Observations on cerebral amyloid angiopathy and microvascular pathology in Alzheimer’s disease and vascular dementia

Haglund, Mattias

2005

Link to publication

Citation for published version (APA):
Observations on cerebral amyloid angiopathy and microvascular pathology in Alzheimer’s disease and vascular dementia

Doctoral thesis

Mattias Haglund
Department of Clinical Sciences
Lund University

With due permission by the Faculty of Medicine at Lund University to be defended publicly at the Department of Pathology, December 2nd, 13.00

External examiner: Professor Irina Alafuzoff, Kuopio, Finland
To my parents.
Abstract
Dementia is a state of permanent loss of cognitive function, most commonly affecting the elderly. With a rapidly growing aged population, the spectrum of disorders that lead to dementia is exerting an ever-increasing toll on patients, families and society alike. The most common dementing disorders are Alzheimer’s disease and vascular dementia. Although Alzheimer’s disease is very common and was described almost a century ago, the pathomechanisms are imperfectly understood, and mainly symptomatic therapy is available. Treatment options are even more meagre in vascular dementia, but in many cases, this disorder can possibly be prevented by risk factor management.

Since both Alzheimer’s disease and vascular dementia are common in the elderly population, it is not uncommon for both diseases to be present to some degree in the same patient. Increasing evidence suggests that the disease mechanisms not only coexist, but that they interact synergistically, further exacerbating the clinical disorder. The purpose of this thesis was to explore features of vascular pathology in Alzheimer’s disease and vascular dementia, to improve basic understanding of the disease processes in play.

We have shown that one of the major hallmarks of Alzheimer’s disease, deposition of amyloid protein in the cerebrovasculature (cerebral amyloid angiopathy), is surprisingly common in vascular dementia, and frequently more severe than in Alzheimer’s disease. In Alzheimer’s disease, cerebral amyloid angiopathy is associated with ischemic white matter disease, but in vascular dementia, cerebral amyloid angiopathy is associated with cortical microinfarctions. Furthermore, the interrelationship between the amyloid beta (A-beta) peptide species deposited is affected by the presence of cerebrovascular disease, which is associated with a relative increase in deposition of the more fibrillogenic and toxic variant of the Aβ peptide, and more severe degeneration of vascular components.
Original papers

This thesis is based on the following papers, which will be referred to by their Roman numerals:

Papers I and II are reprinted by permission of S. Karger AG, Basel, Switzerland.
Serenity now
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aβ</td>
<td>Amyloid beta</td>
</tr>
<tr>
<td>A40</td>
<td>40-amino acid variant of the amyloid beta peptide</td>
</tr>
<tr>
<td>A42</td>
<td>42-amino acid variant of the amyloid beta peptide</td>
</tr>
<tr>
<td>Ach</td>
<td>Acetylcholine</td>
</tr>
<tr>
<td>AchE</td>
<td>Acetylcholine esterase</td>
</tr>
<tr>
<td>AchEi</td>
<td>Acetylcholine esterase-inhibitors</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer’s disease</td>
</tr>
<tr>
<td>AE</td>
<td>Alzheimer encephalopathy</td>
</tr>
<tr>
<td>ApoE</td>
<td>Apolipoprotein E</td>
</tr>
<tr>
<td>APP</td>
<td>Amyloid precursor protein</td>
</tr>
<tr>
<td>CAA</td>
<td>Cerebral amyloid angiopathy</td>
</tr>
<tr>
<td>CERAD</td>
<td>Consortium to Establish a Registry for Alzheimer’s Disease</td>
</tr>
<tr>
<td>CT</td>
<td>Computerized tomography</td>
</tr>
<tr>
<td>fMRI</td>
<td>Functional magnetic resonance imaging</td>
</tr>
<tr>
<td>HAAS</td>
<td>Honolulu-Asia Aging Study</td>
</tr>
<tr>
<td>HCHWA-D</td>
<td>Hereditary cerebral hemorrhage with amyloidosis</td>
</tr>
<tr>
<td>HCHWA-I</td>
<td>Hereditary cerebral hemorrhage with amyloidosis</td>
</tr>
<tr>
<td>LC</td>
<td>Locus ceruleus</td>
</tr>
<tr>
<td>LRP</td>
<td>Low-density lipoprotein receptor-related protein</td>
</tr>
<tr>
<td>MD</td>
<td>Mixed dementia</td>
</tr>
<tr>
<td>MID</td>
<td>Multi-infarct dementia</td>
</tr>
<tr>
<td>MRC</td>
<td>Medical Research Council</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>NBM</td>
<td>Nucleus basalis of Meynert</td>
</tr>
<tr>
<td>NIA</td>
<td>National Institute on Aging</td>
</tr>
<tr>
<td>PET</td>
<td>Positron emission tomography</td>
</tr>
<tr>
<td>RAGE</td>
<td>Receptor for advanced glycation end-products</td>
</tr>
<tr>
<td>SDAT</td>
<td>Senile dementia of the Alzheimer type</td>
</tr>
<tr>
<td>SIWI</td>
<td>Selective incomplete white matter infarction</td>
</tr>
<tr>
<td>SMA</td>
<td>Smooth muscle actin</td>
</tr>
<tr>
<td>VaD</td>
<td>Vascular dementia</td>
</tr>
<tr>
<td>VaD-ae</td>
<td>Vascular dementia with concomitant (but minor) Alzheimer encephalopathy</td>
</tr>
<tr>
<td>WMD</td>
<td>White matter disease</td>
</tr>
<tr>
<td>WML</td>
<td>White matter lesions</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction
- Dementia and dementing disorders 1
- Alzheimer’s disease 1
- Vascular dementia 3
- Other dementing disorders 4
- Epidemiology of dementia 5
- Epidemiology of Alzheimer’s disease and vascular dementia 6
- Repercussions on society 7

Background
- Alzheimer’s disease – disease mechanisms and pathology 11
- The amyloid hypothesis 11
- Apolipoprotein E and Alzheimer’s disease 15
- Nerve cell nuclei and neurotransmitters 16
- Neuropathological diagnosis of Alzheimer’s disease 18
- Mechanisms of vascular dementia 19
- The connection between Alzheimer’s disease and vascular dementia 20
- White matter pathology in dementia 21
 - Definition of terms 21
- Cerebral amyloid angiopathy 23
- Pathogenesis of cerebral amyloid angiopathy 26
- Cerebral amyloid angiopathy in Alzheimer’s disease 27
- Apolipoprotein E, cerebral amyloid angiopathy and the two major amyloid beta peptide species 27
- Anti-amyloid treatment of Alzheimer’s disease 28
- Cerebral amyloid angiopathy as a putative complication of anti-amyloid treatment of Alzheimer’s disease 30

Aims

The present investigation
- Paper I: Cerebral amyloid angiopathy, white matter lesions and Alzheimer encephalopathy – a histopathological assessment 34
- Paper II: Severe cerebral amyloid angiopathy characterizes an underestimated variant of vascular dementia 36
- Paper III: Cerebral amyloid angiopathy and cortical microinfarcts as putative substrates of vascular dementia 38
- Paper IV: Differential deposition of amyloid beta peptides in cerebral amyloid angiopathy associated with Alzheimer’s disease and vascular dementia 40
Paper V: Locus ceruleus degeneration is ubiquitous in Alzheimer's disease - possible implications for diagnosis and treatment

Conclusions

Acknowledgements

References

Paper I

Paper II

Paper III

Paper IV

Paper V
Introduction

Dementia and dementing disorders
The concept of dementia (Latin: “de mens”, without mind) in the elderly was described by Greek and Roman scholars thousands of years ago. It refers to a state where cognitive function is permanently and irreversibly impaired, and thus differentiates it from states where the cognitive impairment is reversible by correction of underlying factors (for instance cobalamine deficiency or pseudodementia due to depression) or states where the cognitive impairment is transient (for instance delirium or intoxication). Dementia per se is not a diagnosis. The term dementia describes a state of impairment of several cognitive domains. At the root of the problem, in turn, is an underlying diagnosis.

Several diseases and conditions may lead to dementia, the most common of which are Alzheimer’s disease (AD) and vascular dementia (VaD).

Alzheimer’s disease
In 1907, German psychiatrist and neuropathologist Alois Alzheimer published a report on a fascinating case (Alzheimer, 1907). A 51-year-old woman, “Auguste D”, presented with a puzzling clinical condition, with diverse psychiatric and neurological symptoms such as memory deficits, irritability and language difficulties. When Auguste D deceased only a few years later, the neuropathological examination conducted by Alzheimer showed a conspicuous presence of argyrophilic plaques (“amyloid plaques”) in the cerebral cortex (picture 1), as well as thread- or flame-like intraneuronal structures (“neurofibrillary tangles”).

Initially, the diagnosis of AD referred to a rare disease of “presenile” dementia, i.e. dementia occurring before the age of 65. Dementia with AD-like symptoms occurring at an older age, which has always been relatively prevalent, was called “Senile Dementia of the Alzheimer Type” (SDAT). The terms “hereditary” or “familial” and “sporadic” AD have also been used to distinguish between AD in elderly and relatively younger (45-65 years old) patients. Since the disease forms are generally considered to be pathologically similar, and believed to arise by the same or at least partly the same pathomechanisms, the term AD at present refers to both presenile AD and
SDAT, despite the fact that there is considerable clinical heterogeneity (Blennow, 1992; Raskind, 1995; Menendez, 2004).

The clinical presentation of AD is naturally very variable, but most commonly, one of the earliest symptoms is mild forgetfulness, which progresses insidiously. At times, the patient may forget how to carry out simple tasks like cooking or filling out forms. These symptoms progress until the patient becomes completely dependent on others to help with his or her activities of daily living.

Picture 1. Amyloid plaque pathology of the cerebral cortex. Note that in this particular section, there is no apparent cerebral amyloid angiopathy.
Vascular dementia

The first observation that patients afflicted by stroke often develop permanent cognitive deficit has been ascribed to Thomas Willis in 1672. This condition was further characterized by Otto Binswanger and Alois Alzheimer in the late 19th century (Roman, 2003). Interest in the disorder surged in the mid-late 20th century when Hachinski proposed the concept of multi-infarct dementia (MID) (Hachinski, 1974). The history of the relationship between cerebrovascular disease and cognitive impairment has recently been reviewed (Gustafson, 2004a).

The term MID has been criticized because it only applies to a subgroup of patients with VaD. In fact, the spectrum of pathology in VaD is very broad, and for that and other reasons, it has been subject to intense debate (Wallin, 1994; Hulette 1997; Stewart, 2002). A multitude of systems and schemes for clinical and pathological diagnosis and subclassification have been introduced (Konno, 1997; Kalaria, 2004; Stewart, 2004), but so far, no system has been accepted globally.

The clinical presentation of VaD is also very heterogeneous (Desmond, 1999), but it is typically described as being less insidious in terms of its onset, with more of a stepwise decline in abilities (Hachinski, 1975). Neurological deficits such as aphasia and gait impairment typically appear early (status post stroke) in this condition compared to in AD, and memory deficits are typically less pronounced (Rockwood, 2002). It deserves mentioning that this “typical” presentation of VaD may be less common than has traditionally been believed, and may actually apply in less than half of VaD cases (Gustafson, 2004b).

Even though it is oftentimes difficult to distinguish between AD and VaD based on the clinical picture alone, a few of the typical findings in each disorder are shown in table 1.
Alzheimer’s disease	Vascular dementia
Insidious onset, steady decline | Abrupt onset, stepwise decline
Memory deficits prominent | Depression prominent
Focal neurological symptoms appear late in the process | Focal neurological symptoms appear early and may precede dementia

Table 1. “Typical” features that may help distinguish Alzheimer’s disease from vascular dementia.

Other dementing disorders

Even though AD and VaD are by far the most common causes of dementia, there is a vast range of other dementing disorders. The clinical and pathological features of these disorders are constantly appraised and reappraised, and for the scope of this thesis, there is little reason to make more than a cursory description of the most commonly discussed diseases and syndromes.

Table 2 outlines a few other important disorders that may cause dementia.
<table>
<thead>
<tr>
<th>Name of disorder</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick’s disease</td>
<td>Bizarre behavior, aggression, hypersexuality</td>
</tr>
<tr>
<td>Frontal lobe degeneration</td>
<td>Similar to Pick’s</td>
</tr>
<tr>
<td>Lewy body dementia</td>
<td>Visual hallucinations, fluctuating mentation, parkinsonism</td>
</tr>
<tr>
<td>Parkinson plus</td>
<td>Dementia (often with behavioral changes) superimposed on Parkinson-like disease</td>
</tr>
<tr>
<td>Alcohol-related dementia</td>
<td>Ataxia, peripheral neuropathy, global cognitive deficits</td>
</tr>
<tr>
<td>Argyrophilic grain disease</td>
<td>Memory deficits, preserved cognition, personality change</td>
</tr>
<tr>
<td>Creutzfeldt-Jakob’s disease</td>
<td>Rapidly progressive dementia with vertigo, myoclonia, EEG abnormalities and changes in consciousness</td>
</tr>
</tbody>
</table>

Table 2. Important disorders associated with dementia. These disorders range from very rare to relatively common, but their relative prevalences are highly disputed.

Epidemiology of dementia

A clear picture of the magnitude of the challenges that the spectrum of dementing disorders poses cannot be obtained without a basic understanding of how prevalent they are. Unlike many other phenomena investigated by medical researchers today, dementia is a distinctly common condition. Accounts vary, but in people above 65 years of age, most studies show a prevalence of dementia in the 4-10% range (Folstein, 1991; Canadian Study of Health and Aging, 1994; Wang, 2000), depending on the population studied and what criteria of dementia are applied (Erkinjuntti, 1997). For a population of 85 years of age or older, those numbers increase dramatically to 23-33% (Heeren, 1991; Skoog, 1993; Ebly, 1994; Ott, 1995). An interesting and frequently quoted finding is that the prevalence of dementia doubles roughly every five years in the 65 to 85 age range (Jorm, 1987). Another measure of how common dementia is in the elderly is the finding that almost 10% of
non-demented elderly between the ages of 85 and 88 become demented each year (Aevarsson, 1996).

Worldwide, approximately 25,000,000 people are estimated to be suffering from dementia (Wimo, 2003), 7,000,000 of whom in Europe (Wancata, 2003). As many as 150,000-200,000 could be affected in Sweden alone.

Epidemiology of Alzheimer’s disease and vascular dementia

In most populations, neuropathological examinations have shown AD to be the pathological substrate of dementia in approximately half to two thirds of all clinical dementia patients (Jorm, 1991; Brun, 1993; Hendrie, 1998), VaD being the second most common with numbers ranging from 9% (Jellinger, 2002) to 26% (Brun, 1993) reported. These numbers are subject to intense debate, however, and depend heavily on the methods used for diagnosis and the populations studied. Because both AD and VaD are very common entities in any elderly population, they coexist in a large number of cases, possibly as many as an additional 20-40% (Zekry, 2002), again depending on the criteria applied. The coexistence of AD and VaD is often referred to as “mixed” dementia (MD) (for a recent review, see Langa, 2004).

AD has been found to be the most common cause of dementia (Jorm, 1991; Fratiglioni, 2000; Vas, 2001) in every studied population except for the Japanese (where VaD is generally reported to be more common (Yoshitake, 1995; Ueda, 2002; Yanagihara 2002)). It should be noted, however, that there is a trend toward VaD becoming relatively less prevalent in Asian countries with a traditionally high prevalence (China, Japan, Korea etc) (Suh, 2001), and there have been reports based on Japanese populations where AD was found to be the most common cause of dementia (Akatsu, 2002; Meguro, 2002).

As we will discuss later, epidemiological studies on dementia are hampered by the fact that a definite diagnosis of AD or VaD requires post-mortem neuropathological examination. This may help explain the conflicting results from different countries and regions. It could also have an impact on the confusion regarding the relative prevalences of AD, MD and VaD in South-east Asia, where the practice of postmortem diagnosis has historically been considered culturally unacceptable.
Repercussions on society
Since the 80+ age group is the segment of the population that grows the most rapidly in developed nations (Kinsella, 2001), it is logical that the prevalence of dementia will increase dramatically as a consequence. In fact, the prospect of a rapidly growing population of patients suffering from age-related disorders such as dementia is increasingly being considered a threat to the future health care economy (Brookmeyer, 1998; Sadik, 2003; Khachaturian, 2005). Estimates of the total cost of dementia are naturally fraught with difficulties, but even the very broad range discussed (the total cost in the US for AD alone is estimated at $5.6-$88.3 billion annually (Bloom, 2003)) indicates that the impact on society is significant. The total cost of dementing disorders in Sweden was estimated at more than 30 billion SEK as early as in 1991 (Wimo, 1997).

In Europe, there are currently approximately 70 persons of working age for every patient suffering from dementia, but if current trends do not abate, by the year 2050 that ratio will have changed to 20:1 (Wancata, 2003). Unless there is a dramatic change in the way dementing disorders can be prevented and/or treated, there is little doubt that the financial consequences alone will be devastating (for an interesting perspective on the situation that looms in the US, see eg McConnell, 2005). It is difficult to envision the already strained healthcare delivery systems of today being able to withstand the challenges of the future.
Background

This chapter gives a brief background on current hypotheses regarding

- pathomechanisms of AD and VaD
- the amyloid hypothesis
- the role of neurotransmitter aberrations in AD
- the neuropathological diagnosis of AD
- white matter pathology of the brain in dementia
- cerebral amyloid angiopathy and its role in aging and AD
- anti-amyloid treatment of AD
Alzheimer’s disease – disease mechanisms and pathology

Literally thousands of research studies have been conducted to improve our understanding of Alzheimer’s disease, but almost to the year one century since the first report by Alzheimer, there is still significant controversy surrounding the topic. Over the years, many theories on the mechanism of AD have been conceived and investigated. Many diverse theories still have enthusiastic proponents. The roles of vascular pathology (de la Torre, 2002), aluminum (Crapper, 1976; Martyn, 1989), Chlamydia infection (Balin, 1998), acetylcholine deficiency (Coyle, 1983) and cholesterol (Jarvik, 1995) have all been the focus of numerous studies. The significance of neurofibrillary pathology has also been discussed intensely (for reviews, see eg Hardy, 2003; Iqbal, 2005).

The last few decades, the majority of researchers have come to focus on the amyloid hypothesis (Hardy, 1992), according to which overproduction of an aberrant peptide (Aβ) leads to formation of Aβ-containing plaques in the brain parenchyma (picture 1), which in turn is hypothesized to lead to neuronal dysfunction and death. The exact mechanism by which Aβ deposits mediate toxicity has remained elusive, but is believed to involve overproduction of reactive oxygen species, in turn causing oxidative changes of vital cellular proteins, mitochondrial dysfunction and neuronal apoptosis (Mattson, 2004).

Currently, the overwhelming majority of AD research being conducted is focused on different aspects of Aβ metabolism (Schenk, 2001; Hardy, 2002), and an abundance of drugs targeting Aβ production and/or increasing Aβ elimination are currently at various stages of development (Maiorini, 2002; Schenk, 2002; Selkoe, 2003). By the majority of experimental AD researchers, tau pathology is at present mainly considered secondary to Aβ dysmetabolism (Hardy, 2002; Wolfe, 2002), although there are numerous proponents of the tau hypothesis who would disagree (Iqbal, 2003). A full declaration of the merits and weaknesses of each theory is beyond the scope of this thesis.

The amyloid hypothesis

The Aβ peptide found in the amyloid plaques considered to be the primary pathological hallmark of AD was first described in 1984 (Glenner, 1984). It is derived from Amyloid precursor protein (APP) (Kang, 1987), a ubiquitous transmembrane receptor-like protein with a myriad of physiological functions (for a review, see Panegyres, 2001). APP is cleaved by beta-secretase at
the N-terminus of the Aβ sequence and by gamma-secretase at the C-termi-

nus of the Aβ sequence, yielding free, extracellular Aβ (Sinha, 1999). Alten-

atively, APP can be cleaved by alpha-secretase, the cleavage site of which lies

within the Aβ sequence (picture 2). Thus, alpha-secretase cleavage of APP
does not lead to the formation of free Aβ (Esch, 1990).

Alpha-protease cleavage of APP is generally believed to be non-detrimental,
whereas beta- and subsequent gamma-secretase cleavage is implicated in AD,
even though both pathways seem to occur to some extent under physiologi-

cal conditions (Shoji, 1992). Subsequent to beta- and gamma-secretase

Picture 2. Schematic illustration of APP and the different secretase cleavage
sites. Dotted lines represent cleavage sites for alpha-, beta- and gamma-secre-
tase, respectively. The shaded area represents the intramembranous domain of
APP.
cleavage, free Aβ aggregates into soluble di- and oligomers, which in turn successively aggregate into proto-fibrils, fibrils and plaques (Zerovnik, 2002) (picture 3).

Thus, the amyloid plaque is mainly (but not exclusively) composed of Aβ peptides. Aβ peptides exist in chiefly two variants. One variant consists of 40 amino acids (Aβ(40)), whereas the second, longer variant is 42 amino acids (Aβ(42)) long (Mori, 1992; Roher, 1993; Suzuki, 1994). The difference is due to the fact that gamma-secretase primarily has two cleavage sites at the end of the Aβ sequence (Hartmann, 1997). Significant efforts have been made to characterize the mechanisms behind Aβ(40) and Aβ(42) production and deposition, and the interplay between the two. Other constituents of the amyloid plaques include alpha-1-antichymotrypsin (Abraham, 1988), heparan sulfate proteoglycans (Snow, 1988), and complement factors and immunoglobulins (Eikelenboom, 1982). Each discovery of a novel plaque constituent created hope for experimental investigators trying to understand the pathomechanisms of AD, but the role played by these non-APP-derived factors, if any, has remained elusive.

The strongest argument against the amyloid hypothesis has been the observation that amyloid plaques do not correlate as well with cognition scores as do neurofibrillary tangles (Arriagada, 1992; Bierer, 1995; Nagy, 1995; Berg, 1998). Interestingly, recent discoveries indicate that soluble Aβ oligomers rather than the actual plaques (although being the most striking pathological finding) are more closely correlated to the clinical severity of disease and synapse loss (McLean, 1999; Lue, 1999; Naslund, 2000; Kirkitadze, 2002). Proponents have considered these observations landmark findings in favor of the amyloid hypothesis, even though it required modification of the hypothesis as it was originally conceived, and the focus has gradually shifted from
The APP gene is located on chromosome 21, trisomy of which (Down’s syndrome) is invariably associated with presenile Alzheimer-like pathology.

Burger, 1973

Mutations in the APP gene cause presenile AD.

Goate, 1991

Mutations in other genes that cause presenile AD (presenilin 1 & 2) also increase production of Aβ.

Citron, 1997

Transgenic mice overproducing Aβ exhibit cognitive impairment, which can be ameliorated with immunotreatment directed against Aβ.

Schenk, 1999

<table>
<thead>
<tr>
<th>Finding</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>The APP gene is located on chromosome 21, trisomy of which (Down’s syndrome) is invariably associated with presenile Alzheimer-like pathology.</td>
<td>Burger, 1973</td>
</tr>
<tr>
<td>Mutations in the APP gene cause presenile AD.</td>
<td>Goate, 1991</td>
</tr>
<tr>
<td>Mutations in other genes that cause presenile AD (presenilin 1 & 2) also increase production of Aβ.</td>
<td>Citron, 1997</td>
</tr>
<tr>
<td>Transgenic mice overproducing Aβ exhibit cognitive impairment, which can be ameliorated with immunotreatment directed against Aβ.</td>
<td>Schenk, 1999</td>
</tr>
</tbody>
</table>

Table 3. Evidence implicating a causative role of Aβ in AD.

the amyloid plaque itself onto Aβ oligomers. For a brief summary of a few major findings often interpreted as evidence in favor of the amyloid hypothesis, see table 3.

Under physiological conditions, cleaved Aβ is believed to be cleared from the brain by proteolytic cleavage (primarily by neprilysin (Iwata, 2000) or insulin-degrading enzyme (Kurochkin, 1994) (for a review, see Selkoe, 2001)) or active transport across the blood-brain barrier, possibly mediated by low-density lipoprotein receptor-related protein (LRP) (Kang, 2000). Aβ may also be transported from the blood into the central nervous system, possibly mediated by the Receptor for Advanced Glycation End products (RAGE). The actions of LRP and RAGE have been proposed to be in a state of homeostasis, suggested to be perturbed in AD (Deane, 2004).

Because of the many mechanisms involved in amyloid production and elimination (reviewed by Tanzi, 2005), there are several conceivable factors that can disturb the normal production and metabolism/elimination of Aβ, hypothetically leading to Aβ accumulation and amyloid deposition.

In conclusion, studies on transgenic animals have generated an abundance of tentative mechanisms by which amyloid peptides accumulate in the aging brain. The challenge for future experimental investigations is to assess what mechanisms – if any – are relevant for AD. Possibly, different mechanisms
are in play in different stages and/or variants of AD, and the discussion on which factor is the most relevant will likely continue for many years, if not decades.

Apolipoprotein E and Alzheimer’s disease

Apolipoprotein E (ApoE) is a cholesterol transport protein abundantly expressed in the liver and the central nervous system (Mahley, 1988). There are three ApoE alleles, named E2, E3 and E4. A role for ApoE E4 in AD was suggested in 1993, when Strittmatter and colleagues showed that the ApoE E4 allele was more than three times as common in AD patients as in age-matched, cognitively intact controls (Strittmatter, 1993). Numerous other genes have been suggested to affect the risk of developing sporadic AD, but considering the enormous amount of resources being put into finding and assessing candidate genes, surprisingly little has emerged (Finckh, 2003), and ApoE E4 status remains the only uncontroversial genetic risk factor for sporadic AD (Bertram, 2004). Interestingly, a recent study implicated two polymorphisms in the gene coding for the afore-mentioned Aβ degrading enzyme neprilysin as risk factors for sporadic AD (Helisalmi, 2004). If these results are verified, it would constitute another significant piece of evidence in favor of the amyloid hypothesis.

The actual risk increase for a person carrying one or two copies of the ApoE E4 allele is not firmly established. Prospective studies have shown that persons with at least one ApoE E4 allele (E2/E4, E3/E4, E4/E4) are approximately three to four times more likely to develop AD than are patients without E4 alleles (E2/E2, E2/E3 or E3/E3) (Lindsay, 2002; Myers, 1996). Other investigators mention similar risk figures for E4/E4 homozygotes (Bird, 2005), whereas retrospective studies have shown an odds ratio for AD in E4/E4 individuals as high as 10-20 (Farrer, 1997).

Even though ApoE E4 is a risk factor for sporadic AD, it is not known how ApoE affects the AD disease process. Several intriguing experimental studies indicate that ApoE binds directly to the Aβ peptide and that particularly ApoE E4 in doing so promotes fibrillogenesis (Wisniewski T, 1994; Castano, 1995). Others emphasize the fact that ApoE E4 is a well-known risk factor for cardiovascular disease (reviewed by Davignon, 1988), suggesting that the association between ApoE E4 and AD is a consequence of ApoE E4 playing a role in cholesterol transport and vascular disease (Sparks, 1996). An alternative theory, that ApoE E4 plays a role in neuroinflammation, is based on the
finding that presence of ApoE E4 promotes astrogliosis in the cortex of AD patients more so than the other alleles (Overmyer, 1999). Hence, it is fair to say that the exact pathological mechanisms behind the association between ApoE E4 and AD are still a matter of considerable debate (for reviews, see for instance Tomiyama, 1999 or Poirier, 2003).

Nerve cell nuclei and neurotransmitters

The amyloid hypothesis notwithstanding, amyloid plaques and neurofibrillary tangles are far from the only findings on postmortem examination of the typical AD brain. In fact, AD pathology extends well beyond the cortex. For instance, degeneration of specific nerve cell nuclei such as the nucleus basalis Meynert (NBM) was described several years ago (Whitehouse, 1982). The NBM is the major source of the neurotransmitter acetylcholine (Ach), loss of which has long been implicated in AD (Coyle, 1983).

Thus, pharmacologic interventions aimed at normalizing cholinergic transmission were introduced. So far, the most practical approach to increasing brain levels of Ach has been inhibiting the enzyme chiefly responsible for its degradation, acetylcholine esterase (AchE). At the present time, three pharmaceutical agents that belong to the family of AchE inhibitors (AchEi) are the mainstay of treatment in AD (table 4).
<table>
<thead>
<tr>
<th>Generic name</th>
<th>Trade name</th>
<th>Proposed mechanism of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donepezil</td>
<td>Aricept</td>
<td>Inhibition of AchE</td>
</tr>
<tr>
<td>Galantamine</td>
<td>Reminyl/Razadyne</td>
<td>Inhibition of AchE (and direct agonistic effect on nicotinic receptors*)</td>
</tr>
<tr>
<td>Rivastigmine</td>
<td>Exelon</td>
<td>Inhibition of AchE (and butyrylcholine esterase*)</td>
</tr>
</tbody>
</table>

Table 4. Current treatment options for AD based on the cholinergic hypothesis. Apart from the AchEi group of therapeutics, there is also memantine (Ebixa/Namenda), which is believed to work by blocking glutamate receptors. This in turn is hypothesized to inhibit apoptosis.

* This effect, although shown in vitro, is of uncertain clinical importance.

Although their effect is modest and occasionally questioned (Courtney, 2004; Kaduszkiewicz, 2005), most investigators and clinicians agree that cholinergic treatment represents real and important progress in the treatment of dementia. Recently, a number of studies have suggested that AchEi treatment favorably affects the symptomatological profile (Gauthier, 2002; Paleacu, 2002), which can be construed as evidence of their having a place in the therapeutic arsenal despite the fact that cholinergic treatment does not seem to have a significant effect on the prognosis of AD itself (Wallin, 2004).

However, the NBM is not the only nerve cell nucleus affected in AD. Several studies have reported degeneration of the locus ceruleus (LC), the main source of brain noradrenaline (Mann, 1980; Tomlinson, 1981). Noradrenaline content is also decreased in the cortex of AD patients (Palmer, 1987; Matthews, 2002). These reports were recently reinforced by a study showing more severe loss of neurons in the LC than in the NBM in AD patients (Zarow, 2003). The noradrenergic system has been suggested to play a number of roles in the regulation of cerebral blood flow, abnormalities of which are prominent features of AD (Jagust, 1997; Matsuda, 2001).

The mechanisms behind and the role played by damage to specific nerve cell
nuclei in AD are poorly known, but the availability of neurotransmitters to therapeutical intervention should serve as an incentive for investigators trying to elucidate their role.

Neuropathological diagnosis of Alzheimer’s disease

The gold standard of diagnosis of dementing disorders including AD remains post-mortem neuropathological examination. Several different staging criteria and characterization systems have been proposed (Brun, 1981; Khachaturian, 1985; Braak, 1991; Mirra/CERAD, 1991).

It is obvious that universally accepted criteria for the neuropathological diagnosis of AD would have been of tremendous value to researchers and clinicians alike. There are, however, several problems inherent in the task of designing uniform neuropathological diagnostic criteria for dementia. For instance, neuropathologists do not agree on what lesions are the most important. This is exemplified by the fact that the Khachaturian criteria are more or less entirely based on amyloid plaque density, whereas the opposite is true for the criteria proposed by Braak. Furthermore, it is still not settled to what extent some degree of plaque or tangle pathology can be perceived as a normal and inevitable consequence of aging, considering the abundance of plaque and tangle pathology found in cognitively normal elderly (Hof, 1996; Hulette, 1998; Kazee, 1998; Knopman, 2003). Also, the dynamics of the natural life span of the amyloid plaque is poorly known - it has been suggested that plaques resolve over time, based on the finding that as AD patients age, neurofibrillary tangles accumulate whereas amyloid plaques do not (Hyman, 1993). As we shall discuss later, many potential future therapies of AD are based on the immune system attacking parenchymal depositions of amyloid. Therefore, it is not inconceivable that “normal” immune system attacks on amyloid plaques slowly lead to their dissolution over time, which would make staging of AD based on plaque counts alone a flawed concept.

To address some of these concerns, the National Institute on Aging and Reagan Institute (NIA/Reagan) consensus criteria were introduced in 1997, incorporating assessments of both tangle and plaque pathology, essentially fusing the Braak and the Mirra/CERAD criteria. The NIA/Reagan criteria have been evaluated in a number of studies. As can be surmised, the NIA/Reagan criteria are more specific than previous criteria, but the increased specificity comes at the expense of decreased sensitivity (Geddes, 1997; Newell, 1999; Schmitt, 2000). Thus, they do not address the underlying methodological
problems caused by 1) that the interaction between plaque and tangle pathology is poorly known, and 2) the uncertain relationship between clinical symptoms and plaque vis-à-vis tangle pathology.

Decades of difficulties in developing mutual and internationally accepted histopathological criteria for diagnosis, along with the rapid emergence of neuroimaging modalities such as positron emission tomography (PET), MRI and functional MRI (fMRI) have led to an ongoing “turf war” between imaging specialists and pathologists. Radiologists and neurologists are increasingly pushing toward establishing PET and/or fMRI as the gold standard of morphological diagnosis of AD.

Mechanisms of vascular dementia

The aging vascular system is prone to damage. Atherosclerosis, hypertensive arteriosclerosis, thromboembolic disease and cardiac arrhythmias may all have profound effects on vital organs, and the brain is no exception. VaD is said to be present when the effects of cerebrovascular disease amount to severe irreversible cognitive impairment. Because damage to the brain mediated by vascular factors (infarctions and/or hemorrhages) is irreversible once cell death has occurred, there is little potential for effective treatment other than prevention. In the distant future, it is possible that stem cell therapy will facilitate regrowth of lost neurons (Lindvall, 2005).

Most typically, VaD is caused by stroke, particularly in patients that have suffered multiple strokes. The most common cause of clinically apparent stroke is ischemic infarction caused by thrombotic artery occlusion, but many strokes are caused by cerebral hemorrhage. Cerebral infarctions and hemorrhages are both relatively common in the elderly population, and the term “vascular dementia” incorporates both patients having suffered dementia as a consequence of ischemic infarcts and patients where the substrate is cerebral hemorrhage, as well as patients where both lesions are present. Thus, the VaD diagnosis does not reveal the true etiology in any given patient. The usefulness of VaD as a clinical diagnosis has been questioned by studies that showed a distinct lack of reliability in applying the most commonly used diagnostical criteria (Chui, 2000; Pohjasvaara, 2000).

To increase the precision of the clinical diagnosis, some investigators suggest that the focus should not only be put on diagnosing VaD vis-à-vis AD
or other dementing disorders, but also on defining the subgroups of VaD (Bowler, 2000) and identifying a subgroup diagnosis in each patient.

Studies on VaD have suffered from the lack of diagnostic criteria for a neuropathological diagnosis of VaD. Such criteria were recently proposed (Kalaria, 2004), and if they are widely adopted, will help further the understanding of VaD and how it relates to neurodegenerative disease.

The connection between Alzheimer’s disease and vascular dementia

VaD, although in many ways conceptually easier to comprehend than AD, is still a diagnosis surrounded by confusion and controversy. Some researchers question the diagnosis of VaD entirely, based on the fact that an overwhelming majority of VaD patients exhibit some degree of AD-related findings on autopsy. This has generated a heated debate on the topic (Roman, 2004). Conversely, some researchers invoke that cerebrovascular disease is common on autopsy in AD patients and contend that the impact of cerebrovascular disease on cognition may be even more significant than has previously been realized (Fernando, 2004). Several intriguing studies have shown that AD pathology is associated with, and may be secondary to, hypoperfusion and cerebral ischemia caused by cerebrovascular disease (de la Torre, 2003; Roher, 2004). The conclusion that can be inferred from these contentions – that AD itself is primarily a vascular disease and that amyloid pathology is partly or entirely secondary to cerebrovascular disease and/or ischemia – is very controversial and has relatively few adherents. However, the hypothesis has some degree of experimental support by a number of studies implicating ischemia as a cause of amyloid dysmetabolism and deposition (Palacios, 1995; Shi, 2000; Wen, 2004). Furthermore, studies on transgenic mice over-expressing APP have shown that they are more sensitive to ischemia than are non-transgenic mice (Zhang, 1997; Koistinaho, 2002).

It deserves emphasizing that both Alzheimer pathology such as plaques and tangles and cerebrovascular pathology such as infarcts, athero- and arteriosclerosis are extremely common in the elderly population. It is therefore not surprising that both cerebrovascular pathology and Alzheimer-related pathology are found on neuropathological examination of elderly patients, even in cases where the patient exhibited no clinical signs of dementia. It is quite obvious that this adds to the confusion when investigators – clinicians, pathologists and radiologists alike – try to reach consensus guidelines and criteria for the neuropathological diagnosis.
White matter pathology in dementia
Traditionally, the emphasis in most brain research has been on the cerebral cortex or even the subcortical gray matter. The white matter has been viewed as wiring only, and it has rarely been considered to play a significant role outside of diseases where it is unequivocally the primary locus of disease (for instance multiple sclerosis, adrenoleukodystrophy and progressive multifocal leukoencephalopathy).

White matter changes, distinct enough to warrant the label “white matter disorder” in AD were first reported by Brun and Englund in 1986 (Brun, 1986). In recent years, interest in white matter pathology in different dementing disorders has increased dramatically, and an abundance of clinicoradiological and clinicopathological studies have been carried out.

There is considerable confusion regarding the terminology of white matter pathology in dementia. Terms such as white matter pathology, white matter disease, white matter lesions, white matter damage and white matter loss are used seemingly interchangeably. To clarify this potentially complicated issue, the terms used in this thesis are explained in the following chapter.

- Definition of terms
"White matter pathology” is an inclusive term, covering all aspects of white matter abnormalities. The term white matter pathology does not imply a certain etiology, pathogenesis or that the pathology is necessarily defined. The spectrum of white matter pathology includes for instance infarctions and perifocal infarctions in VaD, or the gliotic white matter pathology with demyelination described in frontotemporal dementia (Englund, 1987).

"White matter disease” (WMD) of AD is a more sharply defined term that refers to a distinct type of pathology. For purposes related to dementia, WMD is a specific entity characterized by diffuse white matter attenuation with associated oligodendrocyte loss (Sjöbeck, 2003a) and myelin reduction, axonal loss and mild reactive gliosis. There is also extensive fibrohyalinosis of the arterioles and a relative paucity of capillaries (Sjöbeck, 2003b). The etiology is believed to be ischemic (Englund, 1990), and the term selective incomplete white matter infarction (SIWI) has been proposed (Englund, 1988).

"White matter lesions” (WML) is a loosely defined term, which unlike the term “white matter disease” does not imply that the entire brain has been in-
vestigated, and does not necessarily suggest a certain etiology. It also implies focality, in contrast with the WMD of AD, which by definition is non-focal.

The significance of white matter pathology in AD and other dementias is highly controversial. Clinicoradiological studies are limited by the fact that current imaging methods do not necessarily create accurate depictions of the state of the white matter at a cellular level. Clinicopathological studies, on the other hand, are limited by the fact that they require postmortem examination, at which point the clinical assessment has to be made retrospectively from the clinical records.

When the concept of WMD in AD was proposed, it was based on neuropathological findings, and there was, for obvious reasons, sparse evidence to suggest that the white matter pathology affected the clinical features. Furthermore, the methodological differences between different centers regarding the assessment and grading of white matter pathology using different modalities (computerized tomography (CT), MRI, histopathology) initially resulted in a multitude of conflicting and ostensibly contradictory reports. The etiology of WMD in AD has also been contested. Although initially proposed to be ischemic, some investigators have suggested that the main cause of white matter pathology in AD is Wallerian degeneration (Leys, 1991; Bozzali, 2002). Although Wallerian degeneration can account for white matter pathology, two observations argue against Wallerian degeneration as a cause of WMD in AD: 1) WMD severity does not correlate with severity of other AD pathology (Brun, 1986) and 2) WMD is most commonly found in the frontal lobes (Englund, 1998), whereas the cortical AD pathology is generally the most pronounced in the parietal and temporal lobes (Brun, 1981).

Several years later, a number of studies had shown that presence of different measures of white matter pathology in AD correlate with a different profile of symptoms when compared to AD patients with normal white matter (Englund, 1989; Starkstein, 1997; Tsiskaridze, 1998; Londos, 2001). Although the presence of white matter hyperintensities on MRI, probably reflecting white matter pathology, has been found by most researchers not to correlate very well with cognition scores (Almkvist, 1992; Hirono, 2000), some have reported the opposite (Stout, 1996). Some researchers have gone as far as to suggest that white matter pathology plays an integral role in cognitive decline in the elderly and the AD disease process itself (Bartzokis, 2004).
Cerebral amyloid angiopathy
The presence of amyloid deposits in the cerebrovasculature (picture 4) was described by Divry in the 1920s, but the discovery has also been attributed to Scholtz (Revesz, 2003). In 1935, Arnason described the presence of severe CAA in an Icelandic family with devastating cerebral hemorrhages. Some thirty years later, a Dutch family was described with a similar hereditary form of CAA associated with dementia without a significant presence of plaques. These diseases have become known as Hereditary Cerebral Hemorrhage with Amyloidosis – Icelandic/Dutch type (HCHWA-I/D) (Revesz, 2002).

Picture 4, Amyloid protein has been deposited in the walls of cerebral blood vessels, and visualized using immunohistochemistry.
<table>
<thead>
<tr>
<th>Name of disorder</th>
<th>Amyloid protein deposited</th>
<th>Pathological features</th>
<th>Clinical features</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hereditary cerebral hemorrhage with amyloidosis, Dutch type</td>
<td>Mutated variant of Aβ</td>
<td>Hemorrhages, microhemorrhages, cortical microinfarcts, white matter lesions</td>
<td>Recurrent hemorrhagic strokes beginning at 40-65 years of age, dementia</td>
<td>Bornebroek, 1996</td>
</tr>
<tr>
<td>Hereditary cerebral hemorrhage with amyloidosis, Icelandic type</td>
<td>Mutated variant of Cystatin C</td>
<td>Large cerebral hemorrhages</td>
<td>Hemorrhagic stroke causing death at 30-40 years of age</td>
<td>Palsdottir, 1988</td>
</tr>
<tr>
<td>Familial British dementia</td>
<td>ABri</td>
<td>Similar to Alzheimer’s disease but plaques lack neuritic pathology</td>
<td>Spasticity, ataxia, dementia</td>
<td>Vidal, 1999</td>
</tr>
<tr>
<td>Familial Danish dementia</td>
<td>ADan</td>
<td>Similar to Familial British dementia</td>
<td>Cataracts, deafness, ataxia and dementia</td>
<td>Vidal, 2000</td>
</tr>
<tr>
<td>Iowa dementia</td>
<td>Mutated variant of Aβ</td>
<td>White matter pathology, occipital calcifications, tangle pathology</td>
<td>Aphasic dementia</td>
<td>Grabowski, 2001</td>
</tr>
</tbody>
</table>

Table 5. Selected familial diseases where CAA and its consequences are considered the major pathological substrates.
Since the description of HCHWA-I and –D, numerous familial CAA syndromes have been reported (table 5), which has served to fuel interest in experimental research on CAA (Kiuru, 1999; Mead, 2000; Grabowski, 2001). In the familial CAA-associated diseases, cerebrovascular deposition of amyloid causes hemorrhages and infarctions, with neurological impairment and frequently dementia as a result, and at least in HCHWA-D, dementia is believed to be associated with the presence of CAA rather than plaques or tangles (Natte, 2001).

Although their prevalence is very low, the familial CAA-associated diseases have spurred a lot of interest. Sporadic CAA, in contrast, has not received much attention in the research community. Whereas the amyloid plaque or even the neurofibrillary tangle has been considered the primary lesion in AD, the role of CAA in sporadic dementia has not only been uncertain, but largely neglected. Paradoxically, the first reports describing the amyloid protein found in AD brains were based on cerebrovascular amyloid (Glenner, 1984).

Recent population studies have yielded somewhat conflicting results regarding the role of sporadic (i.e. non-hereditary) CAA on cognitive function in the elderly. The Medical Research Council Cognitive Function and Aging Study in Britain (Neuropathology group, MRC, 2001) showed that CAA was associated with cognitive decline independent of other AD findings, whereas the Honolulu-Asia Aging Study (HAAS) showed no such clear-cut association (Pfeifer LA, 2002). On the other hand, the HAAS showed that CAA and other AD pathology combined to cause more severe cognitive decline than AD pathology alone. It should be pointed out that the ethnic makeup of the studies differ significantly, as do the study setups with regard to CAA assessment. The way the clinical and neuropathological diagnosis were made may also have contributed to the differing results.

Sporadic CAA has been associated with a number of pathological complications. In 1977, Jellinger reported that CAA was associated with nontraumatic cerebral hemorrhages (Jellinger, 1977). This finding has been corroborated by a number of studies (Okazaki, 1979; Mandybur, 1986; Itoh, 1993), suggesting that CAA is an important cause of nonhypertensive cerebral hemorrhage, especially in cases where the hemorrhage site is located in either of the lobes of the cerebrum (Ishihara, 1991). Several studies have associated CAA with small cerebral infarctions (Olichney, 1995; Cadavid, 2000), and
it has long been supposed that CAA in AD is the cause of the white matter pathology often seen in this disease (Gray, 1985). However, several studies undertaken to investigate the correlation between white matter pathology (as visualized using a wide range of methods) and CAA have yielded negative results (Janota, 1989; Munoz, 1993; Scheltens, 1995; Erkinjuntti, 1996; Tomimoto, 1999). CAA has also been associated with small foci of petechial cerebral hemorrhage (Greenberg, 1993; Silbert, 1995), dubbed “microbleeds” (Fazekas, 1999). Microbleeds are common in HCHWA-D (van den Boom, 2005), but the prevalence of microbleeds in cases of sporadic Aβ CAA have to date not been investigated systematically.

Pathogenesis of cerebral amyloid angiopathy

When CAA was first described, it was believed that the cerebrovascular amyloid depositions arose by the same mechanism that amyloid deposits arise in systemic amyloidoses: by aggregation and deposition of a blood-borne amyloid component. Alternate theories have since been proposed, however: 1) that CAA arises due to in situ production by vascular or perivascular cells (either pericytes or smooth muscle cells (Wisniewski HM, 1994; Wisniewski HM, 2000)) or 2) that the amyloid in the vasculature derives from cortical neurons. The etiology and pathogenesis of CAA were recently reviewed by Rensink, 2003 and Revesz, 2003.

The theory of a blood-borne pathogen prevailed for decades, but gradually lost importance when a range of experimental and ultrastructural studies of CAA showed results compatible with the competing theories. Several intriguing studies have shown that at least in experimental animals, a neuronal source of Aβ is sufficient to produce CAA (Calhoun, 1999; van Dorpe, 2000). Another important finding that seems to contradict the hypothesis of a blood-borne amyloid component is that cerebrovascular amyloid deposits seem to begin at the outer, rather than the luminal, basement membrane (Yamaguchi, 1992).

Currently, one of the most popular theories on how CAA arises suggests that the Aβ that is deposited in the cerebral vasculature is produced by cortical neurons. After proteolytic cleavage by beta- and gamma-secretase, soluble Aβ fibrils are supposedly cleared by way of perivascular channels that run from capillaries to arterioles to arteries. The theory of Aβ elimination via perivascular channels was first proposed by Weller et al (Weller, 1998), and since, several studies have been published that support or at least are compatible.
with a role for perivascular channels in the clearance of Aβ (Preston, 2003; Roher, 2003).

Cerebral amyloid angiopathy in Alzheimer’s disease
The association between CAA and AD is complicated. Generally, most researchers consider CAA to be a pathological hallmark of AD much like the amyloid plaques and neurofibrillary tangles, and that it plays an important and overlooked role in the pathogenesis of AD (Nicoll, 2004). Others consider it little more than a secondary finding without major pathological impact (Castellani, 2004). Studies have shown that practically every AD patient has some degree of meningeal or cortical CAA on autopsy (depending on how much of the actual brain is investigated and the thresholds applied for labeling a case as CAA-positive), but CAA is not uncommon in the elderly, whether suffering from dementia or not (Esiri, 1986; Fernando, 2004).

The findings from the HAAS described earlier are partly supported by a histopathological investigation that suggested an inverse correlation between CAA and plaque pathology (Goulding, 1999). This led to the proposition that presence of CAA constitutes another “burden” on a brain affected by plaque pathology, so as to cause clinical dementia at a lower plaque level than would be the case in a patient with a similar amount of plaques but spared from CAA.

Apolipoprotein E, cerebral amyloid angiopathy and the two major amyloid beta peptide species
Several lines of evidence suggest that the role of the ApoE genotype in dementing disorders is not restricted to the previously discussed relationship between ApoE E4 and AD. ApoE E4 has also been suggested to be a strong risk factor for CAA (Schmechel, 1993; Greenberg, 1995; Premkumar, 1996). In fact, a study by Chalmers and colleagues on the effects of ApoE genotype on the morphology of AD showed that ApoE E4 was associated with CAA rather than amyloid plaques (Chalmers, 2003).

Experimental support for the hypothesis that ApoE E4 promotes cerebrovascular amyloid deposition (in the form of CAA) rather than parenchymal amyloid deposition (in the form of plaques) comes from an animal study, which showed that presence of human ApoE E4 in a transgenic mouse model of AD (Tg2576) favored cerebrovascular rather than parenchymal Aβ deposition (Fryer, 2005). This was associated with an increase in the ratio of Aβ(40) to
Aβ(42), which is compatible with the fact that Aβ(40) is the most predominant species found in cerebrovascular Aβ depositions (Gravina, 1995). Correspondingly, in parenchymal depositions (plaques), Aβ(42) is typically more pronounced (Iwatsubo, 1994). There are conflicting reports on whether the experimental observation of a relative increase of Aβ(40) holds true for human AD cases (Mann, 1997; McNamara, 1998).

Aβ(40) is more soluble than Aβ(42), and it has been suggested that Aβ(42) traps Aβ(40), serving as a linchpin for subsequent growth of the Aβ depositions by additional aggregation of Aβ(40) (Jarrett, 1993; Alonzo, 1998).

Further complicating the relationship between AD phenotype and ApoE genotype, a large study recently showed that ApoE E4 homozygosity was associated with an increased number of plaques, whereas heterozygosity was not (Tiraboschi, 2004). Also, a recent study investigating cases without AD questioned whether the ApoE E4 allele is a risk factor for CAA in patients not afflicted by AD (Love, 2003). This study contradicts a previous study on the subject, which had shown ApoE E4 homozygosity (but not heterozygosity) to be a risk factor for CAA in patients without clinical dementia (Walker, 2000).

In brief, AD associated with ApoE E4 homo- or heterozygosity is associated with more severe CAA and Aβ(40) deposition than AD in patients without ApoE E4 alleles, but unless there is concomitant Aβ dysmetabolism (for example manifested as AD), the relationship between ApoE E4 and the risk of developing CAA is not firmly established.

Anti-amyloid treatment of Alzheimer’s disease

The amyloid hypothesis in AD has generally been well received by the scientific community. This is not surprising, since it offers an attractive way of describing the disease, and offers several opportunities for creating animal models. Unlike in VaD, where the onus currently is on prevention rather than treatment, the amyloid hypothesis of AD offers several potential targets of pharmacological agents affecting the metabolism of Aβ.

Several experimental treatment options directed against the amyloid protein have been found to be effective in decreasing amyloid deposition in plaque-forming experimental animals, and this has been accompanied by increased cognition in many models (Lemere, 2003). The efficacy and ostensible safety
of a vaccine against Aβ in animal models led to the first trials of anti-amyloid treatment (AN-1792) in 2001 (Thatte, 2001). The trials were halted (Senior, 2002) when 18 out of the 300 patients receiving treatment developed symptoms of meningoencephalitis. 12 patients recovered to their baseline level of functioning, whereas six sustained some degree of persistent deficits (Orgogozo, 2003). Even though the trial was a substantial setback, not to mention a disaster for those affected by the side effects, from a purely scientific standpoint, important information could still be extracted from the results of the study. Postmortem examination of the first case that came to autopsy after AN-1792 immunization showed low plaque levels, but no apparent attenuation of CAA. There were signs of perivascular inflammation and T-lymphocyte meningoencephalitis, which was presumed to be the pathological substrate of the clinically apparent side effects (Nicoll, 2003).

The unacceptable side effects made it clear that this particular form of anti-amyloid treatment would not be a viable therapeutic option in AD. However, if one could detect a clinical improvement or halted clinical decline in the majority of patients that did not develop side effects but did mount an immune response against Aβ, one would have to conclude that the therapeutic principle is viable. This would also constitute near irrefutable evidence in favor of the amyloid hypothesis, which would allow researchers to focus their efforts and settle a century-long debate. Just recently, preliminary results on cognition in patients showing immunological signs of responding to treatment without exhibiting adverse effects were published. Unfortunately, no significant effects on the cognitive assessments were seen, but when composite z scores were calculated, they seemed to favor patients that developed an antibody response to the immunization (Gilman, 2005). The significance of this study has been widely discussed. While there is no doubt that the results are a disappointment, the authors emphasize the trend toward better cognition in responders versus non-responders. Over the next couple of years, follow-up studies will probably be able to settle the debate on the cognitive effects of Aβ immunization.

Another interesting finding in patients that were immunized were that they exhibited a significant decrease in brain volume as assessed on MRI (Fox, 2005). Although the authors speculate that this is due to removal of Aβ, another – less encouraging – possibility is that the decrease is explained by accelerated cerebral atrophy. Other hypotheses that have been put forward is that the shrinkage observed was due to (1) decreased brain water content due
to lost osmotic activity of cleared amyloid plaques, or (2) decreased inflammatory activity (astrogliosis) leading to decreased cellular swelling (Gandy, 2005).

Cerebral amyloid angiopathy as a putative complication of anti-amyloid treatment of Alzheimer’s disease

Considering the current hypothesis on how CAA arises, researchers have warned that CAA may be a complication of amyloid-eliminating therapy, especially in cases where cerebrovascular disease is present (Weller, 2002). Indeed, CAA and hemorrhages have been reported in transgenic mice receiving immunotherapy against deposited amyloid (Pfeifer M, 2002), and CAA was a prominent finding in the few post-mortem examinations conducted after administration of anti-amyloid treatment (Nicoll, 2003; Ferrer, 2004; Masliah, 2005). That said, it is not clear whether the dramatic side effects seen were in fact due to CAA, and if so, what the mechanism was.

Because of the striking presence of a perivascular inflammatory reaction, it is presumed that the amyloid cleared from the brain drained to the vasculature, where T lymphocytes were exposed to new epitopes, triggering a devastating immune reaction (Greenberg, 2003). Recently, it has been shown that an anti-amyloid antibody without affinity for deposited Aβ (as opposed to soluble) was not associated with CAA-related hemorrhage (Racke, 2005), whereas antibodies that triggered immune reactions toward deposited Aβ did produce the features typical of CAA-associated hemorrhage. This adds further to the growing evidence identifying soluble Aβ, rather than the plaque itself, as a worthwhile therapeutic target.

If indeed CAA proves to be a consequence of plaque-targeting treatment of AD, it may have pronounced implications for future treatment strategies. If immune reactions directed against already formed Aβ can lead to the development of (or exacerbation of) CAA and its consequences in terms of hemorrhage and infarctions, Aβ production inhibiting agents (beta- and/or gamma-secretase inhibitors) may be a more attractive therapeutic strategy than immunotreatment targeting Aβ. Needless to say, several such drugs are currently at various stages of development (Cumming, 2004; Siemers, 2005), and during the next couple of years, we will learn whether either of these drugs will bring about the as yet elusive breakthrough in the pharmacological management of Alzheimer’s disease.
Aims

As the average life expectancy increases, so do the demands on society to provide health care and medical services to the growing population of elderly individuals. In that light, the spectrum of dementing disorders constitutes a tremendous problem. These disorders can turn previously healthy and self-sufficient individuals into patients requiring 24 hour monitoring and assistance in every aspect of their activities of daily life. Needless to say, any progress in delaying the onset or impeding the progression of dementing disorders would translate to enormous financial gains for society, not to mention the humanitarian effects in terms of alleviating suffering for patients and next-of-kin alike.

Seeing as it is the most common dementing disorder, it is worth underscoring that progress in the treatment of AD has been modest. In part, this can be attributed to the fact that the mechanisms by which AD produces dementia are poorly understood. Chances of discovering new and effective treatments would be greatly increased by improved understanding of the disease mechanisms in play.

This thesis explores several issues relating to vascular pathology in the two largest dementing disorders; AD and VaD. Specifically, the primary aims were to improve our understanding of:

1) The possible role of CAA in white matter pathology in AD
2) The prevalence and features of CAA in VaD
3) The pattern of vascular Aβ deposition in AD and VaD with regard to degeneration of normal vessel wall components
4) The association between LC degeneration, WMD and other Alzheimer pathology in AD
The present investigation

This chapter introduces, summarizes and discusses the findings of the papers included in the thesis.

All cases included in this study were part of the Lund Longitudinal Dementia Study, an ongoing prospective dementia study started in 1968 by professor Lars Gustafson and the Lund Dementia Research Group. Patients with a referral to the department of Geriatric Psychiatry in Lund are routinely offered inclusion in this study, where clinical, radiological and pathological tests and investigations are carried out. After the initial workup, a clinical diagnosis is made. Patients are followed on an outpatient basis until their time of death, after which a neuropathological examination is made. Paraffinized whole-brain tissue blocks are archived at the Department of Pathology. To date, more than 800 patients have been included in the study.
Background and setup
In 1985, Gray and Dubas suggested that the white matter pathology often seen in AD was caused by CAA (Gray, 1985). This was based on a case series, and there was no statistical evidence in favor of the hypothesis. Several investigators followed up on the work by Gray and Dubas (Janota, 1989; Munoz, 1993; Scheltens, 1995; Erkinjuntti, 1996; Tomimoto, 1999), but no studies showed a clear-cut correlation between CAA and any measure of white matter pathology. To investigate the association, we examined 66 cases with some degree of Alzheimer pathology on neuropathological examination from the Lund Longitudinal Dementia Study for presence of CAA in the leptomeninges of the frontal poles and white matter lesions of the frontal lobes. Cases were sorted into either of three groups: AD, AD and VaD (mixed) or VaD with Alzheimer encephalopathy (AE) (VaD-ae) (i.e. not severe enough to warrant a diagnosis of AD).

Results
There was a significant correlation between CAA and WML in the entire group studied; however, the correlation was only present in cases exhibiting manifest AD. In cases with admixture of VaD (i.e. belonging to either the mixed group or the VaD-ae group), there was no such correlation. There were no significant differences between the groups with regard to CAA or WML severity. Neither CAA nor WML severity correlated with age.

Discussion
This study is the first to prove the hypothesis by Gray and Dubas. One could conceive of several reasons why other studies did not show statistically significant results. Several studies used small sample sizes, and others used only a semi-quantitative measure of CAA.

Furthermore, we used Congo Red staining to visualize vascular amyloid deposits, whereas other investigators (Tomimoto, 1999) have employed Aβ immunohistochemistry. Because Aβ immunohistochemistry is more sensitive than Congo Red, it is possible that the statistical correlation between WML and CAA is obscured when vessels positive for Aβ at an early stage, where the Aβ has not yet assumed a beta-sheet structure, are included.
This study does not allow for conclusions as to why there was no association between CAA and WML in non-AD cases. Neither CAA nor WML were any less severe in the non-AD group, in fact, there was a trend toward more CAA in the mixed dementia group, and the group of patients that had VaD with only mild Alzheimer encephalopathy had just as high a degree of CAA as did ‘pure’ AD patients. The typical white matter pathology in VaD (typically complete infarctions with surrounding incomplete infarction) (Englund, 2000) differs from that of AD (which is typically void of complete infarction), and this is likely to be a manifestation of different pathogenetic mechanisms. Hypothetically, widespread CAA in the absence of cerebrovascular disease may predispose to mild hypoxia and ischemia without causing overt infarction.
Paper II: Severe cerebral amyloid angiopathy characterizes an underestimated variant of vascular dementia

Background and setup
In paper I, we found that CAA was no more severe in AD cases than in cases with only mild Alzheimer encephalopathy. Because CAA is considered a consequence of the Alzheimer disease process, this was surprising. We followed up these results by investigating CAA and its features in 11 VaD cases with mild AE and 11 age-matched AD pseudo-controls. One entire temporal lobe section was obtained from each case, and stained using Aβ immunohistochemistry. Each section was subsequently analyzed for presence of cortical and leptomeningeal CAA, plaques and other pathological findings commonly associated with CAA.

Results
Every AD case had at least a few amyloid-positive vessels within the areas examined, whereas the VaD group exhibited a distinctly different pattern – six out of 11 cases had severe CAA, much more than was seen in any AD case, but five of 11 had little (n = 1) or no (n = 4) CAA.

As a group, the VaD cases on average had more CAA both in the leptomeninges and in the cortex. However, the ratio of cortical to leptomeningeal involvement was higher in the AD group, and morphologically, leptomeningeal CAA was more severe in VaD cases, whereas there was no difference regarding cortical CAA.

Cortical infarctions were markedly more common in the VaD group, whereas perivascular hemosiderin (interpreted as the histopathological correlate of a previous microbleed) was only found in two out of 660 studied cortical vessels. Perivascular hemosiderin deposition was common in the white matter, however.

Discussion
The finding that several cases with VaD and only mild Alzheimer encephalopathy exhibited an even higher degree of CAA than patients with more severe Alzheimer pathology suggests that CAA is not only a result of the AD disease process itself. Concurrent cerebrovascular pathology seems to increase the risk of CAA that is more severe than that normally seen in ‘pure’ AD cases.
Hence, this study is consistent with the proposed role of the cerebrovasculature in physiological elimination of amyloid. The fact that CAA was severe in such a large proportion of cases with only limited Alzheimer pathology suggested that amyloid overproduction is not the only factor in play. This is further strengthened by the fact that CAA displayed morphologically and topographically different profiles in VaD and AD cases – CAA was more pronounced in the leptomeninges of VaD cases, and relatively more severe in the cortex of AD cases.

On the basis of these observations, one could hypothesize that there are (at least) two different mechanisms that contribute to the formation of CAA. We speculate that one mechanism (failed elimination due to cerebrovascular disease) is more prominent in VaD with CAA, and another mechanism (neuronal overproduction of Aβ) is more prominent in AD.

This study also broaches on the subject of how to measure severity of CAA. Although the grading system proposed by Vonsattel (Vonsattel, 1991) has been used by several investigators, it was originally designed for studies of cerebral hemorrhage associated with CAA. Thus, it puts an emphasis on late-stage CAA-associated pathology such as “vessel-in-vessel” phenomena, scarring and necrosis and does not account for the distribution of CAA in a given section. To illustrate, a case where 97% of vessels are positive for amyloid but no vessel-in-vessel phenomena are found would only reach a Vonsattel score of 2 (out of 4), which is reasonable if one is primarily interested in effects of CAA on the risk of hemorrhage. Given that lobar hemorrhages are rare (in fact absent in the present material) and CAA is common, the factors that mediate potential effects of CAA on cognition may not be identical with factors that increase the risk of lobar hemorrhage.

Furthermore, the finding of severe CAA in such a large group of VaD cases warrants further investigation. Although this group of patients was selected for presence of some degree of Alzheimer pathology, the findings of this study suggest that CAA in VaD is not rare.
Paper III: Cerebral amyloid angiopathy and cortical microinfarcts as putative substrates of vascular dementia

Background and setup
Our previous studies showed an unusually high degree of CAA in cases with a neuropathological diagnosis of VaD. This was surprising because CAA has traditionally been associated with AD rather than VaD. Because the statistical material in these two studies did not allow for conclusions regarding the prevalence of CAA in an unselected group of patients with VaD, we investigated the frequency and severity of CAA in a consecutive VaD material. We examined temporal and parietal lobes of every VaD case in our laboratory from 1994 to 1998. Clinical records were analyzed retrospectively, to ascertain whether VaD cases with CAA exhibited a particular clinical profile.

Results
CAA was severe in eight out of 26 cases, and was strongly correlated with the presence of cortical microinfarcts in both the temporal and the parietal lobes. As secondary findings, there was a trend toward more infarcts and CAA in individuals with at least one ApoE E4 allele, and capillary CAA was noted in two patients, both of whom were ApoE E4 heterozygotes. Analysis of the clinical records suggested that psychiatric symptoms (except depression) were more common in VaD cases with CAA than in age-matched VaD cases without CAA. Conversely, neurological symptoms were less pronounced in the VaD+CAA group.

Discussion
The correlation between CAA and cortical microinfarcts suggests that in this group, CAA has tangible pathological consequences, especially considering the strong correlation between presence of cortical microinfarctions and cognitive impairment shown by Kovari et al (Kovari, 2004). Although sporadic CAA has occasionally been associated with VaD, this is the first study to investigate the role of CAA in a consecutive series of VaD patients with clinical follow-up, and the first study to suggest that CAA is a common feature of VaD, especially of the small-vessel disease subtype.

Taking the theory of Aβ elimination via perivascular channels into account, one could invoke that cerebral infarcts cause CAA by obstructing the flow of amyloid, rather than CAA being a causative risk factor for cerebral infarction. Cerebral cortical vessels in immediate proximity to cortical microinfarcts were
often engorged with Aβ in this study, as has been described earlier (Weller, 2002). This could also explain the relationship between ApoE E4 and CAA in which ApoE E4, also well-known as a cardiovascular risk factor, may increase the risk of cerebral infarction, leading to a subsequent development of CAA as a secondary phenomenon due to the hampered perivascular flow of amyloid. However, severe CAA in HCHWA-D is associated with microinfarcts (Wattendorff, 1995) irrespective of other cardio- or cerebrovascular risk factors. Also, previous studies have shown that the correlation between CAA and cerebral infarcts is consistent within groups of patients stratified by their ApoE genotype (Olichney, 2000) and there is still significant controversy regarding the role of ApoE E4 as a risk factor for cerebral infarction. Furthermore, since blood flow is centripetal from the leptomeninges and Aβ is suggested to flow in the opposite direction, if CAA were caused by these infarcts and subsequently halted Aβ flow, one would expect to see the most pronounced CAA immediately beneath superficial cortical infarcts, rather than immediately above them, which is more often the case.

As others have noted, capillary CAA is most commonly seen in ApoE E4 hetero- or homozygotes (Thal, 2002). The reason for this is not clear, but recent work on lipoprotein related protein receptor -1 (LRP-1) may provide important clues. LRP-1 is abundantly expressed in the capillary endothelium, and it is believed to eliminate soluble Aβ from the brain parenchyma (Shibata, 2000). LRP-1 is also an ApoE receptor (Kounnas, 1995), and unlike Aβ bound by ApoE, free Aβ is not eliminated via the LRP pathway (Narita, 1997), at least not to a significant degree. Furthermore, the ApoE E4 isoform has been shown to bind Aβ with less avidity than does ApoE E2 or ApoE E3 (LaDu, 1994).

Based on these observations, we hypothesize that capillary depositions of Aβ arise in individuals with at least one ApoE E4 allele by way of low-avidity binding of free Aβ by ApoE E4 and subsequent impaired clearance by endothelium-associated LRP-1. While most experimental work on Aβ clearance via the LRP-1 pathway has been carried out using Aβ(40) peptides, it is not inconceivable that the higher aggregability of the Aβ(42) peptide precludes it from being used under experimental conditions.
Paper IV: Differential deposition of amyloid beta peptides in cerebral amyloid angiopathy associated with Alzheimer’s disease and vascular dementia

Background and setup
Several studies have shown that vessels affected by CAA exhibit signs of degeneration such as loss of smooth muscle actin (SMA). The loss of normal vascular components has been associated with the complications of CAA. It is believed that replacement of contractile elements by Aβ leads to blood flow aberrations and predisposes to vascular rupture and hemorrhage. To investigate SMA loss and CAA in a large material, we investigated 62 consecutive cases of AD, VaD and MD from the Lund Longitudinal Dementia Study. Immunohistochemistry for Aβ, SMA, Aβ(40) and Aβ(42) was carried out.

Results
In all three groups, there was a strong inverse correlation between Aβ positivity and SMA positivity. For VaD cases, there was a significant, but weak, correlation between Braak stage (0 – III) and CAA. Generally, the Aβ(42) staining identified more parenchymal deposits, whereas cerebrovascular positivity was chiefly identified as Aβ(40). For cases with similar CAA levels, there was no significant difference between the three groups in terms of vascular Aβ(40) positivity. There was, however, a significant difference in Aβ(42) positivity, being less marked in the AD group than in either the VaD or the MD group. More marked SMA degeneration was seen in the VaD and MD groups than in the AD group.

Discussion
The differing Aβ(40)/Aβ(42) profiles in CAA associated with VaD/MD (CAA-VaD/MD) and CAA associated with AD (CAA-AD) are a novel finding, and could be a manifestation of different mechanisms of accumulation and deposition. Since numerous experimental studies have shown effects of ischemia on the metabolism of APP (Palacios, 1995; Shi, 2000; Wen, 2004), we propose that ischemia-mediated APP dysmetabolism and subsequent Aβ accumulation is primarily associated with deposition of Aβ(42) in the vasculature.

Our findings may help explain previous reports of severe CAA in VaD, despite the fact that Aβ overproduction is not generally associated with this disease. If one considers that cerebrovascular Aβ(42) is believed to serve as a
nidus for subsequent Aβ(40) deposition, the amount of CAA in VaD cases could be explained by more “effective” trapping of soluble Aβ(40), rather than an abundance of Aβ(40) per se.

Furthermore, the fact that Aβ(42) is less soluble could make it more dependent on effective mechanisms of removal. If these mechanisms are perturbed by cerebrovascular disease (Weller, 2002), it is not inconceivable that this manifests as impaired removal of Aβ(42) more so than Aβ(40).
Paper V: Locus ceruleus degeneration is ubiquitous in Alzheimer’s disease - possible implications for diagnosis and treatment

Background and setup
The pathological consequences of locus ceruleus (LC) degeneration in AD, if any, are poorly known. We hypothesized that LC degeneration would cause perturbations of cerebral blood flow autoregulation, which in turn might predispose the aging brain to hypoperfusion. A consequence of hypoperfusion is ischemic damage to selectively vulnerable regions of the brain, such as the deep white matter.

We hypothesized that LC degeneration would be associated with WML in AD. 71 consecutive AD cases from the Lund Longitudinal Dementia Study were included, and the white matter was assessed as in study I and using optical density measurements. A LC degeneration grading scale was designed, and tested for interrater reliability and specificity using 10 VaD cases as pseudo-controls. Information on duration of dementia was retrieved from the clinical records, and AD pathology was assessed using Braak staging and Brun & Englund scores.

Results
In 66 cases, sufficient tissue sections were available for analysis. There was no correlation between LC degeneration as assessed using our scale and degree of white matter damage, neither microscopically nor using optical density measurements.

No correlation was found between LC degeneration and general AD pathology or duration of dementia. The scale used to assess LC degeneration was found to be reliable (single rater intraclass correlation coefficient = 0.78) and resulted in significantly different scores between AD and VaD cases.
Discussion
We were unable to confirm our hypothesis regarding the association between LC degeneration and WML. However, there may be other consequences of noradrenergic dysfunction in AD, and considering the fact that noradrenergic therapy is available and safe, our negative findings do not offset the potential benefit of such therapy, should it prove to have an effect on the symptomatology or progression of AD.

The fact that LC degeneration was seen to some degree in all AD cases and was only very limited in VaD cases indicate that LC degeneration could be incorporated as a feature diagnostic of AD, even if it has not been shown to affect the pathogenesis itself. LC degeneration is not considered in the current neuropathological criteria for AD, but we have shown that it can easily be assessed with a high degree of reliability.

We suggest that future studies should be undertaken to elucidate the role of LC degeneration in AD, and to establish whether it should be considered a pathological hallmark of AD.
Conclusions

- Ischemic WMD in AD is associated with, and possibly caused by, CAA of the penetrating arteries. However, CAA is most likely not the only factor of importance.

- Even though it is almost ubiquitous in AD, CAA is not pathognomonic for AD. In fact, the most severe CAA is not typically seen in AD, but in cerebrovascular disease with additional Alzheimer pathology and/or MD.

- CAA may be a pathological substrate of VaD, typically VaD associated with cortical microinfarcts. CAA in VaD more typically exhibits severe leptomeningeal involvement, but is not unconditionally associated with white matter pathology.

- The syndrome of VaD and severe CAA with cortical microinfarcts may have a profile of symptoms that separates it from VaD without CAA.

- Concomitant cerebrovascular disease, as in VaD and MD, affects the deposition pattern of Aβ species. For a given level of CAA, there is more Aβ(42) deposition in CAA-VaD/MD than in CAA-AD, and more damage to the normal vascular architecture, including more smooth muscle degeneration. The role of cerebrovascular disease in affecting the metabolism and removal of Aβ needs clarification.

- Structural damage to the LC is present to some degree in virtually every AD case. Although the pathogenetic significance remains elusive, degeneration of the LC could be used as a diagnostic tool, distinguishing AD from VaD and possibly other dementing disorders.
Populärvetenskaplig sammanfattning på svenska

Alzheimers sjukdom och vaskulär demens är de vanligaste orsakerna till demens hos äldre, ett tillstånd som i takt med den ökande åldrade befolkningen kommer att innebära ett allt större lidande och en alltjämt ökande ekonomisk belastning. Direkta och indirekta kostnader för vård och omsorg av demenspatienter uppgår sannolikt till ca 40 miljarder kronor om året. Detta är ca fyra gånger så mycket som den totala kostnaden för diabetes och övervikt tillsammans.

Idag är behandlingsmöjligheterna vid Alzheimers sjukdom och vaskulär demens mycket små, vilket i sin tur delvis kan förklaras av att vår förståelse för sjukdomsförloppen ännu är otillräcklig. Inom ramen för detta projekt har vi undersökt mikroskopiska fynd vid Alzheimers sjukdom och vaskulär demens för att öka den basala förståelsen för processerna som pågår i hjärnan vid dessa tillstånd.

Vid mikroskopisk undersökning karakteriseras Alzheimers sjukdom främst av tuggummiliknande inlagringar av protein i hjärnvävnaden (amyloida plack). Att inlagringar av liknande karakter även återfinns i hjärnans kärl (cerebral amyloid angiopati, CAA) har varit känt sedan länge, men vad dessa kärlinlagringar får för konsekvenser i den åldrande hjärnan är inte klarlagt.

Denna avhandling beskriver fynden från mikroskopiska studier av vävnad som tillvaratagits från patienter som avlidit med diagnosen Alzheimers sjukdom och/eller vaskulär demens.

I delarbete I visade vi att CAA har samband med förändringar i hjärnans vita substans, och att CAA sannolikt inte enbart är en följd av Alzheimerprocessen, då patienter med Alzheimers sjukdom inte tycks ha mer CAA än patienter med vaskulär demens och endast diskreta Alzheimerförändringar (VaD-ae).

I delarbete II undersökte vi skillnader i CAA mellan å ena sidan patienter med vaskulär demens och diskreta Alzheimerförändringar (VaD-ae) och å andra sidan åldersmatchade patienter med Alzheimers sjukdom. Det visade sig att VaD-ae-gruppen inte bara hade mer utbredd CAA, även mönstret i var kärlförändringarna förekom och dess svårighetsgrad skilde sig åt mellan grupperna.
I delarbete III undersökte vi hur vanligt det är med CAA i en större grupp patienter med vaskulär demens. Vi fann att en överraskande stor andel av patienter med vaskulär demens hade mycket svår CAA, och att detta hade ett samband med förekomst av små infarkter i hjärnbarken. Dessutom tycktes den kliniska profilen skilja sig mellan patienter med vaskulär demens med och utan CAA.

I delarbete IV undersökte vi hur hjärnans kärl skadas i samband med inlägning av α-B i kärlväggen, och om och i så fall hur detta förlopp påverkas av samtidig annan kärlsjukdom. Vi fann att CAA vid AD och VaD skilde sig med avseende på de två viktigaste amyloid-komponenterna (och deras effekt på kärlens normala komponenter), vilket i sin tur kan bero på olika uppkomstmekanismer vid AD och vid VaD.

I delarbete V undersökte vi skador i hjärnstamskärnan locus ceruleus (LC) och dess samband med skador i hjärnans grå och vita substant hos Alzheimerpatienter. Även om vi inte upptäckte något samband, var det slående hur väl skador på LC kan skilja Alzheimers sjukdom från vaskulär demens. Detta kan eventuellt utnyttjas i framtida riktlinjer för neuropatologisk diagnos av demenstillstånd.
Acknowledgements

Obviously, a great number of people have made tremendous contributions to this thesis. First and foremost, I would like to thank my supervisor, associate professor Elisabet Englund, for having been an inspirational and infectiously enthusiastic supervisor through every stage and aspect of this project. By possessing and displaying all of the character traits required in a leader – being involved, being a facilitator and being an encouragement – she has guided this thesis through thick and thin. Secondly, a lot is owed to my fellow PhD students in the Englund group; Martin Sjöbeck and Annette Persson.

Other contributors at the department of Pathology include professor emeriti Arne Brun and Nils Jonsson, professor Per Alm, Sanaz Mojighashghaei, Christina Thunberg, Anna Härfstrand, Mikaela Bodell and Thomas Lindén. Especially, I am very grateful to the Head of the Department of Pathology and Cytology at Lund University Hospital, Henryk Domanski, for generously providing facilities. Equally deserving of special mention is Kerstin Sturesson, whose great knowledge and experience has been of tremendous help.

At the department of Psychogeriatrics, I would like to thank associate professor Ulla Passant, professor Lars Gustafson and Helena Andersson.

International contributors include professor Raj Kalaria at the University of Newcastle upon Tyne and dr Estifanos Ghebremedhin at the Johann Wolfgang Goethe University.

I would also like to thank associate professor Steven Greenberg, assistant professor Matthew Frosch, dr Edip Gurol, Elissa Robbins and KarLotta Fitch, all at Massachusetts General Hospital in Boston, USA, for being gracious hosts and introducing me to the CAA grading project.

This study was supported financially by Sparbanksstiftelsen Färs & Frosta, The Swedish Alzheimer Foundation, The Crafoord Foundation, Stiftelsen Landshövding Per Westlings Minnesfond, The Royal Physiographic Society in Lund, Lunds Läkaresällskap and the Faculty of Medicine at Lund University.

The costs associated with the printing of this thesis and hosting a dissertation were borne in part by the Faculty of Medicine at Lund University.

References

Bertram L, Tanzi RE. The current status of Alzheimer's disease genetics: what do

Canadian study of health and aging: study methods and prevalence of dementia. CMAJ. 1994;150:899-913.

Glenner GG, Wong CW. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res

Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y. Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron. 1994;13:45-53.

Meguro K, Ishii H, Yamaguchi S, Ishizaki J, Shimada M, Sato M, Hashimoto R,

Neuropathology Group. Medical Research Council Cognitive Function and Aging Study. Pathological correlates of late-onset dementia in a multicentre, community-

Palacios G, Mengod G, Tortosa A, Ferrer I, Palacios JM. Increased beta-amyloid precursor protein expression in astrocytes in the gerbil hippocampus following

Racke MM, Boone LI, Hepburn DL, Parsadainian M, Bryan MT, Ness DK,

Sadik K, Wilcock G. The increasing burden of Alzheimer disease. Alzheimer Dis

Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman DM, Miller CA, Strickland DK, Ghiso J, Zlokovic BV. Clearance of Alzheimer’s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the

early deposition of Abeta42 and then Abeta40 in the elderly. Acta Neuropathol. 2000;100:36-42.

