Ninõ). A detailed monitoring of such

processes—for example, quantifying rates of gradual change or detailed identifica-

tion of dates of abrupt change—requires different analysis schemes. Time series

analyses employ the temporal signal at pixel level to derive metrics for mapping or

monitoring. Such metrics may include linear or nonlinear trends, amplitude, phase

or break points.

Examples from two major domains of remote sensing-based monitoring illus-

trate the different needs for analyzing different processes: Monitoring agricultural

intensification and monitoring deforestation. If we, for example, wish to gain a

better understanding of processes related to agricultural intensification in central

Europe, we need to get a remote sensing-based characterization of intra- and inter-

annual changes in land surface phenology. We need season-specific multi-date

measurements across 1 year to describe the diverse agricultural growth, yellowing

and harvesting trajectories and we need the same specific multi-date observations

between years to describe crop rotation cycles or change trajectories related to

cropland-grassland conversions. To map forest changes such as wildfires and

deforestation, annual anniversary-date observations may be sufficient. However,

in many tropical regions, multiple observations a year are required to obtain a

complete cloud-free, annual snap-shot for a region of interest. Actual needs may

vary though, depending on the type of forest and ecosystem dynamics.

The examples above show some of the process-related aspects in different

ecosystems that steer the applicability of time series approaches. Basically, the

process to be monitored, the respective ecosystem dynamics (temporal trajectory of

static and changing land use/land cover) and ecosystem heterogeneity (spatial-

spectral domain) define the framework needed. In many cases, an ideal approach

additionally needs to be adapted to actual data availability, especially when pro-

cesses are to be assessed over large areas with variable observation density

(i.e. extending over several footprints).
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2.2.1 Variables Used in Time Series Analysis

Time series analyses have been applied to a wide variety of remote sensing based

variables ranging from individual spectral bands and derived indices to remote-

sensing-based predictions of land surface or biophysical parameters (Main-Knorn

et al. 2013). The choice of variable often depends on the system and change process

under study, and also the extent to which a priori information is available to

translate surface reflectance to a desired land surface parameter. In the simplest

case, a single spectral band might be input to further processing. But in many cases,

simple metrics derived from spectral bands enhance the representation of land

surface properties such as vegetation greenness—for example, vegetation indices

(Choudhury et al. 1994; Huete et al. 2002), tasselled cap transformed bands (Kauth

and Thomas 1976) or the outcome of problem-specific spectral mixture analysis

(Hostert et al. 2003). It has also been shown that for problems related to classified

data, classification probabilities also offer great potential for time series analysis

(Yin et al. 2014).

Variables used in time series analyses are, for example:

– Single spectral bands, like the 1.6 μm shortwave infrared in Landsat band

5, which are sensitive for various change processes in forest ecosystems.

– Time series of vegetation indices, commonly used for various vegetation-related

analyses.

– Tasseled Cap (TC) components, a combination of brightness and wetness for

urban environments, or wetness for forests.

– Integrated indices from tasseled cap; for example, the disturbance index (DI),

created for tackling the specific dynamics in temperate forest ecosystems.

– Spectral unmixing fractions, offering a high degree of freedom to focus on

question-specific land cover components, such as fractions of concrete in

urban environments, soil fractions in agricultural ecosystems or photosynthetic

active vegetation for any green vegetation related metrics.

– Biophysical parameters such as canopy cover, leaf area index (LAI), fraction of

photosynthetic active radiation (fPAR), and aboveground biomass.

Vegetation indices are commonly used to characterize vegetation dynamics

across different temporal scales and processes. In phenological applications,

weekly and bi-weekly time series of vegetation indices are used to infer the timing

of vegetation green-up and senescence (Zhang et al. 2003). At annual intervals,

time series of vegetation indices such as the Normalized Burn Ratio, of TC wetness,

and the DI have been used to detect forest changes resulting from clear-cut harvest

and insect and fire disturbances (Kennedy et al. 2010). Although, vegetation indices

are not tailored to a specific scene or ecosystem, they have been very effective for

capturing abrupt and long-term vegetation trends across large areas and multiple

biomes. However, in most cases ground measurements are still needed to relate

changes in vegetation index derived from time series data to a specific land surface

change.
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Time series methods also provide a means to directly characterize the temporal

dynamics of ecosystem properties (e.g. leaf area index and aboveground biomass)

and to improve the mapping of these properties at individual points in time.

Biophysical variables are often predicted using radiative transfer models (Myneni

et al. 2002) or by building upon the empirical relationship between remote sensing

data and ground measurements (Cohen et al. 2003). By incorporating trend infor-

mation from adjacent time periods, residual noise from atmospheric path radiance

and pixel geolocation error can be minimized (smoothing), and predictions can be

obtained for periods where surface observations are hindered by clouds or acqui-

sition gaps (gap-filling). For example, Powell et al. (2010) and Main-Knorn

et al. (2013) applied a trajectory-based segmentation algorithm (Kennedy

et al. 2010) to annual Landsat-based predictions of forest aboveground biomass

to characterize forest disturbance related-biomass dynamics. Comparing time-

series fitted versus field based biomass estimates showed that the time series

algorithm also improved predictions for individual years. Similarly, time series

smoothing and gap-filling has been used to improve seasonal representations of

biophysical parameters such as MODIS-derived fPAR estimates (Nightingale

et al. 2009). Although, seasonal time series of ecosystem properties have tradition-

ally been limited to coarse resolution sensor data like MODIS, such applications

will likely be possible for many regions at the Landsat-resolution within the next

decade.

Basically, any continuous measure with sensitivity to the process to be moni-

tored may be used as input for a time series analysis. In some cases, as in forestry-

related research on temperate forest ecosystems, there are established measures

(e.g. TC wetness, DI, Healey et al. 2005). However, tackling new research ques-

tions often requires sensitivity analyses on the usefulness of different indicators for

running a time series analysis prior to actually doing so.

2.2.2 Implementing Time Series Analyses

It is obvious that different process regimes ask for different temporal resolutions

and appropriate methods to deal with analysing temporally varying information.

The density of suitable data can be an issue in many time series approaches, despite

the enormous increase of data available today.

Theoretically—disregarding cloud cover or downlink capacities—with two

Landsat platforms operating simultaneously, an 8-day revisit provides about

45 acquisitions per footprint and year. This allows for assessing most process

regimes within terrestrial ecosystem dynamics. However, global availability of

Landsat data within the USGS archive shows pronounced regional differences

(Kovalskyy and Roy 2013). This is due to cloud cover but also to the fact that a

truly global acquisition strategy has only been established during the later years of

the Landsat 7 mission. For areas outside of the U.S., less data has been acquired and

much of the archived imagery resides in data holdings of the cooperating
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international receiving stations. Therefore in many areas around the world the ideal

time series approach cannot be pursued due to data constraints, and trade-offs need

to be considered regarding the established time series and the choice of analysis

methods. Scale considerations might also require trade-offs as certain time series

characteristics might be ensured for a smaller area, but providing the same charac-

teristics for larger regions such as entire continents is often hardly feasible.

Conceptually, we may consider different types of time series for optical remote

sensing data:

– Original image acquisitions: For some applications, such as those with a focus

on regions with low cloudiness like deserts and semi-deserts, data availability

from Landsat overpasses every 16 days may suffice when using original imagery

or mosaicked data (‘native data’). For many applications, though, data on a

scene-by-scene basis does not suffice and image compositing techniques are

required to increase temporal data density.

– Data spacing: Some analyses require equally spaced data, such as annual peak

phenology, while others can deal with the entire acquisition record of usually

unequally spaced time series.

– Intra- or inter-annual analyses: Depending on the process under research, intra-

versus inter-annual time series or combinations of the two might be appropriate.

Summarizing, time series analysis is based on one or several indicators from

which appropriate temporal metrics are extracted, such as early maxima of a

vegetation index (either allowing or not allowing gaps in the time series), the

slope of a linear trend along time series values, a sinusoidal function fitted to a

phenological trajectory over several years, or simply a breakpoint in the time series

indicating change. Recent research indicates that this selection process can be

performed most efficiently by machine learning algorithms, e.g. support vector

machines or random forests (Senf et al. 2013). This holds specifically true if tens or

hundreds of metrics are calculated. Mapping results from the entire time series

analysis process may then again be categorical after classifying the created metrics

(classes derived from a time series, such as deforestation, cropping systems or

cycles) or continuous (gradients of shrub encroachment on abandoned farmland or

soil fraction changes during erosion processes) when using metrics as input to a

regression analysis.

2.3 Time Series Analysis Examples

In the following we provide two examples to illustrate the conceptualization of time

series analyses. Both examples demonstrate the opportunities and challenges of

current time series analysis using freely available Landsat data.
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2.3.1 Monitoring Tropical Deforestation

Mapping and monitoring tropical deforestation and forest degradation has been a

focus of remote sensing research for several decades (Mayaux and Lambin 1995;

Skole and Tucker 1993; Woodwell et al. 1987). Estimating the rate of change in

tropical forest cover is a key requirement for understanding the impact of human

activities on the Earth’s climate, the functioning of ecosystems, and biodiversity

(Lambin et al. 2003). While tremendous progress has been made in developing

remote sensing-based methods and protocols for estimating tropical deforestation

rates from local to pan-tropical scales (GOFC-GOLD 2013), in many regions

accurate forest monitoring has only recently become feasible with dense optical

time series of high spatial resolution (<50 m). The necessity of high spatial

resolution sensor data for monitoring tropical forest changes arises from the com-

plexity of forest change patterns, which range globally from large clearings for

mechanized agriculture to fragmented clearings associated with small-holder agri-

culture. The forest definition, as agreed in the Marrakech accords (UNFCC 2002),

establishes a 0.05–1 ha minimum area, a minimum of 10–30 % tree canopy cover,

and a potential of 2–5 m tree height for forest. Such small-scale changes cannot be

resolved sufficiently with coarse resolution sensor data.

Prior to the opening of the USGS Landsat archive, the Global Land Survey

(GLS) epochal dataset (Gutman et al. 2008) provided the first time series of

orthorectified, high-resolution images that covered nearly the entire tropical region.

However, the epochal resolution has proven to be insufficient for detecting forest

change in some regions or for detecting transient forest change. In Indonesia, where

the majority of land-use change comes from conversions of tropical forest to tree

and oil palm plantations, Broich et al. (2011) showed that time-series approaches

based on all good land observations were more accurate in mapping forest cover

change than change maps based on epochal image composites. Similarly, shifting

cultivation leads to a temporary removal of forest cover followed by a short period

of cultivation and subsequent fallow regrowth. In regions of Southeast Asia, where

shifting cultivation is the dominant land use, forest changes occur within complex

mosaics of primary and secondary forest vegetation (Ziegler et al. 2012). The

detection of clearings from shifting cultivation is complicated by the pronounced

vegetation phenology in tropical dry and seasonal forest, where the clearing and

burning usually occurs towards the end of the dry season, and by the fast recovery

of the spectral signal when the land is left fallow (Fig. 2.1).

To detect forest clearings in northern Laos, Pflugmacher et al. (2014)

constructed annual time series of the Normalized Burn Ratio (NBR) based on all

available Landsat imagery with a cloud cover of less than 75 %. The NBR index

contrasts Landsat’s 2.2 μm short-wave infrared (SWIR2) band with the near-

infrared (NIR) band (NBR¼ (Band 4�Band 7) / (Band 4 +Band 7); Key and

Benson 2006). NBR can theoretically range from �1 to 1, where low and negative

values are associated with sparsely- or un-vegetated areas and high values are

associated with dense vegetation. The difference in the NBR between two images
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(ΔNBR) has been most prominently used to map burned area and burn severity of

vegetation fires (Roy et al. 2008). However, due to its sensitivity to forest structure

and vegetation moisture, ΔNBR has also been used to map forest disturbance

caused by wind-throw, logging, and insects in temperate forests (Kennedy

et al. 2012). Further, NBR is less sensitive to atmospheric water vapour and

increased aerosols during the burning season, compared to indices that use

Landsat’s visible bands. In order to minimize the effects of vegetation phenology

on ΔNBR between years, Pflugmacher et al. (2014) used annual, minimum-value

composites of NBR for the dry season (Fig. 2.2). The approach requires images that

are atmospherically corrected (Masek et al. 2006) and cloud-masked (Zhu and

Woodcock 2012).

Time series approaches that incorporate explicit seasonal models (Verbesselt

et al. 2010) or more complex temporal segmentation algorithms (Kennedy

et al. 2010) have recently become available, but these have not been rigorously

tested in the tropics, yet. However, it has already become apparent that the opening

of the Landsat archive and the release of the Landsat Climate Data Record in

November 2013 have greatly enhanced the monitoring of tropical forest changes.

Fig. 2.1 Landsat image chips (bands 5-4-3) showing the spatial and temporal patterns of slash and

burn agriculture of a small area (3,000� 3,000 m) in Houaphan Province, Lao PDR. A single crop

of rice is followed by fallow periods of 2–10 years; 5–10 % of the area is used for successive crops

of rice for 2–5 years. The time series plot in the lower right shows the Normalized Burn Ratio

(NBR) from all cloud-free Landsat imagery between 2000 and 2004. To illustrate the seasonal

variations in NBR a simple harmonic function fitted to the entire pixel time series is overlaid
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2.3.2 Mapping Pan-Carpathian Agricultural Land Use
Change

The second example is based in a temperate European setting and illustrates how

changes in agriculture production systems can be assessed for larger regions using

historical Landsat data. The study focused on the extended Carpathian Mountain

range in Eastern Europe, a region comprising of approximately 375,000 km2 and

currently extending over seven individual countries. Until 1989, almost the entire

region was under the political influence of the Soviet Union, which included

collectivized agricultural production. Being heavily subsidized and connected to

large output markets, basically all cultivatable land was under agricultural produc-

tion. With the collapse of Eastern European Socialism, agricultural production

experienced a drastic shock and most production ceased, leading to extensification

through conversion of cropland to grassland, or the abandonment of cropland with

subsequent shrub encroachment. Since 2004, most countries have been accessioned

to the European Union, which again affected agricultural land use considerably,

including re-cultivation efforts or intensification (Griffiths et al. 2013a).

The open Landsat archive provides a unique opportunity for assessing the spatio-

temporal patterns of these crop regime changes over the entire region since 1984.

For this, at least 32 Landsat footprints need to be included into the analysis scheme.

The region comprises an extensive altitudinal gradient, from plains over foothills to

high mountain valleys. Cloud coverage is generally profound. The USGS Landsat

holdings for the period of 1984 (the first year of Landsat 5 TM data) to 2012 are

heterogeneous, with relative data scarcity for the 1980s, basically no data available

between 1995 and 1999, but better data availability after 2000 including Landsat

7 imagery that suffered from the defect of the scan line corrector after May 2003.

From a time series methods perspective, two spectral-temporal features need to be

captured when attempting to assess these changes in cropping regimes:

Fig. 2.2 Annual time series of the minimum Normalized Burn Ratio (NBR) for the dry season

(October–April) from a single pixel cleared in 2000 (Houaphan, Lao PDR). The red line connects

the undisturbed, disturbed and recovered periods via linear segments. The timing of recovery is

defined when the NBR reaches 90 % of the pre-disturbance value
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(1) observations from the spring, summer and fall seasons, which are required to

reliably separate cropping systems from grassland land use, and (2) a series of such

season-specific observations over the different time periods—socialism, transition

and post-EU accession—to be able to detect changes among these different agri-

cultural land use regimes. Image compositing algorithms were used to approximate

the desired series of season-specific observations over the entire region (Griffiths

et al. 2013a, b). Overall, the dataset included cloud-free multi-season composites

for 1984, 2000, and 2010 to represent the socialist, transition and post-EU accession

periods respectively. In general, multi-year imagery is required to achieve a com-

plete cloud-free coverage for the region.

First, all available Landsat L1T imagery with a metadata-based cloud cover

estimate of no more than 70 % was downloaded (approximately 5,000 images). All

images were atmospherically corrected and converted to surface reflectance (Masek

et al. 2006), and subsequently cloud/shadow masks were developed (Zhu and

Woodcock 2012). To ensure the ability to process imagery on a per-pixel basis

over several Universal Transverse Mercator (UTM) zones, all data was then

transferred into a common projected continental coordinate system. The applied

compositing algorithm provides three types of outputs (Fig. 2.3): best observation

composites, spectral-temporal variability metrics and metadata layers (Griffiths

et al. 2013b). For the first, all available pixel observations for a given time window

were evaluated based on the image metadata (e.g. acquisition year and day-of-year

(DOY)) and image characteristics (e.g. pixels distance to clouds). A score was

produced for each observation based on these different characteristics and the pixel

observation with the highest score was transferred into the best observation com-

posite for a certain year and season (for details on the generation of scores, refer to

Griffiths et al. (2013b)). Spectral-temporal variability metrics were calculated for

defined seasonal windows based on all cloud free observations available for a given

yearly range. These metrics were based on the NDVI and included the seasonal

mean, range and standard deviation. Metadata layers provided not only the origin of

each pixel, but also the evaluated score and number of cloud free observations on a

per-pixel level.

Once the data were composited and all metrics were derived, supervised Ran-

dom Forest (RF) models were used to capture the changes of interest (Griffiths

et al. 2013a). Training data were collected for a total of 15 stable or transition

classes, including cropland-grassland-forest transitions as well as stable cropland or

forest classes. The RF model was then applied to a combined dataset containing the

best observation composites (3� 6 spectral bands for three reference periods,

54 bands in total), the variability metrics (3� 3 metrics for the three reference

periods, equalling 27 bands) and selected metadata layers (e.g. day-of-year, year,

compositing score), resulting in a total of 100 bands. The overall accuracy of the

resulting change map was over 90 %. Individual transition classes were subse-

quently recoded to assess agricultural regime changes. For example, agricultural

abandonment included cropland-grassland conversions but also cropland-forest

conversions. Details on the processing, mapping and result interpretation are

provided in Griffiths et al. (2013a).
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2.4 Challenges and Opportunities

The development of time series analysis approaches has grown swiftly during the

last years, as the opening of the Landsat archive and streamlined pre-processing and

data delivery created a surge of new methods and applications. The ongoing

Fig. 2.3 Results of the seasonal compositing of Landsat data for the target year 2010. The top row

shows the spring and fall best observation composite on the left and right, respectively (bands 4-5-

3). The seasonal and annual characteristics of these composites are then summarized, providing

the offset to the respective target day-of-year (middle) and the respective acquisition years

(bottom) for each pixel. The overview map (top left) shows the approximate location
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“repatriation” of Landsat imagery from distributed global archives into the USGS

archive will create further opportunities; for example, the European archive alone

holds 1.5 million unique Landsat scenes not available elsewhere. Yet, the remote

sensing community is just at the verge of a new era, where accelerating global

change meets increasing capabilities for remote sensing data analysis. Forthcoming

challenges and opportunities relate to three intertwined domains.

From an application-focused perspective, the need for new information products

is evident. Classic land use / land cover change analyses need to be improved; for

example, maps of heterogeneous (e.g. savannah landscapes) or dynamic ecosys-

tems (e.g. shifting cultivation systems in the tropics) are still deficient. Beyond this

evident need for enhancements, there is also the need to create more problem-

focused products, such as Essential Climate Variables from remote sensing data.

Without such seamless global databases, climate impact research will fail to create

vital information for climate policy decision makers. Furthermore, information that

supports deciphering land use intensification or extensification patterns where land

use itself has not changed is urgently needed to understand limitations in our use of

natural resources globally. Both will only be possible with spatial high-resolution

dense time series analysis capable of capturing subtle and long-term change

patterns.

From a methods perspective, time series densification depends on improved

image compositing techniques. In a perfect remote sensing setup, data availability

would not be an issue. However, useful optical data are not available with every

satellite overpass because of varying cloud coverage across the globe, daily vari-

ation in illumination and atmospheric conditions, as well as data storage and

downlink-related acquisition constraints. Gaining the maximum amount of usable

pixels from partially cloud covered datasets is hence key to further increased data

density, which in turn is mandatory to successfully monitor processes that are at the

same time driven by phenology and land use.

From a sensor-focused perspective, forthcoming improvements in time series

analyses will depend on our ability to create time series from multiple sensors, often

referred to as “virtual sensor constellations”. Few studies have used multiple

sensors to improve the temporal resolution of time series, mostly employing

different sensors of the Landsat family (Hostert et al. 2003; Main-Knorn

et al. 2013; Pflugmacher et al. 2012). Creating sensor constellations is a non-

trivial task, though, and the remote sensing community is just starting to develop

operational constellation setups. Future virtual constellations will also focus on the

integration of optical and radar data or multi-scale optical data. The latter has been

pioneered based on multi-sensor fusion approaches such as spatio-temporal adap-

tive reflective fusion model (STARFM, Hilker et al. 2009). The most promising

approach, however, will certainly be the integration of new and next-generation

optical land imaging systems with similar characteristics. Specifically, the USGS

Landsat family and ESA-based Sentinel-2 missions will create unprecedented

virtual constellation synergies (Drusch et al. 2012), coming close to the temporal

density of coarse-resolution monitoring systems.
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Chapter 3

Calibration and Pre-processing
of a Multi-decadal AVHRR Time Series

Martin Bachmann, Padsuren Tungalagsaikhan, Thomas Ruppert,

and Stefan Dech

Abstract Since the early 1980s, the German Remote Sensing Data Centre (DFD)

of the German Aerospace Centre (DLR) has received archived and processed

Advanced Very High Resolution Radiometer (AVHRR) data from the Polar

Orbiting Environmental Satellites (POES) of the National Oceanic and Atmo-

spheric Administration (NOAA). By December 2013, over 237,000 paths over

Europe have since been archived at DLR. Based on these High Resolution Picture

Transmission (HRPT) raw datasets, an operational pre-processing and value-adding

chain has been developed (Dech et al., Aerosp Sci Technol 2(5):335–346, 1998;

Tungalagsaikhan et al., Proc. 23th DGPF (12), 2003). In this chapter, the series of

AVHRR sensors is introduced, and information on calibration and system correc-

tion procedures is given. Next, the pre-processing part of DLR’s processing chain is
described, where focus is set on the calibration aspects. Time series examples are

provided to show the influence of changes in calibration over time, and to illustrate

the need for consistent pre-processing and data harmonization. According to these

requirements DLR’s multi-decadal archive of AVHRR data will be re-processed in

the frame of the TIMELINE project, providing consistent and well-calibrated time

series data.
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3.1 Introduction

Within a changing global environment, it is of high importance to monitor the state

of the Earth’s surface and atmosphere. Therefore high-level initiatives, such as the

Global Climate Observing System (GCOS) supported by the United Nations

Framework Convention on Climate Change (UNFCCC) and the Intergovernmental

Panel on Climate Change (IPCC), have set up requirements for Earth Observation

(EO) data products in order to meet the needs of the climate modelling community.

The resulting set of Essential Climate Variables (ECVs) includes key atmospheric

variables (e.g. aerosol and cloud properties), oceanic variables (e.g. sea surface

temperature and ocean color) and terrestrial variables (e.g. albedo and snow cover)

(GCOS/WMO 2009). Similar initiatives to harmonize monitoring schemes using

Earth observation techniques are in development, such as the Essential Biodiversity

Variables (EBVs) from the Group on Earth Observations Biodiversity Observation

Network (GEO BON, see Pereira et al. 2013).

As a response, initiatives such as the ESA Climate Change Initiative (CCI) are

answering to these needs for EO data, and are thus setting requirements for

consistent global time series data using multiple sensors such as MERIS (Medium

Resolution Imaging Spectrometer), SPOT (Satellite Pour l’Observation de la Terre)
Vegetation 1 & 2, and (A)ATSR ((Advanced) Along Track Scanning Radiometer).

These are wide swath sensors that provide data at coarse spatial resolutions (300 m

for MODIS to over 1 km for (A)ATSR and SPOT Vegetation), (quasi-) global

coverage, and high temporal resolution revisit time of 1–3 days. As data from these

sensors has only been available since 1991, in the case of ATSR, and from 2002, in

the case of MERIS (or from 1999 onward for the comparable MODIS on Terra),

there is a significant demand for EO data dating back even further.

A unique source of EO data with long term continuity dating back as far as 1978

is available from the AVHRR (Advanced Very High Resolution Radiometer) series

of sensors. By using AVHRR, regional and global monitoring applications can

therefore achieve long-term coverage (e.g. Gutman and Masek 2012; Swinnen and

Veroustraete 2008) and consequently are able to provide the required input for

global models (e.g. Sellers et al. 1997). Using AVHRR, a variety of thematic

products can be derived on an operational basis, including land and sea surface

temperature products (LST and SST, e.g. Frey et al. 2012; EUMETSAT 2011a;

Casey et al. 2010), vegetation indices such as the Normalized Difference Vegeta-

tion Index (NDVI, e.g. Dech et al. 1998; Fontana et al. 2012), and a number of

advanced cloud properties, such as cloud top temperatures or the liquid/ice water

path (e.g. Kriebel et al. 2003; EUMETSAT 2010).

However, without careful and consistent pre-processing, such applications of

AVHRR data are not possible as uncorrected sensor-related effects may be mis-

taken as trends in the observed thematic time series (e.g. Beck et al. 2011). Thus,

the following presents important details on the series of AVHRR sensors, the

processing requirements and examples for time series data. Focus is on pre-

processing aspects which have a large impact on the consistency of the generated
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time series data, such as the radiometric calibration procedures of reflective and

thermal bands, changes in the spectral response functions, and correction

approaches improving the geolocation of the imagery.

3.2 The Advanced Very High Resolution Radiometer
(AVHRR) Instrument Series

The NOAA AVHRR fleet is a series of cross-track whisk-broom instruments

starting with the launch of the first AVHRR sensor in 1978 on board the NOAA

TIROS-N satellite. Since then the AVHRR series of instruments was successfully

operated on board of 14 of the NOAA polar orbiting environmental satellites

(POES) and on EUMETSAT MetOp-A and B. In addition, AVHRR sensors were

also on board of the failed missions NOAA-B and NOAA-13. Up-to-date and

historical information on the status of NOAA and MetOp platforms and including

the corresponding instrumentations is made available through the Spacecraft Status

Summaries hosted at the NOAA Office of Satellite Operations (OSO) (see http://

www.oso.noaa.gov/poesstatus/). Regarding data processing aspects of the AVHRR

instruments, frequently updated status information is hosted by the NOAA Satellite

and Product Operations (OSPO) (see http://www.ospo.noaa.gov/Products/ppp/

notices.html).

3.2.1 Overview of the NOAA AVHRR Series

Within the long history of the AVHRR series, three versions of the instrument exist,

denoted AVHRR, AVHRR/2 and AHVHRR/3 (Kramer 2002; Kidwell 1998; Robel

2009). Common to all AVHRR sensors is the wide Field of View (FOV) of +/�
55.4� resulting in a swath width of ~2,400–3,000 km (depending on the spacecraft

orbit), and having an Instantaneous Field of View (IFOV) of approximately 1.4

mrad for each channel. This results in a symmetrical ground-projected IFOV at

nadir of approximately 1.1 km, which increases towards the edges of the swath to

approximately 6.2 km (cross-track) by 2.3 km (along-track). For all instruments,

data is digitized to 10 bit precision.

An important change between the instruments is an increase in the number of

bands from four to five and finally to six (Tables 3.1 and 3.2, Fig. 3.1), which have

subsequently improved the mapping capabilities in the thermal and short-wave

infrared domain. However, as can be seen from Figs. 3.2 and 3.3, the spectral

response functions are slightly different for each individual AVHRR instrument,

both between and within an instrument series. Note that the underlying response

function measurements are derived pre-launch and as changes in orbit have

occurred, these response functions are reported to have shifted (Trishchenko 2009).
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In order to provide a rough estimation of the influence of different spectral

response functions of the various AVHRR sensors, a typical vegetation reflectance

signature with a spectral resolution of 5 nm was resampled to the response of

channels 1 and 2 of NOAA 18 and 19 (Fig. 3.4). In this example, the relative

difference in channel 1 between NOAA 18 and 19 is 0.5 %, for channel 2 the

Table 3.1 Overview of the NOAA AVHRR series of instruments

Instrument series Satellite Channels

AVHRR TIROS-N, NOAA-6, 8 and 10 1, 2, 3, 4

AVHRR/2 NOAA-7, 9, 11, 12 and 14 1, 2, 3, 4, 5

AVHRR/3 NOAA-15 onward to NOAA-19, MetOP-A and -B 1, 2, 3A, 3B, 4, 5

Table 3.2 Channels and

spectral sampling range of the

NOAA AVHRR series of

instruments

Channel Approximate spectral sampling range

1 0.58–0.68 μm
2 0.72–1.10 μm
3 3.55–3.93 μm
3A 1.58–1.64 μm
3B 3.55–3.93 μm
4 10.5–11.5 μm (first AVHRR series)

10.3–11.3 μm (AVHRR/2 and/3)

5 11.5–12.5 μm
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Fig. 3.1 Overview of the spectral response functions of AVHRR/3 on NOAA 17
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Fig. 3.3 Spectral response functions of channel 2 of various AVHRR instruments
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relative difference is ~1 %. For band 2, the effective center wavelength shifted by

20 nm, while band 1 is shifted by 2 nm.

Even though these variations in the shape and in the extent of the spectral

response functions between the AVHRR instruments are small, they have a notice-

able impact on generated products like NDVI time series (see Trishchenko 2009;

Swinnen and Veroustraete 2008), with sensor-dependent variations in NDVI of up

to �15 %. Therefore correction approaches for channel-wise top-of-atmosphere

(TOA) radiances (Trishchenko 2009) and correction factors for generated products

(e.g. Trishchenko 2009; Steven et al. 2003) have been determined.

Another change in design of the AVHRR/3 instrument was the introduction of a

dual-gain feature for the reflective channels 1, 2 and 3A. In order to improve the

radiometric resolution of the instrument for low reflectance targets, the dynamic

range of the instrument was divided equally in two ranges, i.e. nominally from 0 to

500 counts and from 500 to 1,000 counts. For channels 1 and 2 half of the available

Digital Number (DN) range is assigned to the low albedo range from 0 to 25 % with

the other half to the high albedo range from 26 to 100 %. This allows for an increase

in the radiometric resolution for dark targets. For channel 3A, the split between low

and high albedo range is set at 12.5 % albedo (Rao and Sullivan 2001).
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Fig. 3.4 Influence of the spectral response functions of AVHRR on NOAA 18 (blue curve) and
NOAA 19 (red curve) on a typical vegetation spectrum (green curve, arbitrary scaling). The blue
diamond symbols represent the data value of the resampled vegetation spectrum for NOAA

18 channels 1 and 2, the red crosses for NOAA 19
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3.2.2 Calibration and System Correction Procedures

An excellent introduction to the calibration of NOAA AVHRR can be found in Rao

and Sullivan (2001). With NOAA-16 still in the commissioning phase in 2001, and

three AVHRR instruments yet to be launched, the following text therefore aims to

add information on the system correction of the instruments post 2001, and only to

briefly summarize the information contained in Rao and Sullivan (2001).

3.2.2.1 Calibration and System Correction of the Reflective Channels

For the whole AVHRR series, no on-board calibration sources exist for the reflec-

tive channels 1, 2 and 3A. Consequently the calibration of the system is based on

the pre-launch calibration conducted under laboratory conditions. Unfortunately,

all instruments did show a different response behavior after launch and have

changed significantly over time (see Fig. 3.5). The reasons for this well-known

degradation are contamination by launch-vehicle exhaust followed by factors when

in space that include the outgassing of the various components, extreme tempera-

ture shifts, exposure to ultraviolet radiation and other factors (see Rao and Sullivan

2001). Therefore one of the main objectives of the NOAA National Environmental

Satellite, Data, and Information Service (NESDIS, see http://www.nesdis.noaa.gov

and NOAA OSPO services as well as the AVHRR Pathfinder programme is to

establish a post-launch calibration for the reflective channels (e.g. Rao and Chen

1994, 1996, 1999). To account for the degradation of the sensor, one can make use

of vicarious approaches such as the calibration over (pseudo-) invariant desert sites

and the intercalibration with airborne and space borne sensors (see Rao and

Sullivan (2001) for details). The prime source for the resulting post-launch calibra-

tion factors are the Level1B Notices provided by the NOAA OSPO. These reports

are available for all operational AVHRR instruments, and date back to the year

2000. Note that they also contain information on instruments and missions before

2000. Since 2006, these previously irregular reports are issued monthly and provide

updates of the calibration values as direct input into the system correction.

Having pre- or post-launch calibration factors available, the system correction

itself is straightforward for the reflective channels 1, 2 and 3A. The calibration from

raw DN count to technical albedo value A (in percent) for channel i is based on the

following simple equation:

Ai ¼ Si C10, i þ Ii ð3:1Þ

where C10,i is the raw DN as 10bit counts for channel i

Si is the slope (or gain factor) for channel i

Ii is the intersect (or offset factor) for channel i

The pre-launch values of slope and intercept of the AVHRR series until NOAA-

14 are documented in Kidwell (1998). Since the beginning of November 1996,

3 Calibration and Pre-processing of a Multi-decadal AVHRR Time Series 49

http://www.nesdis.noaa.gov/


post-launch calibration updates were carried out at monthly intervals (Rao and

Chen 1996), and the resulting calibration factors were made available at various

NOAA sites (for an overview, see: http://www.noaasis.noaa.gov/NOAASIS/ml/

calibration.html). For observations in-between the dates of the monthly updates,

slope and intersect values can be derived by linear interpolation.

During the revision of the post-launch calibration for the NOAA-14 instrument,

an additional factor ρ2 is introduced in the calibration equation which accounts for

seasonal variations of TOA solar irradiation (Rao and Chen 1996).

Consequently,

A*
i ¼ ρ2 Si C10, i þ Ii½ � ð3:2Þ

where ρ is the Earth-Sun distance expressed in astronomical units.

Ai* is the technical albedo in percent adjusted for solar irradiance changes for

channel i

For the reflective channels of the AVHRR/3 series, this equation has to be

applied separately for the low and high albedo ranges taking into account the

valid DN count separating these ranges. For example, for the AVHRR/3 instrument

on NOAA-19, the pre-launch calibration coefficients are defined as listed in

Table 3.3 (Robel 2009) with separate slope and intercept values per albedo range.

Note that the exact count where the low and high albedo range intersect is

slightly variable between sensors (e.g. for NOAA-19 at 497, 501, and 497 counts

for channels 1, 2, and 3A, respectively). This is documented in Robel (2009) and the

frequently updated online resource of NOAA OSPO.

Fig. 3.5 Relative degradation rates of AVHRR channels 1 and 2 on NOAA-7, 9 and 11 (Modified

from Rao and Chen 1994)
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In order to derive the corresponding at-sensor radiance L in units of

[W m�2 μm�1 sr�1] from the technical albedo values in [%], the following

relationship according to Rao and Chen (1996) is used:

A*
i ¼ 100 π Li ωið Þ= F0, i cos θ0ð Þ ð3:3Þ

with

ωi: effective width (in μm) of channel i

F0,i: extra-terrestrial solar irradiance (W m�2) within the pass of channel i

θ0: solar zenith angle

In Robel (2009), the corresponding values for the various AVHRR instruments

are documented. It is worth noting that this data uses the extra-terrestrial solar

irradiance data based on Neckel and Labs (1984). Thus, small discrepancies to

at-sensor radiance measurements using the CEOS (Committee on Earth Observa-

tion Satellites) endorsed irradiance spectrum by Thuillier exist (Thuillier

et al. 2003).

3.2.2.2 Calibration and System Correction of the Thermal Channels

In the following, the calibration of the recent series of AVHRR/3 instruments is

outlined; for the older AVHRR and AVHRR/2 instruments, calibration procedures

are described in Kidwell (1998). For the AVHRR/3 instruments, the on-board

calibration of the thermal channels 3, 3B, 4 and 5 is based on an on-board black

body (also denoted as Internal Calibration Target, ICT) and measurements of deep-

space (Robel 2009; Trishchenko et al. 2002). The ICT temperature itself is not

stable, and is therefore, monitored by multiple Platinum Resistance Thermistors

(PRTs). Thus, the temperature is known within an instrument-specific uncertainty

(see Trishchenko et al. 2002 for details). For each scan line, the whiskbroom

instrument first records 10 readings of deep-space, then the 2,048 readings of the

Earth view (i.e., spatial pixel), followed by 10 readings of the ICT. Therefore, a

Table 3.3 NOAA-19 AVHRR/3 pre-launch calibration coefficients (technical albedo

representation)

Channel # Contents Slope Intercept

1 Low albedo range (0–25 %) 0.055091 �2.1415

High albedo range (26–100 %) 0.16253 �55.863

2 Low albedo range (0–25 %) 0.054892 �2.1288

High albedo range (26–100 %) 0.16325 �56.445

3A Low albedo range (0–12.5 %) 0.027174 �1.0881

High albedo range (12.6–100 %) 0.18798 �81.491

Source: Robel (2009)
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“hot” and a “cold” target with known temperatures are included in every line,

allowing for a two-point calibration.

Within the processing, the internal blackbody temperature is calculated by the

alternating read-out of the four PRTs (see Robel 2009):

TPRT1 ¼ d0 þ d1CPRT1 þ d2C
2
PRT1 þ d3C

3
PRT1 þ d4C

4
PRT1 ð3:4Þ

TPRT2 ¼ d0 þ d1CPRT2 þ d2C
2
PRT2 þ d3C

3
PRT2 þ d4C

4
PRT2 ð3:5Þ

TPRT3 ¼ d0 þ d1CPRT3 þ d2C
2
PRT3 þ d3C

3
PRT3 þ d4C

4
PRT3 ð3:6Þ

TPRT4 ¼ d0 þ d1CPRT4 þ d2C
2
PRT4 þ d3C

3
PRT4 þ d4C

4
PRT4 ð3:7Þ

where CPRT is the count value and TPRT the corresponding temperature in Kelvin.

The instrument-specific coefficients d0 to d4 are listed in Robel (2009). Finally the

average temperature reading TBB of all four read-outs is used:

TBB ¼ 0:25* TPRT1 þ TPRT2 þ TPRT3 þ TPRT4ð Þ ð3:8Þ

Due to effects such as thermal forcing and solar radiation contamination of the

ICT (straylight), and owing to errors in the signal processing and transmission,

short- and long-term fluctuations of the PRT measurements within an orbit can be

observed (Trishchenko et al. 2002; Trishchenko 2002). Therefore, statistical and

Fourier filtering approaches can be used to remove unwanted spikes (Trishchenko

2002), and physical models of the ICT can improve the calibration accuracy

(Trishchenko et al. 2002).

The spectral radiance NBB in units of [mW m�2 cm sr�1] of each thermal

channel for the internal blackbody is computed based on the Planck function over

the spectral response functions of the channels. This is realized by using a look-up-

table (LUT) with a resolution of 0.1 K and for values between 180 and 340 K, which

can be approximated by

TBB
* ¼ Aþ B TBB ð3:9Þ

NBB ¼ c1v
3
c

e

c2vc

T*
BB � 1

ð3:10Þ

with TBB
* denoting the approximated temperature in [K] using the LUT. As before,

the values for the centroid wavenumber vc and the coefficients c1, c2, A and B can

be found in Robel (2009).

A two-point calibration approach is then used to calculate the Earth view

spectral radiance NE using the output of the blackbody reading CBB and the

corresponding blackbody radiance NBB as well as the deep-space reading CS and

deep-space radiance NS. Note that the calibration read-outs are smoothed to elim-

inate noise (see Robel 2009 for details).
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In a first step, linear behavior of the instrument is assumed, thus:

NLIN ¼ NS þ NBB � NSð Þ CS � CEð Þ
CS � CBBð Þ ð3:11Þ

where CE is the count of the Earth view.

However, as known from pre-launch calibrations, the response is non-linear.

Therefore, the next step includes the quadratic nonlinearity correction according to:

NCOR ¼ b0 þ b1NLIN þ b2NLIN
2 ð3:12Þ

with the coefficients as documented in Robel (2009). It is worth noting that

establishing this non-linearity correction for the thermal channels was one achieve-

ment of the NOAA Pathfinder programme (Rao and Sullivan 2001).

Finally, the incoming radiance NE for each Earth reading is calculated by:

NE ¼ NLIN þ NCOR ð3:13Þ

3.2.2.3 Corrections of Satellite Orbit Changes and Related Effects

As the orbit elements for the NOAA series provided by the North American

Aerospace Defense Command (NORAD) are predictions, the resulting uncertainty

in platform position and attitude leads to an increased uncertainty in geolocation of

the generated products, with errors in position up to 10 km (see Fig. 3.6 for an

illustrative example). An approach reducing this effect will be presented in the next

section.

In addition, the series of AVHRR sensors on board various NOAA satellites is

prone to a satellite orbit drift, where the local time of observation, and thus, the

solar zenith angle is slowly changing over the lifetime of the satellite. For reflective

bands, the reduction of this effect requires two processing steps: first, an accurate

atmospheric correction taking into account the increasing downwelling path length;

second, a correction for surface anisotropy with changing sun-target-sensor geom-

etry (i.e., correction of the bi-directional reflectance distribution function (BRDF),

see Gutman and Masek 2012). However, as a changing observation time also

affects the observed temperatures, a correction of the orbit drift effect for longer

time series can hardly be achieved (Gutman 1999).

3.3 DLR’s AVHRR Pre-processing Chain

Due to the importance of AVHRR, multiple receiving, archiving and processing

facilities exist world-wide. For Europe, this includes EUMETSAT (EUMETSAT

2011a, 2013) with various Satellite Application Facilities (SAFs) hosted at different

institutions, the Natural Environment Research Council (NERC) Earth Observation

Data Acquisition and Analysis Service (NEODASS) as well as the NERC Earth
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Observation Data Centre (NEODC, see Groom et al. 2006 and EUMETSAT

2011b), DLR’S World Data Center for Remote Sensing of the Atmosphere,

WDC-RSAT and the AVHRR processing within the Data and Information Man-

agement System DIMS (see WDC-RSAT (http://wdc.dlr.de/about/), Dech

et al. (1998), and http://www.timeline.dlr.de), and the ESA archive, hosted at

ESA Earthnet Online (https://earth.esa.int/web/guest/missions/3rd-party-missions/

current-missions/noaa-avhrr). In addition, universities have receiving and archiving

facilities, such as the Freie Universität Berlin, Germany (http://www.geo.fu-berlin.

de/met/ag/sat/satdaten/index.html) or the University of Bern, Switzerland (http://

www.geography.unibe.ch/content/forschungsgruppen/fernerkundung/forschung/

noaa_avhrr/avhrr_data_archive/index_eng.html).

In the following, the processing scheme for NOAA AVHRR High Resolution

Picture Transmission (HRPT) telemetry data at DLR is outlined (see Dech

et al. 1998 and Tungalagsaikhan et al. 2003). Within this processing and data

management environment, 30 plus years of NOAA-AVHRR raw data were

processed to L1b, L2 and L3 data products, so that by Dec. 2013, over 237,000

scenes over Europe are available at DLR (Fig. 3.7).

The overall workflow of this operational processing scheme is depicted in

Fig. 3.8. After reception at DLR’s ground segment, the HRPT data is imported,

Fig. 3.6 Illustrative example for the discrepancy in geolocation between an AVHRR pass and the

coastlines (in cyan), with red arrows indicating the direction and magnitude of local displacement

(See Frey et al. 2014)
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Fig. 3.7 Archived NOAA AVHRR scenes at DLR-DFD (receiving stations DLR Oberpfaf-

fenhofen and FU Berlin)

Fig. 3.8 Workflow of DLR’s AVHRR processing chain
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and archived within DLR’s multi-mission infrastructure DIMS (see Heinen

et al. 2009). Next, the extraction and generation of metadata is conducted, which

is based on functionalities of the TeraScan software by SEASPACE. Extracted

parameters and datasets include the satellite ID, the time and date of path, the

generation of latitude/longitude grids, of satellite zenith angle grid, of sun zenith

angle grid, and of relative azimuth grids. Subsequently the raw HRPT image data is

processed, which includes the calibration of the reflective and thermal channels,

and thus, the conversion from raw digital numbers to physical units (to percent

technical albedo for solar channels 1, 2, and 3A and to brightness temperatures in

degrees Celsius/Kelvin for channels 3, 3B, 4 and 5) as described in Sect. 3.2.2.

Optionally the filling of bad and missing data by duplicating nearby lines, and the

correction for the seasonal variation of the TOA solar irradiance can be applied, but

this is not included in the standard processing scheme.

As described in Sect. 3.2.2.3, the uncertainty in satellite exterior orientation can

result in errors in position of up to 10 km. To reduce this error, an improved

autonavigation approach is implemented at DLR (see Tungalagsaikhan

et al. 2003), extending the functionality of TeraScan (SEASPACE). Using an

external coastline dataset, first a set of subsets (“boxes”) with clearly identifiable

features are generated and extracted. Next, a land/water mask is generated using the

AVHRR imagery. Then the correlation of the land/water mask and the static

coastline is calculated for each box, applying various offsets in x and y directions

in order to find the best fit between the datasets. Next, a set of correction values for

the satellite exterior orientation (yaw, pitch and roll angles, and including tilt if

necessary) and start time is generated based on least-squares fit of the box coordi-

nates. To improve this process, an iterative approach was developed at DLR, where

in a first step boxes with medium correlation values are also included to allow for a

coarse navigation. In two subsequent iterations, fine navigation is achieved by only

including boxes with high correlation values. Thereby, the resulting accuracy in

position is typically within one pixel independent of the position within the swath,

with worst-case errors in geolocation of 5–6 km. For datasets where human

interaction is required, an operator must change the values for start time and

satellite exterior orientation until an optimal navigation is achieved.

Based on these calibrated and autonavigated pre-processed datasets, higher level

products are generated. These include the APOLLO (AVHRR Processing scheme

Over cLouds Land and Ocean) cloud screening and cloud products (Kriebel

et al. 2003), the remapping into map projections, thematic products (NDVI, LST,

SST, cloud products), and temporal composites of synthesis products. The archived

and processed L1 and L3 data products are accessible using DLR’S EOWEB

gateway (http://eoweb.dlr.de/), and atmospheric products are accessible via the

WDC-RSAT portal hosted by DLR (http://wdc.dlr.de/).

Within the frame of the TIMELINE project (http://www.timeline.dlr.de), DLR’s
processing chain is currently being re-designed in order to re-process all archived

data in an improved and consistent way (Frey et al. 2014). The processing will
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now include an atmospheric correction, the improved APOLLO13 cloud

processor, and an increased number of higher-level products (Table 3.4).

The current design also includes an improved chip-matching and a subsequent

ortho-rectification process to improve existing shortcomings within the geomet-

ric correction. For the instrument-dependent spectral response functions, an

adjustment similar to the approach by Trishchenko (2009) will be applied.

Regarding the radiometric calibration, additional harmonization factors are

provided within the metadata. These additional gain and offset values for each

dataset are derived from time series analysis over pseudo-invariant calibration

sites, so that the consistency of the resulting multi-sensor time series is improved.

The importance of such a re-calibration process will be further discussed in the

following sections.

3.4 Influence of Calibration and Re-calibration

As described in Sect. 3.2.2.1, the calibration of the reflective channels of the

AVHRR series is critical, as the slow degradation of the visible channels can

reach a magnitude of a few per cent per year. Therefore, the resulting post-launch

values for gain and offset change significantly over time. In order to understand the

changes in sensor calibration, a number of experiments were carried out by the

authors in the context of the TIMELINE project. These will be described in this

section. Approaches towards an improved calibration are then discussed in

Sect. 3.5.

Table 3.4 Foreseen TIMELINE products (Frey et al. 2014)

Type Variable

Calibration Radiance at sensor

Surface radiative

variables

TOA and BOA/Reflectance and brightness temperature

Land and sea surface temperature (LST/SST)

Sea surface temperature (SST)

Land surface Vegetation variables (NDVI, LAI, FAPAR, FVC)

Burnt area and fire detection (“Hot Spots”)

Water masks

Cryosphere Snow and ice over land, Sea ice coverage

Atmosphere Cloud masks

Degree of cloud cover, thermodynamic cloud phase, cloud top tempera-

ture, cloud height, cloud optical thickness, precipitation potential

BOA bottom-of- atmosphere, LAI leaf area index, FAPAR fraction of absorbed photosynthetically

active radiation, FVC fraction of vegetation cover
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3.4.1 Calibration Over Time

In the following, examples of the variability in the calibration are given. For this

purpose, AVHRR/3 on board of NOAA-18 (launched in May 2005), is chosen as

this sensor has a long history of data acquisitions in DLR’s archive. All values are
based on the values included in SEASPACE, and the monthly updates by NOAA

OSPO, as used in DLR’s processing system. At DLR, NOAA-18 was mainly used

until 2012, so the ~7 years between the beginning of the operational phase and 2012

are shown.

When comparing the pre- to the first post-launch calibrations of channel 1 and

2 (Tables 3.5 and 3.6), a strong decrease in the gain settings of channel 1 can be

observed, whereas for channel 2 gain has strongly increased. When plotting the gain

and offset factors over time (Figs. 3.9, 3.10, 3.11 and 3.12) a larger variability is

observed from launch until the beginning of 2007, with the gain in channel

1 reduced by 8 %. Since then, the overall trend of the gain in channels 1 and 2 is

a steady increase. By 2012 the gain of channel 1 is close to the pre-launch estimate,

whereas channel 2 has seen a relative increase of ~20 % (Figs. 3.13 and 3.14).

Within the overall trend of an increasing gain and decreasing offset, shorter phases

of opposing trends also occur which cannot be described by a function, but must be

provided as individual factors. In Fig. 3.15, these differences are depicted based on

the relative changes compared to pre-launch values. The relative changes in gain

and offset over time are similar, but also here small differences are obvious

(Fig. 3.16).

Table 3.5 Changes in calibration of AVHRR, NOAA-18, channel 1

Year

Day

of

year

Low

albedo,

slope

Low

albedo,

intercept

Cut (in DN) between

low and high gain

High

albedo,

slope

High

albedo,

intercept

2005 Pre-

launch

0.05400 �2.130 501 0.16100 �55.37

2005 256 0.05045 �1.990 501 0.15040 �51.73

. . .

2012 160 0.05581 �2.200 501 0.16640 �57.22

Table 3.6 Changes in calibration of AVHRR, NOAA-18, channel 2

Year

Day

of

year

Low

albedo,

slope

Low

albedo,

intercept

Cut (in DN) between

low and high gain

High

albedo,

slope

High

albedo,

intercept

2005 Pre-

launch

0.05290 �2.084 501 0.15873 �55.31

2005 256 0.05485 �2.161 501 0.16460 �57.35

. . .

2012 160 0.06444 �2.539 501 0.19340 �67.37
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3.4.2 Impact on Generated L1b Products

In order to study the effects of sensor degradation over time, and to assess the influence

of a re-calibration in the generated time series, similar approaches as for the post-

launch calibration are frequently applied. A recent overview of such approaches

including an extensive list of references can be found in Chander et al. (2013).
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Fig. 3.9 Change of post-launch calibration – offsets (low albedo), NOAA 18, channel 1 (solid
line), channel 2 (dotted)
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Fig. 3.10 Change of post-launch calibration – gain (low albedo), NOAA 18, channel 1 (solid
line), channel 2 (dotted)
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In order to clearly discriminate changes from sensor response to changes of the

observed area on the Earth’s surface, not every location is suitable. Therefore, a

number of requirements for vicarious validation and calibration test sites exist.

Suitable sites have to be large in relation to the ground-projected IFOV of the

sensors, as well as, spatially and spectrally homogeneous in order to reduce the

influence of errors in geolocation. In addition, the sites shall be temporally
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Fig. 3.11 Change of post-launch calibration – offset (high albedo), NOAA 18, channel 1 (solid
line), channel 2 (dotted)
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Fig. 3.12 Change of post-launch calibration – gain (high albedo), NOAA 18, channel 1 (solid
line), channel 2 (dotted)

60 M. Bachmann et al.



invariant, both across seasons and over multiple years. Sites with stable climatic

conditions and sites located at high altitudes are preferred in order to reduce the

influence of the atmosphere. High-albedo surfaces are preferred so that changes in

sensor gain can be easily identified. Consequently, non-vegetated deserts and salt

lakes are the most suitable calibration targets. A catalogue of well-suited and

established calibration sites is given in the Catalogue of CEOS Landnet sites
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Fig. 3.13 Relative change in low albedo offsets pre- to post-launch; NOAA 18, channel 1 (solid
line), channel 2 (dotted)
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Fig. 3.14 Relative change in low albedo gains pre- to post-launch; NOAA 18, channel 1 (solid
line), channel 2 (dotted)
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(CEOS see http://calvalportal.ceos.org/ceos-landnet-sites, USGS see http://calval.

cr.usgs.gov/rst-resources/sites_catalog/).

In this study, we present the following examples from the CEOS-endorsed sites

Libya 4 and Algeria 3 (see Fig. 3.17 for coordinates and overview imagery), which

are bright, spatially and spectrally homogeneous (i.e., dunes at different scales), and
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Fig. 3.15 NOAA 18, channel 1. Solid line: relative low albedo gain, green stars: relative high

albedo gain, dashed line: difference low – high, magnified by factor 100
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Fig. 3.16 NOAA 18, channel 1, low albedo. Solid line: relative low albedo gain to pre-launch,

green triangles: relative low albedo offsets to pre-launch, dashed line: difference relative change
in gain – relative change in offset, magnified by factor 100
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represent large usable areas of 75 by 75 km. These desert targets in Libya have been

frequently used for AVHRR re-calibration and inter-satellite standardization

(e.g. Rao and Sullivan 2001 for the NOAA/NASA Pathfinder programme, and

also Casey et al. 2010 for the Pathfinder SST project).

Additional requirements exist when monitoring a sensor over larger timescales.

This is particularly the case when dealing with sensors prone to larger degradation

or when inter-calibrating between different sensors. Examples include

– data acquisition at same local time and observation angle, or otherwise modeling

of the site BRDF and correction for atmospheric conditions including path

length differences

– similarity of spectral response functions, or otherwise modeling approaches

accounting for this effect

– similarity of spatial resolution, or otherwise spatial modeling

– exclusion of all datasets with cloud and cloud shadow contamination.

Libya 4 Algeria 3

Center Lat/Lon: 28.55N, 23.39E Center Lat/Lon: 30.32N, 7.66E

AVHRR on NOAA-19, channels 1,2,1 (non-
linear stretch), scene 2012/07/27_1142

AVHRR on NOAA-19, channels 1,2,1 (non-
linear stretch), scene 2012/03/06_1150

Zoom of ETM+ Bands 3,2,1, scene 2003/04/29 Zoom of ETM+ Bands 3,2,1, scene 2003/05/05

Fig. 3.17 CEOS test sites used in this study (Source of ETM+ imagery: http://calval.cr.usgs.gov/

rst-resources/sites_catalog/)
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For AVHRR, the problems of orbit drift, and to a lesser degree, the changes

in spectral response functions have to be accounted for. In order to illustrate the

effect of local viewing time and differences in the Earth-Sun distance, three

different pre-processing steps are depicted in Fig. 3.18. Without the filtering of

cloud-contaminated scenes, large outlier values of technical albedo can be observed

especially in spring and winter (red curve in Fig. 3.18). The inclusion of observa-

tions with larger off-nadir view angles results in a generally large scattering of

about an absolute value of 5 % technical albedo, and the seasonally change of the

Sun-Earth distance is clearly visible. When including only scenes where the target

area is located close to nadir, and with a strict filtering of cloud-contaminated

pixels, outliers and scattering from the overall trend are significantly reduced, but

still the seasonal effect for this scene has a magnitude of ~10 % absolute in

technical albedo (blue curve in Fig. 3.18). When this effect is accounted for, a

stable signal without the influence of too many external influences can be observed

(black curve). Note that still the technical albedo is not constant over time, but

shows a slight seasonal trend with a magnitude of ~3–4 % technical albedo.

Nevertheless, with an adequate pre-processing and with an exclusion of unsuitable

scenes, it is possible to observe any sensor-related effects. Thus, in the following

only scenes with observation times between 11:00 and 13:00 GMT and observation

angles for the two test sites close to nadir (within�10�) are considered. In addition,
the resulting time series were checked for cloud contamination over the sites. When

using these cloud and nadir thresholds for the years 2012 and 2013, 308 observa-

tions (out of a total of 736) are considered as suitable for Libya4, and 96 observa-

tions (out of a total of 524) are suitable for Algeria3. Furthermore, an analysis of
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Fig. 3.18 Influence of pre-processing steps. Test site Libya 4, year 2012. Red triangles: no solar

correction, all observation angles, no filtering, no strict cloud screening, vertical offset for clarity

(see red scale bar on the right); blue triangles: no solar correction, close to nadir, Lee-filtered,

cloud screening; black crosses: solar corrected, close to nadir, Lee-filtered, cloud screening
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NDVI time series indicated that vegetation was absent through the year. For a

further removal of outliers, a Lee-filter as implemented in IDL (EXELIS VIS) was

applied.

When analyzing the resulting time series for both the Algeria 3 (Figs. 3.19 and

3.20) and Libya 4 (Figs. 3.21 and 3.22) test sites, the post-launch calibration

resulted in an overall decrease in technical albedo in channel 1, and an increase

in technical albedo in channel 2 compared to the pre-launch calibration. The

absolute magnitude of this is about �2.5 % technical albedo in channel 1 and

+2.7 % technical albedo in channel 2 for Libya4.

When plotting the relative change (Fig. 3.23), this shows a mean difference in

technical albedo of �6.1 % in channel 1, and a mean of about +6.6 % in channel

2 (not depicted) for both test areas, with obvious changes over time. As these

relative changes are highly consistent for both test sites, there is high confidence in

the observed trends. When comparing this change in relative difference in the

technical albedo values of the pre-/post-launch with the series of changes in

calibration (esp. in slope, see Figs. 3.24 and 3.25), similarities occur. Most prom-

inent, the increase towards the peak around day 70 and the subsequent decrease

with its center around day 125 is visible both in the relative technical albedo

difference, as well as, in the slope values. In addition, an area of minor changes

occurs in both series between days 230 and 300, with an overall increasing trend.

Thus, these differences in sensor pre- to post-launch calibration have a direct

influence on the technical albedo product of over 6 % in case of AVHRR on

NOAA-19 for the years 2012/13.
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Fig. 3.19 Technical albedo values for AVHRR/3 on NOAA-19: Algeria 3, channel 1; red:
pre-launch, black: post-launch calibration
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Fig. 3.20 Technical albedo values for AVHRR/3 on NOAA-19: Algeria 3, channel 2 red:
pre-launch, black: post-launch calibration
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Fig. 3.21 Technical albedo values for AVHRR/3 on NOAA-19: Libya 4, channel 1; red:
pre-launch, black: post-launch calibration
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3.5 Towards Data Harmonization and Consensus
Calibration

In addition to the post-launch calibration values provided by NOAA OSPO and

NOAA NESDIS (i.e., Rao 1987; Rao and Chen 1996, 1999), quite a number of

alternative calibration factors exists, including the works by Vermote and Saleous

(2006), Che and Price (1992), Teillet and Holben (1994), Swinnen and Veroustraete

(2008). In Figs. 3.26 and 3.27, the comparisons of different calibration factors for

NOAA-9 (from Rao et al. 1993) and for NOAA-14 (Rao and Sullivan 2001) provide

an idea of the spread within different post-launch calibration sets. When creating

time series based on data from multiple AVHRR instruments, additional cross-

calibration between instruments has to be conducted using approaches based on

simultaneous nadir overpass observations and reference targets (Latifovic

et al. 2012) or statistical approaches (Schmidt et al. 2008). Still the review paper

by Molling et al. (2010) shows that the differences between long-term calibration

sets can reach a magnitude of up to 10 %.

As one of the main requirements of long time-series is the consistency in the

data, and as these calibration differences lead to non-compatible products between

processing facilities, harmonization of the calibration of the AVHRR reflective

channels is an important venture. In addition, the presented subtle changes in the

spectral response curves and also the usage of different solar irradiance spectra can

increase the differences in the processed data of different processing facilities.
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In order to improve the consistency in calibration between processing facilities,

and to achieve a consensus in the post-launch calibration, the initiative by NOAA/

NESDIS (Heidinger et al. 2010 and Molling et al. 2010) is most advanced. One

component is the generation of the AVHRR Pathfinder Atmospheres Extended

(PATMOS-x) dataset, which is based on the vicarious calibration using MODIS
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black crosses: Algeria. No filtering of data applied
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as reference for the years from 2000 onwards. Simultaneous nadir observations for

a Libyan Desert site and DOME-C in Antarctica is used for inter-calibrating

between MODIS and AVHRR, and also between the various AVHRR sensors,

thus extending the calibration back to the very early AVHRR sensors. The accuracy

of the derived calibration coefficients are within 2 % for channel 1, and within 3 %

for channel 2 relative to MODIS, therefore providing an improved baseline for the

generation of consistent and well-calibrated time series. Within DLR’s TIMELINE

re-processing, the foreseen provision of harmonization factors for each dataset has

the advantage to provide transparency on the calibration. If desired, the user can

easily apply these factors, or keep the standard calibration by NOAA OSPO and

NOAA NESDIS. And as these bandwise gain and offset harmonization factors will

be based on the analysis of multi-sensoral AVHRR observations over CEOS sites in

North Africa, they are thus consistent in the methodology to the mentioned

approaches.

3.6 Conclusions

In this chapter, the pre-processing chain for the multi-decadal archive of AVHRR

data at DLR was outlined. The critical parts of the system correction were

addressed, including the radiometric calibration, changes in the spectral response

functions, and geocoding when having orbit data with changing accuracy. The

necessity of accurate in-flight radiometric calibration was demonstrated using

time series examples for pseudo-invariant CEOS test sites. This is especially crucial

Fig. 3.27 Change in calibration for NOAA-14 according to various studies (From Rao and

Sullivan 2001)
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for the older AVHRR sensors, with NOAA-9 having a degradation rate of almost

6 % per year. But also the newer sensors require a frequent adjustment of in-flight

calibration, with NOAA-18 showing a relative difference in gain and offset of

~20 % in 6 years when compared to laboratory calibration. Next, even though the

band widths of the AVHRR channels are comparably broad, changes in the spectral

response functions have a significant influence on the sensed signal. As a conse-

quence, derived products such as the NDVI can be inconsistent between different

AVHRR sensors, with sensor-dependent variations of over 10 % in NDVI. Regard-

ing the image geometry, both systematic shifts and additional local distortions in

geolocation can be observed, resulting in geocoding errors of up to 10 km. There-

fore an adjustment of the orbit parameters using coast line data is can significantly

improve the geolocation.

As the mentioned factors have a significant influence on the consistency of the

generated time series data, alternative correction approaches and advanced methods

were briefly presented. Taking these new developments into account, DLR’s
AVHRR pre-processing chain is currently being re-designed and extended in

context of the TIMELINE project (http://www.timeline.dlr.de). This will include

an improved geocoding by means of image-to-image matching and subsequent

ortho-rectification. The radiometric calibration of the reflective and thermal chan-

nels will be improved and harmonized by taking developments towards a consensus

calibration into account. Also the effect of different spectral response functions will

be corrected using an established approach. Making use of this advanced pre-

processing scheme, an improved consistency in thematic data products within the

lifetime of one sensor, between sensors of the same series and also between

different sensors can be achieved.
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Chapter 4

Analysis of Snow Cover Time Series –
Opportunities and Techniques

Andreas J. Dietz, Claudia Kuenzer, and Stefan Dech

Abstract Snow cover is one of the most dynamic land cover parameters that can be

monitored from space and plays an important role for the Earth’s climate system

and hydrological circle. While the spatial extent can be limited to narrow mountain

ridges during summer, the snow cover percentage on the Northern Hemisphere may

exceed 50 % (Lemke et al., Observations: changes in snow, ice and frozen ground.

In: Solomon S, Qin D, Manning M, Chen Z, Marquis MC, Averyt K, Tignor M,

Miller HL (eds) Climate change 2007: the physical science basis. Contributions of

Working Group 1 to the fourth assessment report of the intergovernmental panel on

climate change. Cambridge University Press, Cambridge and New York, pp 337–

383, 2007) of the total land surface (~45 million km2) during winter seasons (Barry

et al., Global outlook for ice & snow. United Nations Environment Programme,

Hertfordshire, 2007). Remote sensing has been used since the early 1970s to map

terrestrial snow cover (Brown, J Clim 13:2339–2355, 2000) and both – sensors as

well as retrieval algorithms – have undergone a substantial development since that

time. This chapter will give a short introduction on how snow cover can be

monitored from space. Furthermore, techniques will be outlined that show how

time series analyses can be applied to remotely sensed snow cover products to

reduce the compromising effect of cloud cover and to investigate the fundamental

characteristics of snow. Time series of snow cover data allow for various analyses

covering the fields of hydrology, climate research, flood prediction and manage-

ment, and economy. Short term variations and extreme events can be analysed as

well as long term climatological trends, constituting time series of snow cover data

a valuable tool for a large bandwidth of applications.
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4.1 Introduction

Changes in Global snow cover characteristics have been observed that have several

severe impacts on various aspects of the environment, including available fresh

water resources, intensity and quantity of occurring floods and droughts, hydro-

power generation, winter tourism, food production, permafrost, glacier mass bal-

ance, and atmospheric circulation patterns. Because of all these implications and

the fact that changes are predicted to intensify in the future, snow cover was

identified as an Essential Climate Variable (ECV) within the Global Climate

Observing System (GCOS) (WMO and GCOS 2011) and addressed as a most

critical climate component by the Intergovernmental Panel on Climate Change

(IPCC) (Lemke et al. 2007) and the United Nations Environment Program

(UNEP) (Barry et al. 2007). The principles of how to map snow cover from space

have been summarized in various review articles before (e.g. Dietz et al. 2012a;

Frei et al. 2012; Solberg et al. 2006) and will therefore only be referred to briefly.

Although it is generally possible to use Synthetic Aperture Radar (SAR) data as

well as data from passive microwave (PM) sensors and the reflective part of the

spectrum to estimate snow cover parameters, only the latter two sources are

common within the context of snow cover time series (K€onig et al. 2001). This

chapter will be limited to snow cover analyses based on observations from the

reflective part of the spectrum. A special focus will be directed onto processing and

analysis of snow cover time series. Only by analysing time series of daily snow

cover conditions over multiple years possible long term changes of snow cover can

be recognized. Cloud coverage, polar darkness, and additional limitations arising

from forested areas and mountainous regions can cause problems during the

preparation of gapless time series (Salminen et al. 2009; Vikhamar and Solberg

2002). In the following it will outline how these problems can be dealt with.

4.2 Remote Sensing of Snow

The basis for detecting snow cover from the reflective part of the spectrum relies on

its distinct spectral properties. Depending on the available sensor, a combination of

these properties renders snow a unique land cover feature and allows discriminating

between snow, ice, clouds, and the remaining land cover types. Challenges exist

that emerge from the high variability of snow, the surrounding land cover itself, and

sensor limitations like resolution and spectral band widths. These challenges will be

addressed to in the following section before techniques to classify snow and process

time series of snow cover data follow in the subsequent sections.
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4.2.1 Snow Cover Mapping from Space – Physical
Background and Limitations

Freshly fallen snow reflects around 90 % of radiation in visible wavelengths (Hall

and Martinec 1985). This value drops near zero for longer wavelengths in the near

infrared region, creating an explicit gradient that can easily be monitored and

exploited for snow cover mapping from operational satellite sensors (Pepe

et al. 2005). This gradient is especially useful to discriminate between clouds and

snow, as clouds reflect a higher proportion of incoming solar radiation in the short

wave infrared. Figure 4.1 illustrates the spectral signature of different snow types:

freshly fallen snow crystals (purple plot), intermediate (cyan plot), and aged snow

crystals (dark blue plot).

The different signatures in Fig. 4.1 are the result of multiple modifying effects

occurring once the snow crystals have accumulated on the ground: Grain size and

shape are changing while aging, leading to larger crystal sizes. This metamorphosis

of snow crystals can be caused by the pressure within the snow pack or melt- and

refreeze processes (Foster et al. 1999; Rango 1996). Furthermore, impurities like

soot or dust may reduce the reflectance by up to 5 % while they also increase the

absorption of incoming solar radiation (Aoki et al. 2007; Hadley and Kirchstetter

2012).

Remote sensing sensors observing the reflective and emissive part of the spec-

trum provide the bandwidths necessary to detect snow cover relying on the char-

acteristics presented in Fig. 4.1. The minimum requirements – bands covering the

visible and short wave infrared – are provided by all instruments enlisted in

Table 4.1 that includes a selection of sensors commonly used for snow cover

mapping along with some additional information about revisit time, resolution,

and swath width.

Many different techniques exist to map snow cover based on the instruments

listed in Table 4.1. We again refer to (Frei et al. 2012) and (Dietz et al. 2012a) for a

detailed overview. The strong gradient between visible and short wave infrared
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Fig. 4.1 Spectral characteristics of different snow types (Modified from Dietz 2013)
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(Fig. 4.1) constitutes the basis for methods aiming to detect snow cover in remotely

sensed data from the reflective part of the spectrum. The Normalized Difference

Snow Index (NDSI) is often used to automatically classify snow covered surfaces.

Introduced by (Crane and Anderson 1984), the NDSI is based on the difference

between the visible and shortwave infrared reflectance:

NDSI ¼ VIS� SWIRð Þ
VISþ SWIRð Þ ð4:1Þ

NDSI values greater than 0.4 are usually a good indicator for the presence of

snow (Hall et al. 1995), though mixed pixel/fractional snow cover effects, forest

cover, or impurities within the snowpack can reduce the NDSI. Land cover induced

limitations like snow cover underestimation within forested regions can be miti-

gated by providing additional input data: A forest-inventory map can help to

increase the accuracy of snow classifications as certain thresholds (e.g. for NDSI)

can be adjusted to local land cover conditions (Vikhamar and Solberg 2003). The

NDSI can be used to detect snow in Landsat scenes (Ault et al. 2006) and it serves

as classification basis for the operational MODIS snow cover products (Hall

et al. 2002). The snowmap algorithm (Hall et al. 1995) that produces the operational

MODIS snow products (MOD 10 product line) differentiates between forested and

non-forested regions: The NDSI threshold of 0.4 (for non-forested areas) is reduced

in regions with forest cover to prevent underestimation of actual snow cover. A

second test is added to prevent overestimation of snow: The reflectance of MODIS

band 4 must exceed 10 % for each pixel in order to be mapped as snow (Klein

et al. 1998). Dark surfaces like water bodies tend to receive NDSI values greater 0.4

Table 4.1 Remote sensing instruments used to map snow cover from the reflective part of the

spectrum

Satellite(s) – Instrument(s)

Operational since/

until

Revisit

time

Spatial

resolution

Swath

width

Landsat – MSS/TM/ETM+/

OLI

1972/Today 16–18 days 30–100 m 185 km

Terra, Aqua – MODIS 2000/Today Twice per

day

250–1,000 m 2,330 km

TIROS/NOAA/Metop –

AVHRR

1978/Today At least

daily

1,100 m 2,400 km

Envisat/AATSR 2002/2012 2–3 days 1,000 m 500 km

Envisat/MERIS 2002/2012 2–3 days 300 m 1,150 km

ERS-2/ATSR-2 1995/2011 2–3 days 1,000 m 512 km

Sentinel 2 To be launched in

2015

3–5 days 10–60 m 290 km

Sentinel 3 – OLCI/SLSTR To be launched in

2015

1–2 days 300–500 m 1,270 km

Sources: Donlon et al. (2012), Dozier (1989), Drusch et al. (2012), ESA (2013a, b), Hall

et al. (1995), Malenovský et al. (2012) and Solberg et al. (2010)
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and by introducing the 10 % threshold of band 4, misclassifications can be reduced

to a minimum. The overall accuracy of the operational MODIS snow products

reaches 93 % (Hall and Riggs 2007).

One of the first fully automated snow cover classification algorithms was the

AVHRR Processing scheme Over Land, cLoud and Ocean (APOLLO). AVHRR

data are suitable for time series analysis because these sensors exist since 1979,

observing the Earth on a daily basis and with a resolution that fits the requirements

stated by GCOS. Therefore, an automated method to extract snow cover informa-

tion from AVHRR data and discriminate between clouds and snow is highly

desirable. APOLLO consists of various tests for cloud detection based on distinct

thresholds. Details about the cloud screening can be found in (Saunders and Kriebel

1988) – they are not in the focus of the presented methods to process snow cover

data. The module to detect snow cover however is illustrated in Fig. 4.2. It is part of

an extension to map ice and snow from AVHRR (Gesell 1989). As Fig. 4.2 shows,

the snow cover detection is based on several tests involving all available AVHRR

channels. The extension was added to APOLLO because snow was often mistak-

enly classified as cloud cover. The Dynamic Visible Threshold (DVT) test, the ratio

between channel 2 and channel 1 reflectance (R21T), and the temperature differ-

ence between channel 4 and channel 5 (T45T) were especially susceptible to these

misclassifications. In the extension, a channel 3 threshold test is added to validate

the cloud flagged pixels. In this step a pixel may be recoded to snow, increasing the

accuracy of the snow cover classification. APOLLO was developed between 1986

and 1988 and may therefore be presumed to be outdated. The snow and ice

extension and additional other improvements (Kriebel et al. 2003) make it an

attractive alternative if additional input data (as they are required for the SPARC

routine introduced in the next paragraph) are not available.

Another method that has been developed especially for AVHRR data is Sepa-

ration of Pixels Using Aggregated Rating over Canada (SPARC) (Khlopenkov and

Trishchenko 2007). SPARC consists basically of three cloud tests and additional

snow and thin cirrus tests, each producing a score value that when summed up from

all tests will give the final aggregated rating value. The difference between this

approach and many other commonly applied methods (like APOLLO, CLAVR,

MODIS scheme) is that SPARC performs all tests independently from each other.

The branching approach within most alternative methods will decide step by step

(often threshold by threshold, see Fig. 4.2) if a pixel may be covered by clouds or

snow but it is usually impossible to go back through these steps and change a prior

decision based on a following test result. In SPARC, tests for temperature (differ-

ence between ground temperature and satellite-based brightness temperature),

reflectance brightness (based on the reflectance in band 1 over land and band

2 over water), and reflectance (involving the reflectance in band 3) are performed

and completed by additional snow, uniformity, and thin cirrus tests. The sum of all

these test results can then be used to detect the snow. This method was used for

Canada (Khlopenkov and Trishchenko 2007) and in a modified version also for

Europe (Hüsler et al. 2012). The drawback of SPARC is that additional input
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parameters (skin temperature) are required. These may not always be available for

the respective study region or time span.

Unfortunately, operational snow products based on AVHRR at 1 km resolution

are not freely available for download at the moment. Users interested in time series

of medium resolution snow cover data are therefore reliant on the MODIS snow

cover products. If time series prior to the year 2000 are required, snow cover can be

derived from raw AVHRR data relying on e.g. the SPARC or APOLLO routines.

The GlobSnow snow extent products are available on a daily basis since 1995, but

as the snow cover information is derived from Envisat AATSR and ERS-2 ATSR-2

sensors, a full global coverage is not achieved on a daily (not even weekly) basis

(Luojus et al. 2013).

While snowmap, SPARC, and APOLLO only discriminate between two classes

(snow covered and snow free pixels), fractional snow cover algorithms exist that

detect the snow cover percentage within each pixel. Though the binary information

is usually enough for large scale planetary or continental studies, information about

the snow cover fraction within each pixel may be required for small scale investi-

gations. Hydrological applications can benefit from fractional snow cover data

especially when analysing or predicting runoff in small hydrological catchments

(Bales et al. 2008; Metsamaki et al. 2005).

Fractional snow cover data is not a necessary input for the presented methods to

analyse time series of snow cover data. That is because these methods aim to make

Fig. 4.2 APOLLO scheme to detect snow cover from AVHRR data (RC3: Reflectance in channel
3; DC1-C2: Difference between channel 1 and channel 2; T4: brightness temperature in channel 4;

RatioC1/C2: ration between channel 1 and channel 2; DVT: dynamic visible threshold; R21T: ratio
between channel 1 and channel 2 – cloud test; T45T: difference between brightness temperatures

of channels 4 and 5)
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statements about temporal aspects like duration (overall, early season, late season)

of one or multiple snow seasons. Binary snow cover information is sufficient for

studies about such topics. However: systematic errors may occur especially in

mountainous regions if fractional snow cover is not considered (Dozier et al.

2008). Therefore, one technique for fractional snow cover mapping is presented

here. For additional references, Frei et al. (2012) and Dietz et al. (2012a) should be

referred. The MODIS Snow-Covered Area and Grain size (MODSCAG) model

relies on spectral unmixing to assess the proportional snow cover fraction within

each observed pixel (Painter et al. 2009). A library of different snow endmembers

(basically consisting of several snow grain sizes) is used additionally to rock, soil,

vegetation, and lake ice endmembers. The grain size influences the spectral char-

acteristics of snow as already illustrated in Fig. 4.1. Therefore, an estimation of

fractional snow cover is only feasible when also estimating the grain size of the

snow pack. MODSCAG applies linear spectral mixture analysis to each possible

combination of endmembers from the spectral libraries. Snow cover fraction and

grain size are selected according to the model that fits best for each endmember.

The root mean square error (RMSE) for the fractional snow cover classification

ranges from 1 % to 13 % while the mean RMSE accounts for 5 %.

The presented methods to classify snow from remotely sensed data should be

understood as a brief excerpt of what has been developed since the 1970s. Selecting

the right algorithm and data source depends on the individual research problem, the

size of the study region, and the time frame. Several reviews about snow cover

mapping have already been introduced within this section that may help during the

decision making. The following sections will outline how time series of snow cover

data can be processed and analysed.

4.2.2 Processing of Snow Cover Time Series

Before snow cover time series can be processed the data basis for the analyses must

be selected and prepared. There are many different algorithms and satellite data

available to produce snow cover information from remote sensing data as it was

briefly indicated in Sect. 4.2.1 and Table 4.1. For the following sections we rely on

the MODIS daily snow cover products MOD10A1 andMYD10A1 (Hall et al. 2000;

Riggs and Hall 2004), provided by the National Snow and Ice Data Center

(NSIDC 2013). This product has been used and validated in many different

studies (e.g. Dietz et al. 2013; Huang et al. 2011; Simic et al. 2004; Tekeli

et al. 2005; Zhou et al. 2013) and is available on a daily basis for the whole

globe. The presented methods may be applied to any other snow cover time series

derived from any arbitrary sensor. The only prerequisite is the availability of binary

information about snow presence per pixel (which could also be prepared from

fractional snow cover data). Once the data has been downloaded from NSIDC,

processing of the time series is necessary to extract desirable snow cover

4 Analysis of Snow Cover Time Series – Opportunities and Techniques 81



parameters. It was already stated in the introduction that changes in climate – both

sustainable effects as well as short-term variability – will affect snow cover

conditions on the ground. It is important to understand these changes for several

reasons: Earths radiation budget, vegetation and irrigation, tourism and hydropower

generation may all be influenced by changed Snow Cover Duration (SCD). These

changes may be the consequence from longer or shorter SCD or a shifted snow

cover season towards earlier or later snow cover melt (expressed by Early Season

Snow Cover Duration SCDES and Late Season Snow Cover Duration SCDLS) SCD,

SCDES and SCDLS may help to predict runoff characteristics during spring, can be

used as input parameters for hydrological models, and may serve as an indicator for

upcoming natural disasters like floods or droughts (Muntán et al. 2009; Rango

1996; Tekeli et al. 2005; Thurman 2011). Regional variability of snow cover

changes may vary significantly (Räisänen and Eklund 2012). Therefore it is impor-

tant to map SCD, SCDES, and SCDLS with high spatial and temporal resolution. To

derive these parameters, the time series of snow cover data must pass through

several processing steps for generally two reasons:

First, a snow cover map produced from a single satellite observation only

represents the snow status for a single point in time. This status can change quickly

within only very few days. Therefore, only the combination of multiple observa-

tions for a given time series can allow further statements about SCD.

Second, the limitation of cloud coverage hinders sophisticated calculations of

SCD, SCDES and SCDLS. The frequency and distribution of cloud coverage varies

significantly over the globe and with time. According to (Wylie et al. 2005), the

average cloud cover frequency accounts for ~ 60 % in latitudes prone to snow cover.

We investigated the cloud cover distribution for the part of the Northern Hemi-

sphere where snow cover is common (north of 30�N): Fig. 4.3 illustrates the number

of cloud covered (a) days for the hydrological year 2003/2004 (September 1st 2003

until August 31st 2004) as extracted from the MODIS daily snow cover product

MOD10A1. The number of days affected by polar darkness is also depicted (b).

Around 34.000 MODIS tiles were processed to generate the cloud cover statistics

presented in Fig. 4.3. The average clear sky rate (days without cloud cover or polar

darkness) for any pixel shown in Fig. 4.3 accounts for 46.3 %. As a consequence,

the status of snow cover on the ground also remains unknown for 53.7 % of the

satellite observations. Untreated, this problem would lead to severe uncertainties in

the calculation of snow cover parameters. Therefore, various algorithms have been

developed to estimate the snow cover status even under cloudy conditions. The

following paragraph gives an overview of some of these methods. For a more

detailed overview we refer to (Dietz et al. 2012a).

4.2.2.1 Estimation of Snow Cover Status Below Clouds

Figure 4.3 illustrates the spatial distribution and duration of cloud cover and polar

darkness for the regions north of 30�N. 53.7 % of the observations are flagged as

cloud or darkness in the daily snow cover product MOD10A1 (Hall et al. 2000).
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Some regions are affected more frequently than others: The east coast of North

America (Quebec, Newfoundland) as well as large parts of Europe (Great Britain,

Middle Europe) and eastern Asia (Kamchatka, southern Siberia) are examples for

heavily cloud covered areas. The sharp border of cloud cover duration at ~ 65� N in

Fig. 4.3a arises from the beginning presence of polar darkness in this region.

Together, cloud cover and polar darkness obscure large proportions of snow

prone areas especially in the winter season. Therefore, techniques to estimate the

snow cover status below clouds are required before a reasonable calculation of

SCD, SCDES and SCDLS becomes possible. Generally, two basic approaches to

assess the snow cover status below clouds can be followed when relying on remote

sensing data originating from the reflective part of the spectrum: Temporal or

spatial interpolation. Both techniques are based on assumptions of how snow

cover develops with time and/or local terrain settings. As these general assumptions

may not always reflect the natural conditions, applying methods to estimate the

snow cover status below clouds always reduces the accuracy of the initial snow

cover classification result. A combination of multiple techniques is therefore

advisable as some methods are more reliable than others – though they may not

be suited to clear the whole scene from clouds. Combinations of multiple cloud

removal algorithms have been applied by (Dietz et al. 2012b, 2013; Gafurov and

Bárdossy 2009) before.

Temporal interpolation techniques rely on the fact that cloud cover positions are

highly variable over time. Combining snow cover products from different obser-

vations helps to reduce the overall cloud percentage. These combinations can

involve observations from the same day (e.g. originating from different satellite

platforms or overpasses) or multiple days from the past (and in case of historical

data also from the future). As snow cover may be highly variable especially during

autumn und spring season, combining snow cover information from several days

potentially affects the accuracy of the final result. The MODIS snow cover products

Fig. 4.3 Northern Hemisphere cloud cover duration (a) and polar darkness duration (b) extracted
from daily snow cover product MOD10A1 for the hydrological year 2003/2004
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MOD10A2/MYD10A2 are based on a combination of 8 observation days, therefore

minimizing – but not completely clearing – cloud coverage (Riggs et al. 2006).

Figure 4.4 illustrates a temporal interpolation for the 1st and 2nd of January,

2014: Both days are characterized by heavy cloud contamination (45.7 % for

January 1st, 61.6 % for January 2nd). By combining the two successive days,

cloud cover was reduced to 37.5 %. A similar method was used by (Wang

et al. 2009): They combined MOD10A1 and MYD10A1 from the same day and

achieved 92 % accuracy, which is only slightly less than for the operational

products (93 %, Hall and Riggs 2007).

Spatial interpolation techniques can rely on the direct neighbourhood of a cloud

affected pixel or on the topography of the study area. Gafurov and Bárdossy (2009)

recoded cloud covered pixels if at least 5 surrounding pixels were belonging to the

same class (snow covered or snow-free land). (Parajka et al. 2010) included a

Digital Elevation Model (DEM) and extracted upper and lower snowlines from

the daily snow cover datasets: The upper snow line represents the elevation where

all cloud-free pixels are classified as snow. Above this altitude, all cloud-covered

pixels can also be assumed snow-covered -given a certain overall cloud cover

percentage is not reached. The lower snowline on the other hand identifies the

altitude below which all cloud-free pixels are also snow-free. Once determined, all

cloud-covered pixels below the lower snowline can be assumed snow-free. The

snowline method exploits the fact that snow cover increases with elevation: In

mountainous regions, the mean snow cover duration increases by ~4 days per 100 m

altitude (Dietz et al. 2012b, 2013; Parajka et al. 2010). Figure 4.5 illustrates the

snowline analysis for January 2nd 2014 – again for the same MODIS tile already

used in Fig. 4.4. The lower snowline was identified at 134 m above sea level (a.s.l.)

while the upper snowline was found at an altitude of 2,768 m. This information can

be used to clear another 6 % of cloud cover from the scene as all cloud covered

pixels below 134 m can be recoded to snow free land and all pixels above 2,768 m

can be set to snow covered. The cloud covered pixels in between remain unknown.

This method should only be used if the overall cloud cover percentage of the scene

does not exceed a certain value. (Gafurov and Bárdossy 2009) suggest 30 % as an

upper cloud cover threshold.

The accuracy of interpolation techniques varies and therefore, a combination of

different methods may be appropriate (Gafurov and Bárdossy 2009). Figure 4.6

illustrates a combination of temporal and spatial interpolation techniques as it was

applied by Dietz et al. (2013). The sequence of steps is ordered according to their

accuracy. This ensures that the effect on the accuracy stays minimal. However: The

overall accuracy of the final product will be lower than of the initial snow cover

products. The combination from Fig. 4.6 was used for studies in Central Asia (Dietz

et al. 2013) and in a slightly modified version for Europe (Dietz et al. 2012b). The

accuracy of the daily snow maps was assessed to be around 85 % – always varying

with respect to local land cover conditions, topography, and season.
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Fig. 4.4 Temporal combination of snow cover maps
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4.2.2.2 Generation of Snow Cover Parameters From Cloud-Cleared

Snow Cover Time Series

In Sect. 4.2.2.1 the snow cover data was cleared from any cloud covered or missing

data pixels. This step is necessary to allow for the analysis of the snow data as

presented in Sect. 4.2.2.2: The time series of daily (or in some cases multi-temporal

composites of) snow cover products can be processed to retrieve snow cover

parameters like SCD, SCDES, and SCDLS using Eq. 4.2:

Fig. 4.5 Upper and lower snowline analysis using a DEM
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SCD ¼
Xn

i¼1

sið Þ ð4:2Þ

Where n is the number of observations (e.g. beginning on Sept. 1st of a year and

ending on Aug. 31st of the following year), and s represents the cloud-free snow

cover dataset. SCDES and SCDLS base on the same equation, but the number of

observations differs: For the Northern Hemisphere SCDES often refers to the SCD

between September 1st and January 15th while SCDLS is calculated from the time

span between January 16th and August 31st. The exact dates can be modified

depending on the hydrology of the study region. A hydrological year should be

defined according to the analysis of long term meteorological data from within the

study region (Zhou et al. 2013). Therefore, also the date to discriminate between

SCDES and SCDLS may vary. For the Southern Hemisphere a hydrological year

may range from March 1st of a given year until February 28th of the next year. The

date to separate early season from late season in this case could be September 1st.

Together, SCD, SCDES and SCDLS describe the snow cover characteristics of a

hydrological year. They should always be analysed as a complete set as changes in

Fig. 4.6 Combination of cloud interpolation techniques (schematic overview): Operational

MODIS snow cover products MOD10A1 and MYD10A1 (input) are merged for each calendar

day (step 1), over a three-day period (step 2), combined with a DEM to detect snowlines (step 3),

and interpolated based on the full time series of a hydrological year (step 4). The output is 100 %

cloud free
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SCDES and SCDLS might not influence overall SCD while longer/shorter SCD may

not necessarily be caused by both, changed SCDES and SCDLS. Variations in any of

these parameters may induce multiple effects: A change in overall SCD affects the

radiation budget, leading to an increase in absorbed incoming solar radiation if SCD

is decreased. This again may contribute to global climate change (Fernandes and

Zhao 2008; Klein et al. 2000). Changes in SCDES and/or SCDLS might influence

vegetation growth (Grippa et al. 2005; Scott andWayne 1995) and runoff behaviour

during spring season (Klein and Barnett 2003). Additionally, information about

SCDLS can be used as an input parameter in flood prediction (Tekeli et al. 2005;

Thirel et al. 2013). Therefore, the calculation of snow cover parameters can

constitute a useful tool for various applications. Section 4.3 will outline some of

these applications in more detail.

Figure 4.7 illustrates the SCD for the hydrological year 2012/2013 derived from

the MODIS daily snow cover products MOD10A1 and MYD10A1 for the Northern

Fig. 4.7 Map of the snow cover duration on the Northern Hemisphere for the hydrological year

2012/2013 (September 2012–August 2013) derived from MODIS time series
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Hemisphere. The time series forming the basis of Fig. 4.7 was processed according

to the methods described in Sect. 4.2.2 and Figs. 4.4, 4.5 and 4.6: Combination of

Aqua and Terra MODIS (MOD and MYD10A1), temporal interpolation in two

different steps, and snowline detection. The resolution of 500 m allows for both,

regional and large-scale studies of snow cover characteristics. In Fig. 4.7 the typical

increase in SCD according to the latitude is clearly visible, which is only

interrupted by mountain ranges or terrain depressions. Studies in Central Asia

and Europe have revealed that the SCD increase accounts for ~ 5 days per degree

latitude while in mountainous terrain, SCD increases by ~ 4 days per 100 m eleva-

tion (Dietz et al. 2012b, 2013).

4.3 Analysis of Snow Cover Time Series

Both the snow cover time series as well as the derived snow cover parameters can

be analysed in various ways. As already stated in the introduction, snow cover

affects a wide range of hydrological, climatological, and anthropological aspects.

Figure 4.7 already illustrates a SCD product and indicates some possible ideas

about where potential analyses may be directed to. The range of possible applica-

tions is wide and therefore, a few examples will be outlined in this section.

Runoff in many of Eurasia’s and North America’s largest rivers is dominated by

snow: More than 50 % of the stream-flow are generated by snowmelt in these

catchments, meaning that snow cover variations affect the runoff regime in these

rivers considerably (Barnett et al. 2005). Daily snow cover information as prepared

by the cloud interpolation scheme (Fig. 4.6) can be analysed to identify the (mean)

Snow Cover Fraction (SCF) within a hydrological catchment (Eq. 4.3):

SCF ¼ Asnow

Atotal
*100 ð4:3Þ

With Asnow standing for the snow covered area within a hydrological catchment

while Atotal refers to the total area of the catchment.

Figure 4.8 illustrates the mean SCF (a, b) between 2000 and 2013 for the Volga

and Danube river catchments as well as the standard deviation for this time span.

Both rivers are situated in the snow-dominated runoff zone (Barnett et al. 2005), but

the SCF-graphs differ considerably: Maximum SCF within the Volga catchment

(Fig. 4.8a) accounts for more than 90 % in mid-winter with deviations reaching

their maximum during autumn and spring seasons. Danube River only accounts for

around 50 % SCF and deviations are much higher with a maximum during winter

season. The graphs in Fig. 4.5c, d depict the daily SCF deviations during the

13 years of observation. Some extreme events like the negative outlier in 2006/

2007 for the Danube catchment are visible from the time series and can be

connected to respective low flow events in the river’s runoff. Spring 2007 was a

season with exceptionally low runoff, which was caused not by less precipitation
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during the winter months but the fact that the temperature was too high to allow for

snow accumulation. Consequently, melt water amounts during spring season turned

out to be much less than under normal conditions (Belz and Rademacher 2007). The

time series of snow cover data can therefore be analysed with regards to abnormal

runoff events, because the negative SCF can be recognized from the time series way

before the intrinsic runoff is being released through snow melt. Runoff originating

from snowmelt contributes up to 40 % to the discharge volume of some of Danube’s
subcatchments (Weber et al. 2010). The mountainous upstream region of Danube

River is of eminent importance for the downstream water availability especially

during spring and early summer. Climate change will most likely alter these

conditions, as less snow will be accumulated during winter while snowmelt will

occur earlier due to increased temperatures. The effect of these changes may be

extensive but is difficult to predict. It is important to identify already the changes in

SCD, SCDES and SCDLS to be able to adapt existing hydrological models (Mauser

and Bach 2009; Weber et al. 2010).

Fig. 4.8 Mean SCF for Volga (a) and Danube (b) hydrological catchments. The solid line
represents the mean SCF while the grey and dashed line illustrates the standard deviation of

SCF between 2000 and 2013. Figures (c) and (d) depict the deviation (in %) from the mean SCF

per hydrological year
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Another way to leverage the time series of snow cover parameters is the trend

analysis of multiple years of SCD, SCDES and SCDLS. Climate change leads to

changes in SCD, often accompanied by shifts in SCDES and SCDLS as well (Brown

2000; Lemke et al. 2007; Räisänen 2007). To identify the extent and intensity of

these changes, time series of snow cover parameters can be analysed.

For Fig. 4.9, time series of SCD for the years between 1991/1992 and 2011/2012

have been analysed in order to detect possible linear trends. The snow cover data

used as a basis for the SCD calculations are originating from the operational

MOD10A1 and MYD10A1 data again. As this source only ranges back until

2000, AVHRR was used in addition to the MODIS data. As already stated in

Sect. 4.2.2, no operational snow cover product at full AVHRR resolution is

available for download. Therefore the raw Level 1B AVHRR data were obtained

from NOAA CLASS (National Oceanic and Atmospheric Administration – Com-

prehensive Large Array-data Stewardship System) (NOAA n.d.) and processed

relying on the APOLLO scheme also introduced in Sect. 4.2.1.

At the first glance, the negative trends between ~ 40 and 50�N depicted in

Fig. 4.9 conform to hemispherical studies (Brown 2000; Choi et al. 2010) while

Fig. 4.9 Linear trend of SCD between 1991/1992 and 2011/2012 for Central Asia
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also the slight increase in the most northern regions of Central Asia has been

reported before (Brown and Mote 2009). The resolution of MODIS and AVHRR

is higher compared to coarse resolution data commonly used in climate studies.

Examples for such studies are those of (Brown 2000) who used snow cover data

with a resolution of 125–200 km and (Choi et al. 2010), who used the same data

source. Because of the short time series of only 20 years and the high variability of

snow cover within the study region, the trend results in Fig. 4.9 are statistically not

significant in all regions. Especially the trend results for the mountainous area

remain arguable. However: They serve as an example for possible applications

given that the time series of snow cover parameters is sufficiently long Fig. 4.7

already visualized a SCD product derived from a time series of daily, cloud-cleared

snow cover products. Such information is useful for a general overview of the snow

cover status of a certain region but the true value lies within the opportunity to

compare single snow cover seasons with e.g. mean conditions.

Figure 4.10 is derived from 11 years of daily snow cover data and illustrates the

mean SCD for the European Alps between 2000/2001 and 2011/2012. The

Fig. 4.10 Mean SCD between 2000/2001 and 2011/2012 for the European Alps
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resolution of 500 m allows identifying many regional details, like e.g. the SCD

gradient (4 days per 100 m elevation) within the mountainous regions. The mean

conditions shown in Fig. 4.10 can also serve as a basis for the comparison with

single year SCD conditions. This allows analyzing regions with abnormal snow

cover characteristics within a single snow cover season. The usefulness of such

analyses has been proven in (Dietz et al. 2012b). The impact of weather phenomena

such as exceptionally warm winter months or high/low precipitation rates on the

snow cover parameters can be detected. This information is useful with regards to

the management of water reservoirs, hydropower generation, flood prediction, and

runoff simulations (Butt and Bilal 2011; Pepe et al. 2005; Solberg and Andersen

1994; Zhao et al. 2009). As climate is changing towards warmer winter seasons,

analyses of SCD, SCDES and SCDLS will become more important.

The Snowmelt Runoff Model (SRM) is another possible application of the

processed snow cover data. The SRM is a tool to forecast the runoff in mountain

basins by simulating the snowmelt (Martinec et al. 1998). The model requires

several input parameters, including daily precipitation, temperatures, and snow

covered area. Once these data are available, the SRM is capable of predicting

runoff in mountain basins successfully (Rango et al. 1990). The quality of the

results obtained from such models depends on the quality of the input data. If 60 %

of the pixels remain unknown due to cloud coverage the results will be unstable. By

processing the daily snow cover maps with methods to interpolate below clouds, the

overall accuracy of the model prediction can be increased. Today, snow cover

products derived from remotely sensed data can contribute significantly to various

hydrological research and analysis questions (Wagner et al. 2009). Techniques to

improve the snow cover time series as presented in this section are therefore a

necessary processing step to provide the required quality.

4.4 Summary and Conclusions

Snow cover constitutes an important land cover parameter, as it influences a wide

range of climatological and hydrological aspects. Therefore, analysing snow cover

parameters like Snow Cover Duration (SCD), Early Season SCD (SCDES) and Late

Season SCD (SCDLS) can serve as the basis for many different applications, a few

of which have been outlined in this chapter. The generation of snow cover time

series from medium resolution remote sensing data requires several steps, begin-

ning with the detection of snow cover and the separation between clouds and snow

in a first step. The Normalized Difference Snow Index (NDSI) as part of the

snowmap algorithm is referred to in this context as well as the APOLLO and

SPARC routine – both suitable to classify snow from MODIS and AVHRR data.

MODSCAG may be consulted whenever fractional snow cover information is

required. Cloud contamination is the biggest challenge when it comes to the

generation of snow cover parameters from the time series of daily data as up to

60 % of the observations – especially during winter season – can be cloud covered.
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Thus, a combination of different methods to estimate the snow cover status below

clouds is applied to the time series before SCD, SCDES, and SCDLS can be

calculated.

A few examples for possible applications are included in this chapter but they are

far from being complete. The spatial and temporal resolution of the time series and

the derived products allow for both, regional studies as well as large scale analyses

of snow cover characteristics. Depending on the research question and the available

auxiliary data, many additional applications and combinations are possible. The

snow cover data can be combined with runoff data, temperature and/or precipitation

data, information about permafrost, soil moisture, vegetation, and Digital Elevation

Models (DEMs). Flood and drought prediction, potential exposure to avalanches or

analyses with regards to winter tourism become possible. The high spatial and

temporal variability of snow cover can pose a challenge when dealing with such

problems. Therefore, a sophisticated scheme to process the snow cover data and

reduce the effect of cloud coverage is required in order to ensure a high quality of

results. Finally, trend analyses could be performed based on long term time series of

snow cover parameters SCD, SCDES, or SCDLS that would identify potential effects

of climate variability on the snow cover characteristics of a region. Such changes

may have severe consequences for the climate system, causing negative feedbacks

due to changed planetary albedo. Long time series of snow cover are required to

derive sophisticated results, but with the upcoming Sentinel sensors the continuous

data availability of medium resolution remote sensing data suited to derive global

snow cover parameters is ensured.
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Chapter 5

Global WaterPack: Intra-annual Assessment
of Spatio-Temporal Variability of Inland
Water Bodies

Igor Klein, Andreas J. Dietz, Ursula Gessner, and Claudia Kuenzer

Abstract The knowledge and understanding of intra- and inter annual character-

istics of inland water bodies, such as natural lakes and artificial reservoirs are

crucial for many reasons. Inland water bodies are sensitive to environmental

variations and human impact which is reflected in spatial and temporal dynamics

of surface extent. A time-series of areal surface extent of lakes and reservoirs might

be a helpful dataset to understand the complex system and the spatio-temporal

patterns of natural lakes and artificial reservoirs. In this study, we describe an

approach to detect water bodies based on dynamical thresholding on daily basis

and utilizing high frequency observations. Daily MODIS (Moderate Resolution

Imaging Spectrometer) products were used to generate water masks for the year

2013 on global scale. The results indicate that time series of water bodies’ extent are
important especially for those inland water bodies which are dominated by tempo-

ral changes and fluctuation through the year. In combination with ancillary data, our

understanding of environmental and human interaction and the reaction of water

bodies will be improved. Such information is critical to support sustainable water

management, as well as for climate change discussion since many inland water

bodies are sensitive to short- and long term environmental alterations.

5.1 Introduction

Human activities, climate change, environmental alterations and meteorological

variability are the drivers for changes of inland water bodies throughout time. For

example, natural lakes shrink and vanish due to overexploitation of water resources

and new water bodies arise due to construction of reservoirs or ice melting caused
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by rising temperatures. Lake levels and volumes have been identified as one of the

Terrestrial Essential Climate Variables and thus current and historical information

are required for research of United Nations Framework Convention on Climate

Change (UNFCCC) and Intergovernmental Panel on Climate Change (IPCC)

(GTOS 2008). Remote sensing data and methodology provide unique opportunities

to detect water bodies on different spatial and temporal scales. Traditionally, there

are manifold studies focussing on water detection from remote sensing data. Most

of them are dealing with the accurate delineation between water pixel and land

pixel as well as the unmixing of pixels which cover both types (e.g. Gstaiger

et al. 2012; Jain et al. 2005; Kuenzer et al. 2013; Martinis et al. 2015; Verpoorter

et al. 2012; Weiss and Crabtree 2011). Currently, there exist comprehensive and

sophisticated global datasets of inland water bodies such as Global Lakes and

Wetlands Dataset (GLWD) (Lehner and D€oll 2004), Shuttle Radar Topography

Mission (SRTM) water body data (SWBD) (Slater et al. 2006), the recent 250 m

MODIS (Moderate Resolution Imaging Spectrometer) water mask (Carroll

et al. 2009) and the recent Global Water Bodies product at 300 m resolution

based on full ENVISAT-ASAR (Environmental Satellite- Advanced Synthetic

Aperture Radar) dataset which was generated within the framework of European

Space Agency (ESA) Climate Change Initiative (CCI) (ESA-Land Cover-CCI

2014). These datasets are very valuable and are available on a global scale.

However, they only provide one temporal snapshot (Fichtelmann and Borg 2012)

and do not account the changes of water bodies over time. Especially the dynamics

and variations of inland water bodies are crucial information for many reasons and

are required not only by different scientific disciplines but also by political decision

makers and stake holders. The understanding of the interaction between different

physical parameters, human impact, climate variability and their influence on water

bodies is essential. Therefore, it is important to detect inland water bodies with high

temporal resolution to mirror their dynamical characteristics and thus enable further

investigation about the drivers of diverse variations and possible consequences for

the environment and human beings.

Over the last years, the availability of free of charge remote sensing data has

increased dramatically and large datasets have been accessible to researchers all

over the world. The analyses of time-series has reached a new dimension in terms of

data storage space and processing time. This brings up new challenges to acquire

accurate information of high spatial and temporal resolution. The demand for

temporal information and dynamic characteristics of inland water bodies has been

increased since the availability of remote sensing datasets with high temporal

resolution. Many authors published interesting results presenting the reconstruction

of water bodies over the past decades (Feng et al. 2012; Fichtelmann and Borg

2012; Haas et al. 2009; Klein et al. 2014a; Pekel et al. 2014). These products are

based on data composites over several days for specific study regions.

In this chapter, we describe our approach to classify surface waters based on

daily temporal resolution remote sensing data products originating fromMODIS on

board of Terra and Aqua satellites. The concept presented in Klein et al. (2014b)

will be described in more details. We describe our strategy to utilize different
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datasets in order to acquire cloud free water masks with high temporal resolution.

The MODIS near-infrared (NIR) measurements, cloud information and derived

dynamic thresholds are mainly used to delineate between water and land pixels for

the year 2013. The generated time series of water masks is used to remove

misclassification originating from cloud shadow and also to interpolate missing

values. The time-series of water masks over 2013 reflects the areal evaluation of

inland water bodies which is presented based on selected test sites. This chapter

gives an overview of the Global WaterPack product by presenting some exemplary

cases. Additionally, we discuss further required development to avoid misclassi-

fication errors resulting from ambiguous spectral signature of different land

surfaces.

5.2 Study Area and Materials

5.2.1 Study Area

The processing was performed based on 200 MODIS tiles which cover main land

masses on global scale as highlighted in Fig. 5.1. Polar Regions dominated by polar

nights were excluded due to the lack of usable observations of the optical MODIS

sensor. Furthermore, tiles which cover remote islands distributed all over the

oceans were not processed.

5.2.2 Data

5.2.2.1 Data for Water Detection

The MODIS instrument on board of sun-synchronic satellites Terra and Aqua

provides a unique possibility of land cover observation because of its high temporal

resolution. Due to different orbits, the Terra and Aqua satellites are viewing one and

the same area twice a day which enable two observations with different cloud

conditions of the same area. The acquired NIR datasets were downloaded as part of

MOD09GQ and MYD09GQ products which represents surface spectral reflectance

in 620–670 nm (band 1) and in 841–876 nm (band 2) spectral width as it would be

measured at ground level without the atmospheric influence (Land Processes

Distributed Active Archive Center 2014). The datasets are distributed as gridded

level-2 (L2G) products in sinusoidal projection and feature a spatial resolution of

250 m. Second important input datasets were the MOD10A1 and MYD10A1 snow

products. The snow products are available with same temporal resolution as 09GQ

products, however with a coarser spatial resolution of 500 m. This L3G product

contains thematic information such as cloud cover, lake ice, snow cover and

missing data which are generated with a range of different algorithms (Hall and

5 Global WaterPack: Intra-annual Assessment of Spatio-Temporal Variability. . . 101



Riggs 2007; Riggs et al. 2006). It also contains static information of ocean coverage

and inland lakes based on an outdated static water mask. Additionally, we used the

MOD44W product which is an improved static water mask based on SRTM Water

Body Dataset (SWBD) and on 8+ years of Terra MODIS data; and 6+ years of Aqua

MODIS data (Carroll et al. 2009). All mentioned MODIS products were acquired in

compressed Hierarchical Data Format – Earth Observing System (HDF-EOS)

format. The used datasets and main information are summarized in Table 5.1.

5.2.2.2 Ancillary Data

In addition to MODIS datasets we acquired the digital elevation model (DEM) of

SRTM with a spatial resolution of 90 m (CGIAR-CSI 2008). Furthermore,

40 Landsat images for selected locations (in Argentina, Bangladesh, Brazil,

China, Kazakhstan, USA) were downloaded to perform a first accuracy assessment

of the presented product.

5.3 Methodology

Remote sensing data and especially the detected radiance in NIR spectrum are well

suited to monitor water bodies. Figure 5.2 shows spectral characteristics of different

water types in comparison with wetlands and vegetation (based on laboratory

measurements from Clark et al. 2007). Bukata et al. (1995) stated that the total

Fig. 5.1 Overview of processed MODIS tiles which cover main land masses (without Polar

Regions and remote islands)
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radiance of a water pixel recorded by remote sensors is a function of water surface

radiance, subsurface volumetric radiance and radiance from the bottom of the pixel.

Compared to water, most land surfaces feature higher reflection in NIR band. This

fact has been utilized for water detection in many studies in a range of different

approaches (e.g. Gao 1996; McFeeters 1996; Ouma and Tateishi 2006; Ji

et al. 2009).

There exists a variety of different remote sensing models to delineate between

water and no water, whereby mostly the NIR was utilized either in a single band

slicing model (Ryu et al. 2002) difference model, ratio model (Sheng et al. 2001) or

spectral water index model (Gao 1996; McFeeters 1996; Xu 2006). Depending on

study objectives, study area, time interval of interest, available datasets, and defined

maximum processing time, each of those methods has its advantages and disad-

vantages. Our goals were to process daily datasets on a global scale, and generate a

product with information about how often a pixel was covered by water. The

massive amount of data on a global scale and the required processing time were

the main reasons to use a single band threshold method instead of band

Table 5.1 Used datasets for Global WaterPack for the year 2013 (for each MODIS tile)

Dataset

Number of

datasets per year

Available time

interval/date of release

Spatial

resolution

Used information/

spectral band width

MOD09GQ 365 2000-open 250 m 0.841–0.876 μm
MYD09GQ 365 2002-open 250 m 0.841–0.876 μm
MOD10A1 365 2000-open 500 m Cloud, lake ice

MYD10A1 365 2002-open 500 m Cloud, lake ice

MOD44W 1 2009 250 m Inland water

DEM 1 2005 90 m m above SL

Fig. 5.2 Spectral characteristics of different water types, wetland and fresh oak leaf (measure-

ments from Clark et al. 2007). Visible and near infra-red ranges of MODIS sensor are marked
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combinations. The utilization of a single band method for water classification has

been widely used because of the relatively fast computing approach (Feyisa

et al. 2014; Ji et al. 2009; Ryu et al. 2002). However, we implemented a dynamic

thresholding allowing calculation of different thresholds for individual scenes.

Fichtelmann and Borg (2012) introduced a complex method for accurate water

mask extraction from Advanced Along-Track Scanning Radiometer (AATSR). We

followed a similar approach using a static water masks as a priori knowledge to

derive dynamic thresholds for multiple time steps. There are many reasons for using

different thresholds for individual observations especially at global scale with high

temporal frequency of observations. The spectral characteristics of one and the

same water body can differ significantly e.g. depending on different water condi-

tions such as chlorophyll content, suspended particles, surface roughness and water

depth. Various combinations of the named conditions and the fact that the quality of

atmospheric correction is not constant (Vermote and Kotchenova 2008) give pixels

different spectral values at different time steps. Therefore, a single threshold value

derived for one image might not be suitable for another. The individual steps of pre-

processing, classification and post-processing are discussed in the following

sections.

5.3.1 Pre-processing

Before processing all corresponding MODIS tiles automatically, several require-

ments had to be fulfilled. First of all, all datasets were required in identical

projection, spatial resolution and spatial extent. Because our procedure was mainly

based on MODIS datasets, we reprojected and spatially extracted the DEM data

into square tiles with sinusoidal projection and 250 m spatial resolution adequate to

original MODIS datasets. The 90 m DEM was resampled to 250 m pixel size by

using nearest neighbour resampling method. Afterwards, slopes of the terrain were

calculated using the maximal changes in elevation values of the DEM considering a

3� 3 pixel moving window.

TheMOD10A1 andMYD10A1 products are available with a spatial resolution of
500 m (2,400*2,400 pixels per tile). Therefore, the datasets were downscaled to

250 m to enable automatic pixel based calculation.

5.3.2 Water Classification Based on Dynamic Thresholding

The applied algorithm operates on two main procedures. Within the first procedure

intermediate results are calculated which are being used for the second step

(compare Fig. 5.3 orange and blue coloured sub-processes). The first procedure is

the actual water detection which is based on dynamic NIR band thresholding. At the

beginning, the static water information from MOD44W dataset is claimed to be the
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initial training areas for dynamic threshold calculation for each individual scene.

We assume that many water bodies shrink and increase in their areal extent.

Therefore, some assumptions must be taken into account before any definitive

decision on training areas is made. We utilize the information of cloud coverage,

lake ice and ocean from corresponding 10A1 products. Although some authors

stated that the cloud detection used in 10A1 product is improvable (Dietz

et al. 2013; Leinenkugel et al. 2013), we use this information because the level of

its quality does not influence our detection negatively. Every pixel which is

assigned as water in MOD44W static mask, and for considered day as ocean, lake

ice or cloud coverage in 10A1 product is excluded from the training pool. Further-

more, we defined a maximum threshold value of 20 % in NIR reflectance, above

which all pixel are excluded even though none of the former conditions applied. In

this manner we receive only those pixels for training which were (i) classified as

water in MOD44W and at the same time (ii) feature less than 20 % in NIR

reflectance on considered day, (iii) are not assigned as cloud, ocean or lake ice in

comprehensive 10A1 dataset. Therefore, the large amount of ocean water does not

fudge the dynamic threshold for inland water bodies. Same is true for pixels which

are assigned as lake ice, cloud coverage and no data (e.g. due to polar night). Based

on the remaining pixels within the training area, mean value and standard deviation

of NIR are calculated. The dynamic value for each individual image is calculated as

the sum of the mean value plus twice the standard deviation. Figure 5.3 visualizes

the workflow of described processes.

Fig. 5.3 Workflow Global WaterPack 2013 (Modified from Klein et al. 2014b)
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Based on generated threshold for each individual scene, the NIR band is

classified into water (equal or less than threshold) and no water (greater than

threshold). Major misclassifications resulting from relief and mountain shadows

are avoided by using slope data. According to Niu et al. (2009) 99.2 % of wetlands

and water bodies in China are located on areas with slope less than 8� and 97.5 %

with a slope less than 5�. We assume that this is also true in other regions and apply

a threshold value of 5� inclination above which classified pixels were masked out.

The intermediate result is a combination ofMOD andMYD products for 1 day. The

error of misclassified areas due to cloud shadows are approached in the second step

using the generated time series of daily water masks.

The challenge of distinguishing between cloud shadow and water is well known

and hard to solve by using only optical remote sensing data of one time step.

Therefore, we introduce a second procedure step (blue coloured sub-process

Fig. 5.3) which utilizes the generated time series of water masks over the consid-

ered time period of the year 2013. Here, we use a temporal filter to remove

misclassifications resulting mainly from cloud shadows. We assume that the prob-

ability that one and the same pixel is misclassified as water due to cloud shadow

being very low for consecutive time steps. Therefore, a temporal filter is applied

scanning the generated time series of water masks and removing all pixels classified

as water for only one time step within defined time interval. In practice, it means

that a pixel which was classified as water for day x but not for day x-1 till x-4 and not
for day x+ 1 till x + 4 is removed (temporal interval was chosen based on MODIS

8 day composites as a benchmark). In this manner, most cloud shadows are

excluded. Furthermore, the temporal composite of water masks (after the first

temporal filter without errors due to cloud shadow) is used to interpolate and

replace values which were covered by clouds or no data values. Here, the classifi-

cation of water or no water from temporally closest clear sky observation is used to

fill the gaps resulting from cloud coverage or no data. This is critical in regions with

temporal long and permanent cloud cover. However, without including additional

remotes sensing data (e.g. Synthetic Aperture Radar (SAR) data) we only assume

the situation beneath cloud coverage. As an end result, we generated a layer with

information about how often a pixel was classified as water for the year 2013 and

name it Water Cover Duration (WCD).

The described classification process and the automatic selection of training

pixels are illustrated in Fig. 5.4. It visualizes the generated temporal result of

water cover duration compared to the static water product which represents a

temporal snapshot. It is recognizable that some lakes are only filled with water

seasonally. Furthermore, some temporal flooded areas are not detected inMOD44W
(highlighted by black circles in Fig. 5.4).

5.3.3 Accuracy Assessment

Ideally, results from remote sensing data should be validated with ground truth

measurements. However, there are no known datasets with information about
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Fig. 5.4 Visualization of training pixel selection on 11 April 2013 (DOY 101) in floodplains

along the Amazonas River. (a) near-infrared MOD09GQ, (b) corresponding thematic product

MOD10A1, (c) used pixels for training based on MOD44W, (d) near-infrared MYD09GQ, (e)
corresponding thematic product MYD10A1, (f) used pixels for training based on MOD44W, (g)
classified water for day 101 based on both results from MOD and MYD products, (h) water cover
duration 2013, (i) MOD44W
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surface extent of inland water bodies with daily temporal resolution on global scale.

Therefore, we used high resolution images from the Landsat data archive to assess

the quality of the presented product. The usage of high resolution images to validate

results from medium resolution remote sensing data is well known and practised in

many studies (Carroll et al. 2009; Dietz et al. 2013; Li et al. 2013).

To enable the best possible result of the reference images, each Landsat scene

underwent image segmentation where several pixels are clustered to objects based

on their spectral homogeneity and object compactness. On the segmentation level

the lakes and water bodies can be easily detected using simple threshold values,

band combination (NDWI (Normalised Difference Water Index) after McFeeters

1996; Gao 1996, NDVI (Normalized Difference Vegetation Index) after Tucker

et al. 2005) and additional object features. The results underwent visual interpreta-

tion to guarantee best possible result of created reference dataset. The generated

reference water masks from Landsat were finally rescaled to MODIS pixel size to

enable a pixel-to-pixel comparison with comprehensive results derived by

presented approach of the same day as Landsat results. We chose 40 Landsat scenes

for six different regions with high variability of water surface extent to perform first

accuracy assessment. The images were chosen depending on availability, image

quality and cloud cover. Nevertheless, the presented accuracy assessment should be

understood as a temporal snapshot for corresponding days and selected test sites.

Comprehensive in-depth accuracy assessment of the entire area and time dimension

is a very time consuming process which would be beyond the scope of a book

chapter.

Additionally, a layer which includes information about the amount of interpo-

lated days was generated (Fig. 5.5). The layer contains the information on how

many days each pixel was interpolated by temporal filter and how often the water

Fig. 5.5 Number of days per pixel which were cover by cloud or no data for the year 2013
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was detected directly. The assessment layer concludes which areas have the more

meaningful results or questionable results due to a lack of clear sky observations.

5.4 Results

5.4.1 Temporal Development of Water Bodies

Figure 5.6 presents the result for all processed tiles for the year 2013 which is based

on over 292.000 input datasets. The permanently water-covered areas (oceans,

permanent lakes and reservoirs) are recognizable as areas of dark blue colour.

Beside these water bodies, there are many lakes and water reservoirs on a smaller

scale that show high dynamic behaviour around a core area of permanently existing

water bodies (compare Figs. 5.7 and 5.8). Dynamic water bodies are found all over

the world. Natural lakes might dry out during dry seasons and be filled during wet

seasons. Furthermore, artificial water reservoirs show high variability in their areal

extent depending on wet season and water use in dry season. Besides the dynamic

increase and decrease of surface area, there are also examples of constantly

decreasing water bodies including the popular examples of Aral Sea or Lake

Chad which were shrinking during the last century. To illustrate different evolu-

tions, we present some exemplary case studies (marked in Fig. 5.6) which are

illustrated in Figs. 5.7 and 5.8.

Figure 5.7 illustrates the results for four highly dynamic water bodies from

different regions with an exemplary profile line. Along the profile line we plotted

Fig. 5.6 Water Cover Duration 2013. Number of days classified as water
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Fig. 5.7 Water cover duration for selected regions: (a) American Falls Reservoir, USA, (b)
Poyang Lake, China, (c) Floods along Meghna River, Bangladesh, (d) Shardara and Koksaray

Reservoirs, Kazakhstan. Projection: GCS WGS 1984. Water duration in days along profile lines
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Fig. 5.8 Water cover duration for selected regions: (a) Lake Tuz, Turkey, (b) Lake Dongting,

China, (c) Aral Sea, Uzbekistan, (d) Chobe floodplain and Lake Liambezi, Namibia, (e) Mar

Chiquita, Argentina (f) Floodplain along Amazonas River, Brazil. Projection: GCS WGS 1984
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the number of days covered with water to underline spatial variability of the

discussed examples.

The American Falls Reservoir (Fig. 5.7a) is an artificial water body which is

used and regulated extensively for a large agricultural irrigation community in this

region. The amount of water is highly depending on snow pack conserved through-

out the winter and melting waters which feed the reservoir during spring time.

During the vegetation season, the water is being withdrawn for surrounding and

downstream irrigated agriculture, whereby the water inflow is decreasing. This

leads to the typical spatio-temporal pattern of the reservoir.

China’s largest fresh water lake, the Poyang Lake (Fig. 5.7b), is known for its

high importance for the regional ecology and economy. The lake features very high

variability throughout the year and rapid changes in lake inundation areas (Feng

et al. 2012). The spatio-temporal inundation patterns of Poyang Lake are driven by

wet and dry seasons as well as by water management (Guo et al. 2008). Rapid

changes of the surface area can be observed on a short term as well as on a long term

scale (Feng et al. 2012).

The spatio-temporal flooding pattern of the Meghana River system in

Bangladesh is visualized in Fig. 5.7c. This area is being flooded regularly due to

heavy monsoon rains and is controlled by high water levels of Padma River

downstream. Magnitude and areal extent of the flooded areas show strong inter-

and intra-annual variability depending on intensity and amount of monsoon pre-

cipitation during the wet season.

The last example illustrates two artificial water bodies in southern Kazakhstan

(Fig. 5.7d). The Shardara Water Reservoir which is mainly used for agricultural

irrigation, hydropower generation as well as flood control, features very dynamic

surface area. The reservoir shows high intra-annual variability with maximum

water extent after snow melting period and minimum after irrigation season. The

Shardara Water Reservoir represents a very complex situation due to different

interests of surrounding countries which is also completed by uncontrollable nature.

Further examples of dynamical inland water bodies and temporally flooded areas

are presented in Fig. 5.8.

5.4.2 Evaluation of Accuracy

Figure 5.9 shows exemplary three different time steps for the floodplains along

Amazonas River, Brazil and the performed accuracy assessment. We assessed all

pixels which were detected by the presented approach and accurate detection of

Landsat images at accordant day, as well as overestimation and underestimation.

The error matrix results (Olofsson et al. 2014) of the performed accuracy

assessment based on the 40 analysed Landsat scenes are summarized in Table 5.2.

The user accuracy (complementary measure commission error) describes the cor-

rect classified water pixel divided by the total number of classified water pixel. The

producer accuracy (complementary measure omission error) is the deviation of total
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Fig. 5.9 Exemplary validation for three time steps (Floodplain along Amazonas River, Brazil)

Table 5.2 Summarized results of accuracy assessment based on 40 Landsat images

Mar Chiquita Meghana River Poyang Lake

User Acc. Prod. Acc. User Acc. Prod. Acc. User Acc. Prod. Acc.

0.91 0.97 0.87 0.94 0.68 0.90

Niger Wetland Floodplain, Amazonas Salt Lakes

User Acc. Prod. Acc. User Acc. Prod. Acc. User Acc. Prod. Acc.

0.94 0.98 0.78 0.93 0.89 0.94

Overall accuracy 0.89
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number of correctly classified water pixel divided by total number of water pixel

identified in the reference data. The overall accuracy is the sum of all correctly

classified water pixels divided by the total number of water pixels (Congalton and

Green 2009; Olofsson et al. 2014). The overall accuracy based on pixel-to-pixel

comparison with water masks derived from Landsat images was 89 %. This

accuracy mirrors a temporal snapshot for corresponding days and selected test

sites and not an in-depth assessment. Generally, the results of MODIS water

masks overestimate the real water bodies’ size due to the coarse pixel resolution

of 250 m compared to the finer Landsat resolution. Carroll et al. (2009) also

observed overestimation of their static MODIS water mask product when compared

to Landsat images. Larger errors are generally found more often over smaller water

bodies again due to the coarse resolution of MODIS also stated by Li et al. (2013).

Furthermore, an overestimation was observed in high latitude areas during winter

season with low sun angle and resulting unfavourable satellite detection conditions.

Underestimation was mainly observed for longer cloud covered periods (tropical

regions), for wetlands and swamps with high aquatic vegetation production as well

as for waters with higher sediment load due to flooding situation. The underesti-

mation of presented example (Fig. 5.9) illustrates a case where waters are highly

loaded with sediments and thus were underestimated by the approach.

5.5 Time-Series of Water Bodies

In the context of this work, the question arises upon why information about

dynamic characteristics of inland water bodies is crucial. First of all, the reaction

of lakes in endorheic basins is a very good proxy for climatological variables

such as annual and seasonal precipitation and snow melting (Mason et al. 1994).

More importantly are human regulations and water management which change

the hydrological regimes. However, global or regional time-series of water

bodies over a long time period are still rare. Such information will capture

short-term fluctuation as well as long-term changes. In combination with ancil-

lary data such as complementary precipitation, temperature, evaporation, snow

cover, beginning of snow melting, downstream water demand and upstream

human activities, a better understanding of the world’s lakes and reservoirs can

be achieved. Further studies must focus on data fusion combining different

meteorological parameters and human impact to enable a comprehensive under-

standing of the entire system. This practically applies to different fragile eco-

systems with low annual precipitation, high temperatures, environmental change

and strong human interaction.
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5.6 Conclusion

The goal of this study was to highlight the need of time-series information for

inland water bodies by presenting our approach and the results for the year 2013. In

this chapter, we discuss our classification strategy to detect water bodies on a global

scale with high temporal resolution based on medium spatial resolution remote

sensing data and a priori knowledge. The approach is a fast process which uses only

a single band, digital elevation model, cloud cover information and a static

water mask.

Many inland water bodies feature high intra- and inter-annual surface extent

variability. Relief and hydrological characteristics of some catchments induce those

water bodies to be highly responsive to climate variation and human activities

(Friedrich and Oberhaensli 2004). The presented examples underline intra-annual

variability in a demonstrative way. Such intra-annual dynamics cannot be captured

by a single image or a static water mask (Feng et al. 2012). Furthermore, the

examples illustrate that various water bodies progress differently in their areal

extent due to natural environment depending on e.g. the size of hydrological

basin, relief, precipitation, land cover, geology and anthropogenic impact

(e.g. construction of dams, political and economic decisions on water discharge,

irrigation). Therefore, it is important to monitor and reconstruct the temporal

development of water bodies globally and put it into comprehensive context. The

documentation of past conditions of inland water bodies and their variability over

time, in combination with any driving forces and observed alterations, might

improve our understanding of such complex systems.

In this study, we proved that medium-resolution data can be effectively used to

detect information such as areal extent of inland water bodies on a global scale with

high temporal resolution. Future work will focus on the implementation of an

additional set of MODIS products accounting for different geographical regions

and dealing with the challenges mentioned in this chapter.
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Chapter 6

Analysing a 13 Years MODIS Land Surface
Temperature Time Series in the Mekong
Basin

Corinne Myrtha Frey and Claudia Kuenzer

Abstract Land surface temperature (LST) is an important parameter in the climate

system, impacting vegetation development, snow cover, runoff, and human liveli-

hoods. Knowledge of LST dynamics can furthermore be used as an indicator for

climate variability and change. LST is regularly measured from satellite sensors on

a broad spatial scale and with a high temporal resolution. In this research, MODIS

(Moderate Resolution Imaging Spectroradiometer) sensor data are used to assess

the spatial and temporal patterns of LST in the Mekong Basin (MB) including its

temporal variability. The dataset contains 13 years of MODIS LST data, a unique

measurement time series in terms of resolution, accuracy, and homogeneity. In the

analysis a temporal granularity of 8-days was used. The MB was divided into six

physiographically homogenous regions. The height and magnitude of annual LST

curves differ between the regions and prove to be strongly dependent on the

topography. Large intra-annual magnitudes and low temperatures (daytime/night-

time annual regional means are 14 �C/�7 �C) are found in the northern areas,

mainly in the high-lying Tibetan Plateau. The more southern areas are characterized

by low LST seasonality and high temperatures (daytime/nighttime annual regional

means of these regions range from 25 �C to 30 �C/19 �C to 25 �C). The year-to-year
variability of LST is similar in all regions (regional weekly daytime/nighttime

deviations lower than 4 �C/6 �C, except for the Tibetan Plateau, where regional

weekly daytime/nighttime deviations reach 6 �C/18 �C). In summer, 42 % of

daytime LST could be explained by topographic height. In winter and in nighttime

scenes, topography explained 89–97 % of the LST distribution. Land use and land

use change further influence the LST pattern, mainly in the daytime. An example of

rising LST due to deforestation is given. This study allows for an improved

understanding of temperature dynamics in one of the world’s largest river basins.
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6.1 Introduction

Land surface temperature (LST) is a highly variable quantity of the Earth’s surface,
in both space and time. Its temporal variability mainly results from the annual and

daily cycles of solar irradiation, which are further influenced by cloud cover and

general weather situations. Spatial variability is governed by surface characteristics

like albedo, emissivity, soil moisture, heat capacity of the surface soil layers, and

topography. LST influences the surface energy budget, for example it largely

controls the magnitude of the sensible heat flux and thus the air temperature. In

this view, LST can be considered as an important indicator for climate variability

(Kuenzer and Dech 2013).

The measurement of LST is conducted by radiometers which are sensitive in the

thermal infrared domain (usually 8–14 μm). Thus the measurement can be

conducted in situ with radiometers, or by airborne or space borne sensors. Mea-

surements from satellites have the advantage that LST can be captured regularly

with a high temporal resolution on a broad spatial scale. Due to the measurement

geometry, remotely sensed LST is also a function of surface roughness and topog-

raphy –the interpretation and correction of thermal anisotropy has been researched

only recently (Vinnikov et al. 2012; Guillevic et al. 2013).

Due to its complexity, LST-related research of the past decades often focussed

on the analysis of single scenes. Recently, researchers started shifting their focus

toward time series, like long-standing Sea Surface Temperature (Merchant 2013),

because the potential for applications is high (Jin and Dickinson 2010; Tian

et al. 2012; Sobrino and Julien 2013). This study is an example for a regional

application study using LST time series acquired over the Mekong Basin (MB).

The MB is a well suited area for analyses, as it is characterized by heterogeneous

natural and anthropogenic strata. Surface heights range from 0 km at the coastal

zones up to 6,000 m in the Himalayan mountain range. This complex distribution of

surface characteristics must lead to significant differences in LST over the spatial

domain as well as in the temporal shape. The overall goal of this study is to describe

LST spatial behavior and temporal dynamics in the MB using statistical parameters

and figures showing LST or quantitative derivatives of LST. A special focus is

given to the influence of land cover and land cover change on LST. Input for the

analysis is a 13 years’ time series of MODIS (Moderate Resolution Imaging

Spectroradiometer) LST data.

6.2 Study Region

Study region is the Mekong Basin, the catchment of the Mekong River. The

Mekong River runs from the Tibetan Plateau through six countries: the People’s
Republic of China, the Union of Myanmar, Lao People’s Democratic Republic,

Kingdom of Thailand, Kingdom of Cambodia, and the Socialist Republic of
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Vietnam (Fig. 6.1). The MB is home to nearly 80 million inhabitants. Rapid

development, land cover changes (especially deforestation), and regulatory mea-

sures along the river (hydropower) have attracted the attention of many stake-

holders, decision makers and researchers (e.g. Kuenzer et al. 2012, 2013;

Leinenkugel et al. 2013b; Son et al. 2012; Shrestha et al. 2013). Leinenkugel

Fig. 6.1 The Mekong Basin study area divided in the six physiographic homogenous regions as

published by Leinenkugel et al. 2013b. The background shows the surface heights as given by

SRTM (Shuttle Radar Topography Mission) data
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et al. (2013b), following Gupta (2009), distinguish six physiographically homoge-

neous regions in the MB:

(I) Tibetan Plateau (though only parts of the Tibetan Plateau are part of the MB). This

region is dominated by a mostly high-altitude, polar tundra climate. Above the treeline the

surface is covered with alpine grasslands, below needle-leaved forests and shrubland is

found.

(II) Transition Zone (in the article called the Lancangjiang Basin). Here, strong elevation

gradients dominate connecting high mountain peaks with deep valleys, where coniferous

forests, shrublands, and croplands are found.

(III) Mekong Highlands. This region is characterised by large evergreen broadleaved

forests, and small scale fields from cropping and shifting cultivation practices.

(IV) Mekong Lowlands. The Mekong Lowlands are similar to the Mekong Highlands,

though higher proportions of cropland and deciduous vegetation is found.

(V) Intensive Cultivation Region. This region is characterized by large portions of cultivated

areas. Often rice is grown.

(VI) Tonle Sap/Mekong Delta. Intensive cultivation is also found here, along with swamp

and mangrove forests, and aquaculture.

These six regions, as illustrated also in Fig. 6.1, were further used in this

research. Only pixels which lie inside the MB (grey outline in Fig. 6.1) were used

for the analyses, even if satellite imagery contained more data.

6.3 Data and Methodology

The gridded MODIS LST dataset from the Terra satellite (MOD11A2, version

005 – https://lpdaac.usgs.gov/products/modis_products_table/mod11a2) is the

main data source for this analysis. Data from 2000 to 2012 is thereby considered.

The dataset contains daytime and nighttime data in 1 km resolution and is in

sinusoidal projection. LST values are given as the average of all clear-sky LSTs

during 8-days periods. The LST of the daily input product are calculated using

emissivities which are based on a land cover classification (http://www.icess.ucsb.

edu/modis/LstUsrGuide/MODIS_LST_products_Users_guide_C5.pdf). For data

before July 2001, the IGBP (International Geosphere-Biosphere Program) land

cover product was used. For later data, the land cover product generated from

MODIS data itself was used. Daily LSTs which are input into the 8-days average

are produced using the generalized split-window algorithm (Wan and Dozier 1996).

The accuracy of the daily products was found to be 1 K, however higher errors may

occur for example in semi-arid and arid regions and at large viewing angles (http://

landval.gsfc.nasa.gov/; Frey et al. 2012).

To facilitate understanding, the 8-day LST averages will be called LST_8day

throughout this article. For convenience the LST_8day product has also been

converted from K to �C in all figures and tables.

Although the MODIS product uses a cloud mask, there are still pixels in the daily

products which are cloud contaminated, resulting in LST values that are too low

(Frey and Künzer 2014). Leinenkugel et al. (2013a) analysed clouds in the MB and
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found generally high cloud cover during the SW Monsoon from May to mid-

October, with 85–95 % of all pixels cloudy. During the NE Monsoon between

November and March, average cloud cover was about 50 %. Frey and Künzer

(2014) found that cloud gaps can influence the accuracy of the daily regional means,

especially in months with high cloud cover. The contamination is reduced through

the averaging process in the 8-day product, but there are still pixels whose values

were too low. To reduce this effect only LST_8day pixels that were flagged as

‘good quality’ in the accompanying quality layer were used and an additional cloud

screening – simplified from Neteler (2010) – was applied by the authors. This

screening uses “lower boundary values” as a threshold for detecting invalid pixels

in the LST_8day data. If any pixel is below the “lower boundary value” belonging

to the appropriate 8-day period, year and region then the pixel is marked as missing

value. The lower boundaries are calculated separately for each 8-day period and

300�300 windows based on quartiles, which are derived from all valid values in

each respective 8-day period and window. To avoid extreme outliers in the lower

boundary values, the time series of lower boundaries is smoothed with a 3�3 kernel

and missing values are interpolated using spline interpolation.

The analysis of the dataset is organized as follows: In Sect. 6.4 the dataset is

described quantitatively in space and time using various statistical measures,

e.g. means, standard deviations, deviations from the long-term mean or variability.

Afterwards in Sect. 6.5 the article discusses some factors that influence the spatial

and temporal characteristics.

The quantitative description is arranged in Sects. 6.4.1, 6.4.2 and 6.4.3. In

Sect. 6.4.1, the LST_8day time series are described using various statistical param-

eters and time series plots. The analysis is conducted region-wise using the

physiographically homogeneous regions derived by Leinenkugel et al. (2013b).

This was done because the spatial LST_8day distribution is also a function of

surface characteristics and it is assumed that the regions form a suitable framework

to distinguish different temporal and spatial patterns. The average LST_8day for a

certain region is addressed as ‘regional mean LST_8day’. It is the mean of all pixels

within a region (e.g. all pixels of the region ‘Tibetan Plateau’). The temporal

resolution remains 8 days. Further, the magnitude of the diurnal cycle will be

looked at. Generally, the incoming solar radiation is the major controlling factor

for LST, leading to diurnal and annual cycles with peak LST around noon and in

summer. While annual curves can be shown using the Terra MODIS LST time

series, it is not possible to fully resolve the diurnal cycle relying only on MODIS

LST data. Differences between daytime and nighttime values may not reflect the

maximal diurnal magnitude, as acquisition times are not congruent with daily peak

times. Acquisition times of the daytime scenes range around 10:30–11:30 local

time, nighttime scenes are acquired around 22:00–23:00 local time. Nevertheless,

the differences between daytime and nighttime values can be used to assess spatial

patterns and temporal behaviour.

In the following Sect. (6.4.2), the study looks at deviations from the long-term

mean. Deviations are the differences of actual LST_8day values and the 13-year

mean of respective pixels. The 13-year mean is calculated as the mean of all
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LST_8day values belonging to a certain 8-day period. The newly created 13-year

mean dataset contains one image for each 8-day period, and will be addressed as

LST_13year throughout this paper.

Section 6.4.3 analyses the variability of the deviations using the standard

deviation of the yearly mean deviations. The variability is also calculated on

pixel basis, separately for the daytime and the nighttime data.

Section 6.5 discusses how factors like land cover or surface height influence the

distribution of surface temperatures. A layer with land use classes from

Leinenkugel et al. (2013b) was utilized. Following classes were selected as com-

binations of the more differentiated classes from the authors above:

• Agricultural areas: ‘Three season cultivated lands’, ‘Two season cultivated

lands’, ‘Single season cultivated lands’
• Orchards: ‘Single season orchards’
• Aqua culture: ‘Aqua culture’
• Urban and built up lands: ‘Urban and built up lands’
• Deciduous forests and shrublands: ‘Deciduous broadleaf forests’, ‘Deciduous

wood- and shrublands’
• Evergreen forests and shrublands: ‘Evergreen broadleaf forests’, ‘Evergreen

broadleaf wood- and shrublands’, ‘Evergreen needleleaf forests’, ‘Evergreen
needleleaf wood- and shrublands’

• Swamps and mangroves: ‘Swamp forests’, ‘Mangrove forests’
• Alpine grassland: ‘Alpine grassland’

For a detailed analysis of LST_8day change in deforested areas, a forest change

layer from Leinenkugel et al. (2014) was used. The layer was regridded from lat/lon

to sinusoidal projection. This led to slight shifts in the location of a few polygons

with a maximal shift of one pixel. To minimize possible misinterpretations, only

polygons with a minimum area of 10 km2 were chosen for the deforestation

analysis.

Further, a digital elevation model (DEM) from the Shuttle Radar Topography

Mission (SRTM) was applied in analyses requiring the topographic height. For the

analysis the DEM was projected into the sinusoidal projection of the gridded

MODIS data and resampled to 1 km resolution.

Topographic height data was also used to calculate the ‘residual LST_8day’.
Residual LST_8day was calculated by subtracting a modelled height-dependent

LST, which was derived from regression calculations between the actual LST_8day

and the SRTM over the whole MB. The residual LST_8day retains the temporal

resolution. For some analyses also the 13 year mean (on 8 day basis) was calculated.

This residual LST_13year is used to analyse the LST difference between the land

use classes without the interfering elevation effect. Omitting this correction would

distort the results mainly in the ‘Transition zone’ and ‘Mekong Highlands’ regions,
as their land cover classes are not uniformly distributed. For example, agricultural
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areas in the Mekong Highland are found at lower elevations than forested areas,

leading to higher LST in agricultural pixels due to the height effect.

Finally, the MODIS 16-day shortwave albedo product (MCD43B3) from 2000 to

2012 was used. This data was required for spatial analysis only. Therefore the

13-year time series was averaged, resulting in 13-year means for each 16-day

period.

6.4 Quantitative Analysis of the LST_8day Dataset

6.4.1 Analysis of LST_8day Time Series

To analyse the temporal evolution of LST_8day, region-wise time series are plotted

in Fig. 6.2. The magnitude of the annual cycle is strongest in the Tibetan Plateau,

where the difference between the maxima and minima of the regional mean

LST_8day may reach 30 �C in the daytime scenes and 26 �C in the nighttime

scenes. The Transition Zone also shows strong seasonality. More southern regions

exhibit smoother annual courses. The Tonle Sap and Mekong Delta region show

minimum differences. The annual temperature range in regional means reaches

16 �C in the daytime scenes and only 10 �C in the nighttime scenes.

Generally, the Tibetan plateau shows the coldest regional mean LST_8day,

exhibiting extremely low temperatures in the nighttime scenes. The nighttime

minimum regional mean LST_8day reached �20 �C in the study period. Warmest

nighttime regional mean LST_8day are found in the Tonle Sap and Mekong Delta

region reaching 28 �C. In the daytime scenes the highest regional mean LST_8day

are found in the Intensive Cultivation Region with regional mean values going up to

42 �C (outside plotted range in Fig. 6.2).

Table 6.1 shows the median values of all yearly minima and maxima, as well as

average regional means.

The time series plotted in Fig. 6.2 show some negative outliers. An extreme

example of such an outlier is found in the nighttime data of the 2003 summer in the

Transition Zone. These outliers are due to cloud-influenced pixels that were not

detected by the MODIS cloud mask and the post-seasonal cloud-screening. Such

outliers may occur in periods with massive cloud occurrence. In such cases the

lower boundary value is set to a fixed threshold which might be too low in

respective cases. Outliers can also occur in regions with strong spatial LST gradi-

ents like in the transition zone, where the lower boundary may not be appropriate

for all pixels. Apart from these outliers, the annual courses of LST_8day remain

more or less constant over the time.
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6.4.2 Analysis of Deviations from the 13-Year Mean

Pixel-wise deviations from the calculated 13-years average (LST_13year) range

from �11 �C to 6 �C for the daytime scenes and from �12 �C to 18 �C considering

the nighttime scenes. Positive deviations stand for higher temperatures than aver-

age, negative deviations stand for lower than average. Mean regional absolute

Fig. 6.2 Time series of daytime (red) and nighttime (blue) regional mean LST_8day for the six

physiographic homogenous regions of the Mekong Basin. The grey background areas depict the

standard deviation
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deviations range from 1 �C to 2 �C in the daytime scenes and are around 1 �C in the

nighttime scenes (Table 6.2). The statistical parameters given in Table 6.2 are

derived from LST_8day; the maximum positive difference e.g. thus represents the

maximum difference found in all pixels and in all 8-day periods. The mean absolute

difference gives evidence about the magnitude of the differences. All regions,

Table 6.1 Daytime and nighttime statistical values from the LST_8day time series

Daytime Nighttime

Median of

yearly

maxima [�C]

Median of

yearly

minima [�C]

Mean

value

[�C]

Median of

yearly

maxima [�C]

Median of

yearly

minima [�C]

Mean

value

[�C]

Tibetan

Plateau

21.3 5.2 14.0 3.0 �17.2 �7.0

Transition

zone

28.9 14.1 22.0 15.4 6.1 11.4

Mekong

Highlands

28.2 21.3 25.1 21.2 14.3 18.6

Mekong

Lowlands

32.7 25.8 27.9 24.0 16.9 21.2

Intensive

Cultivation

Region

36.0 27.5 30.1 25.3 17.3 22.6

Tonle Sap

and Mekong

Delta

30.6 24.9 27.3 26.6 22.6 24.6

Table 6.2 Statistical parameters of the LST deviations (actual values minus 13-year average) for

each of the six physiographically homogenous regions

Maximum

positive

difference

Maximum negative

difference

Mean absolute

difference

Standard

deviation of

absolute

difference

Day-

time

Night-

time Daytime

Night-

time Daytime

Night-

time Daytime

Night-

time

Tibetan

Plateau

6.17 17.97 �10.85 �11.80 2.27 1.44 1.82 1.45

Transition

Zone

3.99 4.70 �5.67 �5.51 0.98 0.96 0.88 0.92

Mekong

Highlands

2.93 6.03 �4.09 �5.76 0.86 0.86 0.84 0.87

Mekong

Lowlands

2.96 3.66 �3.70 �3.01 0.78 0.63 0.66 0.62

Intensive Cul-

tivation

Region

2.87 2.31 �5.33 �3.01 0.71 0.64 0.77 0.58

Tonle Sap and

Mekong Delta

3.04 2.44 �2.87 �3.15 0.59 0.59 0.62 0.51
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except the Tibetan Plateau feature very similar values. Daytime differences are

between�3 �C and�6 �C. Mean absolute differences and their standard deviations

are all below 1 �C. However, the Tibetan Plateau stands out from the other regions

having the largest regional deviations (up to 18 �C) as well as larger regional mean

absolute differences (up to 2 �C). The high standard deviation (daytime 2 �C) points
to a large temporal variability in the area.

For this analysis, yearly means were also calculated from the LST_8day devi-

ations for the years 2000–2012. It was found that there are years with strong

deviations like for example the daytime deviations in the year 2008. In other

years LST_8day is similar to LST_13year, for example in nighttime in the year

2000. The deviations are also not distributed evenly over the study region. In some

years there was a decoupling of the northern region, mainly the Tibetan Plateau,

from the Mekong Highlands and Lowlands and the Intensive Cultivation and Tonle

Sap/Mekong Delta regions, e.g. in the year 2005. In other years, the deviation

pattern seem to be randomly distributed, e.g. in the year 2001 (data not shown). In

summary, no regular pattern was found in the annual deviations. It is assumed that

the natural variability of the weather is responsible for these deviations; however an

influence of cloud detection errors cannot be excluded. Generally, it is found that

inter-annual deviations tend to be larger in the winter months, when the NE

Monsoon occurs between November and March. Lower deviations are found during

the SWMonsoon in summer and autumn (May to mid-October). This finding is true

for all regions except the Tibetan Plateau, where deviations are high throughout the

year. Figures 6.4 and 6.5 show the regional mean deviations in the study period,

separately for each month. For these figures, the maximum deviation was taken

from all available 8-days periods per month. The figures show that the season-

dependent deviation pattern is found in the daytime and nighttime images. Looking

at the temporal evolution of the deviations, no significant trends could be detected

in the data. 13 years is insufficient for this kind of analysis.

6.4.3 Analysis of the Variability

Generally, there is a much higher variability in the daytime scenes than in the

nighttime scenes. Only some small parts in the Mekong Highlands show some

higher values in the nighttime variability. In the daytime strong variability is found

in the Tibetan Plateau region with its alpine grasslands, as well in the regions with

large cropland areas (Intensive Cultivation Region, Mekong Lowlands). High

variability also occurs at the southern coast of Vietnam where wetlands mix with

aquaculture. Regions with low variability in the daytime scenes are the Transition

Zone, most parts of the Mekong Highlands, where evergreen forests cover the

Earth’s surface, and the Tonle Sap Lake in Cambodia (Figs. 6.4 and 6.5).

Some of the regions with high daytime LST variability in the Lower Mekong

Basin strongly agree with areas which underwent permanent tree cover loss

between 2000 and 2011 (delineated by Leinenkugel et al. 2014). These areas are
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mainly in Cambodia. For example, great clusters of deforestation which also show

high LST variability are found in Batdambang, in Gia Lai, and in Dac Lac province

(see also Fig. 6.3). There are also other small spots of high variability in Cambodia

which might point to additional deforestation activities. The Khorat Plateau in

Thailand also shows high daytime LST variability, yet, according to Leinenkugel

et al. (2014) only few areas are affected there by deforestation. The effect of

deforestation on LST_8day is discussed further in Sect. 6.5 (Figs. 6.4 and 6.5).

6.5 Influencing Factors

Solar irradiation is the main driver of LST. It mainly determines the diurnal and

annual shapes of LST curves. Deviations from such ideal curves arise mainly from

spatially varying surface characteristics and manifest themselves in spatial patterns.

As such, the LST_8day distribution in the MB shows a distinct spatial pattern,

which is well correlated with the topography of the area. On a large spatial scale, the

elevation of the MB decreases towards the south, whereas the temperatures increase

(Fig. 6.6). At small scale, a similar effect can be observed in the deep Mekong River

Fig. 6.3 LST variability in the MB for (a) the daytime and (b) the nighttime images. The

variability is expressed as the standard deviation of all mean annual deviations. Maximal vari-

ability is 4.8 �C, for visualization reasons however, the scale bar just goes until 2 �C
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valley in the transition zone, where steep temperature gradients are observed along

the slopes. This effect can be seen for example in the daytime scene of July

(Fig. 6.6b). This effect is also present in the other months and in nighttime image

of Fig. 6.6 but is not very visible due to the chosen colour stretch for the images of

Fig. 6.6 (for further information see also Frey and Kuenzer 2014). Correlation

coefficients r2 between the topographic height and the individual 8-day periods in

the LST_13years dataset range between 0.42 and 0.89 for the daytime scenes and

between 0.95 and 0.97 for the nighttime scenes. Low correlation values are only

Fig. 6.4 Maximum of mean daytime deviations from the 13-year average LST (LST_13year),

separately for the six physiographically homogenous regions
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found in the daytime summer scenes, where other aspects of the topography (slope

and aspect), and surface characteristics like shortwave albedo, longwave emissiv-

ity, and thermal inertia exhibit a stronger influence on the spatial distribution of

LST. These dependencies are nonlinear. For example the shortwave albedo influ-

ences the LST by controlling the solar irradiation energy available for heating.

Areas with low albedo generally heat up more strongly than areas with high albedo.

In the northern regions (Tibetan Plateau) this correlation can be found in the data,

especially when there are snowy or glaciated areas. Soil moisture does also

Fig. 6.5 Maximum of mean nighttime deviations from the 13-years average LST, separately for

the six physiographic homogenous regions
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Fig. 6.6 13-year mean LST (a) January daytime, (b) July daytime, (c) January nighttime, (d) July
nighttime. In the July scenes (rainy season), there are many cloud gaps. In some areas, no good

cloud-free LST value was available in the whole 13-year period
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influence LST: dry areas may show higher temperatures than wet areas, as no

evaporative cooling takes place. Costa-Cabral et al. (2008) found that soil moisture

in the MB is often coupled with land cover. Agricultural areas show highest soil

moisture values- lowest values are found in grassland and woodland areas, when no

antecedent high precipitation has taken place. However, the Intensive Cultivation

Region generally has higher temperatures than its wooded neighbouring regions,

even after subtracting the influence of the topography. Only in the nighttime scenes

some winter months showed a pattern consistent with a cooling influence from soil

moisture. Another factor, namely the latitude, adds to the correlation between LST

and topography. Temperatures usually get warmer when moving towards the

equator due to enhanced solar irradiation and this effect is observed in this dataset.

Finally, Fig. 6.6 shows the high thermal capacity of water bodies. The Tonle Sap

Lake in western Cambodia, which is the largest freshwater lake in Southeast Asia,

can be distinguished by its cooler LST_8day in the daytime scenes and its warmer

LST_8day in the nighttime scenes (black arrow in Fig. 6.6a).

Land use classes encompass regions with similar surface properties. It is there-

fore straightforward to assume LST variability within a land use class would be

smaller than the variations amongst different classes. A relationship between land

use and LST pattern is confirmed by analysing the temporal evolution of the

residual LST_13year. Figure 6.7 shows the long-term mean residual LST_8day

(¼residual LST_13year) in its annual course separated for the six regions and for

10 land use classes (Leinenkugel et al. 2013b). The residual LST_13year does not

show the usual annual curve, as this cancels out in the calculation. Variations within

one class and one region are due to changing surface properties during the annual

course within one class. But also the limited accuracy of the height model and other

influencing factors like influence of undetected clouds, slope and exposition may

have an impact.

Figure 6.7 shows that there is a substantial difference in daytime regional

residual LST_13year between forested and agricultural areas, especially in the

regions Transition zone, Mekong Highlands, Mekong Lowlands, and Intensive

Cultivation Region. The largest differences occurred in the Mekong Lowlands

and the Intensive Cultivation Region where the residual LST_13year in forested

areas is up to 4 �C cooler than the agricultural areas. In the region Tonle Sap and

Mekong Delta however, no such difference is found. The region Tibetan Plateau

does not include agricultural areas, so no such comparison was made. The nighttime

data did not reveal such differences between the land use classes. Only the two

classes Evergreen forests and shrublands and Alpine grasslands on the Tibetan

Plateau showed considerable differences.

LST is an important variable in the surface energy budget and thus in the local

microclimate (Frey et al. 2012). For the regional climate therefore, differences

between agricultural and forested areas may have substantial impacts. As already

stated, Cambodia has large areas where deforestation has taken place during the last

10 years. As a consequence, LST_8day has increased in these areas. Figure 6.8

shows the residual LST_8day after elevation correction over time for only those

pixels that underwent deforestation during the last years (deforestation mask:
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Leinenkugel et al. 2014). The number of deforested pixels per region was more than

500 in each of the regions. It must be noted that the deforestation mask did not only

flag pixels whose area was completely cleared. The majority of the pixels are only

partially affected by deforestation (personal communication, P. Leinenkugel). The

residual LST_8day increase is therefore expected to be even higher on completely

Fig. 6.7 Residual LST_13year separated for the six regions of the MB and land use classes
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deforested pixels. Annual mean, maximum and minimum residual LST_8day

values, as well as respective gain and correction coefficients are given in Fig. 6.8.

A positive growth is shown for the Mekong Highland and Mekong Lowland and the

Intensive Cultivation Region with increases of 0.1–0.2 �C per year. The Tonle

Sap/Mekong Delta region however shows no change in the mean LST residuals,

and even a continuous cooling of maximum values. Considering that agriculture in

this region involves heavy irrigation and seasonal flooding, this finding is plausible.

The observed warming is not equal for all months, but higher during the dry season

and lower during the wet season. The growth of the mean values for the dry months

Fig. 6.8 Daytime residual LST_8day (Max, Mean, Min) for areas that underwent deforestation

since 2001. (a) Mekong Highlands, (b) Mekong Lowlands, (c) Intensive Cultivation Region, (d)
Tonle Sap and Mekong Delta

6 Analysing a 13 Years MODIS Land Surface Temperature Time Series. . . 135



of January and February for example, is 0.3 �C per year for the deforested pixels in

the Mekong Highland, Mekong Lowland and Intensive Cultivation Region. For the

wet months of August and September the growth is 0.0 or 0.1 for aforementioned

regions. It should be mentioned that this growth is directly related to the defores-

tation and does not point to a long-term climate trend. The other pixels do not show

such warming.

6.6 Discussion and Summary

In this study the temporal evolution and spatial pattern of LST_8day (8 days

average of land surface temperature) of the MB (Mekong Basin) were analysed.

MODIS data from the Terra satellite were used. As such, only one day and one

nighttime measurement were available per pixel. Data that resolve the whole

diurnal course would certainly enhance the understanding of the LST regime in

the MB. Nevertheless, the MODIS Terra LST data allowed extracting spatial and

temporal patterns typical for the MB. Solar irradiation provides the main shape of

diurnal and annual curves. The magnitude of the seasonal signal, for example, gets

much lower towards the south as mean temperatures increase due to more constant

and higher solar zenith angles towards the equator. As such, the Tibetan Plateau

shows large seasonality and low mean temperatures, while the southern regions

show very smooth seasonality on a generally high temperature level. However, it

was found that the magnitude and especially the spatial variability of the annual

LST_8day curves vary inside the study area to an extent which cannot be explained

by climatic variables only. To analyse these differences, the six physiographically

homogeneous areas from Leinenkugel et al. (2013b) were selected, to analyse

regional-specific statistics.

If was found that the topography has a very strong influence on the spatial

distribution of LST_8day. This fact becomes prominent especially in the two

northern regions Tibetan Plateau and Transition Zone, where large elevation dif-

ferences and steep gradients lead to strong spatial LST_8day gradients. In contrary,

the southern regions show lower intra-regional LST_8day gradients, where the

topography is more even. The relation between topography and LST_8day was

analysed quantitatively. At night 95–97 % of the LST_8day distribution could be

explained by the topographic height. In daytime the influence was less and varied

from 89% to 42 % with low r2 in the summer months. Wang et al. (2013) confirm the

influence of the topography on spatial temperature pattern by analysing station air

temperature data of a region mostly congruent with our Transition Zone. However,

the sparseness of in situ stations in this region does not allow reproduction the spatial

patterns that were found in this study. Xu et al. (2013) also agrees on the strong

influence of topography on LST for the Tibetan Plateau, as well as the large intra-

annual gradients. Latter finding is also confirmed by Salama et al. (2012).

The Tibetan Plateau also stands out in its variability (¼ standard deviation of the

monthly deviation from the long-term mean), featuring a much higher variability
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than the other regions. This is especially true in the time of the SW Monsoon (May

to mid-October), when deviations are lower than in the rest of the year in all regions

except the Tibetan Plateau. Generally, the daytime scenes show higher variability

than the nighttime scenes. In the daytime scenes also agricultural areas feature a

high variability, especially areas which underwent deforestation and transformation

from forest to agriculture.

Apart from elevation land use also plays an important role in explaining tem-

poral and spatial LST pattern. Urban and built-up lands generally feature higher

temperatures than their natural counterparts. This is a well-known effect proved in

many Surface Urban Heat Island studies (e.g. Heldens et al. 2013; Parlow

et al. 2014; Peng et al. 2012). Not only man-made materials influence LST, but

different natural surfaces exhibit large differences, with the soil water content

playing a major role. Swamps and mangroves for example exhibit clearly lower

LST_8day than deciduous forests and shrublands. Interestingly, agricultural areas

also feature higher LST_8day than forests and shrublands in the Transition Zone,

the Mekong Lowlands and the Intensive Cultivation Region. The relation between

land use and LST is confirmed by Xu et al. (2013) for the Tibetan Plateau. While

they also found strong spatial LST gradients dependent on the topography, they

showed that forested areas and grassland have higher mean LST than water but

lower LST than bare land. Also the intra-annual gradients vary amongst the

different land uses. Julien et al. (2006) investigated changes in LST and NDVI

(Normalized Difference Vegetation Index) over Europe and confirmed different

temporal evolutions of LST for different land cover types.

As LST_8day distribution varies amongst the different land use classes, land use

change over time will also lead to changes in LST_8day in many cases. This was

shown on the example of deforestation, which is carried out on a massive scale in

Cambodia, where forest is cleared for extending the agricultural fields. As a result,

LST_8day increased strongly over these areas. This effect results from processes

which are independent from climate change related temperature increases as

predicted e.g. by Eastham et al. 2008. This deforestation effect will likely add to

the projected warming due to climate change, leading to even higher temperatures

over the affected areas. Apart from this, a series of impacts are possible. This local

temperature enhancement may increase the effects of climate change like a shifting

of the vegetation growth periods through increased air temperatures (Eastham

et al. 2008), and influence future rice yields (Chinvanno et al. 2008). Higher

temperatures – coupled with heat waves – may also lead to increased mortality

rates (Tan et al. 2010) or droughts, which frequently occur in the Lower Mekong

Basin (Son et al. 2012). The local enhancement of LST_8day however, may also

alter climate projections through potentially increased cloud cover and local trig-

gering of rain events. Increased cloud cover in turn would reduce the regional

warming. As such, the long-term effects of deforestation on local climate are

subject to further research. The authors recommend including future predictions

of land cover changes in climate simulations especially in areas, where deforesta-

tion is taking place. For extracting significant long-term trends it would be worth
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using longer time series of LST, e.g. from the AVHRR (Advanced Very High

Resolution Radiometer) sensor.

6.7 Conclusions

The Mekong Basin (MB) recently came into the focus of various stakeholders,

decision makers, and researchers, as the region undergoes rapid development

(deforestation, hydropower, and urbanisation) which leads to significant land

cover changes. The climatic and physiographic description of the area is therefore

not only beneficial for future research like hydrologic and climatic modelling, but

also for bodies working on land use planning and regulatory measures in affected

countries.

The Mekong Basin is a region with strongly varying physiographic conditions.

This reflects in the spatial and temporal distribution of LST (land surface temper-

ature) of the region. This was shown quantitatively in six physiographic homoge-

neous regions of the Mekong Basin, which show varying mean LST as well as intra-

annual and diurnal LST magnitudes. However, some of the regions show also very

strong intra-regional gradients which could largely be explained by topography and

land use. The topography explains a large portion of the spatial variability, espe-

cially in the area where strong height gradients exist. Besides the spatial variability,

temporal variability is also found in the data, which itself varies spatially: some

regions show larger temporal variability than others. This might be induced by

changing weather patterns, but also through land use change. The latter is an

important factor for understanding LST distribution and seasonality of LST. Land

use changes influence the LST and therefore the microclimate. As such, anthropo-

genic land use change activities like deforestation and transformation into agricul-

ture, lead to higher LST. This effect adds to regional climate change effects and

may alter some of the local predictions. To account for this effect in regional

climate models, it is recommended to include predictions of land cover change

into simulation models in this region. This study has shown that it is possible to

characterize the detailed spatial and temporal LST regime of the MB using a

13-year MODIS time series. The spatial distribution of LST can be assessed in

high detail. With recently developed new approaches to convert LST to air tem-

peratures (Lazzarini et al. 2014; Pe�on et al. 2014), this dataset may even help to

overcome the problem with the lack of available in situ stations in this region. The

authors encourage using longer time series together with a resolving of the diurnal

course to deepen the understanding of the LST regime in the MB and to be able to

detect climatic trends.
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Chapter 7

TIMESAT: A Software Package
for Time-Series Processing and Assessment
of Vegetation Dynamics

Lars Eklundh and Per J€onsson

Abstract Large volumes of data from satellite sensors with high time-resolution

exist today, e.g. Advanced Very High Resolution Radiometer (AVHRR) and

Moderate Resolution Imaging Spectroradiometer (MODIS), calling for efficient

data processing methods. TIMESAT is a free software package for processing

satellite time-series data in order to investigate problems related to global change

and monitoring of vegetation resources. The assumptions behind TIMESAT are

that the sensor data represent the seasonal vegetation signal in a meaningful way,

and that the underlying vegetation variation is smooth. A number of processing

steps are taken to transform the noisy signals into smooth seasonal curves, including

fitting asymmetric Gaussian or double logistic functions, or smoothing the data

using a modified Savitzky-Golay filter. TIMESAT can adapt to the upper envelope

of the data, accounting for negatively biased noise, and can take missing data and

quality flags into account. The software enables the extraction of seasonality

parameters, like the beginning and end of the growing season, its length, integrated

values, etc. TIMESAT has been used in a large number of applied studies for

phenology parameter extraction, data smoothing, and general data quality improve-

ment. To enable efficient analysis of future Earth Observation data sets, develop-

ments of TIMESAT are directed towards processing of high-spatial resolution data

from e.g. Landsat and Sentinel-2, and use of spatio-temporal data processing

methods.
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7.1 Introduction

Satellite-derived time-series data help us understand interactions of terrestrial

vegetation dynamics with climate and the carbon cycle, and their trends over

time (Keenan et al. 2014). Using efficient processing methods for analyzing

existing remotely sensed time-series data is important for monitoring and mapping

vegetation dynamics, thereby contributing to improved understanding of the global

climate system. We will in this chapter present and describe one available tool,

named TIMESAT, for processing time-series of satellite sensor data to enable

meaningful data extraction for modeling vegetation dynamics.

The first time-series of satellite imagery for studies of dynamic Earth processes

were made available from weather satellites. It was a series of satellites launched by

the American National Oceanic Administration (NOAA) that generated daily data

covering the entire Earth, and enabled the generation of global near-real time

vegetation data. The first of these weather satellites to have bands suitable for

vegetation mapping was NOAA-6, carrying an improved Advanced Very High

Resolution Radiometer (AVHRR) sensor (Zhu et al. 2012). Though the sensor

generated data at coarse spatial resolution (approx. 1� 1 km resampled into a

4� 4 km global product) the value of the data for global vegetation monitoring

soon became evident. A series of data products based on the Normalized Difference

Vegetation Index (NDVI), computed from the NOAA channels 1 and 2, were

developed and were used for studying the temporal dynamics of global land

vegetation (Justice et al. 1985; Townshend and Justice 1986). These were the

NOAA Pathfinder data set (James and Kalluri 1994), the University of Maryland

GIMMS data set (Tucker et al. 2005), and the recent, improved GIMMS (Global

Inventory Modeling and Mapping Studies) NDVI(3 g) data set (Jiang et al. 2013).

These data sets contain global images of NDVI from 1981 onwards at a time step of

10–15 days and a spatial resolution of ca 8� 8 km. This temporal and spatial

resolution is adequate for studying seasonal and interannual dynamics of vegetation

biomes. Hence, several studies from the mid-1980’s and onwards have demon-

strated how the information can be used for better understanding of vegetation

dynamics as well as aiding land cover classifications (Defries and Townshend 1994;

Running et al. 1994). In parallel, the increasing supply of high-spatial resolution

data from sensors with 10–30 m resolution (e.g. Landsat and SPOT), and later on

the development of satellites generating data at meter resolution (e.g. IKONOS,

Quickbird, and Worldview), led to much of the technical development focusing on

methods for classifying and quantifying high-resolution data. Hence, the develop-

ment of time-series methodology in remote sensing was initially slow. However, it

expanded quickly towards the beginning of the 2000’s with the need to process

large volumes of time-series data from the Terra and Aqua MODIS (Advanced

Very High Resolution Radiometer) sensors at 250 m spatial resolution.

The interest in developing the TIMESAT software package arose from a need to

manage time-series data in remote sensing in order to help tackle problems related

to global change and monitoring of vegetation resources. The research community
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was interested in solving a range of questions related to time-series: is vegetation in

the world’s drylands changing; can satellite data be used for issuing early warnings
of drought and famine; how does NDVI respond to changes in environmental

driving forces such as rainfall and temperature; can satellites be used for monitoring

carbon uptake from the vegetation; are growing seasons changing; and how does

vegetation respond to climate change? In fact, these and many other related

questions have been the focus of a large body of research during the last 30–

40 years. TIMESAT is just one of many approaches for data processing and

extraction of phenological information from Earth observation time-series data.

The background, theory and some future issues related to TIMESAT are

described in the remaining sections.

7.2 Handling Remotely Sensed Time-Series Data –
Assumptions and Some General Problems

The study of vegetation seasonality from space is based on two fundamental

assumptions. The first assumption is that the optical data correctly model biophys-

ical vegetation properties (such as leaf area index (LAI), green biomass, or frac-

tional absorbed photosynthetically active radiation (FAPAR)). Unfortunately this

assumption is not perfectly satisfied. It is true that many of the commonly used

vegetation indices are empirically related to biophysical vegetation properties, but

they are also affected by several other processes and disturbances. For example,

even when ignoring the effects of clouds, angular effects and the atmosphere, the

popular vegetation indices NDVI and Enhanced Vegetation Index (EVI) do not

only respond to vegetation variations, but are both very sensitive to e.g. snow or

moisture-induced background variations (Huete et al. 2002). Sensor degradation

and drift in satellite overpass times (particularly evident with the NOAA satellites)

are other examples of factors affecting the data reliability. All these influences

cause ambiguity in the interpretation of the signal, affecting the information value

and our ability to interpret the extracted seasonality data.

The second assumption is that the temporal signal from the vegetation is smooth.

The canopy leaf mass, and the bulk of pigmentation and leaf water strongly

dominate the optical signal from vegetation; these all tend to vary relatively

consistently with time in a seasonal pattern. The variation can be slow

(e.g. coniferous evergreen forest), or rapid (e.g. semi-arid grasslands), however it

is not random. On the other hand, some short-term variations do occur in vegeta-

tion, e.g. due to light saturation and plant stress, which may lead to short-term

variations in chlorophyll fluorescence that adds to the apparent reflectance. Though

this addition is generally small for broad wavelength bands it may add substantially

to certain wavelengths; up to 10–25 % at 685 nm and 2–6 % at 740 nm (Campbell

et al. 2008). Also reflectance at 631 nm can change rapidly with variations in

photosynthetic radiation-use efficiency (Gamon et al. 1997). Naturally, also some
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vegetation disturbances, caused by insect infestations, storms, and fires, can lead to

rapid decline in canopy foliage which affects the reflectance. Overall, however, the

seasonal canopy signal tends to change smoothly in a seasonal perspective, partic-

ularly in comparison with the many disturbing factors that may change rapidly from

image to image: the atmosphere, clouds, angular variations due to different viewing

and illumination angles, and geometric inaccuracies. Figure 7.1 shows daily

MODIS NDVI data for 3 years from a coniferous forest site in southern Sweden,

illustrating the noise in these data. The data in Fig. 7.1a seem to be more or less

fully made up of noise, and the seasonal variation is quite difficult to discern.

To transform the noisy data into an understandable signal, a number of

processing steps are necessary. These steps may include removing cloud interfer-

ence by applying cloud masks (often based on thresholds in visible and thermal

wavelengths), removing atmospheric absorption and scattering effects, and apply-

ing methods for correcting bi-directional illumination and viewing effects in the

data. Employing a perfect set of physically based methods would be the ideal way

of generating correct time-series data. However, with thousands of images having

to be corrected it is usually necessary from a practical point of view to clean up the

data using simple and rapid methods. One of these methods is maximum-value

compositing, in which data over a short time-period (8–15 days) are scanned, and

the maximum NDVI value retained to represent the time period (Holben 1986). The

method has proven to be surprisingly effective in reducing noise in NDVI data,

since cloud, atmospheric absorption, background color variations, etc., tend to

lower the NDVI values. The result of 8-day maximum-value compositing applied

to the coniferous MODIS data is seen in Fig. 7.1b.

A further way of managing noise is to use the quality flags, e.g. MODIS QA

(MODIS Quality assessment), which are delivered with many remotely sensed

products today, and which indicate the reliability of each observation. Though

these flags are useful for removing doubtful data they are not easily applied in a

more quantitative sense for improving the quality of the time-series.

Returning to Fig. 7.1, it can be seen from Fig. 7.1b that the maximum-value

compositing has not been able to remove all the noise. Several observations of

doubtful quality remain, and they have a clear negative bias. Thus, in most cases it

is necessary to smooth the time-series data further using filters or other smoothing

functions before extracting seasonality data. In doing so, the methods should take

the negative noise bias into account, and should be able to handle missing data.

Figure 7.1c shows the result of applying a smoothing function in the TIMESAT

software package. This has resulted in a smooth curve that fits to the upper envelope

of the data points. More information about data smoothing is given in the sections

below.

Once a smooth data set has been generated it is possible to extract growing

seasons and phenological parameters. Since vegetation indices are affected by a

range of different processes (compare discussion above), their biophysical meaning

is sometimes vague, and extraction of phenological parameters becomes somewhat

subjective. Given this uncertainty it is not possible to define universal thresholds for

defining the beginning and end of growing seasons. A further complication is that
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the time periods of most rapid shift in the sensed signal often coincide with

meteorological changes. In tropical drylands, for example, the rainy season marks

the onset of the growing season, but also brings cloudiness that affects signal

quality; in cold areas the period of snow melt overlaps with the leaf development

phase. Additionally, the understorey vegetation in many climate zones develops

before the tree canopies, making it hard to use remotely sensed data for

distinguishing the two processes.

Another complicating factor when mapping growing seasons is that, though the

seasons normally follow an annual rhythm, they do not necessarily occur within

single calendar years. In the Southern Hemisphere the growing season may begin in

one year and end the year after. Although we are used to describing annually

repeating phenomena, like agricultural production, with statistics for each calendar

year, vegetation growing seasons are not always well suited to this. In addition,

many areas of the world experience two (sometimes even three) growing seasons

per year. Hence, phenological statistics should preferably not be reported per year,

but per season (relative to a fixed starting date).

Last, but not least, it is necessary to consider the huge, and rapidly growing,

storages of digital Earth Observation data available. For example, processing the

whole of Africa at 250� 250 m resolution using MODIS 8-day data for the 2000–

2013 period means that roughly 523.6 billion points have to be analyzed; it is

obviously necessary to use fast and reliable computing algorithms when estimating

seasonality.

7.3 Processing Considerations and Common Methods

The problem of deriving precise seasonal information consists of three parts:

(1) using remotely sensed data that correctly represent vegetation phenology,

thereby fulfilling the first assumption above; (2) employing a smoothing method

that, following assumption two above, accurately filters noise without altering the

general shape of the seasonal curve; and (3) defining parameters of the growing

season.

1. Regarding remotely sensed data to be used, maximum-value composites of

vegetation indices like the NDVI, and in later years the EVI, have been the

most commonly used. These are normally derived from top-of-atmosphere

reflectance data from the MODIS or AVHRR sensors. However, there is reason

also to focus on other data sets. In particular, higher-order products developed

from the original satellite reflectances are important, such as the MODIS NBAR

(MODIS Nadir Bidirectional Reflectance Distribution Function Adjusted

Reflectance) and the MODIS albedo products, in which data have been corrected

for bi-directional effects. Also other derived products with a clear biophysical

meaning (e.g. LAI or FAPAR) make it easier to interpret the resulting seasonal

parameters from a vegetation phenology point of view (provided that the

146 L. Eklundh and P. J€onsson



products accurately model these parameters). The development of new and

improved biophysically relevant data sets is a highly active and relevant research

field. For example, a recently developed plant phenology index (PPI), which is

linearly related to green LAI, has strong potential for more accurately mapping

of vegetation phenology than the traditionally used indices (Jin and Eklundh

2014).

2. A variety of smoothing methods have been developed and tested. Fourier series

were among the first methods to be tested for extracting seasonality information

from remotely sensed imagery (van Dijk et al. 1987; Menenti et al. 1993; Olsson

and Eklundh 1994). The parameters of the harmonic functions contain useful

information about the timing of seasons and the number of growing seasons per

year. However, the method is inflexible when modeling individual years; Fourier

series are better suited to data with less interannual variability than is often seen

for remotely sensed time-series data. Another line of development is the use of

various temporal filters for smoothing the time-series data. One early method

was the best index slope extraction (BISE) (Viovy et al. 1992). In this method

the upper envelope of the time-series is extracted by connecting the upper-most

data points in a sliding window. The method is based on the principle of

minimizing noise by consistently selecting the highest NDVI values; however

in doing so it neglects the fact that also positive noise, e.g. due to angular effects,

is present in the data. Also other smoothing filters have been used, e.g. the 4352H

filter (van Dijk et al. 1987) and median filters (Reed et al. 1994). More recently

various functions have been fitted to data: asymmetric Gaussian functions

(J€onsson and Eklundh 2002), logistic functions (Zhang et al. 2003; J€onsson
and Eklundh 2004; Fisher et al. 2006), and spline functions (Bradley

et al. 2007; Hermance et al. 2007). Also wavelet transforms have been shown

to be useful (Sakamoto et al. 2005; Lu et al. 2007; Campos and Di Bella 2012).

In general, the choice of smoothing method is related to the type of input data

and the desired result. If data are relatively smooth and the aim is to preserve

variations on the seasonal curve, local filtering methods can be employed. If data

are very noisy it might be necessary to enforce a general seasonal shape on the

data by employing a more global type of function (e.g. asymmetric Gaussian or

logistic function).

3. Regarding the extraction of phenological parameters, some different methods

have been used. Most are based on absolute or relative thresholds of the seasonal

amplitude. Others are purely mathematical parameters (inflexion points or

derivatives of different order). Common for all these methods is that they seldom

are based on any biological or physical understanding of the phenological

process, but rather on empirical relationships. A more elaborate method, based

on fitting shape models to smoothed data, yielded high fidelity for crop pheno-

logical parameters (Sakamoto et al. 2010). The choice of method cannot be

separated from the type of input data or the fitting method used. For example,

methods based on derivatives should not be used with data that are not very

smooth.
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It can be questioned whether it is possible to define a single set of smoothing and

parameter extraction methods that will work across all different ecosystems and

with all different types of remotely sensed data. White et al. (2009) made an

extensive study including ten different methods for estimating spring phenology

across the United States, concluding that the different methods did not behave

consistently, and that, in their study, there was no rational basis for selecting one

method over the other. Considerable inter-method differences were also

documented by Cong et al. (2013). It is likely that bias and random errors due to

cloud interference lead to temporally and spatially varying performance of different

smoothing and filtering methods (Chen et al. 2013). Furthermore, phenological

parameters are generally difficult to assess, as ground data have large variability

and are often observed over small areas. Hence, it is in general very difficult to

assess the reliability of processing methods; achieving smoothness is one thing,

accurately depicting true vegetation variations is not necessarily the same.

Intermediate-scale canopy data from phenocams and near-ground spectral sensors

serve an important means of understanding and validating satellite-derived pheno-

logical parameters (Richardson et al. 2007; Eklundh et al. 2011; Hufkens

et al. 2012).

7.4 The TIMESAT Approach

7.4.1 Processing Principles

TIMESAT has been developed with flexibility in mind, and is thus not oriented

towards any specific data source or format. Hence, users are required to pre-process

data before the actual TIMESAT processing can begin. Depending on the data

source different preparation steps may be necessary, e.g. converting image data into

the binary formats used in TIMESAT, organizing images in time stacks with equal

time step, preparing lists of file names, and converting quality information into rank

units that can be processed by TIMESAT. The actual TIMESAT processing

consists of a series of steps: (1) computing the trend in the data using the Seasonal

Trend decomposition by Loess (STL) method (Cleveland et al. 1990); (2) pre-

filtering of data, in which extreme outliers and pixels with too few data points are

removed; (3) computing a coarse seasonal fit to de-trended data based on sinusoidal

harmonics to determine the number and approximate location of growing seasons;

(4) smoothing the data using either of three different methods: adaptive Savitzky-

Golay filter, asymmetric Gaussian or double logistic functions; (5) computing

seasonal parameters for each extracted season; and (6) generating output data in

the form of single-pixel data or images. The output includes smoothed data for each

time step, and seasonality parameters for each identified growing season. The

processing is controlled from a graphical user interface in which the necessary

settings are determined based on visual control of sample time-series from the

image data stack. When suitable settings have been determined, the full image data
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can be processed. A summary of the processing steps is presented in Fig. 7.2; we

also refer to the TIMESAT manual for more detailed information (Eklundh and

J€onsson 2012).

All data values to be processed have an associated weight which can be derived

from product quality flag data or from STL. In the subsequent processing the

weights can be modified if the user wishes to fit data to the upper envelope. This

is done by reducing the weights of data points below the fitted functions, in up to a

maximum of three iterations. All data fitting is done using weighted least squares,

which means that short data gaps are handled without interpolation.

The first smoothing method implemented in TIMESAT was based on asymmet-

ric Gaussian functions (J€onsson and Eklundh 2002). The method consists of

seasonal functions fitted piecewise to the data and merged to a global continuous

data series. Subsequently, double logistic functions and Savitzky-Golay filtering

were added to TIMESAT (J€onsson and Eklundh 2004). An example of the results of

running the three smoothing methods in TIMESAT are shown in Fig. 7.3. It can be

seen that the Gaussian and logistic functions are very smooth and global in nature.

They are most useful when data are very noisy and the user wishes to enforce a bell-

shaped pattern on the data. The Gaussian functions adapt somewhat better than the

logistic functions to flat peaks, otherwise the two methods are very similar. The

Savitzky-Golay method, on the other hand, filters the data and follows local

Data preprocessing

Format conversion, image orga-

TIMESAT

Single pixel processing

Single pixel processing in 
graphical user interface

Full image processing

Processing of full images under 

Processing steps
1.
2. Data pre-filtering
3.
4. -Golay, asym-

5. -
meters

6.
pixels or images)

Fig. 7.2 Principle of TIMESAT work flow. The white boxes show tasks done outside of

TIMESAT, whereas the grey boxes show functionality in TIMESAT. The processing steps 1–6

are done for single pixels as well as for full images, and are further described in the text
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variations in the seasonal curve more closely. The Savitzky-Golay implementation

in TIMESAT is adaptive in that it iteratively tightens the search window in order to

capture very rapid increase or decrease in the data. This is useful when monitoring

e.g. semi-arid grasslands, where the ground can green-up in the course of a few

days, leading to a very rapid increase in vegetation index data. Smoothing very

noisy data requires an increased search window, which in turn can produce some

artefacts. Therefore, Savitzky-Golay filtering is best used with data that is not

extremely noisy.

Hird and McDermid (2009) showed that the methods in TIMESAT have good

performance, balancing the ability to reduce noise and maintain the signal integrity.

Several of the methods in TIMESAT require the user to make individual

settings, e.g. controlling the degree of smoothing or the envelope fitting. In small

areas it might be enough to do this once, but for large areas with diverse land cover

it might be necessary to define different settings for different areas. In order to

maintain flexibility it is possible to store several groups of settings, and then apply

these to different areas in the image, controlled by e.g. a land cover map.

After smoothing the data, TIMESAT proceeds to compute phenological param-

eters. The user determines thresholds for defining the start and end of seasons

(absolute values or fractions of the amplitude), and the following parameters are

then computed for each season: times of start and end of season; length of season;

base level; time of midpoint; maximum value; amplitude; rates of increase and

decrease; and large and small integrals. Examples of two phenological parameters,

mapped for West Africa from AVHRR data, are shown in Fig. 7.4. The definition
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and selection of phenological parameters in TIMESAT is somewhat arbitrary.

Though several studies have shown that many of them make sense from an

ecosystem perspective and are empirically related to inter-seasonal variations in

climatic driving forces, more research is clearly needed to more precisely establish

their actual value and ecological meaning.

7.4.2 Applications of TIMESAT

TIMESAT has been used in a wide variety of applications since the first version was

written in the early 2000’s. Our own interest was initially focused on mapping of

environmental changes in the African Sahel using the AVHRR data records from

1982 till today. Some of the first evidence of the increasing greenness in the Sahel,

from the droughts in the 1980’s, was presented by Eklundh and Olsson (2003); this

increase was subsequently linked to variations in climate drivers (Hickler

et al. 2005; Olsson et al. 2005; Seaquist et al. 2009). In these studies TIMESAT

was primarily used for computing seasonal amplitudes and integrals of NDVI.

However, Heumann et al. (2007) also studied the changes in other phenological

parameters in the Sahel, like the start and end of the growing seasons. Other

phenology studies using TIMESAT include those by Beck et al. (2007), who

mapped high-latitude forest phenology in Fennoscandia and the Kola Peninsula,

O’Connor et al. (2012), who mapped spatio-temporal patterns of growing seasons

on Ireland, and Boyd et al. (2011), who mapped phenology in S. England using the

MERIS terrestrial chlorophyll index (MTCI; Dash and Curran 2007). Other case

studies have been conducted in the US (Zhao et al. 2013), Europe (Han et al. 2013),

South America (van Leeuwen et al. 2013), and in Arctic areas (Zeng et al. 2013).

J€onsson et al. (2010) used TIMESAT while demonstrating the difficulties in

extracting phenological parameters from MODIS NDVI data over boreal conifer-

ous forests. Also disturbances in phenological patterns due to insect infestations

have been analyzed (Eklundh et al. 2009; Olsson et al. 2012; Buma et al. 2013).

TIMESAT has been used in several studies on vegetation classification and

phenological characterization of ecosystems (Tottrup et al. 2007; Clark

et al. 2010; van Leeuwen et al. 2010; Wessels et al. 2011; Zhang et al. 2013a;

Leinenkugel et al. 2013). It has furthermore been used for fire and fire risk modeling

(Verbesselt et al. 2006; Veraverbeke et al. 2010; Le Page et al. 2010), and for

investigating the impact of vegetation variability on predictability of a coupled

land-atmosphere model (Weiss et al. 2012). In agriculture, TIMESAT has been

used for estimation of sow dates (Lobell et al. 2013) and for mapping of abandoned

cropping fields (Alcantara et al. 2012).

TIMESAT has been used for estimating diurnal air temperature from MSG

SEVIRI data (Stisen et al. 2007), to study expansion of the thermal growing season

and associated change in the biospheric carbon uptake (Barichivich et al. 2012), and

to study the impact of extreme precipitation on reduction of terrestrial ecosystem

production (Zhang et al. 2013b).
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An important application field of TIMESAT is data smoothing to improve signal

quality: Improved MODIS data quality has, when calibrating models with eddy-

covariance flux tower data and other environmental data, led to generally better

possibilities to estimate carbon fluxes (Olofsson and Eklundh 2007; Olofsson

et al. 2007, 2008; Sj€ostr€om et al. 2009, 2011; Schubert et al. 2010, 2012; Tang

et al. 2013). TIMESAT has also been used for data quality improvement with

MODIS and AVHRR satellite products (Fensholt and Proud 2012), and for smooth-

ing of GIMMS NDVI(3G) data for high northern latitudes (Barichivich et al. 2013).

Data quality improvement is also the reason for using TIMESAT in an improved

reprocessed version of the global MODIS LAI data set for land surface and climate

modeling (Yuan et al. 2011).

7.5 Future Perspectives

We currently have over three decades of global AVHRR data, and over one decade

of MODIS data from the Terra and Aqua satellites available. New satellites will

continue to extend these time series into the future. As the data records grow, using

them for studying impacts of climate and human action on the environment will be

possible with increased confidence. This will increase the demand for the data, and

call for further improving the methods for time-series data management and for

exploiting the data, e.g. to extract linear and non-linear trends (Verbesselt

et al. 2010; Jamali et al. 2014, 2015).

Earth observation is now taking an important step into a new era, with growing

archives of time-series data at high spatial resolution. The release of the Landsat

archive into the open domain has opened up for a range of new applications

(Wulder et al. 2012); several new methods for exploiting these data, particularly

for forest monitoring, are being developed (e.g. Huang et al. 2010; Kennedy

et al. 2010; Zhu et al. 2012).

The next leap will be taken with the ESA Sentinel-2 satellites, to be launched in

2015 and 2017, generating Earth observation data at 10 m resolution with a 5-day

interval. This will present both enormous opportunities and challenges. First, the

high spatial resolution will mean that data validation against field measurements

will be much improved compared with the 250–1,000 m data presently used. At this

high resolution it will be possible to monitor vegetation at the scale of individual

forest stands rather than at the ecosystem scale. Second, the high time resolution

will mean that it will be possible to model seasonality more accurately than is

possible with Landsat, SPOT or the other existing high-resolution sensors. The

nature of data will present many new challenges, such as irregular time steps; hence

new methods for gap-filling, smoothing and data fusion will have to be explored.

Modification of TIMESAT to enable analysis of high-resolution data from Sentinel-

2 is ongoing (Eklundh et al. 2012). Third, the new satellites will generate enormous

volumes of data, calling for high-performance computing methods for processing
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all the data. A version of TIMESAT for parallel computing has been developed,

showing almost linear scaling with the number of processors.

A further line of development is the integration of spatial and temporal dimen-

sions. We have previously seen that incorporating the spatial domain will increase

the significance in estimation of trend parameters across time (Bolin et al. 2009). It

is likely that noise in time-series data can be reduced when estimating seasonal

trajectories by extending the analysis into the spatial domain. Hence, we are

currently exploring spline based methods in TIMESAT that can smooth the data

across both time and space (Eklundh and J€onsson 2013).

Remote sensing science has come a long way towards extraction of environ-

mentally meaningful time-series data during the last 10–20 years. With the new

data types being released, and new and efficient processing methods being devel-

oped, Earth observation is now being accepted as an established and accurate tool

for analyzing the Earth and its changes.

TIMESAT can freely be downloaded from http://www.nateko.lu.se/TIMESAT.
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Chapter 8

Assessment of Vegetation Trends in Drylands
from Time Series of Earth Observation Data

Rasmus Fensholt, Stephanie Horion, Torbern Tagesson, Andrea Ehammer,

Kenneth Grogan, Feng Tian, Silvia Huber, Jan Verbesselt,

Stephen D. Prince, Compton J. Tucker, and Kjeld Rasmussen

Abstract This chapter summarizes approaches to the detection of dryland vegeta-

tion change and methods for observing spatio-temporal trends from space. An

overview of suitable long-term Earth Observation (EO) based datasets for assess-

ment of global dryland vegetation trends is provided and a status map of contem-

porary greening and browning trends for global drylands is presented. The

vegetation metrics suitable for per-pixel temporal trend analysis is discussed,

including seasonal parameterisation and the appropriate choice of trend indicators.

Recent methods designed to overcome assumptions of long-term linearity in time

series analysis (Breaks For Additive Season and Trend(BFAST)) are discussed.

Finally, the importance of the spatial scale when performing temporal trend anal-

ysis is introduced and a method for image downscaling (Spatial and Temporal

Adaptive Reflectance Fusion Model (STARFM)) is presented.
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8.1 Introduction

Dryland areas, defined as those areas of the world where water is an important

limitation for plant growth (Fig. 8.1), have become the subject of increased interest

due to the impacts of current global changes and concern for the sustainability of

human lifestyles. Dryland ecosystems provide vital services, such as food, grazing,

as well as energy and forestry products. Following the severe drought in the early

1970s in the Sahel region, the UN spurred an intensive interest in the issue of

dryland degradation/desertification, most prominently marked by the UN Confer-

ence on Desertification in 1977, followed by the UN Convention to Combat

Desertification (emerging from the Rio-conference in 1992). This fuelled a signif-

icant increase in the scientific interest to provide an improved understanding of both

climatic and anthropogenic factors involved in the dynamics of drylands in general

and in the Sahel in particular – a region from where several of the examples in the

following two chapters are drawn. This chapter considers the concepts of long-term

EO-based vegetation monitoring and discusses some of the most widely used EO

(Earth Observation) datasets and methods for studying dryland vegetation trends.

8.2 Detection of Dryland Vegetation Change from Space

8.2.1 Towards EO-Based Monitoring of Vegetation
Productivity

Vegetation indices (VI) measure the differential absorption and scattering by green

leaf material of solar radiation in the visible waveband (0.4–0.7 μm, although only

Fig. 8.1 World humidity classes (World Atlas of Desertification, United Nations Environment

Programme 1997). Drylands are classified into four ranges of the Aridity Index (AI, the ratio

between the mean annual precipitation and the mean annual potential evaporation): Hyperarid,

AI< 0.05 (7.5 % of global land area); Arid, 0.05<AI< 0.20 (12.1 % land); Semi-Arid,

0.20<AI< 0.50 (17.7 % land); Dry subhumid, 0.50<AI< 0.65 (9.9 % land)
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red wavelengths and near infrared wavebands (0.8–1 μm) are generally used in

VIs). This difference is attributable to the absorption of visible radiation by

chlorophyll and its accessory pigments while near infrared, although slightly

absorbed, is strongly scattered by the complex air-water interfaces between cells

within a leave (Gates et al. 1965). Thus the more green leaves in the field of view,

the less visible and the more near infrared radiation are measured by a space borne

sensor. The most widely used VI is the Normalized Difference Vegetation Index

(NDVI):

NDVI ¼ NIR� RED

NIRþ RED
ð8:1Þ

where RED and NIR are the surface reflectances in the red and near infrared,

respectively (Tucker 1979).

Several factors other than leaf absorption and scattering also affect red and near

infrared reflectance. These include factors related to the canopy/soil surface itself

such as canopy structure, leaf angle distribution, non-green stems, branches and

dead plant material (both attached and on the soil surface), the soil surface and also

to factors related to sun-target-sensor geometric configurations governed by

changes in solar zenith angle and sensor view angle. Different soils and litter reflect

differently in the visible and near infrared, so the reflectance of sparse vegetation

can be significantly affected by the non-green components (Huete et al. 1985).

Because of the central role of vegetation cover as an indicator of the land surface

condition in drylands, time series of vegetation indices are the main tool for trend

detection using remote sensing (e.g. Prince and Goward 1995; Tucker et al. 1991).

Net primary production (NPP) is defined as the net carbon gain by plants and is

the process whereby vegetation biomass is produced. Traditionally, Earth Obser-

vation based production efficiency modelling (PEM) has been based on the light use

efficiency (LUE) concept originally proposed by (Monteith 1972), who considered

biomass accumulation (g/m2) as an ongoing process correlated with the amount of

photosynthetically active radiation (PAR) absorbed or intercepted by green foliage

(APAR in MJ/m2). NPP depends on, among other factors, the fraction of photo-

synthetically active radiation (FPAR) absorbed by the canopy, for which VIs can be

used as proxies (Myneni et al. 1995; Sellers 1985). Measurements and modelling

have shown that NDVI is linearly related to FPAR (e.g. Asrar et al. 1984); however

the relation is found to be biome specific (Fensholt et al. 2004; Goward and

Huemmrich 1992). While several other vegetation indices have been proposed, to

date, the only VI available globally for a long period (1981 to present) is the NDVI

(Barreto-Munoz 2013; Pinzon and Tucker 2014). Properties of vegetation, in addition

to FPAR that have been estimated from NDVI or related indices include Leaf Area

Index (LAI), chlorophyll concentration, above-ground biomass, vegetation produc-

tivity, fractional vegetation cover, vegetation water content, and leaf nitrogen

(Thenkabail et al. 2012). The properties with a close biophysical relationship to

the absorption and scattering of solar radiation in the visible and near infrared (such

as FAPAR, LAI and chlorophyll content) are generally better estimated than more

8 Assessment of Vegetation Trends in Drylands from Time Series of Earth. . . 161



indirectly related properties such as total biomass which requires additional data

input not presently available from long-term EO time series data (Fensholt

et al. 2006).

A single observation of NDVI cannot be used to retrieve quantitative informa-

tion of leaf biomass, productivity or phenology. However, for annual crops and

herbaceous vegetation in drylands, the integral of repeated NDVI measurements

throughout the growing season is correlated with annual NPP (Paruelo et al. 1997;

Prince 1991; Tucker et al. 1985). Coarse spatial resolution satellites can observe the

same place on the ground almost daily so even during periods of cloud cover

measurements at 10–15 day intervals can be achieved in most drylands. It should

be noted that NDVI and all other vegetation indices based on RED and NIR cannot

directly measure change in the species composition of vegetation (for instance a

shift between palatable and unpalatable species) but provides a measure of photo-

synthetic vigour.

8.2.2 Building Consistent Long-Term Time Series

Long-term and consistent satellite data records are needed to monitor and quantify

inter-annual trends in vegetation. The processing must be such that it does not

inadvertently remove trends in data. Several global and regional NDVI time series

have been created from the sequence of Advanced Very High Resolution Radiom-

eter (AVHRR) instruments carried on the NOAA (National Oceanic and Atmo-

spheric Administration) satellites from 1981 (NOAA-7) to present. 12 AVHRR

sensors have been launched since 1981 and at least 7 of these have been used for

constructing the long-term NDVI time series. Apart from the AVHRR record, there

are no other global NDVI data with such a long record. Only since 1995, other

instruments, often with improved sensor attributes, started to make NDVI time

series measurements. Thus, for the purpose of trend detection, there is a trade-off

between the length of the record and the quality of the observations. The AVHRR

instrument is also part of the MetOp series of satellites from the EUMETSAT Polar

System (EPS); but even though the AVHRR data stream is expected to continue for

several years these data might be replaced by newer sensor systems (see below) that

can be added to the AVHRR time series with appropriate harmonization (Pedelty

et al. 2007).

The AVHRR was originally intended for visual analysis of meteorological

conditions, and not for applications to vegetation studies (Cracknell 2001). The

potential of AVHRR for vegetation studies came later (1981), when modifications

to optimize the sensor for meteorological purposes (from NOAA-7) inadvertently

provided RED and NIR data suitable for the derivation of VIs. Nevertheless, there

are aspects of AVHRR data that, while not seriously affecting their meteorological

uses, are not ideal for vegetation trend studies. These include post-launch degrada-

tion in sensor calibrations and drift in the satellite overpass times which have

significant effects on VI time series, irrespective of ground conditions. Other
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limitations include the spectral properties of the sensors themselves (primarily the

NIR sensor response function). Numerous investigations have evaluated NDVI

continuity and have proposed inter-sensor translation methods among the different

AVHRR instruments as well as between AVHRR instruments and newer sensors,

including the Moderate Resolution Imaging Spectroradiometer (MODIS), the

Système Pour l’Observation de la Terre – vegetation (SPOT-VGT), the Sea-

viewing Wide Field-of-view Sensor (SeaWiFS), the Medium Resolution Imaging

Spectrometer (MERIS) and the Visible/Infrared Imager Radiometer Suite (VIIRS)

on the Suomi NPOESS series (e.g. Brown et al. 2006; Swinnen and Veroustraete

2008). It remains a challenge, however, to produce long-term and consistent

vegetation index time series across the sequence of multiple sensor systems with

their different spectral responses, spatial resolutions, swath widths and orbiting

geometries.

Several archives of AVHRR data exist for which various types of processing

have been applied to the satellite data in order to minimize unwanted effects, which

are either specific to the satellite sensor used or inseparable from measurements

made from a satellite, such as sun-sensor geometry and the effects of the atmo-

sphere on reflectances. The aim of the processing is to estimate the NDVI that

would be measured just above the vegetation surface, with all other significant

variables normalized. Corrections and methods used in the processing have evolved

through time and continue to be improved. Some archives have been reprocessed

back to 1981 several times, each time using improved techniques and including

newer sensor systems, while others continue to use the methods adopted at the

inception of the data series. Some processing details of available global coverage

archives are summarized in Table 8.1.

Sensor calibration is no longer a source of significant error (El Saleous

et al. 2000). The greatest remaining sources of error in AVHRR estimates of surface

NDVI are caused by absorption and scattering by atmospheric components (Nagol

et al. 2009). Detection of partial cloud cover and hence the decision of whether to

use or omit data is also a major source of uncertainty. Seasonal solar zenith angle

variations and the effects of viewing vegetation at different angles (bi-directional

reflectance distribution function (BRDF)) are further sources of error. As the

atmospheric correction schemes improve, the BRDF effect becomes more pro-

nounced (Nagol et al. 2009), thereby increasing the bias towards the selection of

NDVI values from the forward scatter viewing direction (Fensholt et al. 2010;

Huete et al. 2002). The selection of the maximum NDVI over a compositing period,

so called maximum value compositing, can be effective by selecting the least hazy

and nearest to nadir observations, but this is at the expense of any multiple, good

observations in the compositing period. A series of physically-based corrections

based upon those developed for the MODIS, SPOT VGT and VIIRS sensors have

been suggested as a means to improve AVHRR NDVI data (Pedelty et al. 2007).

The LTDR (Land Long Term Data Record), the VIP (Vegetation Index and

Phenology Earth Science Data Record) and the GIMMS (Global Inventory Moni-

toring and Modeling System) data processing (Table 8.1) apply several or all of

these new correction schemes as means of providing a seamless and consistent
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sensor independent record of land surface vegetation. Upcoming European prod-

ucts (geoland2/Copernicus) time series products also from the AVHRR data stream

are expected in the near future.

In the GIMMS project (Tucker et al. 2005), a NDVI time series was produced

from different AVHRR sensors and accounting for various deleterious effects, such

as calibration loss, orbital drift, atmospheric dust emitted by volcanic eruptions, etc.

The latest version of the GIMMS NDVI data set spans the period July 1981 to

December 2011 and is termed NDVI3g (third generation GIMMS NDVI from

AVHRR) (Pinzon and Tucker 2014). A special issue “Monitoring Global Vegeta-

tion with AVHRR NDVI3g Data (1981–2011)” in the open access journal Remote

Sensing (Myneni and Pinz�on 2013) aims at an improved understanding of variabil-

ity, long-term trends and changes in vegetation on our planet over the past 30 years

using this new, improved dataset. Furthermore, long-term datasets of both FPAR

and LAI have recently been produced from the AVHRR data record such as LAI3g

and FPAR3g, both based on the NDVI3g dataset (Zhu et al. 2013), and the AVHRR

based Global LAnd Surface Satellite (GLASS) LAI (Zhao et al. 2013).

Nevertheless, the AVHRR instruments lack the additional channels needed to

make corrections as accurate as those possible for SeaWIFS, ENVISAT MERIS,

Aqua/Terra MODIS and SPOT-VGT. Recently, successors of moderate resolution

sensors applicable for vegetation monitoring have been launched like Proba-V and

VIIRS instrument on the board the Suomi National Polar-orbiting Partnership

(NPP). Future satellite missions capable of continuation of vegetation time series

include Sentinel-3 developed by ESA (European Space Agency) as part of the

Global Monitoring for Environment and Security (GMES) program. The first

Sentinel-3 satellite is planned for launch in 2017.

Notwithstanding the caution needed in the interpretation of satellite measure-

ments of VIs discussed above, these data are invaluable for detecting trends in

important traits of vegetation. In fact, there are no other data sets as spatially and

temporally comprehensive for the past 30+ years.

8.3 Greening or Browning of Global Drylands

Many reports of declining vegetation productivity in arid and semi-arid lands using

field measurements have been published over the last decades, a recent and author-

itative example being the Millennium Ecosystem Assessment (Adeel and World

Resources Institute 2005). However, recent publications based on the use of

EO-data have shown a more nuanced picture with both declines and increases

(Bai et al. 2008; Beck et al. 2011; Fensholt et al. 2012), and a large body of

literature focusing on increases in vegetation in the Sahel since the 1990s, the

so-called ‘greening of the Sahel’ (e.g. Anyamba and Tucker 2005; Fensholt

et al. 2013; Hellden and Tottrup 2008; Hickler et al. 2005; Olsson et al. 2005;

Prince et al. 2007). These publications have been based on a variety of different EO

datasets and they use slightly different methods but the common denominator is the
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use of data originating from the suite of AVHRR sensors on-board the NOAA

satellites.

8.3.1 Trend Estimation

Long-term changes in vegetation greenness have been reported in many regional to

global scale analyses (Donohue et al. 2009; Hellden and Tottrup 2008; Herrmann

et al. 2005; Nemani et al. 2003; Zhao and Running 2010). Long-term trend analyses

are often performed using a linear model providing the slope coefficient of an

ordinary least squares regression (OLS) between the values of each pixel over time

and a perfectly linear series. The outcome of a trend analysis however depends on

several factors including data (data choice, data period and quality), choice of

vegetation metric and the nonlinearity of process in relation to the selected trend

indicator.

Since time series of vegetation metrics often do not meet parametric assump-

tions of normality and homoscedasticity (Hirsch and Slack 1984) median trend

(Theil-Sen) procedure has also been applied to vegetation trend calculation

(Fensholt and Rasmussen 2011; Fensholt et al. 2013). The Theil-Sen

(TS) procedure is a rank-based test based on nonparametric statistics that calculates

the slope and intercept of the time series and is therefore particularly effective for

trend in noisy series of multiple estimates of the slopes derived from all pairs of

observations (Hoaglin et al. 2000). Because it is based on the median, approxi-

mately 29 % of the samples can be unrelated noise but, owing to the TS analysis,

have no impact on the statistic (Hoaglin et al. 2000). The TS approach is known to

be robust against seasonality, non-normality, heteroscedasticity and temporal auto-

correlation (at both intra- and inter annual scale) (Alcaraz-Segura et al. 2010;

Hirsch and Slack 1984; Vanbelle and Hughes 1984) and has been recommended

to be used for analysing time series of vegetation (de Beurs and Henebry 2005).

However, vegetation does not necessarily develop linearly over longer time

scales and trends might often be better characterised by breaking the series into

several different phases of alternating greening and/or browning periods. To

accommodate for this, a trend breaks analysis procedure (Breaks For Additive

Seasonal and Trend (BFAST)) has been developed (Verbesselt et al. 2010a, b,

2012) that enables the detection of change in trend within the time series. Examples

of time series analyses based upon these different statistical approaches will be

given in the Sect. 8.4 and in the following chapter.

8.3.2 Global Trends in Vegetation Greenness

A study of changes in dryland NDVI based on GIMMSg data from 1982 to 2007

(Fensholt et al. 2012) (Fig. 8.2) shows that, despite the regional nature of observed
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increases/decreases in NDVI, there was a noticeable trend of greening of the semi-

arid zone across the globe (66 % of the pixels had a positive trend). 36 % of the

semi-arid pixels were characterized by significant change values (both positive and

negative) at the 0.05 significance level and out of the pixels with a significant

positive/negative trend 77 % were characterized by positive trends. The changes in

NDVI across the globe varied between regions and many regions with high rates of

change (>0.05 NDVI units over the period of analysis) can be observed (Fig. 8.2;

deep blue colours). The average slope value was +0.015 (NDVI units), indicating an

overall greening for semi-arid areas across the globe over the 27 years. A recent

study by Cook and Pau (2013) of global pasture land (spatially overlapping with

global drylands) based on GIMMS3g (1982–2008) show statistically significant

(p< 0.05) linear temporal trends in 23 % of all pasture pixels, with the vast majority

of these areas showing positive trends. This suggests that degradation of pasture

lands is not a globally widespread phenomenon, and in line with much of the

terrestrial biosphere, there have been widespread increases in pasture productivity

over the last 30 years.

8.3.3 Refining Vegetation Metrics for Long-Term Trends

When performing long-term trend analysis for dryland areas the specific vegetation

metric to be used varies amongst scholars. Several studies focussing on the Sahelian

region have discussed the most appropriate EO-based characterisation of the annual

vegetation growth (see below). An annual summed NDVI value can be applied.

However, for areas of pronounced seasonality it is generally accepted that the

satellite signal derived from the dry season often introduces non-vegetation signals

to long-term trend analyses. Thus, trends based on VIs derived only from the

growing season should be used. Studies using a predefined set of months covering

Fig. 8.2 Changes in NDVI for dryland areas (hyperarid not included) from 1981 to 2011. Only

pixels with a statistically significant trend (p< 0.05) are shown
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the period of growth (for a given region) can be used (Anyamba and Tucker 2005;

Fensholt et al. 2009; Hellden and Tottrup 2008; Prince and Justice 1991; Wessels

et al. 2012). However, if a temporal shift in the growing season occurs over time,

this will influence such NDVI metric and thereby also impact the trend that is likely

to decrease because part of the growing season is not anymore included in the

analysis. By using software for parameterisation of the growing season

(e.g. TIMESAT, (Jonsson and Eklundh 2002, 2004), MODIS MCD12Q2 (Ganguly

et al. 2010; Zhang et al. 2006) or PHENOLO (Ivits et al. 2012)) vegetation metrics

related to NDVI amplitude (the difference between NDVI dry season value and

maximum value), length of growing season (includes the estimation of the onset

and end of growing season) or the growing season integral (the NDVI integral for

the period between onset and end of growing season) can be determined and used

for long-term trend analysis (de Jong et al. 2011; Eklundh and Olsson 2003;

Fensholt and Proud 2012; Fensholt et al. 2013; Heumann et al. 2007; Olsson

et al. 2005).

The per-pixel temporal trend in GIMMS3g NDVI for the Sahel 1982–2010,

using TIMESAT on the annual NDVI sum and the growing season integral are

shown in Fig. 8.3. The slope expresses NDVI change over the total period of

analysis and only NDVI slope values significant at the 95 % level (p< 0.05) are

shown.

Annual NDVI sums (Fig. 8.3a) generally show a positive trend with an average

NDVI slope for Sahel of +0.01 (Table 8.1). 33.7 % of the Sahelian pixels analyzed

had a significant trend (30.7 % positive and 3.0 % negative). NDVI based on the

seasonal integral (Fig. 8.3b) show a more pronounced positive trend in NDVI: 75 %

Fig. 8.3 GIMMS3g NDVI linear trend 1982–2010 based on (a) annually integrated NDVI and (b)
growing season NDVI integral (so-called small integral) estimated from TIMESAT

parameterization
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of the Sahelian pixels analyzed show a significant trend (74.6 % positive and 0.4 %

negative – only few pixels in Niger and Sudan were characterised by negative slope

values).

Clearly, the percentage of Sahelian pixels characterised by a significant change

in vegetation greenness depends on the NDVI metric used. Also in a study by

Olsson et al. (2005) a much more widespread greening of the Sahel was found when

calculated from seasonal NDVI integrals as compared to trend estimates calculated

from the seasonal NDVI amplitude. This was explained by the possible saturation

of the NDVI signal, thereby rendering the NDVI seasonal amplitude less sensitive

to detection of changes for the greener parts of dryland areas. Seasonal maximum

NDVI (closely related to seasonal amplitude) has however also been used as a

metric for seasonal productivity to avoid the per-pixel length of season determina-

tion required for a per-pixel growing season integral (Fuller 1998; Jeyaseelan

et al. 2007). The NDVI metric used for trend analysis should therefore be examined

carefully taking into consideration vegetation density of the area studied. In cases

where the scope of the analysis is global (including both areas with and without

seasonality) a widely used approach is to estimate trends based on annual NDVI

sums (or averages) rather than integrating only the signal from the growing season

(Bai et al. 2008).

Which vegetation metric to be used for trend estimates of vegetation productiv-

ity in drylands is therefore not straight forward in the absence of direct in situ
validation of the satellite derived time series. However, an alternative approach that

could provide an indication of the appropriate vegetation metric to use for a given

area would be to conduct per-pixel correlations with rainfall (which for most

dryland areas is considered the primary constraint to vegetation growth) (Fensholt

et al. 2012; Nemani et al. 2003). The highest correlation between rainfall and a set

of vegetation metrics would then serve as a guideline for the best choice of metric if

vegetation productivity trends are the desired analysis output (see the following

chapter on causes for observed vegetation changes).

8.4 Assessing Abrupt Changes in Vegetation Cover
and Productivity: Beyond Linear Trends Analysis

In recent years, there is a growing recognition that degradation and disturbance of

vegetation traits cannot be sufficiently captured using traditional time series

methods such as singular linear trend models. For instance, land cover disturbances

(e.g. fires, insect defoliation, land clearing) often occur abruptly and may only be

evident in short periods in the time series. Likewise, slower changes (e.g., biomass

extraction from logging) will only affect the vegetation signal during the time of the

ongoing disturbance and may change again later in the series. For such reasons it is

argued that trends may be better captured by separating the series into individual

segments, capturing specific vegetation conditions or stages of degradation through

170 R. Fensholt et al.



time. These approaches have only become possible as time series cover adequate

numbers of years.

A method that can reveal these changes in trend within a time series analysis is

Breaks For Additive Seasonal and Trend (BFAST) (Verbesselt et al. 2010a).

BFAST integrates the decomposition of time series into seasonal, trend, and noise

components with detection of abrupt changes, or breakpoints, within a time series

using an additive model. The general model can be denoted as:

Yt ¼ Tt þ Stþ et t ¼ 1, . . . , nð Þ ð8:2Þ

where Yt is the observed data at time t, Tt is the trend component, St is the seasonal
component, and et is the noise component. BFAST provides information on the

number, timing, magnitude and direction of breakpoints in both the seasonal and

trend components.

Figure 8.4 illustrates the decomposition of a MODIS 250 m (MOD13Q1) time

series from a pixel covering a dry deciduous forest ecosystem. In this example there

was a fire disturbance in 2006, followed by recovery from 2008. These distinct

events are captured in the trend component by two breakpoints, and a statistically

significant positive trend segment from 2008 to 2013. There was no break in the

seasonal component as the land cover and phenology remained the same after the

disturbance. However, if a change in land cover occurs (e.g. grassland to agricul-

ture) a break in the seasonal component is also expected.

BFAST phenological and trend components have been used successfully on

regional scales to detect abrupt land cover change in forest/grassland ecosystems

(Verbesselt et al. 2010a, b) and on global scales to identify trend changes in

vegetation greening and browning (de Jong et al. 2011, 2013). Furthermore, the

BFAST approach has been adapted for near real-time monitoring of ecosystem

disturbances such as drought (Verbesselt et al. 2012).

8.5 The Importance of Spatial Resolution for Vegetation
Trend Analysis

Environmental variability in the temporal domain is affected by the spatial scale of

the data and so analyses conducted at different spatial scales may give different

results. Studies based on field or high spatial resolution remotely sensed data will

typically be site-based, in contrast to studies using moderate to coarse spatial

resolution satellite data. Analyses at different scales are often needed to reveal

important information about drivers of observed changes, as shown in a recent

EO-based case study from northern Burkina Faso (Rasmussen et al. 2014). The time

series of moderate resolution (MODIS 250 m resolution) data, as compared to

coarse resolution (AVHRR GIMMS3g resolution) data, identified local patterns of

temporal trends pointing towards local, anthropogenic effects on vegetation
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productivity, while the regional pattern, detected from GIMMS3g data were attrib-

uted to changes in precipitation. In a field study over the last three decades,

Herrmann and Tappan (2013) found an overall reduction in woody species richness,

a loss of large trees, an increasing dominance of shrubs, and a shift towards more

arid-tolerant, Sahelian species from ground observations in Senegal, despite the

greening observed from the GIMMS NDVI data. Since this colonizing vegetation is

of little economic value, it has been referred to as “green desert” by the local

population in Sahel (Lykke et al. 2004).

Fig. 8.4 An example of BFAST using MODIS 250 m 16- daytime series (MOD13Q1) for a pixel

covering a seasonal dry deciduous forest. The data are decomposed into seasonal, trend, and noise

components. Two breakpoints were detected in the trend component
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8.5.1 Downscaling Vegetation Dynamics by Fusing Multi-
temporal MODIS and Landsat Data

Current satellite capabilities create a trade-off between spatial and temporal reso-

lutions. This is not a fundamental property; rather it is the result of too few satellites

to cover the globe at adequate temporal frequencies. Landsat data captures land

surface changes at high spatial resolution (30 m), which helps gaining insight to

vegetation changes at that scale. However, the 16-day revisit cycle and frequent

cloud contamination pose limitations to the use of Landsat data for trend and

phenology analysis in general. In contrast, MODIS data provide near-daily obser-

vations which, by compositing (Holben 1986) substantially reduces cloud contam-

ination but at coarser spatial resolutions (250–1,000 m). Downscaling to obtain

images with both high spatial and high temporal resolution has been attempted by

fusing data from Landsat and MODIS-like sensor systems (Atkinson 2013).

The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) (Gao

et al. 2006) has been developed for this purpose and used for studies related to

vegetation phenology (Hilker et al. 2009; Hwang et al. 2011; Tian et al. 2013).

STARFM assumes that a coarse-resolution MODIS pixel can be aggregated from

the corresponding fine-resolution Landsat pixels when neglecting geo-location

errors and differences in atmospheric correction. Following this assumption, for a

homogenous pixel at the MODIS resolution, Landsat surface reflectance can be

obtained by adding an error value (caused by differing bandwidth and solar

geometry) to the MODIS surface reflectance. Suppose the land cover type and

system errors do not change over time; it will be possible to predict the Landsat

surface reflectance on a specific day (tn) by blending one or more pairs of Landsat

and MODIS surface reflectance images based on day (t0) and the MODIS surface

reflectance image acquired on day tn. However, the relationships between MODIS

and Landsat reflectance are complicated by the fact that MODIS observations may

be mixed pixels, and land cover type and Bidirectional Reflectance Distribution

Function (BRDF) may change over time. To alleviate this problem, STARFM

employed a moving window to incorporate additional information from neighbor-

ing Landsat and MODIS image pixels using a weighting function defined by a

combination of spectral, temporal and spatial differences among the given Landsat

and MODIS scenes. With STARFM, daily Landsat-like data can be generated, thus

allowing robust trend and phenology analysis at a finer spatial resolution.

The performance of STARFM is illustrated from an example of a semi-arid area

in Senegal, West Africa characterized by a short and irregular growing season (July

to October). The study area includes parts of the Senegal River in the north

extending over one degree of latitude to a region in the south with more abundant

vegetation. Three cloud free Landsat TM images and eleven MODIS 16-day

composite nadir BRDF-adjusted reflectance products (MCD43A4, combining

information from MODIS Terra and Aqua sensors) were used as inputs for

STARFM. Eight Landsat-like images were generated and formed an image series

during the growing season in 2010, along with the three Landsat TM images

(Fig. 8.5). It is noticeable that cloud contamination cannot be eliminated in the
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rainy season even with a 16-day composition of MODIS (lower row in Fig. 8.5).

However, the STARFM generated images (upper row in Fig. 8.5) show high

consistency with the corresponding MODIS images in terms of the overall pattern

and the changing phenology of the vegetation were well captured by predicted

image series. Figure 8.6 shows more detailed information of the image subset areas

(shown by black boxes in Fig. 8.5) and the images generated (Fig. 8.6b, e)

adequately combined the fine spatial pattern in Landsat (Fig. 8.6a, d) and the

reflectance information in MODIS (Fig. 8.6c, f). NDVI images were produced

using the NIR and Red bands for each of the images. Figure 8.7 shows that mean

NDVI values of observed Landsat images fit well with the NDVI series of

STARFM generated images and that both are marginally lower than mean

MODIS NDVI. However the phenological change over time is identical in the

MODIS and STARFM generated time series.

Fig. 8.6 Enlarged areas (from image subsets shown in Fig. 8.5) for better comparison of observed

Landsat images (a, d), STARFM generated images (b, e) and MODIS images (c, f). The upper row
(a–c) shows a subset of the Senegal River, while the lower row (d–f) shows an area of mixed

savanna grassland and small scale agriculture
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8.6 Summary

Dryland ecosystems provide vital services, such as food, grazing, as well as energy

and forestry products and have become the subject of increased interest due to the

impacts of current global changes and concern for the sustainability of human

lifestyles. This chapter gave a short overview of satellite sensor systems and

approaches for detection of long-term dryland vegetation change at the global

scale. Long-term Earth Observation (EO) datasets based on the Advanced Very

High Resolution Radiometer (AVHRR) instruments carried on the NOAA satellites

(1981 to present) are widely used for monitoring changes in dryland vegetation.

The Normalized Difference Vegetation Index (NDVI) calculated from the red and

near-infrared spectral bands of the AVHRR sensors has been found to be related to

vegetation greenness or photosynthetic vigour and is widely used for regional to

global scale vegetation trend studies due to the availability datasets covering more

than three decades. The AVHRR instruments suffer from the lack of onboard

calibration for its visible to short wave infrared channels and lack the additional

channels needed to make corrections as accurate as those possible for later sensor

systems like Sea-WIFS, ENVISAT MERIS, Aqua/Terra MODIS and SPOT-VGT.

However, large research effort has been put into the production of seamless and

intercalibrated AVHRR time-series data using a combination of mature and tested

algorithm and the best available polar-orbiting satellite data from the past to the

present. Recently also biophysical variables like FAPAR (fraction of photosynthet-

ically active radiation) and LAI (leaf area index) have been produced from AVHRR

data stream.
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A status map of greening and browning trends for global drylands is presented

based on the GIMMSg (Global Inventory Monitoring and Modeling System) data

from 1982 to 2007. The map indicates an overall greening for semi-arid areas across

the globe over the 27 years. For areas of pronounced seasonality it is generally

accepted that the satellite signal derived from the dry season often introduces non-

vegetation signals to long-term trend analyses and the vegetation metrics suitable

for per-pixel temporal vegetation trend analysis (including seasonal

parameterisation and the appropriate choice of trend indicators) was discussed.

In recent years there has been a growing recognition that degradation and

disturbance of vegetation traits cannot be sufficiently captured using traditional

time series methods such as singular linear trend models and it is argued that trends

may be better captured by separating the series into individual segments, capturing

specific vegetation conditions or stages of degradation through time. A method

designed to overcome assumptions of long-term linearity in time series analysis

(Breaks For Additive Season and Trend (BFAST)) is presented. The strengths of the

BFAST approach is illustrated by the decomposition of a MODIS 250 m time series

(2000–2013) from a pixel covering a dry deciduous forest ecosystem. In this

example there was a fire disturbance in 2006, followed by recovery from 2008

and these distinct events were captured by the BFAST as two time-series

breakpoints, and a statistically significant positive trend segment from 2008

to 2013.

Finally, the importance of the spatial scale when performing temporal trend

analysis is introduced. Environmental variability in the temporal domain is affected

by the spatial scale of the data and so analyses conducted at different spatial scales

may give different results and point towards different drives of the observed

changes. A method for image downscaling (Spatial and Temporal Adaptive Reflec-

tance Fusion Model (STARFM)) is presented as a way to obtain images with both

high spatial and high temporal resolution by fusing data from Landsat and MODIS-

like sensor systems. The performance of STARFM is illustrated from an example of

a semi-arid area in Senegal, West Africa characterized by a short and irregular

growing season and with STARFM, daily Landsat-like data can be generated, thus

allowing robust trend and phenology analysis at a finer spatial resolution.
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Chapter 9

Assessing Drivers of Vegetation Changes
in Drylands from Time Series of Earth
Observation Data

Rasmus Fensholt, Stephanie Horion, Torbern Tagesson, Andrea Ehammer,
Kenneth Grogan, Feng Tian, Silvia Huber, Jan Verbesselt,

Stephen D. Prince, Compton J. Tucker, and Kjeld Rasmussen

Abstract This chapter summarizes methods of inferring information about drivers

of global dryland vegetation changes observed from remote sensing time series data

covering from the 1980s until present time. Earth observation (EO) based time

series of vegetation metrics, sea surface temperature (SST) (both from the AVHRR

(Advanced Very High Resolution Radiometer) series of instruments) and precipi-

tation data (blended satellite/rain gauge) are used for determining the mechanisms

of observed changes. EO-based methods to better distinguish between climate and

human induced (land use) vegetation changes are reviewed. The techniques

presented include trend analysis based on the Rain-Use Efficiency (RUE) and the

Residual Trend Analysis (RESTREND) and the methodological challenges related

to the use of these. Finally, teleconnections between global sea surface temperature

(SST) anomalies and dryland vegetation productivity are illustrated and the asso-

ciated predictive capabilities are discussed.
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9.1 Introduction

The United Nations Convention to Combat Desertification (UNCCD) definition of

desertification, or dryland degradation (used synonymously) is:

land degradation in arid, semi-arid and dry sub-humid areas resulting from various factors,

including climatic variations and human activities” followed by “land degradation” means

reduction or loss, in arid, semi-arid and dry sub-humid areas, of the biological or economic

productivity and complexity of rainfed cropland, irrigated cropland, or range, pasture,

forest and woodlands resulting from land uses or from a process or combination of

processes, including processes arising from human activities and habitation patterns

(UNCCD homepage, www.unccd.int).

This definition implies that change in vegetation productivity is a key indicator

(but not the only one) of land degradation. Furthermore, vegetation productivity is

of great economic importance because crop and livestock production is the most

essential economic activity in many arid and semi-arid regions. Moreover, primary

production is an important element in dryland key supporting ecosystem services,

as defined by the Millennium Ecosystem Assessment (MEA) Desertification Syn-

thesis (Adeel and World Resources Institute 2005). Therefore, spatially and tem-

porally consistent, long-term data on changes and trends in vegetation productivity

are of great interest for the assessment of environmental conditions and their trends

in dryland regions. Earth Observation (EO) satellite data provide the only suitable

means of temporally and spatially consistent global scale data, covering the last

three decades (Prince 2002).

According to Adeel and World Resources Institute (2005), at least 10–20 % of

drylands are already degraded and a recent publication from the UNCCD (UNCCD-

secretariat 2013) states that global assessments indicate an increase in the percent-

age of highly degraded land area from 15 % in 1991 to 25 % by 2011. Many

reputable sources rank desertification among the greatest environmental challenges

today and a major impediment to meeting basic human needs in drylands (MEA &

UNCCD). It is, however, also underlined that more elaborate studies are needed to

identify where the problems occur and what is their true extent. This chapter

introduces different EO-based methods for monitoring indicators of land degrada-

tion and to gain insight into the driving mechanisms of observed changes in

vegetation productivity.

9.2 Inferring Causes for Observed Changes

Trends in vegetation productivity may be related to climatic as well as non-climatic

causes of change (e.g. management), and it is obviously of great policy relevance to

better understand the drivers and causal mechanisms of observed productivity

trends. There is good correspondence between EO-based vegetation dynamics

and precipitation in most dryland areas (Fig. 9.1) which is not surprising since
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vegetation growth is primarily water constrained in these areas (Nemani

et al. 2003). However, large dryland regions of non-significant correlation between

rainfall and vegetation growth can also be observed.

Different datasets of precipitation exist for continental to global scale analysis

based on a combination of rain gauge measurements and a variety of different

satellite observations (Huffman et al. 2009; Huffman et al. 2007; Xie and Arkin

1997). Three different products have been used in this chapter (GPCP (Global

Precipitation Climatology Project), CMAP (CPCMerged Analysis of Precipitation)

and TRMM (Tropical Rainfall Measuring Mission)) and are summarized in

Table 9.1.

It has been shown that dryland areas across the globe, on average have experi-

enced an increase in greenness during the satellite record, from 1981 till present

(Fig. 9.2, previous chapter). However, similar increases in greenness over the last

three decades in the same or different regions may have widely different explana-

tions (Fensholt et al. 2012; Mao et al. 2013) including driving mechanisms of both

climate and human induced changes in land use and land cover. Mao et al. (2013)

estimated satellite-derived relative change in annual LAI (leaf area index) from the

years 1982 to 2009 at the global scale and found a South-to-North asymmetry in the

trends coinciding with trends in temperature over the same period. Precipitation

patterns were found to decrease this asymmetric-latitudinal LAI trend, with strong

local effects. By combining EO data analysis with model simulations it was found

that positive and negative vegetation trends in dryland areas were primarily driven

by changes in climate, with positive trends dominating. de Jong et al. (2013a) used

an additive spatial model with 0.5� resolution, including climate-associated effects

and influence of other factors such as land use change to separate possible drivers of

observed changes. They attributed just above 50 % of the spatial variance in global

productivity to changes in climate variables.

Fig. 9.1 Significance of linear correlation between annual integrated GIMMS3g NDVI and

annual summed CMAP precipitation 1982–2010 for dryland areas (hyper-arid not included).

CMAP precipitation has been resampled to match the spatial resolution of the GIMMS3g NDVI
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The relative importance of precipitation, air temperature and incoming solar

radiation for vegetation growth across the globe has been mapped by (Nemani

et al. 2003) showing regions of different climatic dominant limiting factors. Areas

primarily constrained by precipitation occupied approximately 50 % of the global

Table 9.1 Precipitation datasets used in this chapter and their main characteristics

Satellite

product

CPC Merged Analysis of

Precipitation (CMAP)

Global Precipitation

Climatology Project

(GPCP)

Tropical Rainfall

Measuring Mission

(TRMM)

Spatial

resolution

2.5� 2.5� 2.5� 2.5� 0.25� 0.25�

Spatial

coverage

Global Global Latitude: 50 N – 50 S

Longitude: 180 W – 180 E

Temporal

resolution

Monthly Monthly Aggregated to monthly

(from 3 hourly)

Temporal

coverage

1979–present 1979–present 1998–present

Sensors

included

GPCC rain gauge, SSM/I emission, SSM/I,

IR-based GOES precipita-

tion index,

SSM/I scattering, Advanced Microwave

Scanning Radiometer for

Earth Observing System

(AMSR-E),

OLR precipitation index,

Microwave Sounding

IR-based Goddard

Earth Observing Sys-

tem (GEOS) precipita-

tion index,

Advanced Microwave

Sounding Unit-B (AMSU-

B),

Unit (MSU), Television and Infrared Infrared (IR) data from the

international constellation

of geosynchronous earth

orbit (GEO) satellites,

Gauge,

SSM/I scattering, Observation Satellite

Operational Vertical

Sounder (TOVS)-

based estimates,

GPCC,

SSM/I emission, Outgoing longwave

radiation (OLR) pre-

cipitation index,

GPCC,

Climate Assessment and

Monitoring System

(CAMS).

National Centers for Envi-

ronmental Prediction–

National Center for Atmo-

spheric Research (NCEP–

NCAR) reanalysis.

Global Historical Cli-

mate Network

(GHCN, produced by

NOAA) and CAMS.

Download

address

ftp://ftp.cpc.ncep.noaa.

gov/precip/cmap/monthly

http://www1.ncdc.

noaa.gov/pub/data/

gpcp/v2/sat_gauge_

precip

http://daac.gsfc.nasa.gov/

data/datapool/TRMM/

References Xie and Arkin (1997) Adler et al. (2003) Huffman et al. (2007)
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semi-arid areas, 7 % by air temperature and<1 % by incoming shortwave radiation

(the remaining 42 % of semi-arid pixels were not characterized by a single

predominant driver) (Fensholt et al. 2012). The NDVI trend coefficients of these

three categories of potential climatic constraints to plant growth for semi-arid areas

across the globe (Fig. 9.2a–c) were found to be positive on average for all three

constraints (mean NDVI trend coefficients of 0.019, 0.013, and 0.015 for precipi-

tation, air temperature, and incoming shortwave radiation, respectively). This

implies that current generalizations, claiming that land degradation is ongoing in

dryland areas worldwide (Adeel and World Resources Institute 2005; UNCCD

Secretariat 2013) are not supported by the most recent satellite based analysis of

vegetation greenness (being closely related to the key indicator of biological

productivity).

co
un

ts

co
un

ts

co
un

ts

Air temperature 
constrained environments

Mean = 0.013
SD = 0.026
N = 31830

Incom. shortwave radiation 
constrained environments

Mean = 0.015
SD = 0.035
N = 683

Precipitation 
constrained environments

Mean = 0.019
SD = 0.039
N = 221324
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Fig. 9.2 Histograms of the NDVI slope in semi-arid areas from July 1981 to December 2007 in

environments constrained by, (a) precipitation, (b) air temperature and (c) incoming shortwave

radiation. Dashed vertical line represents NDVI trend values of 0 (NDVI units over the total period

1981–2007). Note the different scale on the y-axis value for each sub-plot due to the different

number of pixels in each category
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9.2.1 Precipitation Controlling Observed Vegetation
Changes in the Sahel

The Sahel is one of the world’s largest dryland areas bordering the Sahara Desert to
the north. Sahel has been referred to as the region of largest global rainfall

anomalies during the last century (Nicholson 2000), suffering from recurrent

droughts and large inter-annual variations in vegetation productivity. The grass-

lands of the Sahel constitute the basis for livestock production and the livelihoods

of millions of people. Since the ‘Sahel drought’ of the 1970s and early 1980s, this

zone has been described as a hotspot of land degradation, threatened both by

recurrent droughts (Nicholson 2000) and by human overuse, e.g., through

overgrazing (Hulme 2001; Lamb 1982) which is in contrast to more recent EO

findings (Anyamba and Tucker 2005; Eklundh and Olsson 2003; Fensholt and

Rasmussen 2011; Herrmann et al. 2005; Prince et al. 1998; Rasmussen

et al. 2001). The productivity of the semi-natural grasslands of the Sahel is to a

considerable extent controlled by precipitation. Recent analyses of trends in pre-

cipitation based on rain gauge measurements (Lebel and Ali 2009), as well as on

global precipitation datasets (Fensholt and Rasmussen 2011; Fensholt et al. 2013;

Huber et al. 2011) show that precipitation has increased in the Sahel since the mid-

1980s. Thus the greening, observed in the field and by use of time series of satellite

images, is not surprising. Linear regression analysis of GIMMS3g (Global Inven-

tory Monitoring and Modeling System) NDVI (Normalized Difference Vegetation

Index) against the CMAP (CPC Merged Analysis of Precipitation) precipitation

(Xie and Arkin 1997) was conducted by Fensholt et al. (2013) for the period 1982–

2010 (Fig. 9.3). An overall strong linear correlation between growing season

integrated NDVI and precipitation is observed for the Sahel with 65.1 and 47.7 %

of the pixels analysed being significantly positively correlated (p< 0.05 and 0.01,

respectively).

9.2.2 Assessing Drivers of Observed Changes Based
on Rain-Use Efficiency

If the greening in drylands is predominantly an effect of increased precipitation, it

could be argued that this may disguise continued degradation caused by other

factors, such as excessive cultivation and overgrazing. Over the last decades several

studies have attempted to eliminate the effect of rainfall change (by a normalization

procedure) on biological productivity, to better isolate the impact of non-rainfall

related changes, e.g. human impacts (Evans and Geerken 2004; Prince et al. 1998;

Wessels et al. 2007). This is sought to be captured by the concept of Rain-Use

Efficiency (RUE), defined as the ratio of ANPP (aboveground net primary produc-

tivity) to annual precipitation (Le Houérou 1984, 1989; Prince et al. 1998). Conse-

quently, changes in RUE have been suggested as an integral measure for evaluating
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land degradation and desertification and a number of authors have attempted to

assess non-precipitation related land degradation – or the reverse – in global

drylands. Time series of RUE have been estimated wholly or partly from satellite

remote sensing or using only ground measurements (Bai et al. 2008; Hein and de

Ridder 2006; Hein et al. 2011; Prince et al. 1998, 2007).

The basic assumption involved in the use of RUE is that NPP (net primary

productivity) is proportional to (or at least linearly related to, see below) precipi-

tation in the absence of human-induced land degradation. If this assumption of

proportionality does not hold, the normalization for precipitation, which is the basis

for the use of RUE is not successful (Prince 2002) and the use of RUE to detect non-

precipitation related land degradation will become biased by changes in precipita-

tion. Several papers have questioned this proportionality. It is well known that for

increasing amounts of rainfall, the importance of water availability will at some

point decrease (Prince et al. 2007) violating the assumption of proportionality

between productivity and precipitation. An important question is whether the

transition from water being the primary constraint for vegetation growth into

other factors such as nutrients and incoming solar radiation, is observed for dryland

areas. Using ground data from a variety of semi-arid rangelands in the Sahel and

elsewhere, (Hein and de Ridder (2006), Hein et al. (2011)), as well as Hein (2006)

argued that at high precipitation levels RUE will tend to decrease in dryland areas,

because other production factors than water availability become limiting. The

interval of annual precipitation in which proportionality may be assumed is debated

and varies with vegetation, soil and climate. Hein et al. (2011) cited Breman and

Fig. 9.3 Significance of correlation between GIMMS3g NDVI and precipitation from CMAP

(Table 9.1) 1982–2010 for (a) Annually integrated NDVI (b) growing season integrated NDVI.

CMAP precipitation has been resampled to match the spatial resolution of the GIMMS3g NDVI
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Dewit (1983) for the statement that the proportionality breaks down at/above

around 300 mm of rainfall per year.

Hein and de Ridder (2006) further argued that RUE will also decrease in areas of

very low precipitation because most of the precipitation will evaporate and thus not

be available for vegetation. Thus, they suggested that a quadratic or cubic relation-

ship between productivity and precipitation should replace the assumption of

proportionality for dryland areas. Prince et al. (2007) however challenged this

interpretation with respect to the lack of an ecological justification. Other publica-

tions based on in situmeasurements suggest that biome-specific RUE values should

be applied depending on the rainfall regime (Huxman et al. 2004; Paruelo

et al. 1999; Ruppert et al. 2012). However, Hu et al. (2010) concluded that inter-

annual variation in RUE is not correlated with precipitation at the site level from a

large dataset of in situ observations from dryland areas in China. The hypothesis of

a constant of RUE for different species/rainfall regimes has implications for

interpreting values of EO-based (Earth Observation) RUE in both the temporal

and spatial domain since RUE values might not be directly inter-comparable across

space for drylands receiving different amounts of rainfall (Prince et al. 1998). Also,

if the amount of rainfall for a given pixel changes towards wetter or dryer condi-

tions over time, this will have implications for the interpretation of RUE if a non-

proportional relation between productivity and precipitation exists.

Based on annually integrated NDVI and annual precipitation (Fensholt and

Rasmussen (2011), Fensholt et al. (2013)) demonstrated that for most pixels in

the Sahel there is no proportionality, but sometimes a linear relation between

ΣNDVI (seasonal or annual) and annual precipitation exists (as in Fig. 9.3). Pro-

portionality is mathematically defined as the relationship of two variables whose

ratio is constant, and unless the linear relationship between the vegetation metric

and precipitation crosses the origin (0,0) of the Cartesian coordinate plane, propor-

tionality is not obtained. It is argued that this lack of proportionality undermines the

general use of satellite-based RUE time series as a means of identifying non-

precipitation related land degradation (Fensholt et al. 2013), Veron et al. (2005).

The specific data pre-processing of EO-based metrics for vegetation productivity

have implications for the proportionality between productivity and precipitation

and will therefore impact on the degradation/recovery assessment results obtained

when using RUE. Fensholt et al. (2013) studied the sensitivity of the RUE approach

to the EO-based proxies used (Fig. 9.4). Annually summed AVHRR GIMMS3g

NDVI was shown to be linearly related to annual precipitation but no proportion-

ality was found, thereby making a normalisation impossible (the inability of RUE to

normalise for variability in precipitation is obvious from a remaining high per-pixel

temporal correlation between RUE and precipitation). The results show significant

negative trends in RUE (Fig. 9.4a) (primarily western and central Sahel). If

substituting annually summed AVHRR GIMMS3g NDVI with a different vegeta-

tion productivity metric (the growing season integrated NDVI) in the RUE calcu-

lation (Fig. 9.4b), proportionality between productivity and precipitation was

attained for the majority of pixels in the Sahel allowing for a successful use of

RUE (no correlation between RUE and precipitation). The use of a growing season
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integral of NDVI, which does not violate proportionality, produces very different

results in trends of RUE, with the majority of pixels being characterised by

significant positive RUE trends across the entire Sahelian belt. Clearly, this exam-

ple illustrates that widely different conclusions concerning drivers of observed

changes in vegetation trends and land degradation in the Sahel may be obtained

depending on the vegetation parameterization approach used for the RUE analysis.

Care must be taken that the assumed precipitation normalisation is in fact success-

ful; otherwise trends in RUE will be nothing but a simple reflection of the trend in

the precipitation dataset or perhaps other factors controlling NPP.

A different use of RUE as a measure of land degradation has been suggested by

(del Barrio et al. 2010). The RUE values for each site and date were rescaled

according to the upper and lower bounds of the VI (vegetation index)/precipitation

point scatter to calculate the performance of RUE for a given landscape location to

a reference potential conditions (i.e. maximum RUE observed) for this landscape

type. However, the reference values depend on the actual observations, and assume

that some areas are in their potential condition and others are fully degraded. It

could also be that the RUE of a given pixel as compared to a reference landscape

will be dependent on local soil variability and topographic conditions.

Fig. 9.4 RUE linear trends 1982–2010 based on (a) Annual sums of AVHRR GIMMS3g NDVI.

(b) Growing season integrals of AVHRR GIMMS3g NDVI. Both productivity estimates are

divided by annual sums of precipitation from GPCP (Table 9.1) to obtain Rain-Use Efficiency

(RUE). GPCP precipitation has been resampled to match the spatial resolution of the

GIMMS3g NDVI
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9.2.3 Assessing Drivers of Observed Changes Using
the Residual Trends Productivity Approach

A different approach, called Residual Trend Analysis (RESTREND), has been

developed in an attempt to distinguish rainfall-related variations and trends from

human-induced land degradation (Archer 2004; Evans and Geerken 2004; Wessels

et al. 2007). Following this method, per-pixel ΣNDVI (seasonal or annual) is

regressed against annual precipitation, as with RUE, and then residuals are calcu-

lated for each site/time point from the best-fit linear regression for all sites. These

residuals are then plotted against time to detect any temporal trends in deviations

from the potential (as estimated by the best-fit regression). Just as with RUE,

RESTREND seeks to expose factors other than precipitation, including a human-

induced change (Herrmann et al. 2005; Huber et al. 2011; Wessels et al. 2007) that

affect NPP.

In Fig. 9.5 AVHRR GIMMS3g NDVI was regressed against satellite-measured

precipitation data from TRMM (Tropical Rainfall Measuring Mission; latitudinal

coverage: 50 N-50S) from 1999 to 2011 and then used in a RESTREND analysis.

Mixed patterns of increasing and decreasing trends of residual NDVI can be

observed, with large negative values in eastern Africa and southern America and

mainly positive trends in Australia and northern America.

Fig. 9.5 Linear trends in Residual NDVI (RESTREND) 1999–2011. The residuals were esti-

mated from linear regressions between annual integrated AVHRR GIMMS3g NDVI and annual

summed TRMM (Table 9.1) rainfall. TRMM precipitation has been resampled to match the spatial

resolution of the GIMMS3g NDVI
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9.2.4 Limitations/Challenges for RUE and RESTREND
Approaches

Instead of assuming proportionality or linearity between precipitation and produc-

tivity for the use of RUE as being criticised by Hein and de Ridder (2006) and Hein

et al. (2011) it was suggested by Fensholt et al. (2013) to restrict the analysis

applicable to the RUE approach to regions or pixels for which proportionality can

be shown to exist from remotely sensed data. This allows for maintaining the basic

simple notion of RUE (as formulated by Le Houérou (1984)) as a means of

normalizing for the effect rainfall on vegetation productivity and also helps in

defining the limits within which RUE should be applied, i.e. to regions where

rainfall is the primary constraint to vegetation growth. For a given pixel, however,

in the case of severe ongoing land degradation in the middle part of the time series

being studied, the linearity between rainfall and productivity may decline. This may

be captured in the RUE time series as gradual changes that may reverse over time

involving a trend break. Hence, if one applies strict statistical criteria at the per-

pixel level there is a risk of excluding pixels from the analysis that are in fact the

ones showing signs of human-induced land degradation. It is therefore suggested to

apply the statistical requirement of a significant correlation between precipitation

and vegetation productivity to be fulfilled at the regional level by a zonation/

stratification of the per-pixel relation.

Also the use of the RESTREND approach for assessing human induced influence

of vegetation changes is based on linearity between rainfall and productivity. For

pixels for which a high linear correlation between ΣNDVI (annual/seasonal) and
annual precipitation exists, meaningful estimations based on the RESTREND

technique is feasible. If, however, for a given pixel a weak relation between

ΣNDVI and annual rainfall exists, this approach is of little use, because the

uncertainty caused by estimating the NDVI residuals increases proportionally. As

pointed out by Wessels et al. (2012) this is likely to happen for a scenario, as above,

where human-induced land degradation starts in the middle of a time series. A

simulated degradation intensity �20 % was shown to cause an otherwise strong

relationship between NDVI and rainfall to break down, thereby making the

RESTREND an unreliable indicator of land human induced degradation.

A way to minimize the effects of fitting only one linear regression for the whole

time-series is the identification of gradual or abrupt changes in the RUE time series

using change detection method such as Breaks For Additive Seasonal and Trend

(BFAST) (Verbesselt et al. 2010a, b). As described in the previous chapter, the

basic principle of the BFAST algorithm is the decomposition of a time series into

seasonal, trend, and remainder components, coupled with the detection of abrupt

changes in both the trend and seasonal components. BFAST enables the detection

of trend changes within EO time series assuming that nonlinearity can be approx-

imated by piecewise linear models. This type of analysis can provide valuable

information on the occurrence of trend changes, as well as on the timing and
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magnitude of related break points in the time series (de Jong et al. 2012, 2013b;

Verbesselt et al. 2012). Land degradation assessment based on a joint analysis of

both long-term trends and abrupt changes in precipitation and vegetation time series

should therefore be more accurate as they will not be solely based on diagnosis of

long-term linear changes in ecosystem efficiencies but will also use more accurate

information on potential abrupt changes observed either in climate or in the

vegetation traits.

An example of the application of BFAST to address the issues of the RUE and

RESTREND approaches for land degradation assessment is an analysis for Sudan

(Fig. 9.6). Sudan is characterised by widespread and rapidly accelerating environ-

mental degradation, which is sufficiently severe to be amongst the factors triggering

tensions and conflicts (United Nations Environment Programme. 2007). This

example is based on the growing-season NDVI integral derived from the

GIMMS3g archive (1981 to the present) used as proxy for vegetation productivity

and annual precipitation from the Global Precipitation Climatology Project (GPCP)

(Table 9.1). Figure 9.6a shows the trends in RUE without taking into consideration

that there are large areas of the semi-arid Sudan where the preconditions for using

RUE are not fulfilled (lack of linearity between vegetation productivity and pre-

cipitation and/or residual correlations between RUE and precipitation are observed)

(Fig. 9.6b). However, breaks in the RUE time series detected by the BFAST

Fig. 9.6 (a) Direction and significance of 1982–2011 trends in RainUse Efficiency derived from

the GIMMS3g NDVI and the GPCP yearly totals for dryland areas of Sudan. Non vegetated areas

were masked out (light grey). (b) As in (a) but superimposed by pixels being masked due to lack of

correlation between rainfall and NDVI (medium grey) and residual correlation between RUE and

rainfall (dark grey). (c) Number of break points in Rain-Use Efficiency identified by BFAST

between 1982 and 2011
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(Fig. 9.6c) indicate that for many pixels (e.g. the region highlighted with a red

circle) the linearity assumption on which the RUE approach is based upon is not

fulfilled because of a distinct breakpoint within the period of analysis. Therefore the

rejection of these pixels based on a too strict statistical criteria of linearity may

actually lead to disregarding some of the regions that are most vulnerable and most

seriously hit by land degradation.

9.3 Assessment of the Roles of Climate on Anomalies
of Dryland Vegetation Productivity

9.3.1 Combining Dynamic Global Vegetation Models
and EO Data

Recent studies based on process-based modelling approaches (Dynamic Global

Vegetation Models; DGVM’s) have attempted to disentangle the climate and

human effects on the Sahelian greening (Hickler et al. 2005; Seaquist et al. 2009)

and greening at the global scale (Mao et al. 2013). The use of DGVM’s like the LPJ
(Lund-Potsdam-Jena) (Sitch et al. 2003) allows studying the causes for current and

historical variability and trends in vegetation productivity of global drylands when

comparing against time series of EO data for the same period (Hickler et al. 2005).

DGVM’s provide the potential vegetation properties and modelling includes atmo-

spheric CO2 fertilization, nitrogen/phosphorous deposition and land use and land

cover change (not accommodated in EO-based Light Use Efficiency (LUE)

approaches) as well as dryland resilience in the context of disturbance processes

from human influence like bush fires. Discrepancies between modelled and

EO-based observed productivity have therefore been used as means of inferring

information of drivers of changes (Seaquist et al. 2009). Combining process-based

ecosystem models with high-temporal resolution remote sensing using data assim-

ilation offers an interesting way forward adding insights about the patterns and

mechanisms driving observed vegetation dynamics at these spatial scales; yet it

remains an underutilized avenue of research (Seaquist et al. 2012).

9.3.2 Sea Surface Temperature and Vegetation Productivity
Teleconnections

Vegetation productivity across different dryland regions is known to be affected

locally by changes in precipitation as discussed in the previous sections. The causes

of inter-annual precipitation variability has also been related to variability in

regional climate driven by SST patterns. In the African Sahel, the reasons for the

large inter-annual and decadal fluctuations in rainfall are still not entirely
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understood, but early works by (Folland et al. (1986), Lamb (1978), Palmer 1986)

found a relationship (teleconnection) with regional and global SST conditions.

Sahelian precipitation and SST patterns have been related to the ENSO (El Nino

Southern Oscillation) and NAO (North Atlantic Oscillation) (Biasutti et al. 2008;

Palmer 1986; Shanahan et al. 2009; Ward 1998). Relationships between precipita-

tion and SST have been found also in the Pacific (Caminade and Terray 2010;

Janicot et al. 1998; Mohino et al. 2011), the Indian Ocean (Bader and Latif 2003;

Giannini et al. 2003; Lu 2009) and the Mediterranean (Philippon et al. 2007;

Raicich et al. 2003; Rowell 2003).

In the Sahel, the importance of SST on precipitation is still unclear. While

several studies have reported limited correlations (Anyamba and Eastman 1996;

Anyamba and Tucker 2005; Anyamba et al. 2001; Philippon et al. 2007; Propastin

et al. 2010), others have shown stronger relationships (Camberlin et al. 2001; Oba

et al. 2001; Ward 1998). Oba et al. (2001), attributed large parts of the inter-annual

variation of vegetation productivity during the 1980s to the NAO. Wang (2003), on

the other hand, did not find a consistent relationship. Other studies (e.g. Brown

et al. (2010)) have found significant relationships individually between the Pacific

Decadal Oscillation (PDO) and two phenological metrics of NDVI (start of season

and seasonal integrated NDVI) in West Africa but a limited influence of the Indian

Ocean Dipole (IOD). However, although Williams and Hanan (2011), found the

IOD and the Multivariate ENSO Index (MEI) to be related to rainfall individually,

(when taken together) interacting effects of the two indices removed the

correlations.

Direct relationships between SST and vegetation measurements from AVHRR

time series have also been demonstrated. For example, Huber and Fensholt (2011)

studied the direct correlations between the Sahelian dryland vegetation variability

and large-scale ocean–atmosphere phenomena causing changes in SST patterns. It

was concluded that over the last 3 decades, significant correlations existed between

global climate indices/SST anomalies and Sahelian productivity, however with

different characteristics in western, central and eastern Sahel. Whereas the vegeta-

tion productivity in the western Sahel could be associated with SST for large

oceanic areas of the Pacific, the Atlantic as well as the Indian Ocean (Fig. 9.7),

for the eastern Sahel only small areas in the Atlantic were found to be significantly

related to dynamics in NDVI.

Overall, these large scale climate indices and especially SST anomalies for

specific ocean areas were found to have predictive power expressed by a statisti-

cally significant relation between northern latitude winter/spring SSTs and summer

vegetation productivity in the Sahel (Fig. 9.8). This time lag of several months

could be of immense importance for forecasting annual vegetation productivity in

this region and possibly in other dryland areas across the globe, home to the world’s
poorest populations.
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9.4 Summary

The United Nations Convention to Combat Desertification (UNCCD) definition of

desertification (degradation in dryland areas) implies that change in vegetation

productivity is a key indicator (but not the only one) of land degradation. Spatially

and temporally consistent, long-term data on vegetation productivity is therefore of

great interest for the assessment of changes in environmental conditions in dryland

regions and Earth Observation (EO) satellite data provide the only suitable means

of consistent monitoring of changes at the global scale.

Current generalizations, claiming that land degradation is ongoing in dryland

areas worldwide are not supported by recent satellite based analysis of vegetation

and this chapter introduced some of the most widely used methods of inferring

Fig. 9.7 Maps of significant correlation coefficients (p< 0.05) between the Sahel NDVI anomaly

index (based on July–September NDVI (JAS)) for the West African Sahel sub-region and mean

SST anomalies from 1982 to 2007 for different intra-annual time lags (e.g., correlation between

JAS NDVI anomalies and JFM (January–March) SST anomalies)
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drivers of dryland vegetation changes observed from remote sensing time series

data. Trends in vegetation productivity may be related to climatic as well as non-

climatic causes of change (e.g. management), and it is of great policy relevance to

better understand the drivers and causal mechanisms of observed productivity

trends. However, one of the main challenges in dryland vegetation research remains

resolving and disentangling the impact from climate and human induced land use

change respectively. A strong coupling between EO-based vegetation dynamics

and precipitation and/or temperature was found in most dryland areas but also large

regions of non-significant correlation between rainfall/temperature and vegetation

growth was observed pointing towards human influence on vegetation from

changes in land use practices.

The Sahel (being one of the world’s largest dryland areas) has suffered from

recurrent droughts and large inter-annual variations in vegetation productivity over

recent decades. Sahel was used here as a showcase for two interrelated methods of

detecting the impact of non-rainfall related changes on vegetation; the concept of

RUE (Rain-Use Efficiency) and the RESTREND approach. Both approaches how-

ever are based on the assumption of a strong per-pixel linear relationship between

rainfall and productivity (over time) that might be compromised in the case of

escalating land degradation during the period under study. Rather than fitting only

one per-pixel linear regression for the whole time-series, it is suggested here to

combine a change detection method such as BFAST (Breaks For Additive Seasonal

Fig. 9.8 Maps of joint explained variance (r2) from partial correlation analysis of July-September

(JAS) NDVI anomalies and (a) the Multivariate ENSO Index (MEI) averaged over May–July

(MJJ) and the Pacific Decadal Oscillation (PDO) averaged over July–September (JAS), (b) the
SST indices extracted from the Atlantic and Pacific for January–March (JFM) and March–May

(MAM), respectively, and (c) the SST indices extracted from the Atlantic and Pacific for June–

August (JJA) and March–May (MAM), respectively
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and Trend) (see previous chapter) for identification of time series breakpoints in

combination with RUE/RESTREND approaches to overcome the problem of the

assumption of long-term rainfall/vegetation linearity that might be incompatible

with the manifestation of degradation.

Finally, global sea surface temperature (SST) anomalies (caused by large-scale

ocean–atmosphere phenomena) were shown to be teleconnected to regional scale

vegetation productivity in the Sahel, thereby being important for an improved

understanding of inter-annual changes in the Sahelian dryland productivity. Large

scale climate indices and especially SST anomalies for specific ocean areas were

found to have predictive power for the vegetation productivity in the Sahel and the

existence of a time lag of several months between SST anomalies and vegetation

productivity provides an important basis for forecasting annual vegetation produc-

tivity in this region and possibly in other dryland areas across the globe.
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Chapter 10

Land Surface Phenology in a West
African Savanna: Impact of Land Use,
Land Cover and Fire

Ursula Gessner, Kim Knauer, Claudia Kuenzer, and Stefan Dech

Abstract Phenological change and variation have become increasingly relevant

topics in global change science due to recognition of their importance for ecosystem

functioning and biogeophysical processes. Remote sensing time series offer great

potential for assessing phenological dynamics at landscape, regional and global

scales. Even though a number of studies have investigated phenology, mostly with

a focus on climatic variability, we do not yet have a detailed understanding of

phenological cycles and respective biogeographical patterns. This is particularly

true for biomes like the tropical savannas, which cover approximately one eighth

of the global land surface. Savannas are often characterized by high human popula-

tion density and growth, one example being theWest African Sudanian Savanna. The

phenological characteristics in these regions can be assumed to be particularly

influenced by agricultural land use and fires, in addition to climatic variability. This

study analyses the spatio-temporal patterns of land surface phenology in a Sudanian

Savanna landscape of southern Burkina Faso based on time series of the Moderate

Resolution Spectroradiometer (MODIS), and on multi-temporal Landsat data. The

analyses focus on influences of fire, land use, and vegetation structure on phenolog-

ical patterns, and disclose the effects of long-term fire frequency, as well as the short-
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term effects of burning on the vegetation dynamics observed in the following

growing season. Possibilities of further improvements for remote sensing based

analyses of land surface phenology are seen in using earth observation datasets of

increased spatial and temporal resolution as well as in linking phenological metrics

from remote sensing with actual biological events observed on the ground.

10.1 Introduction

Phenology has become an increasingly relevant topic in global change science

(e.g. Rosenzweig et al. 2007). It addresses “the timing of recurrent biological

events, the causes of their timing with regard to biotic and abiotic forces, and the

interrelation among phases of the same or different species” (Lieth 1974). During

the last decades, changes in phenology have been observed in different regions of

the world and could frequently be related to climatic variability and change or to

alterations in land cover and land use practices (e.g. de Beurs and Henebry 2004;

Heumann et al. 2007; Richardson et al. 2013). Phenological changes are of partic-

ular relevance as they may impact a number of ecosystem functions such as

ecosystem productivity and carbon sequestration (e.g. Churkina et al. 2005; Rich-

ardson et al. 2010), reproductive patterns (e.g. Ramı́rez and Brice~no 2011) and

consumer-resource interactions (e.g. Kerby et al. 2012). Given the close link

between phenology and resource availability for herbivores in many regions of

the world, phenological variations can even impact land use decisions, such as long-

distance movements of livestock (Butt et al. 2011). In addition to ecological

aspects, phenology is closely linked to land-atmosphere fluxes of water and energy

as it determines seasonal variations of biogeophysical land surface properties such

as albedo (Ryu et al. 2008), leaf area index, or surface roughness length (Blanken

et al. 1997).

Plant phenology is analyzed at the scale of individual plants or vegetation

communities and is usually based on field assessments. Land surface phenology

in contrast is studied at landscape, regional and global scales, where earth obser-

vation delivers information on the seasonal variations of the vegetated land surface

(de Beurs and Henebry 2005; Henebry and de Beurs 2013). Space-borne, medium

resolution (250 m–1 km) sensors provide daily to bi-weekly data of vegetation

indices for large areas, and currently cover up to three decades of time series. This

makes remote sensing an indispensable basis for many studies of phenology and

phenological changes.

Tropical savannas cover approximately one eighth of the global land surface and

more than half of the African continent (Scholes and Archer 1997). The land

surface phenology of savannas has been studied at various scales, mainly focusing

on the influence of climatic variability (e.g. Archibald and Scholes 2007; Butt

et al. 2011; Heumann et al. 2007; Ma et al. 2013; Wagenseil and Samimi 2006).

However, a detailed understanding of the phenological cycles of savanna ecosys-

tems and their biogeographical patterns is still missing, particularly at landscape

and regional scales (Ma et al. 2013). Furthermore, in regions like West Africa,
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where population density and growth are high, the phenological characteristics of

savannas can be particularly influenced, in addition to climatic variability, by

agricultural land use and fires (e.g. Devineau 1999; Devineau et al. 2010).

The aim of this study is to analyze the spatio-temporal patterns of phenology in a

typical region of the West Sudanian Savanna in southern Burkina Faso. A special

focus is on investigating the interrelations of phenological patterns with fire, land

use and vegetation structure. It is assumed that fire can have both long-term, and

direct, short-term effects on land surface phenology. Long-term effects might be

observable, when the average frequency of fires over long time periods influences

average phenological characteristics. Such effects may be due to shifts in species or

growth form composition as a result of the long-term fire repetition rates

(e.g. Hoffmann 1998). On the other hand there might be direct, short-term effects

of fire events on the phenological development of the subsequent growing season.

These effects could be, for example, resulting from the removal of dead biomass

that gives way for new sprouting, or from potential fire damage that hinders or

delays vegetation development. This study is based on optical remote sensing time

series of the Moderate Resolution Spectroradiometer (MODIS) with a spatial

resolution of 250 m, on the MODIS burned area product MCD45A1 with spatial

resolution of 500 m, and on multi-date Landsat spectral data with a spatial resolu-

tion of 30 m. Spatio-temporal information on phenology, land use, land cover and

fire occurrence is derived from these datasets, and analyzed for a 14-year period

from 2000 to 2013.

10.2 Study Region

The study region is located in southern Burkina Faso, just north of the national

border with Ghana and covers an area of approximately 15,400 km2 (Fig. 10.1,

2�23.50W-1�10.250W/11�58.750N-10�58.40N). It belongs to the tributary area of the
White Volta and includes the northern part of the Sissili catchment. The topography

is relatively flat with elevations between 250 m and 400 m above sea level.

Pronounced seasonal alterations between a monsoonal rainy season and a dry

season characterize the region. The mean annual precipitation ranges between

800 and 980 mm and falls mainly between May/June and September/October.

Temperatures are relatively constant throughout the year with monthly averages

between 26 and 30 �C. The study region is part of the Sudanian Savanna zone

(White 1983) with different types of savanna vegetation ranging from open grass-

land savannas to closed woodland savannas and small patches of forests, mainly

along rivers. The vegetation is characterized by alternating periods of vegetation

growth during the rainy season and reduced vegetation activity during the dry

season. Large parts of the study area are intensively used, mainly for the cultivation

of crops, and partly for grazing. A further intensification and expansion of land use

can be expected for the future years, given the high annual population growth of

2.9 % in Burkina Faso (The World Bank 2013), in a society where currently more

than 90 % of the population work in the field of agriculture (FAO 2013). Some parts

of the study region are protected areas, most importantly the Nazinga Game Ranch,
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the Kaboré-Tambi (K.T.) National Park, the Sissili classified forest and the Nazinon

reserved forest (Fig. 10.1). Regular fires are a typical feature of the study region and

have a key influence on the vegetation structure of savannas (Rueth 2010; Wardell

et al. 2004). While some fires in West Africa have natural causes, the majority of

burnings are human-induced and often closely related to land use practices

(Goldammer and Ronde 2004; Gornitz and NASA 1985). In the study region,

Fig. 10.1 Overview over the study region and its location in southern Burkina Faso
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four fire seasons can be distinguished, the very early fire season in October, the

early fire season in November and December, the late fire season in January and

February, and the very late fire season in March and April (Rueth 2010). Controlled

fire management is found within the protected areas. In major parts of the Nazinga

Game Ranch for example, controlled early burning is undertaken. The aim is to

prevent the more destructive late fires, to provoke a fresh grass flush for grazing

animals, and to improve the visibility of wildlife for tourists. On the other hand, fire

has been completely excluded by the park management from some parts of the

southern Nazinga Game Ranch for more than 30 years, in order to study the long-

term effect of fire suppression on the savanna ecosystem.

10.3 Material and Methods

10.3.1 Time Series of Land Surface Phenology

Phenological information was derived from time series of the MODIS Enhanced

Vegetation Index (EVI, Eq. 10.1). This index considers the difference in blue and

red reflectances for estimating influences of the atmosphere, and minimizes soil-

brightness related variations (Huete et al. 1999, 2002). Compared to the frequently

used Normalized Difference Vegetation Index (NDVI), EVI is more sensitive in

areas of dense vegetation and is able to reduce canopy background effects and

aerosols (Huete et al. 2002; Justice et al. 1998).

EVI ¼ ρNIR � ρRED
ρNIR þ C1ρRED-C2ρBLUE þ L

*G ð10:1Þ

where ρx¼ fully or partially atmospheric-corrected surface reflectances

L¼ canopy background adjustment factor (L¼ 1)

C1, C2¼ coefficients of the aerosol resistance term (C1¼ 6; C2¼ 7.5)

G¼ scaling factor (G¼ 2.5)

EVI time series were extracted from the MODIS product MOD13Q1 that

delivers 16-day composites at a spatial resolution of 250 m. Despite the mentioned

advantages of EVI, this global vegetation index product can still contain low quality

values that are for example due to unfavorable observation geometries or due to

remaining atmospheric effects. The latter is particularly relevant for situations of

high and persistent cloud coverage, which are typical for the rainy season in the

study area. With the aim to reduce such atmospheric and geometry related effects,

all pixels were excluded from further processing that did not meet one or more of

the three following conditions: (1) assignment of ‘good’ or ‘marginal’ in the

MODIS quality information layer ‘pixel reliability’, (2) reflectance above 0.09 in

the blue band, and (3) view zenith angle below 60�. In case these conditions

excluded more than 18 composites of 1 year, the criteria were iteratively attenuated

until at least 5 valid observations were available. This was done by keeping all data

that met at least two, or finally at least one of the three conditions. In case even one
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single criterion resulted in too few observations, the original data were kept. Time

series were assembled for the period 2001–2013, and data gaps resulting from the

removal of low quality composites were linearly interpolated.

The EVI time series were smoothed using the adaptive Savitzky-Golay filtering

approach with a moving window width of 6 (96 days). Phenological metrics for the

13 years were derived from the fitted EVI time series as defined in Table 10.1. For

Savitzky-Golay fitting and for the derivation of phenological metrics, the software

tool TIMESAT was used (Eklundh and J€onsson 2012; J€onsson and Eklundh 2004;

J€onsson and Eklundh 2002).

10.3.2 Land Cover and Land Use Changes

Baseline information on current land cover and land use as well as on the historic

development of agricultural areas in the study region was derived from Landsat

data. Nearly cloud free TM (Thematic Mapper), ETM+ (Enhanced Thematic

Mapper Plus), and OLI (Operational Land Imager) data were available for the

years 1986, 2001 and 2013 at a spatial resolution of 30 m (Table 10.2). These

datasets, provided by the United States Geological Survey (USGS), did not need

any further geometric correction as they showed satisfactory agreement with GPS

records taken in the field. Calibration and atmospheric correction was done using

Atcor-2 (Richter 1996) for flat terrain which is suitable for the flat topography in the

study region.

Based on in-situ field plots taken in October and November 2013 and on very

high resolution (0.6 m), pansharpened QuickBird data of October 2013, training

Table 10.1 Phenological metrics derived from EVI time series after J€onsson and Eklundh (2002)

Metric Description

Start of

season

(SOS) Date for which EVI has increased to a level of 0.25 for the first time

during the annual cycle

Rate of

increase

(RIN) Linear slope between the points where the time series reaches the

20 % and 80 % levels of its annual amplitude respectively

Maximum

EVI

(MAX) Largest EVI of the annual cycle

Large EVI

integral

(LIN) Integral of the fitted function from growing season start to growing

season end (date at which EVI falls below a level of 0.25 for the first

time during the annual cycle)

Table 10.2 Landsat data

used for the classification of

land cover and land use

changes

Date Sensor

18 November 1986 TM (Landsat-5)

3 November 2001 ETM+ (Landsat-7)

27 October 2013 OLI (Landsat-8)

All datasets were provided by USGS and cover WRS path

195, row 52
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areas of seven major land cover/use classes were defined for the year 2013. The

considered classes are forest (tree cover> 65 %), closed woodland (woody cover

40–65 %), open woodland and shrubland (woody cover 15–40 %), grassland
(woody cover 5–15 %, grass cover> 15 %), bare to sparsely vegetated areas
(vegetative cover< 15 %), agriculture and water. In addition, training areas for

agricultural and non-agricultural land in 1986 and 2001 could be identified directly

from the respective Landsat data. As very high resolution imagery and in-situ

information were missing for these years, a further subdivision of the non-

agricultural vegetation types was not possible. Based on the training information,

the Landsat data were classified with a combined random forest and maximum

likelihood approach.

10.3.3 Time Series of Burned Areas

Spatial distribution, timing, and frequency of fires in the study area were derived

from time series of the MODIS burned area product MCD45A1 (Justice

et al. 2006). This dataset is based on MODIS Terra and Aqua observations and

provides information on burned areas as well as the approximate date of burning at

a spatial resolution of 500 m. The MCD45A1 approach identifies fire-affected areas

as sudden changes in daily MODIS reflectance time series by considering

bi-directional reflectance variations. Further details on the MODIS burned area

mapping algorithm can be found in Justice et al. (2006) and Roy et al. (2002). The

approximate date of burning was extracted from MCD45A1 for the years 2000–

2012. From this information, fire frequency and fire seasonality were determined

considering very early and early fires occurring between October and December as

well as late and very late fires occurring between January and April.

10.4 Results

10.4.1 Land Cover Types and Land Use History

The land cover and land use map of 2013, based on OLI data, visualizes the spatial

patterns of land cover types in the study region (Fig. 10.2). The protected areas

(Fig. 10.1) are characterized by heterogeneous patterns of the semi-natural vegeta-

tion types closed woodland, open woodland and shrubland as well as grassland.

Forests occur in smaller patches and frequently follow courses of rivers (gallery

forests). Agriculturally used areas dominate outside the protected zones,

intermingled by fragments of woodlands and forests, and in the northern part of

the Nazinon reserved forest.

The history of clearing for agriculture since the mid-1980s is shown in

Fig. 10.3a–c. While previous to our study period, the overall extent of agricultural
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area has been relatively stable (1986: 3,869 km2; 2001: 3,804 km2), it has increased

to approximately double the size of 2001 within the last 12 years (2013: 7,724 km2).

This increase in agricultural area since 2001 is marked in red color in Fig. 10.3d.

Despite these enormous changes, some parts of the study region show only minor

alterations with respect to agricultural land use over the last 28 years. As an

example, the land to the northeast of K.T. National Park has been cultivated since

the mid-1980s already (yellow color in Fig. 10.3d). The situation is also stable

within most protected areas and in a buffer zone parallel to the northeastern border

of K.T. National Park, where hardly any agricultural land use has been observed for

the period of study. The considerable increase in cultivated area has thus concen-

trated on the land between and to the west of the protected areas (orange color in

Fig. 10.3d). During the past 13 years, agriculture has more and more advanced

Fig. 10.2 Land cover and land use in the year 2013, based on OLI data
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towards the protected zones, resulting today in sharp fence line contrasts at the park

borders.

Any areas affected by land use changes during the period of study (2001–2013)

might disturb the intended phenological analyses and therefore need to be excluded

from further investigations. The semi-natural savanna vegetation types existing in

2013 were not agriculturally used in 2001 (hardly any purple color in Fig. 10.3d), so

that for these land cover types only minor changes during the period of study can be

assumed. Considering the major transformations that have occurred since 2001 on

the present cultivated land, only those agricultural areas that have existed in 2001

and in 2013 are considered in the following analyses.

Fig. 10.3 Agricultural land use in (a) 1986, (b) 2001, and (c) 2013; for color coding see bottom
left. (d) Changes in cultivated areas between 2001 and 2013 (d); for color coding see bottom right
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10.4.2 Spatio-Temporal Patterns of Fires

Figure 10.4 shows the number of very early and early (a) as well as late and very

late (b) bushfires for the years 2000–2012, extracted from the MODIS burned area

time series. Very late and late burnings are comparatively seldom; only 20 % of the

study area was affected at least once, and 2 % of the region at least three times by a

late fire in the 13 year period (Fig. 10.4b). In contrast, very early and early fires are

found to a far larger extent and at higher frequencies. They affected almost 75 % of

the study region and more than half of the area has experienced early fires more than

three times between 2000 and 2012. Frequent burnings are concentrated in the

protected areas where fires are usually found in intervals of 1–2 years. In the

following analyses, only very early and early fires were considered as they are

most typical for the study region.

When regarding the typical temporal fire patterns of different vegetated land use

and land cover types in the study region, a relationship between fire frequency and

vegetation structure can be observed (Fig. 10.5). With decreasing woody and

increasing herbaceous components of land cover, fire frequency is increasing.

While forests are on average affected by fire in only 3 out of 13 fire seasons, the

fire frequency increases in more open woodland and shrubland types and reaches

highest values for grasslands that burn in 11 out of 13 fire seasons, on average.

Burning of agricultural areas in contrast was detected very rarely with a median

value of 1 fire within 13 years.

Fig. 10.4 Number of fires in a 13 year period (2000–2012) according to MOD45A1: (a) very early
and early fires (October-December); (b) late and very late fires (January-April)
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10.5 Spatio-Temporal Patterns of Phenology

10.5.1 Multi-annual Average Patterns of Phenology

The spatio-temporal patterns of phenological characteristics in the study region are

illustrated in Figs. 10.6 and 10.7. Displayed are the 13 year average (left column)

and variability (right column) of the start of season, the rate of increase in EVI, the

maximum EVI and the EVI integral of the growing season (cf. Table 10.1). The

statistics of the same phenological metrics, grouped by vegetated land cover/use

classes, are displayed in Fig. 10.8. Here, the semi-natural land cover types are

ordered from left (forests) to right (grasslands) according to their vegetation

structure with decreasing woody and increasing herbaceous components.

Figures 10.6 and 10.7 show that the agricultural areas in the north and northeast

of the study region which had been widely cleared for agriculture in 1986 already

(cf. Fig. 10.3a), show distinct phenological characteristics when compared to the

more recently cleared agricultural land in the center and west of the study region

(cf. orange color in Fig. 10.3d). In the areas of longer agricultural land use in the

north and northeast, greening starts later (Fig. 10.6, top left), the rate of seasonal

increase in green vegetation is smaller (Fig. 10.6, bottom left), and both the

maximum and integral of EVI indicate a lower productivity (Fig. 10.7, left column).

In terms of inter-annual variability of phenological characteristics however, the

behavior of all cultivated land in the study region is similar (Figs. 10.6 and 10.7,

right columns).

With regard to the semi-natural land cover types, which are found mainly inside

the protected areas, the spatial patterns (Figs. 10.6 and 10.7) and the statistical

distributions (Fig. 10.8) reveal a general relationship between phenological char-

acteristics and vegetation structure. The start of season tends to be later with

Fig. 10.5 Number of fires in the period 2000–2012, differentiated by land cover/use types. Only

pure MODIS pixels that contain at least 80 % of one single land cover type are considered. Boxplot

elements: box¼ values of 2nd and 3rd quartile; horizontal line¼median; whiskers¼ lowest/

highest values; circles¼ outliers beyond 1.5 times the inter-quartile range; notches¼ indication

of the 95 % confidence interval of the median after Chambers et al. (1983)
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decreasing woody and increasing herbaceous components with differences around

40 days between forests and grasslands. Likewise, the maximum and the integral of

EVI are clearly related to vegetation structure, showing decreasing values with

decreasing woody components. However, when considering the rate of increase in

greenness, a dependency on vegetation structure is not as obvious. The statistical

distributions (Fig. 10.8) show a decelerating green-up with decreasing woody cover

from forests over closed woodlands to open woodlands/shrublands. For grasslands

however the rate of increase in EVI is elevated again. Regarding the spatial

patterns, the rate of increase is relatively high in the K.T. National Park as well

as in the remaining forest and woodland fragments in the center of the study region

Fig. 10.6 Multi-annual (2001–2013) mean (left column) and coefficient of variation (right
column) of start of season (top row) and rate of increase in EVI (bottom row). For the purpose

of orientation, borders of protected areas are included in the maps (cf. Fig. 10.1)
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Fig. 10.7 Multi-annual (2001–2013) mean (left column) and coefficient of variation (right
column) of maximum EVI value (top row) and large EVI integral (bottom row). For the purpose
of orientation, borders of protected areas are included in the maps (cf. Fig. 10.1)

Fig. 10.8 Statistics of multi-annual (2001–2013) mean phenological metrics, grouped by vege-

tated land cover/use types. Only pure MODIS pixels that contain at least 80 % of one single land

cover type are considered. Boxplot elements: box¼ values of 2nd and 3rd quartile; horizontal
line¼median; whiskers¼ lowest/highest values, except for outliers; notches¼ indication of the

95 % confidence interval of the median after Chambers et al. (1983)



(Fig. 10.6, bottom left). Noticeable is also the particularly strong seasonal EVI

increase in the river valleys, e.g. in those of K.T. National Park, but for the closed

woodlands in the Sissili forest and the riparian vegetation in the Nazinga Game

Ranch, the rate of increase is comparatively low.

10.5.2 Effects of Fire Frequency on Phenological
Characteristics

For assessing potential long-term effects of fire on land surface phenology, the

13-year averages of phenological metrics were further differentiated by land cover

type and fire frequency (Fig. 10.9). Here, the land cover types were grouped into

areas of low, medium and high fire frequency with fires occurring less than three

times, between three and five times, and more than five times in 2000–2012.

Agricultural areas were excluded from this analysis, as crop plants and their

phenology are not directly affected by fire because sowing takes place after

burning.

The differentiation into fire frequency classes reveals that frequent fires tend to

delay the multiannual average start of season. This effect is stronger in grasslands

and open woodlands/shrublands than in the tree dominated closed woodlands, and it

Fig. 10.9 Multi-annual (2001–2013) mean of phenological metrics differentiated by land cover

type and fire frequency. (a) SOS, (b) RIN, (c) MAX, (d) LIN. Only pure MODIS pixels that

contain at least 80 % of one single land cover type are considered. Boxplot elements are described

in Fig. 10.8

216 U. Gessner et al.



is not observable in forests (Fig. 10.9a). The increase in greenness (Fig. 10.9b)

decelerates in forests at high fire frequencies, while no significant effect could be

observed in closed woodlands and grasslands. For open woodlands/shrublands in

contrast, higher fire frequencies are associated with an accelerating increase in

greenness. The seasonal maxima of EVI (Fig. 10.9c) generally rise with increasing

fire frequencies, except for grasslands where intermediate fire frequencies lead to

highest seasonal EVI maxima. There is no observable, significant effect of fire

frequency on the EVI integral in forests while in the other semi-natural land cover

classes, the integrated EVI is significantly smaller at high fire frequencies when

compared to medium and low fire frequencies (Fig. 10.9d).

10.5.3 Effects of Fire Events on Phenological
Characteristics

The direct, short-term effects of fire events on the phenology of the subsequent

growing season are presented in Fig. 10.10. In this plot, land cover types and fire

frequency classes are further differentiated into seasons with and without previous

fire. As we are considering annual phenologies in this analysis, it needs to be

assumed that fire effects on phenology are overlaid by rainfall effects in years of

extraordinarily high and low precipitation. Therefore, only years with close to

average rainfall amounts were considered here. Annual rainfall sums were assessed

based on precipitation datasets of the Global Precipitation Climatology Centre

(GPCC, Schneider et al. 2011a, b). Only those years that had experienced an annual

rainfall within a range of one standard deviation around the multi-annual (2001–

2013) mean were selected. The forest class could not be accounted for in this

analysis due to its small areal coverage that resulted in too few data points within

the once more subdivided and reduced groups.

In grasslands and open woodlands/shrublands the start of season (Fig. 10.10, first

column) is observed slightly earlier (up to 8 days) when fire has occurred previously

while for the more tree dominated closed woodlands this effect is not significant.

For all considered classes, the average increase in greenness (Fig. 10.10, second

column) is accelerated in growing seasons with previous fires. This effect is

strongest in grasslands and closed woodlands with medium to low fire frequency.

Similar patterns are found for the average maximum EVI (Fig. 10.10, third column)

which is slightly higher in the growing seasons after burnings except for open

woodlands/shrublands with high fire frequencies. The integral of growing season

EVI (Fig. 10.10, fourth column) is weakly affected by previous fire occurrences

with a tendency towards increased values after burnings in grasslands and open

woodlands/shrublands. In closed woodlands, a significant effect could only be

found at high fire frequencies where fires tend to lower the next year EVI integral.
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10.6 Discussion and Conclusions

This study analyzed the influence of fire, land use, and vegetation structure on

phenological patterns in a savanna region in southern Burkina Faso. For a 13-year

period (2000–2012), the spatio-temporal patterns of land surface phenology were

delineated from phenological metrics based on time series of MODIS EVI data.

Multi-temporal Landsat data (1986–2013) was used for assessing current and

historic land use patterns and vegetation structure. Time series of the MODIS

burned area product were analyzed for identifying annual fire patterns and for

assessing multi-annual spatio-temporal patterns of fire frequency.

The fire frequency in the study region was found to increase with the proportion

of herbaceous components in savanna land cover types (Fig. 10.5). This finding is in

agreement with other studies in West Africa and can be related to fine fuels from

dry grasses that contribute to elevated fire frequencies, whereas leaf litter in tree

dominated land cover types shows lower ignitability (e.g. Devineau et al. 2010;

Hennenberg et al. 2006). Burned areas were hardly observed for agricultural fields

even though these areas are known to be, at least to some extent, subject to fires as

burning is used e.g. for clearing fields (Wardell et al. 2004).

A reason for this probable underestimation could be the fact that agricultural

burnings usually occur on single fields that are too small for being detected as burnt

areas at a spatial resolution of 500 m (Devineau et al. 2010). Moreover, a general

dependency of land surface phenological metrics on vegetation structure was found

in the presented study (Fig. 10.8). The shift towards an earlier start of season with

increasing tree proportions can be explained by the fact that deciduous tree species

in West Africa frequently start sprouting before the first rains (Bie et al. 1998) while

grass development is restricted to the rainy season. The larger growing season

integral of EVI in tree- and shrub-dominated land cover types can serve as an

indicator for higher seasonal vegetation productivity in these areas, in dependence

on what has been found in other studies for NDVI (cf. Budde et al. 2004; Lo Seen

Chong et al. 1993). Similarly, the integrated EVI indicates that productivity is

higher on agricultural areas that have been cleared since 2001 (center of the study

area) than for areas that had been already cultivated in the mid-1980s (northeast of

the study area).

Moreover, the presented analyses reveal certain effects of fire on phenological

patterns. These can be subdivided into effects of long-term fire frequency, and into

direct, short-term effects of fire events on the subsequent growing season. Here,

several interesting aspects arise, e.g. in the context of the delayed start of season in

grasslands and open woodlands/shrublands with increasing fire frequencies

(Fig. 10.9a). At the first view, there seems to be a contradiction when comparing

this long-term effect to the observed direct, short-term effect which implies that the

start of season tends to be earlier in years of previous fire than in years without

previous fire (Fig. 10.10). However, we assume that these findings can be explained

by two separate effects. There might be a general shift in species composition with

differing green-up phenologies due to long-term fire frequency on the one hand. For
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example Sawadogo et al. (2005) found in the Sudanian Savanna that frequent fires

result in a long-term increase of annual and a long-term decrease of perennial

grasses. On the other hand, as a direct, short-term effect, an enhanced sprouting of

grasses can be assumed when the dry grass biomass of the previous growing season

has been removed by fire. Reasons could be that a large detritus component on

unburnt sites usually reduces light for emerging shoots, and alleviates tillering

(Knapp and Seastedt 2014). However, the litter component on unburnt sites could

also reduce bare soil evaporation which could, in a semi-arid environment, lead to

an enhanced grass development. For a reliable understanding and interpretation of

these findings, further research is needed that includes in-situ assessments in

addition to remote sensing analyses and puts an additional focus on soil moisture.

Another interesting aspect is the observation that the average maximum EVI

broadly increases with increasing fire frequency (Fig. 10.9c), while the integral of

growing season EVI decreases (Fig. 10.9d). This shows that the peak of vegetation

activity during the growing season tends to be more pronounced in areas of high fire

frequency but, at the same time, the overall productivity, as indicated by the EVI

integral, tends to be smaller. It can thus be concluded that investigating vegetation

productivity based on single snapshots that are for example only covering the peak

of the growing season, will lead to different results than when analyzing continuous

time series of vegetation development.

This study allowed the detection of interrelationships between land surface

phenology, land use, vegetation structure and fire in a typical West African

Sudanian Savanna, based on remotely sensed time series of vegetation indices

and burned area information as well as on multi-date land use/cover data. The

spatial and temporal resolutions of land surface phenology and burned area time

series were sufficient for delineating a number of relationships; however some of

the observed tendencies were not statistically significant. Remotely sensed time

series of higher spatial and temporal resolution might improve the validity of the

analyses here. The use of near to daily time series of vegetation indices, for example

from MODIS or from the upcoming Sentinel-3, might be a suitable option for

increasing the temporal resolution. A simultaneously increased spatial resolution is

a challenge that might be solved by advanced fusion techniques of daily medium

resolution time series and high resolution acquisitions that cover only few dates per

month (e.g. from Landsat or Sentinel-2). Furthermore, the additional consideration

of moisture and its potential forcing on land surface phenology is likely to contrib-

ute to a better explanation of the interrelationships between fire occurrence, land

use/cover and land surface phenology. Another variable that could be included in

future studies is fire intensity as its influence on savanna vegetation is assumed to

even exceed the influence of frequency (Ryan 2009). Furthermore, the combined

analysis of land surface phenology based on remote sensing time series with plant

phenology based on in-situ assessments is of great potential for further improving

current phenological studies. Here, a major challenge will be to link remotely

sensed phenological metrics with biological events observed in the field (Knauer

et al. 2014).
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Chapter 11

Assessing Rainfall-EVI Relationships
in the Okavango Catchment Employing
MODIS Time Series Data and Distributed
Lag Models

Thomas Udelhoven, Marion Stellmes, and Achim R€oder

Abstract Aboveground net primary productivity (ANPP) is limited by water

availability especially in dry and desert regions, and many studies have linked

ANPP to current and previous “effective” rainfall events. In this study a distributed

lag model (DLM) was used to assess the impact of current and previous 16 day

rainfall anomalies on the Enhanced Vegetation Index (EVI) as a proxy for ANPP in

the Okavango catchment (South Africa). The two important aspects in using DLMs

are the explained total ANPP variability by the rainfall regime and the duration of

that dependency. The results indicate that more than 50 % of the Okavango Basin

are sensitive towards current and previous rainfall anomalies. These regions are

mainly restricted to the southern semi-arid parts of the catchment, whereas in the

humid and sub-humid northern areas significant correlations were observed only

locally. Here, the dominant land cover classes are shrub- and grassland, thornbush

savannahs and mixed woodlands. The duration of significant rainfall-EVI depen-

dencies ranges from concurrent anomalies to a time-shift of 3.5 months. A logistic

regression model was applied to discriminate among the sensitive and non-sensitive

areas in the basin in terms of possible physiogeographic covariates. The model was

able to correctly classify ~80 % of the available pixels. Most relevant explanatory

covariates were evaporation, elevation and land cover.
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11.1 Introduction

Vegetation strongly affects the characteristics of the Earth surface as it determines

the exchange processes of energy and water between surface and the atmosphere.

Water availability, and thus rainfall, is the main abiotic factor limiting plant

production in many regions of the world. Although natural vegetation has devel-

oped a great capacity of physiological adaptation and resistance to long droughts

and soil moisture below the theoretical wilting points (Kosmas 1999), precipitation

is considered the primary limiting factor for plant growth in semi-humid and semi-

arid areas (Wang et al. 2001, 2003; Karabulut 2003; Boer and Puigdefábregas

2003). Thus, especially in water-limited ecosystems significant positive correla-

tions between the inter-annual variation of precipitation amount and aboveground

net primary productivity (ANPP) have been found in many studies across a range of

sites (Sala et al. 1988; Nicholson et al. 1990; Herrmann et al. 2005; Paruelo and

Lauenroth 1995; Oesterheld et al. 2001; Udelhoven et al. 2008; Gessner et al. 2013;

Peng et al. 2013).

There are several covariates that may affect the ANPP-rainfall relationship in

semi-arid areas, with land cover being among the most important ones (Camberlin

et al. 2007). For instance, south of the Sahara open grassland and cropland areas

were found to be more sensitive towards the rainfall regime than woodlands and

forest, while soil properties and soil types were only of minor importance. Tem-

perature is an additional factor that affects ANPP (Balaghi et al. 2008). However,

Udelhoven et al. (2008) found in the semi-arid regions of Spain that current and

previous temperature anomalies have a smaller impact than rainfall anomalies.

Many studies also suggest that the correlation between rainfall and ANPP is

strongly determined by the degree of aggregation of the variables in the time

dimension (Wang et al. 2003) and that biomass may lag behind rainfall by several

weeks or months (Gessner et al. 2013). Consequently, in semi-arid environments

vegetation greenness is more strongly correlated with soil moisture, which is

determined by previous accumulated rainfall events, than with instantaneous rain-

fall (Herrmann et al. 2005).

The functional relation between monthly or annually aggregated biomass and

rainfall data was found to be either log-linear (Davenport and Nicholson 1993), or

linear (Wang et al. 2003; Evans and Geerken 2004). The establishment of such

relationships has implications for modelling crop yield and analysing primary

productivity in semi-arid regions (Gurgel and Ferreira 2003). Furthermore, knowl-

edge about the vulnerability of a region toward climatic variability is useful in

establishing early warning systems, to distinguish between climatic or human

induced changes in surface conditions, and in decision support that addresses the

exploitation of water resources by competing users.

Rainfall triggers a cascade of ecosystem responses that affects net primary

productivity and soil respiration (Thomey et al. 2011; Parton et al. 2012), carbon

fluxes (Huxman et al. 2004), plant aboveground net primary productivity

(Li et al. 2013) and water use efficiency (Gao et al. 2011). According to Huxman
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et al. (2004) discrete precipitation pulses are the main factor for biological activities

in North America’s dry regions. Important covariates for primary production are

soil physical properties, plant evapotranspiration, root zone soil moisture, vegeta-

tion type, surface temperature, irrigation activity and microclimate (Cihlar

et al. 1991; Schultz and Halpert 1993; Kawabata et al. 2000; Li et al. 2013).

The efficiency of carbon assimilation of plants and how of producing biomass or

grain yield after consuming water is described at plot scale by the concept of the

water use efficiency (WUE), which reflects the balance between the production of

biomass (kg of biomass produced or moles of CO2 assimilated) and consumed

water (m3 of water used or moles of water transpired) (Tomás et al. 2013). The

WUE can be measured at different spatial scales, from the leaf level

(WUEinstantaneous) to the crop level (WUEyield or ‘water productivity’) (Tambussi

et al. 2007), or at different temporal scales from the instantaneous exchange of

water vapour for carbon dioxide to the biomass accumulation at monthly scales

(Tomás et al. 2013). At regional level the rain-use efficiency (RUE), which is

defined as the ratio between vegetation productivity and annual precipitation, has

been established as a measure to assess land condition (Le Houérou 1984; Fensholt

and Rasmussen 2011). The rain-use efficiency concept allows identifying non-

rainfall impacts on vegetation cover. It is based on the observation that RUE is

stable over time and, thus, spatio-temporal changes in RUE reflect non-rainfall

impacts on the biosphere, such as land degradation (Prince et al. 1998). Thus, one

advantage of the RUE concept is that it has the potential to distinguish between

human-induced and climatic (e.g. rainfall) triggered changes in vegetation cover.

The drawback is that it relies on temporally aggregated (annual) rainfall data and

thus, the direct or delayed impact of rainfall events on the ANPP cannot be directly

analysed with this concept.

A variety of modelling concepts exists to describe the primary productivity

response to rainfall in dry regions on different spatial and temporal scales. The

Westoby-Bridges pulse-reserve hypothesis (Noy-Meir I 1973; Ogle and Reynolds

2004) addresses the response of various plant functional types (FTs, primarily

annual plants) to pulses of precipitation and states that a rain event can trigger a

production response (i.e. germination or growth) if a certain threshold is reached,

such that the rainfall event becomes ‘biologically important’ or ‘effective’ (Ogle
and Reynolds 2004). A significant rainfall event interacts with a plant’s water-use
patterns of utilizing soil moisture pulses at particular infiltration depths or durations

(Zhao and Liu 2011). For instance, Li et al. (2013) found that in a desert ecosystem

in China a threshold of a rainfall event of at least 5 mm is required to become

ecologically significant. Robertson et al. (2009) and Peng et al. (2013) demon-

strated for semi-arid grasslands that the effect of rainfall is different in the growing

season, where precipitation affects ANPP directly, and the non-growing season,

were precipitation only has an indirect lagged effect through an increase of soil

moisture. In contrast, for temporally aggregated rainfall data an upper threshold

seems to exist to which a significant relationships between ANPP and rainfall

exists. For East Africa, Davenport and Nicholson (1993) found the rainfall thresh-

old to be approximately 1,000 mm/year. Above this threshold other external factors,
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such as nutrient availability, dominate over rainfall effects, or the soil is water

saturated for most time in the year so that water scarcity does not provide a

dominant limitation for vegetation growth.

A drawback of the pulse-reserve hypothesis is that it does not assess the impact

of potential delayed responses of vegetation to rainfall, and it does not account for

explicit precipitation thresholds (Li et al. 2013). Furthermore, the pulse-reserve

model was not developed for regional rainfall-biomass assessment. Ogle and

Reynolds (2004) suggest the threshold-delay (T-D) model to overcome some of

the limitations of the two-layer and pulse-reserve hypotheses. The T-D model uses

six key parameters and integrates the ideas of resource partitioning, precipitation

thresholds, and different plant FT strategies and responses, as well as potential

delays in these responses. One limitation of this model is its difficulty to scale up

from individual sites to the regional scale (Li et al. 2013).

With remote sensing techniques it is possible to obtain information about the

impact of different rainfall regimes on the biosphere at different scales and to study

interannual and seasonal changes in vegetation characteristics. The aim of this

study is to analyse the effect of biweekly aggregated rainfall anomalies on ANPP

at the regional scale for the Okavango Basin in Southern Africa. The area represents

a highly complex socio-ecological system, where the variation in physiogeographic

characteristics is reflected by different livelihood strategies. Besides locally impor-

tant revenues from tourism and the beginning establishment of irrigation schemes,

the majority of the population directly depend on ecosystem goods and services

supplied from forest and savannah ecosystems, and on subsistence agriculture that

is often practiced in a traditional slash and burn strategy (R€oder et al. 2013). In this
context, understanding responses to variation in rainfall event size and frequency

will aid to distinguish between human and climatic induced changes in dry eco-

systems and to assess how these ecosystems may change under future scenarios of

more extreme precipitation regimes. To this end, a quantitative link between time-

series of 16-day rainfall and Moderate Resolution Spectroradiometer (MODIS) data

was established using a distributed lag model (DLM), with the goal of identifying

regions that are sensitive towards current and previous rainfall anomalies. The

identified regions were further analysed in relation to physio-geographical data

such as dominant land cover terrain morphology and actual evaporation (aET).

11.2 Material and Methods

11.2.1 Study Area

The Okavango catchment (Fig. 11.1) is located in Southern Africa within the three

countries Angola, Namibia and Botswana. The three prevalent landscape types

comprise the Angolan highlands in the north, were altitudes of 1,600–1,800 m a.s.l.

are reached, the lowlands of the Kalahari in the south-east and the inner Okavango
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Fig. 11.1 Land cover map derived from 16-day MODIS EVI time series covering the observation

period 2000–2011. Dominant land cover classes were produced by an unsupervised classification

approach which was based on phenology metrics (Stellmes et al. 2013)
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Delta in Botswana, which constitutes an indistinctive depression confined within

extensions of the East African Rift Valley system (Wehberg and Weinzierl 2013;

Weber 2013). The humid Angolan highlands receive an annual rainfall amount of

up to 1,400 mm. The conditions change from semi-humid in the north of the

Okavango catchment to semi-arid (<500 mm precipitation) in the south. Rainfall

occurs mainly in the period from December to February.

The annual mean temperature is about 18 �C in the extreme northwest of the

catchment and increases towards the south and achieves 24 �C in the Okavango

Delta. Accordingly, potential evapotranspiration shows a similar trend und reaches

highest rates during the summer (Weber 2013).

Figure 11.1 shows the dominant land cover classes in the Okavango catchment

(Stellmes et al. 2013). The upper semi-humid catchment in the north is mostly

covered by Miombo forests. These woodlands are traversed by river valleys feeding

the tributaries of the Okavango River, which are dominated by open grasslands

accompanied by dwarf shrubs. The middle reaches of the Okavango River are

characterized by extensive woodlands on Kalahari sand. The Okavango Delta

area is surrounded by mixed woodlands on the eastern side (including Terminalia

and Mopane) while thornbush savannah represents the main vegetation type on the

western side (Stellmes et al. 2013).

11.2.2 Data

11.2.2.1 Enhanced Vegetation Index (EVI)

The aim of this study is to analyse and compare the response of ANPP to precip-

itation anomalies based on 16-dayMODIS and rainfall time series for the study area

in the Okavango catchment. In Earth observation based assessments of the ANPP

usually index based surrogates of greenness or photosynthetic capacity of the

vegetation are used. We used 16-day-composites of the Enhanced Vegetation

Index (EVI) from the MODIS-Terra Vegetation Index (VI) product (MOD13Q1,

Collection 5) as proxy for the ANPP, covering the time period from July 2000 to

June 2010 at a pixel resolution of 250 m by 250 m. The EVI is computed as follows:

EVI ¼ G
ρNIR � ρred

ρNIR þ C1 � ρred � C2 � ρblue þ L
ð11:1Þ

Where ρ are atmospherically corrected or partially corrected (Rayleigh and

ozone absorption) reflectance, L is the canopy background adjustment that

addresses non-linear, differential near-infrared (NIR) and red radiant transfer

through a canopy, C1 and C2 are coefficients related to aerosol correction and G

is a gain factor. The blue band is used to remove residual atmosphere contamination

caused by smoke and sub-pixel thin cloud. The EVI is reported to be sensitive to
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canopy structural variations, including canopy architecture and type, leaf area index

(LAI), and plant physiognomy (Huete et al. 2002, 2006).

11.2.2.2 Precipitation and Actual Evaporation

Daily precipitation amounts were derived from the 3B42 (daily) product (Huffman

et al. 2007). The data were provided by the NASA/Goddard Space Flight Center’s
Mesoscale Atmospheric Processes Laboratory and Precipitation Processing System

(PPS), which develop and compute the multi-sensor precipitation data as a contri-

bution to NASA’s Tropical Rain Measurement Mission (TRMM). This mission

provides comprehensive precipitation estimates and latent heating between 35�N
and 35�S on a 0.25�� 0.25� grid. These data were resampled according to the

temporal and spatial resolution of the MODIS EVI data. Gridded daily actual

evaporation data was provided by the Climate Service Center, Helmholtz-Zentrum

Geesthacht, Germany, and has been computed in a spatial resolution of 25 km �
25 km with the Regional Climate Model REMO (Jacob 2001) forced with the

Global Circulation Model ECHAM for the domain of longitude 8�–32�, latitude
10�–27� and covering the period from 2000 to 2010, corresponding to the EVI time

series.

Both, the precipitation as well as the actual evaporation data were aggregated

corresponding to the 16-day EVI composites. The pixel size was resampled to

250 m using the nearest neighbor method to retain the MODIS resolution and

hereby, reflect the landscape heterogeneity.

11.2.3 Methods

11.2.3.1 Data Pre-processing

Many studies have demonstrated that ecosystems in drylands have a “memory” of

past precipitation events, which can last several weeks or months (Li et al. 2013;

Schwinning et al. 2004; Udelhoven et al. 2008). Distributed lag models (DLM) are

powerful statistical tools to assess such lagged effects between two or more time

series (Wei 1990) and, thus, to analyse the impact of current and previous rainfall

events on ANPP. The DLM used in this study was applied to regress seasonal

rainfall anomalies on EVI anomalies, including time-lagged effects. A seasonal

EVI anomaly is computed as

EVIdiff ið Þ ¼ EVIi � EVImean ið Þ ð11:2Þ

Where EVIdiff(i) denotes an anomaly in season i, EVImean(i) is the long-term mean

in season i and EVIi is the actual EVI in season i from a de-trended time series.

Rainfall anomalies are computed in the same way. EVI anomalies can be caused

either by a drought period (negative anomaly) or by above average rainfall events in
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a 16 day period (positive anomaly). Before applying Eq. 11.2 the series were

de-trended for an unbiased estimation of the seasonal means. Figure 11.2 presents

one example for an EVI time series and the related EVI anomalies.

11.2.3.2 Distributed Lag Models (DLM)

A distributed lag model (DLM) constitutes a multivariate statistical regression

model for equidistant time series data in which current values of a dependent

variable are predicted based on both the current values of an explanatory variable

and lagged values of this explanatory variable. The DLM that was used in this study

was used to model 16-day anomalies in the EVI in terms of current and previous

rainfalls anomalies and takes on the general form

EVIt ¼ aþ
Xi¼max

i¼0

βirainfallt�i þ ε; ð11:3Þ

where EVI and rainfall represent a seasonal (16-day) anomaly time series, β denotes
the impulse response weight vectors and describes the weights assigned to past

rainfall data values. The εt are the model errors and α is the constant term. The

model order i addresses the number of lagged versions of the rainfall data. One lag

corresponds to a time lag of 16 days. We considered a maximum lag of seven,

corresponding to a maximal previous time shift of 3.5 months.

The 16-day anomalies still suffer from of temporal autocorrelation, which gives

rise to some statistical problems if usual ordinary least-square (OLS) parameter

estimation is used to solve Eq. 11.3. This leads to inappropriate assumptions of

Fig. 11.2 Ten-year MODIS EVI time series and corresponding anomalies
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independent error terms, inflating standard errors of the parameters, and the ten-

dency to overestimate the R2 statistics due to the phenomenon of spurious correla-

tion of two series, which might actually be unrelated to each other (Wei 1990;

Chatfield 2004).

To remove serial autocorrelation and to achieve (weak) stationary conditions for

OLS-regression analysis, the anomalies need to be pre-whitened. This can be

achieved by temporal aggregation of the data unless autocorrelation fades away

or by fitting a suitable autoregressive moving average (ARMA) model to the data

and to keep the residuals. For DLM models, Liu and Hanssens (1982) and

Shumway and Stoffer (2000) suggest to replace OLS-regression by an iterative

generalized least square (GLS) approach for consistent and efficient parameter

estimation in case of serial autocorrelation (Fig. 11.3). In a first step the two

Fig. 11.3 Generalized least square parameter estimation for DLM in case of serial autocorrelation

(Modified after Shumway and Stoffer 2000), where y and x are two time series, u denotes the

autocorrelated error term, ρ denotes the vector of autoregressive parameters, θ the vector of

moving average parameters, B is the backshift operator, β is the final vector of regression

coefficients. Alternatively, any moving average component can be substituted by a higher order

AR-model using the stepwise autoregression algorithm (Granger and Newbold 1986)
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(autocorrelated) anomaly series are regressed to each other using standard OLS-

parameter estimation, which typically results in autocorrelated model errors. Then a

suitable ARMA model is fitted to these residuals. Alternatively, the stepwise

autoregression algorithm proposed by Granger and Newbold (1986), that fits AR

(p)-models of increasing order to these errors until the residual become white-noise,

can be applied (Udelhoven et al. 2008). The two original rainfall and EVI anomaly

series are then filtered using the identified AR- (or ARMA-) model and again

regressed against each other using OLS- regression. The process is repeated until

approximate confidence bounds for a white-noise process are achieved for the

model residuals (Box et al. 1994), which is usually achieved already after the first

iteration. According to Shumway and Stoffer (2000), the procedure converges

toward the maximum likelihood solution under normality of the errors. The proce-

dure is robust and easy to automate for big data archives.

Equation 11.3 was solved for each corresponding EVI and rainfall series and

related F- and t-statistics were computed for the total model and for each (lagged)

regression coefficient. A significant test statistic in a certain region indicates a

significant impact of current or previous seasonal rainfall anomalies on EVI

(or ANPP). To discuss identified vulnerable regions in the context of potential

external covariates (such as climate conditions), logistic regression analysis was

applied.

11.3 Results and Discussion

11.3.1 The General Significant Rainfall-ANPP Relationship
in the Okavango Catchment

Figure 11.4 shows the mean annual rainfall and evapotranspiration maps for the

Okavango catchment. A distinct rainfall gradient exists with high precipitation

values in the north in the humid Angolan highlands with up to 1,400 mm, and

low values (<500 mm) in the south in the lowlands of the Kalahari and the

Okavango Delta. Corresponding evaporation values show an opposite spatial

trend, being highest in the fringe of Kalahari Desert and the Okavango Delta in

the south.

Figure 11.5 shows pairwise scatterplots of climate and additional spatial

covariates. Mean annual rainfall is highly negatively correlated with actual

evaporation. This demonstrates that in dry regions actual evaporation is mainly

determined by available rainwater. The mean annual EVI shows the highest corre-

lation with rainfall (positive relationship) and actual evaporation (negative rela-

tionship). Temperature is positively correlated with elevation and negatively with

actual evaporation. The latter results from the fact that available rainwater is limited

in semi-arid regions. Between rainfall and elevation a highly non-linear relationship

can be observed which results from the difference of a mean annual rainfall gradient
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being north to south orientated and a northwest to southeast gradient of elevation,

with lowest altitudes occurring in the delta regions of the Okavango.

Figure 11.6 (right) illustrates the overall F-statistic of the DLM model which

indicates whether an EVI pixel is vulnerable towards current and previous rainfall

anomalies at the 5 % significance level. The respective multiple coefficient of the

model (R2) is shown in Fig. 11.6 (left). The F-statistic clearly suggests that large

areas in the Okavango catchment are sensitive towards the rainfall regime, with

responses of ANPP contingent on seasonal (16-day) levels. Sensitive areas are

mainly located in the semi-arid southern region and they show a spatial structure

that is similar to the rainfall gradient in Fig. 11.4. The R2 values of the DLMs vary

between 0.3 and 0.5 in these areas. Thus, although regionally up to 50 % of the

variability in EVI anomalies can be explained by the rainfall regime, there remains

an unexplained variability in ANPP that is attributed to noise and additional spatial

covariates. According to Thiam (2003) additional possible determinants for varia-

tions in ANPP are factors such as deforestation, soil type, overgrazing, and agri-

cultural land-use.

The Okvanango Delta is covered with seasonally flooded grasslands and

reedbeds and does not show significant rainfall-EVI relationships. Here, soil

water is not a limiting factor and according to Wehberg and Weinzierl (2013)

two-thirds of the total area are seasonally inundated swamp (around 9,000 km2) or

permanently flooded.

Fig. 11.4 Maps of mean annual rainfall and potential evapotranspiration in the Okavango

catchment
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Significant areas in Fig. 11.6 represent potential climate-sensitive systems as the

dependency of ANPP on rainfall conditions is high; in these regions, an increased

high inter-annual or intra-annual rainfall variability is expected to go along with a

high variability in ANPP. Climate change is likely to impose further variability on

rainfall conditions in Africa. Even now, rainfed agriculture, upon which livelihoods

of the majority of residents in the semi-arid regions in Africa are depending, is

highly challenging, and climate change is expected to further reduce the length of

the growing season, extend dry spells during the wet season and introduce higher

variability in precipitation (Boko et al. 2007).

To discuss the identified significant vulnerable regions in the context of possible

covariates a supervised classification was carried out using logistic regression to

discriminate among the significant and non-significant pixels, according to the

overall F-test (α¼ 0.01) of the DLM. To this end 1,000 pixels each were randomly

Fig. 11.5 Pairwise scatterplots of external variables (mean annual temperature, mean annual

potential evapotranspiration, mean annual rainfall, aspect, slope, and elevation)
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selected from the sensitive and non-sensitive regions. Further 1,000 pixels from

each class were used for model validation. As independent variables mean annual

precipitation, temperature, evapotranspiration, slope, aspect, elevation (derived

from Shuttle Radar Topography Mission (SRTM3) data courtesy of NASA) and

land cover (see Fig. 11.1) were used as explanatory variables. The categorical land

cover information was included as dummy-variable in the model. Table 11.1 shows

the significant model coefficients and the result of the classification. From the

calibration data set 81.05 % of all pixels were correctly classified as sensitive or

non-sensitive. The total accuracy in the validation data set is 78.21 %, respectively.

The results suggest that among the external variables aET, elevation and tem-

perature have a high significant prediction capacity to distinguish sensitive from

insensitive regions. Annual rainfall was not found to be significant, as it is highly

correlated with aET (compare Fig. 11.5). Also the effects of slope and aspect did

not significantly contribute to a separation of sensitive and non-sensitive areas. The

sign of the b-coefficients of evaporation is positive and negative for elevation,

indicating a contrary influence of those variables. The odd ratios of aET and

elevation show a similar pattern. A value greater than one indicates that as pET

increases, the odds of a region being sensitive increases, too. Here, it should be

remarked that actual ET is recorded with negative sign. Thus, low aET values

appear “bigger” (small negative number) than high aET values (large negative

number). Significant areas are thus located predominately in the low lands with

Fig. 11.6 Overall significance of the DLM (F-test, α¼ 1 %) (right) and multiple R of the model

(left)
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small aET levels and lower amounts of average precipitation. The positive sign of

the variable mean annual temperature is reverse to the sign of aET, which was not

expected due to the positive correlation of both variables (compare Fig. 11.5). It is

interpreted as a significant statistical interaction effect between temperature

and aET.

The indicator variables for land cover have a slightly different interpretation as

for quantitative predictor variables. Since the land cover classes were coded as

dummy variables, here the b-coefficients represent differences in the sensitivity of a

particular land cover class compared to a reference class, here M1 (Miombo-Forest).

For instance, woodland-class K1versus the reference class changes the log odds of

being sensitive towards the rainfall regime by 4.06, which is highly significant.

Although the high significance of these partial offsets might be also affected by

Table 11.1 Results from logistic regression to distinguish sensitive and non-sensitive regions

(corresponding to significant EVI-rainfall relations (α¼ 1 %) from DLM)

B SE(B)

95 % CI for odds ratio

Lower Odds ratio Upper

(Intercept) 368.83*** 72.26

Evap 0.16*** 0.02 1.12 1.18 1.23

Temp �1.20*** 0.23 0.02 0.29 0.47

Elevation �0.01*** 0.01 0.99 0.99 1.00

Land cover

M2 1.02 0.49

M3 0.85 0.53

K1 4.06*** 0.62

K2 3.64*** 0.51

K3 2.28*** 0.46

K4 3.89*** 0.55

O1 4.63*** 0.74

O2 1.86*** 0.51

T1 3.59*** 0.76

T2 4.05*** 0.64

T3 3.71*** 0.60

T4 4.33*** 0.86

S1 1.78*** 0.46

S2 2.82*** 0.46

G1 1.97* 0.80

G2 1.71** 0.62

G3 2.63*** 0.51

W1 0.45 0.55

W2 2.35*** 0.54

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
Note. R2¼ 0.428 (Hosmer and Lemeshow), R2¼ 0.447 (Cox and Snell), R2¼ 0.597 (Nagelkerke)

Total accuracy in the calibration data set (n¼ 1,000 pixels): 81.05 %

Total accuracy in the validation data set (n¼ 1,000 pixels): 78.21 %
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the large sample size in the regression, which was necessary to capture the spatial

heterogeneity in the study area, it nevertheless demonstrates that different plant

communities show distinct individual responses to the rainfall regime

(Li et al. 2013). The Miombo forest classes (M1, M2, and M3) are less sensitive.

They are mainly located in the north and are associated with grasslands found in the

valleys, forming the forest grassland ecotone. The plant root system of the Miombo

tree species has easier access to the deeper soil water resources, such that single

rainfall pulses have a lesser chance to become “effective”.

According to the analysis, more sensitive classes are represented by the wood-

lands (classes K and O), thornbush savannah (classes T) and shrub and grassland

(classes S and G) units in the semi-arid regions of the south. In the wetland

categories, wet grasslands and peatlands (W2) have a significant partial intercept.

This class is predominant in the Okavango Delta, which does otherwise not show

any significant rainfall-EVI relationships. The Okavango Panhandle and Delta form

a special ecosystem, where land cover is dominated by seasonally flooded grass-

lands and reedbeds (class W1) and is thus governed rather by inundation than by the

amount of rainfall. The reason for the significance of W2 is probably a mixed pixel

effect with neighbouring shrub and grassland areas which are associated with W2

(compare Fig. 11.1).

Figure 11.7 further differentiates characteristics of the sensitive areas within the

individual land cover classes by showing the percentage of significant pixels in each

class and considering the different lags in the model. This supports the results from

the logistic regression models, whereupon shrub- and grasslands but also wood-

lands and thorn savannahs are highly sensitive towards rainfall anomalies. In these

classes more than 80 % of the pixels are sensitive, whereas in the Miombo forests

this contribution is only between eight (8 %, M1) and 30 % (M2). Between 40 %

and 65 % of grass- and shrubland regions (classes S and G) are sensitive in the

Okavango catchment. Although partial offsets of these classes are significant, the

Fig. 11.7 Occurrence of significance DLM results in different land cover classes for different lags
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coefficients in the logistic regression Table 11.1 are smaller compared to those of

woodlands and thornbush savannahs.

11.3.2 Temporal Rainfall-ANPP Relationships
at Specific Lags

Figure 11.8 depicts the percentage of significant pixels from the DLM for increas-

ing lags considering two significance levels (1 % and 5 %). On the 1 % significance

level 50 % of the area in the Okavango catchment shows significant sensitivity

towards current rainfall anomalies. After a 1.5 month delay (lag 3) this percentage

drops to almost half of the available pixels (25 %). Only 3 % of all pixels are

sensitive after a lag of 2.5 months (lag 5) and 0.2 % at a lag of 3.5 months (lag 6).

On the 5 % significance level, the percentages of significant pixels is slightly

higher, ranging from 61 % at lag 0–0.8 % at lag 7, but the general pattern is quite

similar to that on the 1 % level.

Figure 11.9 shows the areas in the Okavango catchment with significant rainfall-

EVI relationships for increasing lags. It illustrates that there are generally no unique

rainfall responses at higher lags. The common pattern rather shows EVI at a given

pixel remaining sensitive from lag zero up to a certain lag, and then the influence of

previously cumulated rainfall events is fading out.

To further analyse this effect, the mean annual rainfall levels in significant pixels

were plotted against the lag (Fig. 11.10).

Both precipitation amounts and standard deviations decrease in regions that

show significant rainfall-EVI relationships at higher lags. Lower precipitation

amounts also bear the risk that periods between two “effective” rainfall events

Fig. 11.8 Percentage of pixels with significant rainfall-EVI relationships at different lags in the

Okavango catchment
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are extended. The impact of an “average” rainfall anomaly remains until the next

“effective” event that triggers another change in the EVI, according to theWestoby-

Bridges pulse-reserve hypothesis. This results in extended significant rainfall-

ANPP relationships. If no other “effective” rainfall occurs during the next months

this anomaly will resist, unless water limited plant stress occurs or a new rainfall

event triggers another EVI anomaly. In a similar way an extended drought period

will negatively affect the ANPP, unless the vegetation recovers after a new biolog-

ically relevant rainfall event. On the other hand, if periods between two effective

cumulated rainfall events are rather short or characterized by a large temporal

variability, then the impact of the cumulated events on the EVI decreases at longer

Fig. 11.9 Significance maps for the modelled rainfall-EVI relationships using a DLM considering

different lags
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lags since the probability of a new rainfall pulse increases over time and the

correlation declines at longer lags. Semi-humid regions, where especially the

roots of forest vegetation are better connected to deeper soil water resources do

not suffer from such a rainfall dependency.

11.4 Conclusion

Aboveground net primary productivity (ANPP) is limited by water availability

especially in dry and desert regions (Li et al. 2013), and many studies have linked

ANPP to current and previous “effective” rainfall events. In this study a distributed

lag model (DLM) was used to assess the impact of previous 16-day accumulated

rainfall anomalies on the Enhanced Vegetation Index (EVI) as proxy for the ANPP.

The two important aspects in using DLMs are the total amount of ANPP variability

that can be explained by the previous rainfall amounts and the duration of the

dependency. Results demonstrate that in the Okavango catchment more than half of

the area is sensitive towards anomalies in precipitation. These areas are mainly

located in the semi-arid regions of the catchment, which correspond to the low lands

in the south. Rainfall anomalies either directly affect ANPP, or the first significant

effect is lagged up to 1 month after the anomaly. The impact of previous cumulated

rainfall events remains significant until the next rainfall anomaly triggers a new

change in ANPP. Consequently, the number of significant lags in the DLM is

negatively correlated with total rainfall amount; a higher aridity entails the risk of

Fig. 11.10 Mean annual rainfall in areas with significant rainfall-EVI relations, for

increasing lags
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longer dry periods between effective rainfall anomalies. Thus, on average rainfall

anomalies in these areas have longer impacts on the vegetation than in regions with

more frequent rainfall. Results further indicate that in dryland ecosystems different

vegetation types have different EVI signals during dry spells and varied rates of

response to the prevalent rainfall regime. This result is not surprising as different

plant functional types can avoid competition, particularly by exploiting soil water

resources during their growing season (Ogle and Reynolds 2004). Most sensitive

land cover classes were shrub- and grassland, thornbush savannah and open

woodlands.

In the semi-humid north of the catchment only locally significant rainfall-ANPP

relationships were found. In these regions the effect of dry periods on vegetation is

buffered through a higher available soil water content and the roots of the dominant

Miombo forests have better access to deeper soil water layers. This reduces the

dependency on former rainfall events.

For the respective populations, this means that livelihood strategies depending

on the identified, most sensitive classes, will face further risks under predicted

changing climate conditions. On the other hand, Miombo forests show a better

buffering capability, which underlines their outstanding importance and makes

their sustainable use a major requirement to land management schemes adapted

to climate change.
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Chapter 12

Land Degradation in South Africa – A
Degradation Index Derived from 10 Years
of Net Primary Production Data

Markus Niklaus, Christina Eisfelder, Ursula Gessner, and Stefan Dech

Abstract Dry regions such as arid southern Africa are strained by unfavourable

climatic conditions. Intensive land use as rangeland and for livestock farming leads

to additional encroachment of these ecosystems. The consequence of this long-time

stress is degradation in terms of loss of the vegetative cover and productivity. Albeit

these are known facts there is still a lack of objectiveness in the long term

assessment of degradation on a larger scale. We present a method of applying

remote sensing time-series in a vegetation model that helps to fill this gap. The

approach is based on time-series of the vegetative productivity computed by our

vegetation model BETHY/DLR (Biosphere Energy Transfer Hydrology Model).

The used data included SPOT-VGT LAI (Leaf area index) and ECMWF meteorol-

ogy time-series for the period of 1999–2010. The trend-analysis of model output

and climatic input results in a new land degradation index (LDI) that distinguishes

between climatic and human-induced reduction of vegetative productivity.

12.1 Introduction

Arid or semi-arid areas are often affected by the process of land degradation, which

is caused by different components from biophysical and socio-economic factors

(Hoffman and Todd 2000). While the degradation of soils is mainly caused by wind

and water erosion as well as soil acidification and salinization due to agricultural
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land use. The degradation of vegetative cover is driven by either human activity as

logging, agriculture, fire or mono-culturing or meteorological factors as the reduc-

tion in precipitation or the variation of temperature. Main factors for the regional

decrease in vegetative productivity include the intense livestock farming (Perkins

and Thomas 1993; Dougill et al. 1999). The assessment of these processes has

already been subject of several scientific investigations especially in African

regions (Abel and Blaikie 1989; Ringrose et al. 1999; Stringer and Reed 2007;

Wessels et al. 2004, 2008; Knauer et al. 2014).

Most of these activities have been carried out either on a regional scale

for particular biomes or for a single snapshot of the state of the vegetation.

The assessment of land degradation on a national to sub-continental scale based

on long term time-series would be an intense benefit, which could be achieved

by using the advancements of modern vegetation models driven by remote

sensing data.

In principle land degradation is correlated with a loss of biological productivity

due to soil erosion, salinization, crusting and loss of soil fertility. Moreover, the

vegetation cover and especially its biodiversity and its density (Le Houérou 1996)

are influenced, what can be intensified by excessive land use. The carbon reservoirs

in biomass and soil are sensitive indicators of degradation and the change in climate

and environmental conditions. Thus, the land biomass was defined as one of the

essential climate variables with high impact on the requirements of the UNFCCC

(United Nations Framework Convention on Climate Change) (GCOS 2003).

Changes on this reservoir cause a crucial feedback on climate and the balance of

greenhouse gases (GTOS 2009). Net primary productivity (NPP), as the exchange

of carbon between vegetation and atmosphere was identified as key variable to

observe the ecological functionality and the lasting degradation processes (CGER

2000).

One way of rating the status of land degradation is to interpret the perception of

land owners or agricultural extension officers. This was done by Hoffman and Todd

(2000) from a survey in the magisterial districts of South Africa. From this they

could elaborate a map showing the incidence of land degradation for the whole

country, with KwaZulu-Natal, Limpopo and the Northern and Eastern Cape being

mostly affected.

Wessels et al. (2008) presented a quantitative method for assessing human

induced land degradation using remote sensing data. The authors tested the local

NPP Scaling (LNS) method, for which the growth season NDVI (Normalized

Difference Vegetation Index) sum (ΣNDVI) is calculated as a substitute for the

vegetative productivity for each pixel. This value is then normalized to the highest

values (90th percentile) of ΣNDVI observed in all pixels within the same Land

Capability Unit (LCU). They concluded that the LNS method is a valuable tool for

mapping land degradation at a regional scale.

Instead of using NDVI sums the productivity of the plants derived from SVAT

(Soil Vegetation Atmosphere Transfer) models can be used to analyze the influ-

ences of environmental circumstances on the photosynthetic reactions of the plants.

The carbon exchange between atmosphere and vegetation is determined at leaf
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level considering the energy and water balance. One model using this principle is

BETHY/DLR (Biosphere Energy Transfer Hydrology Model) operated at the

German Aerospace Center (DLR) (Knorr 1997; Knorr and Heimann 2001a, b;

Wisskirchen 2005; Eisfelder et al. 2012, 2013). Meteorological and remote sensing

based time-series are the drivers to compute the NPP in daily time steps. The

analysis of the resulting time-series of NPP in arid and semi-arid areas is used to

gather information about the process of land degradation. Additional analysis of

climatic input parameters help to distinguish between climatic or human influences

in this process.

12.2 The Study Area of Southern Africa

As region of interest for this study the area of southern Africa was chosen, including

the countries Namibia, South Africa, Lesotho, Swaziland, Botswana, and Zimba-

bwe (see Fig. 12.1). The distribution of the K€oppen-Geiger classification (Kottek

et al. 2006) shows that the western part of the study area is categorized as steppe

(BS) and desert (BW). The dry and hot climate of Namibia extends to Botswana and

southern Zimbabwe and affects wide areas of the southern provinces in Mozam-

bique. Warm-temperate climate zones (type C) can be found at the southern and

southeastern coastal regions of South Africa, as well as at the higher altitudes of

Lesotho and Swaziland in the east.

The classification of the different climates is based on the distribution of sums of

precipitation and mean temperature (Tables 12.1 and 12.2). This climate classifi-

cation from Kottek et al. (2006) is an update of the K€oppen-Geiger classification
(K€oppen 1900; Geiger 1954) using monthly climate observations from meteoro-

logical stations provided by the Climatic Research Unit (CRU) of the University of

East Anglia (Mitchell and Jones 2005) and a monthly precipitation data set pro-

vided by the Global Precipitation Climatology Centre (GPCC) (Beck et al. 2005).

These datasets cover the period 1951–2000.

The climatic conditions of southern Africa can be seen in Fig. 12.2. Long time

means are calculated from datasets of ECMWF (European Center for Medium

Range Weather Forecasts) for the period 1989–2010. The combination of annual

rainfall (Fig. 12.2a) and mean annual temperature (Fig. 12.2b) reflects the distribu-

tion of the K€oppen-Geiger classification. Precipitation rates below 400 mm per year

denote the western part of the region including the deserts Namib and Kalahari

(<200 mm). Further east the precipitation rates increase more than 1,000 mm per

year. The temperature shows a negative gradient from south to north with lowest

temperatures below 10 �C in the higher altitudes of Lesotho and South Africa.

Variations of theses climatic parameters will be used to assess the influence of

climatic changes in the regional processes of land degradation. Thus a differenti-

ation can be inferred whether a decreased vegetative productivity is affected by

climate change or human influence.
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12.3 Method

12.3.1 NPP Time-Series from the Vegetation Model BETHY/
DLR

We use the SVAT model BETHY/DLR to compute time-series of carbon uptake by

vegetation (Knorr 1997; Roeckner et al. 2003). At the German Remote Sensing

Fig. 12.1 K€oppen-Geiger classification of climate types in the study area of southern Africa (For

the description of the legend see Tables 12.1 and 12.2)

Table 12.1 Classification of main climates (A: equatorial, B: arid, C: warm temperate) consid-

ering characteristics of precipitation (m monsoonal, S steppe, W desert, s summer dry, w winter

dry, f fully humid) for the study area following K€oppen and Geiger (K€oppen 1900; Geiger 1954;

Kottek et al. 2006)

Climates Description Criteria

A Equatorial Tmin�+18 �C
Am Monsoonal Pann� 25(100� Pmin)

Aw Savanna Pmin< 60 mm in winter

B Arid Pann< 10Pth

BS Steppe Pann> 5 Pth

BW Desert Pann� 5 Pth

C Warm temperate �3 �C<Tmin<+18 �C
Cs Warm summer dry Ps,min< Pw,min, Pw,max> 3 Ps,min and Ps,min< 40 mm

Cw Warm winter dry Pw,min< Ps,min and Ps,max> 10 Pw,min

Cf Fully humid Neither Cs nor Cw
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Data Center (DFD) of the DLR the model was modified by Wisskirchen (2005) for

the use with time-series of meteorological and remotely sensed input data with

higher resolution of up to 1 km. Now it is driven as BETHY/DLR on regional to

national scales. The model mainly derives the carbon exchange between biosphere

and atmosphere on basis of a photosynthetic parameterization. It also includes the

water balance of the ecosystem considering precipitation, the soil water balance,

uptake by the roots and the evapotranspiration of the plant.

The model needs meteorological and remote sensing based time series data. Air

temperature at 2 m height, precipitation, wind speed at 10 m above ground and

cloud cover are taken from the ECMWF. The daily mean of cloud cover over all

three strata (high, medium and low) are used to calculate the fraction of photosyn-

thetically active radiation (fPAR). The ECMWF provides the required data in a

spatial resolution of 0.25� � 0.25� (interpolated from station measurements) with a

temporal resolution of every 6 h. The datasets are interpolated to time steps of 1 h.

Leaf area index (LAI) and land cover (Global Land Cover, GLC2000) information

are based on SPOT-VGT (Satellite Pour l’Observation de la Terre-Vegetation) and

are used to describe the phenology. Since the model highly relies on LAI we need a

long term, spatio-temporal continuous time-series of this parameter in model

resolution. Here we use the product derived from SPOT-VGT satellite data, pro-

vided by Medias France for the years 1999–2003 and by Vito Belgium from 2004

onwards and reanalyze the data for gap filling using the method of harmonic

analysis (Gessner et al. 2013).

Information on composition, stratification and thickness of the soils and their

distribution are taken from the Harmonized World Soil Database (HWSD). This

Dataset was created by the Food and Agriculture Organization (FAO) in collabo-

ration with IIASA (International Institute for Applied Systems Analysis) (FAO

et al. 2009). This data is aggregated from the digital soil map of the world from

FAO-UNESCO, the European Soil Database (ESDB), the soil map of the Chinese

Academy of Sciences and regional soil and terrain databases.

BETHY/DLR uses a two-flux scheme to approximate the radiation absorption in

the canopy. A combined approach of Farquhar et al. (1980) and Collatz et al. (1992)

describes the photosynthesis. Enzyme kinetics are parameterized on leaf level. For

the special environment of southern Africa it is important to distinguish between C3

and C4 plants. C4 plants have different schemes of photosynthesis being better

Table 12.2 Division of temperature classes for the study area following K€oppen and Geiger

(K€oppen 1900; Geiger 1954; Kottek et al. 2006)

Temperature

classes Description Criteria

a Hot

summer

Mean temperature of warmest month higher than +22 �C

b Warm

summer

Mean temperature of warmest month lower than +22 �C, at least
four months with mean temperature of +10 �C and higher

h Hot arid Mean annual temperature higher than +18 �C
k Cold arid Mean annual temperature lower than +18 �C
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adapted to dry and warm climate. The enzyme kinetics have significantly higher

affinity for CO2 than those of C3 plants. In a second step the photosynthetic rate is

extrapolated from leaf to canopy level, taking into account both the canopy

structure as well as the interaction between soil, atmosphere and vegetation.

Stomatal and canopy conductance, evapotranspiration and soil water balance are

included.

Fig. 12.2 Climatic conditions of the study area derived from time series of the ECMWF

parameters precipitation (a) and temperature (b) calculated from the annual means of the period

1989–2010
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The output is given by time-series of the Gross Primary Productivity (GPP) and

the autotrophic respiration where the NPP can be calculated as the difference of

these two values. The results are computed in daily time steps with the spatial

resolution and projection of the land cover classification (1 km� 1 km, latitude –

longitude projection with WGS84 (World Geodetic System 1984) datum).

12.3.2 NPP Variations from Annual Sums

The results of our SVAT model BETHY/DLR are used to analyze the time-series of

the productivity of the plants for wide areas in the region of southern Africa. From

this, variations caused by natural or anthropogenic influences can be identified. This

can be done by analyzing the development of annual accumulated NPP values over

the period of years 1999/2000–2009/2010. This leads to a variation of productivity

for each individual pixel. To identify influences of climate anomalies this variation

is weighted by variations in time-series of climatic variables (temperature and

rainfall). Hence it can be distinguished if positive or negative variations in vegeta-

tive productivity can be traced back to human activities or variability in climatic

conditions.

In a first step the annual NPP sums for the 11 vegetative periods (99/00 to 09/10)

are calculated. The vegetative periods are defined with the beginning in July (from

Julien day 182) and the end in June of the following year (to 181st day of year).

Figure 12.3 shows the time-series of daily NPP values for a single pixel (blue line)

as model output. The pixel represents a grassland covered area in the South African

province Northern Cape close to the border to Botswana (26.67S 21.93E). The daily

values of the annual period are summed up to a cumulative NPP (red circles). From

these annual values a temporal variation in vegetative productivity can be derived

(blue line), for which this example shows a distinct negative development. The

slope of this variation represents the mean annual loss of productivity and has a

value of �1.4 gC m�2a�1 with a coefficient of determination of 0.67. So this pixel

represents vegetation that has lost more than half (55 %) of its initial productivity

(27.7 gC m�2a�1 in 99/00) in a period of 11 years.

This relative variation of NPP is shown in Fig. 12.4 for the study region. Blue

colors represent a positive variation of productivity, red represents a negative

variation. For studies of land degradation the negative variations regions are to be

analyzed. In the study area single regions become apparent where there are high

negative variations of about 100 % loss of initial productivity. NPP values at

saturation can occur where an initially positive NPP becomes negative during the

modeling period. These values can be attributed to be based on soil types, with poor

water storage properties within the soil. Other soil types allow for a maximum

rooting depth of few millimeters which again leads to an insufficient amount of

accumulated water to supply the vegetation.

One of these peculiar observations in the northwest of Lesotho represents the soil

type Lithosol with a horizon thickness of 10 cm. This soil type can commonly be
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Fig. 12.3 Time-series of NPP from daily values (blue line) and annual sums (red circles) for the
vegetative periods of 1999/2000–2009/2010

Fig. 12.4 Map of NPP-variations for the study area calculated from NPP sums of single vegeta-

tive periods
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found in mountainous regions as thin layer on top of solid rocks. In contrast most of

the soil types have a horizon thickness of 120 cm and more. From the soil water

model the amount of water can be calculated, that can be used by the plant. Stress

from insufficient water is simulated when only 25 % of this amount is left in the

soil. For the Lithosol soil type the maximum amount is 2.4 cm water column, hence

below 0.6 cm water column the plant experiences drought stress. Analyzing the

precipitation rates of this pixel reveals a high variability over the modeling period

with the amount of rain in the period 99/00–02/03 and 05/06 being up to 40 %

higher than the mean value. The remaining periods show values of up to 30 %

below mean where vegetation can experience stress almost the whole year. Hence

the carbon assimilation is very low for these periods.

Other soils, e.g. Luvisols, have poor water storage properties with a high fraction

of sand (>70 %), where water quickly percolates and gets unavailable for the

vegetation. Additionally the density of vegetation cover defines the amount of

water that is extracted from the soil. Translating the GLC2000 classes 2 and

3 (closed and open deciduous broadleaved forest) the fraction of cover is defined

as 0.9 and 0.65 respectively. This leads to different variations in neighboring pixels

when the fractional cover strongly varies on the same soil type with identical

meteorological conditions. Exceeding the maximum water availability of the soil

with having a denser vegetation cover can lead to negative variations, where the

neighboring pixel is still getting enough water.

The negative development of the productivity is found in the dry grass- and

shrubland areas in the west of the study area especially in Namibia and

South Africa. Besides that the agricultural areas surrounding Pretoria and Johan-

nesburg also show negative variations in a broad region. An even higher loss of

productivity can be found in the surroundings of Port Elizabeth for forest areas,

where the variation partially exceeds 100 %. This describes the change of the

vegetation being a carbon sink towards a carbon source. Hence the calculated

NPP reaches negative values, resulting from a greater amount of carbon being

released to the atmosphere by maintenance respiration than the amount being

assimilated during photosynthesis. The structures discussed before in Lesotho, in

the South African province Neustaat, in Swaziland, or north of Johannesburg show

the highest reduction in vegetative productivity at rates greater than 100 %. In

contrast to the previous regions the equally high negative variation for the Oka-

vango Delta can not only be attributed to the soil type. This region is particularly

classified as regularly flooded marshland. This vegetation type has a very low

electron transport rate (Jm¼ 37 μmol(CO2) m�2 s�1, (Knorr 1997)) hence the

photosynthetic activity is highly susceptible to variations in the climatic conditions.

The primary vegetation type in the entire area is scrubland followed by grass-

lands. On the other hand, the distribution of the negative productivity variations

indicates a higher susceptibility to degradation of the grassland vegetation. This is

attributed to the intensive grazing land use in southern Africa. Due to grazing of

large areas these ecosystems take considerable damage, which is reflected in the

reduced productivity of the plants (Perkins and Thomas 1993). However, not the
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entire decline in the productivity can be claimed to the demands caused by human.

Additional effects are especially caused by variations in rainfall.

12.3.3 Anomalies in Climatic Time-Series

It has to be determined whether a negative variation in productivity is attributable

solely to the management of the natural area and no additional adverse climatic

conditions have affected plant growth. Therefore variations for the time-series of

precipitation and temperature are computed for the years 99/00–09/10 analogous to

the NPP variations shown before.

For the pixel shown in Fig. 12.3 a negative variation of �16.8 mm a�1

(R2¼ 0.35) for annual precipitation and negative variation of �0.019 �C a�1

(R2¼ 0.03) for mean temperature was observed. These variations can help to

identify if the vegetation is regressive despite or because having good climatic

conditions.

The variation of the annual precipitation rate is negative for almost the whole

study area (Fig. 12.5a). Exceptions are the western coast, with its desert areas of the

Namib and the cape region of South Africa, and areas in the northeastern part of

South Africa and the northeastern part of Zimbabwe. The variations are distinct

with positive and negative direction, representing an increase or decrease of up to

50 % of the initial value in the period 99/00. The regions in southern Namibia and

western South Africa having a dry climate but especially broad regions of central

South Africa and Lesotho are affected by a significant decline in precipitation

amount. This seems to have direct impact on the local ecosystem, as can be seen

from the vegetative variation in Fig. 12.4.

The variation of the mean annual temperature shows a more heterogeneous

distribution (Fig. 12.5b). Botswana as an example shows negative variations in

temperature for almost the whole country and is surrounded, except for the north,

by regions with positive variations up to +30 % (Lesotho and its northeastern

surrounding) compared to the initial value in 99/00. These local peaks represent a

raise of mean annual temperature of about 0.5 �C for the considered period of

11 years. The Namibian and South African coast in the west and the south again

show negative variations. In the eastern part of the study area (Mozambique) the

raise of temperature reaches up into the north also covering large parts of Zimba-

bwe. The coefficient of correlation of the linear fit especially for high temperature

variations (>�15 %) has good values of 0.5 and higher.

An analysis of the anomalies of the single years of precipitation compared to the

long time mean of 1989–2010 of ECMWF data revealed that the periods 99/00,

03/04 and 05/06 had a very high rate of precipitation. Extensive dry periods

appeared for 04/05, 06/07, 08/09 and 09/10, pointing out the negative precipitation

variations of Fig. 12.5a. The analysis of the mean annual temperature permanently

shows positive anomalies for the periods 99/00–09/10 except for small regions in

Botswana and Zimbabwe. Hence, the region of southern Africa is undergoing a
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Fig. 12.5 Relative variation of the mean annual precipitation (a) and mean annual temperature (b)
relating to the initial values of the period under observation 99/01–09/10
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phase of rising temperature for the last two decades. This effect may on one hand

lead to an increase in length of the growth periods, but on the other hand reduce the

productivity due to limitations in photosynthetic activity when temperatures exceed

a certain threshold, or due to decreasing water availability resulting from higher

evaporation rates.

In the following definition of the degradation index only an increase of temper-

ature and a decrease of precipitation rates will be considered. These are believed to

be the most important drivers of vegetative productivity undergoing the highest

changes due to climate variations. Only variations with a coefficient of correlation

higher than 0.5 will be considered relevant for the index. Thus a climatological

impact is assumed, if the temperature rises more than 10 % in the time period or the

amount of rain is reduced by 30 %. Depending on the region this represents a rise in

temperature of about 1–2 �C and a decrease in rainfall of 60–420 mm.

12.3.4 The Degradation Index

Assessing the land degradation using the model results of BETHY/DLR is sup-

posed to consider climatic conditions. This can be helpful to determine if the

cultivation of land surface by man has led to a decline in vegetative productivity.

Especially the shrub- and grassland of southern Africa is extensively used as

rangeland (Ross 1999; Fox and Rowntree 2001). To separate climatic and non-

climatic variations the presented NPP-variations of Fig. 12.4 are grouped in four

categories (Table 12.3, Fig. 12.6). If the variation in precipitation is below �30 %

the area is grouped in category B (brown). Areas with a temperature variation of

+10 % and higher are grouped in category C (red). Category D (blue) includes areas

where both criteria are met. Here it is assumed, that the vegetation is experiencing a

significant change in climatic conditions that has a direct impact on the develop-

ment. If there is neither a negative variation in precipitation (<�30 %) nor a

positive variation in mean temperature (>+10 %) areas with decrease in produc-

tivity are grouped in category A (green). This loss of productivity might be

explained by anthropogenic influences. To further evaluate the grade of this loss

the categories are separated in classes. Class 1 describes a decline of productivity of

up to 25 %. Areas having a loss between 25 and 50 % are assigned to class 2, with

loss between 50 and 75 % to class 3 and higher than 75 % to class 4.

12.4 Results

A direct influence of climate change can be seen for wide areas of the Namib Desert

in southern Namibia and northwestern South Africa, which is classified as grass-

land. Here an extensive decline of about 50 % (LDI D2) is observed with local

peaks of more than 75 % (LDI D4). Such areas can also be seen in Lesotho,
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Swaziland and northern Zimbabwe, where generally an index of D4 is reached.

They mostly coincide with the discussed soil types which typically have poor water

storage capacities. This also can be seen for category B of which the highest values

(LDI B4) also occur for these soil types. In these cases the problem of poor soil

conditions facing decreasing water input from rainfall becomes apparent. Large

regions grouped in category B include the forest areas at the southern coast of

South Africa. These plants encounter loss of productivity of 75 % and more.

Table 12.3 Classification of the LDI using the color code of Fig. 12.6

ΔNPP is the NPP-Variation, ΔP the precipitation variation and ΔT the temperature variation for

the study period 99/00–09/10

Fig. 12.6 Degradation index of the study area with the separation in categories A: non-climatic

(green), B: significant decline of precipitation (brown), C: significant rise in temperature (red) and
D: combined raise in temperature and decline of precipitation (blue). The numbers represent the
grade of the NPP decline: 1: 0–25 %; 2: 25–50 %; 3: 50–75 %; 4: 75 % and higher
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High increase of mean annual temperature may be the cause of the NPP decrease

in wide areas of the Namib mainly in Namibia, but also in northwestern

South Africa. An LDI of C2 and C3 is common for this region, but there also

exist decreases of more than 75 % (LDI C4). The same classifications can be found

in the west of the Etosha-pan in northern Namibia (shrub- and grassland) and in

northern Zimbabwe (cultivated area). The LDI C4 in the South African province

Freestate in turn can be explained by the properties of the soil type.

For the remaining regions no significant variations in climatic conditions can be

observed (category A). These regions have a high potential of being intensively

threatened by human cultivation. This can also be true for regions classified in

categories B, C and D, but here it is assumed, that human impact solely is

responsible for the changes in NPP. This is true for all negative NPP variations in

Botswana with the highest index of A4 at the Okavango Delta. In South Africa the

cultivated areas are affected adjacent to the metropolitan area of Johannesburg and

Pretoria, but also in the Cape-region. Furthermore high loss rates of up to 75 % (LDI

A3) are found for the grassland areas of the Kalahari at the border between

Botswana and South Africa, partially exceeding 75 % (LDI A4). For the adjacent

areas of category B, C and D in South Africa and Namibia a combination of

overstraining from human land use and changes of climatic conditions can be

assumed that causes the decline of productivity of the vegetation.

12.5 Discussion

To evaluate the results of the presented classification there are no existing studies

for the whole region of southern Africa. Thus the consistent comparison of our

results is not possible. However, we have the opportunity to analyze our product by

comparing it to local or regional studies. These studies are presented in the

following subsections and compared to our LDI.

12.5.1 Namibia

Strohbach (2001) describes degradation processes in the northern Oshikoto region

of Namibia and the central region surrounding the capital Windhoek. This study

uses the gradient of degradation developed by Bosch et al. (1987) and Bosch and

van Rensburg (1987). This gradient observes the transition of a grass covered

landscape to woody savannah vegetation due to intensive rangeland usage. In

addition the loss of vegetated areas is relevant for many regions like the northern

Oshikoto region west of the Etosha pan or the Oshana plain in the north (Strohbach

2000a, b). For both regions a LDI of A2 to A3 is classified as cultivated areas in the

north and grassland in the west. For regions where the natural vegetation is replaced

by other plants the change in productivity may not be represented with a
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classification of the degradation index, as can be seen for the Okatope region in the

northeast of the Etosha pan (Strohbach 2001).

In the Mangetti region a loss of shrubland vegetation is reported (Strohbach

2001) that can be affirmed by a LDI A2 in this region. Here also the land use as

rangeland seems to be responsible for the loss of productivity. For central Namibia

in the districts Okahandja and Windhoek a strong decline of grassland vegetation is

observed for the period 1985–2001, where partially the whole vegetative soil cover

is lost (Strohbach 2001). This also applies for good climatic conditions resulting in

a LDI of up to A4 for the development in the period 99/00–09/10 for both regions.

This is an obvious sign for the influence of the natural vegetation by intensive

livestock farming (Fig. 12.7).

Fig. 12.7 Degradation index for Namibia with study regions of Strohbach (2000a, b, 2001) (black
markings)
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12.5.2 Botswana

Less than 5 % of the area of Botswana is suited for rain fed agriculture. Most of the

land is used for livestock farming, whereas 71 % are operated by municipals and

tribes, 23 % is state territory and the other 6 % are operated by commercial farms.

18 % of the area is rangeland and simultaneously identified as national parks and

game reserves whereof conflicts arise progressively (Darkoh 1999).

The arid and semi-arid ecosystems, as they are in the Kalahari, obviously are

extremely resilient due to the adaptation to the local climatic conditions. Though,

the growing demand of rangeland, wood resources or agricultural land puts an

immense stress on the vegetation the ecosystems can hardly cope with. These are

the direct consequences of the faster growing population in these regions resulting

in growing droves and intensifying cultivation of land. This problem seems to be

persisting over the last decade, since all observed regions of the country are grouped

in the category A (Fig. 12.8) and hence no climatic variations occurred in this

period. Van Vegten (1981) already reported a reduction of grass cover in the

southern Kgatleng district from 6–15 to 0–2 % caused by the local livestock

farming. From our model results we get a LDI of A2 to A3 for cultivated areas

and grassland (Fig. 12.8). Similar high values (partially A4), but spatially broader,

are found for the Boteti region west of the Makgadikgadi salt pan. For this region

Darkoh (1999) found obvious indications of land degradation and desertification

over a period of 30 years from the end of the 1960s to the end of the 1990s.

Following our model results this development can be seen to date.

The relevance of the industrial stock farming for the strain of the grass- and

scrubland also was discussed by De Queiroz (1993). These studies in the Khutse

wildlife reserve in the Kalahari showed that the decline of the local vegetation is in

direct relation to the intensive grazing. The same was found by Dougill et al. (1999)

for the vegetative development at the ‘Uwe-Aboo-Farm’ in the northeast. In this

area the loss of mainly grassland vegetation was reported for the 1990s which is

partly replaced by scrubland. At the persisting farms a high degradation index of A2

to A3 can be found for the period 1999–2010.

One specific feature in Botswana of course is the regularly flooded swamp region

of the Okavango Delta. This area is classified with the highest LDI of A4.

Hamandawana et al. (2007) used historical records, surveys regarding the environ-

mental changes and satellite data (Landsat and Corona) to assess the land degrada-

tion in the delta covering the period 1860–2001. The analysis of the surveys reveals

a decreasing amount of surface water, declining of the ground water level and the

loss of pasture land. Negative precipitation variations, vegetation loss caused by

floods and increasing demands by migrations to the region are accounted as reasons

for the degradation. The assessment of the satellite images has also shown decline

of the environmental status. A decrease of surface water by more than 12 % was

observed before 1989. The tree cover reduced by 5 % between 1989 and 2001,

whereas the scrubland increased by 6.6 % from 1967. A considerable decrease of

about 44 % was found for grassland between 1967 and 2001. The main reason for
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this development is the growth of population in the area of more than 50 % in the

years between 1981 and 2001, causing an increase in livestock farming

(Hamandawana et al. 2005). The results of the model presented in the degradation

index show these variations to persist in the subsequent decade.

12.5.3 Zimbabwe

In Zimbabwe the Buhera District (marked in Fig. 12.9a) was analyzed by Mambo

and Archer (2007) by comparing two sets of Landsat TM (Termal Mapper) and

ETM (Enhanced Thematic Mapper) scenes of 1992 and 2002 to derive negative

changes in the vegetative cover (Fig. 12.9c).

Both approaches locate degradation processes in similar regions. The locations

of the degrading areas are generally in agreement, but both maps show a more

detailed distribution for different areas. The classification also differs between the

two products in some cases. This could be caused by the different types of

approaches for derivation of degrading areas. The main reason for differences,

however, can be assumed to arise from the different periods of observation. In

summary the main regions in this district, the North and the South, are found to be

degrading by both approaches. Other comparisons to regional studies in Namibia,

Botswana, Lesotho and South Africa show similar coinciding results.

Fig. 12.8 Degradation index for Botswana with study regions of Van Vegten (1981), Darkoh

(1999), and De Queiroz (1993) (black markings)
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12.6 Conclusion

The purpose of this study was to develop an approach to derive a Land Degradation

index (LDI) for arid and semi-arid regions. For this we used calculated Net Primary

Productivity (NPP) from our remote sensing data driven model BETHY/DLR. As

area of interest the southern African countries of Namibia, Botswana, Zimbabwe,

South Africa, Lesotho and Swaziland were chosen. From meteorological

(ECMWF), soil (FAO/IIASA), land cover and phenological (SPOT) data, we

Fig. 12.9 Degradation index for Zimbabwe (a) and a zoom to the Buhera District (b) in

comparison to the Landsat-NDVI derived land degradation indication (c) fromMambo and Archer

(2007) (Color legend and categorization is according to Fig. 12.6 and Table 12.3)
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calculated annual NPP sums at 1 km spatial resolution. With this data we could

derive variations in vegetative productivity for the years 1999–2010 to cover a time

period of 11 years. With these variations the grade of land degradation could be

assessed.

Additionally, variations in climatological time-series for mean annual air tem-

perature and annual precipitation have been computed from the ECMWF model

input data. From these time-series we were able to estimate the influence of

meteorological changes over the observed period of 11 years. These three variations

have been combined to an index of land degradation for the sub-continental region

of southern Africa. The degradation map of southern Africa not only shows area of

degradation but additional parameters controlling degradation as meteorological

factor (air temperature and/or precipitation) and non-climatic factors which we

relate to human induced changes.

Wide ranges of non-climatic caused degradation for example can be found in

Botswana and Namibia. For these countries intense land use by grazing and farming

is reported by several studies. Comparisons with regional studies show spatial

consistency on regional scale, but detailed agreement can hardly be achieved due

to spatial and/or temporal discrepancies in the scope of these works. However, with

this method a degradation assessment of sub-continental regions can be performed

for a whole decade with a spatial resolution of 1 km. As the temporal and spatial

coverage of remote sensing data is driven to higher resolutions, the presented

calculation of the variation in NPP will gain more and more in significance. This

time-series will be extended and optimized as remote sensing products will contin-

uously be enhanced.

Acknowledgements This study was funded by the EOS-Network of the Helmholtz Centres in

Germany. We thank ECMWF, Medias France and Vito Belgium for providing their data.

References

Abel NOJ, Blaikie PM (1989) Land degradation, stocking rates and conservation policies in the

communal rangelands of Botswana and Zimbabwe. Land Degrad Rehabil 1(2):101–123

Beck C, Grieser J, Rudolf B (2005) A new monthly precipitation climatology for the global land

areas for the period 1951 to 2000. Climate status report 2004. German Weather Service,

Offenbach, pp 181–190

Bosch O, vanRensburg FJ (1987) Ecological status of species on grazing gradients on the shallow

soils of the western grassland biome in South Africa. J Grassl Soc South Afr 4(4):143–147

Bosch O, van Rensburg FJ, Truter ST, Truter DUT (1987) Identification and selection of bench-

mark sites on litholitic soils of the western grassland biome of South Africa. J Grassl Soc South

Afr 4(2):59–62

CGER (2000) Ecological indicators for the nation. The National Academies Press, Washington,

DC

Collatz GJ, Ribas-Carbo M, Berry JA (1992) Coupled Photosynthesis – stomatal conductance

model for leaves of C4 plants. Aust J Plant Physiol 19:519–538

12 Land Degradation in South Africa – A Degradation Index Derived from 10. . . 265



Darkoh MBK (1999) Case studies of rangeland desertification, chapter desertification in

Botswana. Agricultural Research Institute, Rekjavik, pp 61–74

De Queiroz JS (1993) Range degradation in Botswana myth or reality? Technical report. Pastoral

Development Network, Overseas Development Institute, London

Dougill AJ, Thomas DSG, Heathwaite AL (1999) Environmental change in the Kalahari: inte-

grated land degradation studies for nonequilibrium dryland environments. Ann Assoc Am

Geogr 89(3):420–442

Eisfelder C, Kuenzer C, Dech S, Buchroithner M (2012) Comparison of two remote sensing based

models for NPP estimation – a case study in Central Kazakhstan. IEEE J Select Top Appl Earth

Obs Remote Sens 6(4):1843–1856

Eisfelder C, Klein I, Niklaus M, Kuenzer C (2013) Net primary productivity in Kazakhstan, its

spatio-temporal patterns and relation to meteorological variables. J Arid Environ 103:17–30

FAO, IIASA, ISRIC, ISSCAS, JRC (2009) Harmonized world soil database (version 1.1).

FAO/IIASA, Rome/Laxenburg

Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthesis in

leaves of C3 species. Planta 149:58–90

Fox R, Rowntree K (2001) Redistribution, restitution and reform: prospects for the land in the

Eastern Cape Province, South Africa. In: Conacher A (ed) Land degradation. Kluwer, London,

pp 167–186

GCOS (2003) The second report on adequacy of global observation systems for climate in support

of the unfccc – executive summary. Technical report, World Meteorological Organization,

Geneva

Geiger R (1954) Landolt-B€ornstein – Zahlenwerte und Funktionen aus Physik, Chemie,

Astronomie, Geophysik und Technik, alte Serie vol 3, Chapter: Klassifikation der Klimate

nach W. K€oppen. Springer, Berlin, pp 603–607

Gessner U, Niklaus M, Kuenzer C, Dech S (2013) Intercomparison of leaf area index products for

a gradient of sub-humid to arid environments in West Africa. Remote Sens 5(3):1235–1257

GTOS (2009) Biomass. Assessment of the status of the development of the standards for the

terrestrial essential climate variables. Technical report, Food and Agriculture Organization of

the United Nations (FAO), Rome

Hamandawana H, Eckardt F, Chanda R (2005) Linking archival and remotely sensed data for long-

term environmental monitoring. Int J Appl Earth Obs Geoinform 7(4):284–298

Hamandawana H, Chanda R, Eckardt F (2007) Natural and human induced environmental changes

in the semi-arid distal reaches of Botswana’s Okavango delta. J Land Use Sci 2:57–78

Hoffman M, Todd S (2000) A national review of land degradation in South Africa: the influence of

biophysical and socio-economic factors. J South Afr Stud 26:743–758

Knauer K, Gessner U, Dech S, Kuenzer C (2014) Remote sensing of vegetation dynamics in West

Africa. Int J Remote Sens 35(17):6357–6396

Knorr W (1997) Satellite remote sensing and modelling of the global CO2 exchange of land

vegetation: a synthesis study. PhD thesis. Max-Planck-Institut für Meteorologie, Hamburg,

Germany

Knorr W, Heimann M (2001a) Uncertainties in global terrestrial biosphere modeling, Part I: a

comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme.

Glob Biogeochem Cycles 15(1):207–225

Knorr W, Heimann M (2001b) Uncertainties in global terrestrial biosphere modeling, Part II:

global constraints for a process-based vegetation model. Glob Biogeochem Cycles 15

(1):227–246

K€oppen W (1900) Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren

Beziehungen zur Pflanzenwelt. Geogr Z 12:657–679

Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the K€oppen- Geiger climate

classification updated. Meteorol Z 15(3):259–263

Le Houérou HN (1996) Climate change, drought and desertification. J Arid Environ 34

(2):133–185

266 M. Niklaus et al.



Mambo J, Archer E (2007) An assessment of land degradation in the Save catchment of Zimba-

bwe. Area 39(3):380–391

Mitchel TD, Jones PD (2005) An improved method of constructing a database of monthly climate

observations and associated high-resolution grids. Int J Climatol 25:693–712

Perkins JS, Thomas DSG (1993) Spreading deserts or spatially confined environmental impacts?

Land degradation and cattle ranching in the Kalahari Desert of Botswana. Land Degrad Dev 4

(3):179–194

Ringrose S, Musisi-Nkambwe S, Coleman T, Nellis D, Bussing C (1999) Use of Landsat thematic

mapper data to assess seasonal rangeland changes in the southeast Kalahari, Botswana.

Environ Manag 23:125–138
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Chapter 13

Investigating Fourteen Years of Net Primary
Productivity Based on Remote Sensing Data
for China

Christina Eisfelder and Claudia Kuenzer

Abstract Net primary productivity (NPP) is an important environmental indicator

that provides information about vegetation productivity and carbon fluxes. Ana-

lyses of NPP time-series allow for understanding temporal patterns and changes in

vegetation productivity. These are especially important in rapidly changing envi-

ronments, such as China, the world’s third largest country. In this study, we use the
model BETHY/DLR (Biosphere Energy Transfer Hydrology Model) for derivation

of NPP time-series for China for 14 years from 1999–2012. We analyse spatial and

temporal NPP distributions. These include mean annual NPP distribution and mean

productivities for different land cover classes. Monthly data provide information

about temporal patterns of vegetation productivity for different regions in China

and different vegetation types. Analyses of interannual NPP variability revealed

considerable differences in the development of annual vegetation productivity

within the analysed time period for different provinces. The decrease in NPP for

the district Shanghai shows the strong influence of one of Asia’s fastest growing
megacities on the environment. The NPP time-series was additionally analysed for

a forest region in North China, which has been affected by forest disturbances. Our

results show that the NPP data are suitable for monitoring of forest disturbance and

regrowth. The analyses and results presented in this study provide valuable infor-

mation about spatial and temporal variation of vegetation productivity in the

various regions within China.
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13.1 Introduction

Net primary productivity (NPP) is the dry matter production by vegetation. It

quantifies the carbon uptake by plants per unit area and unit time and, thus, provides

information about carbon emission or sequestration. NPP is a key variable for

ecological and environmental monitoring and a sensitive indicator of climate

change (Niemeijer 2002; Schimel 1995). It plays an important role in the global

carbon cycle (Prentice et al. 2001).

Modelling of NPP is of special interest in a country that shows such immense

and rapid development like China (United Nations Development Programme

UNDP 2013). The People’s Republic of China is the world’s third largest country

and also the most populous (Population Reference Bureau, PRB 2013). It experi-

ences strong economic growth and migration trends, which put pressure on eco-

logical resources (PRC 2012).

Monitoring of NPP and its spatio-temporal dynamics are important base infor-

mation for understanding possible impacts of global change and land management

(Eisfelder et al. 2014). In the past decade, several studies on NPP estimation for

China have been published, but most focus on small study areas or short time-

periods (e.g. Fu et al. 2013; Gao et al. 2013; Lu et al. 2013). National wide studies

are fewer and do so far not present variations for the first decade of twenty-first

century (Cao et al. 2003; Gao et al. 2004; Hou et al. 2013).

In this study, we model NPP for China for the 14-year period from 1999 to 2012.

We apply the remote sensing data based Biosphere Energy Transfer Hydrology

(BETHY/DLR) model. Our aims were to present annual NPP distribution for the

period 1999–2012 for China, analyse monthly patterns of vegetation productivity,

and investigate interannual variations in NPP for the time period covered. We also

analyse whether the modelled NPP data can be used for monitoring of forest

disturbance areas in North China. Thereby, we want to demonstrate the usability

of the modelled NPP time-series for understanding patterns in NPP and for mon-

itoring possible long-term changes in vegetation productivity.

13.2 Data and Methods

In this chapter, we introduce the study area and provide a short description of the

NPP model used within this study.

13.2.1 Study Area

Our study area is the People’s Republic of China. China covers an area of about 9.6
million km2. It is one of the world’s largest countries and encompasses diverse

270 C. Eisfelder and C. Kuenzer



climatic conditions. Figure 13.1 gives an overview on the land cover of China

according to the land cover classification from the global land cover database for

the year 2000 (GLC2000) (Bartholomé and Belward 2005).

In the western part of the country, grassland and sparsely vegetated areas are

dominant. In the northeast boreal forest and agricultural areas can be found. The

largest agricultural areas are located in the central eastern part of China. The

regions in the southeast are mainly covered by a mixture of natural vegetation,

mainly forest areas, shrub cover, and some agricultural areas (compare Fig. 13.1).

The southeastern part of China can be described as a warm temperate climate

with fully humid to winter dry conditions and hot to warm summers (Kottek

et al. 2006). In the northeastern part of the country snow climate with dry winters

and hot to warm summers is dominant. The western part of China can be divided

into a cold arid desert climate in the northern part and a polar tundra climate in the

southern part including the Tibetan plateau (Kottek et al. 2006). Figure 13.2 shows

selected precipitation and temperature diagrams for different regions of the country

(locations given in Fig. 13.1).

Fig. 13.1 Land cover for China from the GLC2000 (Bartholomé and Belward 2005; with

simplified legend). Locations A–F refer to the precipitation and temperature diagrams from

Fig. 12.2
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13.2.2 The Model BETHY/DLR

In this study, we applied the model BETHY/DLR for NPP calculation for China.

BETHY/DLR is a soil-vegetation-atmosphere-transfer (SVAT) model (Wißkirchen

et al. 2013). It is based on meteorological and remote sensing derived input data.

The CO2 uptake by vegetation is simulated by BETHY/DLR as a process that is

limited by light intensity, heat, and soil water availability (Knorr 1997). The

parameterization of photosynthesis distinguishes between C3 and C4 plants (Far-

quhar et al. 1980; Collatz et al. 1992). The photosynthesis rate A is defined as the

Fig. 13.2 Selected precipitation (average monthly precipitation) and temperature (average daily

mean temperature) diagrams (extracted from Hijmans et al. 2005). Locations of the diagrams (a–f)
are shown in Fig. 13.1: (a) Ürümqi, (b) Xi’an, (c) Harbin, (d) Lhasa, (e) Guangzhou, (f) Shanghai
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minimum of the carboxylation rate and the electron transport rate, minus dark

respiration (Eisfelder et al. 2014).

BETHY/DLR currently differentiates 33 internal vegetation types, for which

individual plant specific parameters are provided. These are needed for calculation

of photosynthesis and include maximum carboxylation rate, maximum electron

transport rate, maximum rooting depth, and maximum height. For each spatial unit

(i.e. pixel), two vegetation types can be modelled. This allows modelling of mixed

land cover classes as well as representation of fractional coverage of less than

100 %. Weighting factors define the fraction of primary and secondary vegetation

type (Eisfelder et al. 2013; Wißkirchen et al. 2013).

BETHY/DLR is driven by meteorological and remote sensing based input data

(Table 13.1). Meteorological data are available from the European Centre for

Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis (Berrisford

et al. 2011; Dee et al. 2011). These include data on precipitation, air temperature,

cloud coverage, and wind speed. Further, a land cover map and leaf area index

(LAI) data are used. The GLC 2000 (Bartholomé and Belward 2005) land cover

map was used within this study. Remote sensing based LAI data were available

from the geoland2 (Gio-GL 2013) data base. The LAI data are available globally

and provided with 1 km2 resolution as 10-day composites. Pre-processing of LAI

time-series was performed before the data were used as input for BETHY/DLR.

This included correction of gaps and outliers in the time-series with a harmonic

analysis (Wißkirchen et al. 2013).

Additional input data for BETHY/DLR comprise a digital elevation model from

the latest version of the NOAA/NGDC GTOPO30 product (USGS 1996) and soil

types from the FAO soil map (FAO et al. 2009).

The spatial resolution of the NPP output from BETHY/DLR is 1 km2. This

equals the resolution of LAI and land cover input data. The continuous time-series

of meteorological input data on at least daily basis (cf. Table 13.1) allows for a high

temporal resolution. NPP outputs are calculated daily. Based on these daily data,

monthly and annual sums and means are calculated. An overview on the processing

scheme of BETHY/DLR is provided in Fig. 13.3.

13.3 Results and Discussion of NPP for China

Based on the monthly and annual NPP data, we analysed the spatial distribution of

vegetation productivity in China and calculated productivities for individual land

cover classes. Further, we discuss the monthly development of NPP and have a look

at interannual variations in vegetation productivity.
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13.3.1 Spatial NPP Distribution

Figure 13.4 presents the calculated mean annual NPP for China for 1999–2012.

Highest mean annual NPP values can be observed in areas covered by broadleaved

forest or shrubs in the south-eastern part of China. In these areas, annual NPP sums

range between 1,500 and 2,000 g C m�2. Agricultural areas in the central eastern

part of the country, roughly located between 32–36�N and 113–121�E, also show

high NPP with productivity maxima reaching 1,500 g C m�2.

The western part of China, a region covered by herbaceous vegetation, sparse

vegetation, and bare areas (cf. Fig. 13.1), is characterized by very low vegetation

Table 13.1 Input data for NPP modelling with BETHY/DLR for China

Input parameter

Spatial

resolution

Temporal

resolution Source

Land cover map ~1 km Once GLC2000

LAI ~1 km 10-daily geoland2

Soil map ~1 km Once FAO

Digital elevation model ~1 km Once GTOPO30

2 metre temperature 0.25� >daily ECMWF

Large-scale and convective precipitation 0.25� >daily ECMWF

Low, medium, and high cloud cover 0.25� >daily ECMWF

10 metre eastward and northward wind

component

0.25� >daily ECMWF

Surface geopotential 0.25� Once ECMWF

Fig. 13.3 Scheme of BETHY/DLR model
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productivity. In the area between 37–42�N and 75–87�E some local spots with

clearly visible higher productivity can be observed. These are cultivated and

managed areas (cf. Fig. 13.1) and, further north, also some more grassland and

managed areas can be identified. In addition, Fig. 13.5 provides an overview on

average mean annual NPP values for individual provinces within China.

Average mean annual NPP values for individual land cover classes are presented

in Table 13.2. Highest productivity can be observed for broadleaved evergreen and

trees with NPP of 1,034 g C m�2. This is followed by cultivated and managed areas

(824 g C m�2), broadleaved deciduous trees (718 g C m�2), needleleaved trees

(707 g C m�2, 704 g C m�2) and evergreen shrubs (686 g C m�2). Lowest annual

NPP in the period 1999–2012 have herbaceous cover (171 g C m�2), sparse

vegetation (57 g C m�2), and bare areas (18 g C m�2).

The NPP values from BETHY/DLR presented in Table 13.2 correspond to

productivities published in other studies for China. Feng et al. (2007), for example,

reported annual NPP values of 122.6 g C m�2 for grassland, 14.3 g C m�2 for barren

areas, 342 g C m�2 for cropland, 363 g C m�2 for shrubland, and 552 g C m�2 at

average for forests. Yan et al. (2006) found annual NPP for coniferous and broad-

leaf mixed forest in the Dinghushan Biosphere Reserve of 1,148 g C m�2 for

evergreen broad-leaf forest and 678 g C m�2.

Matsushita and Tamura (2002) reported NPP of 1178 g C m�2 for broadleaved

forests, 690 g C m�2 for broadleaved crops, 614 g C m�2 for needleleaved forest,

and 460 g C m�2 for shrubs in East Asia. For grasslands in western China

Fig. 13.4 Mean annual NPP for China for 1999–2012 calculated with BETHY/DLR
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productivities between 124 and 231 g C m�2 per year were presented by Lu

et al. (2004). In the same study, rice was found to have annual productivity of

632 g C m�2 and other agricultural areas 492 g C m�2.

Fig. 13.5 Mean annual NPP for individual provinces within China for 1999–2012 calculated with

BETHY/DLR

Table 13.2 Average mean annual NPP for different land cover types in China for 1999–2012

Land cover type Mean annual NPP [g C m�2]

Broadleaved trees, evergreen 1034.2

Cultivated and managed areas 824.1

Broadleaved trees, deciduous 718.1

Needleleaved trees, deciduous 707.3

Needleleaved trees, evergreen 703.5

Shrub cover, evergreen 685.8

Tree cover/natural vegetation 651.3

Cropland/natural vegetation 606.8

Mixed leaf trees 577.3

Regularly flooded area 482.3

Shrub cover, deciduous 429.2

Herbaceous cover 171.3

Sparse vegetation 56.9

Bare areas 17.5
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Wang et al. (2008) analysed NPP of Chinese forest areas for the late 1990s and

found NPP of 1,372 g C m�2 for evergreen broadleaved forest, 1,240 g C m�2 for

evergreen needleleaved forest, 994 g C m�2 for deciduous broadleaved forest, and

852 g C m�2 for deciduous needleleaved forest. The available NPP data for similar

vegetation types are in general consistent with the results obtained in our study

(Table 13.2).

13.3.2 Monthly NPP Patterns

Figure 13.6 shows mean monthly NPP for China for the period 1999–2012. The

monthly NPP values clearly identify variances in productivity for different parts of

the country throughout the year.

The warm temperate climate in the southeast of China allows for vegetation

productivity throughout the year. In the north and west pronounced winter dor-

mancy can be observed, which lasts from November through March.

In April and May, high productivities of up to 330 g C m�2 are reached in the

agricultural areas in the central eastern part of the country (32–36�N and 113–

121�E). Forest areas, which have highest annual NPP in general (Table 13.2), reach

maximum productivities a bit later, with about 210 g C m�2 per month in June/July/

August. Vegetation growth starts later in the northeast of China. In this area,

productivity can be observed from May on. The maximum NPP is reached in

July and August in the northeastern part of the country. After the maximum,

productivity quickly declines within 1 month. Highest productivity for grasslands

and cultivated and managed areas in the very northwest of China can be observed in

June and July.

Table 13.3 summarizes mean monthly NPP for vegetated land cover classes

within China for the period 1999–2011. The results from BETHY/DLR clearly

show the different temporal behaviour of evergreen and deciduous trees and shrubs

(Table 13.3). Evergreen trees and shrubs show a longer growth period than decid-

uous trees/shrubs, but the maximum productivity, reached around July, is higher for

deciduous trees/shrubs. Evergreen vegetation tends to show a slightly later maxi-

mum. This becomes also obvious in Fig. 13.7, which displays mean monthly NPP

for the vegetated land cover classes with largest coverage within China.

Maximum vegetation productivity is reached in July or August for almost all

analysed land cover classes. A late productivity peak in August can be observed for

cultivated and managed areas (Table 13.3).

13.3.3 Interannual NPP Variability

Figure 13.8 shows annual NPP for China for individual years from 1999 to 2012

calculated with BETHY/DLR. Differences in NPP distribution between the years
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are clearly visible. The agricultural areas in the central East, for example, show

lower productivity in 2000, 2002, and 2003 than in the other years. Boreal forest

areas in the northeast have comparatively lower productivities in 2003 and 2011.

For the area near the coast in Southeast China higher productivities can be observed

in 2003, 2004, 2011 and 2012, compared to the other years.

Interannual NPP variation for individual Chinese provinces is also displayed in

Fig. 13.9. The provinces are grouped into regional clusters and mean values for the

defined regions are also shown. The graphs allow analysing temporal NPP patterns

in more detail. For the dry western part of China, with generally very low NPP, we

can observe a slight trend towards higher productivity in the 13-year period

analysed in this study (Fig. 13.9). This is not the case for most other regions,

where interannual variation is more pronounced. Strong variations can be observed

for some districts in the Central North and Southeast. In the northern districts,

annual NPP is relatively stable or shows a slight increase. In the Northeast, higher

values can be observed for the period 2004–2007. An increase in NPP, followed by

a slight downward trend between 2005 and 2011 can be observed for most districts

Fig. 13.6 Mean monthly NPP for China for the time period 1999–2012
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in the Central North and Central South regions. The development of annual NPP in

the period 1999–2011 for the district Shanghai differs strongly from the develop-

ment in the nearby districts. For Shanghai a clear downward trend can be observed

in the period of investigation. In the Southwest, NPP values are quite stable, with an

increase only for the last year. Annual NPP is more variable in the districts in the

Southeast of China.

13.3.4 Impact of Urban Sprawl Around Shanghai

The development of NPP for the province of Shanghai within the observed time-

period is remarkable (Fig. 13.9). A linear regression analysis reveals that the

downward trend over the course of the observed time span is significant with

p< 0.001. To quantify the loss of productivity, we calculated mean annual NPP

within Shanghai and the two neighbouring prefectural-level cities Suzhou and

Jiaxing. The difference between NPP for the years 2000 and 2010 for individual

municipalities is displayed in Fig. 13.10. A clear downward trend in NPP can be

observed for all municipalities in the area of investigation around Shanghai

(Fig. 13.10). Absolute NPP loss is highest in the municipalities Fengxian, Jinshan,

and Pinghu at the northern shore of Hangzhou Bay and Jiaxing, with a loss greater

than 250 g C m�2 in the 10-year period. Relative loss is in general lowest with less

than 20 % for the Jiaxing (Southwest), except for the area around the city of Jiaxing.

Shanghai (East) and Suzhou (Northwest) have higher percentage NPP reduction.

All municipalities except Shazhou in Suzhou have a loss of greater than 20 %. Five

out of nine municipalities around Shanghai show a loss of more than 25 % in the

period 2000–2010 (Fig. 13.10).

To ensure that years compared are representative and no extraordinary extreme

years, we also calculated mean values over the 3-year periods of 1999–2001 and

Fig. 13.7 Mean monthly NPP values for 1999–2012 for selected vegetated land cover classes in

China calculated with BETHY/DLR

280 C. Eisfelder and C. Kuenzer



2010–2012. The results of this periodical comparison and resulting absolute and

relative NPP loss values are given in Table 13.4.

The low absolute loss in NPP around the city centre of Shanghai can be

explained by the already high urban sprawl in that area. Low absolute loss but

high relative loss, such as observed for Baoshan and Minhang (Fig. 13.10), indicate

that the area had already been closely built-up in 2000 and that until 2010 large

parts of the remaining vegetation areas have been cleared. In general, we assume

that a strong decrease in NPP has probably been caused by increasing urban growth.

In the case of Wuxian, the high relative loss is due to the large water body of Taihu

Lake. Comparatively low absolute NPP loss can be observed within the prefecture-

level city of Jiaxing. This region is more rural and large areas are used for

agriculture. NPP loss is not as severe as in other parts of the investigated area,

but also a reduction of at least 10 % can be observed for the period 2000–2010.

Fig. 13.8 Annual NPP for China for the years 1999–2012 calculated with BETHY/DLR
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13.3.5 Monitoring Forest Disturbance in North China

Figure 13.11 depicts a forested region in Northeast China at the border to Russia,

which is mainly covered by needle-leaved forest. The area covers the northern part

Fig. 13.9 Interannual variation in NPP for various regions in China within the time period 1999–

2011. The thick solid line in each diagram gives the mean annual NPP variation for each region.

The other lines show mean annual NPP for individual provinces. The figure in the lower right

shows the location of the regions within China
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of the Greater Khingan mountains. The area belongs to the provinces Nei Mongol

(West) and Heilongjiang (East). The three maps in Fig. 13.11 show annual NPP for

the years 2002, 2003, 2006 and 2011. From the NPP data shown in Fig. 13.11, it can

be seen that in the year 2003 three forest areas (red polygons) plus some smaller

areas have been disturbed. In 2006, an additional area with recent disturbance can

be observed (blue polygon in Fig. 13.11).

Figure 13.12 shows average annual NPP for 1999–2011 for the three polygons

that were disturbed in 2003. From the annual variation in NPP, the disturbance

impacts become also obvious. The vegetation productivity for these areas was high

between 1999 and 2002 and suddenly dropped to low values in 2003.

The annual NPP data also clearly show the regrowth of vegetation within the

three disturbed areas from 2003. After the rapid decrease in the year of the

disturbance event, an increase of annual productivity can be observed. For all

three disturbed areas, NPP went up again. The most quickly raise shows largest

disturbed area close to the Russian border in the Northeast (forest area no. 1).

The forest disturbances we observe in this study based on the NPP data, have

also been reported by Tao et al. 2013, who analysed causes of forest disturbance in

Northeast China. The two large disturbance areas in 2003 (no. 1 and 2 from

Fig. 13.11) as well as the forest disturbance area in 2006 have been caused by

forest fires The small area in 2003 (no. 3 from Fig. 13.11) can be attributed to

deforestation and land-use change (Tao et al. 2013).

Fig. 13.10 Loss in NPP between 2000 and 2010 for individual municipalities within Suzhou,

Jiaxing, and Shanghai. The city centre of Shanghai is shown in violet. Left: Absolute loss in annual
NPP. Right: Relative loss in annual NPP with respect to the annual NPP in 2000
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13.4 Conclusions

We applied the model BETHY/DLR to calculate NPP time-series for China for

14 years from 1999 to 2012. The NPP results were analysed regarding spatial,

monthly, and interannual variations. We first presented mean annual NPP distribu-

tion for 1999–2012 and derived mean productivities for different land cover classes.

The results obtained with BETHY/DLR correspond well to previously

published data.

The results of the monthly NPP analyses show, that the data are well suited to

analyse differences in temporal patterns of vegetation productivity, both for differ-

ent regions in China and for different vegetation types. The results are important

base information for understanding growth efficiency of different plants in differing

climatic regimes.

Table 13.4 Three-year average mean annual and monthly NPP for individual municipalities

within Suzhou, Jiaxing, and Shanghai for the periods 1999–2001 and 2010–2012

Municipality

3-year mean NPP

1999–2001 [g C

m�2]

3-year mean NPP

2010–2012 [g C

m�2]

Absolute

loss [g C

m�2]

Relative

loss [%]

Suzhou Changshu 982.4 804.4 178.0 18.1

Kunshan 960.6 667.9 292.7 30.5

Shazhou 720.8 645.4 75.4 10.5

Suzhou 534.8 375.6 159.2 29.8

Taicang 1088.0 882.2 205.7 18.9

Wujiang 745.3 599.3 146.1 19.6

Wuxian 360.0 284.5 75.5 21.0

Shanghai Baoshan 187.5 132.7 54.8 29.2

Fengxian 1048.7 786.3 262.4 25.0

Jiading 863.6 646.9 216.7 25.1

Jinshan 1464.7 1123.2 341.5 23.3

Minhang 279.3 224.2 55.1 19.7

Nanhui 911.0 694.9 216.1 23.7

Pudong 267.0 238.0 29.0 10.9

Qingpu 952.5 797.1 155.4 16.3

Songjiang 1100.6 879.3 221.3 20.1

Jiaxing Haining 1181.9 997.2 184.7 15.6

Haiyan 1388.3 1218.8 169.5 12.2

Jiashan 1210.3 938.3 272.0 22.5

Jiaxing 1079.3 842.4 236.9 22.0

Pinghu 1542.1 1272.8 269.3 17.5

Tongxiang 1204.3 1080.5 123.8 10.3

Xiuzhou 1334.4 1149.9 184.5 13.8

Total ALL 930.8 751.4 165.1 19.8
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The analyses of interannual NPP variability provided an interesting insight to the

development of annual vegetation productivity within the period under investiga-

tion. The annual productivity within different provinces varied considerably. For

different regions of China, partly opposite trends could be observed. A decrease in

NPP can be observed for the district Shanghai, which differs from the pattern in the

surrounding region. This shows the strong influence of urbanization around one of

Asia’s fastest growing megacities on the environment.

A closer look at the region around Shanghai revealed that a strong impact on the

environment can be observed based on the NPP time-series. For Suzhou, Jiaxing,

and Shanghai, a decrease in vegetation productivity can be observed for the period

2000–2010. All municipalities in the area of investigation around Shanghai showed

Fig. 13.11 Annual NPP for the years 2002, 2003, 2006, and 2011 for a forest region in North

China. The displayed region borders Russia to the North (national border shown as grey line). The
red and blue polygons highlight forest disturbance areas in 2003 and 2006 respectively. The

numbering of disturbed forest areas in 2003 refers to Fig. 13.12
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a loss in NPP of at least 10 %. In our results, the strong influence of urbanization on

the environment around one of Asia’s fastest growing megacities becomes obvious.

The NPP time-series was also analysed for a region in North China. This forest

area has been effected by forest fires and logging activity. Our analyses show that

the NPP data can be used to identify and monitor areas of forest disturbance. The

information derived from NPP time-series can support understanding impacts,

speed of regrowth, and status of forests after disturbance events. The derived

datasets and presented results of this study provide valuable information about

spatial distribution and temporal variation of vegetation productivity in the various

regions of China.
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Chapter 14

The Utility of Landsat Data for Global Long
Term Terrestrial Monitoring

David P. Roy, Valeriy Kovalskyy, Hankui Zhang, Lin Yan,

and Indrani Kommareddy

Abstract The utility of satellite time series data for monitoring land surface

change is well established. This chapter highlights recent Landsat research, product

developments, and opportunities, for global long term Landsat monitoring, that are

now evolving rapidly with the opening of the Landsat archive. Specifically, it

introduces the NASA (National Aeronautics and Space Administration) funded

global Web Enabled Landsat Data products, and overviews Landsat time series

phenology and land cover change monitoring applications and research, and pro-

spectives for Landsat time series monitoring.

14.1 Introduction

The Landsat series of satellites provide the longest temporal record of space-based

global coverage observations of terrestrial emitted and reflected electromagnetic

radiation (Roy et al. 2014a). A free Landsat data policy initiated in 2008 (Wood-

cock et al. 2008) has opened a new era for utilizing the now more than four million

globally distributed Landsat acquisitions stored in the Landsat archive at the United

States Geological Survey (USGS) Earth Resources Observation and Science

(EROS) center. The Landsat sensors are well calibrated (Markham and Helder

2012; Schott et al. 2012) and over the conterminous United States are geolocated to

sub-pixel accuracy (Lee et al. 2004). It is now possible to obtain at no cost Landsat

data that were sensed decades apart over the same location. Global 30 m Landsat

observations have been provided by the Landsat 4 and 5 Thematic Mapper (TM),

Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational

Landsat Imager (OLI), spanning a period from 1982 to present, and at lower spatial

resolution by the Multispectral Scanner System (MSS) starting in 1972 (Loveland

and Dwyer 2012). The Landsat TM, ETM+ and OLI sensors provide 30 m
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multispectral observations that can be used to identify and monitor landscape

features for resource management and for climate and global change studies.

Prior to the opening of the Landsat archive, global coverage data sets were

provided to the user community at no cost. The Global Land Survey (GLS) provides

relatively cloud-free single date, manually selected, Landsat acquisitions of the

land for the 1970s, 1990s and 2000s (Tucker et al. 2004). With the advent of free

Landsat data it becomes feasible to apply temporal compositing approaches to

multi-temporal Landsat acquisitions of the same location. Compositing procedures

are applied independently on a per-pixel basis to gridded satellite time series and

provide a practical way to reduce cloud and aerosol contamination, fill missing

values, and reduce the data volume of moderate resolution global near-daily

coverage satellite data (Holben 1986; Cihlar et al. 1994; Roy et al. 1997). Thus,

instead of spatially mosaicing select relatively cloud-free Landsat acquisitions

together (Zobrist et al. 1983), all the available multi-temporal acquisitions may

be considered and at each gridded pixel the acquisition that satisfies some composit-

ing criteria selected. In this way, the GLS 2005 Landsat ETM+ data set was

generated by compositing up to three circa 2005 low cloud cover acquisitions

(Gutman et al. 2008).

The opening of the Landsat archive has enabled the development of new land

monitoring approaches that are based upon using all the available Landsat images

for a given region and time period rather than just a select subset of cloud-free

images. Previously, data costs precluded continental-scale studies, much less global

ones. Studies were based on what Landsat data researchers could afford, not on

what data they truly needed (Wulder et al. 2012). Arguably, the capability of any

Landsat sensor for large area or long term monitoring has not yet been fully

assessed. Moreover, although the Landsat data are provided as radiometrically

and geometrically corrected images, processing them into spatially and temporally

explicit information presents significant technical challenges.

The provision of consistently processed ‘higher-level’ products has been advo-

cated by the Landsat Science Team as needed to meet outstanding information

needs for climate and global change studies, to help national and international

reporting linked to multilateral environmental agreements, and for regional and

national resource management applications (Roy et al. 2014a). One step towards

meeting these needs has been the NASA (National Aeronautics and Space Admin-

istration) funded Web Enabled Landsat Data (WELD) project that has demon-

strated the capability to generate and distribute temporally composited and

spatially mosaicked Landsat products of the conterminous United States and

Alaska. The WELD products and distribution are an early example of the likely

emergence of regional to national Landsat based mapping and monitoring services.

Moreover, the acceptance and utility of the global Moderate Resolution Imaging

Spectroradiometer (MODIS) Land products for science and applications (Justice

et al. 2002; Masuoka et al. 2010) indicate the need for similar global coverage

products but at Landsat resolution.

This chapter first introduces the current WELD products and showcases global

WELD product prototyping, illustrating the potential for Landsat monitoring
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anywhere, and then reviews the Landsat time series applications and research that

are developing rapidly in response to the opening of the Landsat archive. The

chapter concludes with future research challenges and prospectives.

14.2 Web Enabled Landsat Data (WELD) Products

14.2.1 Current WELD Products

The WELD products provide Landsat 7 ETM+ 30 m temporally composited and

spatially mosaicked products of the conterminous United States (CONUS) and

Alaska with a weekly, monthly, seasonal and annual reporting frequency (Roy

et al. 2010). The products are designed to provide consistent data that can be used to

derive land cover and geo-physical and bio-physical products. For example, they

have enabled the development of turnkey approaches to CONUS land cover and

land cover change characterization (Hansen et al. 2011, 2014) due to the systematic

Landsat processing, including conversion of digital numbers to calibrated top of

atmosphere reflectance and brightness temperature, cloud masking, and

reprojection into a gridded continental map projection (Roy et al. 2010).

The WELD products are generated from every available Landsat 7 ETM+ Level

1 T data in the Landsat archive with cloud cover �80 %, about 10,000 scenes per

year for the CONUS and Alaska. The weekly, monthly, seasonal and annual

products are defined by application of a compositing algorithm that attempts to

select the best Landsat observation of each pixel in the reporting period (Roy

et al. 2010). For each 30 m pixel location the six reflective Landsat 7 ETM+

bands, the two thermal bands, bit packed band saturation information, the Normal-

ized Difference Vegetation Index (NDVI) derived as the near-infrared minus the

red reflectance divided by their sum, two cloud masks, the day of year that the pixel

was sensed on, and the number of Landsat observations considered in the product

reporting period are stored. The products are defined in the Albers Equal Area conic

projection in separate geolocated tiles of 5000� 5000 30 m pixels.

The current WELD Version 1.5 products do not include radiometric correction

for the effects of the atmosphere or topographic variations. A number of atmo-

spheric correction methodologies have been developed but those using radiative

transfer algorithms and atmospheric characterization data provide the most poten-

tial for automated large area application (Vermote et al. 2002; Masek et al. 2006; Ju

et al. 2012). The impact of the atmosphere on Landsat data can be pronounced, for

example, considering 53 million 30 m pixel locations sampled systematically

across the CONUS over 12 months indicated that the mean CONUS absolute

difference between surface and top of atmosphere NDVI expressed as a percentage

of the surface NDVI was 28 % for “vegetated” surfaces (Roy et al. 2014b). Landsat

atmospheric correction may not always be reliable, particularly in the shorter

wavelength bands (Ju et al. 2012), and for this reason some large area land cover
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and land cover change mapping algorithms do not use atmospherically corrected

data (Hansen et al. 2011, 2013, 2014). Although radiometric correction for topo-

graphic variations has been shown to improve land cover classification accuracy

(Hantson and Chuvieco 2011; Vanonckelen et al. 2013), reliable systematic cor-

rection over large areas is challenging because this requires an adequate character-

ization of the atmosphere (especially aerosols) and modelling of the interaction of

scattered radiation with adjacent surface components that is particularly complex

when there is variable topography (Tanre et al. 1981; Vermote and Kotchenova

2008). None of the currently available large area Landsat or MODIS top of

atmosphere or surface reflectance datasets include topographic correction.

The WELD products are made freely available in both HDF and GeoTIFF

formats from portals hosted and maintained by the USGS EROS. Currently, the

Version 1.5 weekly, monthly, seasonal and annual WELD products for the CONUS

and Alaska are available for 10 years (2002–2012), a product volume of 4 TB per

year with HDF internal compression. The WELD HDF tiled products are available

via HTTP (http://e4ftl01.cr.usgs.gov/WELD) to support bulk data ordering. In

addition, in response to user requests to browse and order the WELD products

interactively, a What You See Is What You Get (WYSIWYG) Internet distribution

interface was developed and ported to the USGS EROS (http://weld.cr.usgs.gov,

Fig. 14.1). Users are able to interactively select and view any of the CONUS or

Alaska WELD products, flick through the chronology of preceding and subsequent

product time periods, and pan and zoom within selected product browse imagery.

Registered users may order any arbitrary rectangular geographic area of interest, up

to 2 GB, in a way that the product tiling file structure is transparent to the user. In

addition, a single pixel product time series dump functionality is provided to allow

users to extract WELD product time series for any 30 m pixel location, selected

either interactively or by entering latitude and longitude coordinates. Figure 14.2

shows an example resulting weekly WELD product time series. Before the WELD

project, to make this plot would require the separate ordering of 213 Landsat

images, application of image-specific calibration parameters, conversion of the

digital numbers to radiance, conversion of the radiance to brightness temperature,

and then precise geographic pixel location and value extraction, and notation of

each Landsat acquisition date.

14.2.2 Planned Global WELD Products

The global Landsat data volume is much greater than the global MODIS land

product generation volume. For example, there are approximately 150 million

1 km global land pixels, whereas just for the CONUS there are approximately

11,000 million 30 m land pixels (Roy et al. 2010). To process global coverage

Landsat data volume requires substantial computational resources. Figure 14.3

shows 12 global monthly WELD products generated on the NASA Earth Exchange

(NEX) for climate year 2010. These 30 m products have a similar tiled format as the
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current WELD products but are defined in the MODIS land product sinusoidal

projection (Wolfe et al. 1998). Each global monthly product took approximately 3 h

to generate once the global WELD code was correctly configured to make optimal

Fig. 14.1 Screen shot of the What You See Is What You Get (WYSIWYG) WELD Internet

distribution interface at (http://weld.cr.usgs.gov) showing the product selection page for the

conterminous United States (CONUS) 2012 WELD products: annual and four seasonal products

(top row), 12 monthly products (middle row), and 52 weekly products (bottom row)

Fig 14.2 Ten year 30 m WELD Landsat 7 brightness temperature weekly time series ordered

using the WELDWYSIWYG (http://weld.cr.usgs.gov) for a single desert pixel near Socorro, NM,

USA. A total of 213 pixel values are shown
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use of the NEX parallel processing capabilities. The key component of the NEX is a

software platform that enables processes to be executed on NASA’s Pleiades high
performance supercomputer (Nemani et al. 2011). At the time of writing the NEX

has 9 TB of online storage and 180,000 cores.

Planned global monthly WELD products are being generated under new NASA

funding. The products will be generated for six three year epochs centered on 1985,

1990, 1995, 2000, 2005 and 2010, selected because they are spaced evenly 5 years

apart and so enable 30 m land surface change to be monitored over a 25 year period.

Importantly, the products will be made from contemporaneous Landsat sensor data

to maximize opportunities for cloud free surface observation and so denser surface

time series (Kovalskyy and Roy 2013). The 1985 and 1990 epochs will be gener-

ated from Landsat 4 and 5 TM, the 1995 epoch will be generated from Landsat

5 TM, and the 2000 and 2010 epochs will be generated from Landsat 5 TM and

7 ETM+. Importantly, only Landsat Level 1 T images with a root mean square

geolocation error of less than a 30 m pixel dimension are used to enable more

accurate mapping and monitoring applications, the generation of less smoothed

temporally composited Landsat products (Roy 2000), and more accurate multi-

temporal change detection applications (Townshend et al. 1992).

At the time of publication of this chapter, 3 years (2009–2011) of prototype

global WELD products have been made available via HTTP (http://globalweld.cr.

usgs.gov/collections) and via a WYSIWYG Internet distribution interface (http://

globalweld.cr.usgs.gov).

Fig 14.3 Twelve prototype NEX global monthly WELD products generated from ~7000 L1T

Landsat 7 ETM+ acquisitions per month. Each 1.8 km true color browse pixel shown is generated

from 60� 60 30 m pixels. Black shows where there were no Landsat ETM+ L1T data in that

month. MODIS Sinusoidal equal area projection
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14.3 Landsat Time Series Applications and Research That
Are Developing Rapidly in Response to the Opening
of the Landsat Archive

14.3.1 Phenology Monitoring

Phenology concerns the seasonal periodicity of plant and animal life cycles

(Noormets 2009). At a recent U.S. National Phenology Network meeting the need

to make phenological information more amenable to managers, decision makers,

and the public was advocated (Enquist et al. 2012). Sparse collections of ground-

based phenology records, such as the timing of flowering and budding of various

plant species, are increasingly complemented by phenological studies that use

satellite data (Morisette et al. 2008).

Most satellite based phenological studies apply curve fitting techniques to time

series of spectral indexes that are sensitive to vegetation dynamics. The NDVI has

been widely used (White et al. 2009). A variety of polar orbiting satellites that

provide coarse spatial (100 m to 1 km) but high, near daily, temporal resolution

NDVI data have been used, including from the Advanced Very High Resolution

Radiometer (AVHRR) (Myneni et al. 1997; Schwartz et al. 2002; White and

Nemani 2006; Maignan et al. 2008; Kross et al. 2011; Jeganathan et al. 2014),

SPOT/Vegetation (Atzberger et al. 2014; Shen et al. 2014), and MODIS (Zhang and

Goldberg 2011; Bolton and Friedl 2013; Shuai et al. 2013; Hmimina et al. 2013;

Hilker et al. 2014).

The 30 m resolution of Landsat provides an appropriate scale for phenological

monitoring. Studies such as Kovalskyy et al. (2011), Elmore et al. (2012), Hufkens

et al. (2012), and Melaas et al. (2013), provide evidence that the use of moderate

spatial resolution Landsat data increases the ability to capture phenological varia-

tions imposed by micro-climatic and topographic effects, reduces the mixing of

different landscape components that may have different phenologies, and enables

more precise scaling of ground-based phenological observations.

The potential for Landsat data to derive phenological information has to date

been constrained primarily by the nominal 16-day Landsat temporal observation

frequency (Fisher et al. 2006; Fisher and Mustard 2007). Integration of data from

contemporaneous but different Landsat sensors provides more opportunities for

cloud free surface observation and so denser time series (Kovalskyy and Roy 2013).

For example, Fig. 14.4 shows 12 years of WELD weekly NDVI data for a single

forest pixel in the Columbia River Valley, WA, USA. These data were atmospher-

ically corrected and cloud-screened and importantly were derived by selecting in

each week the best pixel observation from contemporaneous Landsat 5 TM and

7 ETM+ data. The Landsat 5 TM and 7 ETM+ sensors are almost identical and have

15� fields of view and each overpasses the same location every 16 days. Combined,

the nominal repeat cycle they provide is 8 days but because satellite paths converge

at higher latitudes, the repeat coverage may be more frequent (Kovalskyy and Roy

2013). A total of 306 observations are illustrated and were selected from
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173 Landsat 7 ETM+ and 212 Landsat 5 TM cloud-free observations of the pixel

location. There were more Landsat 5 observations because in May 2003 the Landsat

7 ETM+ sensor had a failure and thereafter 22 % of the sensed pixels were dropped

(Markham et al. 2004).

The potential utility of the data illustrated in Fig. 14.4 for tracking phenology is

evident. A simple second order harmonic regression fit of the NDVI data is shown

(blue line). A number of researchers have advocated harmonic functions to enable

disturbance detection as new Landsat observations become available (Brooks

et al. 2012; Zhu et al. 2012). More sophisticated non-linear harmonic functions

that enable inter-annual variability in the phase and amplitude of the NDVI are

recommended (Carrao et al. 2010). Phenological metrics of interest to the research

and applications community include not only metrics that capture the inter-annual

trend in the vegetation index but also that capture the date of the start and end of the

growing season, the duration of the growing season, and the start of vegetation

senescence. Considerable effort has been expended on developing vegetation index

time series fitting functions, including fitting bell shaped curves (Badhwar 1984;

Tucker et al. 2001), Gaussian functions (J€onsson and Eklundh 2004), quadratic fits

of aggregated growing degree days (de Beurs and Henebry 2004), and piece-wise

log curve fitting (Zhang et al. 2003, 2009). An outstanding challenge is to assess the

most reliable and accurate methodology. Currently however there is no consensus

best approach and different methodologies have been found to prove useful under

different environmental conditions (White et al. 2009; de Beurs and Henebry 2010;

Atkinson et al. 2012).

14.3.2 Land Cover Change Monitoring

Classification is regarded as a fundamental process in remote sensing used to relate

pixel values to the land cover present at the corresponding location on the Earth’s
surface. Land cover classification and change detection approaches have evolved

considerably in the last several decades (Franklin and Wulder 2002; Coppin

et al. 2004; Lu and Weng 2007; Hansen and Loveland 2012). Recent Landsat

Fig. 14.4 Twelve years of weekly WELD processed Landsat 7 ETM+ (green) and Landsat 5 TM

(orange) cloud-screened and atmospherically corrected 30 m NDVI for a single forest pixel in the

Columbia River Valley, WA, USA. The blue line is a harmonic ordinary least squares regression

fit (R2¼ 0.78, 306 points) of the form: NDVI ¼ 0:46� 0:001x� 0:252 cos xð Þ � 0:123
sin xð Þ þ 0:011 cos 2xð Þ � 0:091 sin 2xð Þ, where x¼ ((DOY/365)+YEAR-2000), YEAR and DOY

and are the year and the day of the year that each Landsat pixel was observed on respectively
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based mapping and change detection approaches have focused on quantifying

disturbance or land cover change over a range of time scales that were rarely

feasible before no-cost access to the Landsat archive (Hansen and Loveland

2012). Large area Landsat land cover change algorithms applications have primar-

ily focused on mapping forest land cover change and forest disturbance. Per-pixel

time series approaches that identify significant changes by examination of the

temporal trajectory of surface reflectance or vegetation indices have been adopted.

The temporal trajectory is interpreted through sets of rules, which can be

predefined, as in the Vegetation Change Tracker (Masek et al. 2013; Huang

et al. 2010) and in the LandTrendr algorithms (Kennedy et al. 2010, 2012; Cohen

et al. 2010), or statistically derived from training data (Hansen et al. 2013; Sexton

et al. 2013). Landsat long time-series approaches have also been developed to

document spatial patterns of gradual land cover condition (Hostert et al. 2003;

Goodwin et al. 2008; Vogelmann et al. 2012).

New methods have been developed that allow modeling of the seasonal trajec-

tory of spectral information to enable disturbance detection as new Landsat obser-

vations become available (Brooks et al. 2012; Zhu et al. 2012), including changes in

both land use and land management within a given land use (Brooks et al. 2014). In

particular, with the improved Landsat 8 acquisition frequency, about 60 % more

global acquisitions per day than from Landsat 7 (Roy et al. 2014a), the opportunity

exists to begin to monitor moderate resolution land cover disturbances and rapid

land cover changes shortly after they occur.

14.4 Prospectives for Landsat Time Series Monitoring

The opening of the Landsat archive has fostered new analytical approaches for

describing land surface condition and dynamics and these will likely continue to

evolve. Landsat time series applications are fundamentally challenged however by

cloud cover, particularly in tropical and boreal regions that are routinely cloudy at

the time of Landsat overpass (Ju and Roy 2008; Kovalskyy and Roy 2013).

Moreover, the amount of Landsat data in the U.S. Landsat archive has not been

constant among Landsat sensors, from year to year, or geographically, outside of

the conterminous United States, because of differing Landsat data acquisition

strategies, data reception capabilities, and system health issues (Markham

et al. 2004; Goward et al. 2006; Loveland and Dwyer 2012). This is evident in

Fig. 14.3, where successive months with no Landsat coverage, for example in parts

of Africa, are apparent. These two factors, missing data and cloud obscuration,

significantly challenge the implementation of time series approaches. For example,

temporal interpolation or curve fitting, like in Fig. 14.4, will have variable reliabil-

ity depending on the temporal frequency of the clear observations and the dynamics

of the land surface (Jackson et al. 2004; Verbesselt et al. 2010; Zhu et al. 2012; Yan

and Roy 2014). Temporal compositing approaches have been developed to select a

best Landsat observation from all the Landsat observations collected over some
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reporting period (White et al. 2014), for example, to generate gridded weekly,

monthly, seasonal and annual composites, such as the WELD products (Roy

et al. 2010) (Fig. 14.1). Similarly, automated cloud screening and mosaicking

approaches have allowed wall-to-wall mapping of large areas of tropical forest

and boreal regions (Helmer and Ruefenacht 2005; Broich et al. 2011; Potapov

et al. 2011). Even with combined contemporaneous Landsat data, there may be

insufficient observations to capture certain rapid surface changes, such as due to

fire, pest outbreak, or flooding, particularly if the changes occur in persistently

cloudy periods.

A potential solution to provide more frequent cloud-free surface observations is

to fuse Landsat observations with data from other remote sensing systems. In this

respect the Moderate Resolution Imaging Spectroradiometer (MODIS) is well

suited and the MODIS Terra satellite was placed in the same morning orbit as

Landsat 7 to provide opportunities for multi-scale global land surface change

monitoring (Skole et al. 1997). Fusion can be undertaken empirically or by using

physically based approaches. The spatial and temporal adaptive reflectance fusion

model (STARFM) blends 16 day 30 m Landsat with daily 500 m MODIS data to

generate synthetic daily Landsat-like 30 m reflectance data (Gao et al. 2006) and

represents a significant step for empirical fusion research. Landsat fusion is not

straightforward because of differences among sensor spectral band configurations,

sensor and sun geometries, and surface changes. The STARFM technique, while

providing useful information, requires scene-dependent tuning parameters and does

not explicitly handle the directional dependence of reflectance as a function of the

sun–target–sensor geometry, usually described by the Bi-directional Reflectance

Distribution Function (BRDF). Roy et al. (2008) developed a semi-physical fusion

approach that uses the MODIS BRDF 500 m product (Schaaf et al. 2002) to predict

30 m Landsat spectral reflectance for a desired date as the product of the observed

Landsat reflectance and the ratio of the 500 m surface reflectance modeled using the

MODIS BRDF spectral model parameters and the sun-sensor geometry on the

predicted and observed Landsat dates. Recent research has modeled MODIS

vegetation index time series using phenological modelling approaches to adjust

and reconstruct sparse Landsat time series (Zhang et al. 2014). Other researchers

have explored techniques based on STARFM that are somewhat adaptive to land

surface change including the Spatial Temporal Adaptive Algorithm for mapping

Reflectance Change (Hilker et al. 2009) and the Enhanced STARFM (Zhu

et al. 2010). Fusion methods have gained popularity. This is especially true for

STARFM, facilitated by its publically available software, which has been applied

for applications including classification of conservation tillage land (Watts

et al. 2011), analysis of dryland forest phenology (Walker et al. 2012), evapotrans-

piration retrieval (Anderson et al. 2011; Jia et al. 2012), and derivation of urban

environmental variables in support of public health studies (Liu and Weng 2012).

Further research on fusion approaches is required, including fusion technique

comparison studies (Emelyanova et al. 2013), and more detailed consideration of

satellite geometric and sensor differences. The 2015 launch of Sentinel-2 by the

European Space Agency (ESA) will offer additional unique and complementary
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observations to the data provided by Landsat. There are two planned Sentinel-2

satellites designed to provide multiple global acquisitions with similar spectral and

spatial characteristics as Landsat (Drusch et al. 2012). Combined, the Landsat 8 and

Sentinel-2 data streams will provide the opportunity for near daily land surface

monitoring and may herald a new era for terrestrial change monitoring.

The sensor improvements of Landsat 8 compared to the previous Landsat

sensors are well documented (Irons et al. 2012) and offer refined opportunities for

quantitative approaches to Landsat information extraction (Roy et al. 2014a). It is

likely that computationally intensive processing algorithms that have been devel-

oped but only demonstrated for local studies will be increasingly applied to large

Landsat data sets. Physically-based information extraction approaches via model

inversion and data assimilation, and automated computer vision algorithms, may

become more prevalent. For example, recently, an automated Landsat agricultural

crop field extraction methodology was demonstrated using WELD time series (Yan

and Roy 2014).

Finally, it is established that satellite derived products and information should be

validated, particularly if they are used for policy making or fiscal scrutiny, for

example, Landsat deforestation and carbon assessments made in support of REDD

(Reducing Emissions from Deforestation and Forest Degradation in Developing

Countries) activities (UN-REDD 2008). Satellite product validation is typically

undertaken by comparison with independent reference data (Justice et al. 2000)

distributed using appropriate sampling schemes (Stehman 2013). However, valida-

tion of time series products is particularly challenging and adequate independent

time series reference data rarely exist. Methods that couple human interpretation of

time series data with higher spatial resolution aircraft and satellite imagery to allow

characterization of land cover change at sample points have been developed (Cohen

et al. 2010) and likely this will remain an active and needed research domain.

14.5 Summary

This chapter has demonstrated the key role that Landsat based remote sensing can

play in providing spatially and temporally explicit data and derived data products

for land surface monitoring. The opening of the Landsat archive has fostered new

analytical approaches for describing land surface condition and dynamics and these

will continue to evolve. Recent Landsat mapping and change detection approaches

have focused on quantifying disturbance or land cover change over a range of time

scales that were rarely feasible before no-cost access to the Landsat archive.

Future developments will likely include the development of global scale Landsat

applications that take advantage of the historical Landsat archive, applications that

fuse Landsat data with other remotely sensed data to reduce the impacts of missing

Landsat data and surface cloud obscuration, and the development of applications

that detect changes shortly after Landsat data are sensed. The challenge is to

transfer the methodologies developed in the research domain into the operational
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domain to provide information with known accuracy and consistency. This is

particularly important if Landsat based products are used in strategic ways and in

support of policy making.
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Chapter 15

Forest Cover Dynamics During Massive
Ownership Changes – Annual Disturbance
Mapping Using Annual Landsat Time-Series

Patrick Griffiths and Patrick Hostert

Abstract Remote sensing is a core tool for forest monitoring. Landsat data has

been widely used in forest change detection studies but many approaches lack

capabilities such as assessing changes for long temporal sequences. Moreover, most

methods are not capable of detecting gradual long term processes, such as post

disturbance recovery. Following the open Landsat data policy implemented in

2008, but also due to the improved level 1 processing standards, Landsat remote

sensing experienced considerable innovation, with many novel algorithms for

automated preprocessing and also for change detection. Among these, trajectory

based change detection methods provide new means for assessing forest cover

changes using Landsat data. For example, disturbances can be assessed on a yearly

basis and residual noise in the time series is effectively reduced, enabling the

previously impossible detection of gradual changes (e.g. recovery, degradation).

We here demonstrate the analytic power of an annual time series approach (using

the Landsat based detection of trends in disturbance and recovery (LandTrendr)

algorithm) by assessing forest cover dynamics for an area in Romania, Eastern

Europe. Our results illustrate that trajectory-based time series approaches can

successfully be applied in relatively data scarce regions. Annual disturbance pat-

terns allow for improved process understanding, and provide valuable inputs to a

range of applications, including resource management, climate modelling or socio-

ecological systems understanding, as in the case of Romania.
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15.1 Introduction

Spatially and temporally explicit information of forest ecosystems is important for a

broad range of applications in the context of forest management, carbon budget

assessments or biodiversity studies (Foley et al. 2005; GLP 2005). Remote sensing

has become a central tool for forest management and the monitoring of forest cover

dynamics (Wulder and Franklin 2003). Alternative information sources, such as

forest inventory data, commonly involve high labor costs, are very time consuming,

and costly to obtain. While not all information needs of forest managers can be

addressed by remote sensing based analyses, satellite observations can complement

or even replace certain types of field based data.

Observations by remote sensing are spatially explicit, repeatable and objective.

Thus, they allow assessing changes over time and provide information independent

of administrative or political boundaries (Kuemmerle et al. 2006). Moreover, field

based data on forest attributes might not be available for a targeted time period or

not comparable if data from different management entities are compared. A large

variety of remote sensing based monitoring and change detection methods have

been developed over the last decades (Coppin and Bauer 1996; Coppin et al. 2004;

Lu et al. 2004). These span a broad range of methodological complexity, from

simple image differencing over integrated multi-temporal image classification to

spectrally grounded change vector analysis. As a forest’s spectral appearance

commonly follows clearly defined temporal patterns over the course of a season,

relatively simple change detection methods may already allow for a sound assess-

ment of forest cover changes between two or few points in time (i.e. multi-temporal

images).

Most change detection methods, however, are not well suited for assessing forest

cover changes for a multitude of temporal instances, for example, when assessing

changes on a yearly basis over a period of 10 years. Multi-temporal classification

can facilitate change assessments for multiple points in time but is accompanied by

considerable complexity, for example regarding training data requirements. Fur-

thermore, forest canopy changes that spectrally result in more subtle changes, such

as drought stress of damages related to infestation by insects, are much more

difficult to detect based on the comparison of few individual images. Attributing

the causes of forest cover changes however, is not straightforward and often related

to high levels of uncertainty. Thus, many remote sensing studies of forest cover

adopt the ecological forest disturbance concept, which comprises natural (e.g. fires,

wind throw or snow break) as well as anthropogenic (e.g. logging, clearing for

development) causes of forest changes.

Time-series approaches provide a methodological framework that potentially

allows assessing forest cover changes with higher temporal resolution and that are

equally suited to detect and quantify long term trends associated with gradual

canopy changes. In the context of remote sensing, time series methods were

predominantly used for large field-of-view sensors that provide observations with

high temporal frequency. Using such datasets, continental to global assessments of
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vegetation trends and phenology became feasible (Reed et al. 1994; Friedl

et al. 2002; Tucker et al. 2005). For many forest ecosystems however, the coarse

spatial resolution of these sensors prohibits the successful detection of forest

disturbances caused by forest management or natural process regimes. Moderate

resolution imagery (20–100 m pixel sizes) provides a good compromise between

the spatial coverage and spatial resolution, while simultaneously providing system-

atic repeat acquisitions, and is therefore better suited to map forest cover changes in

different areas around the globe.

Time series approaches have only in few cases been adapted to moderate

resolution imagery (Kennedy et al. 2007). With regard to Landsat imagery, many

of the prohibitive restrictions have largely disappeared over the recent past (Wulder

et al. 2012). Most important were changes in data policy after which formerly

expensive data could be immediately downloaded over the internet. Almost equally

important were improvements to the level 1 data quality, specifically the unprece-

dented accuracy of the geometric and radiometric calibration. These developments

have driven considerable innovation into Landsat based change detection science.

For example, time series analysis concepts that use fitting approaches rather than

simple trend seeking are relatively new to Landsat data analyses, but have recently

been published and evaluated (Huang et al. 2010; Kennedy et al. 2010). These

annual time series approaches represent each year in the time series through a single

observation rather than utilizing all observations made within a given year. This

allows assessing forest cover changes at annual intervals and thereby facilitates the

quantification of gradual and long term forest change processes.

The following case study intends to demonstrate the utility of annual time series

approaches for characterizing forest changes over a time period of more than

25 years using Landsat data (Griffiths et al. 2012). A key motivation for conducting

this research were the massive forest ownership changes that occurred in post-

socialist Romania following the reintroduced of private property after 1990.

Romania’s restitution process started in 1991 and was implemented in three indi-

vidual laws (1991, 2000 and 2005) and is still ongoing today. More than half of the

countries forests has been transferred into private ownership, and more than

800,000 new forest owners have emerged (Abrudan et al. 2005; Ioras and Abrudan

2006). In order to better understand to what extent these ownership changes

modified forest disturbance regimes, annual disturbance dynamics, post disturbance

recovery as well as long term growth was identified from a Landsat time series

using the LandTrendR (Landsat based detection of trends in disturbance and

recovery) time series segmentation and fitting algorithms (Kennedy et al. 2010).

15.2 Data and Methods

The LandTrendR algorithms provide the means to fit simplified spectral-temporal

trajectories to each pixel in a time series of radiometrically corrected and/or

normalized index values through the process of temporal segmentation and fitting.
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These simplified trajectories minimize residual noise in the time series signal,

which might be related to phenological and atmospheric differences between

images or illumination differences caused by e.g. topographic shading. The fitted

trajectories can finally be categorized based for example on shape, duration and

timing. The workflow involves data preprocessing, creation of the annual compos-

ites, segmentation and fitting, post processing and finally, mapping and validation.

15.2.1 Study Region

Our analysis focused on one Landsat footprint (path 183, row 023) in central

Romania. It is located on the main arc of the Carpathian Mountains, where the

north-south aligned eastern Carpathians transition into the east-west oriented

southern Carpathians (Fig. 15.1). The area is characterized by mountainous terrain

extending up to 1,600 m in the eastern- and over 2,500 m in the southern

Carpathians. The intermontane basins and plateaus feature hilly and undulating

terrain, with a mix of agriculture, pasture and settlements. Forests cover roughly

half of the study region and comprise beech dominated deciduous forests, spruce

and fir dominated coniferous forests, as well as mixed forests (accounting for

approximately 37 %, 26 % and 37 % of the forest area, respectively).

15.2.2 Landsat Imagery

In order to assemble an annual time series stack, we obtained all precision terrain

corrected imagery (L1T) that was acquired during the seasonal window of main

photosynthetic activity (June – September) for the years from 1984 to 2010. While a

narrower seasonal window would be preferred, a general data scarcity and

prevailing (often topography related) cloud coverage hinders the assembly of

such a time series in the study region. For years where peak growing season

imagery was very cloudy we provided several scenes in order to provide observa-

tions for most pixels in the study area. As the United States Geological Survey

(USGS) Landsat archive contained no imagery for the years 1996–1999, we

additionally acquired three images from the European Landsat archive and

co-registered these L1G images to the L1T geometry. Moreover, for years where

all the available imagery was strongly cloud contaminated, we additionally incor-

porated imagery from the east and westward overlapping footprints (path 182 and

184, row 023). This resulted in a total of 52 Landsat Thematic Mapper (TM) and

Enhanced Thematic Mapper Plus (ETM+) images (4 x Landsat-4, 31 x Landsat-5,

17 x Landsat-7). No suited imagery was available for 4 years (1985, 1990, 1992

and 1997).
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15.2.3 Preprocessing

In order to ensure spectral and radiometric comparability across acquisition dates

and Landsat sensors, we combined atmospheric correction and radiometric normal-

ization. First, we atmospherically corrected an image from August 27th 1998 using

the COST approach (Chavez 1996). All other images were subsequently radiomet-

rically normalized to this corrected image based on the Multivariate Alteration

Detection algorithm (Canty and Nielsen 2008). The LandTrendR approach uses a

single spectral index to represent the annual time series of observations. We tested

different vegetation indices and spectral transformations, and decided for the

Tasseled Cap Wetness (TCW) component as this index provided the best compro-

mise between deciduous forests with strong near infrared reflectivity and extremely

low reflective coniferous forests. Thus after radiometric normalization, all images

were transformed into Tasseled Cap (TC) space (Crist and Cicone 1984).

LandTrendR subsequently performs a simple best value compositing for those

years that have more than one image, prioritizing acquisitions close to the all

year acquisition median day-of-year (DOY), which is 223, equivalent to August

11th. The time series stack of these annual best value composites is in the following

referred to as source values and these provide the basis for time series segmentation

and fitting.

Fig. 15.1 The study region (blue frame) showing the distribution of the predominant forest types.

The overview map (top right) shows the location within Europe. A pixel-based image composite

for the 2010 leaf-on period is shown in the background (RGB¼ 4, 5, 3). For details on the forest

classification and the image composite see Griffiths et al. (2014)
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15.2.4 Time Series Segmentation and Fitting

In order to restrict time series segmentation and fitting to forested pixels only, we

developed a forest mask following a supervised classification approach (Griffiths

et al. 2012). The resulting mask included pixels in the forest category if a pixel had

been forested in any point in time and assigned the non-forest category if a pixel had

never been forested over the study period. Subsequently, time series segmentation

and fitting is carried out on the time series source values. A detailed description of

this process is provided by Kennedy et al. (2010). An essential element is the

identification of vertices in the trajectory which can be thought of as turning points

in the spectral-temporal development of a pixel. Vertices are identified by locating

the largest deviation from a series of sequential regressions between points in the

time series. Subsequently, different simplified versions of the trajectory are evalu-

ated and the one with the best (according to the p-value) statistical fit is selected and

the fitted spectral values are written into the fitted version of the time series (fitted

values). Figure 15.2 illustrates a schematic time series for a single pixel.

15.2.5 Disturbance, Recovery and Growth Mapping

In order to reduce commission errors during the disturbance mapping, we filtered

trajectories in the time series according to the relative percent cover change

magnitude. We approximated a percent cover estimation for each observation in

the time series by linearly scaling the observed TCW values of bare soil (i.e. zero

percent cover) with those of dense canopies (i.e. 100 % cover), both of which could

be identified in the imagery. Subsequently the relative disturbance magnitude was

derived as the difference between pre- and post-disturbance percent cover values

relative to the pre-disturbance cover estimate. It should be noted that these percent

cover estimates only provide a crude cover estimate that allows for effective

reduction of false detections. They do not directly compare to cover estimates

derived through more quantitative (e.g. field or modelling) methods.

For each detected disturbance we extracted disturbance onset, relative distur-

bance magnitude and the duration of the disturbance event. We then extracted all

disturbance trajectories (i.e. those that feature a segment with decreasing TCW

values) that featured at least 30 % relative percent cover decrease over one year and

at least 5 % cover decrease over a 20 year duration, using a sliding scale for years in

between. These thresholds are more conservative than in other studies (Kennedy

et al. 2010), in order to account for higher noise levels in our time series. Addi-

tionally, the pre-disturbance cover estimate had to be at least 10 % to be included in

the disturbance mapping. This resulted in a total of 22 disturbance classes (1986–

2010, 4 years without data). Finally, we applied a spatial filter that assigned groups

of pixels less than 7 of a given disturbance class, to the surrounding class.
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In order to quantify post-disturbance recovery and long term growth dynamics,

we extracted all segments of vegetative increase where the change in percent cover

was at least 15 % and that occurred over a 3–26 year period (26 years is the entire

time span of the time series). Based on these segments, we mapped areas of long

growth as well as areas recovering from previous disturbances. Post disturbance

recovery was then assessed on the basis of individual disturbance patches. We

assessed post-disturbance recovery state after five years by averaging the percent

cover value of all pixels in an individual disturbance patch. Pixel trajectories

increasing over at least 10 years or at least 20 years were summarized separately.

These areas were not affected by any disturbances within the study period and we

categorized two groups based on their absolute percent cover increase: (1) cover

increase between 20 and 50 %, and (2) cover increase between 50 and 100 %.

15.2.6 Validation

The validation of the disturbance map was based on an independent point sample

that we obtained through stratified random sampling. This yielded 30 points per

disturbance class and 300 points for the stable forest and non-forest classes.

Samples were interpreted regarding the presence/absence as well as the timing of

disturbance events. For this we visualized the time series trajectories along with the

image data in a dedicated visualization and interpretation tool (Cohen et al. 2010).

Fig. 15.2 Schematic illustration of an annual pixel time series. The observed values from the

imagery are shown as orange points, the fitted time series trajectory is shown as a purple line. This
example shows an idealized disturbance trajectory where a period of slight loss of vegetative cover

is followed by an abrupt decrease (i.e. disturbance), which then again is followed by a recovery

segment. Parameters such as disturbance duration and magnitude are illustrated
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Additionally, high resolution imagery in Google Earth was available as well as field

data from several field trips to the region. We constructed a confusion matrix and

accounted for the stratified sampling design by calculating an error adjusted area

estimates as well as the 95 % confidence intervals around these estimates (Olofsson

et al. 2013). Unfortunately, validation of growth and recovery dynamics was not

feasible based on the historic Landsat imagery itself and was therefore not pursued.

These results therefore only reveal tendencies of vegetation dynamics.

15.3 Results

The time series segmentation and fitting algorithms depicted temporal trajectories

of forest dynamics over the 27 year study period overall well (Fig. 15.3). While

about 50 % of the pixels included in our forested land mask featured at least

21 cloud free observations, in many cases much less observations (about 12 % of

pixels had 17 or less observations) were available due to topographically induced

cloud cover or a lack of image acquisitions. Periods of relative stability were

identified despite year to year variation in the observed signal (Fig. 15.3(1)). In

many cases, intra annual variability in the time series signal was considerable. For

example, Fig. 15.3(2) shows a disturbance event followed by recovery on a

northward facing slope (aspect 40�). While the fitted time series underestimated

the magnitude of the disturbance event, the fitted recovery segment compensated

much of the inter-annual variability in the signal. Areas exhibiting long term growth

of forest biomass were also successfully fitted in many cases. We provide one

illustrative example of a full 27 year growth trajectory in Fig. 15.3(4). Here the

inter-annual variability during the early years of the trajectory is considerable, due

to variations in the herbaceous dominated land cover. For the period from 1995 to

2010, only six observations were available due to cloud coverage and scan line gaps

(related to the scan line corrector failure on Landsat-7 in May 2003), but the

estimated fit still depicted the overall trend in biomass increase well. Some cases

of erroneous fits related to disturbances that occurred during the earlier years of the

time series. These are often caused through too few or even only a single observa-

tion before a disturbance detection. While pixels that experienced multiple distur-

bance events were overall rare (<2 %), Fig. 15.3(5) depicts such a case. Here a first

disturbance event occurred in 1995 and was then followed by a second disturbance

in 2006. The parameterization of the segmentation and fitting routines resulted in a

very much generalized trajectory suggesting a continuous decrease in biomass since

1984 while the trajectory and image chips in Fig. 15.3 clearly suggest two distinct

disturbance events.

Regionally, disturbances were overall rare in the eastern part of the study region

and predominantly occurred in the eastern Carpathians and to a lesser extent in the

southern Carpathians (Fig. 15.4). Our disturbance map indicated that in many areas

disturbances were basically absent until the later years within the study period

(e.g. Fig. 15.4(5)). Several areas showed extensive disturbance patterns
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(e.g. Fig. 15.4(4) and Fig. 15.3(5)), commonly dominated by disturbances detected

in 1996 which likely relate to a major wind throw that occurred in the region in

November 1995 (Mihalciuc et al. 1999).

Approximately 50 % of the study region was forested at one point in time during

the study period. We detected roughly 70,000 ha of forest area that experienced

disturbance over the 27 year time period which relates to 4.2 % of the assessed

forest area. Annually we detected between 604 ha in 1991 and 8,596 ha in 1996 as

experiencing disturbance (Fig. 15.5). Generally, the yearly area mapped as dis-

turbed declined towards the time of socialist collapse in Romania (i.e. 1989) when

compared to the very early years. The annually disturbed area was relatively low

Fig. 15.3 Five examples of the time series data are provided in each row. Each example provides

three image chips (RGB¼Landsat bands 4/5/3) depicting key points in the development of the

illustrated pixels. The trajectory plots (right column, x-axis is time in years, y-axis is Tasseled Cap

Wetness index) show the time series for the center pixel indicated in the image chips. The observed

time series data (source values) are shown in red where gaps indicate missing observations. The

fitted time series trajectories are shown in blue. The scale of all image windows is 1:125,000
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following the first restitution law in 1991, but then increased up to 1995 and 1996

where we detected more than 5,500 ha and 8,500 ha of disturbed forest area,

respectively. Following the second restitution year in 2000, the annually disturbed

area was relatively low but increased again towards 2004 when the third law was

passed. During the years following the third restitution law in 2004, the annual

detected disturbance area was above 4,000 ha with the exception of 2005 and 2009

(Fig. 15.5).

The assessment of post-disturbance recovery after 5 years showed that on

average, disturbance patches had recovered 50 % of the relative disturbance

magnitude. Exceptionally high recovery rates were observed for 1986 and 1994

(~55 % each), while lower recovery rates were observed for disturbances detected

in 1996 (43 % of the relative disturbance magnitude). Areas exhibiting substantial

increases in forest cover amounted to a total of 110,000 ha (6.6 % of the assessed

Fig. 15.4 The disturbance map with five detailed close-up. Scale of all close-up windows is

1:300,000, “NF” is the Non Forest and “F” is the stable Forest class
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forest pixels) for growth trajectories over 10 or more years. Regarding growth

trajectories evolving over 20 or more years, about 3.2 % of the assessed forest

pixels (52,000 ha) increased between 20 and 50 % relative cover while less than 1 %

increased by more than 50 %. Growth trajectories evolving over 10–20 years

amounted to 39,000 ha (2.4 %) for 20–50 % cover increase while cases increasing

by more than 50 % over the same time period were about 4,500 ha (0.3 %).

Figure 15.6 provides a spatial depiction of long term growth dynamics.

The overall accuracy for the disturbance map was 95.7 % after accounting for

the stratified random sampling design for the validation point sample (Table 15.1).

On the level of individual disturbance classes, the highest commission error was

observed for 1986 (26 %) and the highest omission error for 1988 (40 %). The more

recent disturbance classes generally featured lower errors when compared to the

earliest years in the time series. Stable forest and non-forest areas where validated

with omission and commission errors below 5 %.

15.4 Discussion and Conclusion

Time series approaches have recently become an attractive option for Landsat

based remote sensing studies and were favored by data quality and policy issues

as well as increased computational capabilities. Compared to conventional change

detection methods, time series approaches allow the assessment of land changes

over long periods and for many points in time and thus offer a cost effective

alternative to other mapping methods. The annual time step that algorithms such

as LandTrendR or the Vegetation Change Tracker are based on, is ideal for

Fig. 15.5 Bar chart summarizing the annual disturbance dynamics (error adjusted area estimates)
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monitoring forest change dynamics in a temperate setting (Huang et al. 2010;

Kennedy et al. 2010).

Our case study was centered on major societal changes in the context of the post

socialist transition in Romania. Re-privatization and restitution of forest property

profoundly altered the ownership structure in Romania. In order to estimate to what

extent these developments affected forest disturbance regimes, disturbance dynam-

ics needed to be quantified on an annual basis. This offers unprecedented detail into

year-to-year disturbance patterns which can be related to the key periods such as the

individual restitution laws. However, disturbance maps as those developed in this

study capture man-made as well as natural forest cover changes and need to be

interpreted with caution even though both disturbance regimes are often intertwined

(Griffiths et al. 2012). Moreover, other studies suggest that certain forest types

Fig. 15.6 Long term growth map depicting pixels with temporal trajectories suggesting substan-

tial increase in percent cover over 10–26 years. “NF” is the Non Forest and “F” is the stable Forest
class

318 P. Griffiths and P. Hostert



relate to higher disturbance levels due to higher susceptibility to natural disturbance

agents and forest management considerations (Griffiths et al. 2014). Assessing the

long term development of forested pixels through time series analyses allows

quantifying post disturbance recovery and forest growth patterns. These are, how-

ever, spectral measures of recovery and thus not directly comparable to recovery in

an ecological sense. Our results therefore indicate tendencies, for example, that the

area that experienced disturbances was smaller than the areas undergoing substan-

tial increase in forest cover. This indicates a high productivity of these forests.

However, regional disturbance hotspots drastically changed within the study

period.

In this case study, we demonstrated the utility of Landsat time series analyses in

general and the LandTrendR approach specifically. The performance of the time

series fitting algorithms is overall very satisfying, as abrupt changes

(e.g. disturbances), as well as gradual long term processes (recovery, long term

growth), were well captured. Work remains to be done in order to develop valida-

tion techniques and quantify the errors related to regrowth and recovery mapping.

In some cases a different parameterization could have further improved the results

Table 15.1 Summary of the

disturbance map validation

providing errors of omission

and commission for the

disturbance classes as well as

the stable forest and non-

forest class

Year Omission (%) Commission (%)

1986 0.00 25.81

1987 12.15 16.13

1988 39.53 16.67

1989 5.32 0.00

1991 0.00 13.33

1993 11.45 10.00

1994 0.00 22.58

1995 6.17 22.58

1996 7.88 3.33

1998 9.83 9.68

1999 1.87 12.90

2000 21.39 10.00

2001 2.58 32.26

2002 4.75 % 10.00

2003 4.39 3.33

2004 8.37 3.23 %

2005 0.00 6.45

2006 6.10 6.25

2007 0.00 6.67

2008 5.86 0.00

2009 0.00 12.90

2010 2.21 12.12

NF 4.73 3.39

F 3.73 4.83

OAC ¼ 95.72
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of the time series fitting (e.g. Fig. 15.3(5)), yet optimizing the parameterization for

few individual cases comes at the cost of losing general applicability. Overall,

annual time series approaches, such as LandTrendR, represent recent and innova-

tive approaches to land monitoring and change detection. While the availability of

moderate resolution imagery will greatly improve in the coming years (Drusch

et al. 2012; Roy et al. 2014), this study showed that trajectory-based change

detection approaches are also feasible using historic imagery in relatively data

scarce regions (Griffiths et al. 2012; Main-Knorn et al. 2013). Reliable disturbance

products on an annual basis are highly valuable for a range of applications, e.g. for

investigating the effects of forest management regimes or as input to climate

models. These approaches hold great potential for improved process understanding

through new conceptualization of land change processes in the context of optical

remote sensing data analyses (Kennedy et al. 2014).
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Chapter 16

Radar Time Series for Land Cover
and Forest Mapping

Christiane Schmullius, Christian Thiel, Carsten Pathe,

and Maurizio Santoro

Abstract Radar time series are powerful means to improve retrieval algorithms

about land surface characteristics in the following ways: (i) as information for

identification of land surface conditions, (ii) as source of multivariate statistics for

mapping methodologies, (iii) to select the right scene(s) for dedicated retrieval

procedures, or (iv) to train model parameters in physical retrievals. Albeit radar

data from air- and spaceborne platforms have been investigated since 40 years,

operational applications are limited – partly due to the non-intuitive handling of

complex microwave backscatter signals, and partly due to restricted geometric and

temporal resolutions or frequency and polarization constraints. This chapter gives

an overview of 20 years of pilot projects performed by the authors and their

collaborators with the goal of large-area radar data exploration. All studies lead

to innovative pre-operational applications, several with promising discoveries that

can now be realized with a new and expanding fleet of radar satellites. Four case

studies for land cover, forest mapping, forest cover change and savannah monitor-

ing conclude this chapter.

16.1 Introduction

Radar remote sensing applications for land surfaces have been investigated exten-

sively since the 1980s, when NASA deployed their airborne system AIRSAR over

various test sites to prepare and accompany a series of spaceborne Shuttle Imaging

Radar (SIR) experiments (1981: SIR-A, 1984: SIR-B, April and October 1994:

SIR-C/X-SAR) jointly with the German Aerospace Centre (DLR) and the Italian
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Space Agency (ASI). These Multi-sensor Airborne Campaigns (MACs) and SIR-

missions represent the first proof-of-concept of retrievals which have been devel-

oped with ground scatterometer systems in the decades before. A summary by

Ulaby et al. 1986 of these in situ backscatter time series under various environ-

mental conditions with explanations of the underlying physics still serves as a major

reference for applications with spaceborne data. This transferability of concepts is

based on the unique radar calibration procedure which allows comparisons over

time and between sensors as long as the same wavelength and polarisation is being

used. The fundamental relation between the characteristics of the radar system, the

transmitted signal, the target, and the received signal is called the radar equation.

Since radar systems actively emit microwave radiation, the illuminating geometry

and technical characteristics are known and can thus be accounted for in the

retrieval algorithm for a specific surface phenomenon (such as phenological state,

biomass, or soil moisture).

Albeit the information content in radar images corresponds to well-defined

surface parameters (i.e. volumetric moisture, surface roughness and structure of

the scattering medium), this remote sensing technique has only a limited user

community due to the complexity of the necessary pre-processing steps. These

procedures originate from the principle of using backscattered intensities of

actively emitted microwave pulses, thus causing speckle, corner reflections or

geometric obstacles such as layover, foreshortening and rectangular pixels – these

are all non-intuitive phenomena for the optically trained remote sensing expert.

Hence, radar image understanding needs specific training, especially for non-

engineers. This gap has for example been tackled in the Radar remote sensing

education initiative (SAR-EDU) of the German Space Administration (DLR

Raumfahrtmanagement) which provides educational material to interested univer-

sity teachers, federal agency employees and PhD students through a dedicated DLR

web-portal since December 2014: https://saredu.dlr.de. The reader is referred to this

portal for background material, since an introduction to radar theory would go

beyond the scope of this section.

The following paragraphs contain an overview of three concepts of how to use

radar time series as tools for land cover and forestry applications: (1) information

about what +where + state of land surface characteristics, (2) source of multivariate

statistics as mapping characteristics, (3) choosing the right scene for the product

retrieval. Four examples of operational applications for land cover, forest cover and

-change and savannah monitoring are given in the third section.

16.2 Radar Time Series as a Tool for Land Monitoring

Land surface properties unfold their characteristics in radar data sets – as for optical

images – when exploiting temporal information. Time series are of special impor-

tance for radar applications because of the limited spectral space (usually only one

wavelength and two polarisations) and because of the radar-specific suitability for
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multi-temporal exploitation due to the sensor’s high radiometric accuracies. Addi-

tionally, due to the capability of radar signals to penetrate the atmosphere even in

the presence of clouds and rain, radar time series allow to focus on the changing

surface constituents over months, years, and even decades as will be demonstrated.

16.2.1 Time Series for Information Retrieval About Land
Cover State

Operational land cover mapping with spaceborne radar data became possible with

the launch of the European satellite ERS-1 in 1991. For the first time, SAR images

became available globally and repeatedly. A first summary publication by the

European Space Agency (ESA) (Wooding et al. 1995) showed the remarkable

behaviour of C-band VV-polarized time series for crop mapping (Fig. 16.1). Back-

scatter and attenuation features, already described in Ulaby et al. 1986 (ibid.

Fig. 17.19.32, p. 1566), were now observable for large areas and thus their spatial

manifestation was proven.

Global C-Band time series were successfully continued through the launches of

ESA’s follow-up satellites ERS-2 (European Remote Sensing) in 1995 and ASAR

(Advanced Synthetic Aperture Radar) on ENVISAT (Environmental Satellite) in

2002. Providing over a decade of C-band data allowed the development of auto-

mated routines for land cover mapping. The German ENVILAND-1 and -2 pro-

jects, supported by DLR’s Space Administration from 2004 to 2012, investigated

the potential of radar-optical fusion techniques. The goal was the development of an

automated retrieval of land cover and biophysical characteristics through exploita-

tion of both sensor types. The proposed classification procedure consisted of three

main stages. The first processing step comprises the segmentation of the optical

Earth observation (EO) data. Next, potential training sites are being selected

automatically by applying a decision tree with flexible, scene-specific thresholds

that are calculated based on expert knowledge and histogram analyses. Finally, as

the third step, training samples are being used as input to a supervised classification.

The overall accuracy of the final land cover map increased by 6 % when C-band

texture and backscatter information was included during classification. The results

are illustrated in Fig. 16.2. A significant improvement was achieved for the classes

Urban and Grassland as well as for Forest. The absolute number of crop classes

could be increased (Riedel et al. 2008).

Radar time series not only support identification of phenological states and

improve classification accuracies; they can also be used innovatively in cloud

removal. Eckardt et al. (2013) reconstructed cloud-contaminated pixels in Landsat

images using the Synthetic Aperture Radar (SAR) data. Cloud contamination was

simulated with masks of varying size to systematically investigate the developed

technique. The authors used three radar images during 1 month of the growing

season to establish a small temporal signature. Each image, though, originated from
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a different radar satellite (ERS-2, TerraSAR-X and ALOS-1 (Advanced Land

Observing Satellite)). They developed a Closest Feature Vector (CFV) based on

the assumption of a physical relation between reflectances in the VIS/NIR (Visible/

near-infrared) part of the electromagnetic spectrum, the temporal microwave back-

scatter signature, and the respective plant conditions at the acquisition dates. SAR

data thus guided the selection of the needed reflectances as an integral part of the

processing procedure to fill cloudy image gaps. Figure 16.3 illustrates the informa-

tion content of radar false-colour composites compared to a Landsat VIS-band

colour composite.

16.2.2 Time Series as Source for Statistical Land Surface
Indicators

Comparable to coarse resolution optical image acquisitions (e.g. Medium Resolu-

tion Imaging Spectrometer (MERIS), Satellite Pour l’Observation de la Terre-

Vegetation (SPOT-VGT), National Oceanic and Atmospheric Administration

(NOAA) Advanced Very High Resolution Radiometer (AVHRR)), new ScanSAR

modes became available having a reduced geometric resolution but an improved

temporal repetition rate. The first ScanSAR-mode from a satellite was provided

from the Canadian RADARSAT-1 launched in 1995, followed by the ENVISAT

ASAR system in 2002. These new types of data sets enabled continental, wall-to-

Fig. 16.1 Multi-temporal signature of ERS-1 C-band backscatter signals (Wooding et al. 1995,

modified): the decrease between end of May and mid-June is characteristic for the increasing

attenuation of VV-polarized radar pulses during the lengthening of cereal stalks or, similarly, grass

canopies. With ripening and yellowing, attenuation is minimized and backscatter increases again.

This process is especially observable at C-band because of the correspondence in size between the

wavelength and geometry of the scattering objects
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Fig. 16.2 Land cover maps from multi-temporal Landsat, ASAR and ERS-2 scenes from 2005,

test site Nordhausen/Thuringia, Germany. The achieved overall accuracies are: optical & SAR:

83,7 %; optical only: 77,9 %; SAR only: 80,2 % (©Uni Jena, 2007). Only two Landsat scenes from

21. April and 10. July were available due to typical cloudy weather conditions during the growing

season, but nine SAR images could be used

Fig 16.3 Comparison of colour composites to illustrate the image information content: (a)
Landsat TM5 B3|B2|B1; (b) X-HH|L-HH|C-VV; (c) X-HH|X-HV|L-HH (Eckardt et al. 2013).

The radar scenes are being used as an additional source of spectral information to overcome the

problem of missing data due to cloud cover
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wall products from radar backscatter retrievals using “hyper-temporal” statistics, a

term introduced for radar applications by Schmullius and Santoro in 2007.

One of the first hyper-temporal retrievals for land cover applications had been

performed with a non-imaging system, the wind scatterometer on-board ERS-1 for

northern Eurasia (Schmullius 1997). Two indices had been introduced: the Slope

Index (representing the incidence angle dependence of daily scatterometer mea-

surements collected over 3 years), and the Radar Backscatter Index (RBSI) (defined

as the ratio of the mean backscatter from large incidence angles over the absolute

Slope Index). The RBSI is a measure of the amount of volume scattering from

vegetation and showed – despite the very coarse resolution of 50 km – convincing

correlations to the full range of canopy densities (best r¼ 0.93 for July). The RBSI

correlation coefficients were investigated month by month and showed a relatively

stable behaviour over the year (see Fig. 16.4). The dense time series revealed – for

the first time – spatio-temporal pattern of freeze/thaw-processes, and secondly, an

unexpected correspondence between 5-day interval backscatter time series anom-

alies with crop yield estimates for the former Soviet wheat belt.

About 10 years later, the hyper-temporal approach was extended to ScanSAR

radar imagery: stacks of hyper-temporal ASAR Wide-Swath data led to a new

retrieval approach – the BIOMASAR algorithm (Santoro et al. 2011). The algo-

rithm is based on the famous Water Cloud Model (Attema and Ulaby 1978) and its

extension to interferometry (Askne et al. 1997; Santoro et al. 2002). Collecting a

minimum of 60 individual backscatter acquisitions per location, the typical radar

noise is strongly reduced and a systematic sensitivity with even high forest densities

and thus forest growing stock volume (GSV) was found. This finding was of special

interest because C-band backscatter and coherence data were regarded to saturate at

low biomass levels (Balzter et al. 2002; Balzter and Schmullius 2001; Luckmann

et al. 2004; Schmullius et al. 2001; Wagner et al. 2003). Furthermore, the

BIOMASAR algorithm does not require in-situ reference data for model training

and completely relies on statistical estimates from backscatter data of unvegetated

areas versus dense forest plots. These can be found by using other canopy products,

e.g. MODIS Vegetation Continuous Fields (VCF). Validation showed that the

approach is performing very well and is comparable to conventional approaches

involving in-situ data for model training. No signal saturation is observed up to a

GSV level of 300 m3/ha and the relative root mean square error (RMSE) was

between 34.2 and 48.1 % at a 1 km pixel size and consistently between 20 and 30 %

at an 0.5� resolution as used by global vegetation models (Santoro et al. 2011,

2013a).

16.2.3 Time Series for Choosing the Right Scene(s)

Radar time series can also be used to select images of the most appropriate day-of-

year, season or temporal combination for a specific application. For example,

ASAR C-band time series were analysed as part of the ESA GMES (Global
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Monitoring for Environment and Security) Service Element (GSE) Project “Forest

Monitoring” with the unexpected result that April-scenes outperformed any other

month to map forest disturbances in the boreal zone due to the specific scattering

processes during the thawing period (Thiel et al. 2007, 2008). Ackermann (2015)

investigated a total of 222 radar satellite scenes from TerraSAR-X, Cosmo-SkyMed

(Constellation of small Satellites for Mediterranean basin Observation) and

PALSAR (Phased Array type L-band Synthetic Aperture Radar) of a Thuringian

forest site with an extensive set of ground data to quantify the impact of forest

structure and temporal influences. Figure 16.5 shows one of the evaluated X-band

time series, which can be summarized as temporally stable except major precipita-

tion events leading to an increase. The time series also reveal an unexpected

stability of the difference between spruce and beech forests – regardless of the

chosen co-polarization HH or VV- even in winter times under leafless conditions.

Fig. 16.4 Time series of correlation coefficients for four ERS-1 wind scatterometer parameters

with canopy densities at 20 meteorological stations in Siberia (Schmullius 1997): normalised

backscatter intensities at steep and large incidence angles, the slope of the incidence angle

dependencies per month, and the Radar Backscatter Index (explained in the text). Values are

monthly, three year averages (1992–1994). Canopy densities range from 5 to 90 %, the RBSI has a

dynamic range from 4 to 12
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L-band backscatter intensities are strongly impacted by meteorological influ-

ences on the land surface conditions due to its much longer wavelength and thus

deeper penetration into the canopy and, partly, into the upper soil layer. Moisture

changes and particularly freezing events alter the scattering process significantly

(compare Fig. 16.6). However, L-band coherence (coherence is the measure of

phase correlation between two radar acquisitions) had revealed a large sensitivity

and dynamic range to forest biomass (see Fig. 16.7). Coherence from winter

showed a clear correlation with forest GSV. For summer scenes, the spread in the

values was too large to give reliable results (Eriksson et al. 2003). Therefore,

Eriksson et al. (2005) evaluated coherence from eight 44-day image pairs acquired

with the Japanese Earth Resources Satellite 1 (JERS-1) during frozen winter

conditions over several test sites in Siberia. A simple empirical exponential

model was used for the retrieval. The results showed that under frozen winter

conditions L-band repeat-pass coherence is a useful data source for stem volume

retrieval, although accuracy decreases for higher stem volumes. The lowest

retrieval error was 59 m3/ha and with one exception the relative RMSE stayed

within the range 42–76 %.

With increasing availability of L-band coherence time series from JERS-1

(1992–1998) and PALSAR on-board ALOS-1 (2006–2011) and -2 (launch 2014)

a systematic investigation of the signal stability and influencing factors became

feasible to support selection of best scenes for forest retrievals. Thiel and

Schmullius extensively published on the retrieval performance under varying

environmental conditions, which is described in the following illustrations:

Fig. 16.5 TerraSAR-X backscatter time series over Thuringian forest test site. The signal stability

demonstrates the all-year capabilities of X-band data for species discrimination between spruce

needleleaf and beech broadleaf canopies (Ackermann et al. 2010). Major precipitation events

increase overall backscatter (red circle), but separability is maintained
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Fig. 16.6 PALSAR L-band time series from Thuringian forest test site exhibit very strong

dependency on frozen conditions due to attenuation (Ackermann 2015)

Fig. 16.7 Stem volume retrieval for the Siberian forest test site Chunsky East, Krasnoyarsk Kray.

This result belongs to the first large-area application of an inversion model applied to L-band

winter coherence values over a 1 mio km2 forest area between Lake Baikal and the river Yenisei

(Eriksson et al. 2005). This region represents commercially valuable forest stands that experience

increased logging activities (compare Sect. 16.3.2, ZAPÁS Study)
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Figure 16.8 – a phase height difference from unfrozen (8 m above ground) to frozen

conditions (4 m above ground) has been determined from over 370 samples and

36 interferometric pairs (2013a),

Figure 16.9 – species-specific seasonal coherence behaviour was discovered and

quantified (2014),

Figure 16.10 – effects of season and perpendicular and temporal baselines were

summarized (2013b).

During frozen conditions an increased coherence over open areas was observed,

decreased coherence over dense forest, decreased spread of coherence, and an

improved correlation between |γ| and GSV. Furthermore, no indication was found

that the perpendicular baseline impacted coherence levels from dense forest,

whereas a difference was observed at unfrozen conditions. Consequently, at frozen

conditions temporal decorrelation is the major source for diminishing coherence

values of up to 0.3 points. Hence, |γ| acquired under frozen conditions has good and
consistent potential for GSV mapping. The relationship between GSV and |γ| was

Fig. 16.8 PALSAR interferometric phase image from Chunsky test site in Siberia (57�4901200 N,
97�204800 E). Bright areas are forest-covered, dark areas feature clear-cuts. (a) A–B defines the used

transect and (b) shows the selected areas for phase calculation. The bottom graphic illustrates the

location of the phase heights under unfrozen and frozen conditions. The difference in height

amounts to approximately 4 m (Thiel and Schmullius 2013a)
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found to have an average coefficient of determination R2 of 0.6. Saturation occurs at

about 250 m3/ha.

16.3 Case Studies

The results presented in Sect. 16.2 refer to discoveries and manifestations that have

already proven their operational character for land or forest cover monitoring for

large-area mapping – either through the sheer size of the investigated region or the

extremely large number of temporal data stacks. In this section, we present state-of-

the-art case studies which have not been tested in space or time for their

operationality, but that are ready for a proof-of-concept.

Fig. 16.9 Deviation Δ of species-specific coherences γ from average coherence values for dense

forests under frozen and non-frozen conditions for all sites (11 forest enterprises with a total of

12,243 stands covering 3,097 km2). Frozen conditions exhibit species-independent stable coher-

ence values, whereas intra-species variance and species-dependency increases for non-frozen

states (Thiel and Schmullius 2014)
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16.3.1 Land Cover Classification Using Multi-temporal
C-Band Data

Sentinel-1, the new European radar satellite launched on 3rd April 2014, represents

the start of ESA’s third decade of continuous C-band sensors in space: ERS-1 and-2
since 1991 and 1995 respectively, and ENVISAT ASAR from 2002 to 2012.

Compared to its predecessors, Sentinel-1 provides much shorter revisit times of

only 12 days and an increased geometric resolution of 10 m in its Interferometric

Wide-Swath Mode. These improved specifications represent an increased potential

for operational land cover products. Two ESA studies which specifically focussed

on the benefits of radar time series for land cover mapping to prepare the

Fig. 16.10 Summary of coherence characteristics based on 300 interferograms from ALOS-1

PALSAR data and 12,243 forest stands in central Siberia (Thiel and Schmullius 2013b): (a) |γ| for
forest, (b) |γ| for non-forest, (c) correlation coefficient for GSV and |γ|, and (d) saturation level for
GSV. All graphs are separated into three columns for frozen and six columns for unfrozen

conditions; unfrozen conditions are further divided into perpendicular baselines <1 km and

>2 km. Each of the three groups has one column representing a temporal Baseline of 46 days,

one for either 92 or 138 days, and one for more than 138 days. See the first row in (a) for the
number of available samples for each of the nine columns
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operational use of Sentinel-1 are presented in this section: AMOC-I (Acoustic

Monitoring of the Ocean Climate) (Cartus et al. 2008), and AMOC-II (Thiel

2010). Mapping approaches based on radar data need to consider the issue of

speckle respectively radiometric accuracy. For mono-temporal intensity images,

speckle reduction can only be achieved by using filters that reconstruct the local

radar cross section by means of spatial averaging causing a loss of geometric

resolution. For time series, Quegan and Yu (2001) suggested a multi-temporal

filtering approach, eventually leading to multi-temporal statistics. For the classifi-

cation of five basic (Level 1) land cover classes, i.e. Water, Forest, Settlement,

Grassland and Agriculture, Cartus et al. (2008) analysed four multi-temporal

metrics characterising the temporal variation of SAR backscatter:

– minimum / maximum / mean backscatter for each pixel in all images,

– mean annual variation (MVA).

MVA can be calculated as follows (Quegan et al. 2000):

mva ¼ 10 � log 2

N N � 1ð Þ
XN�1

i¼1

X

j>i

R ji

" #
Ri j ¼ max Ii=

I j
; I j=

Ii

� �
ð16:1Þ

where N represents the number of images and R the normalized ratio of intensities.

When calculating the MVA for the speckle filtered VV, HH and HV polarised data,

a clear difference between agricultural areas and the land cover classes forest,

settlement and grassland was found. This difference was most pronounced for the

HV data (Fig. 16.11).

Figure 16.12 shows histograms of the four multi-temporal metrics. The MVA

generally reflects the high temporal stability of backscatter over forest, settlements

and grassland. The best contrast between these classes and agricultural areas is

found using the HV polarization. Forest has an MVA<1 dB in the co-polarised and

<2 dB in the cross-polarised images. Settlements show very stable backscatter, but

for some dense built-up areas the MVA is high because of different ascending and

descending viewing directions (Henderson and Lewis 1998: p. 741). The very low

HV backscatter allows a simple discrimination of water from other classes. Differ-

entiation of forest and grassland is not possible using the MVA, but using the annual

mean, maximum and minimum backscatter in all three polarisations. Differentia-

tion of forest and settlement seems not to be possible based on multi-temporal

metrics. Thus, textural measures are needed.

The analysis of the multi-temporal statistics resulted in a procedure, which

classifies C-band data reliably into five Level-1 land cover classes by innovatively

using multi-temporal metrics instead of using only backscatter intensities (see

Fig. 16.13). Thinning studies about the amount of input data showed that the

requested overall accuracy of 85 % and individual class accuracies of at least

70 % can be reached when a minimum of four C-band acquisitions during the

growing season are available with HH/HV- or VV/VH-polarisations (Thiel

et al. 2009c). ESA’s Sentinel-1 satellite now consistently provides the required
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dual polarisation C-band measurements with short revisit times. These data sets

could be used stand-alone for operational land cover mapping as shown in

Fig. 16.14.

The results presented in Sect. 16.2 refer to discoveries and manifestations that

have already proven their operational character for land or forest cover monitoring

for large-area mapping – either through the sheer size of the investigated region or

the extremely large number of temporal data stacks. In this section, we present

state-of-the-art case studies which have not been tested in space or time for their

operationality, but that are ready for a proof-of-concept.

16.3.2 Forest Mapping Using Radar Time Series

Until multi-temporal C-band backscatter intensity and coherence acquisitions

became available, forest mapping capabilities were assigned to L-band data or

Fig. 16.11 Multi-temporal metrics of 14 ASAR AP HV polarimetric intensity images with (a)
MVA (explanation in text), (c) annual minimum σ0, (d) annual mean σ0. (b) shows for comparison

a Landsat ETM+ NIR-Red-Blue RGB-colour composite acquired Sep. 4th 1999 (Cartus

et al. 2008). The geographical area is the same as in Figs. 16.2 and 16.3 with UL coordinates

53�330N/10�440E, and LR 51�220N/11�020E
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even longer wavelengths (e.g. Dobson et al. 1992). Therefore, interpretation of

1-day repeat-pass “Tandem” coherence images from ESA’s ERS-1 and -2 satellites
in the late 1990s showed surprising results with stable correlations to forest

density – a feature which was then extensively applied for the first 1 million km2

radar-retrieved biomass map of Siberian forests (Schmullius and Rosenqvist 1997b;

Schmullius et al. 2001). A further discovery followed about 10 years later with the

availability of “hyper-temporal” C-band Wide-Swath and Global ScanSAR Mode

time series from ESA’s ASAR sensor on-board ENVISAT: the sensitivity to GSV

could be increased to over 300 m3/ha (Santoro and Cartus 2010).

Two case studies are hence described in this section: the application of the

former SIBERIA algorithm to forest mapping in China in the framework of the

ESA DRAGON-1 program (http://earth.esa.int/dragon/); and secondly, the produc-

tion of the first radar-retrieved continuous GSV map of the Northern Hemisphere

based on the BIOMASAR-algorithm (http://biomasar.org/).
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Fig. 16.12 Histograms of multi-temporal metrics for land cover classes Grassland ‘GL’
(magenta), Agriculture ‘AL’ (yellow), Forest ‘FO’ (green), Settlement ‘ST’ (red), and Water

‘WT’ (blue) (Cartus et al. 2008)
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16.3.2.1 DRAGON-1 Case Study

ERS-1 and -2 Tandem coherence has high potential for mapping boreal forest stem

volume (e.g. Askne and Santoro 2005). Large-scale application, however, is hin-

dered by the variability of coherence with meteorological and environmental

conditions. Retrieval procedures therefore need to be based on model training

Fig. 16.13 SAR pre-processing and classification chain in ESA AMOC II Study to prepare

operational use of Sentinel-1 data for land cover mapping (Thiel 2010). The resulting land cover

map of this procedure is illustrated in Fig. 16.14
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Fig. 16.14 In order to generate a large land cover map of ca. 75,000 km2 from SAR data (covering

parts of the Netherlands, Belgium and Germany), a knowledge-based decision tree has been

applied to 11 Envisat ASAR frames without any local adjustment. The incidence angles vary

between modes IS 1 and IS 3. The classification procedure is based on backscatter intensity, multi-

temporal metrics and texture features. The map was validated using 50 geo-referenced Quick Bird

snapshots with 496 reference points. The overall accuracy of the complete land cover map (with a

merged class containing grassland and agriculture, as originally intended by ESA) was found to be

89.72 % (Thiel 2010)
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relating coherence to stem volume by using forest inventory data, which is gener-

ally only available for a few small test sites. In the Forest-DRAGON project, a new

approach was developed that allows model training based on the MODIS Vegeta-

tion Continuous Fields canopy cover product (Hansen et al. 2003) without further

need for in situ information. A comparison is shown in Fig. 16.15.

As a test for wall-to-wall nation-wide applications, the retrieval method was

applied to a multi-seasonal Tandem dataset consisting of 223 ERS-1/-2 image pairs

covering northeast China (~1.5 million km2). The coverage is shown in Fig. 16.16.

Four stem volume classes were produced (0–20, 20–50, 50–80, and >80 m3/ha).

The agreement in terms of the kappa coefficient was between κ¼ 0.52–0.87 with a

standard deviation of 20 m3/ha. For images acquired in winter, κ was between 0.71
and 0.87; for images acquired in fall and spring it was between 0.52 and 0.78. The

producer and user accuracies of the intermediate volume classes reached >80 %.

Hence, a regression-based retrieval for forest stock discrimination with ERS-1/-2

Tandem coherence and the VCF-based model training approach appears justified.

16.3.2.2 BIOMASAR Case Study

Promising results from a hyper-temporal retrieval experiment concerning biomass

mapping for Sweden, Quebec and central Siberia by Santoro and Cartus (2010) led

to an unprecedented endeavor employing more than 647,000 ASAR ScanSAR

C-band backscatter data sets acquired between October 2009 and February 2011

over the North American and Eurasian continent: the production of the

BIOMASAR forest GSV map of the Northern Hemisphere (Santoro et al. 2013b).

Figure 16.17 gives an impression of the hyper-temporal data quantity. The innova-

tive aspect of the algorithm is its independence from in situ measurements for

model training. Model parameter estimates are obtained from tendency statistics of

Fig. 16.15 ERS-1/-2 Tandem coherence (left) and VCF tree cover (middle) for a forested area in

NE China. The coherence image is based on acquisitions from 3./4. Oct 1997. The right plot shows
the decrease of coherence with increasing VCF tree cover �1 standard deviation. VCF values end

at 80 % cover, hence higher density and biomass classes cannot be trained without inventory

information (Cartus et al. 2011)
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the backscatter measurements for unvegetated and dense forest areas, which can be

selected using a continuous tree canopy cover product, such as MODIS VCF.

Data processing included multi-looking to 1 km pixel size, terrain geocoding to a

pixel size of 0.01�, speckle filtering and correction for slope-induced effects on the

backscatter. Validation of the GSV maps was carried out at the full resolution of

0.01� as well as at the aggregated level by comparing against in situ and optically-

based official inventory information. Detailed validation at the full 1 km resolution

with the Swedish, Quebecan and central Siberian forest inventories proved consis-

tent GSV estimates with a good agreement up to 300 m3/ha and an underestimation

of GSV for biomass levels above 300 m3/ha. Overall, the RMSE is between

28.7�10.0 % at 1 km pixel size (Santoro et al. 2015). Larger errors were obtained

at 100 m spatial resolution because of local errors in the reference datasets.

Averaging GSV estimates over neighboring pixels improved the retrieval statistics

substantially. For an aggregation factor of 10� 10 pixels, the relative RMSE was

below 25 %. In general, the spatial patterns of the estimated SAR-based GSV

showed good agreement with those of existing reference data sets at a similar

spatial resolution. The resulting BIOMASAR map is shown in Fig. 16.18.

16.3.3 Forest Cover Change with Radar Time Series

Forest cover monitoring requires regular observations throughout the year,

depending on the biome and the respective fire and/or logging activities. The

Fig. 16.16 Left: Mosaicked ERS-1/-2 false-color composite of northeast China: R-Tandem

coherence, G-ERS-1 intensity, B-ERS-1/-2 intensity difference. The mosaic consists of 223 frames

with 50� 50 m2 pixel size. Color differences between different tracks are caused by environmen-

tal effects. Right: Mosaic of the classified GSV maps from ERS-1/-2 Tandem data. The adaptive

retrieval model has effectively removed the differences in the input data (Cartus et al. 2011)
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Fig. 16.17 Number of SAR observations used for the Growing Stock Volume (GSV) retrieval.

The color bar is constrained between 10 and 200, while the number of observations reached up to

601. Zero is assigned to unmapped pixel and pixels for which the number of SAR observations was

less than 10, i.e. represent unreliable estimates for the retrieval model (Santoro et al. 2013b)

Fig. 16.18 The BIOMASAR Growing Stock Volume (GSV) Map from ENVISAT, www.esa.int/

Our_Activities/Observing_the_Earth. The color bar is constrained between 0.1 and 450 m3/ha,

while the retrieved GSV reached up to 1,019 m3/ha (Santoro et al. 2013a)
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Japanese space agency Japan Aerospace Exploration Agency (JAXA) has been the

only SAR data provider offering a consistent observation strategy based on the

recommendations of its Kyoto and Carbon Panel for more than two decades since

its first radar sensor JERS-1 (e.g. Rosenqvist et al. 2007). These L-band data sets

reveal less temporal decorrelation when calculating interferometric coherence due

to the longer wavelength and thus larger and more stable scattering elements.

Hence, multi-temporal coherence and multi-temporal backscatter intensity can

both be exploited to build an operational change procedure, as demonstrated by

Thiel et al. (2009a, b) where ALOS-1 PALSAR summer intensities and winter

coherences led to segment-based classification accuracies of 93 % for a

100,000 km2 study area for seven classes: water, urban, arable, burnt, recent and

old clear-cuts.

The following two case studies extend the application of radar remote sensing to

multiple satellites. The first study describes how three radar time series products

have been jointly exploited to map forest cover change – independently of the fact

that they have been generated from different sensors (ERS-1/-2 vs. ASAR) and

different algorithms (SIBERIA vs. BIOMASAR). The two respective methods were

described in Sect. 16.3.2. The second study comprises a joint usage of the PALSAR

mosaic time series with the multi-temporal MODIS Enhanced Vegetation Index to

increase the reliability of disturbance mapping.

16.3.3.1 DRAGON-2 Case Study: Merging Space and Time

The forest project contributing to the second ESA cooperation program with China,

DRAGON-2 (https://saredu.dlr.de), focused on the evaluation of multi-temporal,

multi-sensor and multi-scale Earth Observation products of northeastern China.

First, the GSV map produced with ERS-1/-2 coherence images for 1995–1998

using the SIBERA-algorithm (Fig. 16.16) and the GSV map produced from Envisat

ASAR ScanSAR data from 2007 to 2008 with the BIOMASAR-algorithm

(Fig. 16.19) were compared with several land cover/forest cover products of optical

origin. These comparisons were used to assess the plausibility of the respective

GSV estimates to undertake the change study. The change analysis was carried out

in the regions of Daxinganling (~200� 200 km) and Xiaoxinganling

(~300� 300 km) in northeast China.

Leiterer et al. (2010) developed a multi-scale cross-comparison assessment

design that uses few in situ measurements and data quality flags and applies existing

land cover products such as GlobCover, MODIS VCF, GLC2000 (Global Land

Cover (GLC2000)) and the AVHRR LCC(Lambert conic conformal). The sampling

design for the comparison is based on the FAO (Food and Agriculture Organiza-

tion) Forest Resource Assessment 2010, which uses a 1� sampling grid with

10� 10 km sample plots. The results are shown in Table 16.1. Additionally, forest

GSV inventory data including >1,100 point measurements were available for a

small test site in northeast China showing good overall accuracy of 76 % for the

ERS-retrieved map.
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Fig. 16.19 (a) ASAR-retrieved GSV map 2007/2008 (pixel size 1 km) illustrating great amount

of heterogeneity; green tones: forest GSV, other colours non-forest land cover types. (b) scatter-
gram of ASAR GSV versus Vegetation Continuous Field percentages showing the known VCF-

threshold at 80 % cover and that the ASAR-product has not reached saturation yet (Reiche

et al. 2010)
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The Chinese national land cover product NLCD (National Land Cover Data-

base) (based on Landsat images) identified that misclassification of the ERS-maps

primarily took place at croplands. Thus, land cover information should be used to

support the radar-retrievals particularly for transition zones between forest and

shrub land. Cross-comparison for the ASAR forest maps revealed, that the spatial

variability was more reliably captured (using NLCD as reference again) than with

other land cover products. Figure 16.19a illustrates the heterogeneity of the forest

cover in the Xiaoxingaling test area as identified by the ASAR-retrieved GSV map

and Fig. 16.19b) shows the scatterplot comparison with VCF tree cover percentages

for the same area.

To undertake the forest change exercise, the ERS data were reprocessed to the

coarser ASAR Global Monitoring Mode resolution of 1 km. The resulting change

map is given in Fig. 16.20. It is the first 10-year forest stock change representation

from multiple SAR-sensor time series and thus a milestone in radar remote sensing.

Missing tracks are a result of missing ERS-Tandem acquisitions. Solely ASAR-

based GSV estimates for the time period 2005–2010 are shown in Fig. 16.21 and

have been checked for plausibility during field campaigns and using related Earth

observation products (compare Fig. 16.22). Patterns of increase and decrease in that

5-year period can be explained with growth models and fire events respectively.

However, a distributed geo-spatial error quantification could not be performed due

to missing in situ information.

16.3.3.2 ZAPÁS Case Study – Operational Radar-Optical Synergy

Forest cover disturbance rates of Siberian forests are increasing due to intensifica-

tion of human activities and changing climate conditions. Hüttich et al. (2014a)

used a radar-optical data concept to develop an automated forest cover change

detection: pre-classification change-detection techniques were applied to annual

ALOS PALSAR backscatter mosaics (2007–2010, see Fig. 16.23) to assess yearly

forest biomass loss; and time series of the MODIS Enhanced Vegetation Index

product (EVI, 2000–2014) were integrated in a web-based middleware system to

establish near-real time detection of forest disturbances using the Breaks For

Additive Season and Trend (BFAST) method. Using the Earth Observation Monitor

Table 16.1 Overall agreement (OA) between ERS-1/-2 GSV map (50 m resolution, Fig. 16.16)

and four optical land cover products for test areas 1-Daxinganling and 2-Xiaoxinganling in NE

China based on aggregated forest/non-forest classes (Leiterer et al. 2010)

LC-product Site 1 Site 2

NLCD 0.73 0.80

GlobCover 0.78 0.85

VCF (15 % CC) 0.91 0.89

GLC2000 0.89 0.83

AVHRR LCC 0.79 0.67
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(EOM, www.earth-observation-monitor.net) an operational monitoring system was

assessed for the capabilities to detect biomass loss and to analyze temporal patterns

of forest cover loss related to logging activities, fire events or other disturbances.

A pre-classification approach using a decision-tree classifier was implemented.

Only changes from forest to non-forest were considered. In order to identify

Fig. 16.20 Forest stock change of a ten year period is mapped in four Growing Stock Volume

classes using an ERS Tandem dataset and a hyper-temporal ASAR image stack. The tandem

product is based on the SIBERIA algorithm, the hyper-temporal method on the BIOMASAR

retrieval method. The twelve change classes correctly identify in green colors areas of extensive

re-forestation after very large forest fires in 1987; the brown regions indicate burnt zones as a result

of a 2006 fire (Reiche et al. 2010). This map represents the first published growing stock volume

change product from multiple radar sensors using different retrieval algorithms that combine

interferometric with hyper-temporal techniques. The Tandem GSV product with a geometric

resolution of 50 m was resampled for this purpose to the 1 km resolution of the ASAR hyper-

temporal GSV product. (© FSU Jena, GAMMA RS)
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common classification thresholds eight different multi-temporal metrics were ana-

lyzed (compare Fig. 16.24). The forest/non-forest change thresholds were detected

using non-parametric support vector machines (SVM).

The PALSAR-based average accuracy of forest loss detection was 70 %,

whereas the MODIS-based change assessment using breakpoint detection achieved

average accuracies of 50 % for trend-based breakpoints and 43.4 % for season-

based breakpoints. Time series tracking of phenological activities was realized

using the MODIS EVI product with a 16-day temporal resolution for additional

information on forest disturbances. Two years (2009 and 2010) showed higher user

accuracies of 80.0 %. It is assumed that the PALSAR input mosaics for those years

had been acquired under more stable radiometric conditions, which demonstrates

the need for free access to raw data rather than processed data products. The

sensor’s 46-day revisit time is not a limitation due to the stable environmental

conditions during winter (even for coherence estimates). This is of particular

importance for the development of an operational large-scale forest-monitoring

system for the boreal region: the mentioned accuracies are well in the range of

Fig. 16.21 Growing Stock Volume (GSV) change map from estimates obtained with the

BIOMASAR algorithm using Envisat ASAR ScanSAR images acquired in 2005 and 2010

(Schmullius et al. 2012). The study area has a total coverage of about 540,000 km2 including

forest and shrubland areas according to the GLC2000 land cover information. The map is

characterized by several changes through fire, logging and re-forestation. The GSV estimated

with the BIOMASAR algorithm presents an uncertainty quantified on the order of 10 % regardless

of the GSV level as proven with comparable inventory data from Siberia
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Fig. 16.22 MODIS Burned Area and ATSR World Fire Atlas overlaid on the GSV change map

(left) and GSV change map (right) for a fire detected in 2006 showing very good agreement for the

areas affected by stock volume losses. (Schmullius et al. 2012)

Fig. 16.23 False-color RGB composites of ALOS PALSAR 25 m mosaic images, acquisition

periods each year May-October, and incidence angle 34.3�. (a) Red: HH-intensity, Green:
HV-intensity, Blue: ratio HH/HV; same color scheme applies for zoomed area in 2007, 2008,

2009, and 2010 (Hüttich et al. 2014a, b). Change is shown for the zoom region as color composites

with (b1) Red-2007, Green-2008, Blue-2009; and (b2) Red-2008, Green-2009, Blue-2010. The
data were made available through the ALOS Kyoto and Carbon Initiative of JAXA
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Fig. 16.24 Multi-temporal metrics to identify thresholds for forest change/no-change classifica-

tion with PALSAR data: maximum-minimum ratio (MMR), normalized standard deviation

(NSTDEV), mean average variability (MVA), and logarithmic measure based on normalized

standard deviation (LMNSTDEV). The largest class separability was calculated for

HV-polarization (Hüttich et al. 2014a, b)



inventory errors of 34–39 %, as has been investigated stand-wise in Hüttich

et al. (2014b).

It can be concluded, that the freely available PALSAR mosaics are an applicable

tool for up-to-date forest monitoring – even considering varying accuracies. Mon-

itoring can be enhanced through web-based middleware exploiting MODIS time

series and the BFAST-method to suggest the type of disturbance.

16.3.4 Special Seasonal Case: Savanna Systems

Woody vegetation cover affects a range of ecosystem processes such as carbon and

water cycling, energy fluxes, and fire regimes. Information on the spatial distribu-

tion of woody vegetation over large areas is needed to understand the dynamics of

savanna ecosystems. In this study, fractional woody cover was mapped using

ALOS PALSAR L-band HH- and HV-polarised backscatter time series. The SAR

backscatter intensity and two polarimetric decompositions were compared with

woody cover obtained from high-resolution airborne LiDAR (Light detection and

ranging) data using a semi-empirical exponential model. The SAR data were

acquired at different seasonal cycles between 2007 and 2010. The LiDAR survey

was carried out in April/May 2008 with the LiDAR component of the CAO

(Carnegie Airborne Observatory, USA). The overall aim of the study was to

analyze the capabilities and limitations of SAR data for woody cover mapping

and the investigation of the potential synergistic use of LiDAR jointly with radar

systems. Furthermore, the influence of seasonality for radar mapping of woody

vegetation cover was investigated. The LiDAR-based woody cover was used for

training and validation of the radar data.

The woody cover map based on the PALSAR L-band backscatter intensities

(Fig. 16.27) was calculated using a Random Forest algorithm. The highest correla-

tion to the reference data was obtained from the dry season satellite acquisitions

(Fig. 16.25). The retrieved map was validated at a resolution of 50 m with R2¼ 0.73

and RMSE¼ 7.62 %. The results show promising sensitivity of L-band backscatter

for mapping woody cover of savanna surfaces (compare Fig. 16.26).

16.4 Perspectives

Radar time series have led to innovative and unprecedented Earth observation

products such as extended crop type mapping and above-ground forest growing

stock (this Chapter), or – recently – global water bodies (Santoro and Wegmüller

2014) and the urban foot-print (Esch et al. 2013).

In the past, radar data were not available in the temporal or geometric resolution

needed – or too expensive. Therefore, the knowledge created since the 1980s could

not be transformed into operational routines – until now. With the new fleet of
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Fig. 16.25 Regression analysis between PALSAR L-band backscatter and airborne LiDAR-

retrieved woody cover: .(left) winter dry season, (right) summer wet season (Urbazaev

et al. 2013). Due to an increase of low vegetation and soil moisture during the wet season the

backscatter intensity from low woody cover regions is increased and sensitivity to the woody

components decreased. The dry season is therefore recommended for savanna woody cover

mapping with L-band sensors

Fig. 16.26 PALSAR L-band predicted vs. airborne LiDAR-observed woody cover of undisturbed

savanna vegetation in Kruger National Park, South Africa (Urbazaev et al. 2013). The red line

indicates the regression line. The typical exponential behavior can be observed with a slight

saturation effect above 60 % woody cover
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active radar sensors being launched during this 2nd decade of the new millennium

(ALOS-2 PALSAR, BIOMASS, COSMO-SkyMED Second Generation,

RADARSAT Constellation, Sentinel-1a/-1b, TerraSAR Next Generation, and

more planned), further very advanced analysis techniques such as differential and

polarimetric SAR interferometry (DInSAR, PolInSAR), persistent scatterer inter-

ferometry (PSI) or radar tomography will become operational from space. Now, all

advantages of microwave remote sensing such as independence from solar illumi-

nation, penetration capabilities through clouds and volumetric media, sensitivity to

water content, capability to measure surface movements, etc. will lead to reliable

Earth observation contributions. Such consistent observables are desperately

needed for environmental models and model-data fusion methods to develop

benchmarks (Thurner et al. 2013) or to constrain model calculations (Quegan

et al. 2011) in an increasingly fast changing and complex world. Hence, the famous

radar equation, which was mentioned in the introduction, will persist to be one of

the most fundamental descriptions for Earth observation.

Fig. 16.27 Comparison between PALSAR-retrieved woody cover (left) and CAO LiDAR-based

woody cover (right) for two sites in Kruger National Park, South Africa. Both spatial patterns are

in very good agreement (Urbazaev et al. 2013)
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Chapter 17

Investigating Radar Time Series
for Hydrological Characterisation
in the Lower Mekong Basin

Daniel Sabel, Vahid Naeimi, Felix Greifeneder, and Wolfgang Wagner

Abstract Radar remote sensing is beneficial for retrieval of hydrological informa-

tion such as soil moisture and flood extents due to the strong influence of water on the

radar signal. The proper monitoring and analysis of such temporally dynamic phe-

nomena requires dense time series data. Radar time series data is also useful for

mitigating uncertainties in individual images, e.g. for the mapping of permanent

water bodies. This chapter reviews capabilities, potentials and challenges of

spaceborne radar time series data for the mapping of permanent water bodies, the

monitoring of floods, and the retrieval of soil moisture content. The focus is put on the

Lower Mekong Basin (LMB) in Southeast Asia. Two thirds of the LMB’s population
of 60 million people live directly from agriculture and fisheries. The Mekong River’s

resources are under pressure among others from an increasing population, intensified

agriculture, and the expansion of hydropower. A thorough understanding of water

resources in the LMB is therefore crucial to the sustainable development in the

region. The chapter provides an outline of radar remote sensing for retrieval of

hydrological information as well as an overview of the relevant operational capabil-

ities of radar missions. A map of permanent water bodies of the entire LowerMekong

Basin derived from a time series of ENVISAT Advanced Synthetic Aperture Radar

(ASAR) data is presented. Potentials and challenges of flood monitoring with SAR

are illustrated with ASAR imagery showing the evolution of the floods that occurred

around Tonle Sap Lake in Cambodia in 2011. Finally, the spatial and temporal

dynamics of soil moisture across the LMB are analysed with the use of 14 years of

scatterometer time series data acquired by the ERS-1, ERS-2, Metop-A and Metop-B

satellites. The average seasonal soil moisture cycle was computed at the sub-

catchment level. An anomaly analysis of the temporal soil moisture dynamics

revealed large inter-annual variability across the Lower Mekong Basin.
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17.1 Introduction

Water is essential to life. Despite two thirds of the Earth’s surface being covered

with oceans, the amount of accessible fresh water is limited and for many nations

across the globe, water scarcity represents a fundamental challenge to their eco-

nomic and social development. Up-to-date knowledge of the distribution of water in

its various forms is required in order to manage this valuable resource in a

sustainable, fair and secure manner. Such knowledge is also fundamental to the

understanding of the hydrologic cycle and the climate system (Dent 2012; OECD

2008).

Remote sensing with Earth orbiting satellites is invaluable for monitoring water

resources as it can provide frequent observations on regional to global scales. With

the use of radars, measurements can be performed independent of solar conditions

and cloud coverage, thereby enabling day-and-night, all weather observations. This

is particularly useful in frequently cloud covered areas. In the Mekong Basin in

Southeast Asia, Leinenkugel et al. (2013) reported an average of 85–95 % cloud

coverage during the rainy season, making the use of optical imagery e.g. for flood

mapping very challenging. Radars are also attractive for retrieval of hydrological

information due to the strong interaction of microwaves with water resulting from

the high relative dielectric constant of liquid water compared to most other natu-

rally occurring materials.

Most aspects of the use of radar time series data reviewed in this chapter are

generally applicable. The focus is however put on the Lower Mekong Basin (LMB),

which covers an area of more than 600,000 km2 in Southeast Asia. The diverse

ecosystems in the LMB are crucial to the livelihood of over 60 million people. Two

thirds of its largely rural population lives directly from agriculture and fisheries.

The sustainable development in the LMB is threatened by challenges such as

population growth and increased pressure on the Mekong River’s resources, in

particular from intensified agriculture and the expansion of hydropower (Kuenzer

et al. 2013a). Information that can support water resource management and improve

the understanding of the hydrology in the region is therefore highly valuable.

17.1.1 Hydrological Information

Knowledge of the distribution of permanent water bodies such as lakes, wetlands,

reservoirs and rivers is essential to the assessment of current and future water

resources. Such water bodies serve to store, clean and distribute water and represent

therefore core components of the hydrological and biogeochemical water cycles

(Lehner and D€oll 2004). Floods represent one of the most frequent and at the same

time most devastating type of disasters. In 2011, more than 100 million people were

affected by flooding worldwide. The LMB was also affected, with vast floods in

Cambodia. However, regularly occurring floods with average amplitudes can bring
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benefits in some regions. This is the case in the Mekong Delta and the Tonle Sap

Basin in the LMB, where annual floods are essential to agriculture as suppliers of

sediments providing nutrition to the soil (Renaud and Kuenzer 2012). Another

important type of hydrological information is soil moisture, i.e. the water contained

in the pores of the soil. It is in fact a central component in hydrology and an

essential variable in the climate system. Soil moisture directly influences the fluxes

of energy and moisture transferred between land and atmosphere as well as the

partitioning of precipitation into infiltration and runoff. It describes the temporal

condition of water available to plants and provides an integrated assessment of the

relative state of water supply versus water demand (Legates et al. 2011). While

there are hydrological stations in the LMB measuring water levels and river

discharges, soil moisture in situ measurements are very scarce.

All of the mentioned aspects of hydrological information benefit from dense

time series data. It will be demonstrated that the mapping of permanent water

bodies can benefit in several ways from the use of time series data. The mapping of

floods requires imagery delivered in a timely fashion. As floods can develop

rapidly, frequent updates are also highly desirable. Soil moisture is highly variable

in space and time, in particular in the top layer of the soil. The monitoring and

analysis of soil moisture dynamics therefore require dense time series data.

17.1.2 Radar Remote Sensing

Radars transmit electromagnetic pulses at microwave frequencies and record the

echo scattered back to the instrument from the target or area of observation. The

ratio between transmitted and backscattered energy is usually expressed in terms of

the normalized radar cross-section (NRSC) which is a dimensionless property

(m2m�2) often referred to as sigma nought (σ0) and expressed in decibel (dB).

The value of sigma nought depends both on target attributes, such as dielectric

properties, geometric shape and roughness, and on the radar system’s frequency,
polarisation configuration and observation geometry. Radars have a staggering

potential for measuring physical properties of ground features, providing informa-

tion quite different to that of instruments working in the optical and infrared portion

of the electromagnetic spectrum. An excellent introduction to radar remote sensing

can be found in Woodhouse (2006).

17.1.3 Operational Capabilities

This chapter will deal with two types of radar systems, namely Synthetic Aperture

Radars (SARs) and scatterometers. A key selling point of SAR missions is high

spatial detail. Current civilian spaceborne systems are able to achieve resolution

down to about 1 m. The ground coverage of such high resolution acquisitions are
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however relatively limited. For example, the swath widths of the highest resolution

modes on TerraSAR-X and COSMO-SkyMED are 10 km while RADARSAT-2

and Sentinel-1 obtain swath widths of 20 km and 80 km, respectively. Wider swaths

can be achieved with scanning techniques (ScanSAR) which uses electronic beam-

steering to image several parallel swaths along the flight direction in rapid succes-

sion. During post-processing, the individual swaths are combined to create a single,

wide swath. In such modes the aforementioned instruments achieve swath widths of

100 km, 200 km, 500 km and 410 km, respectively, with spatial resolutions reduced

to 16 m for TerraSAR-X, 40 m for Sentinel-1 and 100 m in the cases of COSMO-

SkyMED and RADARSAT-2 (Covello et al. 2009; Drusch et al. 2012; Morena

et al. 2004; Pitz and Miller 2010; Sentinel-1 Team 2013). SAR instruments are

characterized by high power consumption, thermal heating and high data through-

put. They are therefore able to acquire high data rate imagery during only a part of

each orbit.

The strong focus on high spatial resolution rather than geographical coverage

and frequent acquisitions have resulted in spaceborne SAR missions typically

achieving observation intervals ranging from weeks to months on average. While

such sparse time series’ may be sufficient for observing slowly varying phenomena

such as permanent water bodies, they are in usually insufficient for the monitoring

of soil moisture and the mapping of flood developments. With dedicated acquisition

tasking, it is possible to monitor selected regions more frequently. Revisit times can

also be reduced with satellite constellation or through opportunistic combination of

data from different missions. In order to satisfy a wide range of user requirements,

SAR instruments often provide several modes of operation with different sets of

compromises between spatial resolution, geographical coverage, radiometric reso-

lution and polarisation configurations.

Scatterometers are real aperture radars providing measurements with a spatial

resolution in the order of several tens of kilometres. Their main advantages over

SARs are their high radiometric accuracy and their capability of frequently map-

ping large areas. In contrast to SAR instrument, they can acquire data during the

entire orbit. With the use of wide ground swaths, astonishing geographical coverage

can be achieved. The ASCAT (Advanced Scatterometer) scatterometers onboard

the Metop-A and Metop-B satellites each provide daily coverage of about 82 % of

the Earth’s surface. Furthermore, scatterometer data have been provided free of

charge. Scatterometer data are therefore attractive to applications for which spatial

coverage, frequent observations and long time series are more important than high

spatial resolution.

After a description of the study site, the focus is turned to the mapping of

permanent water bodies and floods using SAR time series data. A map of permanent

water bodies covering the entire LMB derived from several years of SAR time

series data is presented. Potentials and challenges of flood monitoring with SAR are

illustrated with ASAR imagery showing the evolution of the floods that occurred

around Tonle Sap Lake in Cambodia in 2011. The last section is concerned with the

retrieval of soil moisture using scatterometer time series data and an analysis of the

spatial and temporal dynamics of soil moisture across the basin. A summary and an

outlook can be found in the end of the chapter.
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17.2 The Lower Mekong Basin

The Mekong River rises in the Tanggula mountain range in the Qinghai province in

China and runs more than 4,300 km through the Tibet Autonomous region, the

Yannan province of China, Myanmar, Laos, Thailand, Cambodia and Vietnam

before reaching the South China Sea. It drains the Mekong River Basin, which

comprises a large network of tributaries and watersheds covering an area greater

than 795,000 km2. The south part of the Mekong River Basin, shown with a red

outline in Fig. 17.1, is known as the Lower Mekong Basin (LMB).

The climate of the LMB is strongly influenced by the rainy southwest monsoon

occurring between May and October and dry northeast monsoon in the period of

October to March. Rainfall is strongly seasonal with about 90 % of precipitation

between the May and October. The mean annual precipitation ranges from

1,000 mm in northeast Thailand to more than 3,200 mm in the mountainous regions

of Laos (Leinenkugel et al. 2013). The annual range of mean temperature between

the hottest and coldest months throughout the region is just five degrees, with

somewhat lower mean temperatures towards the east and in the Central Highlands

than elsewhere in the LMB. Mean annual evaporation is 1,500 mm, varying from

1,000 mm in the Central Highlands to 2,000 mm in the Khorat Plateau. Due to the

high relative air humidity, annual evaporation exhibits little variability from year to

year (MRC 2010).

Fig. 17.1 Overview of the geography of the Lower Mekong Basin, shown with a red outline in the

three maps. Left: the flow of the Mekong River through the basin. Middle: topography and the

LMB’s major sub-basins. Right: land cover according to the GlobCover 2009 dataset (Bicheron

et al. 2008)
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The following paragraphs give an overview of the geography and climatology of

the LMB in terms of its four major sub-basins shown in the middle graphic in

Fig. 17.1.

The Northern Highlands are mountainous with peaks above 2,000 m and valley

floors more than 600 m below the mountain crests. It is the region with the highest

amount of rainfall in the LMB. It comprises relatively sparsely populated regions in

the northern parts of Thailand and Laos and the upland region of northeastern

Myanmar.

The Khorat Plateau lies largely within northeastern Thailand. Its vast, low-lying

terrain consists mainly of sediments and eroded bedrock. It is the driest region in the

LMB with the highest evapotranspiration rate despite the annual rainfall between

1,000 and 1,600 mm (MRC 2010).

The Tonle Sap Basin extends across the majority of Cambodia. It contains the

largest freshwater lake in Southeast Asia, called Tonle Sap Lake or simply the Great

Lake (see right graphic in Fig. 17.1). During the dry season, the large but shallow

Great Lake drains slowly via the Tonle Sap River into the Mekong River at their

confluence in Phnom Pehn. The flow of the Mekong River follows a distinct annual

cycle with a single flood pulse during the wet season. It usually starts rising in May

and peaks in September or October. As the Mekong River rises above the level of

the Great Lake, the flow of the Tonle Sap River is reversed, filling up the lake

together with its surrounding floodplains. The area of the lake typically expands

from about 3,000 km2 to more than 15,000 km2 (Kite 2001; Kuenzer 2013). The

lake serves as a natural reservoir storing flood water from the surrounding water-

sheds and regulating river flows in the dry season, thus helping to moderate floods

and relieve droughts in southern Cambodia and in the Mekong Delta in southwest-

ern Vietnam. The annual inundation of the Cambodian floodplains can incur

substantial structural damage but is at the same time an essential contributor to

the wealth of biodiversity, the abundance of fish and soil fertility in the region.

The Mekong Delta is the most densely populated region in the LMB. The region

is flat with 90 % of the delta located below 3 m above sea level. Here, the Mekong

River drains into the South China Sea through a vast network of natural distribu-

taries and man-made channels. The delta is one of the world’s most important

regions for rice production and at the same time one of the most endangered places

on Earth with respect to sea level rise (Renaud and Kuenzer 2012).

17.3 Water Bodies and Floods

Microwaves exhibit nearly specular reflection on smooth water surfaces. As

scatterometers and SARs are side-looking instruments, such specular reflection

results in a large portion of the incident radiation being directed away from the

radar, with a resulting low backscatter intensity. Other land covers such as bare soil,
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grassland, agricultural land and forests commonly exhibit higher backscatter as

they are characterized by a certain degree of isotropic volume scattering or diffuse

surface scattering. Water surfaces can therefore often be distinguished in SAR

images as features of low backscatter. This fact is used as a fundamental assumption

in SAR based flood mapping and water body mapping algorithms. However, local

environmental conditions such as rain and wind may roughen water surfaces

resulting in high backscatter from such features. In shallow waters, vegetation

emerging above the water surface may result in so-called double bounce, whereby

the radiation scattered off the water surface is re-directed towards the radar by the

emerging vegetation, resulting in high backscatter values (Henderson and Lewis

1998). Microwaves tend to interact most strongly with objects having physical sizes

similar to the wavelength of the radiation. In the case of vegetation, C-band

microwaves (λ¼ 3.75–7.5 cm) will tend to interact most strongly with leaves and

small branches while at L-band (λ¼ 15–30 cm), they will interact most strongly

with larger branches and trunks. L-band is therefore capable of greater penetration

through the vegetation and has been used to map flooded areas under forests (Hess

et al. 2003; Frappart et al. 2005; Martinez and Le Toan 2007; Rosenqvist

et al. 2007; Alsdorf et al. 2007). Zhang et al. (2014) reported high contrast between

water bodies and other targets in both HH and VV polarisations in the area of Tonle

Sap Lake with the use of high spatial resolution RADARSAT-2 imagery (C-band).

They used polarimetric information to classify water bodies, flooded shrub, flooded

forest and several other land cover types.

17.3.1 Permanent Water Bodies

The mapping of permanent water bodies can benefit from the use of time series

data, whereby uncertainties related to highly dynamic local conditions such as wind

and rain can be reduced through temporal filtering. Such filtering can also reduce

random fluctuations stemming from thermal noise and speckle. The influence of

local environmental conditions on SAR imagery is exemplified in Fig. 17.2 with

two 150 m resolution images acquired by the ENVISAT Advanced Synthetic

Aperture Radar (ASAR, C-band) instrument in Wide Swath (WS) around Great

Lake in Cambodia. Such data have been used for water mapping purposes in several

studies, e.g. (Bartsch et al. 2012; Kuenzer et al. 2013b; Matgen et al. 2011). While

the right image in the figure shows an acquisition on June 8 2009, the left image

shows the result of averaging a stack of 17 images acquired during the dry seasons

(1st December to 31st March) in the years 2007–2011. Only dry season imagery

was used in order to reduce the influence of large scale floods which occur mainly

during the wet season. The mean backscatter image on the left in Fig. 17.2 repre-

sents near ideal conditions for water body mapping with a high contrast between the

vast majority of water and terrain pixels. The lake as well as the Tonle Sap River
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emanating from the lake’s south-east shore can be well distinguished. The acqui-

sition on 8th June 2009 is affected by wind and/or rain which increased the surface

roughness over large parts of the lake, resulting in higher backscatter.

Also the river exhibits higher backscatter than in the mean backscatter image.

The corresponding backscatter distributions of water and terrain overlap, making

the classification of water bodies less straightforward.

Radiometric thresholding is a simple but efficient and widely used method for

water body classification with SAR. Here, the classification thresholds for the

Fig. 17.2 The upper left graphic shows an image of backscatter averaged over time, allowing

straightforward separation of water bodies (dark pixels) from land. The corresponding backscatter

distributions, with water pixels in blue and terrain pixels in red, are shown in the left histogram.

The upper right graphic illustrates the effects of wind and rain roughened water surfaces with an

image acquired on June 8 2009. The resulting water and terrain backscatter distributions overlap,

complicating accurate classification of water bodies (left histogram)
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images in Fig. 17.2 were determined with Otsu’s method (Otsu 1979) and found at

�11.5 and �10.3 dB for the left and right image respectively. With the 300 m

resolution GlobCover 2009 dataset as reference, the omission error for classifica-

tion of water was 10.1 % with the single ASAR image and 1.9 % with the mean

backscatter image. The corresponding Kappa coefficient increased from 0.71 for

the single image to 0.94 in case of the mean image. Due to the mismatch in spatial

resolution as well as uncertainties in the GlobCover 2009 dataset, these results

should be interpreted in relative rather than absolute terms. They clearly demon-

strate the benefit of temporal aggregation for classification of permanent water

bodies.

Based on the time series coverage that was build up over several years by the

ASAR instrument, it was possible to extend the exercise in Fig. 17.2 to the entire

LMB. Acquisitions were available on average every two to 4 weeks, depending on

location. A total of 160 ASAR WS datasets acquired during the dry seasons in the

period from 2007 to 2011 were processed. The datasets were radiometrically

calibrated and geocoded with the SAR processing software Next ESA SAR Tool-

box (NEST) and subsequently resampled to a regular grid. In order to combine data

acquired at different incidence angles, each measurement was normalized to a local

incidence angle of 30� using a linear model fitted to the time series of backscatter

and local incidence angles at each location. Such linear models have been used for

C-band data in the past, e.g. by Frison and Mougin (1996), Gauthier et al. (1998),

Loew et al. (2006) and Sabel et al. (2012). The entire processing was integrated and

managed with the use of the SAR Geophysical Retrieval Toolbox (SGRT) devel-

oped by Vienna University of Technology (TU Wien). The resulting 150 m reso-

lution water body map is shown in Fig. 17.3, overlaid on the mean backscatter

image. The dominating features at basin scale are the course of the Mekong River,

the Great Lake in Cambodia and several large lakes in Thailand and Laos. Urban

areas can be seen as features of high backscatter resulting from double bounce of

the microwaves against surfaces and buildings.

While the water body map was produced mainly to demonstrate the capability of

C-band SAR time series data, it provides a valuable source of information that

complement currently available water body products. For instance, it provides an

improvement in resolution relative the 250 m MODIS (Moderate Resolution Imag-

ing Spectroradiometer) Global Raster Water Mask product (Carroll et al. 2009) and

represents a more recent epoch than the SRTM Water Body Data product which

was based mainly on SAR data acquired by the Shuttle Radar Topography Mission

(SRTM) in February 2000.

17.3.2 Flood Mapping

No single SAR flood mapping technique can be considered appropriate for all SAR

images or all types of environments. Various mapping techniques have been

explored, including simple visual interpretation, supervised classification
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(Townsend 2002), image segmentation and texture algorithms (Han et al. 2005;

Pulvirenti et al. 2011) as well as radiometric thresholding, change detection and

region growing approaches (Gstaiger et al. 2012; Kuenzer et al. 2013b; Matgen

et al. 2011).

In very dry regions such as deserts, bare ground may exhibit backscatter levels

similar to those of water surfaces. O’Grady et al. (2011) showed that misclassifi-

cations of non-flooded pixels due to low backscatter over terrain can be reduced

with the use of image differencing approaches by relating each SAR image to a

Fig. 17.3 Map of permanent water bodies in the Lower Mekong Basin based on 150 m resolution

ENVISAT ASAR time series data. Water bodies (in blue) are superimposed on the mean

backscatter image. Three features are shown in more detail: (a) Lakes in northeast Thailand and

a multitude of towns visible as spots of high backscatter. (b) Confluences between (from north to

south) Tonle Kong, Tonle San and Tonle Srepok rivers before joining the Mekong River in

northern Cambodia. (c) The great Tonle Sap Lake in Cambodia
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pre-flood reference. State of the art review on SAR flood mapping can be found

e.g. in Schumann et al. (2009) and Di Baldassarre et al. (2011).

The purpose of this section is to illustrate some of the challenges and potentials

of flood mapping with SAR in the LMB. Examples of SAR imagery are provided

around the Great Lake in Cambodia, which experienced particularly large floods in

2011. The floods affected 1.64 million Cambodians and caused 247 deaths. More

than 50,000 households had to be evacuated and 220,000 ha of rice crops were

destroyed. The reasons for the large floods were strong southwest monsoon activity

starting in early June and the appearance of an Inter-Tropical Convergence Zone

during whole of September. This resulted in intense rainfall, in particular in the

middle and lower reaches of the LMB. The onset of a series of tropical storms early

in the wet season also contributed to Mekong mainstream water levels exceeding

long-term averages (MRC 2011). ASARWS imagery capturing the evolution of the

inundation around the Great Lake in 2011 is shown in Fig. 17.4. The permanent

water body mask presented in the previous section has been overlaid to ease the

identification of flooded areas. With the use of the ScanSAR technique, it was

possible for the ASAR instrument to achieve a wide swath of 405 km, allowing the

lake, the surrounding floodplains and flooded areas south of Phnom Penh to be

mapped in a single acquisition. Near the end of the dry season the Great Lake

occupied its nominal extent, as can be seen in the upper left graphic in Fig. 17.4.

With increased flow of the Mekong River and subsequent reversal of the Tonle Sap

River, the floodplains around the Great Lake gradually became inundated with vast

areas flooded by the end of September (lower left graphic). During the second week

of October, water levels in the Cambodian floodplains reached critical levels,

especially at Phnom Penh.

In 2008, Cambodia did not experience any unusual floods (MRC 2009) and the

inundation around Great Lake reached average proportions. A comparison of the

flooding situation in the end of November in 2008 and 2011 is shown in Fig. 17.5.

As before, dark pixels corresponding to low backscatter represents predominantly

open water surfaces. Flood patterns are visible in both images (compare with upper

left graphic in Fig. 17.4) and the vast extent of the floods in 2011 become evident, in

particular to the east and southeast of the Great Lake. However, the 2011 image

exhibits lower contrast than the 2008 image in the southeast part of the mapped

area. The reason is different observation geometries. Both images were acquired

while the satellite was moving along southward orbital tracks. As the ASAR

instrument was right-looking relative to its flight direction, the eastern parts of

the images were acquired at the steepest incidence angles. The 2011 acquisition was

however acquired from a satellite track further west than in 2008. The eastern parts

of the images were therefore observed at steeper incidence angles in 2011, with the

region around Phnom Penh observed at an incidence angle of 19.3� in 2011,

compared to 32.8� in 2008. Backscatter from water surfaces increases with decreas-

ing incidence angle as more radiation is scattered back to the radar. Hence the

higher contrast in the 2008 image. This example illustrates the importance of taking

into account the observation geometry for interpretation of SAR images and
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together with Fig. 17.4 demonstrates the high potential of C-band SAR for mapping

large scale floods in the LMB.

As floods can evolve rapidly, imagery should be provided as often as possible

and with the least possible time latency after acquisition. As mentioned previously,

long revisit times have been a weakness of SAR missions. Observation strategies

Fig. 17.4 Examples of C-band SAR imagery capturing the evolution of the large scale inundation

around Tonle Sap Lake in 2011. Permanent water bodies are shown in blue
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have to varying degrees been determined by user requests. This often resulted in

conflicting request as well as heterogeneous data coverage with missing or sparse

time series data in some regions.

The ASAR instrument provided measurements of the region around Great Lake

every 18 days on average in 2011, which can be considered as relatively frequent.

Targeted acquisition planning can shorten observation intervals at specific locations

but opportunities for acquisition are still subject to the satellite’s position in the

orbit as well as potential conflicts with other user requests.

17.4 Soil Moisture Monitoring

Soil moisture retrieval from spaceborne radar has been a field of active research

since the 1970s. Comprehensive state-of-the-art reviews can be found in Barrett

et al. (2009) and Kornelsen and Coulibaly (2013). Soil moisture retrieval in the

microwave domain is attractive due to the high sensitivity to soil and plant water

content, resulting from the high relative dielectric constant of liquid water com-

pared to most other naturally occurring materials. The fact that microwaves can

penetrate a short distance (centimetres) into the soil is beneficial for soil moisture

retrieval.

Fig. 17.5 Flood situation around the Great Lake by the end of November in 2008 and in 2011
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Soil moisture is highly dynamic in space and time. Small scale variations are

related to soil, vegetation and topography. As a result of atmospheric forcing in the

form of precipitation and evaporation processes, soil moisture also exhibits a large

scale component. Vinnikov et al. (1996) observed spatial correlation lengths of soil

moisture in the order of 400–800 km in the upper 1 m of the soil in Russia. Entin

et al. (2000) reported correlation lengths of several 100 km for test sites in USA,

China, Russia and Mongolia. Traditional in situ measurements are point measure-

ments, which often limits their spatial representativeness. Furthermore, in the LMB

as in many other parts of the world, in situ soil moisture data are scarce or

nonexistent. Remote sensing techniques on the other hand inherently provide a

real measurements and extensive geographical coverage albeit with lower temporal

sampling than in situ methods can provide.

The main challenges of soil moisture retrieval with radar are to account for the

influence from vegetation and surface roughness on the backscatter signal (Barrett

et al. 2009; Verhoest et al. 2008). Surface roughness impacts the measured average

radar cross section and contributes to speckle. Increased surface roughness

increases the proportion of incident energy scattered back towards the sensor.

This effect is dependent on the surface roughness, the radar’s frequency and

polarisation configuration as well as on the angle of incidence, with the greatest

sensitivity to surface roughness at shallow incidence angles. The variability of

roughness, e.g. due to tilling characteristics in agricultural fields, and the difficult

to accurately parameterize it for use in radar backscatter models means that surface

roughness often poses a major problem for soil moisture retrieval with high

resolution SAR systems (Ulaby et al. 1986; Verhoest et al. 2008; Wagner

et al. 2007).

Microwaves penetrate through vegetation to some extent depending mainly on

the plant water content and biomass and the radar carrier frequency. Dense and

moist forests are usually opaque to C-band radar, while sparse forests, grassland

and agricultural crops are partly transparent (Wagner et al. 2013). Vegetation

therefore reduces the radar’s sensitivity to soil moisture, while at the same time

contributing to total backscatter intensity.

The ASCAT scatterometers onboard the Metop-A and Metop-B satellites,

launched in 2006 and 2012 respectively, provide daily measurements globally

with a spatial resolution of 25 km. At this resolution, fine scale variability is

largely averaged out, making changes in surface roughness much less of an issue

than in the case of SAR. Furthermore, the simultaneous triple-incidence angle

measurements acquired by the instrument’s for-, mid- and aft beams can be

related to vegetation density, thereby providing a possibility to correct for the

influence of vegetation. These features have allowed the development of global

soil moisture products representing degree of soil moisture saturation in the pores

of the soil in the surface layer (Surface Soil Moisture, SSM) and in the soil profile

(Soil Water Index, SWI) (Naeimi et al. 2009; Wagner et al. 1999, 2013). The SSM

and SWI products have been used and evaluated in numerous studies,

e.g. (Albergel et al. 2009; Brocca et al. 2012; Brocca et al. 2010; Ceballos

370 D. Sabel et al.



et al. 2005; Dorigo et al. 2010; Parajka et al. 2006; Scipal et al. 2008). The

ASCAT soil moisture products are distributed in near-real-time by European

Centre for Medium-Range Weather Forecasts (EUMETSAT) since 2008 and are

used in an operational fashion by some Numerical Weather Prediction centres

(de Rosnay et al. 2012; Dharssi et al. 2011).

In the following section, the spatial and temporal variability of soil moisture

in the Lower Mekong Basin is analysed with the SWI approach applied

to scatterometer data acquired by the ASCAT instrument acquired between

2007 and 2011 and by the ERS-1 and ERS-2 satellites in the period from 1991

to 2001.

17.4.1 Scatterometer Data Processing

The Scatterometer time series data were processed with the TU Wien soil moisture

retrieval algorithm (Naeimi et al. 2009; Wagner et al. 1999, 2013). The algorithm is

based on a change detection method that requires knowledge of backscatter levels

representative of dry and wet conditions at each location. The method assumes a

linear relation between surface soil moisture content and backscatter expressed in

decibels. Variations in surface roughness are assumed to average out at the 25 km

scale and therefore not to have a significant influence on temporal changes of

backscatter. Backscatter levels for dry (σ0dry) and wet (σ0wet) soil conditions are
derived at each location with a statistical analysis of the scatterometer time series.

The difference between σ0dry and σ0wet represents the sensitivity to soil moisture

changes.

The backscatter triplets acquired by the scatterometers’ three beams are used to

deduce the incidence angle behaviour of backscatter as a seasonal function with a

daily time step. This function is used to normalize all backscatter measurements in

the time series to a reference incidence angle of 40� and to remove the contribution

from vegetation.

The SSM is computed by subtracting σ0dry from the normalized backscatter

values and dividing the difference by the sensitivity to soil moisture changes. The

SSM is given in percent and is interpreted as the degree of saturation in the soil

pores of the first few centimetres of the soil surface layer. One of the main

challenges with the method is to obtain accurate estimates of σ0dry and σ0wet in
regions where the soil rarely dries up or becomes completely saturated.

The soil moisture content in the deeper layers cannot be directly measured, but is

closely related to the history of moisture in the surface layer via the process of

infiltration. This allows the SSM time series to be used to estimate the moisture

content in the deeper layers. Soil moisture varies more quickly over time near the

surface than deeper down in the soil. Assuming that the water content in the lower

layers is solely attributable to the history of moisture conditions in the surface layer,

17 Investigating Radar Time Series for Hydrological Characterisation. . . 371



Wagner et al. (1999) applied a simple infiltration model to the irregularly sampled

time series of SSM measurements to compute the Soil Water Index (SWI):

SWI tnð Þ ¼

Xn

i

SSM tið Þe�tn�ti
T

Xn

i

e�
tn�ti
T

f or ti � tn ð17:1Þ

Here, t is the time of the SSM measurement and T is the characteristic time

length linking the deeper soil layer with the surface layer. T can be computed for a

specific depth L according to T¼ L/C, where C is an area-representative pseudo-

diffusivity constant. Depending on C, which differs between soil types, the value of
T relates to different soil depths. Wagner et al. (1999) showed with in situ data over

Ukraine that the model represents the first metre of soil best with a T-value of 20.
Even though the T-value is expected to be somewhat different in the LMB, it was

used as a reasonable approximation also in this study.

Finally the SWI measurements were spatially aggregated to the Basin Water

Index (BWI) for each of 104 sub-divisions (sub-catchments), according to

BWI ¼

XN

i

SWIi

N
ð17:2Þ

where N is the number of SWI measurements within the sub-catchment. The sub-

catchments varied in size from 132 km2 to more than 70,000 km2, with an average

size of about 6,000 km2. Some of the sub-catchments were smaller than the

resolution cell of the ASCAT scatterometer data, which raises the question if

these measurements are representative for all sub-catchments. Several studies

have shown that the ASCAT derived soil moisture often correlate well even with

situ point scale measurements, e.g. Albergel et al. (2012), Brocca et al. (2012) and

Matgen et al. (2012b). Therefore, it is reasonable to assume that in terms of spatial

scale representativeness, the ASCAT derived measurements can be used for all the

sub-catchments in the LMB.

17.4.2 Spatial and Temporal Soil Moisture Variability

The characteristic seasonal cycle of soil moisture condition across the basin is

shown in Fig. 17.6. It was computed at the sub-catchment level by averaging the

BWI for each calendar month cross the 14 years of scatterometer time series data.

The widespread inundation occurring in the Tonle Sap Basin and the Delta during

September through December prohibited the retrieval of soil moisture. Data
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acquired over those catchments during those months of each year were therefore

excluded.

As can be seen in Fig. 17.6, soil moisture conditions follow a clear seasonal

cycle while exhibiting distinct spatial variability between the sub-catchments.

January to April represents the driest period across the LMB while the wettest

period occurs during June to October. The overall driest months are February and

March. This seasonal cycle is strongly linked to the rainy southwest monsoon

bringing precipitation between May and October and the dry northeast monsoon

in the period of October to March.

Fig. 17.6 Characteristic annual cycle of soil moisture conditions derived from Scatterometer time

series observations acquired in the periods 1991–2000 and 2007–2011. Note that data acquired

from September through December were excluded in the Tonle Sap Basin and the Delta due to

widespread inundation
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During the wet season from May to September, the Khorat Plateau (see

Fig. 17.1) exhibit on average dryer conditions than other regions. In October

however, the Khorat Plateau is on average wetter than most other regions. In the

first half of November soil moisture contents begins to fall across the basin.

Cambodia and the Delta region typically remain wetter than the central and

northern parts of the basin during December and January.

Drought can occur during any part of the year in the LMB. While floods bring

benefits in the form of habitats for aquatic life and soil fertilizing sediments,

droughts do not offer any benefits. Prolonged droughts have considerable negative

impacts on fisheries and agriculture. The inter-annual soil moisture variability can

be analysed with the use of anomalies. In this study, annual anomalies were

computed as the deviation from the long term mean. The anomalies are expressed

in terms of standard deviations rather than in units of degree saturation to account

for the different temporal variability among the sub-catchments.

The annual BWI anomalies for the years 1991–2000 and 2007–2011 are shown

in Fig. 17.7. In 1999 and 2000, nearly the entire LMB experienced very high soil

moisture conditions. In the Cambodian lowlands and the Delta, the wet conditions

in 2000 correlates with severe flooding that occurred over an extended period of

time. In 1992, the most severe drought since 1960 occurred when the peak and

volume of the flood were more than 40 % below the average (MRC 2005). This

drought can be seen in the BWI anomaly which indicates exceptionally dry

conditions in the Nam Mun and Nam Chi sub-catchments in Thailand.

In the Mekong Delta, the strongest negative BWI anomalies occurred in 1997,

1998, 2007 and 2010. In 1998, conditions were especially dry in the Delta and the

Tonle Sap basins. The Tonle Sap Lake, which in a normal year can expand to an

area of more than 15,000 m2, only reached an area of about 7,000 m2 in 1998 (MRC

2010). The BWI anomaly reveals dry conditions across the entire LMB in 2007, in

particular in the north of Thailand and the Northern Highlands in Laos. In 2010,

significant dry anomalies can be seen across the southern and west parts of the LMB

as well as in the east of Laos. This coincides with an exceptionally low flow of the

Mekong. At the Kratie station in eastern Cambodia, the total volume during the

2010 flood season was even lower than the corresponding measurements for 1992,

which is generally regarded as the most severe drought year on record (MRC 2010).

The BWI anomalies show that these dry conditions remained in 2011 in the east of

Laos and the northern parts of the Tonle Sap basin. Further analysis as well as

validation results of the scatterometer derived soil moisture data can be found in

Naeimi et al. (2013).

17.5 Summary and Outlook

This chapter investigated the use of radar time series for the mapping of permanent

water bodies, floods and the retrieval of soil moisture content in the Lower Mekong

Basin (LMB) in Southeast Asia.
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The strong interaction of microwaves with water makes radars suitable for the

mapping of water bodies and retrieval of soil moisture content. Key selling points

for radar instruments are their capability of acquiring imagery independent of sun

light and weather conditions. The latter is particularly valuable in areas frequently

covered by clouds such as the Mekong Basin.

Fig. 17.7 Annual soil moisture anomalies relative the long term average given in units of standard

deviations
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The high temporal variability of flood extents and soil moisture requires frequent

observations. While SAR instruments can provide high spatial resolution down to

about 1 m, they are associated with long revisit times. SAR instruments commonly

offer modes of operation with increased geographical coverage at the expense of

spatial resolution, resulting in denser time series data. Despite this, observation

intervals for SAR instruments have been ranging from weeks to months on average.

The benefit of SAR time series for mapping permanent water bodies was

demonstrated with the use of 160 ENVISAT ASAR Wide Swath images acquired

in the dry seasons in the period between 2007 and 2011, providing a new 150 m

resolution water mask of the entire LMB. The mask was shown to correlate well

with the GlobCover 2009 dataset and clearly demonstrated the benefit of temporal

aggregation for classification of permanent water bodies.

Some of the challenges and potentials of flood mapping with SAR were illus-

trated with a series of ENVISAT ASAR images of the region around Tonle Sap

Lake, showing the evolution of the particularly large floods in 2011.

A number of commercial and non-commercial organisations have the capability

to quickly create flood extent maps based on SAR data in response to a flood event

(Westerhoff et al. 2013). However, automatic approaches are needed for systematic

and fully objective flood mapping. Automatic approaches will also shorten the time

from acquisition to delivery, which is critical in the context of crisis management.

The development of robust automatic SAR flood mapping algorithms is on-going

(Matgen et al. 2012a; Pulvirenti et al. 2011; Westerhoff et al. 2013).

The operational use of SAR for high resolution soil moisture retrieval has yet to

become a reality, in part due to the complexity of accurately modelling the

influence of surface roughness and vegetation on the backscatter signal and in

part due to the fact that SAR missions have not achieved the frequent observations

(preferably daily) appropriate for soil moisture monitoring. The use of

Scatterometers has been much more successful to this end. The ASCAT

scatterometers carried by the Metop-A and Metop-B satellites provide daily cov-

erage of the Earth’s land surfaces at a spatial resolution of 25 km. At this spatial

resolution, fine scale variability is largely averaged out, making changes in surface

roughness much less of an issue than in the case of SAR. Furthermore, ASCAT’s
simultaneous triple-incidence angle measurements provide a possibility to correct

for the influence of vegetation on the signal. The ASCAT soil moisture products are

systematically processed over the global land surface and made available in near-

real-time by European Centre for Medium-Range Weather Forecasts

(EUMETSAT) since 2008. With the expected launch of Metop-C in 2018 and

plans for ASCAT’s successor instrument, which will be flown onboard of one of

the Second Generation satellites of the EUMETSAT Polar System well underway

(Lin et al. 2012), continuity of scatterometer data for soil moisture retrieval is

foreseen well into the 2020s. The spatial and temporal variability of soil moisture in

the Lower Mekong Basin was analysed with Soil Water Index (SWI) measurements

based on ASCAT time series data acquired between 2007 and 2011 as well as

compatible scatterometer data acquired by the ERS-1 and ERS-2 satellites in the

period from 1991 to 2001. The 14 year time series was used to produce monthly

376 D. Sabel et al.



composites of the mean annual cycle of soil moisture across the LMB. Furthermore,

annual anomalies of soil moisture relative the long term mean revealed large

inter-annual variability, some of which could be linked to flooding events, droughts

and anomalies in the flow of the Mekong River.

On 3rd April 2014, the first of the Sentinel-1 satellites was launched, carrying a

C-band SAR instrument that provides continuity of measurements with ENVISAT

ASAR. The Sentinel-1 mission will acquire imagery in a systematic fashion with

the use of pre-programmed acquisition plans where user requests are accepted only

in extraordinary cases. Each of the two Sentinel-1 satellites will potentially provide

global data coverage over land with a resolution of 20 m at least every 12 days

(Snoeij et al. 2011), which will allow the build-up of a more homogeneous data

coverage and denser time series than previously possible with SAR. This will open

up new possibilities such as more frequent and more detailed updates of permanent

water bodies than previously possible with SAR instruments, allowing more

detailed studies e.g. of the spatial and temporal dynamics of surface freshwater

discharge. The Sentinel-1 data also significantly improve the possibility for high

resolution, global monitoring of surface soil moisture (Hornacek et al. 2012) and

more detailed soil moisture studies at regional to global scales. Systematic and

regular acquisitions are also beneficial for flood monitoring as they provide pre-

flood reference images required for change detection algorithms.
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Chapter 18

Land Surface Phenology Monitoring
with SeaWinds Scatterometer Time Series
in Eastern Asia

Linlin Lu, Huadong Guo, and Cuizhen Wang

Abstract Vegetation phenology tracks plants’ lifecycle events and reveals the

response of vegetation to global climate change. Microwave backscatter is insen-

sitive to signal degradation from solar illumination and atmospheric effects and

thus provides a useful tool for phenology monitoring. In this chapter, we analyzed a

time series of Ku-band radar backscatter measurements from the SeaWinds

scatterometer on board the Quick Scatterometer (QuickSCAT) to examine its

effectiveness for land surface phenology monitoring across eastern Asia. The

spatial pattern of annual mean backscatter follows regional vegetation type distri-

butions. The Start Of Season (SOS) and End Of Season (EOS) were derived from

the backscatter time series and compared with MODIS (Moderate Resolution

Imaging Spectroradiometer) phenology products from 2003 to 2007. The failure

of phenology metric detection for backscatter time series is caused by snow

coverage and limited vegetation activity in arid areas. For tropical and semi-arid

areas where optical observation is unavailable, backscatter data can provide valid

phenological information. Due to their sensitivity to different factors, temporal

discrepancies were observed between phenology products from backscatter and

MODIS time series. Overall, the results indicate that SeaWinds backscatter pro-

vides an alternative view of vegetation phenology that is independent of optical

sensors and can be applied to global phenology studies.
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18.1 Introduction

Vegetation phenology tracks plants’ lifecycle events such as bud break, flowering, and
leaf senescence as the cumulative effects of daily weather at different developmental

stages (Lieth 1974). Over the past century, phenological shifts have been observed in

association with warming climate across a diverse range of plant taxonomy (IPCC

2007; Richardson et al. 2013). Land Surface Phenology (LSP) may be defined as

seasonal patterns of variation in vegetated land surfaces observed from remote sensing

(de Beurs and Henebry 2004). Critical phenological dates or metrics, such as the onset

of greening, onset of senescence, timing of the maximum of the growing season and

growing season length can be derived from time series of remote sensing data.

These metrics are sensitive to the timing and duration of vegetation activity, which

significantly affect fluxes of carbon, water, energy, and other trace gases and therefore

are important to biosphere–atmosphere interactions (Morisette et al. 2009).

Satellite data at optical-infrared wavelengths from operational satellite sensors

such as AVHRR (Advanced Very High Resolution Radiometer), MODIS (Moderate

Resolution Imaging Spectroradiometer) and SPOT-VGT (Satellite Pour

l’Observation de la Terre-Vegetation) and derived spectral vegetation indices

(VI) have been widely used to LSP monitoring at spatial resolutions of 500–

8,000 m (Ganguly et al. 2010). Cloud contamination and soil background in sparsely

vegetated areas, however, often cast high uncertainties on these phenology products.

Satellite microwave remote sensing records data at lower frequency wavelengths

which are sensitive to changes of water content, canopy structure and biomass (Ulaby

et al. 1982), and provides a useful alternative for phenology assessment. Microwave

backscatter is insensitive to signal degradation from solar illumination and atmo-

spheric effects. The wind scatterometer on ERS-l was compared with global VI data

for monitoring vegetation dynamics (Wagner et al. 1999) and examining the seasonal

vegetation development (Frison and Mougin 1996). The potential of passive and

active microwave measurements in vegetation monitoring was jointly investigated at

the global scale with the special sensor microwave/imager (SSM/I) and ERS

scatterometer (Macelloni et al. 2003). Several microwave Vis (MVIs) have been

retrieved from daily time-series brightness temperature of passive microwave radi-

ometers. Comparing with NDVI (Normalized Difference Vegetation Index), the

results proved that MVIs could provide significant new information of vegetation

development (Min and Lin 2006; Shi et al. 2008).

Though its primary mission is to observe ocean winds, the SeaWinds on Quick

Scatterometer (QuickSCAT) provides an opportunity for an active microwave

scatterometer to assess phenological features associated with seasonal changes of

vegetated landscapes. Hardin and Jackson (2003) modeled the monthly composites

of SeaWinds Ku-band backscatter as a function of savanna grass biomass and leaf

area, soil moisture, and other soil characteristics in South America, finding it

promising in monitoring the dynamics of savanna grasslands. In boreal and subal-

pine evergreen coniferous forests, Kimball et al. (2004) employed a temporal

change classification to detect the initiation and termination of the growing season

from daily radar backscatter measurements from the SeaWinds scatterometer.
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Frolking et al. (2005, 2006) found that the SeaWinds Ku-band backscatter and

MODIS leaf area index (LAI) were strongly correlated in North American grass-

lands in the growing season, and backscatter was sensitive to seasonal variability in

grassland biomass and productivity. Lu et al. (2013a) applied a three-year back-

scatter time series to vegetation phenology monitoring from 2003 to 2005 across

China. Eastern Asia is a large region encompassing a wide range of climate and

land cover types (Fig. 18.1). In this study, we extended the study by Lu

et al. (2013a) and evaluated the effectiveness of SeaWinds Ku-band backscatter

in vegetation phenology monitoring across eastern Asia. The spatial pattern and

variability of backscatter was mapped and analyzed from 2000 to 2009. The

phenology detection results from a 5-year backscatter time series were compared

with the MODIS phenology products at regional level.

18.2 Data and Methods

18.2.1 SeaWinds Backscatter Data

Launched in June 19, 1999, SeaWinds scatterometer on-board the QuickSCAT

satellite was originally intended to be a ‘quick recovery’ mission to fill the gap

created by the unexpected failure of the NASA scatterometer (NSCAT) (King and

Fig. 18.1 Land cover types in eastern Asia
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Greenstone 1999). The SeaWinds instrument consists of a rotating pencil-beam

antenna, which provides contiguous measurement swaths of 1,400 km (inner-beam)

and 1,800 km (outer-beam), coverage of approximately 70 % of Earth on a daily

basis and 90 % global coverage every 2 days. The SeaWinds radar transmits

microwave radiation at a 13.4 GHz (2.1 cm) wavelength and receives a surface

backscatter signal with a 0.25 dB relative accuracy (King and Greenstone 1999). It

records radar backscatter with dual polarization (vertical and horizontal) at two

nominal incidence angles, 46.0� and 54.1� corresponding to the inner and outer

beams. The inner beam has horizontal polarization while the outer beam has

vertical polarization. The data records span from July 1999 to November 2009,

and the standard processing of backscatter measurements yields a spatial resolution

of about 25 km.

The Scatterometer Image Reconstruction (SIR) technique is applied to the

overlapping passes to reduce noises for enhanced resolution measurements of the

surface characteristics (Early and Long 1996). Since the SeaWinds outer beam data

provide improved temporal coverage and an increased propagation path through

vegetation volume (Frolking et al. 2006), this study applied the composite 4 day

V-pol average backscatter time series of the SeaWinds L2A product at 4.5 km

resolution (Early and Long 2001). SeaWinds backscatter data from January 2000 to

November 2009 covering eastern Asia were downloaded from the NASA

Scatterometer Climate Record Pathfinder database at Brigham Young University

(http://www.scp.byu.edu) (Fig. 18.1). The Marine Geospatial Ecology Tools

(MGET) were used to convert SIR files to raster format (Roberts et al. 2010).

18.2.2 MODIS Phenology and Land Cover Products

The V005 MODIS Land Cover Dynamics (MCD12Q2) product (informally called

the MODIS Global Vegetation Phenology product) provides estimates of the timing

of vegetation phenology at global scales (Ganguly et al. 2010). MCD12Q2 primar-

ily uses the MODIS Enhanced Vegetation Index (EVI), which is computed from the

MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted

Reflectance (MODIS NBAR) product. The snow and ice flag included in the

MODIS NBAR product is used to filter out data points associated with snow-

covered surfaces from the input time series. In particular, a time series of EVI is

extracted for each pixel. Periods of sustained EVI increase or decrease are identified

after a gap-filling and smoothing process. Logistic models are fit to the time series

and transition dates including the onset of EVI increase, the onset of EVI maxi-

mum, the onset of EVI decrease, and the onset of EVI minimum are identified as

local maxima and minima in the rate of change of curvature of the fitted logistic

function (Ganguly et al. 2010). In our study, the onset of EVI increase and onset of

EVI decrease dates from 2003 to 2007 covering the study area are retrieved for the

comparative analysis.
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The MODIS 1 km land-cover product (MOD12Q1) was used to identify primary

land covers in the study area. With the International Geosphere-Biosphere

Programme (IGBP) land-cover legend (Friedl et al. 2002), the MODIS product of

2009 was downloaded and a total of 18 cover types were mapped and served as base

information in this study (Fig. 18.1).

The MODIS Re-projection Tool was used to mosaic and convert Hierarchical

Data Format (HDF) files to raster format. They were re-projected and resampled

to the same resolution as the SeaWinds backscatter products at a local radius

equal-area Lambert Projection.

18.2.3 Climate Data

In radar backscatter data, dielectric constants of land surfaces are strongly affected

by frozen and thaw conditions. To differentiate data in the frozen and nonfrozen

seasons and assign them different weights in the phenology model from the annual

time series, a temperature mask was generated using temperature data. The daily air

temperature grid data in a 2.5� spatial resolution was downloaded from the NCEP

Daily Global Analyses data provided by the NOAA/OAR/ESRL PSD, Boulder,

Colorado, USA, from their Web site at (http://www.esrl.noaa.gov/psd) (Trenberth

and Olson 1988a, b). The onset of the fully thawed season was determined to be the

last day of 6 consecutive days with mean air temperatures greater than 5 �C, and the
end of the thaw season as the first day of 6 consecutive days with mean air

temperature less than 50C (Karl et al. 1999; Peterson 2005). Gridded temperature

masks defining the start and end of the thaw season were produced for each year.

They were re-projected and spatially disaggregated to the same grid as the

SeaWinds data.

18.2.4 Means and Variability of Backscatter

In this study, the backscatter data was used to calculate derivative datasets on

annual basis, a common process for analyses of time series (Gessner et al. 2013;

Kuenzer et al. 2009). The mean monthly backscatter was calculated from the

monthly data based on the 2000–2009 time series. For a given pixel, the monthly

10-year arithmetic mean (Backscatterx, y ) was calculated using Eq. (18.1), with

n being the number of years and Backscatterx,y the monthly backscatter value for

pixel x, y. The mean annual backscatter was calculated accordingly from the annual

sums.

Backscatterx, y ¼ 1

n

X n

1
Backscatterx, y ð18:1Þ
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The deviation (DevBx, y) from the 2000–2009 mean annual backscatter at a

given spatial location for a certain year was calculated according to Eq. (18.2).

DevBx, y ¼ Backscatterx, y � Backscatterx, y ð18:2Þ

In addition, the relative annual backscatter deviation (rDevBx, y) was derived.

This describes the deviation as a percentage from the mean annual backscatter, as

given by Eq. (18.3).

rDevBx, y ¼ DevBx, y � 100
Backscatterx, y

ð18:3Þ

The mean annual variability (VBx, y) was derived according to Eq. (18.4) with

the relative annual backscatter deviation (rDevBx, y) and n being the number of

years.

VBx, y ¼ 1

n

Xn

1
rDevBx, y

�� �� ð18:4Þ

18.2.5 Phenology Metric Detection

According to Frolking et al. (2006) and Lu et al.(2013a), radar backscatter has a

significant relationship with LAI based on site-level linear regression analysis.

Therefore, a weighted phenological model was applied to the backscatter time

series to detect the timing of leaf flush and senescence in this study. The curve-

fitting method, Asymmetric Gaussian implemented in the TIMESAT software is a

common tool for time series analysis (Gao et al. 2008; Wang et al. 2011; Jones

et al. 2012). It was applied to fit local model functions to the backscatter data of a

vegetation growth cycle. The single growth cycle of vegetation typically consists of

a growth and senescence phase. The Gaussian type of function was used as the

following (J€onsson and Eklundh 2002, 2004):

f t; x1, x2, . . . x5ð Þ ¼ e
� t�x1

x2

� �x3

if t > x1

e
� x1�t

x4

� �x5

if t < x1

8><
>:

9>=
>;

ð18:5Þ

In this model, the coefficient x1 determines the position of the maximum or

minimum with respect to the independent time variable t. Coefficients x2 and x3
determine the width and flatness of the right half of the function, while x4 and x5
determine the width and flatness of the left half. In order to ensure smooth shapes of

the model functions and consistency with data observations, these coefficients were

restricted in certain conditions and were calculated using a separable Levenberg–

Marquardt method (Madsen et al. 2004).
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With the asymmetric Gaussian fitting model, two seasonality metrics, namely

the Start Of Season (SOS) and the End Of Season (EOS), were calculated. Assum-

ing the seasonal amplitude as the difference between the maximum value and base

level, the SOS was defined as the time when the left edge increased to 30 % of the

seasonal amplitude measured from the left minimum level, and the EOS was

defined as the time when the right edge has decreased to 30 % of the seasonal

amplitude from the right minimum level (J€onsson and Eklundh 2004). The phenol-

ogy detection of backscatter time series at a sample site is shown in Fig. 18.2. The

sample site is a homogenous area (3� 3 pixels) with main land cover as deciduous

forest. The backscatter time series from 2003 to 2005 was weighted and fitted with

the asymmetric Gaussian model. With this model, phenological metrics (SOS and

EOS) of all pixels were extracted from the backscatter time series to examine their

spatial patterns across the eastern Asia.

18.3 Results

18.3.1 Backscatter Mean and Variability

Figure 18.3 represents the spatial variation of the annual mean backscatter across

eastern Asia for the 2000–2009 period. Comparing with the land cover type

(Fig. 18.1), the spatial pattern of backscatter follows regional vegetation type

distributions. For grasslands and barren lands with sparse vegetation in Kazakhstan,

Mongolia, and northwestern China the backscatter value ranges from �20 to

�15 dB. For areas dominated by forests in the south of China, it ranges from

�15 to�11 dB. Agricultural lands in northern China exhibited medium backscatter

Fig. 18.2 An example of the 3-year SeaWinds backscatter times series and its curve-fitting results
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from �17 to �15 dB, whereas it shows higher value (�15 to �13 dB) in India and

southern China. The desert in western China shows extremely low value (�30 to

�26 dB). The mountain areas in the south western China are often covered with

snow and show highest values (�11 to �5 dB).

The Fig. 18.4 illustrates how the mean annual backscatter varies from year to

year for the 2000�2009 period. Areas with high variability show less stable

backscatter values than areas with low variability. In general, the mean annual

backscatter variability reveals moderate dynamic levels over the land surface

(<10 %, and mostly <5 % in Fig. 18.4). The northern area of the study region

shows higher variability than the southern. High variability can be observed in

northeastern China. Similar variability was detected in the arid areas of Kazakhstan

and the desert area of India. Fluctuation of backscatter is also observable for the

Tibetan Plateau.

18.3.2 Regional Comparison of Backscatter- and MODIS-
Derived Phenology Metrics

In order to reduce the uncertainties in phenological detection results, we used

detected phenology dates from 2003 to 2007 for the comparative analysis. The

Fig. 18.3 Mean annual backscatter for the 2000–2009 period across eastern Asia
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numbers of successful annual retrievals for phenological metrics from backscatter

and MODIS data are shown in Fig. 18.5. For backscatter data, missing values were

distributed mostly in high latitude areas and the Tibetan Plateau. The failure of

detection in MODIS data was distributed in the southern tropical and subtropical

area, the arid and semiarid area in northwestern China and Sichuan province in

southern China. For the multiple-cropping areas in eastern China, the phenological

metrics can be detected from MODIS time series in only 3 or 4 years.

The mean SOS dates derived from backscatter time series and MODIS prod-

ucts for 2003–2007 are shown in Fig. 18.6a, b. The SOS dates ranged widely

from approximately DOY 70 in the south to DOY 190 in the north. The grass-

lands extending from Kazakhstan to Mongolia (Fig. 18.1) showed an earlier SOS

than areas at the same latitude. It shows a gradient from east to west, with

southeastern Mongolia having a much later SOS from both datasets. Other

areas with much later SOS from backscatter time series are northern China and

northern India. The northern China is dominated by grassland and agriculture

lands. The northern India is dominated by vast irrigated drylands and has a

tropical desert climate.

Figure 18.7 shows the bias between backscatter SOS and MODIS greenup dates.

For the agricultural lands in central China (Fig. 18.1), the backscatter data shows

later greenup dates than MODIS data. For grasslands in the north, the backscatter

data detects earlier SOS dates. In the south of China where there are mixed land

covers of forest, shrub lands and croplands with a dominant subtropical and tropical

monsoon climate, the backscatter data also detects earlier SOS.

Fig. 18.4 Mean annual backscatter variability (%) for 2000�2009 across eastern Asia
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The end of season derived from backscatter time series and MODIS senescence

date for 2003–2007 are shown in Fig. 18.8. The MODIS EOS dates range from

DOY 100 to DOY 280, and backscatter EOS range from DOY 100 to DOY 360.

Though the EOS detected by backscatter data is later than MODIS, it shows a clear

spatial pattern from north to south regionally. A similar earlier EOS was detected in

Kazakhstan from both backscatter and MODIS datasets. The EOS gradient detected

by backscatter data across China shows an earlier growing season end in the north.

Figure 18.9 shows the bias between backscatter EOS and MODIS senescence

dates. For most areas, the backscatter data detected later EOS dates. In the grass-

lands in Kazakhstan, Mongolia and China, the EOS detected by MODIS occurs

later than that derived from backscatter. Another discrepancy occurred in the

agricultural lands in central China and northern India.

Fig. 18.5 Number of successful annual retrievals for phenology metrics derived from (a) back-
scatter time series and (b) MODIS phenology products at pixel level for 2003–2007 in eastern Asia
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Fig. 18.6 The mean start of season derived from (a) backscatter time series for 2003–2007 and (b)
MODIS greenup date for 2003–2007 in eastern Asia
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18.4 Discussion

The spatial patterns of backscatter and derived phenological metrics as reported in

this study reflect the controlling mechanisms of vegetation activity including both

broad-scale patterns related to climate and local factors related to land cover and

human activities. The backscatter and its variability (Figs. 18.3 and 18.4) reveal a

clear spatial variation across the eastern Asia region. The inter-annual variability of

backscatter in different areas might be attributed to different reasons. As reported

by Frolking et al. (2011), severe drought occurred in southwestern Amazonia can be

detected from the significant interannual variability in dry season monthly mean

backscatter. The variability in the arid area of Kazakhstan and the desert area of

India might be caused by variation of soil moisture that is strongly impacted by

precipitation. The fluctuation of snow coverage can cause backscatter variability in

the north of China and the Tibetan Plateau. Anthropogenic activities such as

cultivation and urban expansion can lead to the high variation in China northern

plain. With MODIS data, Zhang et al. (2006) studied global vegetation phenology

and found that the timing of crop phenology can be quite variable, depending

strongly on crop type and agricultural management. Frolking et al. (2013) reported

that the significant backscatter increase of SeaWinds backscatter in major cities

around the world was caused by changes of built-up infrastructure.

The numbers of successful annual retrievals for phenological metrics from time

series (Fig. 18.5) reveal the algorithm sensitivity to data noise and gaps. For

Fig. 18.7 The temporal bias between mean backscatter SOS and MODIS greenup date 2003–

2007 in eastern Asia
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SeaWinds backscatter time series, snow in the high latitude area and the Tibetan

Plateau results in the failure of phenology detection algorithms (Fig. 18.5a). For

MODIS phenology products, the persistent cloud cover, high levels of atmospheric

Fig. 18.8 The mean end of season derived from (a) backscatter time series for 2003–2007 and (b)
MODIS senescence date for 2003–2007 in eastern Asia
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aerosols and weak seasonality present substantial challenges for land surface

phenology algorithms (Ganguly et al. 2010). Missing values are observable in

tropical and subtropical area (Fig. 18.5b). In arid and semiarid area of China,

phenology detection failures are caused by the limited vegetation activities. In the

multiple-cropping areas in eastern China, multiple vegetation growth cycles exit in

1 year, which can also cause the failure of phenology detection. Only three or four

phenology cycles have been successfully detected in MODIS product (Fig. 18.5b).

In contrast, backscatter imagery provides effective phenological observations in

these areas.

The regional patterns of SOS and EOS from backscatter and MODIS (Figs. 18.6

and 18.8) show similar latitudinal shifts, which are related to large-scale climate

transitions. For example, the spatial variability of grassland phenology in Kazakh-

stan and Mongolia at the same latitude reflects the impacts of the precipitation

regimes. Agreeing with Begue et al (2014) and Zhang et al (2005), the SOS shifts

from MODIS phenological products are linked to the timing of seasonal rainfall in

the arid and semi-arid lands.

The backscatter-derived phenology metrics show different temporal bias from

MODIS products in different land cover types. The bias of backscatter SOS dates

and MODIS greenup dates is caused by the temporal shifts between backscatter

increase and canopy greenup. For boreal forests in Russia, an earlier SOS and EOS

were detected prior to greenup and senescence onset respectively. Kimball

et al. (2004) studied boreal and subalpine evergreen forests with SeaWinds

Fig. 18.9 The temporal bias between backscatter EOS and MODIS senescence date for 2003–

2007 in eastern Asia
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scatterometer, and revealed that radar remote sensing measurements of the initia-

tion of the growing season corresponded strongly with both site measurements and

ecosystem process model simulations. J€onsson et al. (2010) studied tree phenology

with MODIS vegetation index, and revealed that without a sharp increase in

greenness during spring, the seasonal changes in vegetation indices of evergreen

trees were more related to snow dynamics than to changes in needle biomass. As

seasonal thawing occurs, transpiration rates increase and water is allocated to

canopy branches or existing leaves prior to new leaf construction (Waring et al.

1979). This may lead to backscatter seasonal increase and SOS prior to MODIS

greenup date. For tropical and subtropical forests in southern China, an earlier

greenup onset and later senescence onset were detected from backscatter data. The

structural changes of the plants such as leaf fall and leaf flushing influence the

seasonal variation of backscatter signals. In the steppes in Kazakhstan and Mongo-

lia, the backscatter SOS and EOS generally precede the VI greenup. With low

vegetation cover and biomass, the backscatter is more related to the fluctuation of

soil moisture which is earlier than the increase of leaf greenness. In cropland-

dominated areas, planting and harvest times drive the vegetation phenology cycles

and the backscatter SOS generally follows NDVI greenup. Croplands are primarily

barren or covered with non-photosynthetic residues prior to tilling and planting.

Greenup occurs at seed germination or the initiation of visible above-ground

photosynthetic vegetation growth, which can occur prior to significant biomass

growth (Jones et al. 2011; Lu et al. 2014). The backscatter follows the initial VI

greenup by several weeks or more following delayed increase in vegetation water

content and development of above-ground biomass.

Despite these findings, there are significant limitations to our research. The data

noise and gap in the time series may lead to large uncertainties of the phenology

detection results. Different methods were used to detect phenological dates from

backscatter and MODIS time series, which may cause their discrepancy (White

et al. 2009). Moreover, time series of the eddy covariance measurements from

tower sites can be integrated in further studies, which would improve understanding

of our results (Jones et al. 2012; Melaas et al. 2013).

18.5 Conclusions

This study tested the feasibility and effectiveness of microwave backscatter data in

regional vegetation phenology monitoring. The mean and variability of backscatter

were derived from the SeaWinds Ku-band backscatter time series for the 2000–2009

period across eastern Asia. The vegetation phenology metrics (SOS and EOS) were

extracted for the 2003–2007 period and compared with contemporary MODIS

phenology products. The results can be summarized as follows.

The regional spatial patterns of annual mean backscatter in eastern Asia follow

the spatial distributions of vegetation types. The mean annual variability observed

in SeaWinds backscatter can be related to the dynamics of meteorological
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conditions such as drought and snowfall. Human activities, for example the inten-

sified agricultural practices and expanded urban developments, also lead to its high

variability.

In areas where optical time series is unavailable due to persistent cloud cover,

high levels of atmospheric aerosols and low VI values, backscatter imagery pro-

vides effective observations. Different temporal biases were found in different land

cover areas between the backscatter-extracted and the publishedMODIS phenology

metrics. For boreal forests and steppes, the backscatter-extracted SOS and EOS

preceded the MODIS greenup and senescence onsets, respectively. For tropical and

subtropical forests, an earlier SOS and later EOS dates were detected with the

backscatter data, while the SOS for croplands was found later than the MODIS

greenup.

Overall, the application of backscatter time series for LSP monitoring can

expand the breadth of the current optical satellites, thereby enhance our under-

standing of global vegetation dynamics and carbon cycle processes. However,

given the complexity of Ku-band backscatter behaviors on vegetated landscapes,

a critical challenge of our study is to understand the bio-ecological meaning of the

temporal variation of backscatter time series. The inconsistency of phenology

metric detection methodology should also be aware of. Our future research direc-

tion will focus on linking the variation of backscatter-extracted phenology metrics

to the dynamics of ecosystem and its response to climate change. The integration of

ground observation from tower sites will allow us to better interpret the remote

sensing results.
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Chapter 19

Monitoring Recent Urban Expansion
and Urban Subsidence of Beijing Using
ENVISAT/ASAR Time Series Datasets

Xinwu Li, Huadong Guo, Huaining Yang, Zhongchang Sun, Lu Zhang,
Shiyong Yan, Guozhuang Shen, Wenjin Wu, Lei Liang, and Meng Wang

Abstract With worldwide economic development and population increases, urban

areas create significant stresses on the local, regional and global environment.

Information about the spatial and temporal dynamics of the characteristics of

urban areas is therefore needed to support sustainable urban development. Time

series earth observation data obtained using radar satellites have provided effective

data sources for monitoring urban areas. This chapter first describes the develop-

ment of synthetic aperture radar as well as its important role in the detection and

monitoring of urban areas. Then, the fundamental principle of time series radar data

in monitoring urban areas is introduced and discussed. Next, to demonstrate the

capacity of time series SAR (Synthetic Aperture Radar) imagery for monitoring

urban areas using ENVISAT/ASAR (Environmental Satellite /Advanced Synthetic

Aperture Radar) time series radar data, Beijing city in China was selected as a test

site. Beijing has all of the typical problems of a megacity such as resource,

environment and population problems arising from rapid urban expansion during

recent decades. A C5.0 rulesets classifier and the Multi Temporal Interferometric

Synthetic Aperture Radar (MTInSAR) method were used to map the urban expan-

sion and the millimeter level urban subsidence, respectively and the results were

validated via high resolution WorldView optical datasets and leveling benchmark

measurement, respectively. The results demonstrate the effectiveness and high

accuracy of the time series radar data for monitoring urban areas. Furthermore,

the spatial-temporal characteristic of urban expansion and urban subsidence of

Beijing city were analyzed. Finally, the mechanisms or driving factors for urban

expansion and subsidence are addressed based on economic development, popula-

tion growth and the impacts of recent Beijing government policy.
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19.1 Introduction

Over the previous decades, serious environmental issues such as deforestation,

desertification, wetland loss, agricultural intensification in vulnerable areas, con-

tinuous urban development, and the disappearance of species deprived of their

biotopes have significantly increased. Urban areas especially create significant

stresses on the local, regional and global environment (Millennium Ecosystem

Assessment 2005; Ban et al. 2014). Time series change information is one of

most important tools to better monitor and manage environmental issues in urban

areas. Specifically, the use of time series Synthetic Aperture Radar (SAR) obser-

vations will be critical to provide important information for monitoring urban areas

(Guo 2001; Taubenb€ock et al. 2012).

Since its inception in the 1960s, SAR has become a global leading-edge tech-

nology and the core technology for active microwave earth observation due to its

unique all-weather 24-h partial penetration capabilities (Guo 2001).

Radar satellites (see Table 19.1) that have been launched to date primarily

include Seasat, ERS-1/2 (Earth Resources Satellite), ENVISAT/ASAR (Environ-

mental Satellite /Advanced Synthetic Aperture Radar), JERS-1 (Japanese Earth

Resources Satellite), RADARSAT-1/2, ALOS/PALSAR (Advanced Land Observ-

ing Satellite/ Phased Array type L-band Synthetic Aperture Radar), COSMO/

SKYMED (Constellation of small Satellites for Mediterranean basin Observation),

TerraSAR-X, Sentinel-1 of the European Space Agency (ESA), ALOS-2/

PALSAR-2 (Lee and Pottier 2009; Shimada 2009; Schubert et al. 2014; Okada

et al. 2014). These satellites played an important role in global environmental

change (Guo et al. 2014), resource prospecting (Guo 2001), disaster evaluation

and mitigation (Guo et al. 2009, 2010), urban environment (Zhang et al. 2010;

Li et al. 2010) and lunar exploration (Guo 2014). Future launches include the

P-band-SAR of the BIOMASS mission (Heliere et al. 2009), TerraSAR-L add-on

for Digital Elevation Measurement (TanDEM-L) SAR of Germany (Moreira

et al. 2009), and the Radar Satellite Constellation (RCM) of Canada (Séguin

2010). Most of the future radar satellites will not only have observational capabil-

ities such as single band, multi-polarization, polarimetric, interferometric, high-

resolution, and wide swath, similar to the radar satellite previously launched but

also be enhanced with bi-static or constellation observation, polarimetric interfer-

ometry, high-resolution wide swath mapping, and three-dimensional information

acquisition (Guo and Li 2011). Most of these SAR missions focus on understanding

key scientific problems, such as the global carbon cycle or the water cycle (Heliere

et al. 2009; Moreira et al. 2009; Guo et al. 2014). These advanced SAR satellites

will likely play an increasingly important role in monitoring future urban expansion

and urban subsidence on a regional and global scale, and make significant contri-

butions to global urban development.

Time series optical datasets such as Landsat TM (Thematic Mapper) and LDCM

(Landsat Data Continuity Mission) are often used to map urban expansion and

capture the spatial-temporal characteristics of urban areas. Over a 30 year time
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span, a few studies used SAR time series imagery for regional or global urban

expansion monitoring because of the complexity of their interactions with diverse

urban features (Ban et al. 2014; Pesaresi et al. 2013; Taubenb€ock et al. 2012). Many

studies are focused on SAR urban mapping methodology (Gamba and Herold 2009)

and urban subsidence mapping using time series SAR datasets (Ferretti et al. 2001),

for which optical datasets do not work well. However, with its all-weather and all-

time imaging capability and its unique information content, SAR time series

datasets have recently been increasingly used for regional and global urban extent

extraction with promising results (Gamba et al. 2011). With the launch of

TerraSAR-X, TanDEM-X and Sentinel-1 SAR, SAR urban mapping on a regional

and global scale is becoming much easier, but it is still important to use ENVISAT/

ASAR or other earlier SAR sensor data for urban area mapping from earlier times.

Furthermore, besides all-weather and all-time imaging capability, SAR can be used

for not only urban expansion mapping but also for urban subsidence mapping, an

advantage with which optical time series imagery cannot compete.

In this chapter, to demonstrate the capacity of time series SAR imagery for

monitoring urban expansion and urban subsidence simultaneously, ENVISAT/

ASAR datasets were used to create a recent urban expansion and subsidence map

and to reveal recent changes in spatial and temporal characteristics of an urban area

and the mechanism or factors that drove the changes. The structure of this chapter is

as follows: Sect. 19.1 is the introduction, Sect. 19.2 describes the basic principles of

SAR time series observation of urban monitoring, Sect. 19.3 introduces the study

area and datasets, Sect. 19.4 contains the SAR time series monitoring of the urban

expansion and subsidence of Beijing city, and the final Sect. 19.5 provides a

discussion and conclusions.

19.2 Study Area and Datasets

Beijing is located at 39.82�N~40.12�N and 116.25�E~ 116.63� E, and covers

approximately 1,300 km2 (Fig. 19.1). The sixth census survey in 2010 showed

that the registered population of the city reached 19.612 million (Guo et al. 2014).

The research group acquired 23 scenes of ENVISAT/ASAR repeat-pass single-look

complex data (Track: 218, Frame: 2803) covering Beijing from 2006 to 2010, all of

which are in the VV polarization mode, IS2 swath. The mean incidence angle of

ASAR images is approximately 23.7�. Ten of the 23 scenes of ENVISAT/ASAR

repeat-pass single-look complex data were used to detect urban area changes in the

Beijing area. Because the urban expansion changes were not obvious from 2006 to

2010, to validate the results, 12 parts of one WorldView image (acquired on

11 February 2009) with a spatial resolution of 0.5 m were collected as reference

data for an accuracy assessment of the urban area changes; and four benchmark

measurements were collected in several areas of Beijing for validation of subsidence

measurement results.
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19.3 Basic Principles of SAR Time Series Observation
of Urban Areas

There are three fundamental principles for using time series radar data to monitor

the dynamics of urban areas. (1) Urban areas may be monitored based on the

backscattering coefficient or intensity of ground objects or land cover (Rignot and

van Zyl 1993). Most of the aforementioned satellite data can be used based on this

principle. (2) Urban areas may be monitored based on the phase of the radar echo

(Ferretti et al. 2000, 2001; Berardino et al. 2002). The urban area surface deforma-

tion caused by subsidence, seismicity or landslides might all contribute to the phase

change of the radar echo. The dynamics of urban subsidence, seismic displacement

or landslide deformation can be effectively monitored using the radar satellite

interferometry technique, which is possessed by most of the radar satellites men-

tioned above. (3) Urban areas may be monitored based on the polarization, coher-

ence, texture and other features of the SAR’s echo (Conradsen et al. 2003; Lee and

Pottier 2009; Moser and Serpico 2009; Li et al. 2012). Changes of ground objects

will also change the polarization, coherence, texture and other features of the radar

waves. Based on such changes, it is possible to monitor the dynamics of ground

objects. Generally speaking, an urban area monitoring method based on principle

(1) is simple and easy to implement. Methods based on principle (2) require SAR

satellites that have interferometric measurement capacity; furthermore, most of

Fig. 19.1 The study area in Beijing, China
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these methods are only used to measure land surface changes caused by subsidence,

seismicity and landslides. Polarimetric or interferometric or high resolution mea-

surement capacity is required for methods based on principle (3). Overall, because

of the development of SAR sensors and the progress of SAR image processing

techniques, an integrated urban area dynamic monitoring method combining prin-

ciples (1), (2) and (3) will be developed and used for more complex urban

environments (Li et al. 2012).

19.4 SAR Time Series Monitoring of the Urban Area
of Beijing City

19.4.1 An Urban Expansion Analysis Using Multi-temporal
ENVISAT/ASAR Imagery

19.4.1.1 Method: Classification with the C5.0 Rulesets Classifier

Figure 19.2 shows an overview of the data processing procedure. The flowchart is

composed of five parts, including data preprocessing, C5.0 classifier rulesets

construction, a classification/accuracy assessment, an urban change detection anal-

ysis, and the interpretation of urban changes. For data preprocessing, all ASAR

datasets were calibrated and then co-registered with a registration accuracy of

approximately 1/8 pixel using DORIS (Delft object-oriented radar interferometric

software). To reduce speckle noise in the SAR imagery, a multi-look processing

algorithm was applied to reach a 5� 1 look in azimuth and range, following a 3� 3

enhanced Lee filter (Lee et al. 1999). Master and slave images were selected based

on PSInSAR technology. After calculating a coherence map based on the master

and slave images, three channels of data, including maps of master image magni-

tude, slave image magnitude and coherence, were selected and used to classify the

data. As shown in Fig. 19.2, the construction of the C5.0 classification tree pixel-

based method is an iterative process of sample data collection, model training, and

validation. The samples were manually selected by cross-validating high resolution

WorldView images, Google Earth images and SAR data. Subsequently, the three

channels of SAR data were classified based on the constructed C5.0 rulesets and

validated using an independent, randomly selected test data set. Finally, an urban

change detection map was derived and dynamically analyzed based on multi-

temporal classification maps using ArcGIS software. In addition, in a mountainous

area, the bare rocks on the top of the mountain have a very high scattering

coefficient similar to the back scattering value of urban buildings. In this study

we masked the non-urban mountainous area using SRTM DEM (Shuttle Radar

Topography Mission Digital Elevation Model) data. A detailed description of the

classification with the C5.0 algorithm as well as accuracy assessment is given in the

following sections.
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Training samples were collected based on ENVISAT/ASAR data; and the

collected training samples were selected by cross-checking the ENVISAT/ASAR

data with high resolution Google Earth images and WorldView images in the study

area. The target variables contained four land use land cover (LULC) classes:

urban, vegetation, water bodies, and bare soil. Polygon regions of interest (ROIs)

for each LULC class were manually drawn based on the three-channel SAR

imagery, which were later divided into training and testing samples (see Table 19.2).

In addition, the ROI polygon sizes for each LULC class were considered and kept

approximately equal during the process of ROI creation. Two-thirds of the polygon

ROIs were randomly selected as training samples for each class separately, and the

remainder was used for assessing the accuracy of the classifier.

The classification was based on the commercially available decision tree classi-

fier C5.0 (Quinlan 1993; Brown de Colstoun and Walthall 2006; Evrendilek and

Gulbeyaz 2011). It uses the gain ratio criterion to determine the best attribute to

separate different classes as well as the best possible threshold to make this

separation (Quinlan 1993). Compared with other algorithms, the C5.0 method

incorporates new methods in machine learning such as adaptive boosting, an

ensemble method that has been widely shown to enhance classification accuracy

and to minimize noise sensitivity (Freund and Schapire 1996; Evrendilek and

Gulbeyaz 2011; Guo et al. 2014).

This study applied the See5/C5.0 program as an adaptive, boosted ruleset

classifier to perform the classification. Ruleset classifiers are generally easier to

understand than trees because each rule describes a specific context associated with

Fig. 19.2 Flowchart of the classification procedure. The dark gray boxes represent dataset inputs;
the white boxes represent automatic computational processes; and the light gray boxes represent
manual processes
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a class; additionally, they are often more accurate predictors than trees (Guo

et al. 2014). In our research, the ruleset option was selected and used to construct

classifiers. Three channels of data for each year, including maps of master image

magnitude, slave image magnitude and coherence were used to construct ruleset
classifiers and implement the classification based on the C5.0 adaptive boosting

algorithm. The parameterization for the pruning rate and boosting were defined

according to the recommendation of Evrendilek and Gulbeyaz (2011), who

suggested a default pruning rate of 25 % and boosting trails of 10 to prune the

tree in case of over-fitting.

The overall classification result for each of the three-channel SAR data was

iteratively improved by performing several cycles of classification and validation

procedures. After each classification step, the performance was evaluated on the

basis of the testing samples and the training data base was then manually improved

for the thematic classes and geographic regions with high classification errors.

However in the final classification maps, significant “salt and pepper” effects

were evident in some cases and had a great impact on the level of accuracy.

Therefore, a class-specific filtering approach was implemented before accuracy

Table 19.2 Number of the polygons and pixels selected for each class in the training and testing

samples

Types/

samples

2006 2007

Training Testing Training Testing

Polygons Pixels Polygons Pixels Polygons Pixels Polygons Pixels

Urban 109 2,680 54 1,358 106 2,596 53 1,243

Vegetation 67 1,636 33 819 76 1,829 38 917

Water 71 1,617 35 808 67 1,616 33 701

Bare soil 63 1,292 32 645 64 1,367 33 685

Total 310 7,225 154 3,630 313 7,408 157 3,546

Types/

samples

2008 2009

Training Testing Training Testing

Polygons Pixels Polygons Pixels Polygons Pixels Polygons Pixels

Urban 102 2,250 51 1,108 108 2,564 54 1,276

Vegetation 85 1,944 42 980 75 1,639 37 1,006

Water 81 1,801 40 934 78 1,742 39 917

Bare soil 62 1,263 32 576 62 1,305 32 679

Total 330 7,258 165 3,598 323 7,250 162 3,878

Types/samples

2010

Training Testing

Polygons Pixels Polygons Pixels

Urban 114 2,713 57 1,356

Vegetation 83 2,138 42 1,090

Water 87 2,055 43 983

Bare soil 64 1,351 33 791

Total 348 8,257 175 4,220
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validation. Two filtering parameters were defined: the kernel size of the filter (filter

window) and the filter scale. The filter scale represented the number of isolated

points in the filter window. If the number of the center value in the filter window

was less than or equal to the filter scale, this center value was replaced by the value

with the maximum number in the filter window. In this study, the kernel size of the

filter was set to 3� 3; however, different filter scales were set for different classes.

For example, the urban area was generally planted within homogenous and large

regions and the filter scale for the urban class was therefore set to 3. Water bodies

(especially in case of slim rivers and canals) required a filter scale of 1 to not impair

the original structure of the water class after the filter process.

19.4.1.2 Results: Beijing Urban Area Classification

and Expansion Analysis

Figure 19.3 is an urban spatial distribution map of Beijing for the period from 2006

to 2010 using proposed C5.0 rulesets classifier. To display the urban expansion, the

vegetation and bare soil classes were combined as the “other” class. From the

figure, it can be observed that Beijing expands from the inner city to the outskirts.

According to urban area statistics, the proportion of the urban area of Beijing in

2006, 2007, 2008, 2009 and 2010 was 35.81 %, 37.16 %, 38.49 %, 40.45 % and

41.41 %, respectively. Due to the large-scale construction of venues for the Beijing

2008 Olympic Games, this result indicated that the urban area increased rapidly in

2006 and 2009.

Figure 19.4 shows changes for the megacity of Beijing from 2006 to 2010.

Because the time frame from 2006 to 2010 is very short, the distribution of urban

space in Beijing does not change much on the whole, especially in the downtown

area, however, obvious signs of urban expansion are evident in the surrounding

areas of the city. In particular, the urban area increases significantly in the southeast

of Beijing, which is an effect of Beijing’s efforts to develop the south of the city.

Based on the analysis of Beijing’s urban distribution and the changes over the

past 5 years, we obtained a general view of changes in urban development and the

modes of development. First, the downtown area was moved out. In the face of

population pressure in urban Beijing, the municipal government of Beijing adopted

a policy on external population migration in the downtown area. For example, the

populations in the Dongcheng and Xicheng Districts were successively migrated to

the areas of Huilongguan, Daxing and Tongzhou (Fig. 19.4). Second, an axial

expansion mode was adopted. So-called urban axial expansion means that urban

land is expanded in a certain direction, creating a relatively narrow urban area. A

recent prominent development mode in Beijing is its development toward the south

and north along the medial axis (as shown in the blue box in Fig. 19.4), creating the

medial-axis development corridor in Beijing. To apply for the list of world heritage

of Beijing axis, Beijing has built an Asian Sports Village, Olympic venues and

parks along the medial axis based on original characteristic architecture, which has

enhanced Beijing’s urban features by combining both ancient and modern
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buildings. Third, a development mode in which the city expands and satellite towns

are built was adopted. To relieve the pressure of population growth in Beijing, older

urban areas have been reconstructed and people have been migrated; additionally,

Beijing has gradually extended outwards, leading to the construction of satellite

towns. Figures 19.3 and 19.4 show that Beijing has developed toward the surround-

ing areas year by year, mainly in the northern and eastern directions—the satellite

towns of Daxing and Tongzhou were built in succession (see Fig. 19.5).

Fig. 19.3 Urban distribution maps derived from multi-temporal ASAR data
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These recent urban development changes in Beijing are mainly attributed to

economic development, population growth and policy impact. There are three

driving mechanisms of urban development. (1) Economic growth is a principle

impetus of urban change. The regional gross domestic product (GDP) is an aggre-

gative indicator that reflects the economic development of a region. The economy

in Beijing has been developing rapidly since the reform and opening-up of China.

Economic expansion and industrial optimization have led to an increased demand

for space for non-agricultural industries and an increased gap between agricultural

and non-agricultural land in terms of comparative benefits. The increase of non-

agricultural practitioners in cities and the improvement of residential living condi-

tions have also led to increased demands for land for construction, and the

decreased percentage of agricultural employment has reduced the demand for

agricultural land. Therefore, agricultural land, as represented by cultivated land,

has changed its purpose and has become the incremental supply of land for

construction. (2) Population growth has significantly stimulated urban land expan-

sion and scaled economic development. Urban land expansion can facilitate pop-

ulation congregation within a certain territorial scope. The urban population

increase has had the most direct impact on urbanization and urban expansion.

The analysis and study of the urban changes in Beijing in 1975–2005 by Mu

et al. (2007) show a very strong positive correlation between population growth,

economic development and urban expansion, with correlation coefficients of

0.9913 and 0.9660, respectively. (3) Policy factors have also significantly boosted

Fig. 19.4 Urban change detection map for the megacity of Beijing, China
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and affected land use changes in the area. On the one hand, hosting the Olympic

Games had a significant impact on the urban infrastructure, road construction, etc.

in Beijing. To host the Olympic Games, Beijing made a heavy capital investment in

infrastructure, which significantly fueled economic growth and led to GDP growth.

This has boosted the growth of the built-up urban areas in Beijing to some extent.

On the other hand, Beijing’s policies on inner city reconstruction, urban population
migration, and the vigorous development of the south of Beijing city, have sped up

Beijing’s incremental development toward its surrounding areas. With the contin-

ued growth of population and economy in the future, it is foreseeable that Beijing

will still expand, but the rate of expansion may be declining.

19.4.1.3 Accuracy Assessment

In addition to the cross-validation of the classification performance during the

training process, the classification results were validated using an independent

Fig. 19.5 Footprints of reference data and random validation samples for assessing the classifi-

cation accuracy of the urban expansion product derived from ENVISAT/ASAR data
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reference data set collected on the basis of Google Earth imagery and high spatial

resolution WorldView. Frequently, in the past, Google Earth has been used as a

reference for LULC classification validation because of the high geometric preci-

sion and the fine spatial resolution of Google Earth’s imagery (Potere 2008;

Benedek and Sziranyi 2009; Cohen et al. 2012; Dong et al. 2013; Leinenkugel

et al. 2013). This study is focused on the extraction accuracy of the urban spatial

distribution, therefore the water body, vegetation, and bare soil classes were

combined as a non-urban class. In our research, the classification result for the

urban and non-urban classes was validated using reference data collected from

Google Earth and WorldView imagery via cross-validation. The validation sites

(see Fig. 19.4) were distributed for urban and non-urban classes separately by

stratified random sampling (Congalton and Green 1999) based on the proportions

of the respective land cover classes. In the next step, these random validation points

were converted into polygons and exported as a KML (Keyhole Markup Language)

file. Sample polygons lying within the extent of high resolution Google Earth and

WorldView imagery acquired between 2003 and 2013 were directly evaluated

within the Google Earth and WorldView images. Finally, the classification accu-

racy was calculated using the commonly applied error matrix approach (Congalton

1991) by comparing the random validation points with the high-resolution World-

View and Google Earth imagery. The standard measures of classification accuracy,

i.e., overall accuracy (OA) and over kappa (OK) coefficient, were derived from the

matrix according to Foody (2002). Although Pontius and Millones (2011) proved

that OK indices are flawed and have some limitations for purposes of classification

accuracy assessment in remote sensing fields, OK indices have become a standard

component of most every accuracy assessment and are considered a required

component for most image analysis software packages that include accuracy

assessment procedures (Congalton and Green 2009).

The assessment results are shown in Table 19.3—we see that the precision of our

method for extracting an urban spatial distribution map based on SAR data has

reached approximately 82 %. Our results show that the overall classification

accuracies derived from five time steps of ASAR data were 84.4 %, 82.3 %,

82.4 %, 84.5 %, and 83.4 % in 2006, 2007, 2008, 2009, and 2010, respectively.

The overall kappa (OK) was 68.7 %, 63.9 %, 64.1 %, 68.1 % and 66.5 % in 2006,

2007, 2008, 2009, and 2010, respectively. Analysis of the SAR imagery shows that

the errors not only come from the shadow and layover of the SAR itself but also

from different types of surface features having a similar scattering mechanism or

back scattering value. In addition, artificial objects, such as bituminous pavement or

runway demonstrate single scattering with a low back scattering coefficient and are

prone to be confused with water bodies and bare earth. For example, high-rise

buildings show volumetric scattering, causing confusion between buildings and

forests due to the similar scattering mechanism.
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19.4.2 Urban Subsidence Monitoring Using Multi-temporal
ENVISAT/ SAR Imagery

Interferometric Synthetic Aperture Radar (InSAR) makes full use of the phase

information of radar echoes. Initially, InSAR technology was mainly used to

generate Digital Elevation Models (DEM) (Goldstein and Werner 1998). Later, it

developed into Differential InSAR (DInSAR). With such technical features as high

deformation measurement accuracy (cm level), high space resolution (tens of

meters), highly automated data-processing and spatial surface observation (Gabriel

et al. 1989), it has been gradually applied to surface deformation measurement. It

has shown promise in the study of seismic deformation (Massonnet et al. 1993;

Zebker et al. 1994), volcanic movement (Lu et al. 2000), earth surface subsidence

(Galloway et al. 1998), landslides (Kimuar and Yamaguchi 2000), and glacier

movement (Mark et al. 2005), etc. However, the accuracy and reliability of defor-

mation measurements of DInSAR are affected by factors such as time decorrelation

and atmospheric delay (Zebker et al. 1997; Rosen et al. 2000). To overcome the

limitations of conventional DInSAR, Ferretti et al. (2001) proposed a method using

Table 19.3 Accuracy assessment for the urban classification results

a. 2006 b. 2007

Reference data Reference data

Type Urban

Non-

urban Type Urban

Non-

urban

Classified

data

Urban 235 38 Classified

data

Urban 300 73

Non-

urban

48 229 Non-

urban

35 203

OK (%) 68.7 OK (%) 63.9

OA (%) 84.4 OA (%) 82.3

c. 2008 d. 2009

Reference data Reference data

Type Urban

Non-

urban Type Urban

Non-

urban

Classified

data

Urban 310 59 Classified

data

Urban 327 65

Non-

urban

54 219 Non-

urban

34 213

OK (%) 64.1 OK (%) 68.1

OA (%) 82.4 OA (%) 84.5

e. 2010

Reference data

Type Urban Non-urban

Classified data Urban 335 72

Non-urban 46 259

OK (%) 66.5

OA (%) 83.4
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differential interferometry phases to extract deformation only based on ground

objects that have stable scattering properties, i.e., Permanent Scatterers (PS). This

is called Permanent Scatterer Interferometry (PSInSAR). Following this, Small

Baseline Subset InSAR (SBInSAR) based on correlated objects was proposed

(Berardino et al. 2002; Lanari et al. 2004). Both of these approaches are collectively

called Multi Temporal InSAR (MTInSAR) (Hooper 2008; Wauthier et al. 2013).

These methods have been improved and perfected, enabling MTInSAR to achieve

mm-level measurement accuracy to monitor micro-dynamic deformations of the

earth’s surface.

19.4.2.1 Fundamental Principle of MTInSAR Technology

MTInSAR technology primarily consists of PSInSAR and SBInSAR. Specifically,

PSInSAR technology selects PS points of artificial buildings, rocks and other points

with high coherence from a group of SAR time series images. Based on these PS

points, which have stable scattering properties and are not greatly impacted by time

and space decorrelation, it is possible to obtain reliable phase information, which

can then be inverted for accurate surface deformation.

Considering that there are N differential interferograms, the phase of each PS

pixel point may be expressed as follows:

ϕ ¼ φde f þ φtopo þ φatm þ φnoise ð19:1Þ

where φde f is the deformation phase, φtopo is the residual topographic phase, φatm is

the atmospheric delay phase, and φnoise are other noise phases. Because the

atmospheric delay phase has a higher spatial correlation, the phase differentiation

of the adjacent PS points may remove most of its impact. Considering the phase

differentiation of adjacent PS points, the phase model for the deformation rate and

residual topography can be built:

Δφm ¼ 4π

λ
� TmΔvþ 4π

λR sin θ
� Bm

⊥Δε ð19:2Þ

where λ, R and θ are the wavelength of the incident wave, the slant distance between
the sensor and ground object, and the incidence angle, respectively. Δφm is the

model phase difference of adjacent points in the differential interferogram m, Δv is
the deformation rate difference between adjacent points, Δε is the elevation

difference of the residual landform of two points, and Tm Bm
⊥ are the time and

vertical baselines of the interferogram m. Defining the overall correlation coeffi-

cient (Ferretti et al. 2001):
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γ ¼ 1

N

�
�
�
�

XN

m¼1

exp j � Δφm � j km
v � Δvþ km

ε � Δε� �� � ð19:3Þ

Taking this as the objective function, it is possible to solve for the unknown

parameters Δv and Δε by maximizing from N interferograms. Then, the velocity

and elevation parameters are integrated to obtain an estimation of the absolute

velocity and vertical error on each PS point. Next, the known linear deformation

phase and the vertical error phase are subtracted from the differential phase to

obtain the components of the residual phase. By filtering in both space and time, it is

then possible to remove the atmospheric delay signals, which have a high frequency

in time and a low frequency in space and to obtain the information on residual

nonlinear deformation. By now, all deformation phase components are solved.

The SBInSAR method may be used to obtain the low-resolution and large-

scale deformation (Berardino et al. 2002; Lanari et al. 2004). It selects image pairs

according to perpendicular baseline and temporal separation thresholds, and

produces multiple interferogram subsets. Then, the Singular Value Decomposi-

tion (SVD) (Strang 1988; Golub and Van Loan 1996) is used to combine multiple

small-baseline interferogram subsets to conduct a time series inversion for defor-

mation. The SBInSAR method may effectively increase the coherence of the

interferogram and solve the problem of over-large temporal sampling of SAR

images.

19.4.2.2 Data Processing

(1) Generation of the interferogram

The open source software DORIS (Delft object-oriented radar interferometric

software) (Kampes and Usai 1999) was used to generate the interferogram. The

perpendicular baseline, the time interval, and the average Doppler frequency

(see Fig. 19.6) among the SAR images were taken into consideration, and the

April 2, 2008 SAR data were selected as the master image to maximize the

coherence of the interferograms. For resampling, a 12-point raised cosine

interpolation kernel was used. Then, the single master image was used to

generate a total of 21 interferograms.

(2) Removal of the flat terrain and terrain phases

The accurate-orbit data provided by the ENVISAT satellite of Delft University

of Technology (Netherlands) were used to remove the flat terrain phase in the

interferogram (Scharroo and Visser 1998). The Band C 300 DEM (Farr and

Kobrick 2000; Rabus et al. 2003) generated by the United States’ Shuttle Radar
Topography Mission (SRTM) was used to remove the terrain phase.

(3) Time series processing

In this study, the StaMPS (Stanford Method for Permanent Scatterers) method

was employed (Hooper et al. 2004, 2007). This method selected the PS points

based on amplitude and phase stability. First, the amplitude of each pixel

416 X. Li et al.



was analyzed and the PS candidate points were selected. Then, a cycle analysis

of the phase stability of the PS candidate points was conducted, and the PS

points were refined. In the study area, the average PS point density reached

134/km2 due to the presence of dense buildings. Finally, the errors caused by

the DEM were estimated and removed. In this case, the phase difference

between adjacent PS points was considered to be less than π so that correct

unwrapping was possible. StaMPS used a 3D unwrapping method and consid-

ered the PS space and time factors. After unwrapping, different filters were used

to extract the space-related errors and the surface deformation was obtained

based on the reflection of the atmospheric delay and orbit errors in the master

and slave images.

19.4.2.3 Results of Urban Subsidence Analysis

The StaMPS method was used to obtain the average speed (see Fig. 19.7) and time

series deformation (see Fig. 19.8) in the study area from 2006 to 2010.

Analysis of Average Speed

To reduce the noise effect of a single PS point, the PS point mean value in the small

area in Beijing where the original benchmark was located, including Yuyuantan,

was selected as the reference, and the average speed diagram of the whole image

was obtained (see Fig. 19.7). Figure 19.7 shows that the deformation in the

downtown area of Beijing is small (approximately 1 mm/a) and is relatively stable

during the research period. The subsidence areas are connected in blocks and are

mainly distributed in a strip shape beyond the East 5th Ring Road and North 5th

Ring Road of Beijing. Obviously, a subsidence funnel is formed at Guanzhuang

outside the East 5th Ring Road and at Shahe outside the North 5th Ring Road (see

Fig. 19.1), with a maximum yearly subsidence rate of more than 60 mm/a at

Guanzhuang. A slight rise is observed in the northeast corner of the research area,

i.e., the mountainous areas in the southeast of the Pinggu District. In addition, there

Fig. 19.6 Time baseline and perpendicular baseline of the intervention pair in the study area,

where red dots represent the main image. The large dot represents the master image

19 Monitoring Recent Urban Expansion and Urban Subsidence of Beijing Using. . . 417



is also substantial subsidence in Langfang and Gu’an in the Hebei Province (see

Fig. 19.1), which are adjacent to Beijing, with the maximum subsidence rate being

more than 60 mm/a in Langfang City.

Subsidence is not obvious in the downtown area of Beijing, which is related to

the stringent restrictions on groundwater mining. Because of the population explo-

sion in Beijing, substantial expansion of urban areas during the research period and

active social production activities in the areas outside the East 5th Ring Road and

North 5th Ring Road, the surface subsidence has mainly been caused by excessive

groundwater abstraction. In addition, surface subsidence in Beijing mainly

develops in the middle and lower parts of the alluvial-proluvial fan plain, especially

at the connection of the Wenyu River Alluvial-proluvial Fan, the Chaobai River

Alluvial-proluvial Fan and the Yongding River Alluvial-proluvial Fan. This indi-

cates that subsidence is also closely tied to geological features such as the

hydrogeologic structure, especially the formation lithology and its structural fea-

tures and that the area of substantial subsidence is in line with the thickness

distribution of the compressible clay soil layer in the shallow layer (Jia et al. 2007).

Fig. 19.7 Surface deformation speed (mm/a) in Beijing from 2006 to 2010. The background is the

regional DEM. Red represents subsidence, and the black cross stars represent benchmark positions

in Fig. 19.9
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Fig. 19.8 Time series displacement (rad) in the direction of the PS point line of sight in the study

area from 2006–2010

19 Monitoring Recent Urban Expansion and Urban Subsidence of Beijing Using. . . 419



Analysis of Time Series Deformation

The StaMPS method is based on the spatial correlation hypothesis of surface

deformation, with no preset deformation model. Therefore, the long time-sequential

dynamic deformation field can be generated (see Fig. 19.8). Subsidence was not

prominent in the study area except in Shahe of Beijing from August 2006 to March

2007; instead, a rise was observed over a large area. This deformation pattern is

likely related to environmental control measures taken by the government before

the 2008 Olympic Games in Beijing, such as population migration and the shut-

down of polluting enterprises such as the Shougang Group, which has substantially

reduced groundwater mining. The subsidence layout developed from June 2007,

which is even earlier, with subsidence increasing gradually. The total subsidence at

Guanzhuang in the east of Beijing had exceeded 400 mm at the end of October

2010. The natural environment and infrastructure in Beijing changed substantially

after the Olympic Games, and the population has grown rapidly since then. As

stated above, the population explosion during the time period during which this

research took place was mainly attributed to a surge of the external population. This

has resulted in the rapid expansion of urban areas, which is mainly reflected by the

former rural-urban continuum outside of the 5th Ring Road, which has increased

groundwater utilization. In addition, a large-scale rise was observed in the study

area in August 2008 and was restored in October. It is possibly related to the surface

wave disturbance of the earthquake in Wenchuan County in Sichuan Province in

May 2008 and requires further study based on continuous GPS and other data

(Gu et al. 2009).

19.4.2.4 Validation

To validate the effectiveness and accuracy of the results, the time series deforma-

tion of MTInSAR and the leveling benchmark data were compared to confirm the

reliability of the processing result of MTInSAR. In the study area, the land

subsidence observation network of Beijing conducted 5 leveling observations

during the summers of 2005, 2007, 2008, 2009 and 2010. Four groups of leveling

benchmark data were selected (the cross stars in Fig. 19.7 represent benchmark

positions, the cross stars in the northwest corner correspond to benchmark A, and

the other cross stars correspond clockwise to the B, C, D points, respectively) and

were projected in the direction of radar line of sight (RLOS). Deformation within

the area was assumed to be related, and the average value of the time series

displacement of the PS points in the 100 m * 100 m area with the benchmark as

the center was obtained and compared with the benchmark (see Fig. 19.9). The

mean MTInSAR time series displacements were approximately equal to the related

leveling data, with a total mean error of -3.1 mm and a standard deviation of

7.5 mm. Obvious system bias can be observed in (a) and (c) in Fig. 19.9, which

might be caused by the failure of the starting observation time at benchmarks to

fully comply with MTInSAR. In addition, the MTInSAR result showed nonlinear
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deformation, but this was not obvious in the benchmark data, especially in (b) and

(c), which might be due to the limited time for the benchmark sampling. Generally

speaking, a good result for urban subsidence of Beijing city has been obtained and

the validation shows the effectiveness and high accuracy of SAR time series

monitoring.

19.5 Discussion and Conclusion

Based on ENVISAT/ASAR time series radar data, this chapter discusses and

analyzes the applications for monitoring urban expansion and urban subsidence.

The main conclusions are as follows:

(1) From ENVISAT/ASAR time series radar data, C5.0 rulesets classifier and

Multi Temporal InSAR (MTInSAR) method, the urban expansion and urban

subsidence of Beijing city has been effectively monitored with high precision.

It shows the advantage of mapping the urban expansion and urban subsidence

simultaneously, for which optical techniques do not work well.

(2) The changes of the urban space distribution of Beijing in 2006–2010 show that

on the whole, the urban areas have not greatly changed because the time span
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Fig. 19.9 Comparison between time series displacement of MTInSAR and benchmark data in the

study area
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was short. Judging by the change trend, however, the main modes of expansion

of Beijing include the axial development mode, which extends south and north

along the medial axis, and the surrounding extension mode, which has strength-

ened the expansion of the Nancheng and Dongcheng Districts, with the building

of satellite towns. The recent urban development changes in Beijing are mainly

attributed to the following driving factors: economic development, population

growth and policy impact.

(3) The features of the changes in urban subsidence in Beijing in 2006–2010 show

that the deformation in the downtown area of Beijing is small and relatively

stable. The subsidence areas are connected in blocks and are mainly arranged in

a strip shape beyond the East 5th Ring Road and North 5th Ring Road of

Beijing, with a maximum yearly subsidence rate of more than 70 mm/a. Ground

surface subsidence in the study area was mainly caused by activities such as the

excessive mining of groundwater and is also closely related to geological

features such as the hydrogeologic structure, especially the formation lithology

and structural features.

Although a good result for urban expansion and urban subsidence of Beijing city

was obtained and validation showed the effectiveness and high accuracy of SAR for

time series monitoring, some limitations for accurate monitoring were evident.

(1) Due to the lack of long time series SAR datasets (only five years), our result

cannot show the large urban area expansion of Beijing City, so the result cannot

fully reveal the rule of urban expansion. Compared with optical remote sensing, this

is an obvious disadvantage; for example, based on Landsat-TM datasets, the land

surface change over 30 years can be monitored, so the acquisition of long time

series SAR imagery is necessary for urban area monitoring in the future. (2) The

intrinsic characteristics of radar layover and shadow effects also become severe

challenges. (3) The coherence of the interferogram especially over a long time span

is still a large problem for MTInSAR technology. To enhance the coherence, the

Quasi-Permanent Scatterer technique and homogeneous filter should be gradually

applied.

With the emergence of advanced SAR systems, the new generation of space-

borne SAR systems recently launched, such as RADARSAT-2, Sentinel-1,

TerraSAR-X, and ALOS-2 (using C-, X-, and L-bands, respectively), have

enhanced capabilities such as higher resolution (resolutions ranging from 3 to

10 m), dual/quad-polarization, more frequent revisits, and varying beam modes

(scene swath and incidence angle). These enhanced capabilities will provide more

useful time series information at spatial and temporal levels for accurately moni-

toring urban expansion and ground surface subsidence.

In the future, a joint spatial and temporal characteristic analysis combining both

urban expansion and urban subsidence of Beijing will be conducted to achieve a

deeper understanding of Beijing’s urban development issues.
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Chapter 20

SAR Time Series for the Analysis
of Inundation Patterns in the Yellow River
Delta, China

Claudia Kuenzer, Juliane Huth, Sandro Martinis, Linlin Lu,
and Stefan Dech

Abstract Earth Observation using radar remote sensing is a valuable tool for the

monitoring large scale inundation over time. This study performs a time series

analysis using 18 ENVISAT/ASAR Wide Swath Mode data sets for the year 2008

and 13 TerraSAR-X Stripmap data sets for the year 2013/2014 to characterize

inundation patterns in the Yellow River Delta, located in Shandong Province of

China. Water surfaces are automatically derived using the software package

WaMaPro, developed at the German Remote Sensing Data Center (DFD), of the

German Aerospace Center (DLR), which allows an automatic classification using

empirical thresholding. The temporal analysis allows the separation of different

types of water bodies such as rivers, water storage basins, aquaculture, brine ponds,

and agricultural fields based on inundation frequencies. This supports the under-

standing of the water dynamics in this highly variable study region. As ENVISAT

data is not available anymore since April 2012, and as access to TerraSAR-X data is

limited, Sentinel-1 data of the European Space Agency, ESA, are eagerly expected

for the region. The good spatial resolution between 40 up to 5 m, as well as a dense

temporal coverage, which allow to generate “true” SAR time series, and will help

to lift annual analyses to the next level.
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20.1 Introduction: SAR Based Water Mapping

Although studies on optical time series analyses usually outnumber radar and

synthetic aperture radar (SAR), based studies, SAR data has distinct advantages

compared with optical data. Cloud cover and atmospheric influences, as well as

limited illumination (polar night) do not impair data acquisition and quality, so that

data collection is possible under all weather conditions and at all seasons. SAR

based time series over the land surface have especially been exploited in the context

of soil moisture retrieval (Wagner et al. 1999; Zhao et al. 2008; Kuenzer et al. 2009;

Dorigo et al. 2012; Naemi et al. 2013; Wagner et al. 2013; Dostálová et al. 2014;

Doubková et al. 2014) and biomass derivation (Santoro et al. 2002; Wagner

et al. 2003; Askne and Santoro 2005; Cartus et al. 2011), as well as for Differential

Interferometric SAR (DInSAR) applications to assess surface movements (Fielding

et al. 1998; Amelung et al. 1999; Higgins et al. 2013).

However, the most common application for SAR based information derivation is

the extraction of water surfaces from data of sensors such as ENVISAT ASAR

(European Environmental Satellite, Advanced Synthetic Aperture Radar),

Radarsat, ALOS Palsar (Advanced Land Observing Satellite - Phased Array type

L-band Synthetic Aperture Radar), COSMO SkyMed, or TerraSAR-X. Although

there are literally hundreds of studies, where authors investigated the potential of

this data for flood mapping and inundation mapping based on single scenes or a few

multitemporal data sets (Werle et al. 2001; Townsend 2001; Kasischke et al. 2003;

Kiage et al. 2005; Lang et al. 2008; Martinez and Le Toan 2007; Hoque et al. 2010;

Mason et al. 2010; Martinis and Twele 2010; Chaouch et al. 2011; Schumann

et al. 2007; Kuenzer et al. 2013b; Martinis et al. 2014, 2015), only few studies have

been published on the exploitation of extensive SAR time series for inundation

analyses. Kuenzer et al (2013a) presented a time series analyses of overall

60 ENVISAT ASAR Wide Swath Mode (WSM) scenes at a spatial resolution of

150 m for the Mekong Delta in Vietnam, covering the years 2007–2011. This study,

which has been the most comprehensive SAR based inundation mapping endeavour

for this area contributed to a thorough understanding of the flood regime in the

Mekong Delta. Greifeneder et al. (2014) employed nearly 700 ENVISAT ASAR

WSM scenes for the entire Mekong Basin, covering the time span from 2007 to

2011, to generate a permanent water body product. In highly variable areas (rainy

and dry seasons over the course of 1 year) a time series of at least one full year is

needed to derive stable water surfaces in an accurate way.

In radar data water covered areas show very distinct backscattering characteris-

tics, yielding no or an extremely low return signal. Therefore, water covered areas

appear as very dark (black) surfaces in radar imagery and can easily be distin-

guished from other cover types. Water surfaces appear “smooth” to the incident

radar waves, and thus specular reflection occurs (Zhou et al. 2000). This principle is

also depicted in Fig. 20.1. Radar beams which hit dense canopy vegetation either

experience surface backscattering or volume backscattering (Richards et al. 1987),

and in special cases – e.g. if radar beams hit the trunks of trees (or e.g. buildings)
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double bounce backscattering occurs. On water surfaces, which are mostly covered

by vegetation (mature rice fields, reeds etc.) volume backscattering is prevalent.

However, on smooth, undisturbed water surfaces specular scattering occurs (see

Fig. 20.1, lower right). The magnitude of these scattering processes also depends on

the radar wavelength. C- and X-band radar data does usually not penetrate into tree

canopies, while L-band data may allow for flood detection under canopies, how-

ever, usually only with low accuracy (Pierdicca et al. 2013; Hess et al. 1995, 2003).

It should be mentioned here that different terms for radar based water mapping

exist. Strictly speaking, SAR sensors only receive a certain backscatter signal,

which varies in intensity, and water surfaces usually yield a low (or no) return

and therefore appear dark. However, different authors use different terms

depending on the focus of the study. The term “water body mapping” is usually

used, if the aim of the study is the derivation of a permanent water body map, or the

delineation of water bodies in relatively unknown terrain. The term “flood map-

ping” usually refers to the delineation of water areas, which are normally not

covered by water. “Flood mapping” is often undertaken during catastrophic flood

events. The usage of the term at least indicates that people or infrastructure etc. are

“at risk”. The term “inundation” is commonly used in regions, where water

coverage fluctuates (natural wetlands etc.), without harmful impacts on the

human environment.

It is the goal of this study to analyse inundation dynamics in the Yellow River

Delta of China. The delta is characterized by a highly dynamic coastal zone with

intermittent wetlands, aquaculture, brine ponds, and partially irrigated agriculture.

It shall be assessed how SAR time series can be of support to differentiate these.

Fig. 20.1 Radar scattering processes over forests and wetlands, including specular scattering on

undisturbed water surfaces (Modified based on Wang 2010)
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20.2 Challenges with SAR Based Water Mapping

Challenges for SAR based water mapping or inundation mapping are manifold and

can be grouped according to their origin into location related challenges, sensor

related challenges, and data policy related challenges.

Location related challenges are circumstances in the area of observation, which

hinder successful water mapping. Water can be mapped best if the water surface is

smooth and undisturbed. High waves on water surfaces may lead to stronger

backscatter signals, and therefore to an omission of these areas by a water detection

algorithm. Furthermore, water surfaces which are covered by vegetation may yield

higher return signals due to double bounce effects, or even surface scattering. This

is a problem in reed covered lakes, mature wet rice fields (Kuenzer and Knauer

2013), or mangrove forests (Kuenzer et al. 2011), where the standing water below

the plants can usually not be detected. Furthermore, sand dunes, streets, bare flat

agricultural crop land, and radar shadow areas are easily mixed up with smooth

open water areas and lead to an overestimation of the water extent (Martinis 2010).

Sensor related challenges include the wavelength of the sensor, incidence

angles, and the possible polarization modes. As mentioned, C- and X-band SAR

sensors have a lower penetration ability than L-band sensors and might therefore be

less suited for the detection of water surfaces below canopies or vegetation in

general (Hess et al. 1995, 2006). Furthermore, very low incidence angles also

hamper water detection, which is why incidence angle correction is needed when

analysing time series of data with varying incidence angles. Last but not least,

several authors assessed impacts of polarization on water mapping results. It was

found that horizontal, HH, polarized data is best suited for water detection and

superior to cross polarized, HV, or vertically polarized, VV, data (Gstaiger

et al. 2012; Henry et al. 2006).

However, the largest challenge for scientists aiming at time series analyses of

SAR data for the assessment of water dynamics is data availability. Although a

large number of radar and SAR sensors orbit our Earth, scientists can only access

data of a few sensors free of charge. Most radar data is usually not accessible, or can

only be ordered at high costs. Great exceptions have been the ENVISAT mission of

the European Space Agency (ESA) with the ASAR sensor onboard. ASAR data has

been made available free of charge in several spatial resolution modes from 2010

onwards. The data is available from 2002 to April 2012. ESA’s Science Programme

allowed access to all archived data and also enabled specific scheduling after

submission of a project proposal for research applications. However, in archives

still a lot of acquisitions were missing, and scheduling often conflicted with other

data take requests (the three ASAR modes cannot be tasked in parallel). On average

10–30 ASAR WSM scenes could be collected for e.g. the Mekong Delta in the

years 2007–2011, whereas – strictly according to overpass time and overlap

coverage – about 40 WSM acquisitions should have been possible (Kuenzer

et al. 2013a). The German Satellite TerraSAR-X provides SAR data in three

different resolution modes from the year 2008 onwards. Scientists could receive
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data of all three modes free of charge for study areas of limited size. As TerraSAR-

X data is also distributed commercially via Infoterra (now Airbus Defence and

Space) to receive national, continental, or even global coverage was – and still is –

not possible. Furthermore, even for restricted study areas many scenes can usually

not be acquired due to competitive tasking for a commercial customer interested in

other areas (TerraSAR-X does not acquire data continuously, but only when

tasked). Similar to TerraSAR-X, data of the Japanese sensor ALOS Palsar 1 and

2 can be received for smaller areas upon request and the submission of scientific

proposals. Due to this relatively restricted access to SAR data – especially since the

failure of ENVISAT – very high hopes are now on the newly launched ESA

Sentinel-1A satellite. Sentinel-1A (paired with the upcoming Sentinel-1B to be

launched in 2016) is a constellation of C-band SAR satellites that deliver data in

three different modes ranging from 40 m up to 5 m spatial resolution.

20.3 Study Area: The Yellow River Delta

The Yellow River Delta is located in Shandong Province in the East of China,

where the Yellow River enters the Bohai Sea (see Fig. 20.2). It is the vulnerable end

of a river whose total stream length exceeds 5,460 km. The delta itself covers an

Fig. 20.2 Study area: the Yellow River Delta located in Shandong Province, China (Source:

Kuenzer et al. 2014)
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area of about 10,000 km2 and hosts several larger towns; among them Dongying

City – Dongying District’s capital city – with over two million inhabitants.

Dongying District contains the river mouth and can be considered the delta

district. It is characterized by large wetlands hosting a rich biodiversity on the one

hand, as well as intensive agriculture, aquaculture, and oil fields, as well as

scattered towns and villages on the other hand. Details on Yellow River Delta

coastal processes, land use, oil production, and current in-situ research can be found

in Kuenzer et al. (2014), and Ottinger et al. (2013). One major interest of stake-

holders in the region is an improved understanding of inundation dynamics in the

delta district. Dongying District is not only dissected by the Yellow River itself, but

hosts a large variety of water bodies of different size and function. SAR time series

analyses is one possible means to visualize the differences in inundation frequency

and relate them to different types of land use.

20.4 Data and Methods: Employing WaMaPro

We performed the analyses of inundation dynamics for the Yellow River Delta,

based on an annual time series of ENVISAT ASAR WSM data of 18 scenes,

acquired in 2008. Dates of acquisition were 24.04., 27.04., 10.05., 14.05., 23.07.,

07.08., 08.08., 10.08., 11.08., 26.08., 11.09., 15.09., 01.10., 16.10., 01.11., 04.11.,

20.11., and 20.12.2008. Within the last years of ENVISAT acquisitions 2008 was

the year, which could yield the longest time series. For the years 2009, 2010 and

2011 much less data was available in ESA’s archives, which is why we present the

annual time series of 2008. The radar amplitude data, which has a resolution of

150 m, was geo-corrected with the open source software BEAM, provided by ESA.

As communication with ENVISAT failed from early 2012 on, no recent ASAR

data is available. For recent monitoring we therefore processed inundation fre-

quency based on 13 thematic water / no water products derived from TerraSAR-X

Stripmap data of 3 m spatial resolution. TerraSAR-X Stripmap data was available

for 15.04., 29.05., 20.06., 12.07., 03.08., and 08.10. for the year 2013, and for

04.01., 17.02., 11.03., 02.04., 16.05., 21.07., and 03.09. for the year 2014. This data

covers a relatively smaller area than the ASAR WSM data, but is well suited to

depict local patterns with great spatial detail.

Water surfaces were derived using the open source software package WaMaPro,

which has been developed at the German Remote Sensing Data Center (DFD) of the

German Aerospace Center (DLR). WaMaPro is described in detail in Gstaiger

et al. (2012), Kuenzer et al. (2013a), and Huth et al. (2015). WaMaPro uses simple

thresholding and filtering approaches to extract water covered areas from the

backscatter images. The output is a binary file containing values for water (1) and

no-water (0). As a first step in WaMaPro each image is filtered with a 5� 5 kernel

standard convolution median filter to suppress the speckle, which is typical for

radar imagery (P1). After this step two empirically chosen thresholds separate water
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from non-water pixels in a first approximation. The first threshold, T1, which has a

lower value than the final water threshold, supports the definition of confident water

pixels. Based on this intermediate product, a second threshold, T2, which has a

higher value than the land threshold, supports the definition of confident land areas

(P3). The two intermediate products (confident water and confident land) are the

analyzed further. Buffer zones of two pixels, generated via dilatation, are applied to

P2, resulting in product P4. The buffers define the transition zone from water to

land, also represented by mixed pixels. The second threshold now enables the

inclusion of the water pixels within this zone in the initial binary water mask.

The temporary results P3 and P4 are now compared, and if coincidence occurs, the

value (water or land, 0 or 1) is written to P5. Otherwise, the value from P2 is written

to P5 (P4 & P3 || P2). In this way overestimated water pixels are excluded.

Proceeding further, isolated pixels are removed via morphological image closing

(P6) (see Fig. 20.3). The removal of so-called ‘islands’ and ‘lakes’ according to a

defined maximum size (T3, T4) is mainly of relevance for higher resolution SAR

data (e.g., TerraSAR-X data also processed in the course of the project), but does

not affect ENVISAT ASAR derived results at 150 m resolution (Kuenzer

et al. 2013a).

Once all water masks had been derived from the ASAR WSM and the

TerraSAR-X data, the binary file for each of the sensors were added up, to yield

products, depicting, how often a pixel has been flooded with respect to the number

of observations available.

20.5 Results

Figure 20.4 depicts the results of inundation mapping based on the 18 ENVISAT

ASAR WSM observations available for 2008. Areas west of the coastline, which

have never been inundated (water covered) appear in white, whereas areas, which

Input P1
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P3
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P5P6Water-
Mask
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filter

Image dilation,  
T2
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Fig. 20.3 Processing flow of DFD-DLRs software WaMaPro
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Fig. 20.4 Inundation frequency in the Yellow River Delta of China, as derived from 18 ENVISAT

ASAR Wide Swath Mode data sets for the year 2008. Aquaculture, water reservoirs, brine ponds,

and agriculture fields can be differentiated (Please note that Dongying District boundary outline

(purple) includes mudflat areas of the ocean, which nowadays – after construction of a large sea

dyke – do not belong to the land area anymore)
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are always water covered during all 18 data takes appear in dark blue. Regions,

which are rarely inundated, are presented in reddish, orange, and yellowish tones,

whereas regions, which have been inundated for about half of the time, appear in

light blue tones. The Yellow River dissects Dongying District and separates the

northern part of the district from the southern part. North of the river, long-term

inundated dark blue objects further inland are water storage reservoirs, whereas the

frequently inundated areas along the northern coast of the delta are aquaculture

areas. Reddish and yellowish regions in the central northern coastal zone are

managed wetlands, which are rarely flooded. South of the Yellow River the river

mouth area is characterized by rarely fully flooded wetland, and a permanent oval-

shaped lagoon directly south of the river mouth. All frequently inundated (dark

blueish) areas along the eastern coast of the Yellow River Delta are aquaculture

areas, with scattered occurrences of brine ponds (salt farming), which occur in light

blue tones, as they fall try during parts of the year. Reddish and yellowish region in

the South are agricultural areas, which are rarely inundated (due to precipitation or

irrigation). These findings were verified during field work in the study area. The

SAR based time series allows for the differentiation of different land use types

based on inundation frequency:

– River: always water covered

– Water storage basins: always water covered

– Aquaculture: always inundated or inundated for the largest part of the year

(unless basins are cleaned or water is completely renewed), located at the coast

– Brine ponds: inundated for about half of the time, as basins need to fall dry so

that salt can be harvested; located close to the coast

– Agricultural fields: rarely inundated and further away from the coast

Strictly speaking, the SAR time series should be combined with object oriented

knowledge (size and shape of segments), and information on distance to the coast,

to discern the above feature automatically. However, the inundation time series

already allows for the differentiation of land use, which would not be possible based

on optical data exclusively.

This is also demonstrated by Figs. 20.5 and 20.6. Both figures present a smaller

area located directly south of the Yellow River mouth, where inundation patterns

were mapped for 2013/2014 based on TerraSAR-X Stipmap data. Note that this

region in 2013 can strongly differ from general patterns observed in 2008, as the

Yellow River Delta is a highly dynamic environment, constantly reshaped by its

inhabitants. Fig. 20.5 clearly lets us discern permanently inundated areas (river,

canal, aquaculture), from less frequently inundated brine ponds (Fig. 20.6, zoom B),

and from agriculture areas. In Fig. 20.5 (and 20.6) we can see that the area North of

the Yellow River is characterized by agricultural fields, and also two dyked little oil

fields exist (see upper zoom A in Fig. 20.6), whereas South of the river aquaculture

and brine ponds prevail along the coast, whereas agricultural field characterize the

hinterland.
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Fig. 20.5 Inundation frequency in the Yellow River Delta of China, as derived from 13 -

TerraSAR-X Stripmap data sets for the year 2013/2014

436 C. Kuenzer et al.



Fig. 20.6 Appearance of the area depicted in Fig. 20.5 in high resolution optical QuickBird data.

Most water surface areas cannot be differentiated based on their optical appearance
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20.6 Discussion

The brief study presented here could of course be well extended for analyses

addressing inundation timing (first onset of inundation in the year, time of dry out

etc.), and – if detailed land use maps for the respective years would exist – could

furthermore directly related to such data products. However, for the year 2008 no

land use map for the Yellow River Delta is available, and the delta is too dynamic as

to use a product from another date. For validation of the TerraSAR-X derived

product at 3 m resolution land use information derived from highest resolution data

for the year 2013/2014 would be needed, however, this data has also not been

available at the time of this study. However, frequent field campaigns into the area –

including in October 2013 – allow us to define the functions of the individual

inundated areas. We furthermore see a large potential for the fully automatic

extraction of aquaculture, brine ponds, irrigated agriculture, and wetlands based

on SAR derived inundation time series when combined with automatic image

segmentation and analyses (size and shape of water polygons) and distance mea-

sures (e.g. to the coastline).

A weakness of most water mapping studies with SAR data - including this one –

is a precise quantitative validation. Usually inundated/flooded areas are hard to

access, and it is rare that scientists or stakeholder have the chance to map water-land

boundaries exactly during the satellite overpass time. However, results of the tool

WaMaPro utilized for water derivation from SAR data have been validated by

Gstaiger et al. (2012) via comparison with highest resolution TerraSAR-X and

QuickBird data as well as water-land boundary maps, resulting in detection accu-

racies of 95 %. However, as mentioned in the section on challenges with respect to

SAR based water mapping, inundated areas can of course not be picked up if

heavily covered by vegetation. As the Yellow River Delta contains larger wetlands

near the river mouth, where shallow water is completely covered by reeds, it is

likely that the inundated areas presented here are rather slightly under- than over-

estimated.

Furthermore, it should be mentioned that we consider 18 observations per year to

still be a relatively low number of observations for “true” time series analyses.

Weekly or even daily SAR observations at a resolution better than 100 m would be

much preferred.

20.7 Conclusion

Time series of thematic “water / no water” information derived from SAR data of

sensors such as ENVISAT ASAR WSM and TerraSAR-X Stripmap are a suitable

means to characterize inundation patterns. For the Yellow River Delta of China

they allow for the differentiation of various types of inundation. Aquaculture areas

are usually water-covered throughout the whole year, whereas brine ponds (salt
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farming) fall dry for some parts of the year as salt needs to be harvested. Irrigated

agricultural fields are only water covered during very few days of the year or after

heavy rain events. Wetlands are typically characterized by alternating inundated

and dry periods. These regions are most likely to be underestimated, as the Yellow

River Delta contains many wetland areas, where reeds and other wetland plants

cover shallow lagoons. In the Yellow River Delta large areas of aquaculture spread

along the northern and eastern coast of the delta. Smaller brine pond fields can be

found in surrounding of this use. The river mouth itself is characterized by a natural

wetland environment, and the areas further inland of Dongying District are rarely

inundated. Here only the Yellow River itself, a few canals, as well as some water

reservoirs appear as constantly water covered areas.

As ENVISAT ASAR data is not available anymore since April 2012, and as

TerraSAR-X data can usually only be received for smaller regions at random timely

intervals, we currently centre our hopes on ESA’s freely available Sentinel-1 data at
resolutions higher than 40 m.
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Dostálová A, Doubková M, Sabel D, Bauer-Marschallinger B, Wagner W (2014) Seven years of

Advanced Synthetic Aperture Radar (ASAR) Global Monitoring (GM) of surface soil moisture

over Africa. Remote Sens 6(8):7683–7707
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Kienberger S, Brocca L,Wang Y, Bl€oschl G, Eitzinger J, Steinnocher K, Zeil P, Rubel F (2013)

The ASCAT soil moisture product: a review of its specifications, validation results, and

emerging applications. Meteorol Z 22(1):5–33

Wang Y (2010) Remote sensing of coastal environments. CRC Press/Taylor & Francis Group,

Boca Raton, 457 pp

Werle D, Martin TC, Hasan K (2001) Flood and coastal zone monitoring in bangladesh with

radarsat ScanSAR: technical experience and institutional challenges. John Hopkins APL Tech

Dig 21(1):148–154

Zhao D, Kuenzer C, Fu C, Wagner W (2008) Evaluation of the ERS scatterometer derived soil

water index to monitor water availability and precipitation distribution at three different scales

in China. J Hydrometeorol 9:549–562

Zhou C, Luo J, Yang C, Li B, Wang S (2000) Flood monitoring using multi-temporal AVHRR and

RADARSAT imagery. Photogramm Eng Remote Sens 66(5):633–638

20 SAR Time Series for the Analysis of Inundation Patterns in the Yellow. . . 441

http://dx.doi.org/10.1016/j.isprsjprs.2014.07.014
http://www.crcpress.com/product/isbn/9781482217919
http://www.crcpress.com/product/isbn/9781482217919

	Foreword
	Acknowledgements
	Contents
	Contributors
	Abbreviations
	Chapter 1: Remote Sensing Time Series Revealing Land Surface Dynamics: Status Quo and the Pathway Ahead
	1.1 Introduction
	1.2 Earth Observation Sensors for Time Series Analysis
	1.3 Remote Sensing Time Series Variables
	1.4 Remote Sensing Time Series Components and Features
	1.5 Example Applications
	1.6 Challenges for Remote Sensing Based Time Series Analysis
	1.7 Current Developments and Upcoming Opportunities
	References

	Chapter 2: Time Series Analyses in a New Era of Optical Satellite Data
	2.1 Introduction
	2.2 Process Dynamics and Time Series Analysis Requirements
	2.2.1 Variables Used in Time Series Analysis
	2.2.2 Implementing Time Series Analyses

	2.3 Time Series Analysis Examples
	2.3.1 Monitoring Tropical Deforestation
	2.3.2 Mapping Pan-Carpathian Agricultural Land Use Change

	2.4 Challenges and Opportunities
	References

	Chapter 3: Calibration and Pre-processing of a Multi-decadal AVHRR Time Series
	3.1 Introduction
	3.2 The Advanced Very High Resolution Radiometer (AVHRR) Instrument Series
	3.2.1 Overview of the NOAA AVHRR Series
	3.2.2 Calibration and System Correction Procedures
	3.2.2.1 Calibration and System Correction of the Reflective Channels
	3.2.2.2 Calibration and System Correction of the Thermal Channels
	3.2.2.3 Corrections of Satellite Orbit Changes and Related Effects


	3.3 DLR´s AVHRR Pre-processing Chain
	3.4 Influence of Calibration and Re-calibration
	3.4.1 Calibration Over Time
	3.4.2 Impact on Generated L1b Products

	3.5 Towards Data Harmonization and Consensus Calibration
	3.6 Conclusions
	References

	Chapter 4: Analysis of Snow Cover Time Series - Opportunities and Techniques
	4.1 Introduction
	4.2 Remote Sensing of Snow
	4.2.1 Snow Cover Mapping from Space - Physical Background and Limitations
	4.2.2 Processing of Snow Cover Time Series
	4.2.2.1 Estimation of Snow Cover Status Below Clouds
	4.2.2.2 Generation of Snow Cover Parameters From Cloud-Cleared Snow Cover Time Series


	4.3 Analysis of Snow Cover Time Series
	4.4 Summary and Conclusions
	References

	Chapter 5: Global WaterPack: Intra-annual Assessment of Spatio-Temporal Variability of Inland Water Bodies
	5.1 Introduction
	5.2 Study Area and Materials
	5.2.1 Study Area
	5.2.2 Data
	5.2.2.1 Data for Water Detection
	5.2.2.2 Ancillary Data


	5.3 Methodology
	5.3.1 Pre-processing
	5.3.2 Water Classification Based on Dynamic Thresholding
	5.3.3 Accuracy Assessment

	5.4 Results
	5.4.1 Temporal Development of Water Bodies
	5.4.2 Evaluation of Accuracy

	5.5 Time-Series of Water Bodies
	5.6 Conclusion
	References

	Chapter 6: Analysing a 13 Years MODIS Land Surface Temperature Time Series in the Mekong Basin
	6.1 Introduction
	6.2 Study Region
	6.3 Data and Methodology
	6.4 Quantitative Analysis of the LST_8day Dataset
	6.4.1 Analysis of LST_8day Time Series
	6.4.2 Analysis of Deviations from the 13-Year Mean
	6.4.3 Analysis of the Variability

	6.5 Influencing Factors
	6.6 Discussion and Summary
	6.7 Conclusions
	References

	Chapter 7: TIMESAT: A Software Package for Time-Series Processing and Assessment of Vegetation Dynamics
	7.1 Introduction
	7.2 Handling Remotely Sensed Time-Series Data - Assumptions and Some General Problems
	7.3 Processing Considerations and Common Methods
	7.4 The TIMESAT Approach
	7.4.1 Processing Principles
	7.4.2 Applications of TIMESAT

	7.5 Future Perspectives
	References

	Chapter 8: Assessment of Vegetation Trends in Drylands from Time Series of Earth Observation Data
	8.1 Introduction
	8.2 Detection of Dryland Vegetation Change from Space
	8.2.1 Towards EO-Based Monitoring of Vegetation Productivity
	8.2.2 Building Consistent Long-Term Time Series

	8.3 Greening or Browning of Global Drylands
	8.3.1 Trend Estimation
	8.3.2 Global Trends in Vegetation Greenness
	8.3.3 Refining Vegetation Metrics for Long-Term Trends

	8.4 Assessing Abrupt Changes in Vegetation Cover and Productivity: Beyond Linear Trends Analysis
	8.5 The Importance of Spatial Resolution for Vegetation Trend Analysis
	8.5.1 Downscaling Vegetation Dynamics by Fusing Multi-temporal MODIS and Landsat Data

	8.6 Summary
	References

	Chapter 9: Assessing Drivers of Vegetation Changes in Drylands from Time Series of Earth Observation Data
	9.1 Introduction
	9.2 Inferring Causes for Observed Changes
	9.2.1 Precipitation Controlling Observed Vegetation Changes in the Sahel
	9.2.2 Assessing Drivers of Observed Changes Based on Rain-Use Efficiency
	9.2.3 Assessing Drivers of Observed Changes Using the Residual Trends Productivity Approach
	9.2.4 Limitations/Challenges for RUE and RESTREND Approaches

	9.3 Assessment of the Roles of Climate on Anomalies of Dryland Vegetation Productivity
	9.3.1 Combining Dynamic Global Vegetation Models and EO Data
	9.3.2 Sea Surface Temperature and Vegetation Productivity Teleconnections

	9.4 Summary
	References

	Chapter 10: Land Surface Phenology in a West African Savanna: Impact of Land Use, Land Cover and Fire
	10.1 Introduction
	10.2 Study Region
	10.3 Material and Methods
	10.3.1 Time Series of Land Surface Phenology
	10.3.2 Land Cover and Land Use Changes
	10.3.3 Time Series of Burned Areas

	10.4 Results
	10.4.1 Land Cover Types and Land Use History
	10.4.2 Spatio-Temporal Patterns of Fires

	10.5 Spatio-Temporal Patterns of Phenology
	10.5.1 Multi-annual Average Patterns of Phenology
	10.5.2 Effects of Fire Frequency on Phenological Characteristics
	10.5.3 Effects of Fire Events on Phenological Characteristics

	10.6 Discussion and Conclusions
	References

	Chapter 11: Assessing Rainfall-EVI Relationships in the Okavango Catchment Employing MODIS Time Series Data and Distributed La...
	11.1 Introduction
	11.2 Material and Methods
	11.2.1 Study Area
	11.2.2 Data
	11.2.2.1 Enhanced Vegetation Index (EVI)
	11.2.2.2 Precipitation and Actual Evaporation

	11.2.3 Methods
	11.2.3.1 Data Pre-processing
	11.2.3.2 Distributed Lag Models (DLM)


	11.3 Results and Discussion
	11.3.1 The General Significant Rainfall-ANPP Relationship in the Okavango Catchment
	11.3.2 Temporal Rainfall-ANPP Relationships at Specific Lags

	11.4 Conclusion
	References

	Chapter 12: Land Degradation in South Africa - A Degradation Index Derived from 10 Years of Net Primary Production Data
	12.1 Introduction
	12.2 The Study Area of Southern Africa
	12.3 Method
	12.3.1 NPP Time-Series from the Vegetation Model BETHY/DLR
	12.3.2 NPP Variations from Annual Sums
	12.3.3 Anomalies in Climatic Time-Series
	12.3.4 The Degradation Index

	12.4 Results
	12.5 Discussion
	12.5.1 Namibia
	12.5.2 Botswana
	12.5.3 Zimbabwe

	12.6 Conclusion
	References

	Chapter 13: Investigating Fourteen Years of Net Primary Productivity Based on Remote Sensing Data for China
	13.1 Introduction
	13.2 Data and Methods
	13.2.1 Study Area
	13.2.2 The Model BETHY/DLR

	13.3 Results and Discussion of NPP for China
	13.3.1 Spatial NPP Distribution
	13.3.2 Monthly NPP Patterns
	13.3.3 Interannual NPP Variability
	13.3.4 Impact of Urban Sprawl Around Shanghai
	13.3.5 Monitoring Forest Disturbance in North China

	13.4 Conclusions
	References

	Chapter 14: The Utility of Landsat Data for Global Long Term Terrestrial Monitoring
	14.1 Introduction
	14.2 Web Enabled Landsat Data (WELD) Products
	14.2.1 Current WELD Products
	14.2.2 Planned Global WELD Products

	14.3 Landsat Time Series Applications and Research That Are Developing Rapidly in Response to the Opening of the Landsat Archi...
	14.3.1 Phenology Monitoring
	14.3.2 Land Cover Change Monitoring

	14.4 Prospectives for Landsat Time Series Monitoring
	14.5 Summary
	References

	Chapter 15: Forest Cover Dynamics During Massive Ownership Changes - Annual Disturbance Mapping Using Annual Landsat Time-Seri...
	15.1 Introduction
	15.2 Data and Methods
	15.2.1 Study Region
	15.2.2 Landsat Imagery
	15.2.3 Preprocessing
	15.2.4 Time Series Segmentation and Fitting
	15.2.5 Disturbance, Recovery and Growth Mapping
	15.2.6 Validation

	15.3 Results
	15.4 Discussion and Conclusion
	References

	Chapter 16: Radar Time Series for Land Cover and Forest Mapping
	16.1 Introduction
	16.2 Radar Time Series as a Tool for Land Monitoring
	16.2.1 Time Series for Information Retrieval About Land Cover State
	16.2.2 Time Series as Source for Statistical Land Surface Indicators
	16.2.3 Time Series for Choosing the Right Scene(s)

	16.3 Case Studies
	16.3.1 Land Cover Classification Using Multi-temporal C-Band Data
	16.3.2 Forest Mapping Using Radar Time Series
	16.3.2.1 DRAGON-1 Case Study
	16.3.2.2 BIOMASAR Case Study

	16.3.3 Forest Cover Change with Radar Time Series
	16.3.3.1 DRAGON-2 Case Study: Merging Space and Time
	16.3.3.2 ZAPÁS Case Study - Operational Radar-Optical Synergy

	16.3.4 Special Seasonal Case: Savanna Systems

	16.4 Perspectives
	References

	Chapter 17: Investigating Radar Time Series for Hydrological Characterisation in the Lower Mekong Basin
	17.1 Introduction
	17.1.1 Hydrological Information
	17.1.2 Radar Remote Sensing
	17.1.3 Operational Capabilities

	17.2 The Lower Mekong Basin
	17.3 Water Bodies and Floods
	17.3.1 Permanent Water Bodies
	17.3.2 Flood Mapping

	17.4 Soil Moisture Monitoring
	17.4.1 Scatterometer Data Processing
	17.4.2 Spatial and Temporal Soil Moisture Variability

	17.5 Summary and Outlook
	References

	Chapter 18: Land Surface Phenology Monitoring with SeaWinds Scatterometer Time Series in Eastern Asia
	18.1 Introduction
	18.2 Data and Methods
	18.2.1 SeaWinds Backscatter Data
	18.2.2 MODIS Phenology and Land Cover Products
	18.2.3 Climate Data
	18.2.4 Means and Variability of Backscatter
	18.2.5 Phenology Metric Detection

	18.3 Results
	18.3.1 Backscatter Mean and Variability
	18.3.2 Regional Comparison of Backscatter- and MODIS-Derived Phenology Metrics

	18.4 Discussion
	18.5 Conclusions
	References

	Chapter 19: Monitoring Recent Urban Expansion and Urban Subsidence of Beijing Using ENVISAT/ASAR Time Series Datasets
	19.1 Introduction
	19.2 Study Area and Datasets
	19.3 Basic Principles of SAR Time Series Observation of Urban Areas
	19.4 SAR Time Series Monitoring of the Urban Area of Beijing City
	19.4.1 An Urban Expansion Analysis Using Multi-temporal ENVISAT/ASAR Imagery
	19.4.1.1 Method: Classification with the C5.0 Rulesets Classifier
	19.4.1.2 Results: Beijing Urban Area Classification and Expansion Analysis
	19.4.1.3 Accuracy Assessment

	19.4.2 Urban Subsidence Monitoring Using Multi-temporal ENVISAT/ SAR Imagery
	19.4.2.1 Fundamental Principle of MTInSAR Technology
	19.4.2.2 Data Processing
	19.4.2.3 Results of Urban Subsidence Analysis
	Analysis of Average Speed
	Analysis of Time Series Deformation

	19.4.2.4 Validation


	19.5 Discussion and Conclusion
	References

	Chapter 20: SAR Time Series for the Analysis of Inundation Patterns in the Yellow River Delta, China
	20.1 Introduction: SAR Based Water Mapping
	20.2 Challenges with SAR Based Water Mapping
	20.3 Study Area: The Yellow River Delta
	20.4 Data and Methods: Employing WaMaPro
	20.5 Results
	20.6 Discussion
	20.7 Conclusion
	References


