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Effect of resonant impurity scattering on the carrier dynamics in Si/SiGe quantum wells
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(Received 18 January 2005; revised manuscript received 3 May 2005; published 1 July 2005)

We have performed Monte Carlo simulations of the electron drift velocity in a -doped Si/SiGe quantum
well, for high and low temperatures as well as strong and weak electric field. All scattering matrix elements of
intervalley phonons, acoustic phonons, interface roughness, and impurity ions are calculated from the electron
wave functions. Special attention was paid to the resonant state scattering which is far from understood both
theoretically and experimentally. When the position of the 5-doped donor layer moves from the center of the
quantum well to deep inside the barrier, we found for the first time the dramatic effect of the resonant state
scattering on electron drift velocity. This effect is dominated by the resonant level broadening, which depends
on the position of the 5~doped donor layer. Relative relaxation time of various scattering mechanisms was also

derived from the Monte Carlo simulation.
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I. INTRODUCTION

The physical properties of the two-dimensional (2D) elec-
tron gas are important not only for fundamental research but
also for technological applications. Modern material fabrica-
tion techniques and advanced experimental facilities make it
possible to measure these properties of high quality samples
with high precision. Such valuable results provide a basis for
2D electronic devices.

Following the success of 2D electronic devices based on
II1-V semiconductor heterostructures, recently there has been
much work done on strained Si or SiGe epilayers within
silicon device technology. Taking advantage of the control-
lable lattice-mismatch induced strain, band-gap engineering
allows the possibility to increase the carrier mobility in
modulation doped heterostructures. One relevant key issue is
to understand thoroughly the transport phenomena in the 2D
electron gas confined in the Si layer and the various types of
scattering event which take place in it. The measured carrier
mobility, or drift velocity, contains the effects of all possible
scattering mechanisms, and needs to be analyzed theoreti-
cally. For this purpose the Monte Carlo simulation is a very
powerful approach. In Si/SiGe modulation doped structures
the Monte Carlo simulation has given useful information on
the electron transport properties.!~*

The purpose of conventional modulation doping is to in-
crease the carrier mobility by separating the impurity ions
from the transport channels. Under this situation, carriers are
scattered mainly by phonons and interface roughness. How-
ever, a recent interesting topic is the resonant impurity scat-
tering which plays an important role in the terahertz (THz)
lasing from uniaxially strained bulk p-Ge.>® The applied
strain splits the heavy hole band and the light hole band. If
the split is sufficiently large, the impurity levels attached to
the upper hole band will be degenerate with the continuum
of the lower hole band. A resonant state is then formed
through hybridization of these two degenerate states, and the
resulting energy level has a certain width. In the past the
effect of impurity scattering on the carrier mobility of a
semiconductor took into account only the conventional Cou-
lomb scattering (CCS) channel by impurity ions. The pres-
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ence of resonant states opens another impurity scattering
channel which we call resonant state scattering (RSS) chan-
nel. How the RSS channel will affect the carrier mobility is
an open question. To our knowledge, experiments on bulk
doped semiconductors can hardly provide the answer.

Resonant states can also be formed in a doped quantum
well in which the impurity levels attached to a higher sub-
band will be degenerate with the 2D continuum of the lower
subband. In connection to the possible THz radiation from
Si/SiGe quantum wells, such resonant states were studied in
detail very recently.” It was found that the width of the reso-
nant level is very sensitive to the position of the impurity
when the impurity is moved from the center of the well into
the barrier. Therefore, in a 5~-doped quantum well sample, the
electron transport parallel to the interfaces will depend on the
position of the 6-doping. This effect should also depend on
the strength of an applied electric field which can inject hot
carriers into the resonant states. In our opinion, the study of
the hot carrier mobility or drift velocity in a é-doped quan-
tum well can give us valuable information on the character-
istic features of resonant states.

The RSS channel has not been investigated before. In this
paper we will perform a Monte Carlo simulation on the hot
carrier drift velocity in a J-doped Si/SiGe quantum well,
taking into account all important scattering mechanisms in-
cluding both the CCS channel and the RSS channel of the
impurity scattering. The reliability of numerical results de-
pends crucially on the accuracy of all the numbers appearing
in the calculation. In our problem, to start with we must have
the precise formula for all scattering probabilities. These for-
mulas will be given in Sec. II, together with the electron
eigensolutions based on which all scattering matrix elements
are calculated. Section III gives a brief description on the
specific procedure of Monte Carlo simulation of drift veloc-
ity. Focusing on the effect of resonant state scattering, the
field and the temperature dependence of the calculated drift
velocity in delta-doped Si/SiGe quantum wells are presented
and discussed in Sec. IV. Within the scattering mechanism of
impurity ions, the contributions of CCS channel and RSS
channel are investigated in Sec. V. In the Monte Carlo simu-
lation, we can keep track of the scattering mechanism of
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each scattering. The relative relaxation times are then ana-
lyzed in Sec. VI. Our expectation on future parallel experi-
mental investigation is expressed in Sec. VIL

II. SCATTERING PROBABILITY

Using the Monte Carlo approach to solve the Boltzmann
transport equation we need to know the matrix elements of
all relevant scattering processes. In a quantum well with
growth direction along the z axis, the eigenstates

NK) = [e*T/L] e, (2) (1)
and the corresponding eigenenergies
E\k=E\ + Ex (2)

are specified by the subband index A and the 2D wave
vector k. Here we assume a finite sample with a square cross
section of area L? in the xy plane, and r=(r, ) is the posi-
tion vector in cylindrical coordinates in this plane. In terms
of the transverse effective mass m,, the 2D dispersion is
simply

Ey = h2k*2m,. (3)

The confined wave functions ¢,(z) satisfy the Schrodinger
equation

itg 1 9
( 2 am @t V(Z))%(z) =Ee\(2), 4)
where m | (z) is the spatially dependent longitudinal effective
mass, and the potential V(z) includes the effect of band bend-
ing if the doping concentration is large. We solve Eq. (4)
self-consistently together with the Poisson equation.

Knowing these eigensolutions, we use the Fermi golden
rule to calculate the transition rate

2
WOK:N'K') = %|M()\k;)\’k’)|25(E)\,k, —E, - AE)

)

from the initial state |AK) to the final state [\'k’), where AE
is the energy change in an inelastic process. The scattering
matrix element M(Ak;\'k’) depends on the individual scat-
tering mechanism. For a given scattering mechanism, the
total scattering rate W(AK) for scattering out of the state |AK)
is the sum

WOK) = >, WAk;\'K) (6)
Nk

over all possible final states. If we define 6, as the angle
between k' and k, then W(AK) is derived as

LZ @ 2
W(AK) = 1 5 dE’f dO MK N'K )2 S(Ey s
—E\ - AE), (7)

under the assumption of a parabolic dispersion as given in
Eq. (3). The parabolic dispersion is valid near the bottom of
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each miniband. In typical realistic samples which will be
investigated in this work, the separation between the two
lowest subbands is about 35 meV, and the relevant resonant
state energy is about 8 meV above the bottom of the lowest
subband. Therefore, the use of a parabolic dispersion can
provide a reliable description of resonant state scattering,
which is the key issue of this paper. The nonparabolicity
effect is important for hot electrons with energy far above the
resonant state level. Consequently, it is reasonable to believe
that this effect will not change the characteristic fetaures of
the resonant state scattering qualitatively.

While focusing on the resonant state scattering by impu-
rity ions, we should also mention the effect of electron-
electron scattering. Since this scattering conserves the total
momentum of the entire electron system, it has no effect on
the electron mobility which will be studied in details in this
paper. However, the electron-electron scattering contributes
to the thermalization of the electron distribution. In order to
demonstrate the effect of resonant state scattering with an
analysis as unambiguous as possible, we have set such a low
impurity concentration that the band bending is negligibly
small. In this case, the thermalization process due to the
electron-electron scattering is secondary to the primary pro-
cess of electron-phonon scattering. In this respect, we have
neglected the electron-electron scattering in our Monte Carlo
simulation.

The energy relaxation in the conduction band of Si is
produced by intervalley phonons, since the intravalley opti-
cal phonon scattering is forbidden by symmetry.®° The inter-
valley scattering in Si consists of zero-order optical and first-
order acoustic processes.®!® Besides these, the relevant
elastic scattering mechanisms which randomize the momen-
tum are produced by intravalley acoustic phonons, interface
roughness, and impurities. The impurity scattering has two
independent channels, ionized impurity scattering and reso-
nant scattering. While the resonant scattering hardly has been
studied before, all other scattering mechanisms have been
much investigated in the past. Consequently, we will first
present the final expressions of W(\K) for various conven-
tional scattering mechanisms, and then discuss the resonant
scattering in more details.

A. Conventional scattering

For the two intervalley phonon branches in our 2D sys-
tem, the electron-phonon coupling D(q) has the simple
form®!° D(q)=D,|q| for acoustic phonons with energy fw,,
and D(q)=D, for optical phonons with energy fiw,. If we
define

G =f |€DA(Z)<P;r(Z)|2dZ’ (®)

—0

c, d .
Hyyr = f %(Z)@w(z)d—f[%(z)@w(z)]dz, )

—0

then the total scattering rate is'!
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D2m, 2k
WOK) = —“——N*(hw,) >, O| — F fiw, + E\ — Ey,
ﬁpﬁ N nmy
7K
X <2_ + ﬁwa+E)\—E)\r> 3 G)\}\I_H)\)\!
nmy f
(10)
for the first-order intervalley acoustic phonons, and
W(AK) = Dy ot Vi, ) G
2nhipho N
7K
X@(—Iﬁw0+E>\—E>\r> (11)
m
for the zero-order intervalley optical phonons. In the

above equations, p is the crystal mass density, and the step-
function ®(x)=1 for positive x and ®(x)=0 for negative x.
The quantity

N~ (hw) = N(ho) = ("7 - 1)7! (12)

is the phonon number, and N*(fiw)=N(hw)+1. N*(hw) ap-
pears in a phonon emission process, and N~ (%) in a phonon
absorption process. We notice that except for the kinetic en-
ergy in the step function ©, the zero-order intervalley optical
scattering is actually independent of k.

For temperatures above 77 K, the intravalley acoustic
phonon scattering can be treated as an elastic process with
the electron-phonon interaction® D(q)=D,/|q|. At long
wavelengths the phonon energy 7w, is well approximated as
v/lq| where v, is the longitudinal sound velocity. We then
have

ac m hzkz
W(k) = kBTE GO\ S—
2R3 2m

Uz ||
for intravalley acoustic phonon scattering. This scattering
rate has a similar k dependence as that of intervalley optical
phonons.

Since the interfaces are not perfectly flat, the spatial fluc-
tuation SL,,(r) of the well width L,, produces a spatial fluc-
tuation

OE\(r) = o’?TéL (r) (14)

of the subband energy E\. For a quantum well of finite depth,
we may write*

JE\ R\
S AT

=- , 15
ﬁLW A mHL?V ( )

where Yy, is a correction factor which is equal to unity for an
infinitely deep well. x, depends on the well depth, the sub-
band index and the well width, and must be calculated nu-
merically. The scattering due to such interface roughness is
important at low temperatures,'? and depends on the correla-
tion function of OL,(r). Let A be the average amplitude of
the well width fluctuation, and A the correlation length of the
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fluctuation. Assuming a Gaussian shape!® for the correlation
function

(OL, (1) 3L, (x)) = A% = FIA%, (16)
the total interface roughness scattering rate is derived as

THAZA% NG

W(Ak) =
( ) 2m”L3,

21
f dee—Azkz(l—cos 0)/4 (17)
0

Finally we consider the scattering of carriers by a
6-doping layer of ionized donors located at z,, with sheet
concentration n,p. The scattering by an ionized donor has
two channels. The first channel which we call conventional
Coulomb scattering (CCS) will be treated as conventional
potential scattering, while the second resonant state scatter-
ing (RSS) channel will be analyzed in more details in the
next section. As an approximation, which typically is well
justified,*” we can ignore the cross term (see below) and
treat the two scattering channels independently.

The CCS process has been well documented in many
quantum mechanics books. From these books, assuming a
Thomas-Fermi screened dielectric constant etg, we find the
total scattering rate as*

R
“ exp[—|z—2z0lkV2 =2 cos 6
WOK) = f pl | o| ]

kv’Z —2cos 6

emy _em J‘Zﬂ'
4772h28TF 0

X () by (2)dz (18)

B. Resonant scattering

Let us consider the scattering of an incoming carrier, with
energy E and vector k, by an impurity ion located at the
origin. If there exists a localized state with energy close to E,
it can capture the carrier and then re-emit it. Such a process
through the formation of hybridized resonant states has been
investigated recently both in p-doped bulk Ge (Ref. 14) and
in 2D electron gases.”'> The complicated theory of resonant
scattering in quantum wells can be much simplified if inter-
subband transitions are ignored. This will be the case to be
studied in the present work.

Following the treatment of resonant scattering in three
dimensions,'% in our quantum well system the scattered wave
function at large distances r=(r, ) from the scattering cen-
ter can be written in the form

ikr
Yh(r) = T + Mw)%. (19)

By expanding the plane wave in its asymptotic form, and
solving the free Schrodinger equation for large distances
with proper boundary conditions, we can derive the scatter-
ing amplitude wu(®). For resonant scattering taking place at
energy E™ with a width T", which is related to the lifetime 7
of the resonant state as I'=#%/7, we obtain
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1 r . . (0)

—im® 216(
- > w . (20
27k E—-E*+il'27, ¢ e (20)

W) =-a

Here «a represents the CCS channel, and the rest of w(9) is
for the RSS channel. I' is typically of the order 1 meV, and
therefore the RSS scattering probability has a sharp and lo-
calized peak. On the other hand, the CCS scattering probabil-
ity, Eq. (18), is a smooth function of the electron energy with
a dominant contribution around k=0. Consequently, the cross
term between the CCS and the RSS channel can be ignored,
as mentioned at the end of the preceding section. Moreover,
the phase shifts 6(;3) in the second term on the right-hand side
of Eq. (20) can be approximated by unity.'®

We will then ignore the « in u(J) to investigate the RSS
channel. In our problem it is sufficient to retain only the
s-wave scattering with the m=0 term in the sum in Eq. (20).
We can then write the RSS amplitude for the initial state |[\k)
as

1 T,
27k Exy — S + 0,2

Mni(0) =~ (21)

In the above expression, we have neglected the weak k de-
pendence of I'y and E}*. The exact values of these quantities
can be evaluated using the resonant coupling approach.'> The
resonant scattering cross section, which has the dimension of
length for a 2D system, is defined as

2m 2/k
ka=J | (D) [2d 0 = X (22)

0 (Ex - EX)?+ T34

In terms of oy and the particle velocity 7ik/my the total rate
of resonant scattering has the simple form

hk
W()\k) =Nrp~ O)\k-
m,

(23)

III. MONTE CARLO SIMULATION

The two commonly used approaches for Monte Carlo
simulations in semiconductors are single-particle and en-
semble simulations. If the system to be investigated exhibits
strong carrier-carrier correlation, or involves a time-
dependent response to an external stimulation, it is necessary
to use the ensemble Monte Carlo approach. However, we
will study the transport properties of independent carriers in
semiconductors under an applied homogeneous electric field.
Although several different scattering mechanisms are taken
into account, we do not include carrier-carrier correlation nor
impact ionization. Hence, it is proper to use the standard
single-particle Monte Carlo technique which was developed
for carrier transport in semiconductors.'”

There are two methods to calculate the drift velocity of
the carriers. One can first simulate the carrier distribution
function in momentum space, and then average the momen-
tum with this distribution to obtain the velocity. One can also
simulate the drift velocity directly without using the distri-
bution function; that is the approach we have adopted, and
thus we simulate the distribution function and the drift ve-
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locity simultaneously. In this way it is possible to use the
distribution function to check the convergence of the simu-
lation. Furthermore, without any applied electric field the
distribution function is spherically symmetric due to thermal-
ization, but will become asymmetric when the field is turned
on. Such information of the distribution function stretching
along the field direction will be very useful for the under-
standing of the calculated drift velocity.

Because the dynamical processes in our Monte Carlo
simulation include intervalley scattering, it is necessary to
specify the electron eigenstate [\kj) in a Si/SiGe quantum
well by the subband index A, the 2D wave vector k, and the
valley index j. Because the bulk symmetry is broken in layer
structures, in a Si/SiGe quantum well there are only two
low-lying valleys to take into account.'® Under an applied dc
electric field & parallel to interfaces, an electron will perform
free-flight motion between two collisions. During the free-
flight motion only the wave vector k changes with time;
specifically, it evolves linearly as the carrier is accelerated by
the field. Conversely, when an electron is scattered by one of
the various scattering mechanisms, its state changes instan-
taneously from |\Kkj) to [\'k’j"). We will label the free-flight
time intervals by /, and specify the /th time interval as from
t; to t; 4. Let V[k(7)] be the velocity during the free flight.
Then the drift velocity V() is calculated as!’

Vd,<5)=%2 f Y Vik@lar. (24)
T,

where T=2(t, y~1,;) is the total duration of the Monte Carlo
simulation.

To perform the Monte Carlo simulation, we keep track of
the momentum changes during each free flight, and then take
a proper average. In practice it is more convenient to average
over the energy. We will simplify the notation by defining
k;;=k(t;;) and k,,=k(t,,) as the initial and final wave
vectors of the free-flight interval /, and we also introduce
K=eET/1. Using the relation

V() = 2V () 0s)
where E, ;(k) is the 2D subband energy with explicit refer-
ence to the jth valley, we can rewrite Eq. (24) as

kirq

1 1
V,(E)=— =V E\p n(K)dk = — E\ o n(k
a(E) K; o kEx.jo)(K) ﬁKEI[ o (K p)

- E\ojo(k)], (26)

where we have explicitly indicated that both the subband and
valley index are functions of the interval label /. When using
this equation to simulate the drift velocity for different tem-
peratures under various applied electric fields, the conver-
gence of the Monte Carlo results presented below has been
checked carefully.

To produce the Monte Carlo numerical results, we first
derive the eigensolutions from the Schrodinger equation (4)
in a Si/Si,Ge,_, quantum well using well-known values of
the electron effective mass, band offsets, and deformation
potentials.!® The details of the calculation can be found in
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Ref. 7. With these eigensolutions one can calculate all the
relevant scattering rates given in the preceding section, and
the Monte Carlo calculation can then be performed. The ob-
tained results will be presented in the following two sections.

IV. DRIFT VELOCITY

The system we have investigated is a Si/SijgyGegog
quantum well with the width 50 A. The system contains a
o-doping layer at the position z, which varies from the
center of the well z=0 to deep inside the barrier. Because the
system is symmetric, we will only consider z,>0. We
have chosen a relatively low donor concentration
n,p=5X%10'" cm™2. In this case the band-bending effect is
negligibly small, and although the Pauli exclusion principle
is included in the Monte Carlo simulation, the calculated
results indicate that it does not play an important role. For
this configuration the lowest antisymmetric impurity state
which is attached to the bottom of the second quantum well
subband becomes resonant with the continuum of the first
subband.

Since the carriers are confined mainly in the quantum
well, the phonon scattering is insensitive to the position of
the J-doping layer. As the impurity ions are moved into the
barrier region, the weakening Coulomb force on the carriers
should result in a monotonically increasing carrier drift ve-
locity. This expectation is correct if only the CCS channel
contributes, but it is no longer so when the RSS channel is
included because the width of the resonant level I'(z,) de-
pends on the position z, in a complicated way.” In fact, in the
present sample structure, I'(z,) attains its maximum value
when z, is in the quantum well and about 8 A from one
interface. Such behavior of the broadening of the resonant
level also introduces a weak dependence of the interface
roughness scattering on the position of the &-doping layer.
Consequently, we are mostly interested in the effect of reso-
nant scattering on the carrier drift velocity.

The important physics of the carrier drift velocity is its
dependence on the temperature 7 and the applied electric
field £. For semiconducting systems, the most relevant tem-
perature range is from liquid nitrogen temperature to room
temperature, and the most commonly applied electric field
strength is up to a few kV/cm. Hence, we will analyze our
numerical results for two temperatures 100 K and 300 K,
and two electric field strengths 300 V/cm and 3000 V/cm.
For each of the four cases we will present the carrier drift
velocity calculated with and without the resonant scattering
mechanism included.

Under an external electric field strength 300 V/cm, the
Monte Carlo simulated carrier drift velocity is shown in Fig.
1 vs the 6-doping layer position z,. Let us first analyze the
open circles which are calculated drift velocity without the
resonant scattering. As the impurity ions move away from
the well center zp=0 into the barrier, the drift velocity re-
mains almost constant until the impurities are near to one
interface marked by the vertical dotted line. Then the
drift velocity increases rapidly when the impurities move
deep into the barrier region. This is a clear illustration of the
principle of modulation doping for achieving high carrier
mobility.

PHYSICAL REVIEW B 72, 045303 (2005)
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FIG. 1. The Monte Carlo simulated drift velocity for an applied
electric field 300 V/cm, at the temperature 100K [panel (a)] and
300 K [panel (b)]. The center of the quantum well is at position 0,
and the dotted vertical line marks the well interface. In each panel,
the open (solid) circles are the drift velocity calculated excluding
(including) the resonant scattering. The triangles in the upper panel
refer to a simulation where both interface roughness scattering and
resonant scattering were excluded. Note that the vertical scales are
different in the two panels.

When we include the resonant scattering in our Monte
Carlo simulation, the drift velocity is suppressed, as indi-
cated by the solid circles in Fig. 1. We notice the appearance
of a minimum in the drift velocity around the impurity posi-
tion zo=17.5 A (i.e., about 7.5 A from the interface). The
difference between the open circles and the solid circles is
the drift velocity change due to the resonant scattering. Start-
ing from zero at z;, this difference grows to a maximum and
then reduces to zero as z increases. The level position and
the width I'(z;) of the resonant state as functions of z, were
studied in details in Ref. 7. At the center of the well, sym-
metry implies that I'(zy=0)=0. The width increases as z,
approaches one interface, reaching its maximum value before
the impurity ion moves across the interface into the barrier.
Moving away from the interface deep into the barrier, I'(z,)
diminishes to zero. Consequently, the effect of resonant scat-
tering on the drift velocity is determined by the level broad-
ening I'(z).

The degree of influence of resonant scattering is also
closely related to the binding energy of the resonant impurity
state. The resonance energy level in our system lies just
above the bottom of the lowest subband,” with about
8.4 meV separation at zo=17.5 A. At this position of z, the
broadening I'(z,) reaches its maximal value 7.5 meV. The
calculated distribution function reveals that there is a signifi-
cant increase of carriers in the region around the resonance.
We will return to illustrate this phenomenon at the end of this
section.
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FIG. 2. The Monte Carlo simulated drift velocity for an applied
electric field 3000 V/cm, at the temperature 100 K [panel (a)] and
300 K [panel (b)]. Symbols as in Fig. 1.

One would expect that the effect of interface roughness
scattering on the carrier drift velocity will not be coupled to
the position of the &-doping layer, since the carriers are con-
fined to the quantum well by the two interfaces. This is how-
ever not so in the presence of resonant states, which are
hybridized states of the continuous subband states and the
localized impurity orbitals. Because of this modification of
the spatial probability distribution of carriers around the im-
purities, the effect of interface roughness scattering has a
weak dependence on the impurity position. To illustrate this
aspect, we repeat the drift mobility calculation excluding
both resonant scattering and interface roughness scattering.
The so-obtained result for 7=100 K and £=300 V/cm is
plotted in panel (a) of Fig. 1 as open triangles. We see that as
the impurities are moved from the center of the quantum
well to a location deep inside the barrier, the difference be-
tween the open triangles and the open circles, which repre-
sents the effect of interface roughness scattering, is corre-
lated to the broadening I'(z,) of the resonant states.

Figure 2 shows the calculated carrier drift velocity under
the acceleration of a higher electric field £=3000 V/cm, at
two temperatures 7=100 K and 7=300 K. As expected, here
the drift velocity is one order of magnitude higher than that
for the low field situation in Fig. 1. Again, the difference
between the open circles and the solid circles follows the
characteristic feature of the broadening I'(z;) of the resonant
states.

All scattering processes can be traced out step by step
during our Monte Carlo simulation. This enables us to un-
derstand the temperature and field dependence of the results
shown in Figs. 1 and 2. Acoustic phonon scattering is the
major mechanism that limits the carrier drift velocity, and the
interface roughness scattering is always present under any
condition. While both intervalley optical and acoustic pho-
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100 K[
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Distribution Function (1()_5)

ko (. 7h

FIG. 3. Electron momentum distribution along the momentum
component k; perpendicular to the field direction, for a é-doping
layer at zo=17.5 A. The resonant energy level and the correspond-
ing I'(zy) are marked by arrows and the shadded regions,
respectively.

non scattering provide important energy relaxation channels
if the applied field is strong, in the low field situation only
elastic acoustic phonon scattering randomizes the momenta
in the distribution function. However, a strong electric field
can stretch the distribution function and so modifies it sig-
nificantly. In the absence of resonant state scattering, all
these phenomena were analyzed in details in Ref. 4. Here we
will analyze the influence of resonant state scattering on the
distribution function.

For the two-dimensional momentum k parallel to the
interfaces, let k; be the component parallel to the applied
electric field, and k, the perpendicular component. At
20=17.5 A where T'(zy) has its maximal value, the corre-
sponding distribution function along k, is shown in
Fig. 3 for both the low field low temperature case
(=300 V/cm,T=300 K) and the high field high tempera-
ture case (£=300 V/cm,T=300 K). The units for the mo-
mentum is inverse Bohr radius r;'. Because the momentum
component is perpendicular to the field direction, all curves
are symmetric. Curves B and D are derived without the reso-
nant state scattering, and they are simular to those presented
in Ref. 4. We should mention that curve B broadens to curve
D with increasing temperature and/or field strength.

In momentum space, the corresponding position of the
resonant energy level is marked by the two downwards
heavy arrows, and around each arrow the region correspond-
ing to the broadening width I'(z,) is indicated by the shadded
area. Curves A and C are calculated with the resonant state
scattering included. It is clearly seen that the resonant state
scattering enhances the distribution function in the energy
regime around the resonant energy level. This enhancement
decreases with increasing temperature and/or field strength.

The distribution function along the component k; parallel
to the field is given in Fig. 4. We see the similar type of
enhancement exhibited in Fig. 3. However, because of the
field stretching, all curves are highly asymmetric and shifted
along the field direction.

V. EQUIVALENT IMPURITY CONCENTRATION

As discussed above, we have treated the two impurity
scattering channels, CCS and RSS, as mutually exclusive.
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FIG. 4. Distribution function for momentum component k; par-
allel to the field direction, for a &-doping layer at zy=17.5 A. The
resonant energy level and the corresponding I'(z)) are marked by
arrows and the shadded regions, respectively.

One way to estimate the relative efficiency of these two
channels is to find out how many additional impurity ions
that are required to maintain the same value of the drift ve-
locity if the resonant scattering channel is blocked.

Earlier we set the impurity concentration to n,p=5
%X 10'° cm™2 in our Monte Carlo simulation. We will now
attempt to increase the impurity concentration, in order to
produce the same drift velocity from a Monte Carlo simula-
tion where resonant scattering is excluded. The required con-
centration n,, will depend on the applied electric field, the
temperature, the position z, of the 5-doping layer, as well as
the original density n,p. We define the difference
Anyp(E,T,20)=nyp—n,p as the equivalent impurity concen-
tration, meaning that it is an artificial additional doping con-
centration which simulates the effect of the RSS channel.

The calculated normalized equivalent impurity concentra-
tion Anyp(E,T,z0)/nyp for T=100 K and zy=17.5 A is plot-
ted in Fig. 5 as a function of the applied field. The ratio
An,p/n,p decreases monotonically from 0.42 for low fields
to 0.2 for high fields. This behavior is due to the field stretch-
ing of the distribution function. As we mentioned earlier,
under low field and at low temperature, the carrier momen-
tum is randomized by elastic acoustic phonon scattering.
This process produces a significant amount of carriers in the
energy region around the resonance energy level, and so as-
sists in producing efficient resonant scattering. When the
electric field strength is increased, the distribution function is

T T T T
041 1
[a]
=)
~
803 .
=
4
02F -
| 1 | |
300 1200 2100 3000
Electric Field (V/cm)
FIG. 5. Normalized equivalent impurity concentration

Anap/nyp with a S-doping layer at zy=17.5 A.
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TABLE 1. Relative relaxation times for the mechanisms which
are insensitive to the 5-doping layer position.

[5 (V/Cm)$ T (K)] Tivac/ Tac Tivop/ Tac Tinfiv/Tac
[300; 100] 29.47 48.73 4.30
[300; 300] 27.44 18.11 14.38
[3000; 100] 3.87 1.82 14.55
[3000; 300] 13.64 6.78 25.70

stretched along the field direction due to the carrier stream-
ing motion. The amount of carriers around the resonance
energy level is then reduced and so the ratio An,p/n,p de-
creases monotonically. Thermal excitation of carriers can
also decrease the value of the equivalent impurity concentra-
tion, especially for the situation of low electric field. To dem-
onstrate this feature, we have performed a similar Monte
Carlo simulation for a higher temperature 7=300 K. We
found that the ratio decreases from An,p/n,p=0.34 at
£=300 V/cm to An,p/n,p=0.2 at £=3000 V/cm.

VI. RELATIVE RELAXATION TIME

In this section we will demonstrate how it is possible to
extract information about the relaxation times associated
with each scattering mechanism from the Monte Carlo simu-
lation.

In a Monte Carlo simulation for given values of the elec-
tric field &, the temperature 7, and the position of the
o-doping layer z,, we follow the motion of the carriers un-
dergoing various types of scattering. In each scattering event,
we record by which mechanism the carrier is scattered. After
the simulation has converged and we have obtained the
steady-state distribution function, we may continue to run the
Monte Carlo process for a large number, N, of scattering
events, and during the simulation we record the total number
of times MV the carrier is scattered by each respective mecha-
nism i. For a large value of N\ (of the order 107), the ratio

T T T T T T
Electric Field = 300 V/em

W
T

25

5]

log (T /T,0)
tn

A
051 A A FT00K T
&
A& aonoett
ol I ] ] I ]
0 125 25 375 5 625

Impurity Position (nm)

FIG. 6. Relative relaxation times for an applied field 300 V/cm
at temperatures 100 K (open symbols) and 300 K (solid symbols).
The curves marked CCS are for conventional Coulomb scattering,
and RSS for resonant scattering. The vertical dotted line marks one
interface.
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FIG. 7. Relative relaxation times for an applied field
3000 V/cm at temperatures 100 K (open symbols) and 300 K
(solid symbols). The curves marked CCS are for conventional Cou-
lomb scattering, and RSS for resonant scattering. The vertical dot-
ted line marks one interface.

N;/N always converges to a constant value for all scattering
mechanisms.

Let 7; be the relaxation time for the ith scattering mecha-
nism, corresponding to N; scattering events. We can normal-
ize the relaxation time 7; with respect to the relaxation time
7, for intravalley acoustic phonons, which is the most well-
studied relaxation time both theoretically and experimentally,
and is known for many cases. Using the relation

T N, ac
- 9
Tac M

(27)

the relative relaxation times for all scattering mechanisms
can be calculated.

For given field strength and temperature, the relative re-
laxation times 7;,,./7,. for intervalley acoustic phonons,
Tivop! Tac fOr intervalley optical phonons, and 7,/ 7, for
interface roughness are highly insensitive to the position of
the &-doping layer, as expected. These values are given in
Table L.

On the other hand, the relative relaxation times 7./ 7,
for the CCS channel and 7,/ 7,. for the RSS channel of the
impurity scattering are very sensitive to the impurity position
Zo- The Monte Carlo simulated results are shown in Fig. 6 for
the lower electric field 300 V/cm, and in Fig. 7 for the
higher electric field 3000 V/cm. When the &-doping layer
moves from inside the quantum well deep into the barrier,
T,/ T, increases slowly. However, for the resonant scatter-
ing, we observe a smaller value of 7,/ 7,. for a larger value
of the broadening I'(z;) of the resonant energy level. At the
center of the quantum well I'(z))=0 because of symmetry.
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Consequently, at zo=0 the value of 7,/ 7,. becomes infinite,
which is consistent with the effect of resonant scattering on
the drift velocity shown in Figs. 1 and 2.

It is important to note that in logarithmic scale all 7./ 7,
curves in Figs. 6 and 7 have almost the same shape. The
effect of the applied field strength and the temperature is just
to move the curves up or down almost rigidly. Because of its
negligible dependence on the impurity position z, the relax-
ation time for acoustic scattering can be specified explicitly
as 7,.(&,T). Then, the rigid-shift phenomenon suggests an
explicit form 7.(E,T,z9) =& (E,T)&(zy) for the resonant
scattering relaxation time. Consequently, we have
log(Trss/ Tac) =10g[§1 (55 T)/ Tac(gv T)] +10g[§2(20)]~ The
zo-dependent curve log[ &,(zy)] is shifted rigidly by the factor
log[&,(E,T)/ 7,.(E,T)] as the field € or the temperature T
changes. This interpretation finds its support in Eq. (22) for
the resonant scattering cross section oyj. To calculate the
relaxation time 7, (€,7T,zy), we need to multiply o) with
the distribution function and integrate over the energy E,j.
Since the distribution function is very smooth within the
small energy interval T'y, the I"y in the denominator of Eq.
(22) can be neglected when performing the integration. In
this way the integration over Ey yields the function &(&,T),
and &,(z) is actually a function of the level broadening T',.
This argument explains well the behavior of 7,/ 7,. in Figs.
6 and 7.

In Figs. 6 and 7 all 7./7, curves also have the same
shape. To explain this phenomenon following the above ar-
gument, one should start from Eq. (18). The algebraic work
is however much more complicated and requires lengthy
calculations.

VII. CONCLUSIONS

Only recently has the physics of resonant states in doped
semiconductors and their heterostructures emerged as an im-
portant research topic, and until now the effect of these states
on the carrier mobility has been completely unknown. To
clarify this issue we have performed a Monte Carlo simula-
tion, which takes into account all relevant scattering mecha-
nisms in their proper form for a 2D electron gas, to reveal the
profound influence of resonant scattering on the carrier dy-
namics in Si/SiGe quantum wells containing a S-doping
layer of shallow impurities. Hopefully the present work will
stimulate more studies on the dynamical aspects of resonant
scattering both theoretically and experimentally.
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