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ABSTRACT.

The result of an identification experiment depends on a
numpber of items, such as the identification method, the
class of models used and the input signal generation. In
this report the effect of these items on the accuracy of
the estimates is investigated. The models are assumed to
be single—input single-output difference equations. Spe-
cial attenticon is paid to systems operating in closed
loop and the effects of the feedback on the accuracy. In
particular, it is shown that closed loop experiments can

give better accuracy than open loop experiments in the

case of constrained output variance.
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1. INTRODUCTION.

Process identification is a valuable tool for modelling
of dynamic systems. If the goal of the modelling is the
design of a control law it is desirable to know the open

loop characteristics, i.e. the transfer function from u
to y and how the disturbance vy influence the output y,
see Fig. 1.1, which shows a typical configuration for a
system with feedback.

U

Tv2

Fig. 1.1 - Block diagram of a closed loop system.
u —‘input signal to the process (measurable)
y - output signal (measurable)
u; — extra perturbation signal, also called
external input signal (measurable)

u, - feedback signal (measureable)

Vir Vo = disturbances (unmeasurable)

However, in many cases identification experiments cannot
be carried out in open loop, since several processes ope-
rate in closed loop. A typical reason is that the process
in open loop is unstable or unsatisfactorily damped so
that a regulator has to be used. Other types of processes,
e.g. many biological, economical and social systems are
inherently in closed loop. Thus it turns out to be very
important to know under what circumstances it is possible

to identify the open loop characteristics of a system ope-




rating in c¢losed loop. This dquestion is thoroughly trea—
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2. IDENTIFIABILITY PROPERTIES.

" In this section some identifiability results will be re-
viewed from Ljung-Gustavsson-SOderstrém (1974} . Consider
a linear, discrete time, stochastic system S, given on

the general form
-1 ' -1
y(t) = Gg {g “Ju(t) + Hs(q ye(t) (2.1)

The output, v{t), is a vector of dimension ny and the in-
put, u(t), has dimension n,- The variables {e(t)} are a
sequence of independent, random vectors with zero mean
values and covariances E e(t)eT{t) = pA. It is assumed

that e({t} has the same dimension as y{t), which introduces
no loss of generality. Gs{z) and Hs(z) are matrices of
appropriate dimensions with rational functions as entries
and q“1 is the backward shift operator, i.e. q_lu(t) =

= u(t-1). It is assumed that GS(O) =0, i.e. there

is a time delay in the system. It is also assumed that
Ho(0) = I and that det[HS(z)]_?as_?ll zeroes strictly out-
side the unit circle. Then Hg (g 7} is a well-defined,
exponentially stable filter. This assumption is not very
restrictive, cf. the spectral factorization theorem, see

e.g. Astrém (1970).

The input, u(t), to the process cén be determined in se-
veral ways. It can, as in open loop experiments, be cho-
sen freely by the experiment designer., It can also be
determined partly from output feedback by a regulator of
a given structure, etc. On the whole, the manner in which
the input is determined will be referred to as the expe-
rimental condition, denoted by X.

To determine a model of the system the functions G(z) and
H{z) are parametrized in a suitable manner by a parameter

vector 6. A model <corresponding to a certain value of 6




is denoted by M(8) and is given by

! . -1
y{t) = G, 2y (@ TJult) TH Gy @ et (2.2)

where {e(t)} is a sequence of independent, random vectors
with zero mean values and covariances R. When 6 is wvaried
over the region of feasible values, eg. (2.2) represents

a family of models denoted by M. This family will some-
times be referred to as the "model structure". The identi-
fication problem is to determine the parameter 6 so that
M(8) in some sense suitably describes the system § given
by eq. (2.1).

Remark: The recursive expressions (2.1) and (2.2) require
certain initial values to be started up. Since the analy-
sis in this paper concerns asymptotic properties, these

initial values will have no effect on the results and can,

‘ for example, be taken as zero.

In Section 4 this general model structure will be treated. .

In Sections 5-7 specialization will be made to single

input single output systems of the form

~ a1 ~, -1 :

y () =qk}f’£q)—u(t) +§_E§:Il e (t) (2.2')

A{g ™) Alg )
where
A A A _n
A{z) = A =1 + a,z + ...+ aﬁ z a

a

: . : A
B(z) = B = b.z + + b z




n
~ o " " u c
C(z) =C =1+ clz + . + Cn'z
c
kz O 3 2 0 ng 2 1 n, = 0
f

and
" n ~ Ao ~ o
g = al..-an ,blo-cbn ,Clnuvcn ] (2-3)

a b c

For single input single output systems A is substituted

with A2 for convenience only.

In the general case G and H can be parameterized e.q.
via vector difference equations or via state space rea-

lizations, see Ljung-Gustavsson-S&derstrtm (1974).

T e S R

Let the identification method used be denoted by I; some

different specific methods are discussed below. In order
to be able to treat the problem in a systematic manner

some useful identifiability concepts will be introduced.

Let

DT(S,M) = {e|GM(é)(z) = Gs(z) and HM(é)(z) = Hs(z) a.e.z.}

This set consists of the parameter values that give mo-
dels M(e) with the same transfer function and the same

noise characteristics as the system S.

Let the parameter estimates at time N for given §, M, I
and X be denoted by 6(N;S,M,I,X)-




Definition 1. The system § is said to be System Identi-

fiable under M, T and X, SI{M,I,X), if e(N;S, M, 1,X) -
+

- DT(S,M) w.p.l as N - o,

Definition 2. The system § is said to be Strongly System
Identifiable under I and X, SSI{I,X), 1f it is SI{H,I1,X)
for all M such that DT(S,M) is non-empty.

Definition 3. The system S is said to be Parameter Iden-
tifiable under M, I and X, PI(M,71,X), if it is SI(M,T1,X)
and DT(S,M) consists of only one element.

Notice that PI(M,I,X) is always implied by SI(M,I,X) if
Dp{S,M) consists of only one point. This condition on
Dp(S,M) involves neither T nor X, and is the problem of
canonical representation of transfer functicns. It is
convenient to treat this difficult problem separately
and study the identifiability propérties for different
experimental conditions X by considering SI(M,7,X). Clear-
ly, a necessary condition on M to achieve SI(M,T,X) is
that DT(S,M) is non-empty. If the system is SSI(I,X),
this condition is also a sufficient condition on M for
SI(M,I,X). In that case the fact that the system may ope-
rate in closed loop does not add any extra difficulties
when choosing appropriate model structures M, Experimen-
tal conditions that give S8SI(I,X) therefore are equiva-

lent to copen loop from the viewpoint of identifiability.

¥ By this it is meant that
inf |8 (N;S,M,1,X) - 8] » 0 w.p.1 as N »a,
6ED

T




There are many identification methods that can be used
for identification of the system S . Special attention
will be paid to two methods.

1. Direct identification, denoted by'Il. This method

means that the signals u and y are used straightfor-
wardly assuming no a priori knowledge about the re-
gulator or even that the process is operating in

closed loop. Mcoreover, it is assumed that a statisti-
cally efficient prediction error method is applied. The
maximum likelihood method, see e.g. Astrdm-Bohlin (1965},

is such a method.

2. Indirect identification, denoted by I,. It consists

of two steps. As a first step the closed loop system
is identified, e.g. the transfer function from uy to
v, if an_external input signal is used., If u; = 0 the
output can be modelled as a pure time series. The se-
cond step consists of algebraic calculations. In this
step it is assumed that the regulator is known, and

the parameter vector 8 is solved for,using the closed
loop characteristics estimated in step 1. This way

of identification is not applicable if there are dis-

turbances in the regulator, i.e. when v, # 0.

Before reviewing the identifiability results it will be
appropriate to consider the experimental condition X. It
will also be valuable to make use of sets of experimental
conditions. Such setg will in general be denoted by {X}.
An example of such a set may be to require that u; o= 0
and that the regulator is proportional. Then {X} can be

considered as a set of constants of the proportional re-

gulator.




An extension of optimal input design is to determine the
experimental condition X in a given set (¥} that will
give optimal accuracy. In this report three different
sets of experimental conditions will be considered. Tt
turns out that they often give identifiability as stated
explicitly below.

1. X} - The open loop configuration, i.e. u, =0
in Figure 1.l. For such experimental con-

figurations there is no feedback.

2. {X}Z(r,n) - The feedback consists of shifts between r
different linear regulators of order n. No
external input uy is used. The shifts are
performed in such a way that the transients
have influence a negligable part of the ex-
periment time. During 100 Yi percent (i =
= 1l,...,r} of the total experiment -time
the following regulator is used '

Fya hute) = g hywy (2.4)
where
_ _ n
Fi(z) = Fl 1+ £ 12t e fin? (2.5)
- = : n "7°
Gi(2) =65 = 950 * 4312 + vvv + g2

The notation {X}z(r ) will mean that the
;e
orders of the regulators are not specified.
3. {X}3(n) - One regulator of order n and external in-

put. The input u(t) is given by

Flg Dult) = Flg Hu(8) + 6@ Hyt) (2.6)




where
n
F(z) =F =1 + flz + ... + £z
n (2.7)
G(z) =G =gy + g2+ ...+ gnzn

The notation {X]3(_) will be used when the order of the

regulator is not specified.

With some abuse of the notations the set of experimental
configurations will in the following be denoted by Kl,‘
Xz(r,n) and X3(n).

The concepts M, T and X will have the following influence
on the identifiability, cf. Gustavsson-Ljung-S&derstrdm
(1974).

M: A necessary condition for identifiability clearly is
that DT(S,M) is not empty.

I: If 1, fails, then any method will fail, If 12 is app-
licable and the system is SI(M,IZ,X) then it is also
SI(M:Il:X)-

X: The experimental conditions Xl {(i.e. open loop), X2(r,-)
{i.e. shift between r requlators)with (r~l)ny 2 n,
and X3(-) (i.e. one regulator and external input sig-
nal) will in general imply identifiability, provided
that for Xl the input signal u and for X3(°) the signal
uy is persistently exciting (see e.g. Astrdm-Bohlin
(1965) for a definition of this concept). This means
that the system is SSI(I,Xl), SSI(I,XZ(r,-)) and
SSI(I,X3(°)). However, the system is not SSI(I,Xz(l,')),
i.e. experimental conditions in Xz(l,') {one regulator

and no external input) will sometimes give identifiabi-

lity and sometimes not.
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3. ACCURACY OF IDENTIFICATION.

There are several ways to analyse the accuracy of the re-
sult .of an identification. Such analysis can be found in
several references treating optimal input design, e.q.
Aoki-sStaley (1970), Mehra (1974) and Nahi-Napjus (1971).
Cf. also e.g. Astrdm (1967).

The analysis in this report is based on asymptotic result.
It is possible to use the covariance matrix P of the para-
meter estimates as a measure of the accuracy. An alternative
is to use Fisher's information matrix J, see e.qg. Kendall-
-Stuart (1961) for a definition. e(t) in the eqguation

{2.2) can be regarded as a function of §. Let e' (L)

denote the derivative of e(t) with respect to 8. Then

the information matrix can be written as

T = Ee' (£)Ta T e (b)on ‘ (3.1)
Moreover, when the ML method is used, asymptotically
P=2J (3.2)

For an arbitrary identification method the Cramér-Rao in-
equality, see Cramér (1946) and for this particular case
also e.g. Astrém (1967), can be stated as

py gt (3.3)

It follows from (3.2) that it is equivalent to use P or
J as a measure of the accuracy. However, if two experi-
mental conditions are to be compared, then such an app-
roach means that two matrices, say Pl and P2, and not two
scalars are to be compared. It may now very well happen

that neither P, 32 P2 nor P2 2 Pl ig true. Thus such an

1
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approach will not in general make it possible to judge
which will be the optimal experimental condition. For

this reason scalar measures of the accuracy will be used.

In this report two different measures are treated. One of
these measures is det J = (det P)_l. This measure is in-
terpreted as follows. The larger the value of det J is,
the better the identification result is considered. How-
ever, this measure has a disadvantage. If such M, I and

X are considered that the system S is SI(M,I,X) but not
PI(M,T,X) [i.e. the set DT(S,M) contains more thah one
point)then det J will in general be zero, Nevertheless,
the obtained model can give a goocd description of the

true system.

The other type of measure was described in S8derstrom
(1973). The idea is to use a scalar differentiable func-
tion v{0) of 6 such that

8 € Dp(S,M) = V(e) = inf V(se) (3.4)
0 )

This means that all models giving a true description of

the system will glve the absolute minimum value of the

loss function V, cf. Figure 3.1. Note that the reverse

is not necessarily true.

inf V(8)
0

1 »
90 (7]
Figure 3.1 - Illustration of a function V(8)}. The set

DT(S,H) consists of the single point 90.




SO far general multivariable systems have heen con51dered
;iﬁiéﬁe following examples of functions V(8) the single-
input single-output model (2.2') is chosen. It is assumed
that the system has the same structure,

Example 3.1.

v (8) = E ¢2(t) | (3.5)

‘The loss function Vl(é) eXpresses the variance of the one
step prediction errors {i.e. e{t)) that will be obtained
using the model.

Example 3.2,

. . ~ : 2
R -~ ~1, -~k . ~1,.-k _
v,(e) = |(2{2 )g = _ Blg }‘f } ult)p (3.6)
A{g 7) A{g ™) _

The loss function v, (8} expresses how well the model
describes the determlnlstlc part of the system. If in
(3.6) the 51gnal u({t) is chosen as whlte noise then

~ * . L2 ' _
Vé{s)n igl(hi hi) '(3.7)

where hi(ﬂi) is the discrete time impulse response of
the system (resp. the model).

Example 3.3. Assume that the model is used for construc-

tion of a minimum variance regulator, cf. Astrdm (1970).
Suppose that the true system is controlled by this regu-
lator and take
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'v3(5) = E yz(t) {3.8)

The regulator is given by

-1, -1
g G(g 11 v (£)

U.(t) = - —1
Blg J)F(g )

where F{qul) and G(q—l) are defined by

cigh = A(q_l)F(q_l) + q_k_lG(q_l)

Thus the closed loop system will be

~

1 k

ag He@ Hrh + g heeh -

1

L hEh et (3.9)

- Ag HEE Y Y v = clg

If, in particular k =1 then F reduces to 1.

Functions satisfying (3.4) can be used for measuring the

accuracy of & by considering the scalar
E V(BN) (3.10)

where expectation is to be taken over éN' It may be pos-
sible that the expectation (3.10) does not exist. This

is further discussed in the next section. Also note that
in evaluation of a single realization V(éN) expresses

the accuracy of the identification result from this single

experiment.
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4. INFLUENCE OF THE [MODEL STRUCTURE ON THE ACCURACY.

The model structure M can be chosen in many ways. It will
influence the ideﬁtifiability as well as the accuracy of
the result., The purpose of this section is to study the
influence on the accuracy. A criterion of the form

EW%) (4.1)

as discussed in the previous section will be used. It will
be generally assumed in this section that the system S is
PI(M,1,X) for the present M, T and X. This limitation is
made for technical reasons,

The expression (4.1) will now be approximated., et 8y de~
note the parameter vector describing the true system. The
function V(g) ig approximated by three terms of its Tay-

lor series ag

W@N?@)=W%)+Ww@@ﬂy+

1. Ton -
+ 5(6~60) v (60)(6-80) (4.2)

Since V(a) has a minimum in 60’ cf (3.4), it follows that
V'(eo) = 0. Now

BV (by) ~ 5T (5y) = vieg) + L Bloy=00) V" (50) (By8y)  (4.3)

Note that the left hand side of (4.3) may not exist, This
is the case e.g. for the function given in Example 3.3,
since for that example there is a non Zero probability
that the closed loop system is unstable. Nevertheless the

right hand side of (4.3) describes an appropriate measure

of the obtained accuracy of the identification.
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he'expresslon (4.3) is easxly rewritten as

~

B tr{SN—éo) V“(GO)( N—GO) =

o b

V(BN) & V(BO) +

:;. \a o - _a vI _

ol

= V(Bﬁj +

I\

c g 1t a —
tr V (GO}COV(GN}V—

DI b

V(GQ) ¥

tr v"(aO)J'l, ' ' (4.4)

tof

= v(eo) +

In (4.4} V{e } is a constant 1ndependent of M, T-ana X,

~This means that it is of interest to study the expres—
sion

‘ -1
tr V'(GO}J

for different model structures. Note that the dimension
of the square matrices V“te } and J is dependent on the
model structure., Note the 51mllar1ty with a criterion of

the form tr QJ*l, where © is a weighting matrix. Such a

criterion is used e.g. in Mehra (1974).

Example 4.1. Consider the spec1flc choice V, (8) = Eaz(t)

as dlscussed in Example 3.3. Then

2
_ 2 v gy = 220
vy (8g) = A vileg) = J
N
50
5 a3 2 1 -1, _ .2 I ..
EV&(GN) = 71 + 5 tr JJ 7)) = AT (1 + i le J) {4.5)

This means that if more than the minimal number of para-
meters are used then dim J will be unnecessarily large

and so will the criterion EVl(BN).
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Sacv {de T g%y as, Qv d262

After these preliminary considerations it is possible to
treat-the general case. Consider two model structures M,
and Mz. since a model structure can he interpreted as a
set of parameters the relation

c M {4,6)

2

is well defined. A possible interpretation of {4.6) can
be that Ml is obtained from M2 by fixing some parameters

to zero.

Let the 6&-vector corresponding to Ml be denoted by 84
and the 6-vector corresponding to M2 be denoted by 9,.
Note that 0y and &, in general have different dimensions.
Then, due to (4.6) the 9, vector can be parameterized
with Sl to describe also Ml, i.e. the model structure

Ml ig “"given" by some function
8, = 6,(8;) | ‘ (4.7)

Let now V"(G } and J2 denote the matrices corresponding

to the model structure Mz To find expressions for these
matrices for M the relation (4.7) will be used Con51—

der the functlon V[G (81)} Clearly {with d V/da =

= V"(BO)] :

av _ av dez

del d92 dBl

2

de ds d62 dei

de

H

The last term in (4.8) is written just in a formal way.

Since dv/ds, vanishes in the minimum point
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o T2
—_—y = _ 2
de] de;) Ao e,

(4.9)

gimilarly the information matrix Jq for the model struc-

ture Ml becomes

T
do de
. 2 3, 2 (4.10)
dBl del

<y
il

Evidently to compare the expressions of EV(SN) for Ml
and M, is nothing but to compare tr{d V/del)J “l ana

tr{(d V/dB2 21. To do this comparison the following lem-—
ma will be utilized. The proof is rather long and given

in Appendix 1.

Lemma 4.1. Let A and B be two symmetric and nonnegative
definite matrices of the same dimensions. Assume that
the nullspace of B lies in the nullspace of A. Let R be

an arbitrary matrix of proper dimensions. Then

tr AB+ 3 tr(RTAR)(RTBR)+ {4.11)

'l

where B® denotes the pseudoinverse of B, see e.g. Zadeh-
Desoer {1963) for a definition’ Moreover, equality in

(4.11) holds if and only if

apt = ar(rTBR) TRTBET (4.12)

The application of the lemma is given in the following

theorem.

-1

Tf B“l exists, then B+ﬂB




Structure y 4% possible, The only restriction is, of
Course, that M must be chosen such that the System S ig
PI(M,I,X), i.e, such that the set DT(S,M), see {2.10),
containg gz point,

conditions, 1t does not matter €.9. if the Procegs ig
Operating in Open loop or ip closed loop. Note alse that

the analysis holdg for multivariaple Systems and for a
general clasg of models.
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5. INFLUENCE OF THE IDENTIFICATION METHOD ON THE ACCURACY.

.There exist great many different identification methods.
 .0né reason for this is that the identification method has
influence on the accuracy. In particular, those giving mi-
nimal variance on the parameter estimates are called sta-
tistically efficient. If it is important to obtain as good
an estimate as possible such a method must be used. The
maximum likelihood method is statistically efficient, see
e.g. Astrém-Bohlin (1965). B o

In this section the influence of the identification methed
on the accuracy will be treated for single input-single
output systems operating in closed loop. The model struc-
ture (2.2') will be considered. As mentioned earlier there
are essentially two ways to perform the identification

{see SéctionAZ}:

o direct identification, 1y

o indirect identification, 12.'

It has been earlier assumed that the ML method is used in

Il.'To-get as good an estimate as possible when I, is used,
the closed loop system must be identified with an effici-
ent method. It is assumed in the following that this is the

case.

The following facts about the indirect identification me-
thed I, can be stated. )

o 12 is not always applicable {e.g. if there is noise in

the regulator).

0 12 requires special programs to solve the open loop

characteristics from knowlédge of the regulator and

the closed loop characteristics.




€ structure {order) . The ex-

perimental condition X may be Xz(r,-) {(i.e. shifts_between
r different regulators) or,X3(-) {(i.e. one regulator ang
an external input signal), In order to simultaneously
treat both the cases assume that
-1
Gy g ™)

u(t) = uy (t) + _1___:}?_ Y(8) (=1 .., p (5.1)

F;(q

in IOOTi bPercent of the eXperiment time, The cases U, (t) =
= 0, i.e, Xz, or Gi(th) = 0 some i are thus alloweq,

With use of (5.1} the closed Loop systen with regulator
humber i is given by

=k -1,
. - 9 "Bfg
y(t) = Y(l) (t) = — u, (t) +

e(t) : (5.2)

(1), Al HE (@
u(t) = gy (t) = ) ul(t) +
Hi (q )

+ T e(t) _ (5.3)
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 Twher€"
o o :
Hi—('Z)- = A(z)F (2) - z B(z)G, (2} (5.4)

(5.2) and (5.3) are assumed to hold when the regula-
tor is Gi(q-l)/Fi(q_l) {(t =1 ... r). Since this regula-
‘tdr is used in lGOxi percent of time the covariance ele-

'ment ry(T) is to be interpreted as

- . | N _
- (1) ¢ (5
?Yfr} iél Yy, () | : 7 | (5.5}

‘similar expressions will be used for other covariance

elements.

consider now the method Byo Since it is efficient C3.l)
and €3.2) imply-that‘ﬁhe covariance matrix of © becomes

-I

. L2 o ’ ) ) :
P; = L[Ea‘T.(t)s'(tI], L E (5.6}
where
- T . h -
et{t) = [——— y(t=1) ... —=— y{t-n_),

Leta™) clg, °
1o RS S
- —= u(t-k-1) ... - —— u(t-k-n.J,
Clq l} . E{g 1}‘ b
- e(t-—l) cee T T e(t—n }
cig™h octgh © }

cf. Astrdm-Bohlin {(1965).

The expression (5.6) is to be interpreted as {use (5.5))
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2 .y T .
= A , (L)' (i

(i)', 1° (4),, . 1 (1)
€ - () — Y (t-1) ... — v (t-n_),
[C(q 1 ciq™t) a
"1 (i) 1 (i)
= u T (eek-1) L - — 2 W ey,
ciqg™h c(q™h b
1 1
- ——-r—e(t-1) .., - ————— e(t-n )]
@™ o ©

Consider now the method 12. The first step of the identi-~
fication means that the polynomials
k k k_*

* *
— . 4. i =
AFi b4 BGi Fy Ai’ Z BFi & g Bi’ CFi Ci i I ... r

* : s
are estimated. The sequence of B; is to be omitted if no
external input is used. It is now further assumed that

for each i there is no common factor to all three boly—

*

nomials Az, Bi and CI. The ﬁ, B and ¢ can be computed

from
~ k;\ . *
AFi - Z BGi = A
BF, = B i=1 (5.8
i‘—Bi - o-.r u)
oF, = ¥
1 5 ¢y

Equation (5.8) can be interpreted as a system of linear
equations, namely
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(5.9}

o
S -
-
o o, tn
1 I
o~ -
A -
o)) ot (@]
] ]
puf
-
o - o
-
-
I IR @)

._.._........__._._____.‘}._——————_..__.._'—.-.-}-.—————_—__-.-—-—
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e e e

-9) is an Ooverdetermineqd linear System of

“ - _I -
6 = [AT[Var b1 [ A var 4171, (5.10)
which giveg

‘ - -1
P, = [AT(Var b) lA} (5.11)
2

(5.12)

]
g
e
'-.l.
. <3
ol
=
o~
f —)
‘_J
T
I
Pt
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© However,

2 -1
T
var ﬁi = -i—{EwimiJ (5.13)
TN
3
where
T 1 , 1 .
Cila ™) i i
- ey eeke1) L - e (ken, ),
C, ( ) Cyla ™) i
1 1
- e{t-1} - e{t-n *}]
* =] *, —-1 C,
Cy ( } C, ) i
Thus
2 (r -1 2 -1
_ A - T T _ A T T
But
T 1 -1 i -1 i
ojhy = =t (P Dy M e, r @y e,
C, (g ™)
._l 3 -
e, (¢ hy ™ (ek-1) - Fo(a Dy (ek-1) ...,
_ -1, i), _ -1
G; (g My (t-k nb) F; (q )ul(t-k-nb),
—Fi{q_l)e(t—l),...,—Fi(q_l)e(t—nc)]
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But (5.1) and (5.8) give

1 1 -1
G,{q ™) F.(q ) F.(g ™)
- i — y(l)(t) = Ty ()= = - u(l)(t)z— l—l u(l)(t)
Cila ™ C,la ™) C;la ™) Clg ™)
Thus
@? A, = g (1)

(5.14)

Thus it has been proved that for appropriate assumptions
the direct identification method Il and the indirect
identification method 12 vield the same accuracy. The

basic assumption was that for

* k

Ai = AFi - Z BGi
* —_—
&

Ci = CFi

there is no common factor to all the three polynomials.
This implies that the closed loop system is parameter

identifiable for every single regulator so that the

matrix Var bi is non-singular.
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6. INFLUENCE OF THE EXPERIMENTAL CONDITION ON THE
" ACCURACY.

" 6.1. Introduction.

o

‘ag mentioned earlier the three concepts, the model struc-
ture M, the identification method 7 and the experimental
condition X will influence the identifiability of a sys-
tem as well as the accuracy when it is identifiable. In
the previous sections it has been shown that simple rules
can be used for determining how M and I should be chosen

in order to obtain the greatest possible accuracy.

In this section the influence of X will be discussed. In
one sense the experimental condition will have a greater
influence on the result, If it is found that an X does
not yield the best possible accuracy then the whole iden-
tification experiment has to be repeated. In contrast, if
¥ {or 1) was not chosen in a suitable manner it is pos-

sible to try other M (or I) on the sama data.

Special attention will be pald to the choice cof an opti-
mal experimental condition. This problem can be regarded

as a generalization of optimal input design, which has

Levadi (1%966), Gagliardi (1967), Roki-Staley (1970}, Nahi-
-Napjus (1871), Goodwin-Murdoch (1872), Keviczky-Banyédsz
({1973), Goodwin-Payne (1973), Ljubojevié (1973) and Mehra
(1974) . In all these papers the only experimental condi-
tion at the designer's disposal has been the characteris-
tics of the input signal. The possibility to change the
experimental conditions by for example introducing a feed-

back has not been considered.

In the papers mentioned above the optimal input design

problem has been discussed for both continuous and disc-

been studied in a great number of papers, e.g. Levin (1960},
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rete time systems, in both the frequency and time do-
mains, and with different constraints on the signals. In
most of the papers the input energy or amplitude has been
constrained. Only a few papers, e.q. Aoki-Staley (1970),
consider the output constrained case,which seems to be
the more natural choice. Most of the analysis here is y
carried out for this case. For the sake of completeness

the case of constrained input variance is considered in

Section 6.4. The obtained results have essential diffe-

rences,

The work on optimal input design has given valuable in-
sight into the more general problem of optimal experimen-
tal design. It has resulted in a number of algorithms
which are valuable also in a more general setting of the
problem as proposed here. Alsoc notice that in order to |
solve the general problem of optimal experimental design l
also e.g. the choice of sampling rate should be included, ‘
cf, Goodwin-Zarrop-Payne (1974)}. In order to amplify the

importance of feedback for optimal experimental design

the influence of the sampling rate is not considered in

this report.

Since the problems lead to complicated calculations only
first order systems will be discussed in the sequel. Two
systems will be considered. The following systems

(Ltag )y (t) = bg Lu(t) + e(t) (6.1)
and

-1 _ -1 -1
(L+ag ")y (t) = bg "u(t) + (l+cg “)el(t) (6.2)

are treated. In the whole section it is assumed that M

is chosen minimal, i.e.
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(1+ag Dy (t) = bg Tu(t) + s(t) (6.3)
and
(1+aq Lyy(t) = bg Tult) + (1+éq Lye(t) (6.4)

respectively.

6.2, First Order Systems with White Noise.

In this section systems of the form (6.1) will be treated

(l+ag D)y (t) = bg !

u{t) + e(t)

The sets Xl (open loop}, X2(r,n) {(r different regulators
of order n) and X;(n) (one regulator of order n and an
external input signal) have elements which are the para-
meters of the regulator(s) and/or the covariance function

0f the {external) input signal. Thus it is trivial that

Xz(lf') = Xz(rl‘) (6-5)
Xz(l,-) c X3(-) (6.56)
X < X3(') (6.7)

Let {J(X)} denote the set of possible information matrices
generated by all the elements in the set X. With this no-

tation the following theorem is formulated.

Theorem 6.1. The sets {J(X)} for the different sets X sa-

tisfy

{J(Xl)} c {J[Xz(l,-)]} = {J[Xz(r,-)]} = {J[X3(-))} (6.8)
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The proof is somewhat technical and is given in Appendix
2. The result is very strong. It means e.y. that given

an information matrix obtailned with X3(-), then it is
possible to find a regulator in X2(1,-) giving the same in-
formation matrix. In particular this means that in search-
ing for optimal regulators the optimization can be per-
formed in Xz(l,-), Xz(r,-) or in X3 without affecting the
result. In the following, the optimization will be done

in xz(l,-). Then the optimal J will be considered. How
this J can be obtained in the simpler sets of experimen-
tal conditions Xé(Z,O) and XB(O) will be examined in par-
ticular.

It follows from the proof of Theorem 6.1 that when xz(l,')

is used J can be parameterized as follows

. ry(G) -ryu(O)
J = - =
32
—ryu(O) ru(O)
1 + b%r ~ |2 4+ 5 + br (a+p)
-n| 1; (6.9)
- 12 + 1 + br(atp) &5+ r (1+a%+2ap) + 2 & 4
b b b

The variables r, p and n are formally defined by
r = Ev(t)2

rp = Ev(t)v(t-1)

n = Evi{t)el{t)

where

|
|
(
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| clgh -2 F@@hH
vit) = - =T —— 7 ¢t
A(g TIF(a ) - by G(g )
The variables are constrained by
2 2
0 <r et s 1 - - (6.10)
r

When optimizing different criteria for the accuracies
some constraints must be added. In design of optimal
input signals it is e.g. common to limit the values of
the input or the output. Here it seems to be reasonable
to require that the variance of the output is bounded,
say

r, (0) < A2 (1+6) (6.11)

where & is a positive number. If & = 0 then the. system
must be controlled with a minimum variance strategy.
Thus (6.10) will be replaced by

448

3]

2
0 cr ¢ > 02 1 - Ao (6.12)
r

Now two scalar functions of J,given by (6.9).,will be op-
timized with respect to r, p and n under the constraints
{(6.12).

Consider first optimization of the determinant of J.

It is easy to establish that

L det g = [bzrz 2) 4+ r - 2Zbrnp - nz]
|
}
L

r(b%r+l) - (n+brp)2] (6.13)
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Clearly, det J is maximized by the following choice

5
r == (6.14)
b2
Sp _
n + = 0 (6.15)
b .
which imply
1+s - &(146)
g bz (6.16)
-2 (1+6) = (1+6) + &
b b b
d _ 201 .
et J = N =5 &(1+8) (6.17)
b )

Note that there are several p and p that satisfy (6.12)
and {6,15).

Consider now the loss function V3(§), given in Example
3.3. This function Satisfies

[, a
. ~ 2 . 2 - b
E Vy(8) »EV_(8) = 22 + 32 ¢y J (6.18)
3 3 2
- 2 a_
b b? |
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(6.15) are satisfied.

1n

The remaining part of this subsection is devoted to "so-

© 1utions" of (6.16), i.e. to an examination of what regu-

1ators and input signals give this optimal information

matrix.

Tt follows from the proof of Theorem 6.1 that to "solve"

(6.16) is equivalent to reguire that

r, (0) = A2 (1+8) (6.20)

r (0} = 3° %(1+6) (6.21)

Consider first the set X2(2,0), i.e, shift between two
proportional regulators, With use of equation (5.2) it
is found that (6.20) means that

2 2
B Lo ew| = ! 5 = 27 (1+6)
1+ (a-bg,4)q 1 - (a-bg,,)
or
5
a
T+ 35 .
99 = i=1,2 (6.22)

Thus the two regulators are entirely specified from
(6.22}).

The remaining equation, (6.21}), will determine what re-
lative influence the two regulators Gl and G2 will have,
i.e. determine the two numbers Y and Yoo (These numbers

satisfy by definition vy, + Y, = 1.) With use of (5.3)
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2 910 - 2 920
2 Rag = 52y, L 2y, e IO
, b 1 - (a-bgyy) 1 = (a-bgy)

which can be rewritten ag

2% 214 = vl e T ty = [+
b b 1+s

+ TZAZ_LJ:.:!'_@__)_ a —"-_._.6._.

b 1+5

or simplified

X
n
eyl
i}
<
w

(6.24)

The resulting experimental cbndition means that two re-
gulators are each used 50% of the total time and
each gives Precisely the maximal allowed variance of the
output signal, This experimental configuration ig illust-~
rated by the Figure 6.1,

Consider now the set X3(O). The choice

G:E
b
26
ul(t) white noise of variance-ijr
b

A thorough analysis woulgd show that the exXperimental con-

dition above ig one of several Possible choices to satisfy
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{6:16). It is e.g. not necessary to use the minimum va-

:riance regulator G = a/b, cf Example 7.3.

Var y

(1485147

5
G0 9o 920 g

Fiag, 6.1 - Illustration of optimél experimental configu-
ration in Xz(r,-). g denotes the regulafor pa-
rameter. 9o is the minimum variance regulator.
The optimal configuration is obtained by taking
919 50% of the time and 990 in the remaining
50%.

Finally, in order to compare the result with optimal in-
put design the set Xl will be considered. Since Xl means
open loop system there is no regulator and the constraint

on the variance of y(t) implies that

12 2
5 < A7 (1+6) (6.25)
1 - a

or




36.

is necessary in order to meet this condition at all,
Introduce

. r l 2
Ry = E ) u(t)]
|1 + ag
[ g
Rl = B ——-——_—:I u(t) T U(t}
|1 + ag 1 + ag

Then (6.20) and (6.21) can be written as

2
%Ry + —2 = 2Z(1+0) (6.26)
1l -a
_a .2
b(Rja+R;) = = 2“(1+8) (6.27)
b
Straightforward calculations give that
Az 2 .2
RO = _i____ﬁ_ [é'a —-a 6] (6.28)
b™{l-a%)
' 2
al
1 p21-a?d)

If (6.28), (6.29) correspond to a physical solution it

is necessary to require that R0 0 (which is (6.25)]
and

IR, | = R, (6.30)

Clearly, (6.30) is a stronger condition than (6.25). 1t
can be simplified to
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> (6.31)
1 - |a]

The inequalities (6.25) and (6.31) have the following
sense. In order to meet the constraint (6.25) on rY(O)
it is necessary that 6 3 az/(l-az). In order to achieve

e

optimal accuracy, © must be larger, namely 6 2 lal/(1-1lai).
Cf. also Figure 6.2. The result is striking. It means that
although open loop experiments may be possible with re-
spect to the constraints it can be more advantageous to

use closed loop experiments!

Sa
10

—$

00 05 10 1oy
Fig. 6.2 - Illustration of the inequalities (6.25) and
(6.31}.

In region (1) it is impossible to use open

loop experiments.
In region (2)it is unfavourable to use open
loop experiments.
In region (3)open loop experiments can give

optimal accuracy.
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6.3. First Order Systems with Colcoured Noise.

In this section systems of the form (6.2)
-1 -1 -1

(l+ag "}y (t) = bg “u(t) + {(l+cqg Je(t)

are treated.

Restriction is made to the experimental conditions Xl,
X2(2,0) and XB(O). This is done mainly for technical rea-
sons. However, in view of the results of Section 6.2

it is natural if this choice of X can give optimal accu-

racy.

Lemma 6.1. Consider the criterion det J under the con-
straint Eyz(t} < A2{1+5). Then

1 ocup det 7 80 (6.32)
N3 XT T p2(1-c?)3 '
1

2
L sup  det g =8 (6.33)
N° X, (2,0) b2 (1-c?)

2 _

L. sup det J = ——L_ | (6.34)
N° X (0) b2 (1-c2)

Equality in (6.32) is obtained if and only if the system
fulfils a = ¢ (a very hard requirement). Moreover, if

a = ¢, then the optimum is reached when the signal

1
vit) = ————— u(t)
(l+cq l)2

fulfils
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2 2 2
2 2%5(1+c?) _ 2¢2%5
gy () = 2.4 1FC ) Ev(t)v(t-1) = - —=S2 8 (5 35)
b2 (1-c2) 2 | b2 (1-c?) 2

Optimum in (6.33) is reached by two proportional regula-
tors, both giving ry(O} = A2(1+6) and both used 50% of

the total experiment time. To be precise the regulators

are given by

v l—cz+5

~aly ¢, Yell-c+8) i= 1,2 (6.36)
b 1+ 8 1+ 6

910
Optimum in (6.34) is obtained if and only if dg = {c-a)/b
(i.e. the regulator is a minimum variance controller) and

the signal

1
vit) = ——— o u. (£)
(1roqg 52 1

fulfils (6.35).

The proof consists of long calculations and is given in

Appendix 3.

Remark. Note that (6.35) is in particular satisfied if
u(t) for ul(t) respectively] is white noise with variance
126 (1-c?) /b2,

The inequality (6.32) implies a difference between the
systems (6.1) and (6.2). For systems with a c-parameter
not equal to a, it is never advantageous to use open loop
experiments., There is no analogy to the inequality (6.31).

As long as an upper bound on ry{O) is given the best ac-
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curacy is always obtained by closed loop experiments.
Conversely, suppose that some given accuracy (given as
det J) is required. Then every open loop experiment will
require a larger variance of the output éignal than Op-'
timal closed loop experiments.

6.4, Optimization with Constrained Input Variance.

As mentioned earlier it is the authors' opinion that it
is more natural to require that the variance of the out-
put is bounded than that the variance of the input is
so. Nevertheless it is instructive to see how this change
of the constraint will influence the result.
Consider the system (6.1)

-1 _ -1
{1+ag )y (t) = bg “u{t) + e(t)
and the criterion det J under the constraint
r (0) s A28/ (6.37)
where § is a positive number.

Now the following result can be stated.

Iemma 6.2. Consider the system (6.1}, the criterion det J
and the constraint (6.37). Then

sup det J = sSup det J = sup det J =
X1 Xp (et K, (r,0)

. : o
- sup det J = sup det g =n? Slorlzal

(6.38)

)
X500 X,(2,0) b (1-a’)?

e ———
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The proof consists of long calculations and is given

in Appendix 4.

pemark. Note that in contrast to the results in Section
6.2 the lemma implies that it is not disadvantageous to
use open loop operation (provided of course that the
system is stable). This means in particular that for the

present case there is no apnalog to the regiong (1) and

(2) in Figure 6.2,
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7. EXAMPLES

In this section some numerical examples related to the
discussed éroblem will be presented. The intention is

not to give extensive simulations illustrating all the
results given in the previous sections. Instead only a

few points will be illuminated here,

Example 7.1.

The simulations presented in this example are taken from

the Master Thesis, Elvgren - Krantz (1974). The system
y(t) + 0.8y(t-1) = u(t-1) + e(t) (7.1}

has been simulated with different choices of the input
signal. Open loop experiments as well as closed loop ex-
periments using different types of regulators were per-
formed. The noise e(t) was a sequence of normally dis-
tributed random numbers. The parameters a and b of the
model

y(t) + ay(t-1) = bu(t-1) + e{t) (7.2)

have been fitted to the data using the maximum likelihood
method, which in this case is identical to the least
squares method. In Figure 7.1 the determinant of the es-
timated information matrix is plotted versus the output

variance for a number of different input signals.

The intention with this example is to study if there are
any systematic differences between different experimental
conditions that all yield identifiability. Normally, the
reason for feedback control is to decrease the variance

of the output. This will of course also decrease the in-

formation contents of the measured data and give less accu-

rate estimates. However, if different experimental condi-
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tions are compared for the same output variance the pre-
vious analysis on simple’examples has shown that there

is no systematic di.fference for the experimental condi-
tions considered. In this example alsc non-linear regu-
lators have been used. From Figure 7.1 it is seen that
this does not viclate the conclusion above. The accuracy
is more a question of how the experimental condition is
chosen in the set of experimental conditions considerxed
than which set is chosen. In the same way as a poor choice
of the input signal gives inaccurate estimates in an open
loop experiment, unsuitable regulator parameters will re-

sult in poor estimates.

Example 7.2.

Also in this example the system (7.1) will be used. The
system is simulated in open loop, and in closed loop with

an additional input signal and a regulator,
uf{t) = 0.6y(t) + ul(t) {7.3)

The amplitude of the input signal (PRBS) for the open loop
experiment was chosen so that the output variance became
5.11. Direct identification with the maximum likelihood

method gave the following estimates for 1000 samples,

a: 0.771 + 0.017
b: 1.048 % 0.036
c: -0.022 % 0.036

The estimated standard deviations have also been given.

For the closed loop experiment the additional input sig-
nal was the same PRBS with the amplitude chosen so that
the output variance became approximately the same as in

the open loop experiment (the actual output variance was

5.06). The data were used both for direct and indirect
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N~ det J

25

154

10-

e X

X
1 2 3 4 5 Ey’

Fig. 7.1. The determinant of the information matrix as a function
of the output variance obtained from simulations of the
system (7.1} with various input signals. The number of
data used in each simulation has been K=2000.
¥ : Open loop experiments.

Proportional regulator and extra input signal.

B x

Regulator shifting between two linear feedback laws;
ten shifts.

[[1: As above, but just one shift.
AY
OF
@
Th

€& curve corresponds to the optimum value, that can be
achieved, cf (6.17).

Linear constant regulator of order one,.

lonlinear regulator: Proportional with u(t)<C.
: As above, but |u(t)|<c.

|
|
1
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identification. The direct identification gave the fol-

lowing result,

4: 0.779 % 0.019

1.022 & 0.017

o

G: -0.034 £ 0.036

Indirect identification gave the following estimates of

the parameters of the closed loop system,

ZDE: 0.166 £ 0.016
b 1.022 t 0.017

&:  -0.034 £ 0.036

Inserting £=0.6 (the regulator parameter) gives

>

al 0.779 = 0.019

It is immediately clear that direct and indirect identi-

fication for this example give identical estimates.

It is also seen that the only essential difference between
the open loop and closed loop experiments is that the para-
meter b seems to be more accurately estimated in the closed
loop situation. The reason in this case is the straight-
forward choice of input signal in the open loop experiment
which obviously was not the optimal choice. The additional
input signal in the closed loop experiment was the same as
in the open loop experiment, except that the amplitude was
different.

Example 7.3,

The system

y(t) + ay(t-1) = bu(t-1) + e(t) (7.4)
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under the experimental condition
u(t) = ul(t) - ky (t) (7.5)
will be considered,.

It was shown in page 34 that the determinant of the infor-
mation matrix was maximized when ul(t) was white noise and
k=-a/b. It will now be investigated how sensitive the op~
timum is for the choice of ul(t) and k. Two cases will be
considered:

a) ul(t) is suppesed to be white noise. Its variance is

chosen for any given k so that det J is maximized.

k) No a priori restriction on ul(t). For any given k the
covariance function of ul(t) is chesen so that det J

is maximized.

In both the cases the result will be a relation between the
value of k and the value of det J.

Let

« = a + bk (7.6)
Then

(1tag Dy (t) = buy (t-1) + e(t)

(1+ag Myu(e) = (+ag Hu (t) - ke(b)

Let

v(t) = I:i;:I uy (8)

.
R=Ev((t)”

Rp = E v(t)v{t-1)
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= AN ° det J

Then it follows easily

2

2 A
r, (0) = bR + (7.7)
Y l—a2
2
r,,(0) = bR(pta) - KA
yu l1-a
2.2
r (0) = R{l+a’+2ap) + & Az
u 1o
Then
V=r (0)r (0) - r (0)2 =
y' Ty yu
2
= b?R%(1-p%) 4 RA2(1+02+2ap) (7.8)
1-o

Let the following constraint hold
2
ry(O) = AT (1+6) (7.9)

The results to follow will not change if an inequality sign

in (7.9) is chosen,

Then from (7.7) and {7.9)

2
b2R = 2[6(l*a2)—a2}
l1-a
Inserting this in (7.8) gives ¥
4 2 2
vo- AL )Tl o102y (162) 4 (140p) 2] (7.10)

b2(l~u2)2

Case a) ul is white noise. Then

Inserfing this in (7.10) gives
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V(a) = A4b_2[6~(1+5)a2}(1+6) (7.11)

Case b) ul is not assumed to be white noise. First maximize

V with respect to p without considering the constraint
o} = 1

It follows

o]
%g ~ =2p8(1l-a%) + 2e{l+ap) = 0
and
o
p =

6(1—&2)—a2

Inserting this value of p in (7.10) gives

via) = 215725 (146) (7.12)

This solution is realizable if and only if lo]<1, i.e.

|u| < 5(1-&2)—u2.
i.e. when “
,O‘I + 1 < 1+268

2(1+8) | 2(1+98)

or
8
la] € R v
or since [az0
$
[Otl € (O.rm)

However, also [u]E(I%E,l) will give a stable closed loop
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system.

V(p)

»
/ 1 P

. . 5
Flg.7.2. Vv as a function of p for the case ¢« E(l+6’l)

Then it can be seen, Fig. 7.2, that subject to the con-

straint |plgl
p = sgn(a)

will oive the largest value to V, i.e.

A4[6(}-—a2)_0‘-2] (7.13)
p2(1-la])? «

Vi{a) =

To summarize, for case a) the functicn V is given by (7.11).

8 .
773 and by (7.13)

<{a|<1l. The function V is plotted against @ in Fi-

For case b} V is given by (7.12) for | e
5 :
1+8

gure 7.3 for the cases a) and b).

for

Phis example thus illustrates that for the system (7.4} with
input according to (7.5) it is possible to use different com-
binations of the value of the regulator parameter k and the

characteristics of the additioral input signal uy -

Notice that this result is in contrast to Lemmra 6.1 which

holds for the syster
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y{t)} + ay(t—-1) = bui{t-1) + e(t} + ce(t-1)
with the input signal generated by
ult) = u,(t) - ky(t)

In this case only the minimum variance strategy combined
with u, as white noise will give the optimal value of the
determinant.

Vv (a)‘

| |
| |
| I
| | >
8 0 8 Lf8 “
1+ 149 1+5 148,

Fig. 7.3. V as a function of a=atbk for the systen (7.4)

=

with input according to (7.5}
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&. CONCLUSIONS,

It is commonly held, that closed loop identification ex-
periments should be avoided. One reason may be that the
identifiability properties for such experimental condi-
tions are largely unknown. In Gustavsson-Lijung-S&der-
strém (1974) and Ljung-Gustavsson-Stderstrtm (1974) a
concept, Strong System Identifiability (SSI) has been
introduced, which extemds the identifiability properties
of open loop identification experiments to other classes
of experimental conditions. It has also been shown that
S5I is obtained also for closed loop experiments, when
e.g. there is an extra perturbation signal added to the
input or the regulator alternates between several linear
feedback laws. Hence, from this identifiability point of

view there is no reason to avoid closed loop experiments.

From a practical viewpoint, however, it is more important
to consider the "degree of identifiability", i.e. accu-
racy aspects for the identification experiments. This has
been the objective of this report.

. F
The result of an identification experiment clearly de-
pends on a number of items, such as the identification
method used, I, the class of models, M, among which an
appropriate model is fitted to the data, and the experi-
mental conditions, X,like input signal generation etc.
The influence on the accuracy of the obtained models
has been investigated for each of these three items.
The analysis of the influence of M is carried out for
a general form of the nodel structure. The influence of
the other two items is considered essentially for single-

input single-output models on difference eguation form.

It has been shown in Section 4 that the set of models

should be chosen as small as possible under the obvious

constraint that it must include a true description of
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the system. Inclusion of additional pararieters.decréases

the accuracy of the results obtained. This result, quite

cia 3e§g%qtedﬁfhplds;ﬁor:aLL;kinds{pf,experimentar-condiﬁions
#3 angd .all: accuracy ¢riterias discussed in,Seetion 4. . i

M * - - - P - e b T .
SatnLes DELGIIULL S vs I Hodonewow s R ,

The ch01ce-of ;dentlflcatlon nethod s L, 15 most often !

dlctated by Aagguracy . consaderatlons.rFor open loop ddenti-

flcatlon.there are, several @1fferent methods that. yield a f

LoIhal )

L hlgh accuracy and whlch Jhave: been compared -in. various con-

.,.aa\_'_ -

texts, see e.g. Astrom zEykhoff. (1971}, Gustavsson (29872).
For system operatlng 1n closed lGOp there is.an add;tlonal

) 1nterest1ng problem namely to ~gompare .a stralghtforwardly

Tong G

appl;ed 1dent1flcatlon method (Dlrect Identlflpatlon) with

Ll REFINEH .:.u.n-.'

schemes that are spec%a%ly de51gned for closed loop_data

(Indlrect Identlflcatlon) s o

< f.«-:.:-:; trr Lo ds i KW I [ FE RV

- * -_l £l . & - .
- - N Dey arErvg N . - IR
3T T f IR Ty G L B RO I 5 RACEW LN . AR

In Sectlon 5 lt has been shown that Dlrect Identification

aEer
.

u51ng the max1mum llkellhood method is never 1nferlor to

. R e el +op k. - e
T B EARA M) SR
i

Indlrect Identlflcatlon. In some c1rcumstances they are

i“equlvalent Th1s 1mplles that there 1s no need for the

ey ez --.rr\r--

B
i

“more complex indirect 1§en€rf1catlon methods o
I S Y I B e R R

The most interesting questlon is probably the one concern- ¥
1ng the 1nfluence*of dlfferent experlmental condltlons It
s’ sometlmes clalmed that ‘even if 1dent1f1catlon of & pro-
‘cess Dperatlng in cidged loop nay bea theoretlcally p0551b1e,
Fige glves ‘guch- poor aCCuracy that the results aré questlon—
~aplet-ih Séction 6 fhe influfhce of feedbac} 1n the'system
on-tHe accuracy of ‘the estimatées has been’ analyseu for sonle
sifiple éxaniples; and “in Sectlon 7 e results of" some simu-~

- had

wldations ‘have bHeern presented A

O ) : X T Ot U LR S VI

LIt ¥simmediately: cléaty tha't’ sincd the oBjedtive &6f'a re- %
“gulator :is ‘to 'décrease’ the output variance,:-this tends to
decrease the information contents of the measured signals

zand - herice "causes more:InaCCurate'estimatesf“Bdt;‘taHing

- this effectfintouacccunt;mtheﬁimportant‘qﬁesﬁiop‘then asked

- P L
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is: Does the mere presence of feedback deteriorate the
idenfification results, even if the output variance is
the same? The numerical results in Section 7 gives an
answer to this question: No. On the contrary, the accu-
racy for a closed loop experiment can be better than

for an open loop experiment even for an optimal input
signal! For the simple examples considered in Section 6
this is the case when the output variance is constrained,

This result has a most important implication: The exten-
sively discussed problem of optimal input design, see

e.g. Aoki-Staley (1970), Nahi-Napjus (1971), Mehra (1974),
is not quite well posed (under a given constraint on the
output variance). By including feedback terms in the in-
put signal which by no means poses technical problems

the accuracy can be improved compared to the "optimal"

non-feedback input.

The design of optimal feedback input suffers from the

same dilemma as the design of an optimal non-feedback
input: The true system must be known. For the feedback
input (when the output variance is constrained) the
following rule of thumb may be given:Design a feedback
regulator that decreases the output variance as much as
poesible. This makes use of the available a priori in-
formation about the system. Then add as much extra in-
put to the feedback signal (e.g. a white noise signal)
as the constraint on the output variance allows. This
schemé can alsoc be applied on-line by letting the feed-
back regulator be adjusted to the current knowledge of
the system. Notice, however, a white noise signal may

not give the optimal accuracy.
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APPEND;X l - Procf of Lemma 4.1.

In ordgr to prove Lemma 4.1 another lemma will be used.
Lemma A.l. Let A and B be two symmetric non-negative de-
finite matrices. Then

tr AB 2 O (pl.1)
‘where equality holds if and only if

AB = 0 (A1.2)
a

Proof. There exists an orthogonal matrix U such that

where Dl is a positive definite diagonal matrix. (The

trivial case B = 0 is not considered). Introduce

T P11 Po
UAU = A = |,  _
BAla By,
Thus
T T T - _
tr AR = tr UTAUUBU = tr AD = tx AllDl =
= Z(Byq) 44Dyl
But Kll is non-negative definite and thus (& s 0

11744
and {(Al.l) follows.

where the zerces are block matrices of proper dimensions
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Assume now that tr AB = 0. Since (Dl)ii > 0 {(all iy it
is necessary that (ill)ii = 0 (all i), which implies
that ill =0 (ill is non-negative definite). Since alse

the whole matrix A is non-negative definite it is con-

cluded that 312 = 0. Thus
0 0 D 0

AB = U _ o fuTu] ? U= o
0 A, 0 0

which is (al.2).

i1t is trivial to see that (2l.2) implies (al.1).

Procf of Lemma 4.1, There exists an orthogonal matrix U
such that

where D, is a positive definite diagonal matrix. Intro-

duce

U AU = A =

The assumption concerning the null spaces implies that

A

=g

=OI -"‘:0 (Al.

12 22

Introduce now

3)
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s}
I
il
o
H
ol
It
v

With use of the new variables straightforward calculations

give
— _l -
) e LN 0 o
tr AB"T = tr vAuTuptul = er = tr A;;D]
0 olio 0
{(Al.4)

tr (R7AR) (R'BR)V = tr ar(rRTRR)TRT =

= tr UAUTR(RTupUTR) TRT =

= tr AUTR(R'R) TRy (A1.5)
Due to (&l1.3) it can be concluded that

+ +
i = pl/2pl/2g1/27 12
Thus
+ + T
tr (RTAR) (R'BR) T = ¢r(pt/? a0/ 2 ) RETR)R =
p71/25 p71/2 Gl[a
1 11%1 N T
= tr ®RR) TR, 0] =
0 ollo |
~ “1/2= ~1/2~  =T= 4=
= tr D]/ 4R D PR (RR )R, (A1.6)

Finally

tr ABT - tr(RTAR) (RTBR) T = tr(Dil/zﬁllDIl/z) .

= =Tz | +=T
I - Ry (RjR)TR; (A1.7)
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Observing that I - §l(§§§l)+§§ is an orthogonal projec-
tion and thus non-negative definite Lemma A.l can be
applied giving the desired inequality (4.11).Moreover
it follows from Lemma A.l that eguality holds in (4.11)
if and only if

-1/2§ D—l/2

Dy 11P1

2 (&%) RT] -
[I - Rl(RlRl) Rl] =0 (Al.8)

This eguation can be rewritten as

= -1 _ -1/25 ,=Tg \+=T -1/2] _
All[Dl D77 "Ry (RyRy) 'R{Dy ] = 0

which can be extended to

+ +
+ 1/27 1727 (o7 1/2,1/2

AlDT - b R(R UDUTR)+RTUD

I 0]
=0
0 0

or

vlaulutety - UTR(RTBR)+RTU(UTBU)(UTBU)+} = 0

T T

aBT - ar(rTBr)tRTEET = 0

which is (4.9).
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Since trivially

chx3(‘)l xz(ll') =X2(rl.) n x3(')

it is easy to see that
J(X) < I (Xg0))
I(Xy(1,4)) € I(Xy(x,0))

T(Xy (1,0} < 3(X3())

Thus it is sufficient to show that for any X in either
Xz(r,-) or X3(-) giving an information matrix J there
exists an experimental condition in Xz(l,-) giving the
same information matrix. To prove this it will be neces-

sary to parameterize the elements of J in a new way.

Consider first the experimental condition Xz(r,'). The
notation of Section 5 will be used. Introduce new vari-

ables through

G (z) = - % F, (z) + G; (2) , (A2.1)
Thus

a
Hi(z) = Fi(z) f azFi(z)‘— bz{@i(z) + 5 Fi(z)} =

)

F, (2} - bzﬁi(z) (a2,2)

Introduce now the variables ry, p s 051 r¥, p*, n*,

through
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.-l 2
r, =3 E| ———3— et} ) o {A2.,3)
L 8 e™ 18, @™ ; |
rjo; =5 E - ety 7~ el{t-1) ' (R2.4)
X B, (g ) H;(q ™) N -
ng = -5 Ej———07— elt) fe(t}y]} = &, (0} (a2.5)
r*'=:ZYiri - - ) . EA2.6)
f*nf = DY, I Py (82.7)
% = Eym, Lo | . (a2.8)

The information matrix is for the system under considera-

tion

‘ _ -'(0) - —r. (0)]

- y(t o s ry ‘

g = %Ei }[-y(t)-u(t}]': Z . (A2.9)
P . X

wlt) . .. _
ryu(O) ruﬁG}

It is easy to establish that (note that Gi(z).= % Hi(z) +
+ a(z)G(z)) - |
-1, -1 —i | -1 -1 2
F,{g ") - bg "Gilqg ") + bq € (a ™)
4

"
I

Iy.E

i e(t)

r (0)
Y —l _ -lha -_—
: F;{g ") - bg "G, g

2

A2

r*) , (A2.10)
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~ -1 2
(0) = Gl e
r 0) = Zy.Ele(t) + b ——= et~ .
vu i H, (q 1)
1
N A(q_l)ﬁi(q"l) 1 ,
b Hy (@ )

2 a =
by ZYi[— + ny + bri(pi+a)] =

b
= AZ{E + n* + br*(p*+a)] (A2.11)
b
_ 2
. [ Alg™HE @™
r (0) = A"EyyE|= e(t) + = e(t) =
b H, (g 7)
1
= 3%x 33 + (1+a’+2ap)r, + 2 2 =
e Pitty ni
b b
2 _ A
= x2[3§ 5 r*(lva‘t2ap*) + 2 2 n*] (a2.12)
b b

Now, via (A2.9) - (A2.12) the information matrix J is ex-—
pressed with use of the new variables r;, pj and n;- In
order to proceed,the values these variables will have

-1

when the coefficients of the polynomials Fi(q_l) and Gi(q )

are varied must be examined.

Assertion A2.1. The variables rir py and ny fulfil

re 5 0 ne r (1-p2) : (22.13)




A2

A

Conversely, if (ri,pi,ni) are chosen to fulfil (A2.13)

" then it is possible to find a corresponding pair of po-

Iynomials {Fi(z), Gi(z)}. :

0
Prqof;
a)y {(Necessity) By definition ri > 0 must hold.
Introduce the filter
_ -1,
e . . (g )
Li{g Ly = ¥ qu b =-_£__:f_ (R2.14)

Then from (A2.3} - (A2.5)

With use of Cauéhy—Schﬁgr? inequality
ryeg)? = [jza -%"%u} g Ej;zo L?F} jgo‘ £§+1_] -

o

2
ry {ry=n;”)

from whiech the éecénd part of (A2.13) follows imme-
diately. '

) {Sufficiency) Assume now that ri{ oq and ny are given
and that (A2.13) is fulfilled.

1

Take first the case that r, = 0. Then take @i(q“
X -1 -
i.e. Glg ) /Fig™h

lator.

)EOJ

a/b = the minimum varianee regu-~




AZ.5.

Assume thus in the following that r; > 0. As a first
step a first order filter L(q_l) fulfilling (A2.3) -
- (A2.5), (A2.14) will be constructed. Put

-1 950 * 9114

1+ hilq

Then the equations (A2.3) - (a2.5) become

,
_ 950 * 911 7 2910902711

r,

i 2
1 - B

| (§;07931051) (9577 950M41)
ivi 1-—H2
i1

After multiplying the first equation with hil and
adding 'the second,the following systems of equations

will be obtained from simple calculations

9i0 T "4

nj9ip T Piati T FiPy

2 w~ 2 2
| 911 20y by T EyRy T ET Y

From the second egquation

=

R
Biy 9i1 T Pi
Ty
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which after some manipulations transforms the third

equation into

[

~2 _ 2y _2y 2

According to (A2.13) both sides are positive.
If r, - n? = 0 it follows from (A2.13) that o, = 0.

This implies that §El can be chosen guite freely.

On the other hand, if ry = ni > 0 one obtains

2 2
931 7 i L - 2
i~ M

The calculations so far have given the first order
filter L(q—l). Finally a corresponding regulator has
to be found by considering (A2.1) and (A2.2)

a;cz) = - % F,(2) + G, (2)
Hy (z) = F,(z) - bzﬁi(z)

These eguations give, after scme calculations, the

regulator

G ta™h  (+ag B (q ) + a/b (@D
= -1 PV =

Fy(q ™) Hy(g ) + bq "Gy(a )

(F;o + a/b) + (aF, ,+§,,+a/b hil)q"l + &g, a7
2

" -1 — -
1 + (hil+bgio)q + bgilq




AZ.7.

_ consider now the experimental condition X3('}. Introduce

the variables

-1 12
1 F{q ) }
R=—=E — — — — u{t)} (32.15)
7 g g L) - Bl@ el D)

-1
F{gq 7}
E — — — — u{t)
X L(q e h) - Bla De@ D)

-1

Flg 7] . a(t-1)

| — . . . (22.16)
[A(q Lrql) - Blg 6@ )

The variables r, ¢, T are defined guite analogously with

Tyr P and Ny and they will satisfy the condition

n2 £ r(l—pz) : (x2.17)

With use of these ﬁariables it is easy to establishxthat
for Xq(+), '

r, (0) = [b2R + 1 + b2r]n? ‘ (A2.18)
: : 2
ryu(O) = [bR(a+pR) + % + n + br(p+a)]x {a2.19)
2 a2 a 2 2
r (0) = [R{l+a"+2apy) *+ =5 T 2 £ + r(l+a”+2ap) {2 (a2,20)
! R b2 b

Consider finally the experimental condition Xz(l,-). In
analogy with the previous cases the variables x, rp and

n satisfying

32 < E(l-oz) (A2.21)

—

are used as parameters giving




AZ,

giving the same information matrix, .

r,(0) = [1+ bzglxz (32.22)
r (D) = [5 + n + br(p+a)]k2 ' (n2.23
yu b = = .23)
' a2 a 2 2
b b

Assertion A2.2. Given an experimental condition in Xz(r,~)

then there exists another experimental condition in Xz(l,-)

23
Proof. It is to be shown that
[ 1+ b% =1+ b2ex
L a , y o= & * * (0%
1 g fntbrleta) =g + 0 + br(o*+a) : (A2.25)
a2 a e, 2 a2 a 2
— + 2 — g + rf{l+a +2ap) = + 2 = n* + r¥(l+ta"+2ap*)
! T n = i i ;
\ b - b b . b

always has a solution witﬁ respect to r, p and n. Take

now

r=1r% " p=p% n=n* (R2.26)
which clearly satisfy (A2.25). It remains to be proved

that the choice (A2.26) always can be made subject to

the constraints (A2.13) and (A2.21)}. Cleezrly the choice

r = r* is always possible. Moreover

“Yitiej

y; Ty les|
<

[o*] = $

Zviri

Zyiri

!

——




AZ.9.

which implies that it is sufficient to consider the last
asserted choice n = n*. This choice is possible if [by
(a2.21)}

Ve(1-p%) » n* (a2.27)

However, {(A2.27) can always be satisfied if

Ve(l-p°) » sup n* = sup ZYinz = ZYini(l—pi) (p2.28)

constraints

which can be evaluated as {guadrate both sides and mul-
tiply with r = r* = Zyiri)

(zyyry)? = (Eyyrge)? zyiri[zYiv&i<l—pi>]2
This is satisfied if {use Cauchy-Schwarz inequality)
(Zy.r.)2 - (Zy.r.p‘)2 2 ZY.r.[ZY.Zy.r (l—p?)]

i~i ivivz1 i1 i7rhiTi i :
which is easily rewritten (note that Zy, = 1)

2 2
(Tygrgoy) ™ & LY 3Y 0404

which is always true due to Cauchy-Schwarz inequality .
=]

Assertion A2.3. Given an experimental condition in X3(-)
then there exists another experimental condition in

Xz(l,-) giving the same information matrix.




A2.10. b

Proof, It is te be shown that

(14 b =b%R+ 1 + b’r

+ n + br(p+a) = bR(pgta) + & + n + br(p+a) (A2.29)

olw

2 ’

éj + 22 n + E(l+a2+2a3} = R(l+a2+2apR) +

o
o

2
+Jié + 2 & 4+ r(1+a®+2ap)
B2 b

always has a solution with respect to 1, o and n. Try
now the choice

RpR-i- re '

r=R+r, o= ———, 10 =mn (A2.30)
R + r

It is easy to see that this choice satisfies (A2.29).
It remains to be shown that (A2.21) is satisfied. This
can always be the case if [it is easy to prove that the
tried expression for o implies |[p| < 1)

V£(l—£2) 2 N

(A2.31)

The condition (A2.31) can always be satisfied if

Vg(l-gz) > sup|n|

or equivalent
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or rewritten

r%(1-p2) + Rr(1-20pp%0") 3 0 (82.32)

However, both terms in (A2.32) are positive. This obser-

vation completes the proof.
o

With the Assertions A2.2 and A2.3 the proof of Theorem

6.1 is finished.
a
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APPENDIX 3 - Proof of Lemma 6.1,

The proof of the lemma is crganized as proofs of three

"assertions.

Assertion A3.1

3 sup det J =
N X2(2,0) b

Proof. The notations of Section 5 will be used. For this

case Fi = l{ i=1,2. Put
a - o
Gl = = kl {1 =1, 2)
b
Thus
Hi(z) =1 4+ o2

Moreover, for the treated system the information matrix
J can be calculated to satisfy

1 K 1]
2 2
1 o 1 - oy 1i- ay
2 -k, k? k,
i=1 1 - ai 1 - o 1 - a; ¢
- 1 ky 1
1 - a;c¢ 1l - a,c I‘tﬁzj'J
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from which

Y+ Yo (O~ @ )2
=5 det J = — =5 = 22 3
N b* (1-63) (1-aj) (1-c®)
(O(l--C)2 (<Jt2—c)2
Y, ————= + Y, ———x (A3.2)
1 (1-a 0)2 2 (L-« 0)2
1 2
can be computed in a straightforward way.
Consider now the constraint
1 (ai"c)z
—2-r(0)=1+———-—-§-sl+6 (A3.3)
A Y 1 - o«
1
or rewritten
Gi(l+6) - ZGic + (c2—6) £ 0

Thus the constraint (A3.3) means that the variables oy

{i =1, 2) are restricted as

\/ 2
o, - c < §(1-c"+6) (A3.4)
1 + & 1+8
Consider now maximization of
2
xy —c _
fl(ai) = (-——-———} {(A3.5)
1 - a;C

subject to the constraint (A3.4). Since fi(ﬂi) = 0 im-
plies «, = c, which gives a minimum of £i(ay) it is ne-

cesgsary that the constraint (A3.4) is active. Straight-




A3.

forward calculations show that

W _ 2
max £, (a;) = £, —S— » 2070 ¥8) | 2 (A3.6)
.ai 1 + & 1+6 1 - c” + 6
Both signs in (A3.6) are possible.
Consider now maximization of
((xl-az) 2
f o(a,,a,) = (A3.7)
2P -ad a-ad)

subject to the constraint (A3.4)., It is straightforward
to show that

2(ul~a2)(1—a1a2) 2(a2—al)(l—ala2

£h{a,,0,) =
21472 2,2 2 2 2,2
(l—al) (l—uz) (l_al) (1_0:2)

Thus fz(al,az) must be maximized in the "corners"

v/ _ 2 W/ _ 2
(“1'“2) _ c + 5(1+86-c”) ’ c _Vg{l+s-c”) (A3.8)
. 1+ & 1+8 1 + & 1+ 5
and
c Ve (1+6~c2) c Ve (145-c2) :
(ﬂl,az) = - R + {A3.9)
1 4+ & 1+6 1 + & 1L+6
Both (A3.8) and (A3.9) will give
46 (1-c2+s)
f2{alfaz) = s (A3.10)
(L-¢%)

Since fl(ai) as well as fz(al,az) are maximized by the




same value it is concluded that (A3.8) and (A3.9) will .

also give the maximum of det J, since

: Y.Y, £, (0 ,8,)
1 CYpYo BTl ]
— det J = —3 5 [Ylfl(al) + Yzfl(ﬂz)] (33.11)
N b 1-c

The non-unigueness consisting of the signs depends on

the fact that, of course, ¥y and &, can shift meaning.

Inserting (A3.6) and (A3.10) into (A3.11)

1 Y1Y, 46(1—c2+6) )
= det J (v,+Y,)
NS 22 1c8)3 1-ct+s 2
2
4Y1Y2 &

B2 (1-c%)°

Finally maximization with respect to the ¥-parameters

will give

Y, =Y, = 0.5

and
.
J§ sup det J = — 5 3
N X262,0) L {1l-c"}
g
Assertion A3.2
2

L sup det J =
N

X, (0) p2(1-c2)>
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Proof. Introduce the notations

F=1, G= =k (A3.12)

vit) = =) =5 ult) {A3.,13)
(I4+cqg 7) (1+ag 7))

R

A

Rp = 4% Ev{t)v{t~1) ) (A3,15)
A

For this case the information matrix J satisfies

b 2R -bR(a+0) 0
NJ = |-bR({a+p) R(1+a®+2ap) ol +
0 o 0
r B !
1-a? 1-a? 1~dc
2
+ 1= k2 k 5 k (A3.16)
l1-a 1-a l-ac
1 k 1
l-ac 1-ac 1—024
from which
2.2 2 2
Loaet g =R R 07 4 gi14a2i20p) s—a=c) s (A3.17)
N 1 -¢ {(1-a7) (1=-c®) (1-ac)

can be computed in a straightforward way.
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The constraint Eyz(t) < A2(1+6) pecomes rewritten

. 2
bzR(l+cz+20p) + js_£l§ < b (A3.18)
1 -«
Moreover
Rz 0, Ip] ¢ 1 (A3.19)

must be satisfied.

It is easy to see that maximization with respect to R

is obtained for

2
R = ——> 5 - Lozl (A3.20)
b (1+c™+2cp}) 1 -«
Introduce the notation x through
fc-a)z
§ = 5 (1+X) (A3.2l)

l -«

In view of (A3.18) it is seen that x > 0 must always be
fulfilled.

Inserting (A3.20) and (A3.21) into (23.17) the following
expression can be obtained after straightforward, but

tediocus, calculations

= det J = 6” + (c=o)®
N> 52(1-c2) 3 p2(leci+2c0) 2 (1-c?) (1-a2) 2

[~ ax% + Bx - C] (A3,22)




A3,

7.
where
5 2
A p (1+c™) ; EC} (A3.23)
l1-c
5 2 2
B = - 2[p(l+c ) ; EC} + {p(l+ac) + o + cl _ 14 p2 (23.24)
1 -¢ 1 -oac '
2 2
c = |elite) ; 220+ (1-p% (A3.25)
l1-c
Consider the polynomial
p(x) = - Ax? + Bx - C (A3.26)

Clearly A 2 0, C » 0. If B ¢ 0 then p(x) 1s always ne-
gative and the assertion will be proved. Unfortunately
B ¢ 0 is not always true s0 some more calculations are
needed.

Since only positive values of x are of interest it will

be sufficient to consider the polynomial

S(x) = sup p(x) = - Ax? + Bx - C (A3.27)
falsl
where
B = sup B (A3.28)
tal sl

It can be seen that the supremum is obtained for either

o« = 1 or o« = <1, It is chosen to consider the case « = 1
in the following (the case a = -1 can be treated analo-

gously) .

i
b
i

|
|
|
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Thus
ey 2 2
~ B B 4AAC
pix) = - A[x - ;;] + i (A3.29)
i )
But

2 2 2 2
%2 _ 4nc = |- 2{p(l+c )+ 20} + {(p+l)(l+c)} -1+ p2 _

1 - 02 l-c¢c

2 2 2 2

_ 4leflite) # 2c p (14c”) + 2¢] L ;5 - 20 _

2 2 L
l1-cC l -c

2

2 2

- [(pm Lxe) 4 (p41) cp—l)} -
(1-c)

. (o (1+c?) + 2¢1% (p+l2(1+c)? _
(1-c2)? (1-c) >

j_g+l)2
(l—c)4

. , ,
- 4{Q(l+c Y o+ 20} =

2 2 2
- iﬂillz[{zp(1+c2) + 40} - 4{9(1+c2) + 2c} ] -0
(L-c)

I

2
{(p+1)(l+c)2 + (p-l)(l“C)z} -

To summarize it has been shown that

1 52 (c—a)4
L odet g = + s p(x) <
N> b2(1-c2)3  bl(ltci+2cp) (1-c?)(1-a°)
2 4
) : {c-a ~
§ 2.3 T2 ) p(x)

b™ (1-c™) b (l+c2+20p)(1~02)(l—02)2
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9.

where
p(x) € p(x) £ 0 for all x » 0

Thus optimum of l/ﬁ3 det J requires either ¢ = g or
p{x) = 0. However, the latter case can be eliminated
since it implies B = E, cf. (A3.28). However, since the
supremum in (A3.28) is obtained with o on the stability
bound this case is without interest in the analysis.

It remains to consider the case of a = ¢. This means
that the regulator is given by a minimal variance stra-
tégy. The analysis given above unfortunately cannot be
utilized directly for this case because it corresponds

to X = =, However, from (A3.20)

R = — % ' (23.30)
b (1+c " +2cp) '

which iﬁserted along with ¢« = ¢ in (A3.17) gives

2 2!
Jg det J' = — ‘52(1 ”'g 5 (a3.31)
N b" (1-c”) (1+c"+2cp)

Straightforward optimization of the right hand side with
respect to p will give

o = _.__j%i_i : (A3.,32)
1 + ¢ )

which is found to fulfil the constraint [p]| s 1.

Then finally from {A3.30) and (A3,32)

© 8 (14c2)
b (1-02)2

R = (A3.33)




i
Laked

latl

« A3,10.

: e

Ro = - — 2052.5 - (23.34)
- b7 (1-c7)

Toemne
STk

Thus the assertion has been proVed;

=)
od 11t
Assertion A3.3.
2.
;% sup det J ¢ “§"é__§"§
N Xl b {1-c¢™)
f.5¢%ith equality if and only if a.= c.
- a

.5Broof. Two observations will be utilized

Bye Wy e Xy (0)

ii) the optimum experimental condition in XB(O) giving

' 2

1 5
det J = —4———————
N b2 (1-c?) >

is uniquely defined.

."FHRus the ¢ sign is proved. Moreover, equality is ob-

tained if and only if (due to the uniqueness) the open

. 5l%oop case corresponds to a minimum variance kregulator.

This is the case exactly when a = c.

. ' . : o
-y .
. .

I}
ok f
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APPENDIX 4 - Proof of lemma 6.2.

The second and third equalities. in (6.38) are simple

consequences of Theorem 6.1.

In order to prove the remaining equalities it will be
advantageous to introduce a new parameterization of J.

Consider for simplicity only cases with r = 1.

Introduce
_ 1
v(t) = - u(t) (r4.1)
i+ag
_ 1
z{t) = — 3 e(t) (pd.2)
l1+aqg A

These two signals may be correlated if feedback is pre-
sent. It is easily seen that

y(t) =bg “v(t) + z(t)
-1

ul{t) = v(t) +ag “v(t)
and thﬁs

2
ry(O) =b rV(O) + rz(O) + 2brzv(1) (Ad4.3)
ryu(O) = brv(l) + abrV(O) + rZV(O) + arzv(l) (A4.4)
r (0) = (1+a®)r_(0) + 2ar (1) (A4.5)
Now

A2
rz(O) = > (A4.6)

1-a
and

rzv(l) + arZV(O) = E[z{t+1)+az(t) lv{t) = Ee(t+l)v(t) = O




independent of an eventual feedback, .so .
r (1) =-ar (0}

Introduce now the variables R, p and r by

i
b
=

rV(O)

rv(l)

r  (0) = rVr (0)r_(0) = 22V r/(1-a%)

1l
>
Py
©

 %{A4.7)__ ;,

(rd4.8)

(24.9)

(A4,10)

The wvariables are constrained in several ways, .9.

Rz 0; lpl = 1; Iri = 1

There are, however, more constraints. Suppose r=1. Then

v(t)=kz(t) and thus p=a.

With use of (A4.8)-(Ad4.10) it is easy to get

r (0) = 22 (7R + 12 - 2abr § —)
Y 1-a 1-a

rYu(O) = )\z[b(a+p)R + r VR(l—az)}'

r (0) = 2°R(1+a’+2ap)
Finally, by simple calculations,

get 3 = N7 x (0)x (0)-x, (07 =

T,
Y

2
w252, 20 3/2 2a+p+a’p R
= h "R (1-07) 2brR™ m+l"—a2- [1+a

2

+2ap-r2(l~a2)2]

(Ad4,11)
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The constraint (6.37) can now be written as
2 2 '
b"R(1+a“+2ap) < § (A4.12)

Consider now open loop operation (i.e. the experimental
condition Xl). Then r=0 and

R
2

N 2det J= b2R2(1~pz) +
: l1-a

(1+a®+2ap) (R4.13)

Thus equality in (A4.12) must be chosen in the Optimiza-
tion. Insertion of (A4,12}7 into (A4.13) gives

l—p2 + 8

(1+a®42ap)2  p2(1-a2

S 2
N 2det J= ﬁ§
b,

Require now that the derivative of this expression with

- respect to p must vanish, Straightforward calculations

give

o = - 2a2 : (Ad,14)

I+a

which always fulfils the constraint lpl<I. Moreover
(A4.14) implies ' '

62 §

+ N
b2 (1-a%)

N"zsup det J = — 5>
X ' b (1-a“)
1
Note that u(t) white noise will not fulfil (Ad,.14} unless

a=0, The optimal value is €.9. obtained if

{A4.15)

u{t) =

— w{t)
l+aq 1

where w(t) is white noise with variance 126(l—a2)/b2.

The calculations made so far imply that the first equali-~
ty in (6.38) is fulfilled if

, |
sup N %det J= ﬁéﬁi;_g_% (Ad.16)
R,p,r b™{1-a“)

This condition is implied by the following, where
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sup det J is computed without taking constraints on r
r
into -account.

2,2 2 .2
sup Ebsz(l—pz) + R2 (1+a2+2ap) + b’ R (2a+%+3 p) 1 =
R,p 1-a (1-a™)
_ 5(6+1-a’) (2417
2 2,2 «17)
b {1-a”)

By taking sup over R (which means equality in (nd.12))
it is seen after simple calculations that this is equi-

valent to

suo 1 52 (1-02) . 8 N 52 (2a+p+a’p) ] =
SN ) Z p) 2 p) 2 ) 72
0 b“ (1+a“+2ap) b (1-a”) b“(1+a“+2ap)  (1-a”)
_ s(s+1-a’)
gz?i;az)b

The left hand side can be rewritten as

2
)
sup [ p) )
p b (1+a“+2ap) " (1-a

— {(1-p2)(1—a2)2+(2a+g+a29)2} +

)

62

6 2,2
— 71 =sup [ {({1+a”)" +
bz(l-az) p b2(1+a2+2ap)2(l~a2)2

-+

2
8 +

+ 4@(1+a2)p + 4a2p2} + J ] =sup [ 5

bz(l—a ) D b (l—a2 2

)

6(6+l—a2)
p2(1-a%)?

8
bz(l—az)

+ ]} =
Thus the first equality in (6.38) has been proved.

1t follows from the calculations above that

R = — 52 (Ad.18)
b (1+a“+2ap)

e - bR3/2(2a+p+a2p) _ (2a+p>+c'=12s>)61/2
(1-a2) /%R (1-22) 372 (1+a2+2ap) /2

(nd.19)

when det J is optimized. When (24,18} and (A4.19}) are
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used in the general expressions for ry(O), ryu{O) and

ru(O) straightforward calculations give

£ (0) = A2[b%R + 12 + 2ab2(2a+pHa’p)——s—s] =
Y 1-a {1-a”)
2. 1 b2R. - 2.2 2
= A1 7 + 2‘2{(1—a Y2 + 2a(2a+p +a"plll =
1-a {1-a“)
2. 1 b 2R 2 2
= 271 5 + 5 2(1+a Yy (1+a“+2ap)] =
i1-a (1-a™)
2 .
= 12 2{l—a2+6(l+a2)}
(1-a”)
. (0) = A’[bR{a+p) - bR2(2a+p+a2p)] =
yu 1-a
bRAZ 2 2
= 5 [(atp) (1-a”) - (2a+pta pll =
l1-a
2 : 2
= bRAZ (-a)(l+a2+2ap) =~ 2 —JLj%—
1-a b {(1-a”)
2
A58
r. (0) = —
L b2
Thus the optimal J fulfils
1 l+a2 T asd 1
5 ¥ &= - T — 7’
1-a (1-a“} b(i1-a”)
J = N- {Ad.20)
ad JL
b(1-a%) b2

To complete the proof it is just necessary to find an
experimental condition in X2(2,0) such that (A4.20) is
fulfilled.

Iet the proportional regulators be given by

u(t) = —kiy(t) i=1,2
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and introduce

a, = a + bk,
i i

Then
I

y{t) = ——~l—:— e (t)

l+a,g 1

i
._ki

ul{t) = — e (t)

l+aiq

Iet now the constants ki be chosen so that

2
R
ru(O) - b2
i.e.
(a,-a)°
1
7~ =6
-,
1

or simplified

a_ VS(1+a-a2)

% T 1¥s T T+8 i=1,2
Thus
_ 2a
@y * oy =155
a2—6
“1%2 1+s
2 2 . s+6°+a’-a’s '
ay” Fay =2 3
(1+4)
2 2 (146) 2 - 2(6+46%+a°~a’s) + ad o+ 8% 4 2a%s
(1-a; %) (1-a,°) 5 =
(1+6)
_ (l—az).,2

(145)2
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Let now both regulators act 6n the system during 50% of
the total experiment time. Then

A 2. 2
2 2 2-(q,%+o )
B (0) =y ] - A i -
l-al l—az .(l-al } (l-cx2 )
2 2 2 ’
= ;2 f1%8) 5(%+g) a (1-¢6) _ Az 2[l-a2+6(1+a2)]
(1-a“”) (1-a“)
2] -k ~k 2 (a-a;) (o, ) +(a-a.) (1-a. 2
r (0) = A° 1, 2 | _2° 1 2 2 17
yu 2 1-a 2 -« 2 2 (1~ 2)(l— 2) B
1 2 - 1 %2
2 2
_ AS(1+8) _ 2, 2, _ B
= m[2a a(oc1 +a2 } (al+a2}(l alaz)] =
% 2 2. 2 2 2
= 5 2{2a(1+6) -2a(8+8"+a“-a 8)-2a(l+s~a“+6)] =
2b{1-a")
ar? 2 .2 2 o 2 325
= 5 2(1+2c5+6 —§=3§"=-a“"+a“§~1- 2543 )= - —ﬁjt—?r-
b(1-a*%) b(l-a“‘)

Thus the optimal J of (A4.20) is obtained. With this ob-
servation the proof is comp le ted.,




