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Abstract 
 

The Davies transformation is a method to transform 
the steering vector of a uniform circular array (UCA) to a 
vector with Vandermonde form. As this form is similar to 
that of the steering vector of a uniform linear array 
(ULA), we can apply to UCAs the many tools that have 
been developed for ULAs. However, the Davies 
transformation can be highly sensitive to perturbations of 
the underlying ideal array model. In this paper, we present 
two different methods for deriving a more robust 
transformation. The main underlying idea is to trade off 
robustness against accuracy of the Vandermonde form. In 
particular, we consider its application to direction-of-
arrival estimation in the presence of correlated signals 
using root Weighted Subspace Fitting (root-WSF). The 
effectiveness of these methods are illustrated through 
numerical examples. 

 
1 Introduction 
 
Uniform circular arrays (UCAs), as a result of their two-
dimensional array structure, are able to provide all 
azimuth coverage. Furthermore, when called for, they are 
able to provide 180° coverage in elevation. In comparison 
to uniform linear arrays (ULAs), the special features of 
UCAs come, however, at the cost of a less friendly 
steering vector: it is non-Vandermonde. It is well known 
that, as a direct consequence of the Vandermonde 
property of a ULA’s steering vector, many powerful 
array-processing techniques have been devised. Some 
examples include root-MUSIC [1], Dolph-Chebyshev 
pattern synthesis [2] and spatial smoothing/averaging [3], 
[4]. Significant efforts have been directed to bringing 
these techniques over to UCAs via preprocessing on the 
array outputs. The philosophy behind these preprocessing 
techniques is to transform the steering vectors of UCAs 
to Vandermonde form. 

There are currently two main approaches to the 
preprocessing step. Bronez et al [5], [6], [7] map the 
array outputs of a general two-dimensional array (e.g. a 
UCA) to a virtual uniform linear array, commonly called 
an interpolated array. However, the large difference in 

form between the steering vector of a UCA and a ULA 
means the mapping can be achieved only for a sector of 
angles to the minimize approximation error. The 
preprocessing step is then repeated to obtain full azimuth 
coverage.  

A second approach, first devised by Davies [8], makes 
use of a spatial-DFT based transformation to map the 
UCA to a virtual array. This virtual array has no physical 
interpretation except that its steering vector is 
Vandermonde. Unlike the Bronez approach, the Davies 
approach uses only a single closed form transformation 
matrix and the resulting virtual array can provide all 
azimuth coverage. Different studies have demonstrated 
the successful applications of this approach in Dolph-
Chebyshev pattern synthesis [9], root-MUSIC DOA 
estimation with spatial smoothing [10], [11] and optimum 
beamforming [12] in the presence of correlated signals.  

In this paper, we apply the Davies transformation to 
enable DOA estimation with UCAs in the presence of 
correlated signals using the root Weighted Subspace 
Fitting (root-WSF) technique, also known as MODE [7], 
[13]. However, it has been shown that virtual arrays can 
be highly sensitive to array imperfections such as element 
position errors, mutual coupling, and gain and phase 
mismatches [14]. We outline two different techniques to 
improve the robustness of virtual arrays to array 
imperfections – a novel semi-infinite optimization 
technique [14]-[16] and a simple least squares technique. 
We demonstrate the effectiveness of our approach via 
numerical examples. In the examples, we also compare 
the performance of root-WSF against that of root-MUSIC 
with spatial smoothing. It is well known that the 
performance of root-WSF approaches that of maximum 
likelihood (ML) for sufficient number of snapshots. 
However, root-MUSIC can outperform root-WSF in the 
presence of array imperfections [17]. Here we investigate 
the impact of the robustness techniques on both methods.  

 
2 Problem Formulation 
 
2.1  The Davies Transformation 

Consider a UCA with N elements, adjacent-element 



 

spacing d and radius r. The nth component of the array 
response (or steering) vector ( )�a , 1, ,n N� � , to a 
narrowband signal of wavelength �  arriving from angle 
� , [ , ]� � �� � , is given by 
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where ( )nG �  is the complex gain pattern of the nth 
element. 
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Fig. 1.  Transformation for UCAs 

Suppose the array elements are all identical and 
isotropic, i.e., ( ) 1nG � � , 1, ,n N� � . Suppose further 
the antenna element outputs are processed as shown in 
Fig. 1 where 1, , Nx x�  represent the baseband complex 
output signals of the “ real”  array and 1, , My y� , 
M N� , represent the baseband complex output signals 
of the virtual array. Define the transformation matrix 

�T JF  where the matrices M MJ �
×∈  and M NF �

×∈  
are given by 
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and where 1, ,m M� � , 1, ,n N� � , ( )kJ �  denotes a 
kth order Bessel function of the first kind, and 
 ( 1) 2H M� � �� . (4) 
In [10], it is shown that the M-dimensional steering vector 
of the virtual array, ( )�b� , will take on, approximately, the 
Vandermonde form 

 � �( ) ( ) 1jH jHe e� �
� � �

� �� �� � � �b Ta b� � � � . (5) 

Note, in view of (4), M is odd. Note also that T is a 
fixed matrix, i.e., it can be computed off-line. 

 
2.2  Problem Statement 

The lack of robustness of the Davies transformation 
can be traced to the construction of J. As can be seen 
from (2), for some choices of m, H, and r � , the 
magnitude of one or more of the diagonal elements of J 
can approach infinity as the corresponding value of 

1 (2 )m HJ rπ λ− −  approaches zero. Accordingly, the norm 
of T can become very large. But the square of the norm 
of T gives a measure of the noise amplification of the 
transformation matrix. Therefore, for a T with large 
norm, small perturbations in ( )�a  will translate to large 
perturbations in ( )�b� . Fig. 2 plots 1 (2 )m HJ rπ λ− −  with 
zero-crossings in the range of interest for a 15-element 
UCA and a corresponding 13-element virtual array.  
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Fig. 2. Bessel functions in J vs. adjacent-element spacing 

Based on the above observation, we formulate the 
following semi-infinite optimization (SIP) problem to 
find a more robust transformation matrix. The basic idea 
is to trade-off the approximation error in the 
transformation of ( )�a  for robustness. 

Denote the robust transformation matrix by 
M N�

�U � . We find U as follows: 

 2min
FU

U  ( 1� ) 

subject to ( ) ( )� �� �Ua b e ,    � �,� � �� � �  
where [ ]1 2

T
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F⋅  denotes Frobenius norm, and �  is the absolute 
value norm 
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and where Mx �∈  and mx  is the mth element of x. 

Now, since the rows of U are not related in the above 
formulation, ( 1� ) can be solved, row-by-row, as follows: 

For 1, ,m M� � , 
2

min
m

m Fu
u  ( 2� ) 

subject to � �Re ( ) ( )T
m m mb� � �� �u a  

 and � �Im ( ) ( )T
m m mb� � �� �u a ,    � �,� � �� � � , 

where T
mu  is the mth row of U. The advantage of ( 2� ) is 

that it allows the original problem ( 1� ) to be solved 
efficiently by the dual parameterization method given in 
[14]-[16]. 
 
Remarks 

1. The robustness of U depends on the choice of m� , 
1, ,m M� � . The larger we choose m� , the greater is 

the approximation error but correspondingly, the 
smaller is m F

u . 

2. If 1m� � , then for that m, ( 2� ) has the trivial 
solution m �u 0 . This follows since ( ) 1mb � � . 

3. As a rough guide to robustness, the square of the norm 
of each row of U should not greatly exceed N M . 



 

The reasoning is as follows. Suppose array 
imperfection can be modeled as a (complex) noise 
output from the antenna elements. Suppose the real 
and imaginary parts of these “ imperfection noise”  
terms are independent with identical variance 2

xσ , and 
the imperfection noise terms of all the antenna 
elements are mutually independent. The total 
imperfection noise from the array of N elements is 
then given by 22 xN� . Suppose the transformation 
matrix has Frobenius norm FU . The total 
imperfection noise at the output of the virtual array is 
then given by 2 22 xF �U . If the transformation is 
required to not increase noise, then we require 

2 2 22 2x xFN� �� U , or 2
F NU ≤ . Finally, suppose 

the noise gain is distributed uniformly over the 
elements of the virtual array. This yields 

2 2
m F F M N Mu U= ≤ . 

Alternatively, the idea of trading-off approximation 
error for a more robust transformation can be captured in 
the following least squares (LS) formulation:  

  � � � � � �
2 2

min 1
m

H
m m m FF

b d
�

�

� � � � �

�

� �� �
� � �� �

� �� 	
�u

u a u  ( 3� ) 

where � �0,1� �  is the weighting factor determined by the 
desired level of trade-off.  ( 3� ) can be solved easily by 
differentiating the objective function w.r.t mu  and setting 
the derivative to 0. 
 
3 Numer ical Examples 
 
3.1  The UCA  

We considered a scenario of highly correlated signals 
(correlation of 0.99exp( / 4)jπ ), with wavelength λ and 
a 15-element UCA with 0.46d �� . A 13-element virtual 
array was chosen for root-WSF [7], [13]. A whitening 
procedure similar to [7] was incorporated into root-WSF 
since noise in the virtual array is not spatially white [10]. 
For root-MUSIC, forward-backward spatial smoothing 
[4] was applied to the 13-element virtual array to restore 
the rank of the covariance matrix, followed by a 
whitening procedure [10]. 

Table 1 summarizes the squared-norm and maximum 
real and imaginary errors of each row of the Davies 
matrix for this UCA. As can be seen, the squared-norms 
of rows 6 and 8 greatly exceed 15/13 1.1538N M � � . 
Indeed, it is these very rows that render the Davies matrix 
non-robust. For the robust transformation matrix, our 
strategy is to retain as many rows of the Davies matrix as 
possible except for rows with large squared-norms. 
Accordingly, for the SIP technique, we replaced rows 6 
and 8 with rows found by solving ( 2� ) with m�  set to 
0.551. Note that the resulting m�  in Table 1 is slightly 
different from 0.55 due to the finite number of iterations 
in the optimization procedure. The characteristics of the 
robust transformation matrix are summarized also in 

                                                  
1 A simple search procedure is used to find the value of m�  
that gives the optimum robust performance w.r.t root-WSF. 

Table 1. Note the increase in approximation error in rows 
6 and 8. Note also that the resulting transformation 
vectors for rows 6 and 8 are related by a phase rotation. 
This also holds true when the optimization was carried 
out for any other similar pairs of rows in Table 1. In other 
words, we only need to compute ( 2� ) once for each 
such pairs of rows. 

 Davies M atr ix Robust M atr ix 

Row # Squared-
norm 

M ax  
Error  

Squared-
norm 

M ax 
Error  

1, 13 0.5896 0.1677   
2, 12 0.5375 0.0634   
3, 11 2.2956 0.0460   
4, 10 2.7382 0.0159   
5, 9 0.7161 0.0023   
6, 8 174.437 0.0102 18.7656 0.5534 
7 0.7433 0.0003   

Table 1.  Characteristics of the Davies and robust 
transformation matrices for 15N = , 13M = , 1.106r λ=  

 
3.2  Case Study 1 

First we look at the case of 2 signals arriving from 
directions 0º and 30º. The signal-to-noise-ratios (SNRs) 
of both signals are varied between 0 and 15 dB. We used 
2 subarrays of 12 elements each for spatial smoothing. 
The performance is measured in terms of the average root 
mean squared error (RMSE) of the DOAs over all signals 
present. Fig. 3 summarizes the average RMSE of the 
DOA estimates for the ideal, non-ideal and robust UCAs. 
The non-ideal and robust UCAs were subject to 
perturbations drawn from standard normal distributions 
with zero means. The standard deviation for either real or 
imaginary part of gain perturbations is 0.05 (relative to 
1); for either x- or y-axis element position perturbation, 
0.01λ; and for either real or imaginary part of mutual 
coupling, 0.01 (relative to 1). We assumed that mutual 
coupling is significant only for adjacent UCA elements. 
Here we used 200 snapshots and 1000 Monte-Carlo 
trials, where each Monte-Carlo trial corresponds to a 
realization of array perturbations. From Fig. 3, it is clear 
that in this case root-WSF with robust UCA has 
significantly better performance than that with non-ideal 
UCA. At low SNR, root-WSF with robust UCA appears 
to outperform root-WSF with ideal UCA. This could be 
due to the sensitivity of root-WSF to amplification of 
“noise”  (for rows in Davies matrix with large norm) 
resulting from the number of finite snapshots at low SNR.  

As for root-MUSIC which is inherently more robust 
towards array imperfections [17], the performance of the 
robust UCA is roughly the same as the non-ideal UCA for 

0.55m� � . A very marginal improvement may be 
obtained by optimizing m�  for the best robust UCA 
performance. We also note that the approximation 
involved in the transformation introduces a small bias in 
the DOA estimates of both methods [11] which has been 
taken into account in the RMSE measure. 
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Fig. 3. RMSE DOA performance of UCAs: 2-signal case 
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Fig. 4. RMSE DOA performance of UCAs: 5 signal case  

 
3.3  Case Study 2 

Next, we had 5 signals arriving from the directions  
150�

� , –90º, 0º, 37º, 85º with SNRs varied between 0 
and 15 dB. For this case, we used 5 subarrays of 9 
elements each for the spatial smoothing. For this case, 
setting 0.55m� �  again gives the best performance for 
root-WSF. In this case, we observe significant 
improvement in the robust UCAs for both root-WSF and 
root-MUSIC. The presence of more highly correlated 
signals presents a bigger challenge for root-MUSIC as 
more subarrays of a smaller subarray size are used. As a 
result, root-MUSIC is less robust than the 2-signal case. 
In fact, if the correlation between signals is real or close 
to real, then the performance of root-MUSIC (with spatial 
smoothing) deteriorates further as the forward-backward 
smoothing effectively reduces to forward only smoothing 
under this condition [18].  
 
3.4  Discussions 

With the LS technique to find the optimum mu  and � , 
we found in our simulations that the procedure, though 
computationally simple and also effective, does not 

perform as well as the SIP technique2. This could be due 
to the constrained formulation of ( 2� ) which gives a 
more uniform approximation error for the virtual array. 

It is observed from the case studies that the relative 
performance of root-WSF and root-MUSIC with spatial 
smoothing depends on several parameters which include 
the number of highly correlated signals present (which 
also influences the required size of subarray), the nature 
of signal correlation (real or complex) [18] and the 
sensitivity to array imperfections [17]. While root-WSF 
has higher computational complexity than root-MUSIC, 
root-WSF demonstrates a more consistent RMSE 
performance than root-MUSIC for the robust UCAs 
where m�  is optimized separately for each method. 

It is worthwhile to note that while the robustness 
procedure is able to improve the performance of non-
ideal UCAs with critical array parameters, the best robust 
UCA performance is still poorer than that of UCAs with 
non-critical parameters. Here, we give an example of the 
performance of a UCA with non-critical parameters, viz. 

15N = , 13M = , / 0.4d λ = . There are 5 signals and 5 
subarrays of 9-element each as described in case study 2. 
In Fig. 2, we see that / 0.4d λ =  is far from any zero-
crossings. Indeed, Table 2 further confirms that the norm 
values are acceptable. In Fig. 5, we show the RMSE 
performance for the ideal, non-ideal and robust UCAs. 
The robust UCA operates on rows 4 and 10 and uses 

0.1m� �  for the best performance. The degradation in 
performance in non-ideal UCA is smaller than case 
studies 1 and 2, and the robust procedure, as expected, 
gives only very marginal improvements, if at all. Further 
we note that in this case the performance of root-WSF is 
better than that of root-MUSIC in the ideal, non-ideal and 
robust UCAs.  

 Davies M atr ix Robust M atr ix 

Row # Squared-
norm 

M ax  
Error  

Squared-
norm 

M ax 
Error  

1, 13 1.0587    0.0888   
2, 12 0.5020    0.0203   
3, 11 0.5380    0.0062   
4, 10 6.4713    0.0058 5.2178 0.101 
5, 9 1.0560    0.0006   
6, 8 0.9297    0.0001   
7 2.5200 0.0001   

  Table 2.  Characteristics of the Davies transformation 
matrices for 15N = , 13M =  and 0.962r λ=  

The above observation also indicates that while 
robustness may be introduced in the vicinity of critical 
parameters, it is prudent to avoid them altogether if 
possible. Nevertheless, for large arrays with more 
frequent zero crossings than that of Fig. 2, and where 
these parameters are not easily avoided, our proposed 
method can be effective.  

                                                  
2 A simple search procedure is used to find the value of �  that 
gives the optimum robust performance w.r.t root-WSF. 
 



 

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 R
M

S
E

 (
de

gr
ee

s)

SNR (dB)

r−MUSIC ideal    
r−WSF ideal      
r−MUSIC non−ideal
r−WSF non−ideal  
r−MUSIC robust   
r−WSF robust     

 
Fig. 5. RMSE DOA performance of UCAs:  

5 signal case for 0.962r λ=  
 

5 Conclusions 
 

In this paper, we addressed the important problem of 
direction finding with imperfect UCAs in correlated 
signal environments. We showed that a crucial step in the 
solution is to find a robust transformation matrix to 
transform the steering vector of the UCA to one with 
Vandermonde form. The robust matrix is found by posing 
and solving a quadratic semi-infinite optimization 
problem which trades-off the Vandermonde 
approximation error with a matrix of lower norm. We 
showed that, by an appropriate formulation, we can 
decompose the problem into a set of much simpler 
optimization problems which can then be solved 
efficiently using the dual parameterization method of 
[14]-[16]. Each sub-problem yields a row of the robust 
transformation matrix. Alternatively, we also proposed a 
least squares formulation that operates on similar 
principles. The robustness of the new transformation 
matrix is demonstrated by numerical examples where we 
investigated the performance of the robust UCA with 
respect to root-WSF and root-MUSIC with spatial 
smoothing. We note that the robustness procedure 
appears to be particularly effective for root-WSF. Finally, 
we remark that it is trivial to extend the presented work to 
elevation angles for hemispherical coverage [11] where a 
different J is used for each elevation angle of interest. 
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