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1. INTRODUCTION

An attractive idea when investigating large systems is to mi-
mic the success of statistical mechanics, 1 e to consider a large
system composed of many copies of identical subsystems. A funda-
mental difficulty is that it is hard to find meaningful systemthe-
oretic problems which can be obtained by interconnecting identical
subsystems. This paper therefore considers a class of linear sys-
tems called flow systems. Although the systems are not identical
many of their properties remain invariant for different intercon-
nections. Flow systems can therefore be used as a  starting point
for analysing certain large systems. Flow systems have been used
as models for industrial and biological processes.

2. TANK SYSTEMS AND FLOW SYSTEMS

A collection of tanks connected by pipes is called a tank sys-—
tem. Such systems are common in industry, They have also been ex-
tensively used as models for biological and ecological systems.
Tank systems are often explored by tracer analysis, A traceable
substance, which propagates through the system in the same way as
the fluid, is introduced at some point of the system. The tracer
concentration at another point in the system is then measured. One
key problem is to analyse what properties of a tank system that
can be found from such an experiment.

Assume that the flows and volumes are in equilibrium, the tra-
cer propagation can be described as a linear time invariant dynami-
cal system. The dynamical systems describing tracer propagation



have, however, some special properties which motivates that they
are given a special name flow systems. The impulse response of a
flow system is non-negative which reflects the fact that the tracer
concentration is never negative. Moreover, if the tanks system is
open which means that all tanks are connected to an outlet (possib-
ly indirectly through other tanks) all tracer will eventually leave
the system. The corresponding open flow systems then have the pro-
perty that the integral of the impulse response is unity.

Open flow systems will be investigated in this paper. They
have many interesting properties which have largely been found in
connection with impulse response analysis of tank systems. The re-
sults are widely scattered in literature. Important contributions
are found both in engineering and medical literature. This paper is
an attempt to present a unified approach.

Two simple examples corresponding to a tank with pure mixing
and a tank with pure plug flow are first investigated. A formal
definition of an open flow system is then given and interconnec-
tions of open flow systems are introduced. The so called Stewart-
-Hamilton equation which can be used to determine the total volume
of an open tank system 1s then derived. The volume obtained is the
part of the volume which participates in the flow also called the
volume of distribution.

3. EXAMPLES
Two simple examples of flow systems will first be given.

EXAMPLE 1 (IDEAL MIXING)

Consider a tank with volume V and constant inflow and outflow g
(volume flow). Assume that there is perfect mixing in the tank and
that the fluid is not compressible. Let cj be the concentration of
a tracer in the inflow and ¢ the tracer concentration in the tank
and at the outflow. A mass balance for the tracer gives

de _ _
Vg = 4o

The propagation of the tracer through the system can thus be de-
scribed as a linear time invariant dynamical system whose input
output relation is characterized by the impulse response

T/V

h(t) = (V/q)e & (1)

EXAMPLE 2 (PURE TRANSPORT OR PLUG FLOW)
Consider a pipe where there is a pure material transport with uni-
form velocity and no mixing, Let the volume of the tube be V and



the flow q. Let cj denote the concentration of some substance in
the inlet and ¢ the concentration of the same substance at the out-
let. The concentrations are related by

c(t) = c;(t=V/q)
and the impulse response of the system becomes

h(t) = §(t-V/q) (2)
where § is the Dirac delta function. The propagation of a tracer

through a tank with ideal mixing and for a pipe with pure plug flow
can be described by linear time invariant dynamical systems,

In both cases the impulse responses have the properties,

h(t) 2 0 | (3)

Z h(t)dt = 1 (4)
and

Z th(t)dt = - V/q (5)

The equation (3) means that the tracer concentration is never ne-
gative and the equation (4) implies that all tracer will finally
leave the system. If the impulse response is measured by injecting
a tracer in the inlet and measuring the tracer concentration in the
outlet the volume to flow ratio V/q can thus be determined from the
equation (5) both for an ideal mixing tank and for a pipe with pure
plug flow.

4. AN AXIOMATIC APPROACH

The theory of flow systems will now be developed systematical-
ly. The analysis will be carried out for systems with one inlet and
one outlet. There are, however, no difficulties to extend the re-
sults to more general situations. In analogy with the simple exam-
ples the systems will be characterized by their impulse responses.
Introduce

DEFINITION 1

A single-input single-output time invariant linear system is called
a flow system if the impulse response has the property (3). It is
called an open flow system if the impulse response also has the
property (4).

It follows from the previous examples that the transportation
of a substance through a tank with perfect mixing and through a



pipe with pure mass transport without mixing can be described by
flow systems.

Notice that the quantity
t2

S h(t)dt

!

can be interpreted as the probability that a particle entering the
system at time 0 will exit in the interval (t1,tp). The impulse
response of a flow system can thus be interpreted as a probability
density. It is, therefore, also called the residence time distri-
bution or more correctly the density of the residence time distri-
bution. The properties (3) and (4) are far reaching. A flow system
is e g always input-output stable. To explore the properties fur-
ther we analyse the transfer function H defined by

st

H(s) = / e °° h(t)dt (6)

o =8

The equation (4) implies that

H(0) = f h(t)dt = 1 (7
0

For Re s 2 0 we have

-st

TS n(t)de <

[H(s) | Ié e (0)dt] < £ |e

< 6 h(t)dt = 1 Re s > 0

The magnitude of the transfer function of a flow system is thus
less than or equal to one in the closed right half plane,

Let w,; be arbitrary real numbers and X3 arbitrary complex
numbers. Then

Z Z . _ iwkt —iwﬁt
X, x H(iw, =iw ) z X, X e e h(t)dt =
e k™e k 772 i k™

It
o 8

)
k

. iwkt iwﬁt
= f(Zxke Y (Zx e Yh(t)dt =
0 '3

% iwkt 2
I olix e | h(t)dt > O (8)
0

k



It follows from a famous theorem of Bochner (1932) that the condi-
tions (7) and (8) also imply (4) and (3).

An open flow system can thus also be defined as a linear time
invariant system whose transfer function satisfies (7) and (8).
This is not done because the conditions (3) and (4) are much more
appealing to physical intuition.

4. INTERCONNECTION OF FLOW SYSTEMS

There are several ways to interconnect flow systems. They can
e g be connected in series, parallel or in feedback connections in
the same way as ordinary linear systems are interconnected. More
interesting and more useful results are, however, obtained if the
interconnection is done in a different way. Since flow systems are
used to describe the propagation of a tracer in a tank system we
will first consider different ways to connect tanks together, In-
terconnection of flow systems will then be defined by considering
the flow systems which describe the propagation of a tracer in the
interconnected tanks.

Tanks can be connected in many different ways. The outflow of
one tank can be sent to another tank (series connection). A flow
can be split up in different parts which are sent through tanks
and again continued (parallel connection). Part of the outflow of
a tank can be mixed with the inflow and sent to the tank again
(feedback connection).

It seems intuitively clear that if the tracer propagation in
two tanks is described by flow systems in the sense of Definition
1, then the propagation of a tracer in the interconnected tanks is
also a flow system. It will now be shown formally that this is in-
deed the case.

By a series connection of two tanks we mean the system ob-
tained by letting the outlet of one tank be connected to the inlet
of the other tank as illustrated in Fig 1.

Assume that the tracer propagation in S, and S, can be de-
scribed by flow systems with the transfer functions  H. .and Hy.
Let ¢y, cq and ¢ denote the tracer concentrations at tﬁe inlet of
S1» the outlet of S; and the outlet of S, respectively. Then

Cl(s) = Hl(s)Ci(s)

C(s) = Hy(s)Cy(s)

Elimination of Cl gives
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Fig 1. Series connection of the flow systems S, and S2'

C(s) = H,(s)H, (s)C, (5)

and we thus find that the propagation of a tracer in a series con-
nection of two tanks can be described by a linear system with the
transfer function

Hs(s) = HZ(S)Hl(S) (9)

To show that the transfer function HS corresponds to a flow system
we introduce the corresponding impulSe responses, i e

hs(t) = Z hz(t—s)hl(s)ds

It is clear that if h) and h) are non-negative then h. is also non~
-negative. Furthermore it follows from (8) that

HS(O) = HZ(O)Hl(O) =1

Taking (9) as the definition of a series connecting of two flow
systems it has thus been shown that the series connection of two
flow systems is a flow system.

We will now proceed to other ways of connecting flow systems.
A parallel connection of two tanks is obtained by splitting the
inflow q into two flows ®1q and apq where 0 < o] £ 1 and ay + 0y =
= 1. These flows are then taken as inflows to the tanks S1 and Sy
whose outflows are then combined assuming perfect mixing. The pa-

rallel connection is illustrated in Fig 2.

To analyse the propagation of a tracer through two tanks S
and S, in parallel it is assumed that the tracer propagation through
S1 an& S2 can be described by flow systems with the transfer func-
tions Hy and H,. Let cj denote the tracer concentration at the in-
let and ¢y and c¢) the tracer concentrations at the outlets of the
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Fig 2. Parallel connection of the flow systems S5;
and 52.

tanks. Then

Cl(S) Hl(s)ci(s)

C,(s) = Hy(s)C;(s)

Since the output flow is obtained by ideal mixing of the flows
a9 and asq, with tracer concentrations cj and cp, the concentra-
tion at the outlet becomes

C(s) = a1C1(s) + ayCy(s) = [ajH (s) + ayHy(s)] C;(s)

The propagation of a tracer through a parallel connection of two
tanks can thus be described by a linear system with the transfer
function

Hp(s) = alﬂl(s) + aZHZ(s) 0 < Gps Gy € 1, a1-+u2==1 (10)

To verify that this is a transfer function of a flow system the
impulse responses are introduced. Hence

hp(t) = alhl(t) + azhz(t)



It is clear that if hj) and hy satisfy (3) and (4), then hp will
also satisfy the same equations,

The feedback connection Sg of two tanks or two flow systems
S1 and Sy is illustrated in Fig 3. Let the inflow to S5 be q and
the tracer concentration cj. Furthermore let the proportion a of
the outflow of S; be the inflow to S,. It is assumed that the out-
flow of Sy is perfectly mixed with the system inflow.

If aqy is the flow through Sjp, a flow balance then gives
(oqy + q) = q

Hence

L T
Let ¢, denoté the concentration at the outlet of S, then

Cp(s) = H,(s)C(s)
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Fig 3. Feedback connection of the flow sys-
tems S and Sp. The inflow q is perfectly
mixed with the outflow of Sy, and the mixture
is fed to S;. The outflow of §; is split into
two streams, one of which goes to 85 and the
other part is the outflow of Sg.



The input to S; is a mix of two flows q and aq/(l-a), having con-
centrations c¢j and cp respectively. The concentration cy at the in-
let of Sy is thus

Cl(s) = (l-a)Ci(s) + aCz(s)

Furthermore

C(s) = Hl(s)Cl(s) = (1—u)H1(s)Ci(s) + aHl(s)Hz(s)C(s)

which gives

(l—a)Hl(s)
C(s) = Ci(s)
1 - qu(s)Hz(s)

The tracer propagation through a feedback connection of two tanks
can thus be described by a linear system with the transfer func-
tion
(1-a)H, (s)
Hf(s) = 0 cacx<l (1D
iy = qu(s)Hz(s)

Assuming that H. and H, are transfer functions of flow systems it
will now be shown that He is also such a transfer function. We
have
(l-a)Hl(O) 1 -0
Hf(O) = = = 1
1 - aHl(O)Hz(O) 1 -a

Furthermore introduce H = HiHy. Since S; and S, are flow systems,
it follows from the equation (7) that

|H(s)| £1 for Re s 20
The series expansion

He(s) = (1-a)H, (s)[1 + aH(s) + alH2(s) + ...]

thus converges uniformly for o < ag < 1 and Re s 2 0. The corre-
sponding impulse response then satisfies

hf = (1‘a)h1*[1 + oh + azh*h + ..4]

where * denotes convolution. Since S; and Sp are flow systems, we
have hyj(t) 2 0 and hp(t) > 0, and we find he(e) 2 0.
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Summing up we get

THEOREM 1

Let Sy and Sy be open flow systems with the transfer functions Hy
and Hy. The series Sy, parallel S, and feedback S¢ connections of
S1 and Sy whose transfer functions are defined by

HS = H2H1 (9)
Hp = alHl + u2H2 0 < A, o, <1, oy + a, = 1 (10)
(l—oc)H1
Hf=——~—— 0<ac<l (11)
1 - aH1H2

are then also open flow systems.

Remark. Notice that the series connection of two flow systems
is identical to the series connection of two linear systems. The
parallel and feedback connections of flow systems are, however, not
the same as the parallel and series connection of linear systems,

Using Theorem 1 the propagation of a tracer through a tank
system can be studied in the same way as signal propagation is ana-
lysed in an ordinary linear system.

5. THE STEWART-HAMILTON EQUATION

The analysis of the simple tank systems corresponding to a
tank with ideal mixing in Example 1 and to a tank with pure plug
flow in Example 2 shows that the following equation

Z th(t)dt = V/q (12)

holds in both cases. Compare with the equation (5). Recalling the
probabilistic interpretation of the impulse response h as the resi-
dence time distribution the equation (12) simply says that for a
tank system with one inlet and one outlet the ratio of volume to
flow equals the mean residence time. The equation (12) was first
used by the physiologists Stewart (1897) and Hamilton (1932) who
developed methods to determine the blood volume of the heart. The
equation (12) will therefore be called the Stewart-Hamilton equa-
tion. The equation has been widely used both in biology, physiolo-
gy and engineering. It has also been misinterpreted and therefore
the cause of much controversy.

The equation (12) can be derived by the following heuristic



argument. Consider an open tank system with inflow q. The fraction
h(t)dt of the particles which enter the system at time zero will
exit in the interval (t,t+dt). These particles have traversed the
volume dv = t-q. Integrating over all particles now gives (12).
The validity of the equation (12) can also be shown formally in
many. cases. We have the following result:

THEOREM 2

Let S7 and Sy be tank systems with one inlet and one outlet and vo-
lumes V) and V). Let the tank system S3 be a series, parallel or
feedback connection of S; and Sy. Assume that the Stewart-Hamilton
equation holds for S; and S then it also holds for S3.

Proof. Let Hy; and H, be the transfer functions which characte-
rize the tracer propagation in S and S9. The different ways to
interconnect the systems will be discussed separately.

First consider a series connection. It follows from Theorem 1
that the tracer propagation in S3 then is characterized by the
transfer function Hy = H{Hy. The mean residence time of S3 is then
given by

7 th3(t)

/ - H3(0) = - H!(0)H,(0) = H, (0)H}(0) = (V,+V,)/q =

= V3/q

The third equality follows from the fact that the flows through S,
and S, are the same in a series connection,

Now consider a parallel connection. See Fig 2. Since the flow
through S; is ajq and that through Sy is asq, we get

- = -u! =
Hl(O) Vl/(alq) and HZ(O) Vz/(azq)
The mean residence time of S3 is given by

? th3(t)dt
0

- . = - i - ! = =
H,(0) o8y (0) = a,H,(0) (V,+V,)/q
= V4/q
and the result is thus established also for a parallel connection.

For a feedback connection, Fig 3, the flow through S1 is q1 =
= q/(1l-a) and the flow through Sy is aq; = aq/(l-a). Hence

- Hi(o) = Vl/ql - (1‘G)V1/q

- Hy(0) = V,/(aq) = (1-a)V,/(aq)

11
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The equation (10) gives

2
= 1! - 1 - 1 '
i (1 u)HL . (1 a)Hl(uH1H2+aH1H2) ) (1 a)(H1+uH1H2)
3 _ ) h _ 2
1 aHlH2 (1 aHle) (1 aHlﬂz)

The mean residence time is then given by

7 S - HI(0) = - g -t - -
é th3(t)dt = HB(O) == B " 10 B (V1+V2)/q V3/q

and the proof is now complete.

Remark 1. Combining Theorem 2 with the results of Example 1
and Example 2, it is thus 'found that the Stewart-Hamilton equation
holds for systems which are obtained by series, parallel or feed-
back connections of simple flow systems with pure transport or
with ideal mixing.

Remark 2. The Stewart-Hamilton equation has been derived only
for systems which are open flow system. Internal recirculations are
allowed provided that only a fraction of the flow is recirculated
(a < 1 in Theorem 1). All fluid particles must, however, sooner or
later leave the system, or formally the equation (4) must hold.
This will not be the case if all the flow is recirculated.
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