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ABSTRACT

Aim To evaluate trend analysis of earth observation (EO) dense time series as a
new way of describing and mapping changes in ecosystem functioning at regional
to global scales. Spatio-temporal patterns of change covering 1982–2011 are dis-
cussed in the context of changes in land use and land cover (LULCC).

Location Global.

Methods This study takes advantage of the different phenological cycles of recur-
rent vegetation (herbaceous vegetation) and persistent vegetation (woody/shrub
cover) in combining trend analyses of global-scale vegetation based on different
annual/seasonal normalized difference vegetation index (NDVI) metrics. Spatial
patterns of combined vegetation trends derived from the Global Inventory Mod-
eling and Mapping Studies NDVI are analysed using land-cover information
(GLC2000).

Results The direction of change in annual and seasonal NDVI metrics is similar
for most global terrestrial ecosystems, but areas of diverging trends were also
observed for certain regions across the globe. These areas are shown to be domi-
nated by land-cover classes of deciduous forest in tropical/subtropical areas. Areas
of observed change are found in dry deciduous forest in South America and central
southern Africa and are in accordance with studies of hotspot LULCC areas con-
ducted at local and regional scales. The results show that dense time series of EO
data can be used to map large-scale changes in ecosystem functional type that
are due to forest cover dynamics, including forest degradation, deforestation/
reforestation and bush encroachment.

Main conclusions We show that areas characterized by changes in ecosystem
functioning governed by LULCC at regional and global scales can be mapped from
dense time series of global EO data. The patterns of diverging NDVI metric trends
can be used as a reference in evaluating the impacts of environmental changes
related to LULCC and the approach may be used to detect changes in ecosystem
functioning over time.
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Ecosystem functioning change, land-use land-cover change (LULCC), remote
sensing, vegetation greenness, phenology, trend analysis.
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INTRODUCTION

Plant functional types (PFTs) are characterized by the physiog-

nomy and functional dynamics of the vegetation. PFTs summa-

rize the complexity of individual species and populations in

recurrent patterns of plants that exhibit similar responses to

biophysical environmental conditions. Hence, PFTs bridge the

spatial and functional gaps between plant physiology, the bio-

physical properties of the land and ecosystem processes (Paruelo

et al., 2001). In recent decades the concept of ecosystem func-

tional types (EFTs) has been developed for the global-scale

assessment of ecosystems based on the concept of PFTs

(Alcaraz-Segura et al., 2006). EFTs have been applied in a wide

sense for areas characterized by similar ecological attributes,

such as PFT composition, structure, phenology, biomass or

productivity (Scholes et al., 1997). Earth observation (EO)-

based mapping of changes in ecosystems provides a powerful

tool for global change research that assesses the impact of land

use and climate modifications (Ivits et al., 2013, 2014). Human

activities, along with climate change, are known to influence the

local structural properties and productivity of ecosystems, but

large-scale assessment of the distribution of such changes is

difficult using conventional EO methods. Traditionally, defor-

estation has been monitored successfully from high-resolution

imagery like Landsat (Asner et al., 2009; Hansen et al., 2013).

However, large-scale changes from forest degradation are more

challenging to monitor using EO data (Lambin, 1999; Joseph

et al., 2011) and standard approaches based on binary classifi-

cations risk oversimplifying the effects of degradation.

Time series of continuous EO-based estimates of vegetation

have significantly improved our understanding of inter-annual

changes in vegetation from a regional to a global scale (Nemani

et al., 2003; de Jong et al., 2011). The normalized difference

vegetation index (NDVI) (Tucker, 1979) has been found to be

related to vegetation greenness or vigour (Myneni et al., 1995)

and is widely used as a proxy for the distribution of net primary

production (NPP) due to the availability of data covering more

than three decades from the early 1980s until the present.

Analysis of trends in vegetation productivity and their drivers at

global and regional scales is done in different ways depending

on the biome studied: EO-based vegetation sums/averages over

the full year (Fensholt et al., 2012; van Leeuwen et al., 2013; An

et al., 2014) or seasonal integrals (NDVISIN) based on specific

months covering the growing season (Piao et al., 2006; Fensholt

et al., 2013) are widely used. However, the choice of vegetation

integration method and period (annual or seasonal) has impli-

cations for the analysis of long-term NDVI trends. We suggest

that the vegetation parameterization methods should be seen in

the context of the structural attributes of ecosystems, such as

vegetation physiognomy or the composition of PFTs to improve

the understanding of changes in ecosystem function. Recurrent

vegetation comprises species that operate in (often annual)

cycles of activity and dormancy (Donohue et al., 2009), and

NDVISIN captures the combined contributions of deciduous,

annual and ephemeral species. Trend estimates based on differ-

ent NDVI metrics might thus reveal different or complemen-

tary information on changes in recurrent and total vegetation

cover. An analysis combining different NDVI metric trends is

thereby expected to reveal information on gradually occurring

changes in structural or functional attributes of ecosystems

related to processes of forest degradation and woody/shrub

encroachment.

This study combines global-scale trend analysis based on two

different NDVI metrics [annual mean NDVI values (NDVImean)

and growing season integrals of NDVI (NDVISIN)] from the

Global Inventory Modeling and Mapping Studies (GIMMS)

dataset for a 30-year period (1982–2011). Areas of diverging

trends in NDVI metrics are analysed as a function of land-use

cover at regional and continental scales and spatio-temporal

patterns are discussed in relation to well-known changes in land

use and land cover (LULCC).

MATERIALS AND METHODS

Annual changes in any NDVI metric will be caused by changes

in either the NDVI amplitude (photosynthetic vigour) or fre-

quency (season length/timing), or a combination of the two

(Fig. S1 in Supporting Information). Amplitude changes can be

described by changes in either the seasonal low value (increase/

decrease/constant) or the seasonal high value (increase/

decrease/constant), yielding nine different combinations, of

which three can potentially generate constant amplitude (in the

case of no shift/equal shift in high/low value). Changes in fre-

quency can also be described by nine different combinations of

an earlier/later/constant start/end of the growing season, of

which three can produce a constant season length (in the case of

no shift/equal shift in start/end value). This leads to a total of 81

different combinations of constant/increasing/decreasing (for

low/high values) seasonal amplitude and earlier/later/constant

(for start/end values) seasonal frequency. Numerical analysis of

the 81 different combinations of changing amplitude/frequency

showed that only cases involving an amplitude change caused

by a change in the seasonal low value are able to produce

a divergence between integral size of the seasonal sum of

NDVImean and NDVISIN.

The GIMMS 15-day composite NDVI
product (GIMMS3g)

For this study the newly released third-generation GIMMS

NDVI data covering the period 1982 to 2011 (bi-monthly

GIMMS3g NDVI provided in 1/12° resolution; Pinzon &

Tucker, 2014) were used.

The MOD10CM Moderate Resolution Imaging
Spectroradiometer snow-cover product

Global snow extent (maximum snow cover) is provided by the

Moderate Resolution Imaging Spectroradiometer (MODIS)

MOD10CM snow-cover product on a monthly basis at a 0.05°

spatial resolution. For this study, the monthly MOD10CM

global data from 2000 to 2012 were used.

R. Fensholt et al.
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Global land-cover data

Global land-cover classes (GLC2000; Bartholomé et al., 2002)

are based on the SPOT-4 VEGETATION VGT2000 dataset pro-

vided by the Centre National d’Études Spatiales (CNES) and the

land-cover classification system provided by Food and Agricul-

ture Organization of the United Nations (FAO; Di Gregorio &

Jansen, 2000). GLC2000 defines the boundaries of the different

ecosystems such as forest, herbaceous and cultivated systems.

GLC2000 land-cover classes are used here but are also merged

into more general vegetation categories related to ecosystem

functioning (referred to here as EFTs).

Estimation of NDVI metrics

Two different NDVI metrics were used in this study: NDVImean

and NDVISIN. NDVISIN was computed from time series

parameterization using a Savitsky–Golay filter available in

the timesat software (Jonsson & Eklundh, 2002, 2004). The

Savitsky–Golay filter is a moving filter that fits values from a

least squares fit to a polynomial (Jonsson & Eklundh, 2004).

From the per-pixel polynomial fit the onset and end of the

growing season are determined for individual years based on

a parameterization of the fitted seasonal NDVI curve. The

parameterization is based on percentage NDVI levels of the total

seasonal NDVI amplitude. The integral representing the season-

ally active vegetation is estimated by the area between the fitted

function and the average level of the left and right minima. The

following Savitsky–Golay fitting parameters were applied: sea-

sonal parameter = 0.5; number of envelope iterations = 2; adap-

tation strength = 1; Savitzky–Golay window size = 2; amplitude

season start and end = 20%.

Trend estimation

Linear temporal trend analysis was conducted to estimate the

magnitude and direction of changes in NDVImean and NDVISIN.

Per-pixel trends were calculated by applying a nonparametric

linear regression model with time as the independent variable

and NDVI metrics as the dependent variable. The outputs of the

trend analyses are maps of regression slope values, indicating the

strength and magnitude of the calculated trend. Since time series

of NDVI often do not meet parametric assumptions of normal-

ity and homoscedasticity (Hirsch & Slack, 1984) a median trend

(Theil–Sen, TS) procedure was applied (Hoaglin et al., 2000), as

suggested for studies of vegetation trends based on time series of

NDVI data (de Beurs & Henebry, 2005). The TS procedure is

furthermore resistant to outliers and therefore suitable for

assessing the rate of change in short or noisy series (Eastman

et al., 2009). The significance of NDVImean and NDVISIN time

series trends was calculated by the nonparametric Mann–

Kendall (MK) significance test. The MK significance test is com-

monly used as a trend test for the TS median slope operator

(Eastman et al., 2009) and produces outputs of z-scores that

allow for the assessment of both the significance and direction of

the trend.

Trend difference map

Significance maps (z-scores) of NDVImean and NDVISIN time

series trends were reclassified into seven classes: positive/

negative trends at confidence levels of 90% (P < 0.1), 95%

(P < 0.05) and 99% (P < 0.01) and not significant (P > 0.1)

(Fig. 1a, b). These maps were combined into a single trend dif-

ference map by aggregating all significant positive and negative

trends, respectively, to a single class covering pixels that are

significant at the 90% level (P < 0.1) (one for positive and one

for negative trends) before being combined, yielding seven pos-

sible combinations (Fig. 2 and a–g in Table S1). A significance

level of 90% was chosen to maintain the clearest possible pattern

of regional-scale clusters of pixels characterized by different

trend combinations.

Masking based on methodological constraints

Calculation of NDVISIN requires seasonality to be present in the

vegetation for the EO-based signal in order to achieve robust

curve fitting. Pixels with an annual NDVI standard deviation

(SD) of < 0.02 were masked as this threshold was found to be

appropriate for delineating areas without vegetation activity

(Fensholt & Proud, 2012). Also, some areas of tropical

broadleaved evergreen forest are characterized by a seasonality

that is too limited for a robust calculation of NDVISIN, and these

areas were masked from the combined criteria of both low

NDVI SD (< 0.075) and high annual mean NDVI (> 0.7).

Temporal trends in annual mean NDVI (NDVImean) can

potentially be influenced by changes/trends in snow cover.

Therefore a combined mask was produced from a two-step

analysis using the GIMMS quality flags (1982–2011) and

MODIS snow-cover extent data (2000–12). In Step 1 pixels that

were covered by snow for at least 1 month a year (average value

for 2000–12) were masked, as were (in Step 2) pixels for which a

significant trend in GIMMS flag values indicated an influence of

snow cover (1982–2011).

Different masks were applied for the individual analyses

of NDVI metrics (NDVISIN and NDVImean) to preserve the

maximum spatial output extent of pixels produced by each

method (Fig. 1a, b). A direct comparison of trends from

NDVImean and NDVISIN (Figs 2–5) was made for the common

denominator of non-masked pixels.

RESULTS

Trends in NDVImean and NDVISIN

Significant linear trends in annual mean GIMMS NDVI

(NDVImean) 1982–2011 (Fig. 1a) cover 48.9% of the pixels that

were not masked (n = 1,166,866) (35% by significantly positive

trends and 13.9% by significantly negative trends; P < 0.1).

Large areas of negative trends can be found in the arid areas

of the Sahara, the Middle East and north-west China. Also,

large areas in South America (Argentina and Paraguay) and

in Africa, cross-continentally along 15° S (Angola, Zimbabwe,

Mapping of ecosystem functioning change from EO data
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Mozambique, and Madagascar), are characterized by significant

negative trends in annual mean GIMMS NDVI. Large regions

of significant positive NDVImean trends can be seen in western

Europe, the Mediterranean region, India, south-west China,

Sahelian and Guinean Africa, south-east USA and northern

and central South America. For Australia, a lower percentage

of significant pixels can be observed, the majority of them

positive.

The analysis of trends of growing season integrated NDVI

(NDVISIN) for 1982–2011 (Fig. 1b) covers a much larger spatial

extent (n = 3,089,545 pixels) since the growing season integral of

vegetation in areas influenced by snow cover can still be analysed

using the NDVISIN approach (Fensholt & Proud, 2012). Of the

pixels that are not masked, 33.6% show a significant trend

(29.0% and 4.6% being significantly positive and negative,

respectively). For areas where both NDVI metrics can be

derived, large regions in the Southern Hemisphere (South

America and in Africa, cross-continentally along 15° S) show

significant positive trends in NDVISIN but significant negative

trends in NDVImean, whereas the opposite pattern is visible for

areas in south-east USA, western Europe, Guinean Africa and

Southeast Asia.
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NDVI metric trend intercomparison

A direct comparison of trends from NDVImean and NDVISIN

(Fig. 2) is made for the common denominator of non-masked

pixels in Fig. 1(a) and (b) (n = 833,863). Considerably larger

areas of pixels with positive trends in both NDVI metrics

(pale green) (17.1%) are observed as compared to pixels with

negative trends (pale yellow) (3.7%). Some 2.4% of the pixels

are characterized by positive trends in NDVImean and negative

trends in NDVISIN (blue), whereas the opposite pattern of

negative trends in NDVImean and positive trends in NDVISIN

(red) applies to 2.8% of the pixels. Large areas of consistent

positive trends can be observed in the Sahelian and Sudano-

Sahelian regions, India and eastern China, and more scattered

clusters in central and north-east USA, southern Africa and

Australia. Areas of consistent negative trends are generally

much more scattered compared with the other three trend

combinations, but clusters can be seen in northern Kenya,

along the border between Kazakhstan and Uzbekistan and in

north-east China.

When comparing patterns of trend differences (Fig. 2) with

global land-cover classes aggregated into major categories of

EFTs (Fig. S2) it can be seen that areas of negative trends in

NDVImean and positive trends in NDVISIN (red, Fig. 2) for some

areas coincide with the aggregated land-cover class of deciduous

tree cover (light green, Fig. S2), whereas areas of positive trends

in NDVImean and negative trends in NDVISIN (blue, Fig. 2) are

often associated with the presence of evergreen forest (dark

green, Fig. S2) or cultivated areas (orange, Fig. S2).

The low ratio (Table 1, Ratio a/b) between consistent (both

NDVI metrics) negative and positive trends indicates that con-

siderably more pixels are characterized by a consistent positive

trend compared with negative trends for the majority of land-

cover classes (GLC2000), with land-cover classes of limited/

sparse vegetation (classes 14 and 19) having the highest ratios.

The relation between pixels of opposite NDVI metric trends

and land-cover classes supports the spatial concurrence of the

maps in Figs 2 & S2. Larger percentage values of the combina-

tion of positive NDVImean trends and negative NDVISIN trends

(‘diverging trends case 1’, Table S1) as compared with negative

NDVImean/positive NDVISIN trends (‘diverging trends case 2’,

Table S1; indicated by the ratio c/d > 1) are observed for the

evergreen tree-cover classes 1, 4 and 6 (and also class 17, which

is a mixture of cropland and tree cover). For the three classes

of deciduous tree cover (2, 3 and 5) a distinctly different

pattern is observed with a predominance of ‘diverging trends

case 2’ (ratio c/d < 1). The same pattern of diverging trends

between evergreen and deciduous vegetation is found for the

two classes of shrub cover (classes 11 and 12) with shrub cover,

evergreen, showing a ratio of 3.88 and shrub cover, deciduous,

a ratio of 0.53.

Diverging NDVI metric trends per EFT

An analysis of pixels of diverging trends for the two NDVI

metrics was conducted at the global scale for land-cover classes

that were aggregated into major EFT categories (as indicated by

the colouring of classes in Fig. S2). Results are calculated as the

percentage of the total number of pixels within the ‘diverging

trends cases 1 and 2’ classes for each EFT and the number of

pixel counts is given in parentheses to indicate the spatial extent

of classes for the individual EFTs (Fig. 3). The percentage of

pixels belonging to the ‘diverging trends case 1’ class (blue bars)

is higher than for the ‘diverging trends case 2’ (red bars) for

cultivated areas whereas the opposite (more pixels of the ‘diverg-

ing trends case 2’ class) is predominant for the three remaining

EFTs (flooded vegetation, however, only covers a limited

number of pixels). The EFT of tree cover has been further

divided into subcategories of evergreen and deciduous (Fig. 3,

right part). This subdivision reveals that a considerably higher

proportion of pixels of deciduous forest are characterized by

Africa

Asia

AustraliaEurope

North America

South America

NDVImean NDVIsin

- +
+ -
+ +

- -

Figure 5 Distribution of pixels (in per cent) between categories
of which both vegetation greenness metrics are characterized by a
significant trend (positive/negative) (a–d in Table S1) plotted per
continent and ecosystem functional type.
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‘diverging trends case 2’ whereas the opposite combination

(‘diverging trends case 1’) dominates for evergreen tree cover.

To study what inter- and intra-annual patterns of change in

NDVI are causing diverging trends in NDVI metrics (‘diverging

trends cases 1 and 2’ in Table S1), the original 15-day composite

GIMMS3g NDVI time series, averaged for pixels of different

land-cover classes (selected from the analyses presented in

Fig. 3), are shown in Fig. 4. The majority of pixels of diverging

trends for the EFT categories covering GLC2000 land-cover

classes of tree cover deciduous and shrub/herbaceous/sparse/

bare (light green and yellow in Fig. S2) are characterized by

‘diverging trends case 2’ (Table S1). NDVI time series of the

individual GLC2000 land-cover classes (Fig. 4, top) of tree cover,

broadleaved, deciduous, open (class 3, Fig. S2) and shrub cover,

closed–open, deciduous (class 12, Fig. S2) are deciduous vegeta-

tion, but belong to different EFTs. In both cases the diverging

trends in NDVI metrics stem from NDVI time series showing

lower values for non-growing period over the last decade (from

2001), whereas the maximum NDVI during growing the season

remains stable. This change pattern produces decreased values

of NDVImean whereas the lower non-growing period values cause

an increase in NDVISIN because of the larger amplitude between

the maximum and minimum values (the calculation of NDVISIN

is based on a percentage of the amplitude). The majority of

pixels of diverging trends for the EFT categories tree cover ever-

green and cultivated [classes 1, 4 and 6 (dark green) and 16–18

(orange) in Fig. S2] are characterized by ‘diverging trends case 1’

(Table S1). NDVI time series (Fig. 4, bottom) for three GLC2000

land-cover classes [tree cover evergreen (1), cropland (16),

mixed (17)] all show the same temporal pattern of an increased

non-growing period NDVI level compared with a more stable

growing season maximum value producing positive NDVImean

trends and negative NDVISIN trends.

Analysis per continent

An analysis of the different NDVI metric trends for EFTs of tree

cover evergreen, tree cover deciduous, shrub/herbaceous/sparse/

bare and cultivated areas was conducted per continent. Pixels

characterized by both time series of NDVI metrics being signifi-

cant (either positive or negative; categories a–d in Table S1) and

pixels where at least one NDVI metric is significant (either posi-

tive or negative; categories e and f in Table S1) are tabulated in

Table 2. The highest concentrations of pixels (in %) with a sig-

nificant trend (both metrics, categories a–d, and for at least one

metric, categories e and f) are found in Europe and Africa, while

the lowest concentrations are found in Australia. When the EFTs

are separated, the highest concentrations of pixels for which

both time series of NDVI metrics are significant are predomi-

nantly found for EFTs of deciduous tree cover and cultivated

areas (except for South America, where cultivated areas have the

lowest percentage value). The EFT of deciduous is ranked first

(highest percentage cover of significant trends) in four out of six

continents (Table 2) and agriculture is ranked first two out of six

times (Africa and Asia) and second three times (North America,

Europe, Australia).

For pixels for which both NDVI metrics are characterized by

a significant trend (column 5, Table 2), distributions between

categories (a–d in Table S1) are plotted per continent and EFT

(Fig. 5). It is clear that, for most continents, the majority of

pixels are characterized by converging trends of positive NDVI

metrics. However, for South America the largest number of

pixels are characterized by ‘diverging trends case 2’ (category d)

for deciduous tree cover, and for North America ‘diverging

trends case 1’ (category c) describes most of the evergreen tree-

cover pixels. For both Europe and North America there are

much higher numbers of pixels of ‘diverging trends case 1’ for all

EFTs compared with the ‘diverging trends case 2’ (less pro-

nounced for North America deciduous tree cover). In South

America the opposite is observed, with much higher numbers of

‘diverging trends case 2’ for all EFTs (especially deciduous tree

cover). In Africa, Asia and Australia, the proportions of pixels of

diverging NDVI metric trends are smaller, yet there is a tendency

for more pixels that are classified as deciduous tree cover to be

characterized by ‘diverging trends case 2’ compared with ‘diverg-

ing trends case 1’.

DISCUSSION

Relating diverging trends to changes in LULCC

This study shows how information on large-scale changes in

ecosystem functioning over the last three decades can be derived

from the GIMMS3g NDVI dataset. By combining different

methods for vegetation parameterization with different sensitiv-

ity to the persistent and recurrent vegetation components we

have shown that structural attributes of ecosystems related to

the changes in ecosystem functioning (here monitored as

changes in the composition of EFTs) can be extracted at regional

to global scales. The global trend maps of 30-year time series of

the different NDVI metrics are similar for the majority of land

areas but areas of diverging NDVI metric trends (NDVImean and

NDVISIN) are predominant for EFTs of deciduous tree cover. The

observed changes in ecosystem functioning can be coupled to

LULCC at the regional scale, but the specific type and drivers of

LULCC might be very different from region to region.

Diverging trends and changes in tree cover

From the global map of converging/diverging trends of the

NDVI metrics, areas of negative trends in NDVImean and positive

trends in NDVISIN (‘diverging trends case 2’ in Table S1 and

red in Fig. 2) are shown to dominate for land-cover classes of

deciduous forest in tropical and subtropical areas. Diverging

trends in deciduous forests in these areas are hypothesized to be

caused by changes in the ratio of persistent/recurrent vegetation,

and time series of 15-day composite GIMMS3g NDVI data

reveal that the diverging trends in these ecosystems can be

explained by temporal changes in the ratio of non-growing

period/growing season NDVI integrals. For areas characterized

by a decreasing non-growing period NDVI and a constant

maximum growing season NDVI (Fig. 4, top), this will inevi-
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tably lead to a divergence in the two NDVI metrics (NDVImean

and NDVISIN). These in turn are likely to show areas of signifi-

cant change in tree cover (tree cover being the only source of

influence on the non-growing period NDVI). For a successful

decomposition of persistent and recurrent vegetation, the

phenological cycle of the two needs to be separable in time. This

is typical for those biomes in which the dominant woody veg-

etation is evergreen and the dominant herbaceous vegetation

consists of annual grasses, crops and pastures. Also, for decidu-

ous forest in tropical and subtropical areas (Fig. S2), the

vegetative/senescent stages of woody and herbaceous cover are

often different. Typically, the trees shed their leaves for a short

time in the non-growing period to reduce water loss (this varies

with species type) and produce a flush of new leaves before the

onset of the rainy season. The greening of the woody cover

thereby precedes the herbaceous vegetation cycle that is con-

trolled to a higher degree by the onset of the rainy season. In a

recent study by Mitchard & Flintrop (2013), forest degradation

in the dry deciduous forest of Africa was assessed with an earlier

version of the GIMMS NDVI using information from the dry

season only. Lu et al. (2003) used an AVHRR NDVI time series

to decompose contributions from woody (perennial) and her-

baceous (annual) vegetation to infer their separate leaf area

indices and cover fractions for Australia using time series

decomposition techniques.

The pronounced pattern of diverging NDVI trends in central

South America (covering parts of Bolivia, Paraguay and north-

ern Argentina) coincides with the areal extent of the dry Chaco

region (Portillo-Quintero & Sanchez-Azofeifa, 2010). The dry

Chaco is known as one of the most active deforestation frontiers

of South American dry forest in recent decades because of the

agricultural expansion of soybean production. Deforestation

rates increased during the 1980s and 1990s, driven by the sus-

tained global demand for soybeans, and were accelerated

between 2001 and 2007 following the global increase in com-

modity prices (Gasparri & Grau, 2009; who used Landsat

imagery to assess the deforestation rates in subsets of the dry

Chaco region). The explanation of this pattern (‘diverging

trends case 2’) as being related to a loss in tree cover corresponds

well to Clark et al. (2012), who found the second largest hotspot

of deforestation in Central and South America to be in the

drought-deciduous, dry forests of Argentina, Paraguay and

Bolivia, with a loss of 125,867 km2 of closed-canopy forest and

gains of 41,292 and 82,674 km2 in open-canopy forests and agri-

culture and pastures, respectively (assessed from 250-m MODIS

imagery covering 2001–10). The present study, however, synthe-

sizes ‘wall-to-wall’ changes in the tropical dry forest covering a

period of three decades (1982–2011) and can therefore be used

to analyse longer temporal scales than newer generations of

EO-based datasets from sensors like MODIS (2000–present),

SPOT VGT (1998–2014) and MERIS (2002–12) would have

allowed.

The belt of diverging NDVI trends (‘diverging trends case 2’;

red, Fig. 2) across south-central Africa (Angola, Zambia, Tanza-

nia, and Mozambique) corresponds to the extent of Miombo

woodlands (White, 1983). Forest degradation is an important

cause of loss of wood biomass in Miombo woodland

(Chidumayo, 2013) and is by definition more challenging to

monitor using EO data than deforestation because of the subtle

changes in tree cover over time (Joseph et al., 2011). Forest

degradation in the Miombo woodlands was assessed by

Mitchard & Flintrop (2013), and the results of potential forest

degradation match well the south-central Africa pixels of

diverging trends in Fig. 2. However, new information on the

drivers of observed change is provided in the current study since

the recurrent vegetation is not observed to decline during the

growing season; this does not suggest climate-induced degrada-

tion but rather human-induced forest degradation.

The pronounced area of diverging NDVI trends (‘diverging

trends case 2’; red, Fig. 2) in the central Sahel covers southern

Niger (the Fakara region). The area consists of highly frag-

mented agro-pastoral land with a dynamic land use and is char-

acterized by a large increase in land area under cultivation that

has occurred over the last decades (Dardel et al., 2014) and has

resulted in a decrease in shrub/tree cover.

Woody encroachment in sub-Saharan African woodlands and

savannas (south of Sahel) has also been reported. Mitchard &

Flintrop (2013) conducted a literature review from across Afr-

ica’s savannas and woodlands where woody encroachment was

found to dominate. The sub-Saharan areas of diverging trends

(‘diverging trends case 1’) for deciduous tree cover driven by

increasing values in dry season NDVI values (blue, Fig. 2) cor-

respond to areas of reported woody encroachment in Cameroon

as based on optical and radar remote sensing (Mitchard et al.,

2009, 2011). Areas of diverging trends (‘diverging trends case 1’)

caused by an increase in dry season NDVI are also found in

Ivory Coast/southern Ghana. A multi-scale approach compris-

ing combined household survey research on environmental

perceptions with aerial photo interpretation and vegetation

transects was conducted in the Ivory Coast by Bassett & Zueli

(2000) to identify the general trends in vegetation change.

Farmers and herders reported more wooded landscapes,

which coincided with the aerial image interpretation for the

region.

The predominance of pixels characterized by ‘diverging

trends case 1’ for evergreen forest in North America (Fig. 5) is

caused by an increase in non-growing period (winter) NDVI

without a corresponding increase in growing season NDVI

during recent decades. The majority of ‘diverging trends case 1’

pixels observed in the south-eastern USA covered by the ever-

green forest class belong to needle-leaved forest (note, however,

that the majority of pixels classified as needle-leaved forest in

boreal/arctic areas of both continents have been masked out due

to the influence from snow cover). This corresponds well to the

results of Wear & Greis (2012), who reported a doubling of

evergreen forest (pine timber production) in south-eastern USA

over the last 40 years.

Diverging trends and changes in agricultural practice

Diverging trends in cultivated areas are likely to be caused by

changes in agricultural practices. In both western Europe and

R. Fensholt et al.
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south-eastern USA (major parts of eastern/northern Europe

and northern/western USA are masked due to the influence

of snow cover), substantial regions classified as agriculture

(Fig. S2) are characterized by diverging trends (‘diverging trends

case 1’; blue, Fig. 2) caused by an increase in winter NDVI

(Fig. 4, bottom). This has probably been caused by changes in

agricultural practice during the period 1982–2011. For western

Europe, winter crops include primarily wheat and secondarily

barley (FAOSTAT, 2014), and according to Olesen & Bindi

(2002) wheat yield trends in north-western Europe (the UK and

France) have increased rapidly over the past three decades (60%

increase in yield production). Increasing yields can be due to

agricultural expansion and/or intensification; both are likely to

influence the winter period NDVI signal. There was a 28%

expansion in the wheat area harvested in western Europe

between 1982 and 2011 (FAOSTAT, 2014), which corresponds

well with the spatial patterns found for Europe in Fig. 2. In

central and south-eastern USA, winter cereals consist also pri-

marily of wheat (soft and hard red winter wheat), but despite an

increase in yield of 23% (FAOSTAT, 2014 entire USA) the har-

vested area decreased throughout the period studied (−41%,

entire USA). However, ‘fodder temporary’ and ‘pasture perma-

nent’ are winter crops not included in FAOSTAT that, according

to different FAO statistics, together cover an area of the same size

as winter wheat in south-eastern USA and an area three times

larger than winter wheat in central USA (AQUASTAT, 2012).

Therefore, the relationship between winter greening and

changes in LULCC in central and south-eastern USA based on

FAO statistics is inconclusive. An increase in late autumn and

winter NDVI was found by Tsai et al. (2014) in the state of

Florida over the period 1982–2006 and was suggested to be

caused by changes in the Atlantic multi-decadal oscillation

(AMO), which switched from a cold to a warm phase after 1995

and is associated with increased winter precipitation.

ACKNOWLEDGEMENTS

The authors thank NASA GIMMS Group for producing and

sharing the GIMMS3g NDVI dataset. NASA/MODIS Land Dis-

cipline Group is thanked for sharing the MODIS LAND data.

The team behind the GLC2000 land-cover data is thanked for

producing and sharing the data. Finally, P. Jonsson, Center for

Technology Studies, Malmö University and L. Eklundh, Depart-

ment of Physical Geography and Ecosystem Science, Lund

University are thanked for sharing the timesat software. This

research is part of the project entitled ‘Earth observation-based

vegetation productivity and land degradation trends in global

drylands’. The project is funded by the Danish Council for Inde-

pendent Research (DFF) Sapere Aude programme.

REFERENCES

Alcaraz-Segura, D., Paruelo, J. & Cabello, J. (2006) Identification

of current ecosystem functional types in the Iberian Penin-

sula. Global Ecology and Biogeography, 15, 200–212.

An, Y.Z., Gao, W. & Gao, Z.Q. (2014) Characterizing land con-

dition variability in northern China from 1982 to 2011. Envi-

ronmental Earth Sciences, 72, 663–676.

AQUASTAT (2012) Irrigation water requirement and water

withdrawal by country. Available at: http://www.fao.org/nr/

water/aquastat/water_use_agr/index.stm.

Asner, G.P., Knapp, D.E., Balaji, A. & Paez-Acosta, G. (2009)

Automated mapping of tropical deforestation and forest deg-

radation: CLASlite. Journal of Applied Remote Sensing, 3,

033543.

Bartholomé, E., Belward, A.S., Achard, F., Bartalev, S.,

Carmona-Moreno, C., Eva, H., Fritz, S., Gregoire, J.-M.,

Mayaux, P., Stibig, H.-J.E.E. & European Commission,

Luxembourg (2002) Global land cover mapping for the year

2000 – project status November 2002. EUR 20524. European

Commission, Luxembourg.

Bassett, T.J. & Zueli, K.B. (2000) Environmental discourses and

the Ivorian savanna. Annals of the Association of American

Geographers, 90, 67–95.

de Beurs, K.M. & Henebry, G.M. (2005) Land surface phenology

and temperature variation in the International Geosphere–

Biosphere Program high-latitude transects. Global Change

Biology, 11, 779–790.

Chidumayo, E.N. (2013) Forest degradation and recovery in a

Miombo woodland landscape in Zambia: 22 years of obser-

vations on permanent sample plots. Forest Ecology and Man-

agement, 291, 154–161.

Clark, M.L., Aide, T.M. & Riner, G. (2012) Land change for all

municipalities in Latin America and the Caribbean assessed

from 250-m MODIS imagery (2001–2010). Remote Sensing of

Environment, 126, 84–103.

Dardel, C., Kergoat, L., Hiernaux, P., Mougin, E., Grippa, M. &

Tucker, C.J. (2014) Re-greening Sahel: 30 years of remote

sensing data and field observations (Mali, Niger). Remote

Sensing of Environment, 140, 350–364.

Di Gregorio, A. & Jansen, L. (2000) Land cover classification

system, classification concepts and user manual. Food and Agri-

culture Organization of the United Nations, Rome.

Donohue, R.J., McVicar, T.R. & Roderick, M.L. (2009) Climate-

related trends in Australian vegetation cover as inferred from

satellite observations, 1981–2006. Global Change Biology, 15,

1025–1039.

Eastman, J.R., Sangermano, F., Ghimire, B., Zhu, H.L., Chen, H.,

Neeti, N., Cai, Y.M., Machado, E.A. & Crema, S.C. (2009)

Seasonal trend analysis of image time series. International

Journal of Remote Sensing, 30, 2721–2726.

FAOSTAT (2014) FAOSTAT. Available at: http://faostat.fao.org/

site/567/default.aspx#ancor (accessed 2014).

Fensholt, R. & Proud, S.R. (2012) Evaluation of Earth observa-

tion based global long term vegetation trends – comparing

GIMMS and MODIS global NDVI time series. Remote Sensing

of Environment, 119, 131–147.

Fensholt, R., Langanke, T., Rasmussen, K., Reenberg, A., Prince,

S.D., Tucker, C., Scholes, R.J., Le, Q.B., Bondeau, A.,

Eastman, R., Epstein, H., Gaughan, A.E., Hellden, U., Mbow,

C., Olsson, L., Paruelo, J., Schweitzer, C., Seaquist, J. &

Mapping of ecosystem functioning change from EO data

Global Ecology and Biogeography, © 2015 John Wiley & Sons Ltd 13



Wessels, K. (2012) Greenness in semi-arid areas across the

globe 1981–2007 – an earth observing satellite based analysis

of trends and drivers. Remote Sensing of Environment, 121,

144–158.

Fensholt, R., Rasmussen, K., Kaspersen, P., Huber, S., Horion, S.

& Swinnen, E. (2013) Assessing land degradation/recovery in

the African Sahel from long-term earth observation based

primary productivity and precipitation relationships. Remote

Sensing, 5, 664–686.

Gasparri, N.I. & Grau, H.R. (2009) Deforestation and fragmen-

tation of Chaco dry forest in NW Argentina (1972–2007).

Forest Ecology and Management, 258, 913–921.

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M.,

Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V.,

Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A.,

Chini, L., Justice, C.O. & Townshend, J.R.G. (2013) High-

resolution global maps of 21st-century forest cover change.

Science, 342, 850–853.

Hirsch, R.M. & Slack, J.R. (1984) A nonparametric trend test

for seasonal data with serial dependence. Water Resources

Research, 20, 727–732.

Hoaglin, D.C., Mosteller, F. & Tukey, J.W. (2000) Understanding

robust and exploratory data analysis. Wiley, New York.

Ivits, E., Cherlet, M., Horion, S. & Fensholt, R. (2013) Global

biogeographical pattern of ecosystem functional types derived

from earth observation data. Remote Sensing, 5, 3305–

3330.

Ivits, E., Horion, S., Fensholt, R. & Cherlet, M. (2014) Global

ecosystem response types derived from the standardized

precipitation evapotranspiration index and FPAR3g series.

Remote Sensing, 6, 4266–4288.

de Jong, R., de Bruin, S., de Wit, A., Schaepman, M.E. & Dent,

D.L. (2011) Analysis of monotonic greening and browning

trends from global NDVI time-series. Remote Sensing of Envi-

ronment, 115, 692–702.

Jonsson, P. & Eklundh, L. (2002) Seasonality extraction by

function fitting to time-series of satellite sensor data. IEEE

Transactions on Geoscience and Remote Sensing, 40, 1824–

1832.

Jonsson, P. & Eklundh, L. (2004) TIMESAT – a program for

analyzing time-series of satellite sensor data. Computers and

Geosciences, 30, 833–845.

Joseph, S., Murthy, M.S.R. & Thomas, A.P. (2011) The

progress on remote sensing technology in identifying tropical

forest degradation: a synthesis of the present knowledge and

future perspectives. Environmental Earth Sciences, 64, 731–

741.

Lambin, E.F. (1999) Monitoring forest degradation in tropical

regions by remote sensing: some methodological issues.

Global Ecology and Biogeography, 8, 191–198.

van Leeuwen, W.J.D., Hartfield, K., Miranda, M. & Meza, F.J.

(2013) Trends and ENSO/AAO driven variability in NDVI

derived productivity and phenology alongside the Andes

mountains. Remote Sensing, 5, 1177–1203.

Lu, H., Raupach, M.R., McVicar, T.R. & Barrett, D.J. (2003)

Decomposition of vegetation cover into woody and herba-

ceous components using AVHRR NDVI time series. Remote

Sensing of Environment, 86, 1–18.

Mitchard, E.T.A. & Flintrop, C.M. (2013) Woody encroachment

and forest degradation in sub-Saharan Africa’s woodlands

and savannas 1982–2006. Philosophical Transactions of the

Royal Society B: Biological Sciences, 368, 20120406.

Mitchard, E.T.A., Saatchi, S.S., Gerard, F.F., Lewis, S.L. & Meir, P.

(2009) Measuring woody encroachment along a forest–

savanna boundary in central Africa. Earth Interactions, 13,

1–19.

Mitchard, E.T.A., Saatchi, S.S., Lewis, S.L., Feldpausch, T.R.,

Woodhouse, I.H., Sonke, B., Rowland, C. & Meir, P. (2011)

Measuring biomass changes due to woody encroachment and

deforestation/degradation in a forest–savanna boundary

region of central Africa using multi-temporal L-band radar

backscatter. Remote Sensing of Environment, 115, 2861–

2873.

Myneni, R.B., Hall, F.G., Sellers, P.J. & Marshak, A.L. (1995) The

interpretation of spectral vegetation indexes. IEEE Transac-

tions on Geoscience and Remote Sensing, 33, 481–486.

Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper,

S.C., Tucker, C.J., Myneni, R.B. & Running, S.W. (2003)

Climate-driven increases in global terrestrial net primary pro-

duction from 1982 to 1999. Science, 300, 1560–1563.

Olesen, J.E. & Bindi, M. (2002) Consequences of climate change

for European agricultural productivity, land use and policy.

European Journal of Agronomy, 16, 239–262.

Paruelo, J.M., Jobbagy, E.G. & Sala, O.E. (2001) Current distri-

bution of ecosystem functional types in temperate South

America. Ecosystems, 4, 683–698.

Piao, S.L., Mohammat, A., Fang, J.Y., Cai, Q. & Feng, J.M. (2006)

NDVI-based increase in growth of temperate grasslands and

its responses to climate changes in China. Global Environmen-

tal Change – Human and Policy Dimensions, 16, 340–348.

Pinzon, J.E. & Tucker, C.J. (2014) A non-stationary 1981–2012

AVHRR NDVI3g time series. Remote Sensing, 6, 6929–6960.

Portillo-Quintero, C.A. & Sanchez-Azofeifa, G.A. (2010) Extent

and conservation of tropical dry forests in the Americas. Bio-

logical Conservation, 143, 144–155.

Scholes, R.J., Pickett, G., Ellery, W.N. & Blackmore, A.C. (1997)

Plant functional types in African savannas and grasslands.

Plant functional types: their relevance to ecosystem properties

and global change (ed. by T.M. Smith, H.H. Shugart and

F.I. Woodward), pp. 255–268. Cambridge University Press,

Cambridge.

Tsai, H.P., Southworth, J. & Waylen, P. (2014) Spatial persistence

and temporal patterns in vegetation cover across Florida,

1982–2006. Physical Geography, 35, 151–180.

Tucker, C.J. (1979) Red and photographic infrared linear

combinations for monitoring vegetation. Remote Sensing of

Environment, 8, 127–150.

Wear, D.N. & Greis, J.G. (2012) The Southern Forest Futures

Project: summary report. USDA Forest Service, Asheville, NC.

White, F. (1983) The vegetation of Africa: a descriptive memoir to

accompany the UNESCO/AETFAT/UNSO vegetation map of

Africa. UNESCO, Paris.

R. Fensholt et al.

Global Ecology and Biogeography, © 2015 John Wiley & Sons Ltd14



SUPPORTING INFORMATION

Additional supporting information may be found in the online

version of this article at the publisher’s web-site.

Figure S1 Amplitude and frequency changes for an idealized

phenological curve representing the annual vegetation growth

cycle.

Figure S2 Land-cover classes (GLC2000) merged into major

ecosystem functional types of: tree cover deciduous, tree cover

evergreen, tree cover flooded, shrub/sparse/bare and cropland.

Table S1 NDVI time series trend combinations when subtract-

ing NDVImean and NDVISIN time series trends (significance

criterion, P < 0.1).
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