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1

Introduction

Computer control systems are becoming an increasingly competitive factor
in a wide range of industries. Many products now achieve their compet-
itive edge due to the complex functionality provided in algorithms and
software. As more and more product value is invested in software, there
is a strong desire to formally verify its correctness. System analysis, which
many engineers may previously have regarded as an academic exercise, is
becoming instrumental for coping with complexity and guaranteeing cor-
rectness of advanced software. At the same time, increased performance
demands over wide operating ranges force control engineers to move from
linear to nonlinear controllers. More and more often, linear techniques
fall short in analysis of control systems.

Competition also forces faster and more effective product development.
Today, more and more control designs are based on mathematical process
models, and their performance is thoroughly tested in simulations before
full scale trials. This reduces expensive and time consuming experimenta-
tion and tuning on prototype products. Working with mathematical mod-
els, however, always involves uncertainty. There is always a mismatch
between what is predicted by mathematical models and what can be ob-
served in reality. It then becomes important to account for uncertainty
in the analysis, in order to grant that the results are valid also in real-
ity. The wide availability of simulation models makes it very attractive
to develop design and verification methods that are based on numerical
computations. Future software environments for control design are likely
to include some analysis features, such as stability analysis and gain com-
putations.

The aim of this thesis is to develop computational algorithms for analy-
sis of nonlinear and uncertain systems. In particular, we focus on systems
with piecewise linear dynamics and extend some aspects of the celebrated
theory for linear systems and quadratic criteria to piecewise linear sys-
tems and piecewise quadratic criteria.
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Chapter 1. Introduction

1.1 Nonlinearity, Uncertainty and Computation

Nonlinear systems are much harder to analyze than linear systems, and
nonlinear controllers are considerably less well understood than their lin-
ear counterparts. Linearity means that local properties also hold globally.
Nonlinearity is the absence of this property, meaning that a local analy-
sis may say nothing about the global behavior of the system. In order to
arrive at strong results for nonlinear systems one typically needs to con-
strain the class of system under consideration. A key problem in systems
theory is then to find classes of systems that are practically relevant, yet
allow to a tractable mathematical analysis. This usually involves approx-
imations of physical models that brings some structure into the problem.
Such structure may for example be linearity, smoothness or convexity.
What structure to enforce on the model is typically dependent on the
mathematical analysis tools at hand. Consider for example the work on
nonlinear systems on the form

ẋ � f (x) + g(x)u
By assuming that f (x) and g(x) are sufficiently smooth, and exploiting
linearity in u it is possible to invoke tools from differential geometry to
derive a strong toolset for controller design [51, 101]. This thesis takes
another route and focuses on convexity. The motivation for this choice is
a desire to base the analysis on efficient numerical computations [19, 99].

Uncertainty is one of the main motivations for feedback control. Most
control design methodologies are based on mathematical models of the
process to be controlled. Uncertainty describes the differences between
the behavior of our mathematical models and reality. These discrepan-
cies are typically due to uncertain parameters, unmodeled components or
disturbances. The differences between mathematical models and reality
raises the question whether a design that is derived from the mathemat-
ical models will actually work in reality. Feedback control can reduce the
effects of these uncertainties, and in many cases it renders the perfor-
mance of the controlled system invariant under small process variations.
However, if the process variations become too large, the feedback may
force the system to become unstable. It is therefore important to account
for uncertainties in the design, so that stability and performance can be
granted for the real system.

The amazing advances in computer technology have made high per-
formance computers broadly available. Large parts of the development
process for a control systems can nowadays be performed within one sin-
gle piece of software. Not only are today’s control engineers skilled users
of advanced software, but large investments have also been put on devel-
oping mathematical models for their applications. This motivates research
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1.2 Piecewise Linear Systems

in computational methods for analysis and design of control systems. The
recent progress in software for convex optimization is a promising foun-
dation for efficient numerical design methods. Aiming at a computational
analysis one should be aware of the fundamental limitations of computa-
tions. Many analysis problems, even for mildly nonlinear systems, have
been shown to be intractable or even impossible to solve by computations
[18]. However, this is not reason enough to refrain from further research.
It is often possible to derive efficient algorithms that work well in most
cases, or deliver solutions that are close to optimal.

This thesis considers systems that are piecewise linear. By the term
piecewise linear we refer to a dynamic system that has different linear dy-
namics in different regions of the continuous state space. Piecewise linear
systems capture many of the most common nonlinearities in engineering
systems, and are powerful also for approximation of more general nonlin-
ear systems. Moreover, they enjoy certain properties that will allow us to
develop an efficient computer-aided analysis, taking standard models of
uncertainty into account.

1.2 Piecewise Linear Systems

We consider piecewise linear systems on the form

ẋ � Aix+ ai for x ∈ Xi.

Here {Xi} is a partition of the state space into operating regimes. The
dynamics in each region is described by a linear (or rather affine) dy-
namics. Piecewise linear systems have a wide applicability in a range of
engineering sciences. Some of the most common nonlinear components
encountered in control systems such as relays and saturations are piece-
wise linear. Diodes and transistors, key components in even the sim-
plest electronic circuits, are naturally modeled as piecewise linear. Many
advanced controllers, notably gain scheduled flight control systems, are
based on piecewise linear ideas. The construction of a globally valid non-
linear model from locally valid linearizations is easy to understand and
widely accepted among engineers.

Some of the first investigations of piecewise linear systems in the con-
trol literature can be traced back to Andronov [2], who used tools from
Poincaré to investigate oscillations in nonlinear systems. The practical
benefits of piecewise linear servomechanisms were also noticed early on
[124]. An interesting early attempt to develop a qualitative understanding
of piecewise linear systems were made by Kalman [73]. He considered a
saturated system as a series of linear regions in the state space, separated
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Chapter 1. Introduction

by switching boundaries. This is also the view of piecewise linear systems
that we will adopt in this thesis. By identifying the singular points of
the dynamics in the different regions it was possible to make qualitative
statements about the global dynamics. It would take several decades be-
fore these ideas were refined and developed into more complete analysis
tools. In the meantime, developments on piecewise linear systems ap-
peared almost exclusively as work on linear systems interconnected with
static nonlinearities such as relays, saturations and friction. Since these
systems turned out to be very challenging to analyze, these directions
have remained very active areas of research. Several theoretical results
with broader applications has come out of these lines of research, notably
in the work on optimal control [40] absolute stability [115] and differential
equations with discontinuous right hand sides [39].

It is fair to say that it was the circuit theory community that first
recognized piecewise linear systems as an interesting system class in
its own right. Driven by the need for efficient simulation and analysis
of large-scale circuits with diodes and other piecewise linear elements,
a considerable research effort has focused on efficient representation of
piecewise linear systems [30, 139] The analysis problems have mainly
been concerned with static problems and DC analysis [144], while the
more complicated dynamic behaviors have remained largely unattended.

Triggered by the recent increase in the use of switched and hybrid
controllers, two conceptually different approaches to analysis of general
piecewise linear dynamical systems have emerged. For discrete time dy-
namics, some attempts have been made to formulate analysis procedures
based on properties of affine mappings and polyhedral sets [131]. This
approach captures some unique features of discrete time piecewise lin-
ear systems, and similar ideas have been used for robustness analysis of
piecewise linear systems [75]. For continuous time dynamics, Pettit has
developed a method for qualitative analysis of piecewise linear systems
that is based on vector field considerations [110]. The approach can be seen
as a multidimensional extension of phase portrait techniques and gives
a qualitative picture of the overall dynamics, indicating sliding modes,
probable limit cycles and instabilities. In some sense this approach rep-
resents the most recent extensions and refinements of the work initiated
by Kalman in the 50’s.

This thesis focuses on quantitative analysis of piecewise linear dy-
namic systems. Stability and gain computations are typical examples.
Today, such results exist almost exclusively for specific piecewise linear
components. For more general piecewise linear systems, there is a clear
shortage of analysis tools. The results developed in this thesis are some
of the first steps towards a more complete theory for general piecewise
linear systems.

12



1.3 System Analysis using Lyapunov Techniques

1.3 System Analysis using Lyapunov Techniques

Stability is one of the most fundamental properties of dynamic systems,
and many concepts have been introduced for the mathematical study of
stability. Irrespectively of the precise definition that we choose to use,
stability is the intuitive property that a system does not explode. There
is a close relation between stability and notions of energy.

Stability analysis of dynamic systems was pioneered by Lyapunov [89,
90]. The intuition behind the results came from energy considerations. The
key idea was that if every motion of a system has the property that its
energy decreases with time, the system must come to rest irrespectively of
its initial state. To make the argument more rigorous, Lyapunov required
that the energy measure V(x(t)) of a motion x(t) should be proper in the
sense that V(0) � 0 and

V(x) > 0 ∀x 6� 0.

The requirement that the V should be decreasing along all trajectories of
the system ẋ � f (x) takes the form

V̇(x) � �V(x)
�x

f (x) < 0 ∀x 6� 0.

Together, these conditions are the well known conditions for Lyapunov
stability, and a function V(x) that satisfies the two inequalities is called
a Lyapunov function for the system.

Energy measures are very powerful tools in systems theory, and simi-
lar functions appear throughout dynamical systems analysis; in gain com-
putations and in the design of optimal control laws. The Lyapunov func-
tion V(x) that satisfies the above conditions is an abstract measure of
the system energy. For some systems, physical insight may hint at the
appropriate energy function. For other systems, the choice is much less
obvious. To this day, the main obstacle in the use of Lyapunov’s method
is the nontrivial step of finding an appropriate Lyapunov function.

The situation is much simpler for linear systems, ẋ � Ax. Lyapunov
showed that for asymptotic stability of linear systems it is both necessary
and sufficient that there exists a quadratic Lyapunov function V(x) �
xT Px. The conditions that such a function be proper, and that its value
decreases along all motions of the linear systems result in the well-known
Lyapunov inequalities

P > 0, AT P + PA < 0.

13



Chapter 1. Introduction

With today’s terminology, we would say that these conditions are linear
matrix inequalities(LMIs) in P. Since the inequalities admit an explicit
solution, this view should not be adopted until almost a century later.
Indeed, by picking an arbitrary positive definite matrix Q � QT > 0, sta-
bility can be assessed from the solution P to the system of linear equalities

AT P + PA � −Q.

The system is asymptotically stable if and only if P is positive definite.
Encouraged by these results, several researchers tried to find results

of similar elegance for systems with simple nonlinearities. In particular,
much research was focused on the absolute stability problem, which con-
siders a linear system interconnected with a static memoryless nonlinear-
ity. The absolute stability problem nurtured several important theoretical
developments. Two beautiful examples are the circle criteria [152] and the
Popov criteria [113]. These results give frequency domain conditions on
the transfer function of the linear system that are sufficient for existence
of certain Lyapunov functions for the interconnection. Such frequency do-
main criteria give valuable insight and were particularly important before
the computer era, since they allowed for simple geometrical verification
rather than solving difficult matrix inequalities in the time domain.

Automatic control went through a drastic change in the 1960’s with the
advent of state space theory. The development was fueled by demanding
applications (the space race), new technology (computers), and a strong
influence of mathematics. This led to the development of optimal control.
As the name indicates, the field of optimal control does not only aim at
merely providing a satisfactory controller, but it actually tries to achieve
the best performance possible. The merit of a control law is often expressed
as some integral criteria ∫ ∞

0
L(x(t), u(t)) dt.

Bellman [10] showed that optimal control laws u for the system ẋ � f (x, u)
could be characterized in terms of solutions V to the Hamilton-Jacobi-
Bellman equation

inf
u

(
�V(x)
�x

f (x) + L(x, u)
)
� 0.

Notice that for the optimal solutions we have V̇ � −L(x, u) which is typ-
ically negative. Hence V(x) may serve as a Lyapunov function for the
closed loop systems. Similar to the Lyapunov inequalities, the Hamilton-
Jacobi-Bellman equation is notoriously hard to solve in general. Many
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1.3 System Analysis using Lyapunov Techniques

numerical methods have been devised for the solution of optimal control
problems, but they tend to suffer from computational explosion. This lim-
its practical applications of optimal control theory to systems of low state
dimension, or to the optimization of trajectories rather than feedback laws.

An important exception is the combination of linear systems and quad-
ratic criteria. In this case, the dynamics is on the form ẋ � Ax+ Bu, and
the criterion takes the form∫ ∞

0
xT Qx + 2uT C x + uT Ru dt.

The first solution to this problem was due to Kalman [74] who showed
that the optimal controller is a linear state feedback. In the early 1970’s,
Willems gave several equivalent characterizations of the optimal solution
[148]. One of these characterizations was that there should exist a sym-
metric matrix P � PT that satisfies the linear matrix inequality condition[

AT P + PA+ Q PB + CT

BT P + C R

]
≥ 0.

However, the numerical methods at hand made it more attractive to con-
sider an alternative characterization in terms of an algebraic matrix equa-
tion which could be solved using numerical linear algebra. Willems also
showed that many other questions involving quadratic criteria, such as
computations of induced gains, can be characterized by Lyapunov-like
functions (called storage functions) [149]. For linear systems the existence
conditions for such functions take the form of linear matrix inequalities.

A decade later, numerical methods for convex optimization started to
get widely available. In their 1982 study of the absolute stability problem
(now extended to multiple nonlinearities) [117], Pyatnitskii and Skorodin-
skii derived a solution in terms of LMIs and gave a numerical algorithm
that is guaranteed to find the solution, if it exists.

The early methods for convex optimization had high complexity. A
breakthrough came in 1984, when Karmarkar introduced the interior
point method for linear programming [76] This method had polynomial
complexity and worked well in practice. The method was later extended to
general convex programming by Nesterov and Nemirovski [99]. Promoted
by efficient software [42, 151, 143] and excellent tutorial texts [19, 122]
researchers have started to accept a linear matrix inequality condition as
a solution of similar value to an analytical result. Moreover, linear matrix
inequalities have turned out to be convenient for the formulation of a wide
range of important control problems, and the interest in these methods
has soared.
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Chapter 1. Introduction

1.4 Lyapunov Analysis of Pi ecewise Linear Systems

Lyapunov techniques are very useful in system analysis. Not only do they
allow stability analysis and gain computations, but they are also useful in
the solution of optimal control problems. This makes Lyapunov techniques
a natural basis for analysis of piecewise linear systems. The main obstacle
to a direct application of the existing techniques is the nontrivial step of
finding the appropriate Lyapunov function. Hence, methods for efficient
Lyapunov function construction are of fundamental importance in a useful
theory for piecewise linear systems.

At the outset of this thesis work, the prevailing approach was to use
quadratic Lyapunov functions. Such functions could be computed by solv-
ing an LMI-problem in terms of multiple Lyapunov inequalities,

P > 0 AT
i P + PAi < 0, i � 1, . . . , L.

This approach has its roots in work on linear uncertain systems [48, 20].
An important development was the paper [142] that showed that the cost
for solving the multiple LMIs does not need to be much bigger than the
cost of solving a single LMI (see also [19]). Unfortunately, these LMI
conditions are often found to be conservative when applied to piecewise
linear systems. One reason for this is that the stability conditions are
derived for linear uncertain (time-varying) systems. Hence, they do not
take into account the fact that a certain dynamics is only used in a specific
part of the state space. Another reason is that many systems do not admit
a quadratic Lyapunov function.

A natural extension for piecewise linear systems is to consider Lya-
punov functions that are piecewise quadratic,

V(x) �
[

x

1

]T

P̄i

[
x

1

]
for x ∈ Xi.

These functions have different quadrature in different operating regimes,
and are obviously much more powerful than globally quadratic functions.
One of the main contributions of this thesis is to show how the search for
piecewise quadratic Lyapunov functions can be formulated as a convex
optimization problem in terms of LMIs. The analysis makes use of the
fact that each each system matrix Ai only describes the dynamics in a
certain part of the state space. The stability conditions take the form

P̄i − R̄i > 0, ĀT
i P̄i + P̄i Āi + S̄i < 0, i � 1, . . . , L.

where R̄i and S̄i are matrices with a particular structure. These matrices
express the fact that the inequalities are only required to hold for certain
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1.5 Thesis Outline

x (those x such that x ∈ Xi). The stability conditions are linear matrix
inequalities in P̄i, R̄i and S̄i.

Based on this result, it is possible to extend the successful theory
of linear systems and quadratic constraints to piecewise linear systems
with piecewise quadratic constraints. This allows us to compute induced
gains of piecewise linear systems and to solve optimal control problems.
Moreover, since we are working with quadratic integrals, it is possible to
adopt the standard models for uncertainty. An important feature is that
the analysis tasks are formulated as LMI conditions that can be solved
using efficient numerical computations. Most results in this thesis have
been packaged into computational algorithms, allowing several important
analysis problems to be solved “at the press of a button”.

Caveat. This thesis does not present a complete theory for piecewise
linear systems. The aim of this work has been to provide some first meth-
ods for quantitative analysis of more general piecewise linear systems.
Many interesting problems remain open, and more precise results are
likely to be found for specific classes of piecewise linear systems. However,
the possibility to automate several important analysis tasks for nonlin-
ear and uncertain systems using efficient numerical computations is an
important contribution. I sincerely hope that this work will encourage
further research on piecewise linear systems.

1.5 Thesis Outline

This thesis treats seven aspects of piecewise linear control systems

1. Piecewise Linear Modeling

2. Structural Analysis

3. Lyapunov Stability

4. Dissipativity Analysis

5. Controller Design

6. Extensions

7. Computational Issues

Each theme corresponds to one chapter of the thesis.
Theme 1 deals with modeling of piecewise linear systems. It is shown

how uncertainty models for linear systems can be extended to piecewise
linear systems. These extensions give new insight in the classical model-
ing trade-off between computational complexity and fidelity of the model.
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Chapter 1. Introduction

It is shown how series, parallel and feedback interconnection of piece-
wise linear systems yield piecewise linear systems. Such properties open
up for many interesting trade-offs in input-output analysis of piecewise
linear systems.

The second theme is to show how some important structural properties
of piecewise linear systems can be verified via linear programming. This
includes equilibrium point computations, state transformations, detection
of attractive sliding modes and constraint verification. These results are
useful for ruling out degeneracies in the model, and are important com-
plements to the quantitative computations derived in the sequel.

The third theme is stability analysis of piecewise linear systems using
Lyapunov function techniques. This chapter contains many of the main
results of the thesis. A key idea is the use of Lyapunov functions that
are piecewise quadratic. It is shown how piecewise quadratic Lyapunov
functions can be computed via convex optimization in terms of linear ma-
trix inequalities (LMIs). Piecewise quadratic Lyapunov functions are sub-
stantially more powerful than globally quadratic functions. These novel
results are based on a compact parameterization of continuous piecewise
quadratic functions and conditional analysis using the S-procedure. Sev-
eral improvements and trade-offs are discussed that reduce the compu-
tation times to a fraction of what was originally required. The param-
eterization of piecewise quadratic Lyapunov functions is specialized to
Lyapunov functions that are piecewise affine. It is shown how these Lya-
punov functions can be computed using linear programming. This has
some computational advantages over LMI computations used in the con-
struction of piecewise quadratic Lyapunov functions. More importantly, it
establishes a unified framework for computation of quadratic, polytopic,
piecewise affine and piecewise quadratic Lyapunov functions. Such a uni-
fication makes it easier to judge the merits and drawbacks of the different
approaches, and to exploit the trade-offs between accuracy in the analy-
sis and computational complexity. The basic computations are extended
to systems with attractive sliding modes, and to systems that are not
globally uniformly exponentially stable.

Lyapunov-like functions arise in many analysis problems. Based on
the previous developments, the fourth theme is to show how many anal-
ysis procedures for linear systems using quadratic Lyapunov functions
can be extended to piecewise linear systems and Lyapunov functions that
are piecewise quadratic. This includes computations of induced gains and
verification of dissipation inequalities. These are important developments,
since they open up for input-output analysis, allowing properties of com-
plex feedback systems to be estimated from the analysis of simpler subsys-
tems. Another important aspect is that it allows analysis of systems that
otherwise do not fit into the piecewise linear framework. An interesting
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1.5 Thesis Outline

example is nonlinear systems with time delays.
Theme 5 concerns controller design for piecewise linear systems. It is

shown that by considering optimal control problems in terms of Hamilton-
Jacobi-Bellman inequalities rather than equalities leads to convex (but
infinite dimensional) problems. By restricting the system equations to
be piecewise linear and by considering cost functions that are piecewise
quadratic, it is then possible to use the machinery from the previous sec-
tions to design optimal control laws.

A sixth theme is to show how the basic results for piecewise linear sys-
tems can be extended in several directions. Fuzzy systems are popular in
many applications but are desperately short of efficient analysis methods.
It is also an area where engineers often prefer to tune local controllers “by
hand”, but would like to verify system properties before full scale trials.
We show how the analysis methods developed for piecewise linear systems
extend to fuzzy systems. The area of hybrid control has attracted a large
interest in the control community over the past few years. We show how
a class of piecewise linear hybrid systems can be analyzed using convex
optimization. The approach uses piecewise quadratic Lyapunov functions
that have a discontinuous dependence on the discrete state. The main con-
tribution is to formulate the search for these Lyapunov functions in terms
of linear matrix inequalities. Finally, we show how the piecewise linear
framework can be used for rigorous analysis of smooth nonlinear systems.
An important feature of the approach is that a local linear-quadratic anal-
ysis near an equilibrium point of a nonlinear system can be improved step
by step, by splitting the state space into more regions, thereby increasing
the flexibility in the nonlinearity description and enlarging the validity
domain for the analysis. In this way, the tradeoff between precision and
computational complexity can be addressed directly. We suggest a proce-
dure for automatic partition refinements that uses duality. This procedure
increases the flexibility of the Lyapunov function candidate in the regions
where it is needed the most.

The aim of this thesis is to develop a computational analysis of piece-
wise linear systems. The value of these results lies in the facts that sta-
bility analysis of reasonably large systems, with several tens of operating
regimes, can be made automatically and in a matter of seconds. The final
theme is the development of a Matlab toolbox that contains most of the
tools developed in this thesis. A set of user-friendly commands makes it
easy to describe piecewise linear systems. Stability analysis, gain com-
putations and controller design can then be performed with simplicity
and efficiency. The toolbox also includes a simulation engine that treats
systems with sliding modes. The toolbox is publically available, free of
charge.

A summary of the thesis contributions can be found in Chapter 9.
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2

Piecewise Linear Modeling

This thesis treats analysis and design of piecewise linear control systems.
In this chapter, we lay the foundation for the analysis by presenting the
mathematical model on which the subsequent developments will be based.
We discuss properties of solutions, and derive an explicit matrix represen-
tation of the model. By straightforward extensions of modeling techniques
for uncertain linear systems, we show how norm-bonded uncertainties and
smooth nonlinearities can be treated rigorously in the piecewise linear
framework. Moreover, these extensions give new insight into the classical
trade-off between uncertainty and complexity in modeling of dynamical
systems. Finally, we note that piecewise linear dynamical systems en-
joy important interconnection properties, allowing complicated piecewise
linear systems to be constructed from the interconnection of simpler sub-
systems.

2.1 Model Representation

A piecewise linear dynamical system is a nonlinear system{
ẋ � f (x, u, t)
y � g(x, u, t)

whose right-hand side is a piecewise linear function of its arguments. For
example, a linear system with saturated input results in system equa-
tions that are piecewise linear in the input variable. Linear systems with
abrupt changes in parameter values are piecewise linear systems in time
(see, for example, the work on jump linear systems [133]). The most com-
mon situation, however, is when the system equations are piecewise in
the system state. Such a model can for example arise from linearizations
of a nonlinear system around different operating points or from intercon-
nections of piecewise linear components and linear systems.
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Chapter 2. Piecewise Linear Modeling

Throughout this thesis, we will understand the term piecewise as
piecewise in the system state. With this interpretation, piecewise linear
indicates that the state space can be subdivided into a set of regions, Xi,
such that the dynamics within each region is affine in x{

ẋ � Aix+ ai + Biu

y � Cix+ ci + Diu
for x ∈ Xi.

When written in this way, it is clear that a piecewise linear system has two
important components; the partition {Xi} of the state space into regions,
and the equations describing the dynamics within each region. To obtain
a good understanding of the global dynamics of such systems, one needs
to account for both. Although the term piecewise linear does not impose
any restriction on the geometry of the regions, such restrictions are often
necessary to impose in order to arrive at useful results. In this thesis, we
restrict our attention to polyhedral piecewise linear dynamical systems,
where the state space is partitioned into convex polyhedra.

While most readers of this thesis probably have a good knowledge of
linear [72, 121] and nonlinear [78, 130] dynamical systems, they may be
less familiar with polytope theory. Since many results in this thesis are
based on properties of polyhedra and polytopes, and a basic orientation
in polytope theory may be useful. The texts [27, 157, 123] give a thorough
introduction to convex polytopes.

Introductory Examples

Before giving a more precise definition of piecewise linear systems, it is
useful to consider some simple examples. One of the simplest piecewise
linear control systems is obtained when a linear system is interconnected
with a static nonlinearity, such as a saturation or a relay.

EXAMPLE 2.1—ACTUATOR SATURATION IN LINEAR SYSTEMS

Consider a linear system under bounded linear state feedback,

ẋ � Ax + b sat(v), v � kT x.

The saturation nonlinearity induces a natural polyhedral partition of the
state space. The partition has three cells corresponding to negative satura-
tion (X1), linear operation (X2), and positive saturation (X3) respectively,
see Figure 2.1. The dynamics is piecewise linear

ẋ �


Ax − b x ∈ X1

(A+ bkT)x x ∈ X2

Ax + b x ∈ X3

(2.1)
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2.1 Model Representation

G

v � kT xu

yr � 0

−2 −1 0 1 2

X1 X2 X3

kT x

Figure 2.1 A saturated linear feedback (left) induces a piecewise linear system
with a polyhedral partition of the state space (right).

In this example, it is natural to let the cells be closed polyhedral sets that
only share their common boundaries. Note that the presence of offset
terms makes the dynamics affine rather than linear in the state x.

The initial motivation to use piecewise linear components in circuit the-
ory was the possibility to approximate nonlinear components in a way
that allows for efficient computations. This is also the basic idea behind
gain scheduling in modeling and control of dynamic systems. A simple
method to obtain an approximation of a smooth function is to evaluate
the function on a number of points, and then use linear interpolation to
construct the approximant. This was how piecewise linear circuit models
were constructed in [50, 103, 29].

EXAMPLE 2.2—APPROXIMATION OF SMOOTH SYSTEMS

The following equations describe a mechanical system with a nonlinear
spring and damper.

ẋ1 � f1(x) � x2

ẋ2 � f2(x) � −x2tx2t − x1(1+ x2
1)

A piecewise linear approximation of this system can be obtained by eval-
uating the right-hand side of the system equations on the grid shown
in Figure 2.2 (left). A piecewise linear approximant can then be con-
structed from a linear approximation between these points. Figure 2.2
(right) shows the function f2(x) and the piecewise linear approximation
f̂2(x) obtained by this procedure.

In many cases we are more interested in achieving good approximation in
all space, rather than the exact reconstruction of the dynamic behavior at
isolated points of the state space. Methods for identification of piecewise
linear systems from data have been suggested in [14, 129, 98, 26].
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Figure 2.2 Partition (left) induced by the grid points marked with �, piecewise
linear approximation (top right), and actual nonlinear function (bottom right).

The aim of this thesis is to develop methods for analysis and design
of polyhedral piecewise linear control systems. The above examples serve
as simple prototype systems that illustrate the system class and indicate
some systems that can be dealt with using this approach.

Model Definition

A polyhedral piecewise linear system consists of a subdivision of the state
space into polyhedra, and the specification of the dynamics valid within
each region. In this way, a piecewise linear system may be described as a
collection of ordered pairs,

{(Σ i, Xi)}i∈I (2.2)
that to each polyhedral region Xi associates a linear dynamics Σ i. The
index set of the sets is denoted I. We will write the system dynamics as

Σ i :

{
ẋ(t) � Aix(t) + ai + Biu(t)
y(t) � Cix(t) + ci + Diu(t)

for x(t) ∈ Xi. (2.3)

Here, x ∈ Rn is the continuous state vector, u ∈ Rm is the input vector
and y ∈ Rp is the output vector. The notion ẋ � dx/dt denotes the time
derivative of x. The matrices Ai, ai, Bi, Ci, ci, Di are fixed in time, and of
compatible dimensions.

The sets Xi ⊆ Rn are assumed to be closed, possibly unbounded, con-
vex polyhedra. In other words, the Xi are convex sets resulting from the
intersection of a finite number of closed halfspaces. This implies that for
each Xi, there exists a matrix Gi and a vector gi so that

Xi � {x t Gix+ gi � 0}. (2.4)
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2.1 Model Representation

Here, the vector inequality z � 0 means that every element of the vector z
should be non-negative. The partition, X � {Xi}i∈I covers a subset of the
state space, X ⊆ Rn. We will assume that the cells have disjoint interior,
so that any two cells may only share their common boundary.

Many results in this thesis are concerned with the analysis of equilib-
ria. We will assume that the interesting equilibrium point is located at
x � 0. It is then convenient to let I0 ⊆ I be the set of indices for cells that
contain the origin, and I1 ⊆ I be the set of indices for cells that do not
contain the origin. It is assumed that ai � ci � 0 for i ∈ I0.

In order to evaluate the right hand side of (2.3) for a given x � x0,
we simply have to find i such that the vector inequality Gix0 + gi � 0
holds. Thus, Gi and gi work as cell identifiers for cell Xi. If x0 lies in the
interior of a cell, this i is unique, and we can recall the appropriate system
matrices to evaluate the model (2.3). If x0 lies on a cell boundary, there
are several i that satisfies the vector inequality and the right-hand side
may not be uniquely defined. This is the case for non-smooth systems, and
we will return to this later. We demonstrate the notation on the piecewise
linear system in Example 2.1.

EXAMPLE 2.3—CELL IDENTIFIERS FOR SATURATED SYSTEM

Consider the linear system with actuator saturation used in Example 2.1.
The cell identifiers are given by

G1 � [−kT ] , g1 � [−1 ] ,

G2 �
[

kT

−kT

]
, g2 �

[
1

1

]
,

G3 � [ kT ] , g3 � [−1 ] .

We have the index sets I0 � {2} and I1 � {1, 3}. From (2.1) we can verify
that ai � ci � 0 for i ∈ I0.

A Notational Simplification and a Matrix Parameterization

For convenient treatment of affine terms, we define

x̄(t) �
[

x(t)
1

]
.

The vector x̄ can be thought of as an augmented state vector, where the
last component is constant. Throughout this thesis, a bar over a vector
denotes the augmentation of the vector with the unit element 1, Somewhat
informally, a bar over a matrix indicates that it has been modified to be
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Chapter 2. Piecewise Linear Modeling

compatible with the augmented signal vector, i.e.

˙̄x �
[

ẋ

0

]
�
[

Ai ai

01�n 0

]
x̄ :� Āi x̄

This allows us to introduce the compact notation

S̄i �
[

Āi B̄i

C̄i D̄i

]
�

 Ai ai Bi

01�n 0 01�m

Ci ci Di

 (2.5)

Ḡi � [ Gi gi ] . (2.6)

The matrices S̄i will be called system matrices, and Ḡi will be called cell
identifiers. With this notation, the dynamics (2.3) can be re-written as[ ˙̄x(t)

y(t)
]
� S̄i

[
x̄(t)
u(t)

]
for {x t Ḡi x̄ � 0} (2.7)

which allows the system (2.2) to be represented by a set of matrix pairs,{(S̄i, Ḡi)
}

i∈I .

specifying the local dynamics and state space partitioning respectively.

2.2 Solution Concepts

A dynamic model can not be fully understood without specifying what we
mean by a solution to the system equations. One way of defining a solu-
tion is to specify how to generate the future behavior x(t) of the system
from any initial state x(0) � x0. This is closely related to providing a sim-
ulation algorithm for the system. This approach is intuitive and favored
by many engineers. For some models, however, it may be impossible to
find a meaningful solution concept that gives unique solutions. It is then
more natural to define a solution as any behavior which is compatible
with the model. In other words, a function x(t) is a solution to a model if
it has a time derivative and satisfies the model equation everywhere on
a given time interval. This is the classical solution concept for ordinary
differential equations, and a system model may in this case admit a whole
family of solutions for a given initial value.

The right-hand side of the equation (2.3) may in general be discontin-
uous at cell boundaries. As we will see later, this makes it hard to devise
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2.2 Solution Concepts

simulation algorithms that give unique solutions, and the alternative ap-
proach is more appropriate. Initially, we will restrict our attention to the
case when the non-smooth dynamics does not create any problems for our
analysis. The following definition of a trajectory will allows us to discuss
admissible behaviors of the model (2.3)

DEFINITION 2.1—TRAJECTORY

Let x(t) ∈ ∪i∈I Xi be an absolutely continuous function. We say that x(t)
is a trajectory of the system (2.3) on [t0, t f ] if, for almost all t ∈ [t0 , t f ], the
equation ẋ(t) � Aix(t) + ai + Biu(t) holds for all i with x(t) ∈ Xi.

For our class of piecewise linear systems, the equation (2.3) defines unique
C 1 trajectories in the interior of the cells. If such a trajectory at time tk

passes through a cell boundary where the vector fields in the neighboring
regions do not match, the time derivative ẋ(tk) is not defined. However, if
x(t) does not remain on the cell boundary for any time interval, these time
instants can be removed without disqualifying x(t) from being a trajectory,
see Figure 2.3. Trajectories are allowed to remain on cell boundaries only
if the vector fields defined in the interior of the neighboring cells match.

0 2
−3

0

3

x1

x2

−3

−2

−1

0

1

2

3
x(t)

t1 t2 t3
Figure 2.3 Phase plane plot and time plots of a trajectory of a piecewise linear
system. The times tk, marked with dashed lines in the time plot, are the times
where x(t) ∈ X1 ∩ X2 , and the time derivative of (2.3) is not defined. As x(t) does
not stay on the boundary for any time interval, it still qualifies as a trajectory.

The main obstacle in the analysis of non-smooth systems will be the
cases when no continuation of a trajectory in the sense of Definition 2.1
is possible. In these cases, it may still be possible to define meaningful
solution concepts that considers x(t) that remain on the cell boundaries
for some time interval, see [39, 138]. Such a behavior is often called a
sliding mode. We will comment upon sliding modes on several occasions
in this thesis. For sake of clarity, however, we prefer to present the main
ideas for systems that do not have sliding modes. The following definition
allow us to single out such situations.
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Chapter 2. Piecewise Linear Modeling

DEFINITION 2.2—ATTRACTIVE SLIDING MODE

Given u � 0, the system (2.3) is said to have an attractive sliding mode at
xS if there exists a system trajectory with final state xS , but no trajectory
with initial state xS .

Methods for detection of attractive sliding modes in piecewise linear sys-
tems will be given in Section 3.4. Analysis conditions will initially be
derived for systems without attractive sliding modes. The necessary ex-
tensions for systems with sliding modes will be given in Section 4.11.

2.3 Uncertainty Models

Uncertainty and robustness are central themes in modeling and analysis
of feedback systems. One of the most important reasons for using feedback
is to guarantee that system specifications are met despite variations in
system components and exogenous disturbances. Furthermore, since there
is always a mismatch between the models that are used for control design
and the actual system, it is important to account for this uncertainty so
as to ensure that the results derived from the model also hold in reality.

To verify robustness we have to somehow specify the sets of admissible
uncertainties and disturbances. In this section, we will extend the stan-
dard uncertainty models for linear uncertain systems to systems that are
piecewise linear. This will allow us to use analysis results for piecewise
linear systems for rigorous analysis of smooth nonlinear systems. We will
consider two main classes of uncertainties. The first class is systems

ẋ � f (x)

where the function f (x) is uncertain. This situation may occur when f (x)
is a piecewise linear approximation of some smooth function. If the un-
certainty is due to unknown or time-varying parameters, this is usually
called parametric uncertainty. The second class of uncertainty descriptions
deals with systems on the form

ẋ � f (x, y)
ẏ � g(x, y)

where g(x, y) is uncertain or lacks a description with appropriate struc-
ture. This type of uncertainty is usually called dynamic uncertainty, and
may occur when y represents an exogenous disturbance or a neglected
component.
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2.3 Uncertainty Models

Piecewise Linear Differential Inclusions

One way to embed more general nonlinear systems in the piecewise linear
framework is to allow systems with time-varying system matrices{

ẋ(t) � Ai(t)x(t)+ ai(t) + Bi(t)u(t)
y(t) � Ci(t)x(t) + ci(t) + Di(t)u(t)

for x ∈ Xi

We will consider the case when the system matrices S̄i for each cell can
be written as a convex combination of matrices S̄1

i , . . . , S̄k
i . In other words,

we assume that for every t there exist scalars α k(t) ≥ 0 with
∑

k α k(t) � 1
such that S̄i(t) can be written as

S̄i(t) �
∑

k

α k(t)S̄k
i . (2.8)

We will then consider the family of models obtained by considering all
admissible α k(t). For notational convenience, we will to each cell Xi as-
sociate an index set K (i) that specifies the matrices that are used in the
inclusion. We will then write (2.8) as

S̄i(t) ∈ co
k∈K(i)

{
S̄k
}

. (2.9)

Here, co stands for convex closure. We will call these models piecewise
linear differential inclusions, pwLDIs. An absolutely continuous function
x(t) is called a solution of the inclusion on [t0, t f ] if, for almost all t ∈ [t0, t f ]
it satisfies[

ẋ(t)
y(t)

]
∈ co

k∈K(i)

{
S̄k

[
x(t)
u(t)

]}
for x(t) ∈ Xi (2.10)

Linear differential inclusions have been used to model parametric un-
certainty in linear systems. An important special case is the sector condi-
tions that have been used in the work on absolute stability [88, 152, 114].
In this context, the extension to piecewise linear differential inclusions al-
lows us to use piecewise linear sector bounds to embed smooth nonlinear
systems into the piecewise linear framework.

EXAMPLE 2.4—SECTOR BOUNDED NONLINEARITY

Consider an integrator in a negative feedback loop with static nonlinearity{
ẋ(t) � −φ (x(t))
y(t) � x(t)
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Figure 2.4 Analysis of smooth nonlinear system (left) via piecewise linear sector
bounds on the nonlinearity (right).

Assume that the nonlinearity φ (x(t)) can be bounded by “piecewise linear
sectors”, see Figure 2.4. This implies that there exists vectors l̄i and ūi

describing upper and lower bounds respectively, such that

φ (x(t)) ∈ co(l̄T
i x̄(t), ūT

i x̄(t)) for x ∈ Xi.

The closed loop system can then be described by the piecewise linear
differential inclusion

S̄i(t) ∈ co(S̄+i , S̄−i )

with

S̄+i �

 −l̄i 1

0 0

1 0

 , S̄−i �

 −ūi 1

0 0

1 0

 .

Notice that the integrator system could be replaced with a general piece-
wise linear system, and all results would follow similarly.

The piecewise linear sector bounds will be used to derive computational
analysis methods for smooth nonlinear systems and fuzzy systems in
Chapter 7. The problem of finding piecewise upper and lower bounds on
smooth nonlinear functions has also attracted interest in the approxima-
tion community, see [85].

Norm-Bounded Approximation Errors

One problem with uncertainty descriptions in terms of differential inclu-
sions is that the analysis conditions must consider every extreme dynam-
ics in each region. A careless application of pwLDIs in the modeling phase
can then generate a large number of extreme systems, which may render
the analysis computations intractable.
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2.3 Uncertainty Models

If the piecewise linear system is obtained by approximating a smooth
system, it is natural to use a norm bound on the error

tt f (x)− Aix− aitt ≤ ε ittxtt for x ∈ Xi, i ∈ I.

between the right-hand side of ẋ � f (x) and its piecewise linear approx-
imation. Now, rather than specifying a set of extreme dynamics for each
cell, we only have to provide one norm bound ε i for each cell. Moreover,
if f (x) is smooth, the bounds on the approximation error will decrease
as the partition is refined. This observation is useful in theoretical stud-
ies of algorithms that use piecewise linear system descriptions to analyze
smooth nonlinear systems. We will return to this issue in Chapter 7.

Dynamic Uncertainties and Dissipation Inequalities

The standard approach to account for dynamic uncertainties is to consider
norm-bounded uncertainties in a feedback interconnection as shown in
Figure 2.5. In robust control literature, the nominal system Σ is assumed

uy
wz

Σ

∆

Figure 2.5 Piecewise linear system with uncertainty feedback.

to be linear time invariant, while system nonlinearities and uncertainties
are confined to the uncertainty block ∆. In contrast to this, we will allow
Σ to be piecewise linear. In this way, we can choose whether system non-
linearities should be expressed in the piecewise linear subsystem or as
uncertainties in the ∆ subsystem. This additional freedom can be used to
trade off computational complexity against conservatism in the analysis.

The operator ∆ that specify the feedback u � ∆ y may be linear time
varying or nonlinear, but is assumed to satisfy the dissipation inequality∫ t

0

[
y(s)
u(s)

]T

M
[

y(s)
u(s)

]
ds ≥ 0 for all t ≥ 0 (2.11)

for some real symmetric matrix M . Passivity and bounded L 2-induced
gains can for example be expressed in this way. After establishing gain
and passivity properties of the components, we may try to use small gain
or passivity results to establish stability of the closed loop system [78].
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A Modeling Trade-off: Uncertainty versus Complexity

There is an intrinsic tradeoff between fidelity and complexity of a model.
Limited physical knowledge and limited modeling resources enforce us
to settle with simple models that capture the “most important” system
characteristics. Such models are often easier to understand and use in
the design process.

The piecewise linear sector bounds allows stepwise refinements of a
global sector bounds to improve a nonlinearity description. In the end,
such refinements allow arbitrarily tight inclusions of any continuous func-
tion. However, each such refinement comes at the price of increased mem-
ory requirements for the model representation and increased computa-
tional cost for the analysis. It is thus natural to look for the simplest
model that gives a sufficiently accurate answer in the analysis. The fol-
lowing example illustrates the ideas.

EXAMPLE 2.5—PIECEWISE LINEAR MODELING AND COMPLEXITY

In Chapter 5 we will encounter a system on the form

d
dt

x(t) � Ax(t) − Bϕ (C x(t))

where the nonlinearity ϕ (⋅) is a spring with the piecewise linear character-
istic shown in Figure 2.6 (left). Using the exact description requires many
segments and results in relatively demanding analysis computations. It
is therefore attractive to base the analysis on an approximate model that
requires less computations. The piecewise linear sector bounds give many
possibilities. For the specific example in Chapter 5, the piecewise linear
sector bounds (middle) can be used to asses stability while an analysis
based on global sector bounds (right) fails.
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Figure 2.6 From exact description to global sector bounds. Piecewise linear sector
bounds allow us to trade precision of the model against simplicity of the computa-
tions.
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Although the principle of refinements using piecewise linear sector bounds
has been illustrated on a scalar nonlinearity, the methods applies also to
multi-variable nonlinearities.

Note that pointwise function approximation measures are only very
loosely related to the question about what is a “good” description of a
nonlinearity for system analysis. Although global sector bounds can be
arbitrarily bad in function approximation measures, they are often suffi-
ciently accurate to assess stability of systems. The possibility of arbitrar-
ily good approximations, however, is useful in establishing asymptotic
results that computations will always give an affirmative answer for a
“sufficiently refined” partition (see [120]).

2.4 Modularity and Interconnections

Modularity and structure-preserving interconnections are attractive fea-
tures in modeling and analysis of dynamic systems. Modularity allows
complex systems to be represented as the interconnection of simpler sub-
systems. Important model components can be stored in a library and
recalled and interconnected as needed. Structure-preserving interconnec-
tions are also very useful, since they grant that the interconnected system
shares important structural properties with its components. For example,
series, parallel and feedback interconnections of linear systems are them-
selves linear systems. This allows the full systems and its components to
be analyzed using the same tools. We can then choose whether to analyze
the complex system directly, or to analyze its subcomponents and invoke
interconnection results such as small gain and passivity theorems.

The following proposition states that the most common interconnection
structures preserves the piecewise linearity of its components. Its proof
also shows how a system representation for a complex system can be
derived from the representations of its piecewise linear subsystems and
their interconnection structure.

PROPOSITION 2.1—STRUCTURE-PRESERVING INTERCONNECTIONS

Series, parallel and feedback interconnections without algebraic loops of
polyhedral piecewise linear systems are themselves polyhedral piecewise
linear systems. Moreover, a matrix representation {S̄i, Ḡi}i∈I for the total
system is obtained directly from the matrix representations of its compo-
nents.

Proof: The result follows by direct computations, see Section A.1. The
proof also gives the matrix representation of the interconnected system.
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Chapter 2. Piecewise Linear Modeling

The proof of Proposition 2.1 reveals that the interconnection of two
piecewise linear systems results in a combinatorial growth in the number
of cells. Consider the interconnection of the system Σ1 with state vector x
and partition {Xi}i∈I and the system Σ2 with state vector z and partition
{Zj}j∈J . The partition of the interconnected system is obtained by consid-
ering all combinations of (i, j) such that x ∈ Xi and z ∈ Zj . Hence, if Σ1

has a partition of p1 cells, and Σ2 has a partition of p2 cells, the intercon-
nected system may have p1�p2 cells. This illustrates the usefulness of an
input-output analysis for piecewise linear systems. If analysis of the in-
terconnected system gives too costly computations, we can try to analyze
the simpler subsystems and apply small gain or passivity arguments.

Proposition 2.1 allows standard piecewise linear components, such as
relays and saturations, to be stored in a library and recalled when needed.
In these cases, it can be useful to allow partitioning in the product space
of the input space and the state space, i.e., to let

X̃i �
{[

x

u

]
t G̃i

[
x̄

u

]
� 0

}
.

Although this route will not be pursued here, we note that a similar
result to Proposition 2.1 holds also in this case. Modularity has been
acknowledged in many other works on piecewise linear systems, see [139,
110]. The following example illustrates the interconnection properties.

EXAMPLE 2.6—INTERCONNECTION PRESERVES STRUCTURE

Consider the series connection of two piecewise linear systems

ẋ � −sat(x) + u

ẏ � −sign(y) − x

illustrated in Figure 2.7 (left). The interconnection is itself piecewise lin-
ear in accordance with Proposition 2.1. The individual subsystems have
two and three cells respectively, the interconnected system has six. Al-
though the combinatorial growth is not so pronounced in this example, it
can be significant in more complex systems.

Unfortunately, the modular approach does not extend directly to the case
when the systems are uncertain in the PwLDI-sense since this may in-
troduce uncertainty in the state space partitioning.

2.5 Comments and References

Piecewise linear systems is an interesting system class, and many impor-
tant remarks can be made to the developments described so far. Rather
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Figure 2.7 Series connection of two piecewise linear systems is piecewise linear
(left). The interconnected system has the partition shown to the right.

than obstructing the general presentation with long discussions, we have
chosen to collect such remarks in a special section. Some of the material
presented here are pure remarks, while others discuss related work, give
alternative perspectives on the material or present issues that are not
otherwise covered in the thesis.

Piecewise Linear or Piecewise Affine?

The term piecewise linear may at first appear inappropriate for the system
(2.3), since the dynamics is in fact affine in the state. However, since the
name is generally accepted, we have chosen not to make a stronger point
out of this. One may motivate the name piecewise linear by the fact that
around any trajectory inside a cell, the dynamics will behave linearly.

Memory Efficient Representations

Modeling and simulation of piecewise linear systems has attracted a large
interest in the circuit theory community during the last decades [30, 84].
Driven by the need to simulate large-scale circuits with piecewise linear
components, a large research effort has been focused on deriving mem-
ory efficient representations for piecewise linear systems. More compact
descriptions than the matrix representation (2.7) can be obtained when
the vector field of the system is continuous across cell boundaries. To see
this, consider the situation in Figure 2.8.

To obtain continuity on the hyperplane H ij � {x t hT
ij x + gij � 0}, the

system matrices must satisfy

Aj � Ai + cij hT
ij

aj � ai + cij gij

for some cij ∈ Rn. Since the boundary equations of the cells reappear
in the description of feasible changes in the mapping, there is a certain
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Chapter 2. Piecewise Linear Modeling

Xi Xj

ẋ � Aix+ ai ẋ � Aj x+ aj

hT
ij x+ gij � 0

Figure 2.8 Continuity of vector fields allows parameter savings.

redundancy in the data given by the simple model (2.7). The argument
above indicates that it should be sufficient to store one linear system
description, the boundary equations, and the update vectors cij .

The first compact parameterization that appeared was the canonical
piecewise linear function description introduced in [30]. For piecewise lin-
ear dynamic systems, it takes the form

ẋ � Ax + a+
p∑

i�1

citgT
i x+ hit. (2.12)

This representation stores only a single affine system description, the
boundary hyperplane equations, and the update vectors. It has also elim-
inated the need for explicit storage of cell descriptions, and no cell identi-
fication is necessary to evaluate the mapping. The representation (2.12)
is very efficient compared to the simple matrix parameterization (2.7).
However, it can only represent a subset of the continuous piecewise lin-
ear mappings (cf. [71, 77]). To overcome this problems, various higher
order basis function expressions have been suggested. These are much
more complicated than the simple model (2.12), but can be put in the
general form

ẋ � Ax + a+
q∑

i�1

ciϕ i(x)

Here, the ϕ i(x) are piecewise linear functions constructed from nested
absolute or maximum functions, see [71, 43, 77]

An alternative formulation, which is closely related to the matrix rep-
resentation (2.7), is the implicit piecewise linear function description re-
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ported in [139] 
ẋ � Ax + a+ Bu

i � Gx+ g + Cu

0 � uTi u � 0, i � 0

(2.13)

This representation was derived from a static linear network where some
ports have been terminated by negative ideal diodes [77]. The variables
i and u correspond to currents and voltages respectively, and the last
equation of (2.13) describes the characteristic of an ideal negative diode.
Vectors u and i that satisfy this equation are called complementary. To see
the close connection to our matrix parameterization, consider the region
where u � 0. Then, the above model reduces to

ẋ � Ax + a for x such that Gx+ g � 0.

Given a vector x, an evaluation of the mapping needs the associated
diode voltages u. This requires that we solve the linear complementary
problem of finding i and u that satisfy the last two equations of (2.13). In
principle, a solution to this problem can be obtained through a sequence of
pivoting operations around the C-matrix. Each such pivoting step forces
one entry of the vectors u or i to zero, while the corresponding entry in
the other vector is allowed to be non-zero. The non-zero entries of u and
i define affine inequalities in x (since the corresponding entries of the
other vector are zero), and hence closed halfspaces in the state space.
The zero entries in the i-vector forces the corresponding entries of u to
be affine functions of x. These affine expressions are used to describe the
relative changes in the local dynamics via the first equation of (2.13). In
this way, the matrix C encodes the changes in the cell descriptions, while
the matrix B encodes the changes in the affine dynamics. The best way to
understand the implicit model (2.13) in further detail is to work through
some of the examples given in [139] (see also [28, 110]).

One drawback with the implicit model (2.13) is that a solution to the
linear complementary problem may require a number of pivoting opera-
tions that is exponential in the number of entries of the vectors u and i.
As we have seen above, solving the linear complementary problem is re-
lated to performing a cell identification in our framework. The exponential
complexity is related to the fact that we may have to check membership
to all cells when evaluating the piecewise linear mapping. However, once
a feasible set of complementary vectors u and i has been found, only one
pivoting operation is needed in order to determine the new set-up when
one constraint has been violated. This has allowed the development of fast
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Chapter 2. Piecewise Linear Modeling

and memory efficient simulation programs based on this model [28]. We
also note that complementary conditions occur naturally in the modeling
of impulse and contact forces in mechanics, see [87, 141].
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3

Structural Analysis

The main aim of this thesis is to provide quantitative methods for anal-
ysis of piecewise linear dynamical systems. This chapter will present the
first building blocks of such an analysis. The methods described here are
mainly of a static nature, and can all be obtained through vector field
considerations. We will treat equilibrium computations and static gain
analysis, as well as detection of sliding modes and verification of affine
state constraints. These results are useful for ruling out degeneracies
in piecewise linear models, give important engineering insight and are
valuable complements to the Lyapunov-based methods developed in the
subsequent chapters.

3.1 Equilibrium Points and Static Gain Analysis

An initial problem in the study of a nonlinear system is to determine its
equilibrium points. In this context, we will understand the term equilib-
rium point as a constant trajectory (in the sense of Definition 2.1). Con-
trary to a linear system which always has an equilibrium at the origin, a
general nonlinear system

ẋ � f (x, u)
y � g(x, u)

may have any number of equilibrium points. We will make a distinction
between equilibrium point computations and static gain analysis. In equi-
librium point computations, we let u � 0 and consider the problem of
finding the solutions x∗ to the equation f (x∗, 0) � 0. By static gain analy-
sis, we refer to the problem of computing the outputs y∗ that correspond
to the equilibrium points obtained for a constant input signal u � u∗. This
problem can be solved by first computing the equilibrium point x � x∗ for
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Chapter 3. Structural Analysis

the system corresponding to u � u∗, and then obtaining the corresponding
output from the map y∗ � g(x∗, u∗). These computations may be more or
less straightforward depending on the structure of the function f (x, u).
Equilibrium Point Computations

For piecewise linear systems on the form (2.3), it is a simple matter to
compute the equilibrium points that lie in the interior of cells. It suffices
to check if each affine system has equilibrium points within its own oper-
ating regime. These computations are conveniently formulated as linear
programming problems, and all equilibrium points of the system can be
found with ease.

PROPOSITION 3.1—EQUILIBRIUM POINT COMPUTATIONS

The piecewise linear system (2.3) has an equilibrium point in the interior
of cell Xi if and only if the linear programming problem{

Āi x̄ � 0

Ḡi x̄ � 0

has a feasible solution.

The formulation of the above proposition does not treat equilibrium points
on the boundary of cells. If one desires to consider equilibrium points also
on cell boundaries, one can simply replace the strict vector inequality
Ḡi x̄ � 0 by its non-strict counterpart Ḡi x̄ � 0. In order for the computed
x to be an equilibrium point, it must then satisfy

Ḡi x̄ � 0 for all i with x ∈ Xi.

Note that our discussion of equilibrium points depends on our trajectory
definition, and that stationary points in attractive sliding modes are not
considered in this definition.

The above approach is somewhat “brute-force” as all cells have to be
considered, one-by-one. If the system has continuous vector fields, it is
possible to exploit the continuity and arrive at more efficient algorithms
for equilibrium point computations, see e.g.[32, 144, 105]. The following
example demonstrates the analysis.

EXAMPLE 3.1—A BISTABLE ELECTRICAL CIRCUIT

Consider the tunnel diode circuit in Figure 3.1. The circuit equations are
given by 

C
d
dt

vc � iL − gR(vc)

L
d
dt

iL � u − RiL − vc
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Figure 3.1 Bistable electrical circuit (left) and piecewise linear i−v characteristic
(right).

where gR(vc) denotes the conductance of the nonlinear element. We use
the parameters taken from [78, 31], R � 1.5kΩ, C � 2pF, L � 5µ H. By
measuring time in nanoseconds and currents in mA, we obtain

d
dt

vc � 0.5[−gR(vc) + iL]
d
dt

iL � 0.2[−vc − RiL + u]

Using a seven-segment piecewise linear approximation of gR(vc) based on
the data given in [78], we obtain a piecewise linear approximation of the
system. Letting u � 1.2, we run the computations of Proposition 3.1 to
find the three equilibrium points

x∗
1 �

[
0.07

0.76

]
, x∗

2 �
[

0.28

0.62

]
, x∗

3 �
[

0.87

0.22

]
.

which have good correspondence with the computations in [78].
The formulation of Proposition 3.1 may appear unnecessarily complicated.
A more straightforward solution would be to solve the equation

Aix∗ + ai � 0 (3.1)

and then simply test whether Ḡi x̄∗ � 0. The only problem one may have is
when the matrix Ai is not invertible, which corresponds to the case when
the local dynamics has an equilibrium set. The solution set of (3.1)may in
this case have points both within Xi and outside of Xi. By picking an ar-
bitrary solution to (3.1) and subsequently performing a cell identification
may then fail to find an equilibrium point within the operating regime. In
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contrast, the computations in Proposition 3.1 will always admit a solution
if the equilibrium set intersects the operating regime.

The value of an equilibrium point computation is significantly in-
creased if it is combined with a local analysis of the properties of the
equilibria. Such an analysis can be obtained by eigenvalue inspection. We
have already mentioned how a local analysis may reveal that the system
has an equilibrium set rather than isolated equilibrium points. More im-
portantly, if the system has no sliding modes and no stable equilibrium
points then the state vector either tends to infinity, or towards some non-
stationary behavior (possibly a limit cycle). If there are no locally stable
equilibrium points it is fruitless to try to assess global stability.

Static Gain Analysis

The equilibrium computation is a key component in a procedure for static
gain analysis. The static gain analysis consists of determining the possible
steady-state values of the system output for an arbitrary but constant
input signal. For the piecewise linear system{

ẋ � Āi x̄+ B̄iu

y � C̄i x̄+ D̄iu
for x ∈ Xi

we fix u � u∗ and invoke Proposition 3.1 to find the equilibrium points of
the corresponding piecewise linear system

ẋ � Aix+ ai + Biu∗︸ ︷︷ ︸
a∗

i

:� Aix+ a∗
i for x ∈ Xi.

If the solution x � x∗ lies in Xi, the corresponding output is obtained as

y � Cix∗ + ci + Diu∗.

By repeating the computations for a range of inputs u∗ one obtains a
steady-state characteristic. Combining the computations with a local sta-
bility analysis, it is possible to determine if the steady state values are
locally stable. In order to assess global convergence to the steady-state
characteristic, it is necessary to do a global stability analysis for each
constant input signal. Tools for such analysis will be developed later in
this thesis. We give the following example.

EXAMPLE 3.2—STATIC GAIN ANALYSIS OF THE BISTABLE CIRCUIT

As shown in Example 3.1, the bistable electrical circuit can exhibit multi-
ple equilibrium points for some values of the input voltage u. Indeed, the
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Figure 3.2 Static characteristic showing multiple equilibria for 0.6V ≤ u ≤ 1.6V .
Local stability of the equilibria is marked by ○ , instability marked by �.

circuit has been used as a computer memory, since a small shift in the
input voltage can make shift the system state from one equilibrium to the
other. By considering the capacitor voltage vc as an output and perform-
ing the static analysis above with u ∈ [0, 2], we obtain the characteristic
shown in Figure 3.2. We see that for 0.6V ≤ u ≤ 1.6V the system pos-
sesses three equilibrium points, while it has unique equilibria for other
inputs. One equilibrium point is locally unstable (marked �) while the
others are locally stable (marked ○ ).

State Transformations

When analyzing the global properties of an equilibrium point, it is often
convenient to make a state transformation so that this point is the origin
in the transformed coordinates. This transformation is then given by

z � x− x∗ � [ I −x∗ ] x̄ :� T x̄.

By applying this state transformation to all system dynamics and all cell
identifiers, one obtains a piecewise linear system with an equilibrium
point in the origin.

3.2 Detection of Instabilities

Equilibrium computations and subsequent analysis of the local dynam-
ics reveal the presence of unstable equilibrium points. However, a local
instability does not imply that the state vector tends to infinity, since
the system may have several equilibrium points (some of which are sta-
ble) or limit cycles. However, in some cases it is simple to detect that
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the state vector tends to infinity. One such situation is when we can find
an eigenvector (corresponding to an unstable real eigenvalue) of some Ai

along which the state can pass to infinity without leaving the cell Xi, see
Figure 3.3. This can be done by the following proposition.

1 2

1

2

x∗
i

Xi

vik
x(t)

Figure 3.3 Detection of a global instability. The state passes to infinity along the
unstable eigenvector vik of Ai without leaving the cell Xi .

PROPOSITION 3.2
Consider the polyhedral piecewise linear system

ẋ � Ai(x− x∗
i ) � Aix+ ai for x ∈ Xi, i ∈ I (3.2)

with partition {Xi}i∈I defined by cell identifiers {Ḡi � [Gi gi ]}i∈I . Let
vik be an eigenvector corresponding to a positive real eigenvalue of Ai,
such that x∗

i + avik ∈ Xi for some a ≥ 0. Let [z]l denote the lth entry of
the vector z. If

Givik � 0, and [Gi x∗
i + gi]l ≥ 0 when [Givik]l � 0

then there are trajectories of (3.2) that tend to infinity as t →∞.

Proof: See Section A.2.

3.3 Constraint Verification

Vector field considerations can be used to settle many other analysis ques-
tions. One such problem of considerable interest is to verify that cer-
tain key variables satisfy magnitude constraints. To this end, we consider
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piecewise linear systems on the form (2.3) whose input u satisfies the
constraint

u− ≤ u(t) ≤ u+ for all t ≥ 0. (3.3)

Our aim is to verify if the state vector stays in the constraint set

XC � {x t GC x+ gC � 0}

for all t ≥ 0 and for any u satisfying the magnitude constraint (3.3).
There are several interesting variations of this problem. We will consider
the problem of verifying that all trajectories that start in the constraint
set remain in this set for all future times. We then say that the constraint
set is positively invariant with respect to the dynamics (2.3) (see [78]).

For sake of clarity we consider the verification of a single constraint

cT x(t) ≤ y+ for all t ≥ 0. (3.4)

This constraint is invariant if and only if we can assure that

ẏ(t) � cT ẋ(t) ≤ 0 for cT x � y+.

The geometrical interpretation of this is that the vector field should be
inward at the constraint hyperplane H C � {x t cT x � y+}, see Figure 3.4.

X1

X2

X3

cT x � y+

cT x ≤ y+ ẋ � Aix+ ai + Biu

Figure 3.4 Invariance of the constraint cT x ≤ y+ requires that the vector field is
inward at the constraint hyperplane.

To single out the cells that intersect the constraint hyperplane, we
introduce the index set

IC � {i t Xi ∩H C 6� ∅}.
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We would now like to assure that

ẏ � cT(Aix+ ai + Bu) ≤ 0 for x ∈ Xi ∩H C , i ∈ IC . (3.5)

and all u that satisfy the magnitude constraint. For simplicity of compu-
tations, we will require the inequality (3.5) to be strict. The above veri-
fication problem then amounts to establishing that there is no solution x
to the inequalities

K̄i(u)x̄ :�
[

Ki ki(u)
]

x̄ �


cT Ai cT(ai + Biu)
cT −y+

−cT y+

Gi gi

 x̄ � 0 (3.6)

when u ∈ [u−, u+]. This can be verified using a direct application of Farkas’
lemma, see [157]. We give the following result.

PROPOSITION 3.3—CONSTRAINT VERIFICATION

Consider the system (2.3) whose input satisfies the absolute constraint
(3.3). If cT x(0) ≤ y+ and there exists vectors vi � 0 and wi � 0 that
satisfy

vT
i Ki � 0 vT

i ki(u−) > 0

wT
i Ki � 0 wT

i ki(u+) > 0

for every i ∈ IC , then the constraint (3.4) is satisfied for all t ≥ 0.

In order to verify invariance of the full constraint set, we simply apply
Proposition 3.3 repeatedly to each constraint. Moreover, if the intersection
between the constraint hyperplane and the cell is a convex polytope, it
suffices to check that the condition (3.6) is satisfied on the vertices of the
polytope.

3.4 Detecting Attractive Sliding Modes

Piecewise linear systems may in general have discontinuous dynamics.
This raises delicate issues when defining solutions, making these systems
difficult to simulate and analyze, see [92, 91].

In the model (2.3), the cells share their common boundaries. If the
right hand side of (2.3) is discontinuous in x, the model can only be used
to generate unique trajectories in the interior of the cells. The trajectory
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concept given in Definition 2.1 works also in the discontinuous case, as
long as the state does not remain on a cell boundary for some time interval,
but always “passes through”. The definition of attractive sliding mode
accounts for the cases where such a continuation is not possible, but any
solution must remain on boundary for some time interval. This is the case
when the vector fields in all neighboring cells point towards their common
boundary. Physically, such an situation would typically mean that the
state would undergo a number of very fast mode changes, moving from
one cell to its neighbor and back. We will discuss this behavior more in
Section 4.11.

In many cases, sliding modes are unwanted phenomena that occur ei-
ther due to modeling abnormalities or due to careless design of switching
controllers. An important exception is the design of sliding mode con-
trollers, see [130, 138], where sliding modes are used to design simple
and robust controllers. In any case, it is very useful to be able to de-
tect unintentional sliding modes at an early development stage. In many
cases, unintended sliding modes are detected first when a control system
is tested in simulations. Since the dynamics on the switching boundaries
is not automatically well defined, most simulators simply gets stuck when
entering a sliding mode.

Detection of Sliding Modes on Cell Faces

Sliding modes may occur at cell faces (the boundaries between two cells),
or on intersection of multiple boundaries. Whereas sliding modes on single
hypersurfaces are well studied, see [39, 138], the case of sliding modes on
intersecting hypersurfaces is much more involved [91, 125]. Here, we will
only consider the problem of detecting sliding modes on cell faces. In this
case, we only need to check if there is a non-empty set on the cell boundary
where the vector fields from the neighboring cells point inwards. Such a
set will be called a sliding set.

Consider the system (2.3), and let Xi ⊂ Rn and Xj ⊂ Rn be two cells
with a common n− 1 dimensional boundary

�Xij � Xi ∩ Xj � {x t gT
ij x+ hij � 0}

where the signs of hij and gij be chosen so that

ẋ �
{

Āix+ ai if gT
ij x+ hij ≤ 0

Āj x+ aj if gT
ij x+ hij ≥ 0

(3.7)

The situation is illustrated in Figure 3.5. As stated in the following propo-
sition, the sliding set on cell faces �Xij can be expressed explicitly and
sliding motion will occur if and only if this set is non-empty.
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Figure 3.5 Vector fields in neighboring cells point inwards on the sliding set XS
causing a constrained motion along the boundary.

PROPOSITION 3.4—SLIDING MODE DETECTION

Let {Xi}i∈I be a polyhedral partition with associated cell identifiers Ḡi.
Let the boundary between the cells Xi and Xj be given by

�Xij � Xi ∩ Xj :� {x t ḡT
ij x̄ � 0}

where ḡT
ij x ≥ 0 for all x ∈ Xi. The sliding set induced by (2.3) on the

boundary �Xij is the set of x that satisfies


Ḡi

Ḡj

ḡT
ij Āi

−ḡT
ij Āj

 x̄ � 0.

The system (2.3) has an attractive sliding mode on the interior of �Xij if
and only if this set is non-empty.

A similar argument gives conditions for when the vector fields point in-
wards with respect to several boundary hyperplanes. Such conditions can
be used to detect whether there are sets on lower dimensional bound-
aries (intersections of several n − 1 dimensional boundaries) where all
neighboring cells generate vector fields that are inward.
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3.5 Comments and References

From Signals to Symbols

Vector field considerations are useful for obtaining simplified pictures of
the dynamics of piecewise linear systems. By examining the behavior of
trajectories on the surfaces of the cells, it is sometimes possible to limit
the system behavior to a finite number of alternatives. For example, in
some cases one may be able to establish that no trajectory that start inside
a cell can exit through a certain cell face. Such an analysis gives a natural
aggregation of solutions that makes it possible to abstract away detailed
information about solutions in order to obtain a simple picture of the
global dynamics. This idea has been used in [110] for the construction of
“phase-portraits” for high-dimensional piecewise linear systems. Similar
ideas have been used in [55] for verification of piecewise linear hybrid
systems. Related is also the concept of cell-to-cell mappings, see [49].

Constraints and Invariance

Invariant sets is a useful notion in the analysis and design of control
systems. Their history in control dates back to the early work on Lya-
punov stability, see the survey [15]. As any level set of a proper Lyapunov
function is invariant, Lyapunov functions can be used to establish invari-
ance of state and control constraints [79, 19]. More recently, invariance
have been used in the design of controllers that minimize the peak-to-
peak gain (l∞-induced gains) see [17, 126] and the references therein.
These approaches are often based on the same ideas that were used in
Section 3.3. Highly related is also the work [55] that treats invariant set
computations for piecewise linear systems using alternative techniques.
Note that while [55] considers the construction of invariant sets, we have
only treated the simpler problem of verification of a given constraint set.

Controllability and Observability of Pi ecewise Linear Systems

The treatment of static gain analysis touches upon the concepts of observ-
ability and controllability of piecewise linear systems. These issues have
not been investigated within this thesis. Controllability of a certain class
of piecewise linear systems has been treated in [145, 83].
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Lyapunov Stability

The main contribution of this thesis is the development of Lyapunov-based
analysis methods for piecewise linear systems. The key component of such
an analysis, namely methods for Lyapunov function computations, will be
presented in this chapter. More precisely, we will show how piecewise
quadratic and piecewise linear Lyapunov functions can be computed via
convex optimization. The application to system analysis and design of op-
timal control laws is given in the subsequent chapters. These approaches
are substantially more powerful than analysis based on quadratic Lya-
punov functions, and the analysis can be carried out using efficient nu-
merical computations.

As always, it is a good idea to use a “simple things first” approach.
After determining the equilibrium points of a piecewise linear system it
is advisable to verify local stability properties first. If the desired property
holds locally, one may invoke the tools developed in this chapter to try to
extend the domain of analysis, or even establish global results.

4.1 Exponential Stab ility

Stability is one of the most fundamental properties of control systems.
Intuitively, stability is the property that a system does not explode in
some sense. Initially, we will be concerned with asymptotic stability, which
in addition assures that the system state tends to rest after an initial
transient. More precisely we will be concerned with exponential stability,
which assures that the convergence of the system state to its equilibrium
point can be bounded by an exponential function of time.

There are certainly many asymptotically stable systems whose conver-
gence is not exponential. Still the framework of exponential stability is
particularly attractive for Lyapunov analysis of piecewise linear systems.
For linear systems, the concepts of asymptotic and exponential stability
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Chapter 4. Lyapunov Stability

coincide, and an equilibrium point of a smooth nonlinear system is locally
exponentially stable if and only if its linearization around this point is ex-
ponentially stable (cf [78] Theorem 3.13). In other words, the linearization
provides necessary and sufficient information to conclude exponential sta-
bility of an equilibrium. Moreover, a smooth nonlinear system is (globally)
exponentially stable if and only if there exists a Lyapunov function that
proves it (cf. [78], Theorem 3.12). This makes exponential stability the
appropriate concept in a piecewise linear approach for smooth nonlinear
systems. A local analysis around an equilibrium point can be improved
step-by-step by splitting the state space into more regions, hereby in-
creasing the flexibility in the nonlinearity description and enlarging the
validity domain for the analysis.

The following result, which combines a number of standard results
from Lyapunov theory, will be the main tool throughout this chapter.

LEMMA 4.1
Let x(t) : [0,∞) −→ R

n and let and let V(t) : [0,∞) −→ R be a non-
increasing and piecewise C 1 function satisfying

d
dt

V(t) ≤ −γ ttx(t)ttp (4.1)

for some γ > 0 and some p > 0, almost everywhere on [0,∞).
If there exists α > 0 such that

α ttx(t)ttp ≤ V(t) ≤ β ttx(t)ttp (4.2)

then ttx(t)tt tends to zero exponentially. If the maximal α that satisfies
(4.2) is negative, then ttx(t)tt → ∞ as t →∞.

Proof: The following formula for evaluating a piecewise smooth function
W(t) will be useful. Let W(t) be a piecewise smooth function, and let tk
denote the points of discontinuity of W(t). Then,

W(t−) � W(0) +
∫ t

0

d
ds

W(s) ds+
∑

k:tk<t

∆W(tk) (4.3)

where ∆W(tk) � W(t+k )−W(t+−). Obviously, if W(t) is non-increasing, then
∆W(tk) ≤ 0 for all k and we have

W(t−) ≤ W(0) +
∫ t

0

d
ds

W(s) ds.
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4.1 Exponential Stability

Now, let α > 0. Then,

d
dt

V(t) ≤ −γ ttx(t)ttp ≤ − γ
β

V(t) a.e.

Multiplication with the positive function eγ t/β gives

eγ t/β ( d
dt

V(t) + γ
β

V(t)) � d
dt
(eγ t/β V(t)) ≤ 0 a.e.

Letting W(t) � eγ t/β V(t) and noting that W(t) is non-increasing we have

V(t−)eγ t/β ≤ V(0) +
∫ t

0

d
ds

V(s)eγ s/β ds.

The inequality (4.1) and the fact that V(t) is non-negative implies

V(t−)eγ t/β ≤ V(0) − γ
β

∫ t

0
V(s).eγ s/β ds ≤ V(0)

Invoking the bounds (4.2) gives

ttx(t)ttp ≤ β
α
ttx(0)ttpe−γ t/β

which establishes exponential convergence.
Now, let the maximal α that satisfies (4.2) be negative. This implies that
there is a time t � t0 such that V(t0) � α ttx(t0)tt < 0. Since V(t) is
non-increasing, (4.3) gives

V(t) ≤ V(t0) +
∫ t

t0

d
ds

V(s) ds ≤ V(t0) − γ
α

∫ t

t0

V(s) ds.

Since V(t) is nonincreasing, we have V(t) ≤ V(t0) for t ≥ t0 and

V(t) ≤
(

1+ (t− t0) γ
tα t
)

V(t0).

Thus, V(t) → −∞ as t →∞ and by (4.2) it follows that ttx(t)ttp →∞. �

Note that the above result allows both verification of exponential sta-
bility and detection of instabilities. Moreover, the formulation does not
require that V(t) be continuous, as long as the value of V(t) does not
increase at the points of discontinuity.
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4.2 Quadratic Stability

By quadratic stability, one refers to stability that can be established using
a quadratic Lyapunov function. Quadratic stability dates back to the pio-
neering work of Lyapunov [89, 90], who established that the existence of
a quadratic Lyapunov function is a necessary and sufficient condition for
asymptotic stability of a linear system. Quadratic Lyapunov functions are
often the first resort also in the analysis of nonlinear systems and much
work on absolute stability is based on quadratic Lyapunov functions (see
the discussion in [19]).

Quadratic Stability for Local Analysis

To verify exponential stability of a nonlinear system one may start by
establishing exponential stability of the linearization. This is often done
by eigenvalue inspection. One drawback with this approach is that one
has no idea about the domain of validity of the analysis. In the piecewise
linear framework the domain of validity of the linearization is incorpo-
rated in the model. By using Lyapunov function computations rather than
eigenvalue inspection it is then possible to obtain a guaranteed domain
of validity for the analysis. The following theorem establishes exponen-
tial stability of an equilibrium point, and also returns the largest domain
of validity that can be guaranteed by a local analysis using a quadratic
Lyapunov function, see [19].

PROPOSITION 4.1—[19]
Let ẋ � Ax be valid in the polyhedron X � {x t gT

k x ≤ 1, k � 1, . . . , p}.
The origin is exponentially stable if and only if the convex optimization
problem

max
Q

det Q−1

subject to Q > 0

QAT + AQ < 0

gT
k Qgk ≤ 1 k � 1, . . . , p

has a solution. Moreover, the ellipsoid Eroa � {x t xT Q−1x ≤ 1} is the
domain of attraction with largest volume in X that can be estimated using
any quadratic Lyapunov function.

Proof: See [19], Section 5.2.
The strength of this proposition is that not only do the computations

return a domain of validity for the analysis, but they actually return
the largest region of attraction that can be estimated using any quadratic
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4.2 Quadratic Stability

Lyapunov function. In most cases, this domain is substantially larger than
what may be obtained by simply solving the Lyapunov inequality

P > 0 AT P + PA � −R (4.4)

for some arbitrary chosen positive definite matrix R. This is illustrated
in the following example.

EXAMPLE 4.1—LOCAL ANALYSIS OF SATURATED SYSTEM

Consider the saturated linear system of Example 2.1,

ẋ � Ax + bsat(kTx)

and let

A �
[

0 1

0 0

]
, b �

[
0

1

]
, k �

[−2

−3

]
.

Restricting the analysis to the unsaturated region, the polyhedron tkTxt ≤
1, we can use Proposition 4.1 to verify exponential stability of the origin.
The analysis returns the region of attraction shown in dashed lines in
Figure 4.1. The region of attraction obtained by solving the Lyapunov
equation (4.4)with R � I only establishes stability for the domain showed
as a filled ellipsoid in Figure 4.1.

−2 −1 0 1 2
−2

−1

0

1

2

x1

x2

Figure 4.1 Linear (white) and saturated (shaded) regions in the state space. The
maximal validity domain for analysis using a quadratic Lyapunov function obtained
by Proposition 4.1 is the larger ellipsoid (dashed). The smaller (filled) ellipsoid is
the domain of validity obtain from the Lyapunov equation (4.4).

In light of the above example, the results of Proposition 4.1 may appear
surprisingly weak. Although the results are improved compared to a direct
application of the Lyapunov inequality, exponential convergence has only
been granted from initial values in a small neighborhood of the origin.
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Chapter 4. Lyapunov Stability

One should note, however, that the computed Lyapunov function may be
able to verify stability also for the saturated regions but as these regions
have not been used in the analysis of Proposition 4.1, no such conclusions
can be drawn. This situation will appear repeatedly when we compute
Lyapunov functions on a restricted domain. Stability can then be assured
only for initial values starting within the largest level set of the computed
Lyapunov function that is fully contained in the analysis domain.

Quadratic Stability for Global Analysis

Quadratic Lyapunov functions are often the first resort also for analysis
of nonlinear systems. Many of these methods are somehow related to the
analysis of the linear differential inclusion

ẋ ∈ co{A1x+, . . . , AL x}. (4.5)

In other words, they are related to the analysis of the family of linear
time-varying systems that can be obtained as

ẋ � A(t)x �
L∑

i�1

λ i(t)Aix(t) (4.6)

with λ i(t) ≥ 0 and
∑L

i�1 λ i(t) � 1. The following result is central [48, 20].

PROPOSITION 4.2
Consider the system (4.5). If the convex optimization problem

P � PT > 0 (4.7)
AT

i P + PAi < 0 i � 1, . . . , L (4.8)

has a solution, then the origin is globally exponentially stable.

Proof: See Section A.3.

Note that Proposition 4.2 only gives sufficient conditions for stabil-
ity. Since the Lyapunov function search of Proposition 4.2 is a convex
optimization problem, a solution P can always be found if it exists. The
sufficiency stems from the fact that quadratic Lyapunov functions are
only sufficient for establishing stability of systems on the form (4.5), see
[24, 25, 96]. We will discuss this issue in more detail at the end of this
chapter.

The main advantage of Proposition 4.2 is that the search for a quad-
ratic Lyapunov function has been formulated as a convex optimization
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4.2 Quadratic Stability

problem. The additional cost of imposing extra constraints on the form
(4.8) is then comparatively low, and solving the multiple Lyapunov in-
equalities in Proposition 4.2 is not much more demanding than solving
a single Lyapunov equation, see [19]. This makes quadratic stability a
very powerful tool when applicable. There have been many applications
of the above results to systems with piecewise linear dynamics, see for
example the work on fuzzy systems [135, 156], which can be embedded in
the linear time varying formulation (4.6) by the appropriate restrictions.
The application to piecewise linear systems typically takes the following
form.

COROLLARY 4.1
Consider the system (2.3), and assume that ai � 0 for every i ∈ I. If
the convex optimization problem (4.7), (4.8) has a solution, then every
trajectory x(t) ∈ ∪i∈I Xi of (2.3) with u � 0 tends to zero exponentially.

Proof: Note that we can write the system (2.3) on the form (4.6) for
almost all t by setting λ i(t) � 1 if x is in the interior of cell Xi and
λ i(t) � 0 otherwise. Since trajectories in the sense of Definition 2.1 do not
remain on the boundary for any time interval, we do not need to define
the dynamics on the cell boundaries. Continuity of V(x) and x(t) implies
that V(t) � V(x(t)) is continuous for all t. The result now follows from
Lemma 4.1.

In some cases, it is of interest to verify that no common solution P to
the conditions of Proposition 4.2 exists. This verification can be done by
solving the following dual problem (compare [11]).

PROPOSITION 4.3
If there exists positive definite matrices Ri satisfying

Ri � RT
i > 0 for i ∈ I∑

i∈I

(RiAT
i + AiRi) > 0

then there exists no solution to the LMIs of Proposition 4.2.

Proof: If there exist Ri that solve the above inequalities, then for every
P > 0, we have

0 < tr[P
∑

i

(RiAT
i + AiRi)] �

∑
i

tr[Ri(AT
i P + PAi)]
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Chapter 4. Lyapunov Stability

Hence, 0 < tr[Ri(AT
i P+PAi)] for some i, so AT

i P+PAi can not be negative
definite.

4.3 Conservatism of Quadratic Stability

Although quadratic stability is very powerful when it can be applied, there
are several issues that make the quadratic stability analysis of piecewise
linear systems given in Corollary 4.1 very conservative.

A first fact that one can notice is that no affine terms are permitted in
the dynamics, and a simple system such as the saturated control system
of Example 4.1 can not be analyzed as it stands.

The second issue is that no information of the partition is used in the
analysis. Rather than using the fact that a certain dynamic system is only
valid in a restricted domain of the continuous state space, the piecewise
linear dynamics is embedded in a (possibly large) differential inclusion.
The following example illustrates the limitations of the approach.

EXAMPLE 4.2—THE NEED TO USE PARTITION INFORMATION

Consider the piecewise linear system

ẋ �


[−0.1 1

−10 −0.1

]
x x1 x2 ≥ 0[−0.1 10

−1 −0.1

]
x x1 x2 < 0

(4.9)

The system matrices are stable and have the same eigenvalues. The sim-
ulation shown in Figure 4.2 (left) indicates that the system is stable. It is
straightforward to verify that V(x) � xT x is a Lyapunov function for the
system, yet there is no solution to the LMI conditions in Proposition 4.2.

We can understand this by interchanging the system matrices in the
model (4.9). Simulating this system yields unbounded trajectories, see
Figure 4.2(right). Since stability depends on the partition, the standard
LMI conditions can not prove stability. At the end of this chapter, we will
be able to return to this example with a more powerful toolset and prove
stability of the initial setup.

A third limitation is of course that many systems do not admit a quadratic
Lyapunov function. The following example illustrates a simple system that
can not be analyzed using quadratic Lyapunov functions.
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−1 0 1
−1

0

1

−100 0 100
−100

0

100

Figure 4.2 The original setup is exponentially stable, while interchanging the
two system matrices gives an unstable system (note the different scalings!). Thus,
stability can not be proved without taking the structural information into account.

EXAMPLE 4.3—THE NEED FOR NON-QUADRATIC LYAPUNOV FUNCTIONS

Consider the piecewise linear system ẋ(t) � Aix(t) with the cell partition
shown in Figure 4.3 and system matrices

A1 � A3 �
[ −ε ω
−αω −ε

]
, A2 � A4 �

[ −ε αω
−ω −ε

]
.

Letting α � 5, ω � 1 and ε � 0.1, the trajectory of a simulation with
initial value x0 � (−2, 0 )T moves towards the origin in a flower-like
trajectory, as shown in Figure 4.3. Clearly, no quadratic Lyapunov function
can generate level sets with the property that a trajectory that enters a
level set remains within this set for all future times. Hence, there is no
obvious quadratic Lyapunov function that guarantees asymptotic stability
of the system.

−2 0 2

−2

0

2

x1

x2

3

2

1

4

Figure 4.3 Simulated trajectory (full) and cell boundaries (dashed) in Exam-
ple 4.3.
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From a computational viewpoint, quadratic stability is very attractive.
It allows analysis of complex systems to be cast as convex optimization
problems that can be solved using very efficient numerical computations.
However, as demonstrated above, there are some important shortcomings
of the quadratic stability when applied to piecewise linear systems. Firstly,
it can be very conservative to only consider quadratic Lyapunov functions.
Moreover, in the standard results for quadratic stability no information
about the state space partition is used in the analysis and no affine terms
are permitted in the dynamics.

In the following pages we will develop an approach that does not suf-
fer from these shortcomings. The method will be based on non-quadratic
Lyapunov functions, take partition information into account and allow
affine terms in the dynamics. All analysis conditions will be formulated
as convex optimization problems, allowing piecewise linear systems to be
analyzed using efficient numerical computations.

4.4 From Quadratic to Piecewise Quadratic

To find inspiration for alternatives to the globally quadratic Lyapunov
functions, we will analyze the simple selector control system as shown in
Figure 4.4. Selector control is a common solution for constraint handling

+

+r1 � 0

r2 � 0

min S

kT
1

kT
2

u x
+−

0
G

y � kT x

Figure 4.4 Selector control system (left) transformed into feedback form (right).

in process industry, see e.g.[4, 41, 21], and selector strategies often result
in systems with piecewise linear dynamics.

Consider the system in Figure 4.4 and let r1 � r2 � 0. We assume that
S is a linear system ẋ � Ax+ Bu. Then, the closed loop dynamics can be
written as

ẋ � Ax + Bmin(kT
1 x, kT

2 x).
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The min-function induces a piecewise linear system with dynamics

ẋ �
{(A+ BkT

1 )x if kT
1 x ≤ kT

2 x,

(A+ BkT
2 )x if kT

2 x ≤ kT
1 x.

Letting k � k1 − k2, A1 � A+ BkT
1 and A2 � A1 + BkT

2 , we obtain

ẋ �
{

A1 x if kT x ≤ 0,

A2 x if kT x ≥ 0.

Now, consider the particular system defined by

A1 �
[−5 −4

−1 −2

]
, B �

[ −3

−21

]
, k �

[
1

0

]
.

By solving the dual problem stated in Proposition 4.3, one can verify that
there is no globally quadratic Lyapunov function V(x) � xT Px that veri-
fies stability of the system. Still, the simulations shown in Figure 4.5(left)
indicate that the system is stable.

−2 −1 0 1 2
−4

−2

0

2

4

X2X1

x1

x2

−2 −1 0 1 2
−4

−2

0

2

4

x1

x2

Figure 4.5 Trajectories in the phase plane of the selector control system.

As an alternative to a globally quadratic Lyapunov function, it is nat-
ural to consider the following Lyapunov function candidate

V(x) �
{

xT Px, if kT x < 0

xT Px+η(kT x)2, if kT x ≥ 0
(4.10)

where P and η ∈ R are chosen so that both quadratic forms are positive
definite. Note that the Lyapunov function candidate is constructed to be

61



Chapter 4. Lyapunov Stability

continuous and piecewise quadratic. The search for appropriate values of
η and P can be done by solving the following linear matrix inequalities

P � PT > 0, P +η kkT > 0,

AT
1 P + PA1 < 0 AT

2 (P +η kkT) + (P +η kkT)A2 < 0.

One feasible solution is given by P � diag{1, 3} and η � 9. The level
surfaces of the computed Lyapunov function are indicated in Figure 4.5.

Relation to Frequency Domain Criteria

It is instructive to compare this solution with what can be achieved using
frequency domain methods such as the circle and Popov criteria. Noting
that A2 � A1 − BkT we can re-write the system equation as

ẋ � A1x− Bϕ (kT x)

ϕ (y) �
{

0, if y ≤ 0

y, if y ≥ 0
(4.11)

Defining G(s) � kT(sI − A1)−1B , we obtain the frequency condition

Re G(iω) > −1, ∀ω ∈ [0,∞]
for the circle criterion and

Re [(1+ iωη)G(iω)] > −1, ∀ω ∈ [0,∞]
for the Popov criterion. Inspection of the Nyquist and Popov plots of Fig-
ure 4.6 reveals that stability follows from the Popov criterion but not from
the circle criterion. The failure of the circle criterion comes as no surprise,
as the circle criterion relies on the existence of a common Lyapunov func-
tion on the form V(x) � xT Px [78] which we know does not exist. The
standard proof of the Popov criteria, on the other hand, uses the Lyapunov
function

V(x) � xT Px+ 2η
∫ kT x

0
ϕ (σ ) dσ . (4.12)

By evaluating this function for the nonlinearity (4.11) one recovers the
Lyapunov function candidate (4.10) which was used in the numerical op-
timization above.

It is not hard to establish that all Lyapunov function of Lure-type

V(x) � xT Px+
∫ z

0
ϕ (z) dz
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Figure 4.6 The circle criterion (left) fails to prove stability. The Popov plot (right)
is separated from −1 by a straight line of slope 1/η . Hence stability follows.

constructed from piecewise linear functions ϕ (z) are continuous and piece-
wise quadratic. However, rather than tailoring the analysis to linear sys-
tems interconnected with scalar nonlinearities, we will aim for results
that are applicable to general piecewise linear systems. Motivated by the
examples above we will employ Lyapunov functions that are continuous
and piecewise quadratic.

4.5 Interlude: Describing Partition Properties

To support the Lyapunov function search, we will introduce a compact ma-
trix parameterization of continuous piecewise quadratic Lyapunov func-
tions. Moreover, to avoid excessive conservatism we will exploit the fact
each affine dynamics is used in a limited region of the state space. The aim
of this section is to introduce a matrix format for describing these central
partition properties. Procedures for constructing the necessary constraint
matrices from partition data will be given in Chapter 8.

Similar to the example above, we will use Lyapunov functions that are
continuous and piecewise quadratic. A fundamental problem in the search
for such functions is how the continuity constraint should be enforced
on the Lyapunov function candidate. One solution is of course to patch
together piecewise quadratics “by hand”, as was done in the analysis of the
selector system. If we only require continuity of the piecewise quadratics,
we can allow less restrictive updates in the quadratic forms than the
update η kkT used above. To illustrate this, let

Vi(x) � xT Pix+ 2qT
i xi + ri �

[
x

1

]T [ Pi qi

qT
i ri

] [
x

1

]
:� x̄T P̄i x̄
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be a quadratic function defined for x ∈ Xi. Consider two cells Xi and Xj

with boundary hyperplane H ij � {x t hT
ij x+ gij � 0}. To obtain continuity

across the boundary hyperplane,

Vi(x) � Vj (x) ∀x ∈H ij

there must exist tij ∈ Rn and sij ∈ R such that

Vi(x) � Vj (x) + 2(hT
ij x+ gij )(tT

ij x+ sij ).

Letting h̄ij � [ hT
ij gij ]T and t̄ij � [ tT

ij sij ]T , this condition reads

P̄j � P̄i + h̄ij t̄T
ij + t̄ij h̄T

ij . (4.13)

Although the above equation must be satisfied on each cell boundary, it
is not useful for construction of explicit expressions for the matrices P̄i

other than in very simple examples. We will therefore introduce a compact
matrix parameterization of continuous piecewise quadratic functions on
polyhedral partitions. In most cases we would also like that the computed
function satisfies the interpolation property that it evaluates to zero for
zero argument. The parameterization is based on continuity matrices, as
defined below.

DEFINITION 4.1—CONTINUITY MATRIX

A matrix F̄i � [ Fi fi ] is a continuity matrix for cell Xi if

F̄ix̄(t) � F̄j x̄(t) for x(t) ∈ Xi ∩ Xj . (4.14)

Furthermore, we say that F̄i has the zero interpolation property if

fi � 0 for i ∈ I0 . (4.15)

A format for continuous piecewise quadratic functions can now be obtained
as follows.

LEMMA 4.2—PWQ PARAMETERIZATION

Let {Xi}i∈I be a polyhedral partition, and let F̄i ∈ Rp�(n+1) be continuity
matrices that satisfy (4.14). Then, for each T ∈ Rp�p, the scalar function

V(x) � x̄T F̄ T
i T F̄ix̄ :� x̄T P̄i x̄ for x ∈ Xi.
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is continuous and piecewise quadratic. Moreover, if each F̄i has the zero
interpolation property, then there exist α and β such that

α ttxtt22 ≤ V(x) ≤ β ttxtt22. (4.16)

Proof: Obviously, V(x) is piecewise quadratic. Continuity of V(x) follows
from (4.14). The only obstacle in establishing (4.16) can occur around the
origin. However, the zero interpolation property guarantees that V(x) has
no affine terms in regions that contain the origin, i.e.,

V(x) � x̄T P̄i x̄ � xT FiT Fix :� xT Pix, x ∈ Xi, i ∈ I0

and the desired result follows.

Note that the continuity matrices for a given partition are not unique.
One could for instance use the following matrix in all regions,

F̄i � [ In�n 0n�1 ] i ∈ I.

Using the parameterization of Lemma 4.2 we would then obtain a Lya-
punov function candidate which is globally quadratic. Clearly, one would
like a way of constructing the continuity matrices that gives maximal
freedom in the Lyapunov function search. We will comment on this issue
later. The following example illustrates one choice of continuity matrices
for the saturated system in Example 2.1.

EXAMPLE 4.4—CONTINUITY MATRICES FOR SATURATED SYSTEM

The following matrices are natural continuity matrices for the saturated
feedback system in Example 2.1.

F̄1 �

−kT −1

01�n 0

I2�2 0

 , F̄2 �

01�n 0

01�n 0

I2�2 0

 , F̄3 �

 01�n 0

kT −1

I2�2 0

 .

Note that the matrices have the zero interpolation property and that a
Lyapunov function candidate constructed as in Lemma 4.2 has no affine
terms in the region that contains the origin.

As discussed in Chapter 2, the operating regimes can be described by
matrices Ḡi with the property that

Ḡi x̄(t) � 0 if and only if x(t) ∈ Xi. (4.17)
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We named these matrices cell identifiers since they express whether a
certain x belongs to cell Xi or not. In some computations, we will need to
express the restriction that x ∈ Xi via a linear form in x. Since the cell
identifiers use affine forms in general, the Ḡi-matrices can not be used
directly. We therefore define cell boundings as follows.

DEFINITION 4.2—POLYHEDRAL CELL BOUNDING

A matrix Ēi � [ Ei ei ] is called a cell bounding if it satisfies

Ēi x̄(t) � 0 if x(t) ∈ Xi. (4.18)
Furthermore, we say that Ēi has the zero interpolation property if

ei � 0 if i ∈ I0 . (4.19)

Note that while a cell identifier can be used to determine if x ∈ Xi, this is
not necessarily the case for cell boundings. For example, the zero matrix
will always qualify as cell bounding (although this choice is of little use in
most cases). Still, there is a close relationship between the two notions.
More precisely, the following procedure shows how cell boundings with
the zero interpolation property can be computed from the corresponding
cell identifiers.

ALGORITHM 4.1—FROM CELL IDENTIFIER TO CELL BOUNDING

Let {Xi}i∈I be a polyhedral partition with associated cell identifiers Ḡi.
The corresponding cell boundings can be computed as follows.

If i ∈ I0, then Ēi is obtained by deleting all rows of Ḡi whose last entry
is nonzero.

If i ∈ I1 and there is only one non-zero entry in the last column of
Ḡi, then Ēi is obtained by augmenting Ḡi with the row [01�n 1 ],
otherwise Ēi � Ḡi.

Before motivating the suggested procedure in detail, we illustrate the
application of Algorithm 4.1 on the saturated system.

EXAMPLE 4.5—CELL BOUNDING FOR SATURATED SYSTEM

Applying Algorithm 4.1 to the cell identifiers of the saturated system in
Example 2.1, we obtain the following cell boundings.

Ē1 �
[−kT −1

01�n 1

]
, Ē2 �

[
01�n 0

01�n 0

]
, Ē3 �

[
kT −1

01�n 1

]
.
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4.5 Interlude: Describing Partition Properties

One may ask if there is any loss in using cell boundings rather than cell
identifiers in conditional analysis of piecewise quadratic functions. The
following lemma states that this is not the case.

LEMMA 4.3
Consider the piecewise quadratic function V(x) constructed in Lemma 4.2
and let Ēi be cell boundings constructed using Algorithm 4.1. Then Ēi have
the zero interpolation property, and

V(x) > 0 for {x t Ḡi x̄ � 0}

if and only if

V(x) > 0 for {x t Ēi x̄ � 0}.

Proof: See Appendix A.3.

As discussed above, the purpose of the cell boundings is to be able to
verify that a piecewise quadratic function is positive (or negative) in a
certain cell. The following lemma shows how this verification can be cast
as a linear matrix inequality condition.

LEMMA 4.4
Consider the function

V(x) � x̄T P̄i x̄ for x ∈ Xi,

with P̄i � P̄T
i and let Ēi be a cell bounding satsifying (4.18). If there exists

a matrix Wi with nonnegative entries, Wi � 0, such that

P̄i − ĒT
i Wi Ēi > 0 (4.20)

then V(x) > 0 for all x ∈ Xi with x 6� 0.

Proof: A solution to the inequality (4.20) guarantees that

zT P̄iz− zT ĒT
i WiĒiz > 0

for any z ∈ Rn+1\{0}. Let z � x̄. Since x̄T ĒT
i Wi Ēi x̄ ≥ 0 for x ∈ Xi, we

have

V(x) � x̄T P̄i x̄ > x̄T ĒT
i Wi Ēi x̄ ≥ 0 for x 6� 0 with x ∈ Xi.

67



Chapter 4. Lyapunov Stability

Hence, V(x) > 0 for x 6� 0, and the assertion follows.

The technique used in Lemma 4.4 is known as the S-procedure, see [1,
153, 19]. Intuitively, the point with this approach is that if x̄T ĒT

i Wi Ēi x̄ < 0
for x 6∈ Xi, the inequality (4.20) may be simpler to satisfy than the corre-
sponding LMI without relaxation term. Although this approach is conser-
vative in general it is very useful in practice. For some situations, the S-
procedure is both a necessary and a sufficient way to account for quadratic
constraints, see [153, 19]. The specific way we construct a relaxation term
from affine constraint can be seen as a special case of Shor’s relaxation
used in non-convex and combinatorial optimization, see [128, 112].

4.6 Piecewise Quadratic Lyapunov Functions

The previous section has laid the grounds for analysis of piecewise linear
systems using piecewise quadratic Lyapunov functions. In Lemma 4.2, we
proposed a format for continuous piecewise quadratic functions. This for-
mat separates the degrees of freedom in the function from the constraints
imposed by the partition and the continuity requirement. In Lemma 4.4,
we showed how it is possible to verify positivity (and hence negativity)
of a piecewise quadratic function on a polyhedral domain by solving a
linear matrix inequality. We will now combine these results to formulate
the search for piecewise quadratic Lyapunov functions on the form

V(x) �


xT Pix for x ∈ Xi, i ∈ I0[

x

1

]T

P̄i

[
x

1

]
� xT Pix+ 2qT

i x+ ri for x ∈ Xi, i ∈ I1 .

(4.21)

More precisely, we have the following result.

THEOREM 4.1—PIECEWISE QUADRATIC STABILITY

Consider symmetric matrices T , Ui and Wi such that Ui and Wi have
nonnegative entries, while

Pi � F T
i T Fi, i ∈ I0

P̄i � F̄ T
i T F̄i, i ∈ I1

68



4.6 Piecewise Quadratic Lyapunov Functions

satisfy {
0 > AT

i Pi + Pi Ai + ET
i Ui Ei

0 < Pi − ET
i Wi Ei

i ∈ I0

{
0 > ĀT

i P̄i + P̄i Āi + ĒT
i Ui Ēi

0 < P̄i − ĒT
i Wi Ēi

i ∈ I1

Then every trajectory x(t) ∈ ∪i∈I Xi satisfying (2.3)with u � 0 for all t ≥ 0
tends to zero exponentially.

Proof: Consider the Lyapunov function candidate V(t) � V(x(t)) defined
by (4.21). Since trajectories x(t) in the sense of Definition 2.1 are contin-
uous and piecewise C 1, Lemma 4.2 implies that V(t) constructed in this
way is continuous and piecewise C 1. Moreover, according to Lemma 4.2,
there exists β > 0 such that the upper bound of (4.2) in Lemma 4.1
holds. A solution to the inequalities above implies that there exists α > 0
and γ > 0 such that α ttx(t)tt22 < V(t) and dV(t)/dt < −γ ttx(t)tt22. Hence,
exponential convergence follows from Lemma 4.1 with tt⋅tt � tt⋅tt2 and p � 2.

Since Theorem 4.1 only considers trajectories defined for all t ≥ 0, no
conclusion can be drawn about trajectories that end up in attractive slid-
ing modes. In the absence of attractive sliding modes, the above conditions
assure that (4.21) is a Lyapunov function for the system. The first LMI
condition for each region assures that the Lyapunov function decreases
along system trajectories, V̇ (x(t)) < 0, while the second condition assures
positivity, V(x(t)) > 0. Any level set of V(x) that is fully contained in
the partition ∪i∈I Xi is a region of attraction for the equilibrium x � 0. In
particular, if the partition covers the whole state space then the system is
globally exponentially stable. If no solution can be found to the conditions
of Theorem 4.1 for a given partition, it is natural to refine the partition
and to try again. Such partition refinements increase the flexibility of the
Lyapunov function candidate (4.21).

With the piecewise quadratic stability theorem at hand, we can re-
turn to the motivating examples where the standard LMI conditions for
quadratic stability failed.

EXAMPLE 4.6—PIECEWISE QUADRATIC WHERE QUADRATIC FAILS

Consider the system (4.9) in Example 4.2. Let Ei denote the cell bounding
used in quadrant i. Setting

E1 � −E3 �
[

1 0

0 1

]
, E2 � −E4 �

[−1 0

0 1

]
,
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and Fi � [ ET
i In ]T we invoke Theorem 4.1 and find a feasible solution

V(x) � xT x x ∈ Xi, i ∈ I.

Hence, stability can indeed be proved using a quadratic Lyapunov function
but one needs to account for the composition of the state space partition.
The level curves of the computed Lyapunov function are shown together
with a simulation in Figure 4.7(left).

−1 0 1
−1

0

1

−2 0 2

−2

0

2

Figure 4.7 Level surfaces (dashed) for the systems in Example 4.2 and Exam-
ple 4.3 computed using Theorem 4.1. In both cases, the standard conditions for
quadratic stability fail while Theorem 4.1 verifies stability.

As a second example, consider the system with flower-like trajectories
used in Example 4.3. Similarly as above, we let

E1 � −E3 �
[−1 1

−1 −1

]
, E2 � −E4 �

[−1 1

1 1

]
,

and Fi � [ ET
i In ]T . From the conditions of Theorem 4.1 we find the

piecewise quadratic Lyapunov function V(x) � xT Pix with

P1 � P3 �
[

5 0

0 1

]
, P2 � P4 �

[
1 0

0 5

]
.

As seen in Figure 4.7(right), the level surfaces of the computed Lyapunov
function are neatly tailored to the system trajectories.

Theorem 4.1 only treats systems that do not have attractive sliding modes.
Thus, in order to be able to conclude stability for every possible behavior
of the model (2.3), we must rule out the possibility of attractive sliding
modes. A direct application of Proposition 3.4 verifies the absence of at-
tractive sliding modes for the systems in Example 4.6. For systems with
attractive sliding modes one has to extend the analysis conditions. Such
extensions will be made in Section 4.11.
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4.6 Piecewise Quadratic Lyapunov Functions

Analysis of a Min-Max Selector System

The examples analyzed so far have been small examples in two dimen-
sions, constructed to illustrate the shortcomings of quadratic and merits
of piecewise quadratic Lyapunov functions. Our next example is motivated
by industrial applications, has higher state dimension and a nonlinearity
that is not easily treated with absolute stability techniques.

M
A
X

M
I
N

    Cmin

    Cmax

C

    u l
    zmin

    zmax

  y

  u h

Process

u z
    G2    G1

  u n

SP

PV

  ysp

SP

PV

Figure 4.8 Control system with min/max selectors, from [4].

The example is the min-max selector control system shown in Fig-
ure 4.8. This scheme is common in situations where several process vari-
ables have to be taken into account using a single control signal. In Fig-
ure 4.8, y is the primary variable, and z is a process variable that must
remain within given ranges. The controller C is designed to control the
primary variable, while the controllers Cmax and Cmin are designed to
keep the critical variable z within certain bounds. Designed correctly, the
min-max selector chooses the controller that is most appropriate for the
situation, and allows good control of the primary variable while respecting
the constraints.

Consider a system characterized by

G1(s) � 40
0.05s3 + 2s2 + 22s+ 40

,

G2(s) � 5
s2 + 7s+ 5

.

To control the primary variable, we design a lead-lag controller

C(s) � s2 + 3s+ 3
0.02s2 + s+ 0.01

,
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while Cmin and Cmax are proportional controllers

uh � Kh(zmax − z),
ul � Kl(zl − z).

The plots in Figure 4.9 show a simulation of the system without con-
straint controllers. The tracking of the primary variable is quite good, but
the critical variable z exceeds it constraint limits (shown in dashed lines).
The plots in Figure 4.10 show a simulation of the min-max selector strat-
egy. The constraints are now respected while the tracking of the primary
variable remains satisfactory.

0 10 20 30 40
−2

0

2

0 10 20 30 40
−10

0
10

0 10 20 30 40
−5

0
5

r, y

u

z

Figure 4.9 Simulation of the control system in Figure 4.8 without constraint han-
dling. The tracking of the primary variable is quite good (top), but the critical vari-
able exceeds it limits (bottom).

We will apply Theorem 4.1 to stability analysis of the system for a con-
stant set-point ysp and constant constraint limits zmin, zmax on the critical
variable. Different values of ysp, zmin and zmax result in different equilib-
rium points. For sake of simplicity, we will let ysp � zmax � zmin � 0,
but the technique would apply similarly to any choice of these constant
inputs.

For analysis purposes, it is convenient to re-write the system equations
as a linear system interconnected with the static nonlinearity

u � min(uh, max(un, ul)).

The full details for this step are given in Section B.1. The selector non-
linearity has three input signals uh, un, ul and one output, u. Similar to
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Figure 4.10 Simulation of the min-max selector system. The constraint limits are
respected (bottom), while the tracking of the primary variable is still satisfactory
(top). The middle plot shows how the constraint controllers override the primary
control signal (dashed) resulting in a control (full) that respects the constraints.

the simpler system used as motivating example in Section 4.4, we can
reduce the number of inputs by one using a simple loop transformation.
This results in the system shown in Figure 4.11. The transformed system

m
i
n

G̃(s)

ϕ

vhl
zmax

ysp

zmin vnl
w

Figure 4.11 Selector control system rewritten as linear system interconnected
with a static multi-variable nonlinearity.

has two outputs vhl and vnl , and the selector nonlinearity is now reduced
to the two-dimensional mapping ϕ (vhl, vnl) shown in Figure 4.12. The
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nonlinearity ϕ is piecewise linear, and has the explicit expression

ϕ �


0 if vhl ≥ 0, vnl ≤ 0

vnl if vnl ≥ 0, vhl ≥ vnl

vhl otherwise

.

Since the region where ϕ (vhl, vnl) � vhl is not convex, we have to introduce
an additional region, see Figure 4.12(right).

−1
0

1

−1

0

1
−1

0

1

vhl

vnl

ϕ (vhl, vnl)

4

3

21

vnl

vhl

Figure 4.12 Static nonlinearity in the selector control system (left). The corre-
sponding non-convex state partition (right) is rendered convex by splitting one cell
in two (the dashed line in rightmost figure).

While this nonlinearity fits directly in the piecewise linear framework,
it is not easily dealt with using other techniques. It is easy to verify that
the nonlinearity has gain less than one, which motivates an attempt to
apply the small gain theorem. However, the L 2-induced gain of the linear
system is 15.8, and the small gain can not verify stability. An approach
based on linear differential inclusions (Corollary 4.1) also fails.

In contrast, a numerical stability analysis using Theorem 4.1 verifies
system stability. In this case, the optimization routines return a Lyapunov
function which is globally quadratic. Since Corollary 4.1 fails, this example
shows the importance of using partition information in the analysis.

It may appear strange to let zmin � zmax � 0 in the analysis. This
choice was made for sake of simplicity, and similar results could be ob-
tained for any choice of zmin and zmax. The analysis only considers stability
of an equilibrium point. Such an analysis is particularly interesting for
verifying that no undesired switching occurs.
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4.7 Analysis of Uncertain Systems

4.7 Analysis of Uncertain Systems

The LMI computations of Theorem 4.1 are readily extended to systems
described by piecewise linear differential inclusions (pwLDIs), as defined
in Section 2.3. We let K (i) be the set of extreme dynamics that define the
system behavior in cell Xi and consider the system

ẋ ∈ co
k∈K(i)

{Ak x+ ak} x ∈ Xi.

In order to guarantee that the Lyapunov function is decreasing for all
possible solutions of the pwLDI, we must require that the Lyapunov func-
tion is decreasing with respect to every extreme dynamics ẋ � Akx + ak
that defines the inclusion in each cell. This leads to multiple decreasing
conditions in each region, one for each extreme dynamics. The discussion
is made more precise in the following theorem.

THEOREM 4.2—PWQ STABILITY OF PWLDIS

Consider symmetric matrices T , Uik and Wik such that Uik and Wik have
nonnegative entries, while

Pi � F T
i T Fi, i ∈ I0

P̄i � F̄ T
i T F̄i, i ∈ I1

satisfy

{
0 > AT

k Pi + PiAk + ET
i Uik Ei

0 < Pi − ET
i Wik Ei

i ∈ I0, k ∈ K (i)

{
0 > ĀT

k P̄i + P̄i Āk + ĒT
i Uik Ēi

0 < P̄i − ĒT
i Wik Ēi

i ∈ I1, k ∈ K (i)

Then every trajectory x(t) ∈ ∪i∈I Xi satisfying the inclusion (2.9) with
u � 0 for t ≥ 0 tends to zero exponentially.

Proof: Follows similarly to Theorem 4.1 and Proposition 4.2.

Theorem 4.2 enables the use of the piecewise quadratic machinery for
rigorous stability analysis of smooth nonlinear systems. We will develop
this approach in further detail in Chapter 7, but illustrate the ideas on
the following example.
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Figure 4.13 The left figure shows simulations (full) and Lyapunov function level
surfaces (dashed) obtained in Example 4.7. The right figure shows the computed
Lyapunov function.

EXAMPLE 4.7—EMBEDDING SMOOTH SYSTEMS IN PWLDIS

Simulations indicate that the following nonlinear system is stable

ẋ1 � −2x1 + 2x2 + sat(x1x2)x1

ẋ2 � −2x1 − sat(x1x2)(x1 + 4x2).

We would like to verify global exponential stability of the origin by com-
puting a piecewise quadratic Lyapunov function for the system. A simple
technique for rigorous analysis of the system is to explore the bounds

pmin ≤ sat(x1x2) ≤ pmax

and re-write the model as the differential inclusion

ẋ �
[−2 2

−2 0

]
x+ p(t)

[
1 0

−1 −4

]
x (4.22)

with pmin ≤ p(t) ≤ pmax. By using information about the nonlinearity
p(t) � sat(x1x2) we can obtain pwLDIs of different accuracy. First, notice
that analysis using a global model based on the bound −1 ≤ p(t) ≤ 1 is
futile, since p(t) � −1 gives an unstable extreme dynamics. Taking the
step from linear analysis to piecewise linear analysis, we can obtain a
refined model by exploring the fact that

0 ≤ sat(x1x2) ≤ 1

in the first and third quadrant, and

−1 ≤ sat(x1x2) ≤ 0
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in the second and fourth quadrant. This observation motivates a model
with four regions, each region covering one quadrant. The dynamics in
each region is given by a linear differential inclusion on the form (2.9). To
verify stability, we apply Theorem 4.2 and find the Lyapunov function with
the level curves indicated in Figure 4.7. This proves global exponential
stability. Note that the level surfaces are non-convex sets, and that the
system is not easily dealt with using absolute stability results due to the
multi-variable nature of the nonlinearity sat(x1x2).

4.8 Improving Computational Efficiency

The piecewise quadratic Lyapunov functions are much more powerful than
the globally quadratic functions. As illustrated, the piecewise quadratic
approach allows us to analyze many systems where other methods fail
or are hard to apply. Naturally, this additional power comes at a price.
System analysis using piecewise quadratic Lyapunov functions is more
computationally demanding than the use of globally quadratics.

A straightforward implementation of the LMI conditions in Theorem 4.1
may result in time-consuming analysis computations. This is especially
true when the state space partitioning is performed in many dimensions.
It is therefore of interest to look for methods that decrease the compu-
tational burden without introducing excessive conservatism. Essentially,
such savings can be done in two ways; either by reducing the number of
search variables (the free variables in T , Ui and Wi), or by decreasing
the number of constraints that has to be satisfied. In this section, we will
provide two methods that give a significant reduction in the computations
required for the piecewise quadratic analysis.

Stability Analysis in Two Steps

The LMI conditions in Theorem 4.1 incorporate the positive condition in
the Lyapunov function search. At first glance, this appears very natural.
Looking back at Lemma 4.4, however, we see that there is very little rea-
son to do so. Lemma 4.4 suggests that if we can find a function which is
decreasing along all system trajectories, this function contains all infor-
mation about system stability. If the function can be shown to be positive
definite on the partition, stability follows analogously to Theorem 4.1. If
we find some point where the computed function is non-positive, then no
trajectory in the partition starting at this point can approach the origin
as t →∞. We give the following result.

PROPOSITION 4.4—STABILITY ANALYSIS IN TWO STEPS

Consider a symmetric matrix T , and symmetric nonnegative matrices
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Ui � 0 , while Pi � F T
i T Fi for i ∈ I0 and P̄i � F̄ T

i T F̄i for i ∈ I1 satisfy

0 >AT
i Pi + PiAi + ET

i UiEi i ∈ I0

0 >ĀT
i P̄i + P̄i Āi + ĒT

i UiĒi i ∈ I1

Let x(t) ∈ ∪i∈I Xi be a trajectory of (2.3) with u � 0 for t ≥ 0, and define

V(x) � x̄T P̄i x̄ for x ∈ Xi, i ∈ I.

If V(x) > 0 for all x ∈ ∪i∈I Xi\{0} then every x(t) tends to zero exponen-
tially. If V(x0) ≤ 0 for some x0 ∈ ∪i∈I Xi with x0 6� 0, then no x(t) with
x(0) � x0 can tend to zero as t→∞.

Proof: Follows from Lemma 4.1 along the same lines as the proof of The-
orem 4.1.

Proposition 4.4 implies that the large LMI problem in Theorem 4.1
can be split into several smaller problems. By disregarding the positivity
constraints in the Lyapunov function search, we eliminate roughly 50%
of the constraints and obtain a large reduction also in the number of
search variables. Hence, this problem can be solved in a fraction of the
time needed to solve the original problem. Moreover, if the LMI conditions
in Proposition 4.4 do not admit a solution then neither do the analysis
conditions in Theorem 4.1.

Once a Lyapunov function candidate is found we proceed to check its
positivity properties. This can be done according to Lemma 4.4, similar
to what was done in Theorem 4.1. Verifying positivity then amounts to
solving a number of small LMI problems (one for each region). Since the
Lyapunov function candidate obtained from the first step is now fixed,
each such problem has only one constraint in only one free matrix variable
and can be solved very efficiently. We will illustrate the savings obtained
by Proposition 4.4 in the end of this section.

Quadratic Cell Boundings – Computational Savings at a Price

In many cases, it is the number of free parameters in the relaxation terms
(the entries of matrices Ui and Wi) that add the most parameters to the
Lyapunov function search. A second way to reduce the computations is
therefore to try to minimize the number of free parameters used in the
S-procedure terms. Returning to Lemma 4.4 we see that, for a given P̄i,
a solution to the inequality

P̄i − ĒT
i UiĒi > 0
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does not only imply that V(x) � x̄T P̄i x̄ > 0 for x ∈ Xi, but that V(x) is
positive for all x in the quadratic set

Ei(Ēi) � {x t x̄T ĒT
i Ui Ēi x̄ ≥ 0}.

We may view the term S̄i :� ĒT
i Ui Ēi as a description of a quadratic

set derived from its polyhedral representation. From this perspective, the
free parameters in Ui are used to adjust the quadratic set so as to verify
the desired inequality, see Figure 4.14. One way to reduce the number of

0 5
0

5

0 5
0

5

0 5
0

5

XiXiXi

Figure 4.14 Several quadratic boundings Ei(Ēi) (dark) of the cell Xi (light) can
be derived by optimizing the free parameters in the matrix Ui .

search variables would be to simply fix the matrix S̄i before the Lyapunov
function search. This is equivalent to specifying a quadratic set

Ei(S̄i) � {x t x̄T S̄i x̄ ≥ 0}

that contains the cell Xi, i.e., Ei(S̄i) ⊇ Xi. To pursue this direction further,
we define quadratic cell boundings as follows.

DEFINITION 4.3—QUADRATIC CELL BOUNDING

A matrix S̄i � S̄T
i is a quadratic cell bounding if

x̄T S̄i x̄ ≥ 0 for x(t) ∈ Xi. (4.23)

Furthermore, we say that S̄i has the zero interpolation property if

S̄i �
[

Si 0n�1

01�n 0

]
for i ∈ I0 .

Rather than using Lemma 4.4 in the conditional analysis, we then use
the following result.
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LEMMA 4.5
Consider the function

V(x) � x̄T P̄i x̄ for x ∈ Xi,

with P̄i � P̄T
i and let S̄i be a quadratic cell bounding satsifying (4.23). If

P̄i − uiS̄i > 0 (4.24)

for some ui ≥ 0, then V(x) > 0 for all x ∈ Xi with x 6� 0.

Proof: Follows similarly to Lemma 4.4.

The following variant of Theorem 4.1 now follows directly.

PROPOSITION 4.5—PWQ STABILITY WITH QUADRATIC RELAXATION

Consider a symmetric matrix T and nonnegatvive scalars ui and wi such
that Pi � F T

i T Fi for i ∈ I0 and P̄i � F̄ T
i T F̄i for i ∈ I1 satisfy{

0 > AT
i Pi + Pi Ai + uiSi

0 < Pi −wiSi

i ∈ I0

{
0 > ĀT

i P̄i + P̄i Āi + uiS̄i

0 < P̄i −wiS̄i

i ∈ I1

Then every trajectory x(t) ∈ ∪i∈I Xi satisfying (2.3) with u � 0 for t ≥ 0
tends to zero exponentially.

Proof: Follows similarly to Theorem 4.1.

Clearly, this approach allows for large savings search variables. More
precisely, if Ēi ∈ Rp�(n+1), the polyhedral relaxations ĒT

i UiĒi use p(p−
1)/2 free parameters, while the quadratic formulation (4.23) uses just
one free parameter. The drawback of this approach is that a quadratic
approximation of each cell has to be fixed before the optimization. On
the contrary, the polyhedral relaxation has a lot of freedom to adjust a
quadratic supset of the region during the Lyapunov function search. This
freedom is critical in many examples, making analysis with quadratic cell
boundings fail where computations using polyhedral cell boundings verify
stability.

A natural candidate for quadratic approximation of polyhedral cells is
to compute the ellipsoid with minimum volume that contains the cell [44].
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Further details on minimum volume ellipsoids are given in Chapter 8.
Unfortunately, minimal volume has only little to do with the role of the
relaxation term in the LMI conditions. Indeed, in Chapter 8 we will be able
to prove that for some important classes of partitions the use of minimal
volume ellipsoids is always more conservative than the formulation used
in Theorem 4.1. Such a proof requires some further developments and,
for now, we can only demonstrate the arguments on a simple example.

A Comparative Example

To give a flavor of the benefits and limitations of the different formulations
of piecewise quadratic stability given in Theorem 4.1, Proposition 4.4 and
Proposition 4.5 we consider analysis of the system shown in Figure 4.15.
The system dynamics is given by

ẋ � Ax + b1 f1(x1) + b2 f2(x2)

where A ∈ R2�2, b1, b2 ∈ R2�1 and fi(xi) � arctan(xi). We will present re-

Σ

f1(⋅)

f2(⋅)

r y

−5 −1.75 0 1.75 5

−1.75

−0.875

0

0.875

1.75

Figure 4.15 The system used as comparative example (left). The nonlinearity
fi(xi) is shown in full lines in the right figure. The dash-dotted line illustrates a
piecewise linear approximation and the dashed lines show piecewise linear sector
bounds.

sults for both piecewise linear approximations and piecewise linear sector
bounds on the nonlinearities, see Figure 4.15 (right). In both cases, the
piecewise linear descriptions induce a partition of the domain [−5, 5] �
[−5, 5] into nine regions.

First, we let

A �
[−3 2

1 −3

]
, b1 �

[−1

0

]
, b2 �

[
0

−1

]
and use the piecewise linear approximation of fi(xi). In this case, all
approaches verify stability. The different computational requirements are
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Approach Time (s) #Variables #Constraints

P-1 1.04 117 114

P-2 0.41 69 57

Q-1 0.23 37 34

Q-2 0.11 29 17

Table 4.1 First set-up. All approaches verify stability. Large savings in computa-
tions are obtained from the alternative formulations (P-2,Q-1,Q-2).

shown in Table 4.1. The computations were performed on a SUN Ultra 10
computer using the LMI software [42]. In the table the acronym P refers
to the use of polytopic cell description in the S-procedure terms while Q
indicates the use of quadratic cell boundings. The number 1 means that
the analysis was performed in a single step (enforcing both positivity and
decreasing conditions simultaneously) while 2 means that the analysis
was performed in two steps (enforcing the decreasing condition during
the Lyapunov function search and subsequently verifying positivity).

As seen in Table 4.1, Proposition 4.4 (P-2) results in a large reduc-
tion in computation time compared with the computations required by
Theorem 4.1(P-1). The computational savings are even greater when us-
ing quadratic cell boundings as in Proposition 4.5(Q-1). In this case, the
quadratic cell boundings are taken as the minimal volume ellipsoids that
cover each region. By combining the two-step analysis procedure with
quadratic cell boundings (Q-2), the computational time is reduced to
around than 10% of what was required by the original formulation.

Using the same matrices A, b1 and b2, we now consider the case when
the nonlinearities are described by piecewise linear sector bounds. This
approach allows stability to be verified in a rigorous way, but it also in-
creases the computational cost. In each region the system is now described
by a differential inclusion with four extreme dynamics. As the main bur-
den in analysis of such systems is verification of the multiple decreasing
conditions, the savings of the two step analysis procedure gets somewhat
lower, see Table 4.2.

The problem with ellipsoidal cell boundings is that there is very little
freedom in adjusting the S-procedureterms during the Lyapunov function
search. This introduces some conservatism as can be seen by letting

A �
[−2 2

1 −2

]
, b1 �

[−1

0

]
, b2 �

[
0

−1

]
,

and using piecewise linear sector bounds on the nonlinearities. The com-
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Approach Time (s) #Variables #Constraints

P-1 3.79 261 285

P-2 2.17 213 228

Q-1 0.80 61 85

Q-2 0.45 53 58

Table 4.2 Second set-up. The use of piecewise linear sector bounds decreases the
benefits of the two-set analysis procedure, but good savings are still obtained.

putational results are shown in Figure 4.3. Stability can no longer be
verified using ellipsoidal cell boundings, while the computational savings
in the use of Proposition 4.4 remain the same.

Approach Time (s) #Variables #Constraints

P-1 4.15 261 285

P-2 2.62 213 228

Q-1 fails – –

Q-2 fails – –

Table 4.3 Final set-up. Quadratic cell boundings fail to verify stability.

To understand the computational complexity of the different approach-
es better, it is useful to see how different factors contribute to the total
number of parameters. In this example, we have constructed the con-
straint matrices using the procedure given in Section 8.1. This procedure
gives F̄i ∈ R6�3 and Ēi ∈ R4�3. This implies that T ∈ R6�6, and the
Lyapunov function candidate F̄ T

i T F̄i has 21 free parameters. Each of the
matrices Ui and Wi used in the polytopic S-procedure have 6 free param-
eters while the ellipsoidal S-procedure uses 1 parameter. As the origin
lies in the interior of one cell, S-procedure relaxation is only used in 8
regions.

Applied to the first set-up (Table 4.1), the approach P-1 requires 21+
(1+1) ⋅8 ⋅6� 117 parameters while P-2 uses 21+1 ⋅8 ⋅6� 69 parameters.
For the piecewise linear sector bounds (Table 4.2), P-1 uses 21+ (1+ 4) ⋅
8 ⋅ 6 � 261 parameters while P-2 uses 21+ 4 ⋅ 8 ⋅ 6 � 213 parameters. In
this case, E-2 uses only 21+ 4 ⋅ 8 ⋅ 1 � 53 parameters.
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4.9 Piecewise Linear Lyapunov Functions

There are several reasons to look for alternatives to the piecewise quad-
ratic analysis. Firstly, the LMI computations in Theorem 4.1 has many
free search variables, and analysis of large problems using these con-
ditions may be time consuming using today’s LMI software. Secondly,
the S-procedure, which was used to exploit the restriction x ∈ Xi in the
computations, may be a restrictive way to check positivity of a piecewise
quadratic function on a polyhedral domain. In other words, there are sys-
tems that admit a piecewise quadratic Lyapunov function but where this
function can not be found using the search of Theorem 4.1.

As an alternative to piecewise quadratics, we will consider Lyapunov
function candidates that are continuous and piecewise linear,

V(x) �
{

pT
i x x ∈ Xi, i ∈ I0

p̄T
i x � pT

i x̄+ qi x ∈ Xi, i ∈ I1

(4.25)

Such Lyapunov functions can be computed using linear programming.
Compared to LMI software, the linear programming solvers have reached
a high level of maturity. Efficient software exists for large scale problems
that exploits sparsity in problem data and admits systems with several
thousands of cells to be analyzed in a matter of seconds.

Similar to the piecewise quadratic case, we will use a compact param-
eterization of such function that separates the free parameters from the
constraints imposed by the continuity requirement. The parameterization
is established in the following lemma.

LEMMA 4.6—PWL PARAMETERIZATION

Let {Xi}i∈I be a polyhedral partition, and let F̄i ∈ Rp�(n+1) be continuity
matrices that satisfy (4.14). Then, for each t ∈ Rp, the scalar function

V(x) � tT F̄ix̄ :� p̄i x̄ for x ∈ Xi.

is continuous and piecewise linear. Moreover, if each F̄i has the zero in-
terpolation property, there exists α and β such that

α ttxtt∞ ≤ V(x) ≤ β ttxtt∞.

Proof: Follows similarly to Lemma 4.2 and the absence of offset terms in
V(x) in a neighborhood around the origin.
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4.9 Piecewise Linear Lyapunov Functions

Another attractive feature of piecewise linear Lyapunov functions is
that the conditional analysis (x ∈ Xi) can sometimes be performed without
loss. This fact is established in the following Lemma, similar in nature to
Farkas’ lemma [123, 157].

LEMMA 4.7
The following statements are equivalent.

1. pT x > 0 for all x such that Ex � 0, Ex 6� 0

2. There exists a vector u � 0 such that p− ETu � 0.

Proof: See Section A.3.

Note that contrary to the standard formulation of Farkas’ lemma which
uses non-strict inequalities, Lemma 4.7 is formulated using strict inequal-
ities. However, the result only considers linear forms, and does not treat
affine terms.

The following stability theorem now follows.

THEOREM 4.3—PIECEWISE LINEAR STABILITY

Let {Xi}i∈I ⊆ Rn be a polyhedral partition with continuity matrices F̄i,
satisfying (4.14) and (4.15), and cell boundings Ēi, satisfying (4.18) and
(4.19). Assume furthermore that Ēi x̄ 6� 0 for every x ∈ Xi such that x 6� 0.
If there exists a vector t and non-negative vectors ui � 0 and wi � 0 while

pi � F T
i t, i ∈ I0

p̄i � F̄ T
i t, i ∈ I1

satisfy

{
0 � pT

i Ai + uiEi

0 � pT
i −wi Ei

i ∈ I0 (4.26)

{
0 � p̄T

i Āi + uiĒi

0 � p̄T
i −wi Ēi

i ∈ I1 (4.27)

then every trajectory x(t) ∈ ∪i∈I Xi satisfying (2.3) with u � 0 for t ≥ 0
tends to zero exponentially.
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Proof: Follows similarly to Theorem 4.1 after post-multiplying the inequal-
ities of Theorem 4.3 with x and x̄ respectively, and invoking Lemma 4.1
with tt ⋅ tt � tt ⋅ tt∞.

The search for free variables t, ui and wi in Theorem 4.3 is a linear
programming problem. If the system does not have any attractive sliding
modes, a solution to this problem guarantees that

V(x) � p̄T
i x̄ for x ∈ Xi, i ∈ I

is a Lyapunov function for the system. The theorem is valid for both
bounded and unbounded polyhedral cells. There are still relaxation terms
ui and wi in the analysis conditions, but the number of entries in ui and wi

has been reduced in comparison to the number of entries in the matrices
Ui and Wi used in the piecewise quadratic analysis.

Note that the additional constraint

Ēi x̄ 6� 0 for x ∈ Xi, x 6� 0

does not impose any further restriction. For i ∈ I0, the assumption is
violated if {xt Ēi x̄ � 0} is some linear halfspace, but pT x can not be strictly
positive for all x in a closed linear halfspace. For i ∈ I1, the situation can
always be avoided by adding the additional constraint [01�n 1 ] x̄ ≥ 0 to
the cell bounding (as was suggested in Algorithm 4.1).

If all cells are bounded, we can exploit convexity to reduce the com-
putations even further. More specifically, let the cells be given in vertex
representation

Xi � co
k∈V(i)

{ν k}

where V(i) are the set of indices for the vertices ν k of cell Xi. Then, an
affine function is positive on Xi if and only if it is positive on the vertices
of Xi. This allows us to formulate the following result.

THEOREM 4.4
Let {Xi}i∈I be a partition of a bounded subset of Rn into convex polytopes
with vertices ν k, and let F̄i be the associated continuity matrices satisfying
(4.14) and (4.15). If there exists a vector t such that

pi � F T
i t for i ∈ I0

p̄i � F̄ T
i t for i ∈ I
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4.9 Piecewise Linear Lyapunov Functions

satisfy

{
0 > pT

i Aiν k i ∈ I0 , ν k ∈ Xi

0 < pT
i ν k i ∈ I0 , ν k ∈ Xi

(4.28)

{
0 > p̄T

i Āiν̄ k i ∈ I1 , ν k ∈ Xi

0 < p̄T
i ν̄ k i ∈ I1 , ν k ∈ Xi

(4.29)

for each ν k 6� 0, then every trajectory x(t) ∈ ∪i∈I Xi satisfying (2.3) with
u � 0 for t ≥ 0 tends to zero exponentially.

Proof: Follows similarly to Theorem 4.3 but where decreasing and posi-
tivity conditions are checked according to the discussion above.

Note that all the relaxation terms have vanished, and that the vec-
tor inequalities of Theorem 4.3 have been reduced to a number of scalar
inequalities.

It is possible to arrive at even simpler stability conditions if one consid-
ers partitions where each cell Xi ⊆Rn has n+ 1 vertices. Such polytopes
are called simplexes, and will be treated in more detail in Section 8.1. For
such partitions, the Lyapunov function is completely determined by its
values at the cell vertices. The positivity conditions can then be replaced
by the requirement that all entries of the vector t should be positive, t � 0.

Although Theorem 4.4 requires the analysis domain to be bounded
(the cells are polytopes) it can still be used to assess global exponential
stability in some cases. More precisely, if I1 � ∅, any piecewise linear
Lyapunov function valid in some open neighborhood of the origin can be
used to induce a globally valid Lyapunov function. Lyapunov functions
derived in this way are often called polytopic Lyapunov functions, as the
level sets of such a Lyapunov function are polytopes, see [16, 102] for
further details.

EXAMPLE 4.8—SELECTOR SYSTEM CONT’D
To illustrate the use of piecewise linear Lyapunov functions, we return to
the simple min-selector system. As discussed in conjunction with Theo-
rem 4.3, the piecewise linear Lyapunov functions cannot be used on the
initial partition, since the natural cells are both open linear halfspaces.
Using the refined partition shown in Figure 4.16(left), however, Theo-
rem 4.4 return the Lyapunov function shown in Figure 4.16(right). Hence,
global exponential stability follows from the arguments above. Note that
the Lyapunov function is poorly conditioned, and the level surfaces are
heavily unbalanced. By refining the partitioning further, one arrives at
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Figure 4.16 Refined partition and level surfaces of computed Lyapunov function
(dashed) to the left. The computed Lyapunov function is shown to the right.

Lyapunov functions that closely resemble the Lyapunov function used in
the piecewise quadratic analysis.

When working with piecewise linear Lyapunov functions it is often neces-
sary to refine an initial partition in order to find a solution to the analy-
sis problems. For example, for systems with oscillative dynamics the level
sets need to be close to circular and a large number sectors may be needed
to obtain the required accuracy in this approximation, see [96, 111]. It is
then natural to ask how partition refinements should be made in an effi-
cient manner. We will return to this issue in Chapter 7 and devise an au-
tomatic refinement algorithm that “introduces flexibility where needed”.

Two Useful Extensions

The basic stability computations can be extended in several useful ways.
One example is computation of decay rate, τ , which can be estimated from
the modified Lyapunov inequality

V̇ (x) + τ V(x) < 0 ∀x 6� 0.

Given a fixed value of τ , the above condition can be verified using a slight
modification of the previous theorems (where Ai has been replaced by
Ai+ τ I in the decreasing conditions). The optimal value of τ can then be
found by bisection. Another possibility is to prove stability for piecewise
linear inclusions,

ẋ ∈ co
k∈K(i)

{Akx+ ak} x ∈ Xi

In this case, one need to simultaneously solve several decreasing condi-
tions in each region (one for each k ∈ K (i)).
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4.10 A Unifying View

There is a close relation between the parameterizations of the piecewise
linear and the piecewise quadratic Lyapunov functions. In this section,
we will elaborate this relationship further and establish a unifying frame-
work for computation of globally quadratic, piecewise quadratic, polyhe-
dral and piecewise linear Lyapunov functions.

One may view the matrix format for continuous piecewise quadratic
Lyapunov functions introduced in Lemma 4.2,

V(x) � x̄T F̄ T
i T F̄ix̄ x ∈ Xi,

as a quadratic form in the coordinates z obtained by the continuous piece-
wise linear mapping z � F̄ix̄. If one rather considers linear forms in z,

V(x) � tT F̄ix̄ :� p̄T
i x̄ x ∈ Xi

one obtains the parameterization of continuous piecewise linear functions
suggested in Lemma 4.6. In fact, the piecewise linear Lyapunov functions
can be seen as a direct restriction of the piecewise quadratics as follows.
Let F̄i be constraint matrices satisfying (4.14) and define

F̂i �
[

Fi fi

0 1

]
, T � 1

2

[
0 t

tT 0

]
.

Note that F̂i also satisfies the continuity condition (4.14), and that the
piecewise quadratic function V(x) of Proposition 1 now evaluates to

x̄T P̄i x̄ � x̄T F̂ T
i T F̂ix̄ � tT F̄ix̄ � p̄T

i x̄.

The close relationship between the parameterization of piecewise lin-
ear and piecewise quadratic Lyapunov functions allows us to establish
a unifying view of several important approaches to numerical Lyapunov
function construction, see Figure 4.17.

Most versatile are the piecewise quadratic Lyapunov functions [63]

V(x) � x̄T F̄ T
i T F̄ix̄ x ∈ Xi

As shown in Theorem 4.1, and its variants, piecewise quadratic Lyapunov
functions can be computed via convex optimization in terms of LMIs. The
conditional analysis (that inequalities are only required to hold for those
x such that x ∈ Xi) can be done using the S-procedure, which appears to
work well in practice but is only a sufficient condition.
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Globally

Piecewise

Piecewise

quadratic

quadratic linear

I1 � ∅

F̄i � F̂i

Polytopic

V(x) � x̄T F̄ T
i T F̄ix̄

F̄i � [ I 0 ]

Figure 4.17 A unifying view of four classes of Lyapunov functions for piecewise
linear system that can be computed via convex optimization.

The quadratic Lyapunov functions [33, 19] are special instances of the
piecewise quadratics, obtained by letting F̄i � [ In�n 0n ]. Quadratic Lya-
punov functions can be computed via LMI optimization, and conditional
analysis can be done using the S-procedure.

Also the piecewise linear Lyapunov functions [80, 59]

V(x) � tT F̄ix̄ x ∈ Xi

can be seen as a special case of the piecewise quadratics. They can be com-
puted via linear programming as shown in Theorem 4.3 and Theorem 4.4.
The conditional analysis can in some cases be formulated without loss (as
established in Lemma 4.7).

Polytopic Lyapunov functions [96, 102, 16] are a special case of the
piecewise linear Lyapunov functions. The polytopic Lyapunov functions
can be obtained from the piecewise linear by considering partitions that
consist of convex cones with base in the origin, i.e., polyhedral partitions
for which I1 � ∅. The computations can be done using linear program-
ming and the conditional analysis is performed without loss.

Choosing Lyapunov Function Class

The choice of Lyapunov function candidate involves several trade-offs. For
example, using today’s technology the linear matrix inequalities in Sec-
tion 3 are substantially more demanding to solve than the linear program-
ming problems in Section 4. Well developed linear programming software
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exists that allows very large problems to be solved efficiently on standard
PCs. On the other hand, one may need a much finer partition when con-
structing a piecewise linear Lyapunov function than one would need in
the case of piecewise quadratics. As always, it is advisable to try the sim-
plest things first, and use more powerful Lyapunov function candidates
only when necessary. By using one format for several classes of Lyapunov
functions, it is simple to move from one function class to the other in or-
der to find the most appropriate Lyapunov function candidate. Once the
constraint matrices F̄i and Ēi for a given partition are fixed, the unifying
parameterization allows seamless transfer between piecewise linear and
piecewise quadratic Lyapunov function computations. To illustrate these
trade-offs, we consider the following problem [104, 16]

EXAMPLE 4.9—EXPRESSIVE POWER

Consider the following linear uncertain system

ẋ(t) � A{δ (t)}x(t) �
[

0 1

−1+ δ (t) −1

]
x(t).

where tδ (t)t ≤ d is an uncertain time-varying parameter. For d > √
3/2

there is no quadratic Lyapunov function that can show stability for all
admissible parameter variations. In [16], Blanchini reported a polyhedral
Lyapunov function with 30 vertices that proves stability for d ≤ 0.98. Us-
ing a piecewise quadratic Lyapunov function with four regions (being the
four quadrants in R2) we can not only decrease the number of parameters
needed to represent the Lyapunov function, but also improve that bound
to d � 1− ε with ε � 1E − 15.

Another issue appears when Lyapunov-like functions are used in sys-
tem analysis and optimal control problems. Different problem formula-
tions then call for different classes of loss functions. While energy-related
problems (such as computation of the induced L 2-gain) are conveniently
expressed as quadratic integrals, piecewise linear functions have been
useful in analysis of systems with absolute constraints (see the discus-
sion about invariant sets in Chapter 3). Related is also the question of
what approaches that allow control problems to be solved using convex
optimization.

4.11 Systems with Attractive Sliding Modes

The dynamics given by (2.3) are only uniquely defined in the interior of
the cells, and does not suffice in case the system has attractive sliding
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modes. The trajectory concept introduced in Definition 2.1 only considers
functions x(t) that do not remain on the cell boundary for any time in-
terval. In case of attractive sliding modes, however, there are boundary
points where all vector fields generated in the interior of the neighboring
regions point towards the boundary. Trajectories in the sense of Defini-
tion 2.1 that enter the attractive sliding mode can not leave the boundary
immediately, and cease to be well-defined.

Differential equations with discontinuous right-hand sides have been
studied by several researchers and several definitions for solutions have
been suggested. The most well-known may be the solution concepts due to
Filippov [39] and Utkin [138]. Usually, solutions are defined by some limit-
ing process, such as introducing a small hysteresis around cell boundaries
and letting the hysteresis parameter tend to zero, see Figure 4.18. In this
way, the behavior on the surface of discontinuity is defined by averaging
the dynamics in the neighboring regions.

?

ẋ � fi(x)

ẋ � fj (x)

ε ε → 0

Figure 4.18 The dynamics on the surface of discontinuity is initially not well
defined (left). By introducing a hysteresis layer in the cells (center) and letting its
width tend to zero, a family of feasible behaviors can be obtained (right).

Filippov studied non-smooth dynamical systems

ẋ � f (x) (4.30)

where f : Rn −→ Rn is a piecewise continuous function. The solution to
this equation is understood in the following sense, see [39, 127].

DEFINITION 4.4—FILIPPOV SOLUTION

An absolutely continuous function x(t) is called a solution of (4.30) on
[t0, t f ] if for almost all t ∈ [t0, t f ]

ẋ ∈
⋂
δ>0

⋂
µ N�0

co f (B(x,δ )\N),

where ∩µ N�0 denotes the intersection of all sets N of Lebesgue measure
zero, and B(x,δ ) is a ball with center in x ∈ Rn and radius δ .
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For piecewise linear systems defined in Section 2.1, this leads to the fol-
lowing solution concept. An absolutely continuous function x(t) is called
a Filippov solution of the system (2.3) on [t0, t f ] if for almost all t ∈ [t0, t f ]

ẋ(t) ∈ co
j∈J(t)

{Aj x+ aj}, (4.31)

where for each t, J(t) is the set of indices such that x(t) ∈ Xj .
Since the cells are assumed to have disjoint interior, the solution con-

cept is only changed on cell boundaries. In case of attractive sliding modes,
we will accept a time function x(t) that remains on the cell boundary for
some time interval if it can be generated by some convex combination of
the dynamics in the neighboring cells.

The analysis developed up to this point is only valid for systems that
do not posses attractive sliding modes. The following example shows the
need to account for sliding modes in the analysis.

EXAMPLE 4.10—SLIDING MODES AND STABILITY

Consider the piecewise linear system

ẋ �


[−2 −2

4 1

]
x :� A1x x1 ≥ 0[−2 2

−4 1

]
x :� A2 x x1 ≤ 0

(4.32)

Both system matrices are stable and they share the same eigenvalues.
Moreover, the system admits a solution to the LMIs used for the piecewise
quadratic analysis of Theorem 4.1. It is easy to be misled and believe
that this would imply exponential stability of the switched system (4.32).
However, this is not the case, as can be seen from the Filippov solution
shown in Figure 4.19. The solution tends to the attractive sliding mode
x1 � 0, x2 ≥ 0, along which the state vector tends to infinity.

This example clearly demonstrates that proper treatment of sliding modes
is instrumental in the analysis of general piecewise linear systems. It also
illustrates how the results of Theorem 4.1 are not valid in the presence
of attractive sliding modes.

Since Filippov solutions may remain on a cell boundary for some time
interval, it is necessary to assure that the value of the Lyapunov function
decreases also in this case. Although the Lyapunov function candidates
used this far are continuous their partial derivatives do not necessarily
match at cell boundaries. In order to formulate the analysis conditions,
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Figure 4.19 The behavior on attractive sliding modes is critical for system stabil-
ity. The state reaches the sliding mode x1 � 0, x2 ≥ 0, and tends to infinity.

we must therefore define an expression for the Lyapunov function on the
cell boundaries. To this end, let �Xi be a boundary of cell Xi on which
there is an attractive sliding mode, and let

J(i) � {j t Xj ∩ Xi 6� ∅}.

Let Vi(x) be used to define the Lyapunov function on the cell boundary.
To verify stability of Filippov solutions, we need to assure that

�Vi(x)
�x

{Aj x+ aj} < 0 ∀x ∈ �Xi\{0}, ∀j ∈ J(i). (4.33)

Note that any of the expressions Vj (x) with j ∈ J could have been used
to define the Lyapunov function on the cell boundary. However, if (4.33)
can be verified for one of these expressions, continuity implies that the
value V(x) decreases regardless of what expression Vj is used to define
the Lyapunov function on the boundary.

The condition (4.33) can also be verified via LMI computations. This
allows us to use piecewise quadratic Lyapunov functions also in the anal-
ysis of systems with attractive sliding modes. To see that this, consider a
sliding regime Xs defined by those x that satisfy

Ḡ(s)
i x̄ � 0

Ḡ(n)
i x̄ � 0

To guarantee that the Lyapunov function is decreasing with respect to all
extreme dynamics in

ẋ ∈ co
j∈G(t)

{Aj x+ aj}
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we augment the analysis conditions of Theorem 4.1 by the following LMI
conditions.

ĀT
j P̄i + P̄i Āj +

(
Ḡ(n)

i

)T
Wij Ḡ

(n)
i +

(
Ḡ(s)

i

)T
Nij + NT

ij Ḡ(s)
i < 0

for matrices Wij � 0 and Nij of appropriate dimensions.
Sliding mode analysis gives a significant increase in the computations

required to asses stability. If sliding modes can be ruled out a priori one
should therefore used the theorems that are tailored to this situation. If
sliding modes cannot be ruled out, it is preferable to try to detect on what
boundaries sliding modes will occur and use the augmented conditions
only on these surfaces. This can be done using the tools in Section 3.4.
Apart from decreasing the computational burden, information of where
sliding modes appear gives valuable engineering insight.

EXAMPLE 4.11—EXPONENTIAL STABILITY OF SLIDING MODE SYSTEM

To illustrate stability analysis of a system with sliding modes, we consider
the following slight modification of Example 4.10

ẋ �
{

A1x x2 ≥ 0

A2x x2 ≤ 0

where A1 and A2 are the system matrices defined in Example 4.10. Also
this system has an attractive sliding mode, as illustrated by the simu-
lation in Figure 4.20. Applying the extended stability analysis described
above, we find a piecewise quadratic Lyapunov function that guarantees
stability also on the sliding mode. State trajectories and the corresponding
value of the Lyapunov function are shown in Figure 4.20.

The same approach used above extends directly to piecewise linear Lya-
punov functions.

4.12 Local Analysis and Convergence to a Set

In many cases a local stability analysis cannot be extended globally. The
following example illustrates an interesting case when the piecewise quad-
ratic analysis according to Theorem 4.1 fails.

EXAMPLE 4.12—LYAPUNOV ANALYSIS OF SATURATED SYSTEM

Consider again the double integrator under bounded linear feedback.

ẋ1 � x2

ẋ2 � −sat(2x1 + 3x2)

95



Chapter 4. Lyapunov Stability

−1 0 1
−1

0

1

x1

x2

0 0.5 1 1.5 2
−1

0

0 0.5 1 1.5 2
0

2

4

6

x(t)

V(t)

t
Figure 4.20 The extended stability conditions verify stability also in the presence
of attractive sliding modes. The computed Lyapunov function decreases also on the
attractive sliding mode (right).

It can be verified that the function

V(x1 , x2) � 1
2

x2
1 +

1
2

∫ 2x1+3x2

0
sat(z) dz (4.34)

is a Lyapunov function that proves global asymptotic stability of the ori-
gin. However, the convergence is not exponential in the saturated re-
gions and the Lyapunov function candidate cannot be bounded in the
sense of Lemma 4.1 (the Lyapunov function grows quadratically in the
x1-direction, but only linearly in the x2-direction). Hence, there is no so-
lution to the LMIs of Theorem 4.1.

When the local stability analysis cannot be extended globally, one may
still hope to achieve a larger guaranteed region of attraction than the one
resulting from a purely linear analysis (such as that of Proposition 4.1).

A simple way to extend the local analysis is to try to verify the stability
conditions within some ball BR � {x t xT x ≤ R2}. By gradually increas-
ing the radius, one increases the domain of validity of the analysis, and
hopefully also the resulting domain of attraction. Let

B̄R �
[−I 0

0 R2

]
. (4.35)

Then, the ball BR can be expressed as

BR �
{

x t x̄T B̄R x̄ ≥ 0
}

Stability analysis can then be carried out by adding the relaxation term
uiB̄R to the LMI conditions of Theorem 4.1. The decreasing conditions
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4.12 Local Analysis and Convergence to a Set

then take the form

0 > ĀT
i P̄i + P̄i Āi + ĒT

i UiĒi + uiB̄R.

for ui ≥ 0. These extensions can be used to obtain significantly better
estimates of the region of attraction for the saturated system than what
can be obtained from Proposition 4.1.

EXAMPLE 4.13—EXTENDED ROA ESTIMATION FOR SATURATED SYSTEM

By gradually increasing the analysis radius R, exponential stability can
be established for a ball of very large radius (in the order or R � 1E4).
The level surfaces of the computed Lyapunov function are shown in Fig-
ure 4.21.
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Figure 4.21 Although the system trajectories do not have uniform global expo-
nential decay in the saturated regions (left), it is still possible to find a piecewise
quadratic Lyapunov function that stability for a very large set of initial values.

The intuition about this example is that although the required Lyapunov
function cannot be bounded by quadratic functions globally it can be
bounded by quadratics on any compact domain. Numerical precision limits
how far the analysis domain can be extended.

A more interesting case is when the open loop system is unstable.
The bounded control will then give a bounded domain of attraction. The
following example shows how the approach described above can be used
for estimating the region of attraction.

EXAMPLE 4.14—BOUNDED REGION OF ATTRACTION

By replacing the double integrator system by

ẋ1 � x2

ẋ2 � 0.1x2 − sat(2x1 + 3x2)
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we obtain a system which is exponentially unstable. This system can not
be globally stabilized using a bounded feedback. Using the approach de-
scribed above we can still obtain an estimate of the region of attraction, as
shown in dashed line in Figure 4.22. For comparison, the exact region of
attraction obtained by simulation is shown in full line in the same figure.

−20 −10 0 10 20

−5

0

5

Figure 4.22 Limited region of attraction estimated by piecewise quadratic Lya-
punov function (dashed), and exact region of attraction (full).

Note that a similar approach could be used to show convergence to a set.
By restricting the analysis to the region outside some ball Br � {x t xT x ≤
r2}, convergence be established to the largest level set of the computed
Lyapunov function that contains Br. Such a result could be combined with
the local instability analysis to do limit cycle computations.

4.13 Comments and References

Piecewise Quadratic Lyapunov Functions

When quadratic Lyapunov functions do not suffice, it is very natural to
consider functions that are piecewise quadratic. We have for example seen
how the Lyapunov functions used in the Popov criterion are piecewise
quadratic when the nonlinearity in the feedback connection is piecewise
linear. It has been pointed out to us that the idea of “patching together”
piecewise quadratic Lyapunov functions in the state space has been used
in the analysis of specific nonlinear systems, see [116].

To the best of our knowledge, this thesis is the first work that presents
a systematic methodology for computation of piecewise quadratic Lya-
punov functions. The focus on piecewise linear systems and the use of
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convex optimization are two important ingredients that allow complex
systems to be analyzed using efficient numerical computations. Around
the same time that these results were published [63], similar ideas were
reported for the analysis of hybrid systems in [109]. An interesting exten-
sion to systems with multiple equilibrium points was given in [44].

Strict vs. Nonstrict Inequalities

As the main benefit of the stability conditions presented in this thesis
is the possibility for numerical verification, our philosophy has been to
derive stability conditions that can be implemented in software as they
stand. This has led to two peculiars in our formulation of the stability
conditions.

The first feature is the separation of cells that contain the origin from
cells that do not. From a theoretical point-of-view it may appear unnec-
essary to eliminate affine terms in regions that contain the origin. An
alternative approach would be to use non-strict inequalities

ĀT
i P̄i + P̄i Āi + ĒT

i Ui Ēi ≤
[−ε I 0

0 0

]
∀i ∈ I.

A formulation of this kind could be useful for analysis of systems with
multiple equilibria [44]. However, at the writing of this thesis neither [42]
which was used for all computations in this thesis, nor the freely available
semidefinite programming environment [151] supported non-strict LMIs.

Another feature of the stability conditions is that they use a param-
eterization that enforces continuity on the Lyapunov function candidate.
An alternative approach would simply be to have different matrices P̄i in
each region, and then enforce continuity via constraint equations of the
type (4.13). This is the approach used in [108, 44]. There are many factors
that contributed to our use of constraint matrices. Not every optimization
environment supports the mixture of linear equations and LMI conditions.
It may also be numerically sensitive to introduce a large number of super-
fluous parameters, and then trust the optimization software to eliminate
redundant constraints. Moreover, the approach with constraint matrices
is natural for many classes of partitions (as will be shown in Chapter 8),
and can be used with ease also for complicated partitions.

Piecewise Linear Lyapunov Functions

While efficient software for LMI optimization have not appeared until
quite recently [100], the simplex method for solving linear programming
problems is more than 50 years old [35]. Consequently, researchers have
for a long time been aware of the benefits of deriving results that can be
verified via linear programming.
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Computer algorithms for construction of piecewise linear Lyapunov
functions have been reported in, among others, [24, 25, 95, 16, 96, 102].
The focus has been on polytopic Lyapunov functions and uncertain linear
systems. An important exception is the work [102] that considers poly-
topic Lyapunov functions for piecewise linear systems. Highly related to
our approach is the stability analysis proposed in [80], in which piece-
wise linear Lyapunov functions (that may have affine terms, and are not
necessarily polytopic) were constructed using so-called facet functions.

Polytopic vs. Ellipsoidal Cell B oundings

Ellipsoidal cell boundings have also been used in the references [108, 44].
In [44], ellipsoidal cell boundings were used to allow the use of the S-
procedure in control design based on quadratic Lyapunov functions. In
[108], ellipsoidal cell boundings were used to assure robustness to un-
certainties in regional descriptions of hybrid systems. As shown in this
chapter, computational efficiency may be another reason for trying ellip-
soidal cell boundings before using the full power of polyhedral relaxation
terms.

Numerical Lyapunov Function Construction

Most analysis methods for dynamical systems are somehow related to Lya-
punov functions, and a Lyapunov function appears more or less explicitly
in most analysis conditions. Dissipativity analysis [149, 47], absolute sta-
bility [152, 113], and analysis based on integral quadratic constraints [94]
can all be viewed as methods for Lyapunov function construction.
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5

Dissipativity Analysis

A fundamental idea in systems and control is to view complex systems
as the interconnection of simpler subsystems. Such a perspective is of-
ten helpful in bringing insight into and understanding about a dynamic
system. Viewing a system as the interconnection of its components, it is
natural to ask whether the analysis of a complex system can be based
on the (hopefully simpler) analysis of its components. This is the idea
behind input-output analysis, which has been a very successful tool in
system theory. Roughly speaking, the idea is to replace detailed models
of system components by relationships between their input and output
energies, and then derive results for interconnections of such models. The
most well-known results may be the small-gain and the passivity theo-
rems. Both allow stability of a feedback interconnection to be verified from
the analysis of its components. Hence, by establishingL 2-gain or passivity
properties of piecewise linear systems, we can hope to establish stability
of interconnections by invoking small gain and passivity theorems. This
chapter will provide such tools.

This approach is useful for robustness analysis and it also allows us
to use different tools for analyzing different components. For example,
physical insight may help us to establish passivity of one subsystem and
piecewise linear techniques can allow us to prove strict passivity of an-
other subsystem. This allows us to analyze systems that combine piece-
wise linear systems with components that can not be or are not efficiently
described by piecewise linear techniques. Time delays is one example of
such components.

As we have seen in Chapter 2, several important interconnections of
piecewise linear systems are themselves piecewise linear. Although this
route will not be explored in depth here, we note that these tools will also
allow us to choose whether to analyze a interconnected system in one step,
or to first analyze the subsystems and then use small-gain and passivity
results. This will enable us to trade-off complexity in the computations
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for some conservatism in the analysis.

5.1 Dissipativity Analysis via Convex Optimization

Dissipativity is a very useful notion in the study of performance and ro-
bustness of dynamical systems. Roughly speaking, dissipativity means
that the system absorbs more energy from its environment than it sup-
plies. In a more abstract setting a dissipative system is defined as a sys-
tem that admits a supply rate (defining “input power”) and a storage
function (measuring the “stored energy”) so that the energy is always
dissipated, see [149, 47]. Many important system properties, such as L 2-
induced norms and passivity, correspond to different supply rates.

There is a close relation between Lyapunov functions and storage func-
tions. In some cases the storage function will qualify as a Lyapunov func-
tion, hence proving system stability. Moreover, for linear systems with
quadratic supply rates it can be shown that dissipativity implies the ex-
istence of a quadratic storage function [149]. With the developments from
the previous chapter at hand, it is natural to base a dissipativity anal-
ysis of piecewise linear systems on storage functions that are piecewise
quadratic. Before giving some precise results, we will illustrate the ideas
on the problem of estimating the L 2-norm of a piecewise linear system.
The initial step will be based on a simple and transparent Lyapunov tech-
nique, see [149, 47, 140].

Performance Bounds from Dissipation Inequalities

Consider the problem of estimating an upper bound on the L 2-induced
gain from u to y of the system (2.3). In other words, we want to determine
a constant γ such that∫ T

0
tty(t)tt22 dt ≤ γ 2

∫ T

0
ttu(t)tt22 dt ∀u(t)

holds for all T ≥ 0. We will assume that x(0) � 0. The inequality can
be verified if we can find a non-negative storage function V(x) ≥ 0 with
V(x(0)) � 0 such that

�V
�x

(Aix+ ai + Biu) ≤ γ 2uTu − yT y (5.1)

along system trajectories. Integration of this inequality gives

V(x(t)) − V(x(0)) ≤ γ 2
∫ T

0
ttu(t)tt22 dt−

∫ T

0
tty(t)tt22 dt.

102



5.1 Dissipativity Analysis via Convex Optimization

Since V(x(0)) � 0 and V(x) ≥ 0, we have

0 ≤ γ 2
∫ T

0
ttu(t)tt22 dt−

∫ T

0
tty(t)tt22 dt.

and the desired bound follows.
As always with Lyapunov-techniques, the central difficulty lies in find-

ing a storage function V(x) that satisfies the dissipation inequality. We
will consider systems that are piecewise linear and storage functions that
are piecewise quadratic. This will allow us to compute estimates on the
L 2-gain using convex optimization. For a given partition, a best upper
bound can then be obtained by minimizing the parameter γ subject to the
relevant inequalities. Also this problem is convex.

For linear systems, it is sufficient to consider quadratic storage func-
tions, and the exact L 2-gain can be found using the above procedure [19].
A similar result for piecewise linear systems is, to the best of the au-
thor’s knowledge, unknown. In general, the above computations will re-
turn bounds on γ rather than the exact L 2-gain.

Dual Bounds from Worst Case Disturbances

Working with bounds rather than exact solutions, it is useful to have
measures on how good the computed bounds are. For the dissipativity-
like computations in this chapter, such bounds can often be obtained by
constructing “worst-case disturbances”. As the optimal value of γ can be
obtained from the solution of the Hamilton-Jacobi-Bellman equation

�V(x)
�x

(Aix+ ai + Biu) � γ uTu− yT y,

it is natural to try to construct a worst case disturbance that attains
equality in (5.1). Let V̂ (x) be a solution to (5.1) and let γ̂ be the gain
estimate obtained in this way. A lower bound on the L 2-induced gain can
then be obtained by maximizing the expression

�V̂ (x)
�x

(Aix+ ai + Biu) + yT y− γ̂ 2uTu

with respect to u. Simulating the piecewise linear system with this input
and comparing the input and output norms then gives a lower bound on
the L 2-induced gain. As this estimate is based on piecewise quadratic stor-
age functions rather than arbitrary storage functions the maximization
will only give a lower bound on the L 2-induced gain.
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Successive Refinements via Upper and Lower Bounds

In many cases, the bounds obtained by piecewise quadratic computations
will give significant improvements compared to computations based on
quadratic storage functions. Moreover, by making refinements of the state-
space partitioning, it is possible to introduce more flexibility in the piece-
wise quadratic storage functions. With increased flexibility, the computa-
tions can be repeated in hope of achieving better estimates. As increased
flexibility comes at the price of increased computations, the upper and
lower bounds can serve as an aid in the trade-off between precision in the
analysis and the cost of computations.

5.2 Computation of L 2-induced Gain

The analysis outlined above can be directly combined with the develop-
ments in Chapter 4 to give LMI conditions for L 2 gain computations for
piecewise linear systems. After verification of stability, for example using
Theorem 4.1, an upper bound for the gain can be obtained as follows.

THEOREM 5.1—UPPER BOUND ON L 2 GAIN

Suppose there exist symmetric matrices T , Ui and Wi such that Ui and
Wi have non-negative entries, while Pi � F T

i T Fi and P̄i � F̄ T
i T F̄i satisfy

0 >
[

Pi Ai + AT
i Pi + CT

i Ci + ET
i Ui Ei Pi Bi

BT
i Pi −γ 2I

]
for i ∈ I0

0 >
[

P̄i Āi + ĀT
i P̄i + C̄T

i C̄i + ĒT
i Ui Ēi P̄i B̄i

B̄T
i P̄i −γ 2I

]
for i ∈ I1

Then every trajectory x(t) with x(0) � 0,
∫∞

0 (ttxtt22+ ttutt22) dt < ∞ satisfies∫ ∞

0
ttytt22 dt ≤ γ 2

∫ ∞

0
ttutt22 dt.

The best upper bound on the L 2 induced gain is achieved by minimizing
γ subject to the constraints defined by the inequalities.

Proof: Let i(t) be chosen so that x(t) ∈ Xi, and let P̄i � [ I 0 ]T Pi [ I 0 ]
for i ∈ I0. It then follows from the matrix inequalities in Theorem 5.1 that

0 ≥
[

P̄i Āi + ĀT
i P̄i + C̄T

i C̄i + ĒT
i UiĒi P̄i B̄i

B̄T
i P̄i −γ 2I

]
∀i ∈ I.
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Multiplying from the left and right with [ x̄T u ] and removing the non-
negative terms x̄T ĒT

i Ui Ēi x̄ gives

0 ≥ 2x̄T P̄i(Āi x̄+ B̄iu) + x̄T C̄T
i C̄i x̄− γ 2uTu �

� d
dt

(
x̄T P̄i x̄

)+ ttytt22− γ 2ttutt22

Integration from 0 to ∞ gives the desired inequality.

In analogy with the previous section, a lower bound on the gain can
be computed by the construction of a worst case disturbance. For this
purpose, we will consider disturbances on the form u � L̄i x̄, where the
“feedback gains” Li are obtained by maximizing the expression

2x̄T P̄i(Āi x̄+ B̄iu) + ttC̄i x̄tt22 − γ̂ 2ttutt22
with respect to u. The precise formulas for the “feedback gains” will be
given in the next chapter and are omitted here. In the above expression,
P̄i and γ̂ come from the upper bound computation. Simulating the system
with this control law and comparing the input and output norms gives a
lower bound on the L 2 gain.

EXAMPLE 5.1—ANALYSIS OF A SATURATED CONTROL SYSTEM

Consider the control system shown in Figure 5.1. The output of the system
G1(s) is subject to a unit saturation. The closed loop dynamics is piecewise
affine, with three cells induced by the saturation limits u � ±1. We set

ΣΣ G1(s) G2(s)
r d yu
−

Figure 5.1 Saturated control system.

r � 0 and estimate the L 2-induced gain from the disturbance d to the
output y. With the transfer functions

G1(s) � s− 3
16s2 + s+ 2

G2(s) � s+ 7
4s2 + 3s+ 12

we obtain the results shown in Table 5.1.
Here “Lure function” means a Lyapunov function of the form V(x) �

xT Px + η
∫ Cx

0 sat(s)ds and “IQC for monotonic nonlinearities” means a
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Method Gain Estimate

Quadratic Lyapunov function No solution found

Lure function with positive η No solution found

Lure without constraints on η 37.63

IQC for monotonic nonlinearities 5.62

Piecewise quadratic Lyapunov function 5.54

Table 5.1 Various upper bounds on L 2 gain.

gain estimate computed based on [155] using the toolbox [93]. A lower
bound on the L 2 gain, computed for the linear region, is equal to 5.52.

This example is somewhat contrived, but it illustrates the differences that
can be obtained from the various approaches. Apart from being useful in
analysis of disturbance rejection properties, computation of L 2-induced
gain can be used for establishing robust stability in presence of norm-
bounded uncertainties. We will return to this in an example in the end of
this chapter.

5.3 Estimation of Transient Energy

In order to demonstrate the use of partition refinements, we will apply
the central idea to the estimation of the “transient energy”∫ ∞

0
x̄T Q̄i x̄ dt for x(t) ∈ Xi, i ∈ I

of a piecewise linear system. This can be seen as an alternative to simula-
tion. The value of this integral depends on the initial value and we would
like our estimate to also be a function of the initial value. In this way, one
computation will give an estimate of the integral for every initial value
on the partition. We assume that Q̄i � Q̄T

i have the zero interpolation
property, i.e.

x̄T Q̄i x̄ � x̄T
[

Qi 0

0 0

]
x̄ � xT Qix for i ∈ I0

The desired estimates can be obtained from the following minor modifi-
cation of the stability analysis in Chapter 4.
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THEOREM 5.2—UPPER BOUND ON TRANSIENT ENERGY

Let x(t) ∈ ∪i∈I Xi with x(∞) � 0 be a trajectory of the system (2.3) with
u � 0 for t ≥ 0. Consider symmetric matrices T and Ui, such that Ui have
non-negative entries, while Pi � F T

i T Fi and P̄i � F̄ T
i T F̄i satisfy

0 > PiAi + AT
i Pi + Qi + ET

i UiEi i ∈ I0,

0 > P̄i Āi + ĀT
i P̄i + Q̄i + ĒT

i UiĒi i ∈ I1.

Then ∫ ∞

0
x̄T Q̄i x̄ dt ≤ inf

T,Ui

x̄(0)TP̄i0 x̄(0).

Proof: It follows directly from the two inequalities that

0 ≥ P̄i Āi + ĀT
i P̄i + Q̄i + ĒT

i Ui Ēi, i ∈ I.

Let i(t) be chosen so that x(t) ∈ Xi. Then, multiplying the above inequality
from left and right by x̄ and removing nonnegative terms gives

0 ≥ d
dt
(x̄T P̄i x̄) + x̄(t)T Q̄i x̄(t).

Integration from t � 0 to t � ∞ gives the desired result.

A lower bound can be obtained similary, by replacing Q̄i by −Q̄i in the
analysis. A solution to the resulting inequalities then implies that

x̄(0)T P̄i0 x̄(0) ≤
∫ ∞

0
x̄T Q̄i x̄ dt.

A best lower bound estimated in this way can be obtained by maximizing
V(x0) subject to the relevant constraints.

Note that although the computations are optimized for a specific initial
value, the function V(x) obtained from the computations bounds the value
of the integral for all initial values on the partition.

In many cases, Q̄i ≥ 0 for all i ∈ I. A solution to the LMIs of The-
orem 5.2 then guarantees that there is a solution to the inequalities in
Proposition 4.4. Hence, if the function V(x) � x̄T P̄i x̄ obtained from the
computations above is positive on the partition, then it will also work as
a Lyapunov function for the system.

The following example applies the results on the problem of estimating
the “output energy” for a piecewise linear system and illustrates the use
of partition refinements to obtain better and better estimates.
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EXAMPLE 5.2—TRANSIENT IN FLOWER EXAMPLE

Consider again the piecewise linear system defined in Example 4.3, and
introduce an output y � x1, i.e., let

Ci � [ 1 0 ] , i ∈ I.

Figure 5.2 shows a simulated trajectory (left) and the corresponding out-
put (right). Consider the problem of estimating the “output energy”,∫ ∞

0
tty(t)tt22 dt �

∫ ∞

0
x(t)T CT

i Cix(t) dt

from a given initial value. This can be done by direct application of Theo-
rem 5.2 by letting Qi � CT

i Ci . The output simulated from x(0) � [ 1 0 ]
(shown in Figure 5.2) has total energy

∫∞
0 tty(t)tt22 dt � 1.88, while the

bounds obtained from Theorem 5.2 for the initial cell partition gives
0.60 ≤ ∫∞0 ttytt22 dt ≤ 2.50.

A possible reason for the gap between the bounds is that the level
curves of the cost function can not be well approximated by piecewise
quadratic functions. To improve the bounds, we introduce more flexibility
in the approximation by repeatedly splitting every cell in two. This simple-
minded refinement procedure, illustrated in Figure 5.3, is repeated three
times yielding the bounds shown in Table 5.2.

−1 0 1
−1

0

1

x1

x2

3

2

1

4
0 5 10

−1

0

1

t

y(t)

Figure 5.2 Trajectory of a simulation (left) and corresponding output (right).

Note that the bounds on the output energy optimized for the initial
state (1, 0) match closely over the the whole state space, giving good es-
timates of the output energy also for other initial states.

5.4 Dissipative Systems with Quadratic Supply Rates

The results of the previous sections can be generalized in a natural way
to validation of more general dissipation inequalities. The same technique
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Figure 5.3 Upper (full) and lower (dashed) bounds on the storage function com-
puted in Example 5.2. The bounds get increasingly tight when we move from 8 cells
(left) to 16 cells (right).

Number of Cells Lower bound Upper bound

4 0.60 2.50

8 1.33 2.18

16 1.65 1.98

32 1.78 1.88

Table 5.2 Lower and upper bounds for output energy obtained by application of
Theorem 5.2.

that was used in L 2-induced gain computations can be applied to verifica-
tion of dissipativity with respect to arbitrary quadratic supply functions.
We give the following result.

THEOREM 5.3—VALIDATION OF DISSIPATION INEQUALITIES

Consider symmetric matrices T , Ui and Wi such that Ui and Wi have
non-negative entries, while Pi � F T

i T Fi and P̄i � F̄ T
i T F̄i satisfy

0 <
[

Ci Di

0 I

]T

M
[

Ci Di

0 I

]
−
[

PiAi + AT
i Pi + ET

i Ui Ei Pi Bi

BT
i Pi 0

]
0 < Pi − ET

i UiEi

for i ∈ I0 and
0 <

[
C̄i D̄i

0 I

]T

M
[

C̄i D̄i

0 I

]
−
[

P̄i Āi + ĀT
i P̄i + ĒT

i Ui Ēi P̄i B̄i

B̄T
i P̄i 0

]
0 < P̄i − ĒT

i UiĒi.
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for i ∈ I1. Then every trajectory x(t) with x(0) � 0 and
∫ t

0 ttu(t)tt22 dt < ∞
satisfies

0 ≤
∫ t

0

[
y(s)
u(s)

]T

M
[

y(s)
u(s)

]
ds ∀t ≥ 0

Proof: Multiplying from left and right by (x̄, u) gives

0 ≤
[

y

u

]T

M
[

y

u

]
− d

dt

(
x̄T P̄i x̄

)
and the result follows by integration over [0, t].

The L 2-induced gain computations given in Theorem 5.1 are a special
case of this result, where

M �
[−I 0

0 γ 2

]
.

In this way, Theorem 5.3 can be used to establish induced gain and pas-
sivity properties of piecewise linear systems that can be used in analysis
based on the small gain or passivity theorems. This type of results open
up many possibilities, as they allow freedom in whether to incorporate
nonlinearities in the system description or to replace them by energy in-
equalities and use interconnection results. They also allow analysis of
robustness with respect to dynamic uncertainties. The following example
illustrates some of the ideas.

EXAMPLE 5.3—ROBUSTNESS ANALYSIS VIA THE SMALL GAIN THEOREM

Consider the system shown in Figure 5.4. This is a linear system with a
dynamic uncertainty ∆ and a nonlinear spring. The uncertainty block ∆
is assumed to have induced L 2-gain less than one and the spring has the
nonlinear characteristic shown in Figure 5.4. Nonlinear spring arrange-
ments of similar type can for example be found in engine control systems,
see [81]. We set u � 0 and consider the system defined by a transfer
matrix G(s) with state-space realization

d
dt

 x1

x2

x3

 �
−3 0 −1

4 −1 0

0 2 −1


 x1

x2

x3

+
 0 −5

0 0

1 0

[wd

ws

]
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∆

yu

Fsp

zsws

zdwd
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−0.2

0.2

0.6

1

zs

Fsp

Figure 5.4 System with nonlinear spring characteristic and unmodeled dynamics
(left). Detailed spring characteristic (right).

and outputs zd � x1, zs � x2.
The tools derived so far give a large flexibility in how to analyze sta-

bility of this system. A first crude approximation is to use a norm bounds
on both the ∆-block and on the spring characteristic, and then apply the
small gain theorem [78]. However, this approach fails for the suggested
example, as the H∞ norm of the linear system exceeds one (the H∞-norm
is 5.73). Another approach is to consider the feedback interconnection of
the linear system and the spring as a piecewise linear system, and treat
only the ∆-block as uncertain. We may then start by using global sector
bounds on the spring nonlinearity and estimate the L 2-gain from wd to
zd (see Figure 2.6). However, this approach estimates the L 2-gain to 1.12
and stability can not be established. Using the piecewise linear sector
bounds in Figure 2.6(middle) and applying Theorem 5.1 verifies that the
gain from wd to zd is less than 0.25 and closed loop stability follows.

This example demonstrates how induced L 2-gain computations can be
used to robustness analysis of piecewise linear uncertain systems, and
how partition refinements are useful for obtaining sufficient accuracy in
the analysis.

5.5 Comments and References

Piecewise Linear Systems and Integral Quadratic Constraints

The verification of dissipation inequalities could easily be extended to
treat more general integral quadratic constraints (IQCs). For example,
integral quadratic constraints with a frequency dependent weight rather
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than a constant matrix M could be verified using Theorem 5.3 by first
introducing a state space realization of the weight, and then include this
dynamics in the system description. Once a certain integral quadratic con-
straint has been verified for a piecewise linear component, it can be used
in the general framework for IQC-based system analysis developed in [94].
A more straightforward approach would be to perform IQC-based analy-
sis directly in the piecewise linear framework. The analysis of piecewise
linear systems interconnected with components described by IQCs could
potentially be very useful. A good starting point for a stability analysis
based on piecewise quadratic Lyapunov functions could be the Lyapunov
approach outlined in [70], Section 1.7.

Nonlinear H∞ Control

Interpreted in time domain, the linear H∞ problem is concerned with at-
tenuation of the L 2-induced gain from disturbances to outputs. Nonlinear
H∞ refers to the extensions of these techniques to nonlinear systems, see
[53]. In this context, L 2-induced gains are often estimated using finite
difference discretization of the dissipation inequalities, see [54].
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6

Controller Design

The ultimate aim of any work on control theory is to provide methods
and procedures for controller design. Up until this point, we have focused
on deriving methods for stability and performance analysis of piecewise
linear systems. At the very least, such methods can be used in control
design procedures that iterate between design and analysis steps.

In this chapter, we will proceed by applying the piecewise quadratic
machinery to design of optimal feedback controls for piecewise linear
systems. More precisely, we will consider optimal control problems with
piecewise quadratic costs. Such control laws can be derived from the solu-
tion to the associated Hamilton-Jacobi-Bellman equation. By considering
Hamilton-Jacobi-Bellman inequalities rather than equations, we will show
how piecewise quadratic functions and convex optimization can be used to
obtain lower bounds on the optimal cost. Based on this solution, a piece-
wise linear feedback law is derived that tries to achieve this cost. In this
way, convex optimization can be used to design sub-optimal feedback so-
lutions to control problems with quadratic cost functions. By refining the
partitioning of the state space, more flexibility can be introduced when
solving the relevant matrix inequalities, in hope of achieving increasingly
better solutions and control laws with improved performance.

As an alternative, we will consider formulations that allow design
problems to be solved by direct optimization. Using this approach, how-
ever, we will discover that it is not so easy to use piecewise quadratic
functions as the basis for control design while keeping convexity in the
computations. We will present some cases when convexity can be retained,
and discuss alternatives when this fails.

6.1 Piecewise Linear Quadratic Control

Consider the following general form of optimal control problem.
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Minimize
∫∞

0 L(x, u)dt

subject to

{
ẋ(t) � f (x(t), u(t))
x(0) � x0

It is well known that solutions of this problem can be characterized in
terms of the Hamilton—Jacobi—Bellman (H-J-B) equation

0 � inf
u

(
�V
�x

f (x, u) + L(x, u)
)

. (6.1)

In fact, by integrating the inequality

0 ≤ �V
�x

f (x, u) + L(x, u) ∀x, u (6.2)

and assuming that x(∞) � 0, we get

V(x0) − V(0) � −
∫ ∞

0

�V
�x

f (x, u)dt≤
∫ ∞

0
L(x, u)dt.

Hence, every V that satisfies (6.2) gives a lower bound on the optimal
value of the loss function. In fact, the maximization of V(x0)−V(0) subject
to (6.2) is a convex optimization problem in V with an infinite number of
constraints parameterized by x and u. The objective of this section is to
solve this problem in some special cases.

Let us consider the case where f is piecewise linear and L is piecewise
quadratic. Then, the objective is to bring the system to x(∞) � 0 from an
arbitrary initial state x(0), while limiting the cost

J(x0, u) �
∫ ∞

0

(
x̄T Q̄i x̄+ uT Riu

)
dt.

Here i(t) is defined so that x(t) ∈ Xi(t). Under the assumption that

Q̄i �
[

Qi 0

0 0

]
for i ∈ I0 (6.3)

this can be done in analogy with the previous results as follows.
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6.1 Piecewise Linear Quadratic Control

THEOREM 6.1—LOWER BOUND ON OPTIMAL COST

Assume existence of symmetric matrices T and Ui, such that Ui have
non-negative entries, while Pi � F T

i T Fi and P̄i � F̄ T
i T F̄i satisfy

0 <
[

PiAi + AT
i Pi + Qi − ET

i UiEi PiBi

BT
i Pi Ri

]
i ∈ I0

0 <
[

P̄i Āi + ĀT
i P̄i + Q̄i − ĒT

i UiĒi P̄i B̄i

B̄T
i P̄i Ri

]
i ∈ I1

Then, every trajectory x(t) of (2.3) with x(t) ∈ ∪i∈I Xi, x(∞) � 0 and
x(0) � x0 ∈ Xi0 satisfies

J(x0, u) ≥ sup
T,Ui

x̄T
0 P̄i0 x̄0

Proof: It follows directly from the matrix inequalities in Theorem 6.1 that

0 ≤
[

P̄i Āi + ĀT
i P̄i + Q̄i − ĒT

i UiĒi P̄i B̄i

B̄T
i P̄i Ri

]
i ∈ I

Multiplying from left and right by (x̄, u) and removing the nonnegative
terms including Ui gives

0 ≤ 2x̄T P̄i(Āi x̄+ B̄iu) + x̄T Q̄i x̄+ uT Riu

� d
dt

(
x̄T P̄i x̄

)+ x̄T Q̄i x̄+ uT Riu

Integration from 0 to ∞ gives the desired result.

Note that it is straightforward to modify Theorem 6.1 for the case of
input constraints of the form

Gix+ Hiu ≥ 0 for i ∈ I0 Ḡi x̄+ H̄iu ≥ 0 for i ∈ I

The first inequality condition then becomes

0 <
[

Pi Ai + AT
i Pi + Qi Pi Bi

BT
i Pi Ri

]
−
[

Ei 0

Gi Hi

]T

Ui

[
Ei 0

Gi Hi

]
and the second is analogous.
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Theorem 6.1 gives a lower bound on the minimal value of the cost
function J. Upper bounds are obtained by studying specific control laws.
Consider the control law obtained by the minimization

min
u

(
�V
�x

f (x, u) + L(x, u)
)

. (6.4)

If the H-J-B equation (6.1) holds, then every minimizing control law is
optimal. In particular, V has then decay rate given by −L(x, u), which is
typically negative, so V may serve as a Lyapunov function to prove that
the control law is stabilizing.

However, if only the inequality (6.2) holds, for example as a result of
solving the matrix inequalities in Theorem 6.1, then there is no guarantee
that the control law minimizing (6.4) is even stabilizing. Still, the mini-
mization problem is the starting point for definition of control laws that
will be used in our further analysis.

Exact minimization of the expression (6.4) without input constraints
can be done analytically in analogy with ordinary linear quadratic control,
using the notation

Li � −R−1
i BT

i Pi, L̄i � −R−1
i B̄T

i P̄i, (6.5)
A i � Ai + BiLi, Ā i � Āi + B̄i L̄i,

Q i � Qi + PiBiR−1
i BT

i Pi, Q̄ i � Q̄i + P̄i B̄iR−1
i B̄T

i P̄i.

The minimizing control law can then be written as

u(t) � L̄i x̄ x ∈ Xi.

This control law is simple, but may be discontinuous and give rise to
sliding modes. For simplex partitions, to be described in detail later, this
problem can be avoided as follows. First design control vectors ui for the
grid points of the partition, then use linear interpolation between these
vectors to define affine state feedback laws u � L̄i x̄ inside the simplexes.
In this way, no sliding modes are created and the design approach can
also be used in the case of input constraints.

Once a stabilizing piecewise linear control law has been designed, an
upper bound of the optimal cost is obtained from Theorem 5.2. We give
the following example.

EXAMPLE 6.1—LQ CONTROL OF AN INVERTED PENDULUM

Consider the following simple model of an inverted pendulum

ẋ1 � x2

ẋ2 � −0.1x2 + sin(x1) + u (6.6)
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Figure 6.1 The left figure shows bounds on the system nonlinearity. The right
figure shows lower (dashed) and upper (solid) bounds on the optimal cost.

We are interested in applying the proposed technique to find a feedback
control that brings the pendulum from rest at the stable equilibrium
(π , 0)T to the upright position (0, 0)T while minimizing the criteria

J(x, u) �
∫ ∞

t�0
4x2

1(t) + 4x2(t)2 + u2dt.

A piecewise linear model of the system (6.6) can be constructed by finding
piecewise affine bounds on the system nonlinearity sin(x1). For the pur-
pose of this example, we divide the interval [−4, 4] into five segments and
compute the bounds illustrated in Figure 6.1 (left). This description of the
system nonlinearity induces the partition shown by dotted vertical lines
in Figure 6.1 (right). We apply Theorem 6.1 to compute a lower bound on
the achievable performance as J(x0, u) ≥ 15.2.

It is easy to verify that the closed loop system obtained by apply-
ing the control law (6.5) is stable and has no attractive sliding modes.
Theorem 5.2 can now be applied to compute the upper bound on the per-
formance to be J(x0, u) ≤ 16.6. We conclude that both the optimal and
the computed control law satisfy

15.2 ≤ J(x0, u) ≤ 16.6.

The level surfaces of the upper and lower bounds on the value function is
shown in Figure 6.1 (right). Although the bounds are valid for all initial
values within the estimated region of attraction, they match most closely
for the optimized initial value. In addition, the computed control law is
evaluated on the pendulum model (6.6) by simulation. The value of the
loss function computed in this way is J(x0, u) � 15.4.
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6.2 Comments and References

Optimal Control and the Hamilton-Jacobi-Bellman Inequality

By considering optimal control problems in terms of Hamilton-Jacobi-
Bellman inequalities rather than equations, it has been possible to use
convex optimization in the design of optimal control laws. Interesting the-
oretical results on the H-J-B inequality can be found [146]. The H-J-B in-
equality has also been used to obtain computational procedures for solving
optimal control problems with discrete states [13].

Although the ideas of using convex optimization for design of opti-
mal controllers has only been taken a very short step in this thesis, the
approach appears to have a large potential. It has allowed us to obtain
feedback solutions from optimal control considerations using very simple
methods.

Piecewise Linear Quadratic Control

Work related to the term piecewise linear quadratic control has appeared
in [9, 150]. In [9], linear quadratic control problems for piecewise linear
systems were addressed by solving Riccati differential equations, and the
optimum had to be recomputed for each new final state. The reference
[150] treats control design for linear systems with bounded controls. A
piecewise linear control law is obtained by scheduling a set of state feed-
back controllers designed via linear quadratic theory.

Failure of an Elegant Trick

An attractive feature of quadratic stability analysis via linear differential
inclusions is that control design problems also can be solved via convex
optimization. An elegant trick which makes it possible to formulate the
joint search for Lyapunov function and state feedback gains as a con-
vex optimization problem is given in [12, 19]. Unfortunately, a straight-
forward application of the same trick to the analysis conditions for piece-
wise quadratic Lyapunov functions fails.

Consider a linear system ẋ � Ax+Bu. Assume that we want to design
a linear state feedback u � K x that renders the closed loop system

ẋ � Ax + B K x

exponentially stable. Verifying exponential stability amounts to finding
a quadratic Lyapunov function V(x) � xT Px for the closed loop system.
Hence, the design of a stabilizing controller can be formulated as the
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existence of K and P that satisfy the matrix inequalities

P > 0

AT P + PA+ K T BT P + PB K < 0

At a first glance this problem appears to be non-convex, since products of
the matrix variables P and K appear in the conditions. However, convex-
ity can be recovered by the change of variables

Q � P−1, Y T � K QT

Pre-and post-multiplication of the design inequalities by Q gives

Q > 0

QAT + AQ + Y BT + B Y T < 0

which are LMI conditions in the variables Q and Y .
Unfortunately, the same trick does work directly in the case of piece-

wise quadratic Lyapunov functions, and convexity is not easily recovered.
The joint search for a piecewise linear feedback law u � K̄i x̄ and a piece-
wise quadratic Lyapunov function gives the matrix inequalities

P̄i − ĒT
i UiĒi > 0

ĀT
i P̄i + P̄i Āi + K̄ T

i B̄T
i P̄i + P̄i B̄i K̄i + ĒT

i Wi Ēi < 0

There are now three obstacles to a direct application of the trick used in
quadratic stability analysis. Whereas the condition P > 0 guarantees that
P is invertible, a similar claim is not automatically true for the piecewise
quadratic case. Even if we assume invertability, it is not easy to find a
parameterization of the inverse of the matrices

Pi � F T
i T Fi

that parameterize continuous piecewise quadratics. Moreover, the pres-
ence of S-procedure terms, which are typically sign indefinite, is a further
obstacle.

Three Ideas on How to Proceed

One possibility for recovering convexity in the joint feedback and Lya-
punov function search is to find a format for matrices whose inverses
parameterize continuous and piecewise quadratic functions.

F̄ T
i T F̄i
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Such a parameterization is possible for the special case when all cells
of the partition are simplexes. By restricting the parameter matrix T to
be diagonal, and by computing the constraint matrices as suggested in
Section 8.1, it is possible to obtain an explicit format for the inverse as

P−1 � ViT−1V T
i .

However, the class of Lyapunov functions obtained in this way appears
to be very weak, and it is hard to obtain solutions to the associated op-
timization problem. Whether there is a more powerful format for these
matrices remains an open question and such a format would potentially be
very useful. Two interesting references in this context are [44, 16]. In the
first reference it is shown how it is possible to use quadratic cell bound-
ings in LMI-based controller design using quadratic Lyapunov functions.
The second reference deals with controller design for polytopic Lyapunov
functions.

A second approach would of course be to fix a Lyapunov function and
only consider the problem of finding feedback gains. This approach gives
convex design problems, and is natural when invariance properties and
state constraints are part of the design specifications, see [154].

A final way out is to accept that the design inequalities are bilinear
in the relevant matrix variables, and to apply non-convex optimization
methods for solving these. As software for solving these problems continue
to develop [137], this may be an increasingly interesting alternative. We
note that in this framework, it is easy to restrict the feedback laws to be
continuous which is natural in many cases.
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Extensions

The piecewise linear analysis can be extended in many useful ways. This
chapter presents four extensions of the basic results. The first extension
is to show how fuzzy systems can be viewed as piecewise linear differ-
ential inclusions, hence be analyzed using piecewise quadratic Lyapunov
functions. This allows an important class of fuzzy control systems to be
analyzed using substantially more powerful methods than was previously
available. The second extension considers a class of piecewise linear hy-
brid systems. Piecewise linear systems with hysteresis components are
a special case. In the analysis of such systems, it is advantageous to
employ piecewise quadratic Lyapunov functions that have certain discon-
tinuities. It is shown how the search for such Lyapunov functions can
be formulated in the LMI framework, allowing a class of hybrid systems
to be analyzed using efficient computations. A third development is to
consider analysis of smooth nonlinear systems. By taking approximation
errors explicitly into account, it is shown how rigorous analysis results
for smooth systems can be obtained from the piecewise linear analysis.
In order to achieve sufficient accuracy in the nonlinearity description and
required flexibility in the Lyapunov function candidate, it is often nec-
essary to refine an initial partition. It then becomes natural to ask how
such partition refinements can be made automatically and efficiently. The
fourth development is to devise a simple method for automatic partition
refinements. The refinements are based on linear programming duality,
and try to improve flexibility where it is needed the most.

7.1 Fuzzy Logic Systems

While fuzzy control systems have quickly gained acceptance in industry,
a large part of academia is still approaching works on fuzzy control with
suspicion. One reason for this is the evident lack of systematic methods
for analysis and design of fuzzy control systems. In this section, we will
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illustrate how the piecewise linear techniques developed in the previous
chapters can be applied to the analysis of fuzzy control systems.

Recently, an increasing amount of work in fuzzy systems literature
has been devoted to analysis of linear Takagi-Sugeno systems [134]. The
behavior of these systems are described by a set of rules Ri on the form

Ri : IF x1 is Fi,1 AND . . . AND xn is Fi,n

THEN ẋ � Aix, i � 1, . . . , L.
(7.1)

Normally, the sets Fi,k (describing the kth input variable in the ith rule)
are labeled using linguistically meaningful terms such as “Large”, “Fast”
or “Saturated”. Contrary to classical logic, where a proposition such as
“xk is Fi,k” can only take the values 0 or 1, fuzzy logic allows propositions
to be fulfilled to any degree in the interval [0, 1]. To support this, one
introduces membership functions

µ i,k(x) : Rn → [0, 1],

that to each x assigns a degree of validity of the proposition “x is Fi,k”.
Using extensions of the inference and compositional rules of classical logic,
fuzzy logic can derive a value of ẋ for a given x based on linguistic rules
on the form (7.1). In this way, fuzzy systems allows dynamic models to be
specified by a set of linguistic rules, the associated membership functions
and some fuzzy inference parameters (see [3] for further details).

By the appropriate restrictions of the fuzzy inference parameters [134,
135, 147], the dynamics derived from the rules (7.1) can be written as

ẋ �
L∑

i�1

µ i(x) ⋅ Aix. (7.2)

Here, µ i(x) are normalized membership functions obtained as
µ̃ i(x) �

n∏
k�1

µ i,k(x)

µ i(x) � µ̃ i(x)∑L
i�1 µ̃ i(x)

(7.3)

Hence µ i(x) satisfy 0 ≤ µ i(x) ≤ 1,
∑

i µ i(x) � 1.
Drawing upon the work on quadratic stability and quadratic stabiliza-

tion, this formulation has been used as a basis for solve stability analysis,
gain computations and state feedback design problems for fuzzy systems
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using LMI computations, see [156, 135]. Unfortunately, most of these re-
sults are derived by embedding the fuzzy system (7.2) into the class of
linear time-varying systems

ẋ �
L∑

i�1

λ i(t)Aix (7.4)

where the weights λ i(t) may vary arbitrarily with time while satisfying
0 ≤ λ i(t) ≤ 1,

∑
i λ i(t) � 1. In other words, the stability conditions guar-

antee stability for the system (7.4) from which stability of (7.2) follows. By
this embedding, the structural information structural information about
the system encoded in the rule premises is disregarded. As we have seen
in Chapter 4, this structural information is crucial in many cases.

It is natural to try to extend the piecewise quadratic analysis to fuzzy
systems. In this way, fuzzy controllers can be analyzed efficiently using
more powerful Lyapunov functions and structural information can be ac-
counted for. This also allow us to treat affine Takagi-Sugeno systems that
have an additional offset term in the consequent dynamics. This was the
model structure that what was originally proposed in [134]. The affine
Takagi-Sugeno systems are described by rules on the form

Ri : IF x1 is Fi,1 AND . . . AND xn is Fi,n

THEN ẋ � Aix+ ai, i � 1, . . . , L

and the inferred dynamics can be written as

ẋ �
L∑

i�1

µ i(x) ⋅ {Aix+ ai} , (7.5)

with µ i(x) ≥ 0 and
∑

i µ i(x) � 1. Many applications use affine Takagi-
Sugeno systems, see e.g. [132, 7]. As shown in [37], the function approx-
imation capabilities of the Takagi-Sugeno system are also substantially
improved when offset terms are allowed.

Takagi-Sugeno Fuzzy Systems – A Piecewise Linear Perspective

In order to clarify the link between fuzzy systems and the piecewise linear
systems considered in this thesis, it is fruitful to consider fuzzy systems
as a particular instance of operating regime based models [56, 97]. Op-
erating regime based modeling is a common name for techniques where
a globally valid model of the system dynamics is obtained by combining
simple local models, each valid within a certain operating regime. In this
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context, the special feature of fuzzy systems is that prior knowledge of op-
erating regimes and locally valid dynamics is encoded using fuzzy rules.
Each rule antecedent defines an operating regime and the associated rule
consequent specifies the local model valid within this region:

Ri : IF x1 is Fi,1 AND . . . AND xn is Fi,n︸ ︷︷ ︸
operating regime specification

THEN ẋ � Aix+ ai︸ ︷︷ ︸
local dynamics

, i � 1, . . . , L

Comparing with the mathematical description (7.5), we see that in regions
where µ i(x) � 1 for some i, all other normalized membership functions
evaluate to zero and the dynamics of the system is given by ẋ � Aix+ ai.
We will call such a region the operating regime of model i. Between oper-
ating regimes there are regions where 0 < µ i(x) < 1. In these regions, the
system dynamics is given by a convex combination of several affine sys-
tems. We will call these regions interpolation regimes. As we will see next,
the partitioning into operating and interpolation regimes is often polyhe-
dral. This will allow us to view fuzzy systems as pwLDIs and directly
apply the associated analysis techniques to fuzzy systems.

The Geometry of Fuzzy Partitions

There is more structure in fuzzy system partitions than what is directly
visible in the formulation (7.5). Consider for simplicity the case when the
model scheduling is governed by one variable, w � C x. In this case, the
rules are on the form

Ri : IF w is Fi THEN ẋ � Aix+ ai i � 1, . . . , L. (7.6)

The operating regimes where µ i(w) � 1 induce intervals in the schedul-
ing space w � C x, and polyhedral cells in the state space. An example
of membership functions and the associated partitioning is shown in Fig-
ure 7.1. Note that if the scheduling intervals {wtµ i(w) � 1} are connected
sets, the induced regimes are convex polyhedral sets. This is for example
the case for the membership functions in Figure 7.1.

A similar structure in the induced partition can be found when rules
are formed using the AND connective in a higher dimensional scheduling
space. The rules then take the form (7.1), and the normalized membership
functions are obtained as in (7.3). Since µ l(x) � 1 in operating regime l,
we must have µ l,m(xm) � 1 for m � 1, . . . , n. Operating regime l is thus
given by the intersection of the cells that are induced by the fuzzy sets
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Figure 7.1 The normalized membership functions (left) and the resulting parti-
tion of the state space into operating and interpolation regimes (right).

used in each propositional variable,

Xl �
⋂
m

{x : µ l,m(xm) � 1}.

The partition resulting from rules formed with the AND connective can
be seen as a composition of several simple partitions, as illustrated in
Figure 7.2. Moreover, the induced operating and interpolation regimes
are then convex polyhedral sets that can be obtained directly from the
membership functions of the simple propositions.

Fuzzy Systems as Piecewise Linear Differential Inclusions

The discussion above establishes that affine Takagi-Sugeno systems can
be viewed as pwLDIs as introduced in Chapter 2. The fuzzy rules (7.1)
induce a partitioning of the state space into a number of convex polyhedral
cells {Xi}i∈I . The cells act either as operating regimes or as interpolation
regimes. In each region, the dynamics is given by a convex combination
of affine systems

ẋ �
∑

k∈K(i)
µ k(x){Akx+ ak}, x ∈ Xi

with 0 ≤ µ k(x) ≤ 1,
∑

k∈K(i) µ k(x) � 1. Here, we have introduced the index
set K (i) to specify what system matrices are used in the interpolation
within cell Xi, i.e.,

K (i) � {k t µ k(x) > 0 for x ∈ Xi}

For operating regimes, the set K (i) contains one single element. By disre-
garding the state dependence of the membership functions, we can embed
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Figure 7.2 The fuzzy partition with scheduling in two variables (bottom) can be
derived from the intersection of simple partitions induced by each propositional
variable (top and center).

these fuzzy systems into the class of pwLDIs,

˙̄x � co
k∈K(i)

{
Āk x̄

}
x ∈ Xi (7.7)

with 0 ≤ µ k(t) ≤ 1,
∑

k∈K(i) µ k(t) � 1. Now, Theorem 4.2 applies directly
and gives a novel procedure for studying stability of fuzzy systems.

An Example

In order to demonstrate the feasibility of the approach to problems of more
realistic size, this section presents a piecewise quadratic stability analysis
of a 25-region fuzzy system. The system dynamics is given by the nine
rules in Table 7.1. The membership functions of the fuzzy propositions “xi

is Fl,i” are trapezoidal and shown in Figure 7.1. The rules partition the
state space into the operating regimes and interpolation regimes shown
in Figure 7.3.

Note that all regions off the origin have bias terms, and that the system
matrices associated to some of the operating regions are non-Hurwitz
(these operating regimes, given by the two last rules of the rule base, are
lightly shaded in Figure 7.3). Hence, the standard conditions for quadratic
stability can not be applied. As shown in Figure 7.4, simulations reveal a
highly nonlinear behavior but suggest that the system is stable.
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IF x1 is negative AND x2 is positive THEN ẋ � A1 x+ a1

IF x1 is zero AND x2 is positive THEN ẋ � A2 x+ a2

IF x1 is positive AND x2 is positive THEN ẋ � A3 x+ a3

IF x1 is negative AND x2 is zero THEN ẋ � A4 x+ a4

IF x1 is zero AND x2 is zero THEN ẋ � A5 x+ a5

IF x1 is positive AND x2 is zero THEN ẋ � A6 x+ a6

IF x1 is negative AND x2 is negative THEN ẋ � A7 x+ a7

IF x1 is zero AND x2 is negative THEN ẋ � A8 x+ a8

IF x1 is positive AND x2 is negative THEN ẋ � A9 x+ a9

Table 7.1 Rule base for 25 region fuzzy system.

The linear matrix inequalities of Theorem 4.2 have a feasible solu-
tion proving exponential stability of the origin. The level surfaces of the
computed Lyapunov function are indicated by dashed lines in Figure 7.5.
Note that the rules only describe the system dynamics on the domain
ttxtt∞ ≤ 5. Hence, stability can only be granted for trajectories that do
not escape from this region. We conclude local asymptotic stability of the
origin, with a guaranteed region of attraction indicated by the outermost
level set in Figure 7.5.

7.2 Hybrid Systems

Hybrid systems are systems that combine continuous dynamics and dis-
crete events. Hybrid control systems arise when there is an interaction
between logic-based devices and continuous dynamics and control.

The piecewise linear systems considered so far can indeed be regarded
as hybrid systems. The cell index may be viewed as a discrete state vari-
able whose value changes when the continuous state hits a cell boundary.
Arguably, the discrete state has a very passive role in this case and this
model class can exhibit very few behaviors that can not be understood
from a classical nonlinear systems perspective [78]. For a broad review of
hybrid phenomena and associated models, see [23]. In this section, we will
extend the piecewise quadratic analysis to a class of systems with a more
prominent hybrid nature. In relation to the systems considered so far,
we can view this hybrid extension as piecewise linear systems that have
overlapping regimes in Rn. The value of the discrete state is no longer
determined directly by the partition, but has to be specified via a set of
transition rules. Piecewise linear systems with hysteresis components will
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Figure 7.3 Partition of the fuzzy system defined by the rules in Table 7.1 into
operating regimes and interpolation regimes. The matrices Āi defining the dynamics
in each operating regime are also shown.
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Figure 7.4 System response from a typical initial condition.
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Figure 7.5 Level surfaces of the computed Lyapunov function. The guaranteed
region of attraction is given by the outermost level set.

be a particular case. Exponential stability will be established using Lya-
punov functions that are discontinuous in x(t), but where the value of the
Lyapunov function decreases every time there is a change in the discrete
state. Similar to before, the analysis computations can be cast as convex
optimization problems in terms of linear matrix inequalities.

A Class of Hybrid System

We consider piecewise affine systems on the form

ẋ(t) � Ai(t)x(t) + ai(t), i(t) � ν{x(t), i(t−)} (7.8)
with x ∈ Rn and i ∈ I ⊂Z. This is a particular instance of the differential
automaton defined in [136]. Here, the differential equation describes the
continuous dynamics while the algebraic equation models the state of the
decision-making logic. The discrete state i(t) ∈ I is piecewise constant.
The notation t− indicates that the discrete state is piecewise continuous
from the right. The model associates one continuous affine dynamics to
each value of the discrete state.

We will assume that changes in the discrete state are triggered by the
evolution of the continuous dynamics. More precisely, a transition from
the discrete state j to the discrete state k occurs when the continuous
state hits the transition hyperplane

f̄ T
jk x̄(t) � 0

provided that the enabling condition

Ēkx̄ � 0
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is satisfied. These systems can be conveniently represented as a finite
automaton with a continuous dynamics associated to each discrete state,
see Figure 7.6. The leftmost arrow indicates the initial discrete state. The

˙̄x � Ā1 x̄
Ē1 x̄ � 0

˙̄x � Ā2 x̄
Ē2 x̄ � 0

{ f̄ T
12 x̄ � 0} ∩ {Ē2 x̄ � 0}

{ f̄ T
21 x̄ � 0} ∩ {Ē1 x̄ � 0}

Figure 7.6 Piecewise linear hybrid system illustrated as an hybrid automaton.

following example illustrates the model class, and the need for extensions
of the piecewise quadratic analysis from Chapter 4.

EXAMPLE 7.1
Figure 7.7 (left) shows a simulation of the system ẋ(t) � Ai(t)x(t)

i(t) �
{

2, if i(t−) � 1 and f T
12x(t) � 0

1, if i(t−) � 2 and f T
21x(t) � 0

(7.9)

with i(0) � 1, switching boundaries

f12 � [−10 −1 ]T , f21 � [2 −1 ]T

and system matrices

A1 �
[−1 −100

10 −1

]
, A2 �

[
1 10

−100 1

]
.

The simulations shown in Figure 7.7 indicate that the system is asymp-
totically stable. From the simulated trajectory of the system, it is also
clear that it is not possible to find a Lyapunov function that disregards
the influence of the discrete state.

The state space of the model (7.8), R�Z, can be thought of as a set
of enumerated copies of Rn. From this perspective, a transition in the
discrete state can be seen as the transfer from one copy of Rn to the
other, see Figure 7.8. The simulation in Figure 7.7 is the projection of
this trajectory onto the continuous state space.
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Figure 7.7 Sample trajectory of the hybrid system projected onto the continuous
state space (left) and corresponding time plots (right).
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Figure 7.8 State space of hybrid system illustrated as a number of enumerated
copies of Rn. Changes in the discrete state transfers the state from one copy to the
other.

With this basic understanding of the system class, we can now pro-
ceed to state a more technical definition. We assume that the continuous
dynamics is piecewise affine,

ẋ(t) � Ai(t)x(t) + ai(t) a.e. (7.10)
We let I0 ⊆ I be the set of indices for which x(t) � 0 is admissible, and
let I1 � I\I0. It is assumed that ai � 0 for i ∈ I0. From the transition
conditions for the discrete dynamics, we construct vectors fij and f̄ ij for
i, j ∈ I such that fi,i � 0, f̄ i,i � 0 for i ∈ I and

f T
i(t−)i(t)x(t) � 0 ∀t, (7.11)

f̄ T
i(t−)i(t)

[
x(t)
1

]
� 0 ∀t. (7.12)

To account for the enabling conditions, i.e., that certain discrete states
may only be admissible for a subset of the continuous states, we construct
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matrices Ei(t) and Ēi(t) such that

Ei(t)x(t) � 0, i(t) ∈ I0 ,

Ēi(t)

[
x(t)
1

]
� 0, i(t) ∈ I1 .

Discontinuous Lyapunov Functions

In the analysis of hybrid systems it is sometimes desirable to relax the
requirement that the Lyapunov function should be continuous. An in-
teresting option is to use Lyapunov functions that have a discontinuous
dependence on the discrete state, but where the value of the Lyapunov
function decreases at the switching instants. This is the idea behind so-
called ‘multiple Lyapunov functions’, see [22]. This possibility has been
incoroporated in Lemma 4.1 by the requirement that V(t) be decreasing
and piecewise C 1.

When the transition conditions are affine inequalities in the state, it
is possible to formulate the search for this type of Lyapunov functions
as a LMI problem. This can be seen by the following simple argument.
Let the Lyapunov function be V(x) � x̄T P̄i(t) x̄ and let the discrete state
initially have the value j. Assume that the condition for the discrete state
to change value from j to k is given by f̄ T

jk x̄ � 0. Then, the requirement
that the Lyapunov function should be decreasing at the switching instant,

x̄T Pj x̄ ≥ x̄T Pkx̄ for {x t f̄ T
jk x̄ � 0}

can be expressed as the linear matrix inequality in P̄j , P̄k and t̄jk

P̄j − P̄k + f̄ jktT
jk + tjk f̄ T

jk ≥ 0.

We let P̄i � [ I 0 ]T Pi [ I 0 ] for i ∈ I0, and state the following result.

THEOREM 7.1
Consider vectors tij and t̄ij , symmetric matrices Ui and Wi with non-
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negative entries and symmetric matrices Pi and P̄i such that{
0 > AT

i Pi + PiAi + ET
i Ui Ei

0 < Pi − ET
i Wi Ei

i ∈ I0 (7.13)

{
0 > ĀT

i P̄i + P̄i Āi + ĒT
i Ui Ēi

0 < P̄i − ĒT
i Wi Ēi

i ∈ I1 (7.14)

0 < P̄i − P̄j + f̄ ij t̄T
ij + t̄ij f̄ T

ij i ∈ I1 or j ∈ I1 (7.15)

0 < Pi − Pj + fij tT
ij + tij f T

ij i, j ∈ I0 (7.16)
where i 6� j, then every continuous, piecewise C 1 trajectory x(t) satisfying
(7.10) tends to zero exponentially.

Clearly, when applying Theorem 7.1 one only needs to consider those i, j
that correspond to feasible transitions in the dynamics. Similar to the
partition refinements in our previous analysis, it can sometimes be useful
to introduce additional discrete states to obtain more flexibility in the
Lyapunov function candidate.

There is a strong relation between Theorem 7.1 and Theorem 4.1. By
allowing non-strict inequalities in (7.15) and (7.16), Theorem 4.1 can be
seen as a special case of Theorem 7.1 where f̄ ij � f̄ ji, ∀i, j ∈ I. However,
a formulation with non-strict inequalities is numerically very sensitive
and most LMI solvers can not treat non-strict inequalities as they stand.
Inherent algebraic constraints must first be eliminated. Theorem 4.1 can
be seen as the outcome of such an elimination.

Theorem 7.1 can be applied directly to the system of Example 7.1.

EXAMPLE 7.2
Consider again the switching system (7.9). To illustrate the use of en-
abling conditions, we let

E1 �
[

0 0

0 0

]
, E2 �

[−10 −1

2 −1

]
.

The LMI conditions of Theorem 7.1 have a feasible solution

P1 �
[

17.9 −0.89

−0.89 179

]
, P2 �

[
739 −38.1
−38.1 91.8

]
.

A simulated trajectory of the system and the corresponding value of the
computed Lyapunov function are shown in Figure 7.9. The discontinuities
in the Lyapunov function concur with changes in the discrete state.
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Figure 7.9 Sample trajectory of the hybrid system (left) and the corresponding
value of the Lyapunov function (right).

Several extensions can be made to the above result. It is for example
straightforward to extend the class of systems to allow differential inclu-
sions rather than differential equations in modeling the continuous dy-
namics. System with alternative transition rules would also be possible.
From a computational viewpoint, the most important development is the
observation that the search for a Lyapunov function with specified discon-
tinuities can be formulated as a convex optimization problem. A similar
development could be done for analysis via piecewise linear Lyapunov
functions.

7.3 Smooth Nonlinear Systems

Piecewise linear systems have good approximation capabilities and can in
principle approximate any smooth nonlinear system to arbitrary precision.
Our third extension will be to show how approximation errors can be
explicitly taken into account, providing formal results for smooth systems
based on a piecewise linear analysis.

One way of accounting for approximation errors is to use piecewise
linear differential inclusions, as defined in Chapter 2. The idea is then
to use upper and lower bounds on the nonlinearity in each polyhedral
region. Stability of the original system follows if it is possible to find a
Lyapunov function that is valid for all bounding systems in each region
(Theorem 4.2). A problem with this approach is that a careless modeling
with differential inclusions may result in a very large number of extreme
systems in each region. This problem is particularly pronounced for multi-
variable nonlinearities, where the analysis conditions quickly become pro-
hibitively expensive. Another alternative is to use a norm bound of the
approximation error in the following manner.
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7.3 Smooth Nonlinear Systems

THEOREM 7.2—NORM BOUNDED APPROXIMATION ERRORS

Let x(t) be a piecewise C 1 trajectory of the system ẋ � f (x) and assume
that

tt f (x) − Aix− aitt2 ≤ ε ittxtt2 x ∈ Xi, i ∈ I.

If there exists numbers γ i > 0, symmetric matrices Ui and Wi with non-
negative entries, and a symmetric matrix T such that Pi � F T

i T Fi and
P̄i � F̄ T

i T F̄i satisfy

−2ε iγ iI > AT
i Pi + Pi Ai + ET

i Ui Ei (7.17)
ET

i WiEi < Pi < γ iI (7.18)

for i ∈ I0 and

−2ε iγ iI > ĀT
i P̄i + P̄i Āi + ĒT

i Ui Ēi (7.19)
ĒT

i WiĒi < P̄i < γ iI (7.20)

for i ∈ I1, then x(t) tends to zero exponentially.

Proof: Define the function

V̄(x) � x̄T P̄i x̄ x ∈ Xi, i ∈ I. (7.21)

The inequalities (7.18) and (7.20) imply the existence of c1, c2 > 0 such
that

c1ttxtt22 ≤ V̄ (x) ≤ c2ttxtt22
Let the approximation error be described by

ãi(x) �
[

f (x) − Aix− ai

0

]
x ∈ Xi, i ∈ I.

Then, inequalities (7.17) and (7.19) and the assumption ttãi(x)tt22 ≤ ε ittxtt22
imply

d
dt

V̄ (x) � 2x̄T P̄i

[
f (x)

0

]
� x̄T (ĀT

i P̄i + P̄i Āi)x̄+ 2x̄T P̄i ãi(x)
< −2(ε iγ i + δ )ttxtt22 + 2γ ittxtt2 ⋅ ttãi(x)tt2
≤ −δ ttxtt22 ≤ −δ V̄(x)/c2
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for some δ > 0. This proves exponential decay.

Theorem 7.2 quantifies the trade-off between computational effort and
precision in the analysis. If no solution to the above matrix inequalities
can be found, it is natural to refine the partitioning of the state space used
in the piecewise linear approximation and the piecewise quadratic Lya-
punov function, and to try again. The partition refinements decrease the
approximation error and increases the flexibility of the Lyapunov function
candidates, but introduces additional matrix inequalities in the analysis
problem. For such an approach to be useful, it is important to have sup-
port for partition refinements, so that increased flexibility is introduced
were it is needed the most.

7.4 Automated Partition Refinements

A powerful feature of piecewise linear systems is the possibility to do par-
tition refinements. These refinements increase the accuracy in the non-
linearity description and improve the flexibility of the Lyapunov function
candidate. For a piecewise linear system with an initial cell partition for
the dynamics it is natural (but not necessary) to use the same partition
for the Lyapunov function. There are many examples where a refined par-
tition is needed for the analysis. In Example 4.8, the initial partition for
the dynamics consisted of two cells, but this partition had to be refined
into a partition with four cells before a solution to the analysis inequali-
ties could be found. To verify stability of the smooth nonlinear system in
Example 4.7, it was necessary to refine a (globally) linear differential in-
clusion into a piecewise linear differential inclusion in order to verify sta-
bility. For simple examples, the partition refinements can often be made
in an ad hoc manner. For more complex examples, however, it is important
to have some kind of support that indicates where partition refinements
are needed the most. In Section 5.3, discrepancies in the loss functions
used for estimating upper and lower performance bounds was used for
guiding the partition refinements. In this section we will show how linear
programming duality can be used for automated partition refinements in
the stability analysis based on piecewise linear Lyapunov functions. Re-
sults are only given for simplex partitions and piecewise linear Lyapunov
functions.

Introducing Flexib ility where Needed

To illustrate the ideas, consider the problem of finding a piecewise linear
Lyapunov function on a polytopic partition. Rather than solving the lin-
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ear programming problem as it stands in Theorem 4.4, we consider the
following slight modification

min
t,τ

τ subject to

τ > pT
i Aiν k i ∈ I0 , ν k ∈ Xi, (7.22)

τ > p̄T
i Āiν̄ k i ∈ I1 , ν k ∈ Xi.

In this formulation, exponential stability according to Theorem 4.4 is ob-
tained when τ < 0. If the optimal value of the linear program is positive,
no piecewise linear Lyapunov function exists on the current partition. In
this case it is reasonable to find the cell which imposes the strongest con-
straint on the optimization problem and to subdivide this cell in order
to increase the flexibility of the Lyapunov function candidate. The com-
putations can then be repeated, proving stability or suggesting further
partition refinements.

In the case of linear programming, it is particularly simple to obtain
the information about to what degree a certain constraint restricts the
optimal value τ . This sensitivity information is obtained as the solution
to the associated dual problem (many LP solvers, such as [34], solve the
primal and the dual problem simultaneously so this step need not require
any additional computations). One approach would then be to split the
cell that corresponds to the largest dual variable. Since there are many
constraints associated to each cell, another possibility is to compute the
“total constraint cost” for each cell as the sum of the dual variables associ-
ated to it. The cell with the largest constraint cost can then be subdivided.
An iterative refinement procedure can then proceed along the steps of the
following algorithm.

ALGORITHM 7.1—AUTOMATED PARTITION REFINEMENTS

1. Solve the linear program associated to Theorem 4.4, modified as in
(7.22).

2. If τ < 0, the procedure has terminated and asymptotic stability has
been proven. Otherwise, refine the cell with the highest constraint
cost and return to 1.

Cell Splitting

After deciding which cell to subdivide, one must also decide how this sub-
division should be carried out. This appears to be a delicate issue, since
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not every splitting operation increases the flexibility of the Lyapunov func-
tion. The simple idea of splitting a cell by introducing a new vertex in its
center has the disadvantage that the boundaries of the cells are never re-
fined (see Figure 7.10a). We therefore suggest to split a cell by introducing

a. b.

Figure 7.10 Procedures for subdividing a simplex; insertion of a new vertex in
the center of a cell (left), or at the center of the largest boundary.

a new vertex in the center of its longest edge (see Figure 7.10b). Note that
this operation induces a subdivision also of the neighboring cells. Since
the vector field in cells containing the origin is homogeneous, we propose
to split these cells by introducing a new vertex in the largest edge of the
face facing the origin.

The following example illustrates the duality-based partition refine-
ments.

EXAMPLE 7.3
Consider the following system{

ẋ1 � x2

ẋ2 � −5x1 − x2 − sat(x1 + x2)
(7.23)

where sat(x) denotes the unit saturation. This system is piecewise linear
and has oscillatory dynamics in both the linear and the saturated oper-
ating regions. It is well-known that piecewise linear Lyapunov functions
may require a rather fine partition of the state space in order prove stabil-
ity of oscillatory systems [96, 111]. Indeed, for the coarse initial partition
shown in Figure 7.11 (left), no piecewise linear Lyapunov function can be
found. Based on this initial partition, however, the automatic refinement
procedure terminates with the partition shown in Figure 7.11 (right). The
corresponding Lyapunov function, shown in Figure 7.12 (left) guarantees
exponential decay of all trajectories within the estimated region of attrac-
tion, shown as the outermost level set in Figure 7.12 (right).

Admittedly, the suggested refinement procedure has been based on a large
portion of heuristics, and many important problems remain open. Is it,
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Figure 7.11 Initial partition (left) and automatically refined partition (right) of
Example 7.3.
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Figure 7.12 Lyapunov function (left) and guaranteed region attraction (right) in
Example 7.3.

for example, possible to prove that the refinement procedure terminates
in a finite number of steps? If so, under what conditions?

7.5 Comments and References

Stability Analysis of Fuzzy Systems

The fuzzy community may have been first in using LMI computations
for design and analysis of nonlinear control laws [156, 135]. The need
to move beyond quadratic Lyapunov functions has also been pointed out
[80]. In fact, the use of discontinuous piecewise quadratic Lyapunov func-
tions has also been used in the independent work [38]. In comparison
with these results, an application of Theorem 4.2 to fuzzy systems consti-
tutes a number of significant improvements. This includes the use of the
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S-procedure to exploit structural information, and the ability to handle
affine Takagi-Sugeno systems. Moreover, [38] give procedures for comput-
ing different Lyapunov matrices for each region. To assure stability of the
system, however, one must verify that certain boundary conditions hold.
It is suggested that these boundary conditions could be verified by simula-
tion. In contrast, the approach taken in this thesis avoids this non-trivial
step by parameterizing the Lyapunov function candidates to be continuous
across cell boundaries.

Analysis of Piecewise Linear Hybrid Systems

The area of hybrid control has attracted a large interest over the last cou-
ple of years. A very useful idea has been the notion of ‘multiple Lyapunov
functions’ see [22, 23] (see also [106, 107]). Our main contribution has
been to show how the search for these kinds of Lyapunov functions can
be formulated as an LMI problem [63, 66]. This allows efficient construc-
tion of Lyapunov functions for a class of hybrid systems. Similar ideas
has been presented in the independent work [108]. Further aspects on
LMI-based analysis of hybrid systems can be found in [45].
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Computational Issues

The results derived in the previous chapters allow analysis and design
of piecewise linear control systems based on numerical computations. For
clarity of presentation, detailed discussions about computational issues
have been postponed to this chapter.

The computations derived in this thesis have made heavy use of the
constraint matrices Ḡi, Ēi and F̄i without actually going into details of
how these matrices can be determined for a given partition. In this sec-
tion, we will show how these matrices can be computed for two impor-
tant classes of partitions. In both cases, the constraint matrices can be
computed efficiently using simple manipulations. Moreover, we illustrate
how constraint matrices for complicated partitions can sometimes be com-
puted from the descriptions of simpler partitions. We will also show how
quadratic cell boundings with minimal volume can be computed for poly-
hedral cells. For two important classes of polytopes, we will derive explicit
expressions for the circumscribing ellipsoid with minimum volume.

The S-procedure has played an important role in many computations.
How restrictive the computations are depends on the conservatism of the
S-procedure. In this chapter, we will provide some further insight in the
role of the S-procedure, and derive two interesting results. Both consider
simplex partitions. The first result states that analysis based on the poly-
hedral S-procedure is always less conservative than the use of minimum
volume ellipsoids. Furthermore, we will establish non-conservatism of the
polyhedral S-procedure for simplex cells in Rn with n ≤ 3.

Finally, we present a Matlab toolbox for analysis of piecewise linear
systems. A set of intuitive commands allow specification of piecewise lin-
ear systems. Many of the analysis results, such as stability analysis and
L 2 gain computations, are then available as single commands. Included in
the toolbox is also a simulation engine for piecewise linear systems with
discontinuous dynamics. The tool allows efficient and accurate simulation
of systems with sliding modes on cell faces.
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8.1 Computing Constraint Matrices

The partitioning of a domain into convex polyhedra with disjoint interior
can be made in a large number of ways. The analysis procedures developed
in this thesis are not restricted to any particular partition type, but they
do require that some key properties of the partition are expressed in the
specific matrix format defined in Section 4.5. The purpose of this param-
eterization is to efficiently separate the free parameters of the piecewise
quadratic function from the continuity constraint imposed by the parti-
tion. For such a parameterization to be useful, we need to be able to
compute these matrices for a given partition. In this section, we will show
how the necessary constraint matrices can be computed efficiently from
partition data.

Simplex and Hyperplane Partitions

A fundamental result from polytope theory states that every convex poly-
tope admits two alternative but equivalent representations. A convex poly-
tope can be represented either as the convex hull of its vertices, or as the
intersection of its supporting halfspaces, see e.g.[157]. From these two
descriptions, two classes of partitions appear particularly natural. One
class is the partitions induced by a number of hyperplanes, the other is
the partitions induced by a number of points. We will call these partition
types hyperplane and simplex partitions, respectively.

A hyperplane partition is a partition which is induced by a number
of hyperplanes. The cells of a hyperplane partition are convex polyhedra
that have these hyperplanes as boundaries. Given a set of convex polyhe-
dra, the associated hyperplane partition is obtained by extending the cell
boundaries globally. This extension of boundaries may induce new cells,
see Figure 8.1. Hence, a partition obtained in this way may have more
cells than the number of polyhedra that generated it.

X1X2

X3

X (1)
1

X (2)
1X (1)

2

X (2)
2

X (1)
3

X (2)
3

Figure 8.1 A hyperplane partition generated from an initial set of polyhedra by
extending their boundaries globally.
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A simplex partition is a partition induced by a number of grid points.
A simplex in Rn is defined as the convex hull of n+1 affinely independent
points. The affine independence guarantees that the simplex has non-
empty interior and does not “collapse” in some direction. The cells of the
partition are simplices that have n + 1 of the grid points as its vertices.
Given a set of points, these can be combined into many different simplex
partitions, see Figure 8.2. In other words, a set of vertices does not induce
a unique simplex partition (see [82] for further details on triangulations).
Every convex polytope can be partitioned into simplices by the possible
insertion of new vertices. Thus, given some initial polytopic partition, it
can always be refined into a simplex partition. A simplex partition derived
in this way may then have more cells than the original (non-simplex)
partition that generated it, see Figure 8.2.

ν1 ν2

ν3ν4

ν1 ν2

ν3ν4

Figure 8.2 Two simplex partitions induced by the four vertices ν k of a square.

Constraint Matrices for Hyperplane Partitions

A hyperplane partition is a partition induced by K hyperplanes,

H k � {x t hT
k x+ gk � 0} k � 1, . . . , K .

The partition induced by a saturated linear state feedback is a typical ex-
ample, see Figure 2.1. For convenient representation, we collect all hyper-
plane data in a hyperplane matrix, H̄. This matrix is obtained by stacking
the vectors that define the hyperplane equations on top of each other,

H̄ �


hT

1 g1

...
...

hT
p gp

 .

We adopt the convention that every hyperplane is defined with gk ≤ 0.
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Each hyperplane induces two closed halfspaces,

H +
k � {x t hT

k x+ gk ≥ 0}
H −

k � {x t hT
k x+ gk ≤ 0}

which we will call the positive and negative induced halfspace of H k,
respectively. The convention gk ≤ 0 then implies that 0 ∈ H −

k for all k.
Each cell of the partition is defined as the intersection of K of these

induced halfspaces. Hence, cells can be specified by stating whether they
belongs to the positive or negative induced halfspace of each hyperplane.
In this way, an associated cell identifier Ḡi is obtained by multiplying the
kth row of H̄ with −1 if Xi ⊆H −

k and with +1 if Xi ⊆H +
k . However, such

a representation has many redundant constraints and it is sufficient to
consider the halfspaces induced by the boundaries of the cell.

Polyhedral cell boundings Ēi can be obtained from the cell identifiers
Ḡi by a direct application of Algorithm 4.1.

Continuity matrices F̄i can be computed as follows. Let the kth row of
F̄i be equal to the kth row of H̄ if Xi ⊆H +

k and equal to the zero vector
otherwise. Since 0 ∈H −

k for all k, this assures that

F̄ix̄ �max
{

H̄ x̄, 0
}

x ∈ Xi,

where max(z, v) denotes element-wise maximum. This implies that the
matrices F̄i have the zero interpolation property. We summarize the de-
velopment in the following proposition.

PROPOSITION 8.1—CONSTRAINT MATRICES FOR HYPERPLANE PARTITIONS

Let {Xi}i∈I be a hyperplane partition. The matrices Ḡi and F̄i constructed
as above satisfy the conditions (4.17) and (4.14), respectively. Moreover,
the matrices F̄i have the zero interpolation property.

In order to give the F̄i matrices full column rank, it may sometimes be
necessary to augment the matrices computed in this way according to

F̄i �
[

Fi fi

I 0

]
. (8.1)

The constraint matrices for the saturated system given in Example 2.3,
Example 4.4 and Example 4.5 were computed using the procedure outlined
above. The following example illustrates the use of the hyperplane matrix
when computing the cell identifier for one of the three regions.
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EXAMPLE 8.1—CONSTRAINT MATRICES FOR SATURATED SYSTEM

Consider again the linear system with actuator saturation,

ẋ � Ax + b sat(kT x)

The hyperplanes induced by the saturation give the hyperplane matrix

H̄ �
[

hT
1 g1

hT
2 g2

]
�
[

kT −1

−kT −1

]
.

Note that gk ≤ 0 for all k. Consider the cell X3 corresponding to positive
saturation (kT x ≥ 1). Since X3 ⊆H +

1 and X3 ⊆ H −
2 we can obtain a cell

identifier by multiplying the second row of H̄ with −1. This gives

G̃3 �
[

kT −1

kT 1

]
.

As only H1 is a cell boundary of X3, we delete the second row of G̃3 and
arrive at

Ḡ3 � [ kT −1 ] ,

which was the cell identifier given in Example 2.3.

Constraint Matrices for Simplex Partitions

A simplex partition is a partition induced by a number of points {ν k}. The
cells of the partition are convex polytopes with n+1 of these points as its
vertices. A typical example is the partition that was used for approxima-
tion of a smooth function in Example 2.2. More formally, a simplex in Rn

is defined as the convex hull of n+ 1 of affinely independent points. The
affine independence guarantees that the simplex has non-empty interior
and does not “collapse” in some direction.

Let Xi ⊂ Rn be a simplex. Each x ∈ Xi has a unique representation as
a convex combination of the cell vertices

x �
∑

k

zkν k, x,ν k ∈ Xi (8.2)

with zk ≥ 0,
∑

k zk � 1. The numbers zk are sometimes called the barycen-
tric coordinates of Xi. If the decomposition (8.2) is used for x 6∈ Xi, then
at least one of the barycentric coordinates will be negative. This indicates
that the mapping from x to the barycentric coordinates of Xi would qualify
as cell identifier (which is exactly what we will use later).
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ν2

ν3

ν0

Figure 8.3 Simplex partition of state space.

The representation (8.2) can be extended in a natural way to describe
all points that belong to the partition. Each x ∈ ∪i∈I Xi can be written as
a weighted sum of the vertices of the partition

x �
∑

k

zkν k. (8.3)

Within each simplex Xi we can recover the decomposition (8.2) by letting
zk � 0 for all k such that ν k 6∈ Xi. Clearly, we still have

∑
k zk � 1. Let

z � [ z1 . . . zK ] be the vector of partition coordinates. Then, for every
x ∈ Xi the only non-zero entries of z are those coordinates that correspond
to vertices of Xi. Moreover, on a boundary between two simplices the only
non-zero coordinates are those zk that describe this common boundary.
This implies that the decomposition (8.3) defines a continuous piecewise
linear mapping x −→ z which is unique for every x ∈ Xi. It is this mapping
that will be used for constructing continuity matrices.

To describe the computations, we let ν1, . . . ,ν p be the vertices of the
partition and introduce the vertex matrix

V̄ � [ ν̄1 . . . ν̄ p ] , (8.4)
For each simplex Xi, we define an extraction matrix E i ∈ Rp�(n+1) as
follows. The kth row of E i is zero for all k such that ν k /∈ Xi and the non-
zero rows of E i are equal to the rows of an identity matrix. The extraction
matrix then has the property that z �E iE T

i z when x ∈ Xi. The constraint
matrices Ḡi and F̄i are now computed as follows,

Ḡi � (V̄ E i)−1, F̄i � E iḠi for i ∈ I. (8.5)

The matrix (V̄ E i) is invertible due to the non-empty interior of Xi. We
give the following result.
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PROPOSITION 8.2—CONSTRAINT MATRICES FOR SIMPLEX PARTITIONS

Let {Xi}i∈I be a simplex partition. The matrices Ḡi and F̄i as constructed
in (8.4) and (8.5) satisfy the conditions (4.17) and (4.14), respectively.
Moreover, if ν k � 0 for some k, then the continuity matrices with zero
interpolation property are obtained by deleting the kth row of all matrices
F̄i computed as above.

Cell boundings Ēi can be computed via Algorithm 4.1.
The construction extends straightforwardly to unbounded polyhedra

by allowing simplices to have vertices “at infinity”. In this case every
x ∈ Xi can be written as

x �
q∑

k�1

zkν k +
p∑

k�q+1

zkdk

where zk ≥ 0 and
∑q

k�0 zk � 1. The vectors ν1, . . . ,ν k are vertices defining
a polytope, while dq+1, . . . , dp define directions that span a cone with base
in this polytope. The computations of constraint matrices remain the same
and statements above hold true also in this case, provided that each cell
has at least one vertex and that we define

V̄ �
[ν1 . . . ν q dq+1 . . . dp

1 . . . 1 0 . . . 0

]
.

Building Complex Partitions from Simple Partitions

In the computations above we have let the dimension of the partition
be the same as the dimension of the state space. In other words, the
partitioning has been done with respect to all state variables. In many
cases, significant nonlinearities may be confined to some subset of the
state space. This was for example the case with the min-max selector
system defined in Section 4.6. It can then be natural to concentrate the
flexibility of the Lyapunov function candidate to these states.

Partitioning a Subset of the State Assume that the partitioning has
been performed on the subspace

Z � {z ∈ Rq t z � C x, x ∈ Rn}

Then, the constraint matrices constructed on Rq can used to describe the
induced partition in Rn by post-multiplying the constraint matrices by

N �
[

C 0

0 1

]
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That is, let F̄Zi, ĒZi and ḠZi be constraint matrices for a polyhedral par-
tition in Rq, let C ∈ Rq�(n+1), and let N be defined as above. Then,

F̄i � F̄ZiN, Ēi � ĒZiN, Ḡi � ḠZi N,

are constraint matrices for the corresponding cells in Rn. Moreover, if F̄Zi

and ĒZi have the zero interpolation property, then so have F̄i and Ēi.
This approach was used to construct constraint matrices for the min-max
selector system analyzed in Chapter 4.

If the constructed continuity matrix does not have full row rank, this
can be achieved by the augmentation (8.1).

Creating Cells by Intersecting Partitions Another issue appears
when we interconnect two piecewise linear systems for which we have
already computed constraint matrices. Thus, let S1 be a piecewise linear
component with state vector x1 ∈ Rn1, and S2 be a piecewise linear com-
ponent with state vector x2 ∈ Rn2. Then, the interconnected system may
be realized with a state vector x ∈ Rn with n � n1 + n2.

The partition of the interconnected system is obtained as the “product”
between the partitions of the components,

Vij � {(x, z) t x ∈ Xi, z ∈ Zj}
{Xi}i∈I � {Zj}j∈J :� {Vij t i ∈ I, j ∈ J}

The corresponding constraint matrices can be constructed by first extend-
ing the constraint matrices for the subsystems into Rn1 �Rn2, and then
stacking them on top of each other (creating the intersection). For exam-
ple, let F̄1i and F̄2j be continuity matrices for two partitions. Then, the
continuity matrices for the product partition are given by

F̄ij �
[

F1i 0 f1i

0 F2j f2j

]
.

Similar to above, if the constraint matrices of the individual components
have the zero interpolation property, then so have the matrices describing
the product partition.

This approach was used in the construction of constraint matrices for
the fuzzy system example in Section 7.1.

Computing Ellipsoidal Cell B oundings

As we have seen in Chapter 4, substantial computational savings can be
obtained if we use quadratic cell boundings rather than the polyhedral.
This approach requires that we fix quadratic bounding for each cell before
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carrying out the piecewise quadratic analysis. A natural candidate for
quadratic approximation of a polyhedral set is to use the ellipsoid with
minimum volume that contains the set [44]. The minimal volume ellipsoid
containing a polytope can be obtained by solving the following convex
optimization problem, see [143].

PROPOSITION 8.3—MINIMAL VOLUME ELLIPSOIDS

Let Xi be a convex polytope with vertices ν ik,

Xi � {x t x ∈ co(ν i1, . . . ,ν iK )}

The ellipsoid

Ei � {x t ttPix+ bitt2 ≤ 1}
of minimum volume that contains Xi is given by the solution to the strictly
convex optimization problem

min
Pi ,bi

ln det P−1
i

s.t. Pi � PT
i > 0[
I Piν ik + bi

(Piν ik + bi)T 1

]
≥ 0 for k � 1, . . . , K

Given a solution Pi, bi to the above optimization problem, the correspond-
ing ellipsoidal cell boundings S̄i of Definition 4.3 are given by

S̄i �
[−PT

i Pi −PT
i bi

−bT
i Pi 1− bT

i bi

]
.

In order to compute the minimum volume ellipsoid, we need to com-
pute all vertices of the cell. The necessary computation, called a vertex
enumeration, may be computationally intensive [6]. First when the ver-
tices are found, Proposition 8.3 can be invoked to compute the optimal
bounding ellipsoid. The need to perform a vertex enumeration reduces
the actual savings in the use of ellipsoidal cell boundings. As we will see
next, however, it is possible to derive explicit expressions for the minimal
volume ellipsoids containing simplex and hyper-rectangular cells. These
results make the application of ellipsoidal cell boundings easy and com-
putationally efficient for these types of cells. To the best of the author’s
knowledge, the problem of finding minimal volume ellipsoids appears to
have attracted little interest in the mathematical literature (see [69, 8]
for some related results). We have the following results.
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PROPOSITION 8.4—SIMPLEX BOUNDING

Let Xi be a simplex with non-empty interior, and let Ḡi be the correspond-
ing cell identification matrix, as computed in (8.5). Then, the ellipsoid of
minimum volume that contains Xi is given by

x̄T ḠT
i Ḡi x̄ ≤ 1.

Proof: See Appendix A.

PROPOSITION 8.5—PARALLELEPIPED BOUNDING

Let Xi ⊂Rn be a parallelepiped with non-empty interior,

Xi � {x ∈ Rn t tcT
i x− x̃it ≤ di, i � 1, . . . , n}

and let

T̄ �


cT

1 /d1 −x̃1/d1

...
...

cT
n /dn −x̃n/dn


Then, the ellipsoid of minimal volume that contains Xi is given by

x̄T T̄ TT̄ x̄ ≤ n

Proof: See Appendix A.

8.2 On the S-procedure in Piecewise Quadratic Analysis

The S-procedure-relaxation plays a crucial role in the piecewise quadratic
computations. It is this approach that let us express that the inequality

V(x) � x̄T P̄i x̄ > 0

need only to hold for x ∈ Xi via LMIs. How restrictive our computations
are depend on the conservatism of the S-procedure.

In [153] it was shown that the S-procedure is necessary and sufficient
to account for a single quadratic constraint. In other words, let

Ei � {x t xT Six ≥ 0}
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be a quadratic set. Then the quadratic form

V(x) � xT Pix (8.6)

is positive for all x ∈ Ei with x 6� 0 if and only if there exists a non-negative
scalar ui ≥ 0 such that the following LMI condition is satisfied

Pi − uiSi > 0.

Clearly, if we consider a set given as the intersection of several quad-
ratic sets, E � ∩m

i�1Ei and there exists ui ≥ 0 such that

Pi −
m∑

i�1

uiSi > 0 (8.7)

then V(x) defined in (8.6) is positive for all x ∈ E. However, as was shown
by a simple example in [153] this condition is only sufficient. In other
words, there are quadratic functions V(x) that are positive on sets on the
form E with m > 1, but where no solution to the LMI condition (8.7) can
be found.

Let eik denote the columns of Ēi. Then, the polyhedral S-procedure-
relaxation can be seen as a special case of (8.7) via

Pi − ĒT
i UiĒi � Pi −

∑
j,k

ujkeij eT
ik > 0

This indicates that the S-procedure is only a sufficient condition for veri-
fying positivity of a piecewise quadratic function on a polyhedral domain.

It is then easy to come to the premature conclusion that it is more
conservative to use polytopic relaxations than to fix a quadratic set ap-
proximation and use this in the LMI computations. In this section, we
will show how this is not the case. For some important classes of par-
titions we will be able to prove that the polytopic relaxation is always
stronger than quadratic relaxations. Moreover, based on separation re-
sults for so-called copositive matrices, we will prove that the polytopic
S-procedure-relaxation is non-conservative for simplex partitions in Rn

with n ≤ 3.

Polyhedral Relaxation is Stronger than E llipsoidal

By a comparative example in Chapter 4, we illustrated how the use of
ellipsoidal cell description in the S-procedure allows significant computa-
tional savings in the analysis computations compared to the use of poly-
topic relaxations. However, as the same example indicated, these savings
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come at the price of increased conservatism in the analysis. The develop-
ments in Section 8.1 will now allow us to be more precise in this issue.
More specifically, we will show that if the piecewise quadratic computa-
tions with minimum volume ellipsoids as cell boundings have a solution,
then so have the computations in Theorem 4.1, while the opposite is not
always true. This is contrary to a statement in [44](Section 4.1) where it
was indicated that computations using ellipsoidal cell boundings would
be less conservative than those using polyhedral relaxations, since the
S-procedure may be lossy when several quadratic terms are used.

PROPOSITION 8.6—POLYHEDRAL RELAXATION IS STRONGER THAN ELLIPSOIDAL

Let Xi be a simplex cell. Let Ēi be the associated cell bounding satisfy-
ing (4.18), and let S̄i describe the minimal volume ellipsoidal boundings
computed as in Proposition 8.4. Then, the polytopic S-procedure relax-
ation ĒT

i UiĒi is stronger than the S-procedure using minimum volume
ellipsoids, uiS̄i. More precisely, if the LMI

P̄i − τ i S̄i > 0 (8.8)
has a solution, then so has the LMI

P̄i − ĒT
i UiĒi > 0, (8.9)

but there are cases when (8.9) admits a solution while (8.8) does not.

Proof: See Appendix A.

A similar result can be established also for hyper-rectangular cells.
To understand the use of the S-procedure in the piecewise quadratic

analysis, it is fruitful to consider the problem of verifying the constraint

x̄T P̄i x̄ > 0 x ∈ Xi

using LMI computations. In this case, the role of the S-procedure is to
separate the set V−

i � {x t x̄T P̄i x̄ < 0} from the set Xi. The volume of the
covering ellipsoid may have very little to do with this separation. This is
illustrated in Figure 8.4. The minimum volume ellipsoid of Xi intersects
the set V−, hence it cannot be used to verify the desired inequality. By
using the polyhedral relaxation, there is a lot of freedom in optimizing
over the quadratic bounding, and separation can easily be accomplished,
see Figure 8.4(right).

Another point is that although the S-procedure is only sufficient when
there is more than one quadratic constraint, adding new constraints can
never make the inequalities harder to satisfy since the associated multi-
pliers can always be set to zero. On the contrary, adding new terms may
allow separations that would otherwise not be possible.
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Figure 8.4 The counter example in Proposition 8.6. The minimal volume ellipsoid
fails to separate Xi from V−

i (left), while optimizing over the covering ellipsoids
using the polyhedral formulation easily finds a separating supset.

Copositivity and Non-Conservatism of the S-procedure

There is a lot of structure in the way computations are made for simplex
partitions. In this section, we will use this structure further to prove that
the polytopic relaxation is both necessary and sufficient for the piecewise
quadratic computations on simplices in Rn with n � 1, 2, 3.

In what follows, we let Xi be a simplex inRn with associated continuity
matrix F̄i and cell bounding Ēi computed as in Section 8.1. Consider
verification of the inequality

x̄T F̄ T
i T F̄ix̄ ≥ 0 x ∈ Xi. (8.10)

Recall that in the simplex case, the matrices F̄i and Ēi are used to map
the state vector x into partition coordinates z. It can be verified that

z � Ēi x̄ x ∈ Xi

z � E T
i F̄ix̄ x ∈ Xi

where E i is the vertex extraction matrix for Xi. Moreover, F̄i �E i Ēi and

Xi �
{

z :� Ēix t z � 0,
n+1∑
i�1

zi � 1

}

Hence, verification of the inequality (8.10), is equivalent to verification of

zTTiz ≥ 0 z � 0. (8.11)

with Ti � E T
i TE i. The constraint

∑
i zi � 1 can be disregarded due to

homogeneity. Problems of the type (8.11) occur, for example, in the so-
lution to some non-standard LQG problems [52] and has attracted some
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attention in the linear algebra literature. Matrices that satisfy (8.11) are
called copositive matrices. If the inequality in (8.11) is strict for z 6� 0,
Ti is called a strictly copositive matrix. For some time it was conjectured
that if Ti is copositive, then it can be written as the sum of two matrices

Ti � Pi + Ui (8.12)

where Pi is positive semidefinite and Ui � 0, i.e., Ui has non-negative
entries. The following result was proved in [36], see also [52].

PROPOSITION 8.7—DECOMPOSITION OF COPOSITIVE MATRICES [36]
For dimensions n ≤ 4, every copositive matrix Ti can be decomposed in
the form (8.12). However, indecomposable copositive matrices exist for
n ≥ 5.

Proposition 8.7 implies that for n ≤ 4, the inequality (8.11) holds if and
only if there exists a matrix Ui � 0 such that

Ti− Ui ≥ 0. (8.13)

Since Ēi is invertible, this is equivalent to

ĒT
i TiĒi − ĒT

i UiĒi > 0

and hence

F̄ T
i T F̄i− ĒT

i UiĒi ≥ 0.

This is a non-strict version of the LMI condition used in Theorem 4.1.
Moreover, the matrix Ui used in this decomposition has non-negative en-
tries (uij � 0 is allowed).

As this cannot be handled in a solver which only treats strict inequal-
ities, we will extend the result to treat strict inequalities and allow the
entries of Ui to be (strictly) positive.

PROPOSITION 8.8—NON-CONSERVATISM OF THE S-PROCEDURE

Let {Xi}i∈I be a simplex partition in Rn with n ≤ 3, and with constraint
matrices Ēi and F̄i computed as in Section 8.1. Then

V(x) � x̄T F̄ T
i T F̄ix̄ > 0 for x ∈ Xi\{0}, i ∈ I

if and only if there exists a matrix Ui with positive entries such that

F̄ T
i T F̄i− ĒT

i UiĒi > 0.
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Proof: As discussed above, V(x) > 0 for x 6� 0 is equivalent to

zTTiz > 0 z � 0, ∀i ∈ I.

Let O be a matrix where every entry is unity. Then, this inequality implies
for each i ∈ I there exists an ε i > 0 such that

zT(Ti− ε i(I + O))z ≥ 0 z � 0. (8.14)

In fact, since zT(O + I)z ≥ 0 on the domain of interest, ε i can be taken
as the minimal ε i that satisfies (8.14) on the compact set

{z t ttztt2 � 1, z � 0}
This implies that Ti−ε i(I+O) is copositive and, by Proposition 8.7, there
exists Ũi � 0 such that

Ti − Ũi − ε iO − ε I ≥ 0

Let Ui � Ũi + ε iO . Then Ui � 0, and

Ti − Ui ≥ ε i I > 0

Pre- and post-multiplication of Ēi and invoking the identity ĒT
i TiEi �

F̄ T
i T F̄i concludes the proof.

8.3 A Matlab Toolbox

The ambition throughout this thesis has been to develop powerful analysis
results that can be verified using efficient computations. An attractive
feature of such an approach is that the analysis and design procedures
can be packaged into software that can used easily also by inexperienced
users.

This section presents pwl tools, a Matlab toolbox for analysis of piece-
wise linear systems. The toolbox makes it simple to define piecewise linear
systems and give easy access to many of the results derived in this the-
sis. It also contains a simulation engine for efficient simulation of systems
with discontinuous dynamics. The computations use the LMI toolbox [42].

The purpose of this presentation is not to produce a duplicate of the
toolbox reference manual [46]. Rather, we aim at giving an overview of
the functionality and present details only on the implementation of the
simulation engine.
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Toolbox Structure

A piecewise linear system has two key components; the partition of the
state space into regions, and the equations describing the dynamics in
each cell. This implies that a piecewise linear system can be represented
as a set of ordered pairs,

{(Σ i, Xi)} i ∈ I

defining the local dynamics and the state-space partitioning, respectively.
Any toolbox working with piecewise linear systems must have some way
for representing this basic data.

The analysis procedures derived in this thesis are not restricted to
any particular partition type, but they do require that certain partition
properties are expressed using the constraint matrices Ḡi and F̄i. In this
chapter we have given procedures for computation of constraint matrices
for simplex and hyperplane partitions. To apply the analysis computations
to other classes of piecewise linear systems, one only needs to derive pro-
cedures for construction of constraint matrices.

Following this philosophy, the toolbox pwl tools is based around a
computational engine that uses a system description based on constraint
matrices. In other words, the computational engine requires that both cell
identifiers Ḡi and continuity matrices F̄i are specified for each region. This
has allowed us to separate the implementation of the analysis computa-
tions from the implementation of various user-friendly ways of specifying
systems. On top of the computational engine, we have provided additions
that simplify the specification of different classes of piecewise linear sys-
tems. Currently, only systems with hyperplane or simplex partitions are
supported, but future extensions are easy to incorporate.

Partition Specification

The specification of constraint matrices Ēi, F̄i and Ḡi can be far from easy
for the inexperienced user. It is therefore desirable to relieve him or her
from this task. The toolbox supports easy construction of simplex and hy-
perplane partitions. The constraint matrices are computed automatically
using the manipulations described in Section 8.1

Table 8.1 summarizes the commands for specifying hyperplane parti-
tions. The command setpart initializes a new partition, and should be
issued prior to defining the partition components. In order to indicate the
type of partition, setpart takes the argument 'h' for hyperplane par-
titions and 's' for simplex partitions. The commands addhp and addati

define generating hyperplanes and affine dynamics respectively. Both com-
mands return a positive integer that servers as identifier for later refer-
ence. Cells are subsequently defined using the command addhcell, which
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Command Description

setpart Initialize partition data structure

addhp Add hyperplane

addati Specify affine dynamics

addhcell Define hyperplane cell

getpart Retrieve partition data structure

Table 8.1 Commands for defining hyperplane partitions.

takes two arguments. The first argument specifies the bounding hyper-
planes (using their identifiers returned by addhp), and the second ar-
gument specifies the dynamics valid in the region (using the identifiers
returned by addati). The sign of the hyperplane reference indicates on
“what side” of the hyperplane the cell is located. To be more precise, let
rk be the reference for hyperplane H k. Then, specifying +rk in the list
of bounding hyperplanes indicates that Xi ⊆ H +

k , while specifying −ri

indicates that Xi ⊆H −
k .

The command getpart returns a data structure that describes the par-
tition. Finally, the command part2pwl computes the data required by the
computational engine of pwl tools. To illustrate the use of the commands,
we return to the linear system with actuator saturation in Example 2.1.

EXAMPLE 8.2—DESCRIBING THE SATURATED SYSTEM

The piecewise linear system induced by the actuator saturation in Exam-
ple 2.1 can be described by the following lines of Matlab code.

%-- Initialize partition

setpart('h');

%-- Specify hyperplanes

n_sat=addhp([-k -1]);

p_sat=addhp([k -1]);

%-- Define local dynamics

dnsat=addati(A,-b);

dlin =addati(A+b*k');

dpsat=addati(A,b);

%-- Introduce cells

Xn=addhcell([n_sat],dnsat);

Xl=addhcell([-n_sat -p_sat],dlin);

Xp=addhcell([p_sat],dpsat);

%-- Retrieve partition data

part=getpart;
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Command Description

setpart Initialize partition data structure

addvtx Add vertex

addray Add ray

addati Specify affine dynamics

addvcell Define vertex cell

getpart Retrieve partition data structure

Table 8.2 Commands for defining simplex partitions.

The specification of a simplex partition is very similar to the defini-
tion of a hyperplane partition. The main difference is that cells are now
defined by vertices (“points”) and rays (“directions”) rather than the equa-
tions for its bounding hyperplanes. The commands for composing simplex
partitions are shown in Table 8.2.

A new simplex partition is initialized by the command setpart('s').
Vertices and rays are defined by the commands addvtx and addray. Both
commands return an identifier for later reference. Similar to the hyper-
plane case, dynamics are defined by the command addati. The cells of
the partition are defined by the command addvcell which takes three
arguments. The first two arguments are lists of vertex and ray references
respectively, while the last argument specifies the dynamics valid within
the region. The total number of vertex and ray references should sum to
n+ 1, of which at least one should be a vertex. Once all cells are defined,
the command getpart retrieves a data structure describing the partition,
and the command part2pwl transform this information into the data re-
quired by pwl tools. We apply the commands to Example 4.3.

EXAMPLE 8.3—DESCRIBING SIMPLEX PARTITIONS

Consider the system from Example 4.3. This system used a partition with
four cells that are a rotation of the four quadrants in R2. The interpreta-
tion of this partition as a simplex partition is shown in Figure 8.5. The
partition has one vertex at the origin and four rays that define the di-
rections of the cell boundaries. The commands in Table 8.2 makes it easy
to define the system for use in pwl tools. The following lines of code
performs the necessary steps.

%-- Initialize simplex partition

setpart('s');

%-- Define vertices and rays
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v0=addvtx([0 0]);

r1=addray([-1 -1]);

r2=addray([-1 1]);

r3=addray([1 1]);

r4=addray([1 -1]);

%-- Set up dynamics

d1 = addati(A1);

d2 = addati(A2);

%-- Define cells

X1 = addvcell([v0],[r1 r2],d1);

X2 = addvcell([v0],[r2 r3],d2);

X3 = addvcell([v0],[r3 r4],d1);

X4 = addvcell([v0],[r4 r1],d2);

%-- Retrieve partition data structure

part = getpart;

%-- Transform into pwltools data structure

pwlsyst=part2pwl(part);

ν0

r1

r2 r3

r4

X1

X2

X3

X4

Figure 8.5 Data needed for specifying the simplex partition in Example 8.3.

Once a pwl object that describes the system has been obtained, many
computations derived in this thesis can be used for system analysis and
controller design.

Structural Analysis

The structural analysis described in Chapter 3 is supported through the
commands in Table 8.3. The command findeqs searches uses the compu-
tations of Proposition 3.1 to compute the equilibrium points of the sys-
tem. The command dcgain allows for the static analysis described in Sec-
tion 3.1. Sliding modes on cell faces can be detected by application of
findsm, which implements Proposition 3.4.
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Command Description

findeqs Find Equilibrium Points

dcgain DC gain analysis

findsm Find attractive sliding modes

Table 8.3 Commands for structural analysis.

Command Description

qstab Quadratic stability analysis

pqstab Piecewise quadratic stability analysis

pqstabs D.o. accounting for sliding modes

Table 8.4 Commands for Lyapunov function computations.

Lyapunov Function Computations

The commands provided for stability analysis are shown in Table 8.4. Here
pqstab denotes the search for a piecewise quadratic Lyapunov function
according to Theorem 4.1. If stability can be established, the command
returns the matrices P̄i that define the computed Lyapunov function. The
command qstab performs the search for a globally quadratic Lyapunov
function using S-procedure. The results of pqstab are only valid if the
system does not posses attractive sliding modes. The command pqstabs

is modified according to the discussion in Section 4.11 to assure stability
also in the presence of sliding modes.

EXAMPLE 8.4—FLOWER SYSTEM — STABILITY ANALYSIS

The tools can be used to easily verify stability of the flower system of
Example 4.3. The marker >> symbolizes the prompt in the Matlab com-
mand window. Lines that do not start with this marker indicate informa-
tion displayed by the commands.

>> %-- Search for sliding modes

>> findsm(pwlsys);

There are no sliding modes.

>> %-- Since there are no sliding modes, use pqstab

>> pqstab(pwlsys);

Lyapunov function found.
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Command Description

iogain Computation of induced L 2 gain

pqobserv Output energy estimation

Table 8.5 Commands for system analysis.

Command Description

optcstlb Estimate minimal achievable cost for pwLQG problem

pwlctrl Derive piecewise linear controller based on optcstlb

optcstub Estimate pwLQ cost achieved by pwlctrl

Table 8.6 Commands for controller design.

System Analysis

The commands for system analysis are summarized in Table 8.5.
The command iogain computes an upper bound on the L 2-induced

gain of a pwl system as described in Theorem 5.1. The command pqobserv

is an application of Theorem 5.2 to the computation of upper and lower
bounds on the integral of the output energy obtained from a given initial
state.

Controller Design

The piecewise linear quadratic optimal control is supported through the
three commands summarized in Table 8.6.

A lower bound on the achievable cost is computed by optcstlb The
command pwlctrl creates a pwl controller based on the results from
optcstlb. The command returns the feedback gains for each region. The
command optcstub estimates the cost achieved by this control law, hence
providing an upper bound on the optimal cost.

Simulation

Simulation is one of the most important tools for evaluating new con-
trol strategies, in academia as well as in industry. Despite the strong
development in general-purpose simulation environments during the last
30 years, the support for event detection is a quite recent addition to
most simulation packages. Simulation of systems with switching and dis-
continuous dynamics is still poorly supported. Included in the toolbox is
therefore a simulation engine that allows efficient simulation of piecewise
linear systems with discontinuous dynamics, see Table 8.7.

In the context of piecewise linear systems, problems may occur when
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Command Description

pwlsim Simulate pwl system with sliding modes

Table 8.7 The command pwlsim simulates systems with sliding modes.

the vector field is discontinuous across cell boundaries. If the vector field in
several neighboring cells point towards their common boundary, a unique
continuation of trajectories may not be possible. This situation causes
most simulators to simply ‘get stuck’. As was discussed in Section 4.11,
it may still be possible to define meaningful solution concepts in these
situations. One such concept was Filippov’s convex definition that defines
solutions by averaging the dynamics in the neighboring cells. This av-
eraging gives rise to a sliding motion confined to the switching surface.
The command pwlsim detects sliding mode situations, and simulates the
sliding mode dynamics given by Filippov’s solution. This prevents the sim-
ulator to get stuck, and systems with sliding modes can be simulated with
high precision and efficiency.

Initialization

Simulation of
regional dynamics

Boundary
Detected

Mode selection

 Simulation of
 sliding dynamics

Attractive 
Sliding Mode

No 
Sliding Mode

Exiting
sliding regime

Figure 8.6 Schematic description of simulation engine.

A schematic diagram of the simulation algorithm is shown in Fig-
ure 8.6. The first step in the simulation is to perform a cell identification,
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in order to detect to what cell Xi a given initial value belongs. The regional
dynamics is then simulated using the ODE-solvers in Matlab,

ẋ � Aix+ ai as long as Ḡi x̄ � 0. (8.15)
The ODE routines support event detection, and as soon as equality is
attained for some element in the vector Ḡi x̄, the simulation of the re-
gional dynamics is terminated. This means that the state belongs to a
cell boundary.

When the state enters a cell boundary, the simulation engine checks
the conditions for sliding motion. Let the cell boundary be given by

�Xi � {x t hT
i x+ gi � 0}.

Sliding motion is possible using Filippov’s convex definition if there exists
positive scalars α k ≥ 0 with

∑
k α k � 1 such that∑

k

α k(hT
i Akx+ hT

i ak) � 0 for all k with x ∈ Xk.

As long as the conditions for sliding motion are fulfilled, the simulator
uses the resulting dynamics

ẋ �
∑

k

α k(Akx+ ak) for all k ∈ Xi.

When the state exits the sliding regime, the simulation engine returns to
the simulation of regional dynamics.

In the case of ambiguities, the simulator stops and reports uniqueness
problems. Such situations occur for example when one tries to simulate a
system from an initial state on a boundary where the neighboring vector
fields are all outward. Another situation that presents non-uniqueness
problems is when the state belongs to the intersection of several cell
boundaries. If sliding motion is possible on an intersection of cell bound-
aries, the simulator also aborts. The reason for this is that in these situa-
tions Filippov’s definition may not be enough to produce a unique velocity
for the sliding motion, see [91, 125].

An alternative solution for simulation with sliding on intersecting hy-
perplanes is to simply introduce a space hysteresis in the cell definitions.
Rather than simulating the regional dynamics until a cell boundary is hit,
we proceed a small distance before switching cell. This can be obtained by
replacing the condition Ḡi � 0 in (8.15) by the condition Ḡi � ε1 where
1 denotes a vector of ones of appropriate dimension, and ε > 0.

We apply the first approach to the simulation of a relay system with
a sliding mode, cf. [57, 5].
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Figure 8.7 Limit cycle with sliding trajectory. The vertical dashed lines in the
right part indicate time instances for the mode selection.

EXAMPLE 8.5—SIMULATION OF SLIDING MODE SYSTEM

Consider the following linear system under relay feedback

ẋ �

0 0 −1

1 0 −2

0 1 −2

−
 0

−1

1

 sign(y)

y � [0 0 1 ] x.

This system has a limit cycle with an attractive sliding mode and requires
accurate simulation. Sliding mode detection and simulation can be carried
out in pwl tools with the following commands.

>> % Search for sliding modes

>> findsm(pwlsys);

Sliding mode detected on boundary between cell 1 and 2.

>> % Simulate the system

>> x0 = [1 -1 0]';

>> [t, x, te] = pwlsim(pwlsys, x0, [0 20]);

The above code establishes that the system exhibits a sliding mode on
the switching surface. Simulating the system using the command pwlsim,
one can see how the system tends to a limit cycle with sliding mode, see
Figure 8.7.
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8.4 Comments and References

Constraint Matrices and Canonical Representations

Many important theoretical problems remain open considering the con-
straint matrices. Can the suggested parameterization represent all con-
tinuous and piecewise quadratic Lyapunov functions on a given partition?
Is the parameterization close to being canonical, or is it possible to elim-
inate further parameters? Related questions have been raised about the
canonical piecewise linear models discussed in Chapter 2, see [77, 71, 86].
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9

Concluding Remarks

This thesis has dealt with analysis of piecewise linear dynamical systems.
The developments contain two important ingredients; a powerful systems
class and a novel toolset for efficient Lyapunov function construction. The
thesis has taken the full route from an initial idea, via theoretical de-
velopments, to a methodology that can be applied to relevant engineer-
ing problems. The results are made easily available through through a
Matlab toolbox that implements many of the results derived in the the-
sis. Several new results were given and many interesting and important
problems remain open. In this sense, this thesis has taken some first steps
towards a useful Lyapunov-based theory for piecewise linear systems. In
these concluding remarks, we summarize the contributions and give some
suggestions for future research.

Summary of Contributions

Piecewise linear systems and piecewise quadratic Lyapunov functions are
natural extensions of linear systems and quadratic Lyapunov functions.
Piecewise linear systems have been used extensively in circuit theory. The
main applications have been efficient circuit simulation and static anal-
ysis, while the more complicated dynamical properties appears to have
been largely unattended. This thesis focuses on the dynamical properties
of piecewise linear systems.

Piecewise Linear Dynamic Systems

Piecewise linear systems is a natural extension of linear systems. Many
of the most common nonlinearities control systems, such as saturations
and relays, are piecewise linear. This thesis has tried to take a broader
view. We have given a simple matrix parameterization of polyhedral piece-
wise linear systems which is convenient for computations. The polyhedral
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piecewise linear systems are natural in the analysis of systems with sat-
urations and selectors, but are also useful for approximation of smooth
nonlinear systems. Uncertainty plays a central role in the analysis of
feedback systems, and the possibility to account for uncertainties is very
useful in system analysis. We showed how the standard uncertainty mod-
els for linear systems can be extended in a natural way to piecewise linear
systems. An important idea was the use of piecewise linear differential
inclusions. They allow piecewise linear sector bounds on nonlinearities,
and arbitrarily precise bounds can be achieved by partition refinements.
This makes piecewise linear systems an interesting system class for anal-
ysis of smooth nonlinear systems, and they allow a lot of freedom in the
trade-off between fidelity and complexity in the modeling process.

Non-quadratic Lyapunov Functions via Convex Optimization

The main contribution of this thesis is the LMI-based computations of
piecewise quadratic Lyapunov functions. It is a novel idea that can be im-
plemented using very efficient computations. The approach improves the
freedom compared to the Popov criterion, but its main attraction is that it
easily deals with multi-variable nonlinearities. The flexibility of an initial
Lyapunov function candidate can be improved via partition refinements.
This makes the piecewise quadratic Lyapunov functions a very powerful
Lyapunov function class.

By restricting the format for piecewise quadratic Lyapunov functions
we obtained a parameterization of Lyapunov functions that are continu-
ous and piecewise linear. Piecewise linear Lyapunov functions can be com-
puted via linear programming. This has some advantages compared to the
LMI-based computations used in the construction of piecewise quadratic
Lyapunov functions. An important aspect of this development is that the
common parameterization establishes a unifying view of quadratic, poly-
topic, piecewise linear and piecewise quadratic Lyapunov functions. The
function classes have different degrees of flexibility and require different
amounts of memory for their representation. They also require different
amount of computations in the stability analysis. By having one format
for several classes of Lyapunov functions, it is simple to move from one
function class to the other in order to find the most appropriate Lyapunov
function candidate for a certain problem.

Emphasis was put on making the computations efficient. By a slight
reformulation of the analysis conditions, the basic computations could be
simplified considerably, essentially without introducing conservatism. The
use of ellipsoidal cell boundings allowed even more efficient computations,
but introduces some conservatism in the analysis.

Results for analysis of systems with attractive sliding modes were also
given. A simple way for performing local analysis and convergence to a
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set was derived. This has a direct application to estimation of stability
regions, but may also be useful in limit cycle computations.

Dissipativity Analysis using Piecewise Quadratic Storage Functions

The Lyapunov functions were applied to dissipativity analysis. We gave an
approach for dissipativity analysis based on piecewise quadratic storage
functions. By use of upper and lower bounds on the estimated energy
quantities, it was shown how partition refinements could give improved
estimates. The dissipativity analysis also opens up possibilities to combine
the piecewise linear analysis with analysis done by other methods. The
ideas were illustrated on small gain analysis of a piecewise linear system
with dynamic uncertainty.

Piecewise Linear-Quadratic Optimal Control

The piecewise quadratic functions were also used in solving optimal con-
trol problems via convex optimization. In this way, feedback control laws
were obtained using very simple methods. The idea was only taken a
small step in this thesis, and further developments are necessary in or-
der to make this approach a useful design methodology.

Fuzzy Systems, Hybrid Systems and Smooth Nonlinear Systems

The basic results were extended in several useful ways, providing new
analysis techniques for fuzzy systems, hybrid systems and smooth non-
linear systems.

The first extension was to fuzzy systems. An important class of fuzzy
systems are close to being piecewise linear, and we showed how these sys-
tems could be described by piecewise linear differential inclusions. Given
a system model in terms of fuzzy logic-based rules, a corresponding un-
certain piecewise linear model can be derived using a simple procedure.
This allowed the piecewise quadratic Lyapunov function computations to
be tailored to fuzzy systems, hence providing a novel and powerful toolset
for analysis of such systems.

A second extension was to hybrid systems. Hybrid systems have at-
tracted a large interest in the control community over the last few years,
and many intriguing questions remain to be answered. We showed how
a class of hybrid systems could be analyzed via convex optimization. The
analysis uses Lyapunov functions that have a discontinuous dependence
on the discrete state.

The third extension was to smooth nonlinear systems. Piecewise linear
systems can approximate smooth systems to arbitrary precision. The same
statement holds true for the piecewise linear and piecewise quadratic
Lyapunov functions suggested in this thesis. It is therefore natural to
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try to use the piecewise linear approach to analysis of smooth systems.
We showed approximation errors could be taken into account explicitly,
providing formal results for smooth systems based on piecewise linear
analysis.

Partition refinements play an important role throughout this thesis.
They increase the accuracy in piecewise linear approximations and im-
prove the flexibility of the Lyapunov function candidates. A novel approach
for automated partition refinements was proposed, based on linear pro-
gramming duality.

Computational Aspects and Toolbox Implementation

Computational issues were also treated. Explicit formulas for covering el-
lipsoids of minimal volume were given for simplex and hyper-rectangular
cells. This makes it easy and computationally efficient to use ellipsoidal
cell boundings in the analysis, and has also a theoretical interest in itself.
We provided some insight in the S-procedure, proving that for some par-
tition types, the polytopic S-procedure is always less conservative than
the quadratic S-procedure. We also proved non-conservatism of the S-
procedure for simplex partitions in dimensions up to 3.

Finally, we presented a Matlab toolbox that makes it easy to describe,
simulate and analyze piecewise linear systems. It gives easy access to
many of the results from the thesis and provides a simulation engine for
efficient simulation of piecewise linear systems with sliding modes.

Open Problems and Ideas for Future Research

Numerical analysis and design of control systems is only in its infancy.
The progress in hardware and software opens many possibilities. In this
thesis, we have shown how convex optimization can be used to analysis
of nonlinear dynamical systems. The results have direct applications, and
can be extended in many promising ways. In this section, we point out
some open problems and give ideas for future research.

The matrix representation for piecewise linear systems was derived
to be convenient in computations. A drawback with this representation
is that it requires a large amount of memory for its representation. As
discussed in Chapter 2, model representations that are much more mem-
ory efficient can be derived for piecewise linear systems with continuous
vector fields. The implicit piecewise linear representation was shown to
be closely related to our model. Is it possible to derive LMI conditions for
piecewise quadratic stability that makes efficient use of this model?

Partition refinements are very useful to increase the flexibility of the
Lyapunov function candidate. We gave a simple procedure for automated
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partition refinements based on linear programming duality. The develop-
ments were based on a large portion of heuristics, and many issues are
left open. Is this partition refinement strategy the best possible? Can con-
vergence be proven in a formal way? The extension to the LMI case would
also be very interesting.

It would be very useful to be able to analyze piecewise linear sys-
tems that are interconnected with nonlinearities described by integral
quadratic constraints. This would, for example, allow less conservative
analysis of piecewise linear systems with time delays. It appears to be
fruitful to consider an approach along the lines of the Lyapunov tech-
nique presented in [70], Section 1.7.

The idea of solving optimal control problems via convex optimization
and the Hamilton-Jacobi-Bellman inequality is very promising. Advances
in hardware and software now allows design of feedback laws based on
optimality considerations using convex optimization. This theme has only
be touched upon in this thesis. Several interesting extensions along these
lines have been given in [118].

There is currently a large interest in fuzzy control and hybrid control
systems. We have extended the piecewise quadratic Lyapunov functions
to apply also to these cases. The piecewise linear techniques Lyapunov
functions could be extended similarly, resulting in potentially very useful
results.

Many system theoretic issues related to well-posedness of solutions,
observability and controllability are left open. These are important com-
ponents of a more complete theory for piecewise linear dynamical systems.

Finally, the majority of the problems treated in this thesis are con-
cerned with properties of equilibria. Tracking problems have not been
considered. Extensions to tracking problems would be of great practical
relevance.
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Proofs

A.1 Proofs for Chapter 2

Proof of Proposition 2.1

We consider two polyhedral piecewise linear systems

Σ1 :

{
ẋ � Aix+ ai + Biu1

y1 � Cix+ ci + Diu1
x ∈ Xi

Σ2 :

{
ż � Aj z+ aj + Bj u2

y2 � Cj z+ cj + Dj u2
z ∈ Zj

where Xi and Zj denote polyhedral sets, represented as

Xi � {x t Gix+ gi � 0}
Zj � {z t Gj z+ gj � 0}

Throughout, this proof we will let x ∈ Xi and z ∈ Zj . This is a polyhedral
constraint in x and z, which can be represented as

X̃ij �


[

x

z

]
t
[

Gi 0 gi

0 Gj gj

] x

z

1

 :� G̃ij

 x

z

1

 � 0


The partition of the interconnected system is made up from cells derived
for all i, j such that x ∈ Xi, z ∈ Zj , and has thus i� j cells.
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In series connection, we let

u2 � y1

and obtain

[
ẋ

ż

]
�
[

Ai 0 ai

Bj Ci Aj aj + Bj ci

] x

z

1

+ [ Bi

Bj Di

]
u1

y2 �
[

Dj Ci Cj cj + Dj ci

]  x

z

1

+ Dj Diu1

In parallel connection we let

u1 � u2

and obtain

[
ẋ

ż

]
�
[

Ai 0 ai

0 Aj aj

] x

z

1

+ [ Bi

Bj

]
u1

[
y1

y2

]
�
[

Ci 0 ci

0 Cj cj

] x

1

+ [ Di

Dj

]
u1

For the feedback interconnection, we set

u1 � y2 + w1, u2 � y1 +w2

and assume Dj � 0 to avoid algebraic loops. We get

[
ẋ

ż

]
�
[

Ai + BiCj 0 ai + Bicj

Bj Ci Aj + Bj Dicj aj + Bj ci + Bj Dicj

] x

z

1

+
+
[

Bi 0

0 Bj

] [
w1

w2

]
[

y1

y2

]
�
[

Ci DiCj ci + Dicj

0 Cj cj

] x

z

1

+ [ Di

0

]
w1
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A.2 Proofs for Chapter 3

Proof of Proposition 3.2

Consider the system

ẋ � Ai(x− x∗
i ) for {x t Ḡi x̄ � 0}

Let λ ik > 0 be a real eigenvalue of Ai with corresponding eigenvector vik.
Hence, if we pick x(0) � x∗

i +α vik ∈ Xi for some α > 0, then

x(t) − x∗
i � (eλ ik(t−t0) +α )vik for all t ≥ 0.

Such an α exists by the assumptions of Proposition 3.2. It remains to
show that the solution generated in this way remains in Xi, i.e., that

Ḡi x̄(t) � Gi

(
x∗

i + (eλ ik(t−t0) +α )vik

)
+ gi �

� (eλ ik(t−t0) +α )Givik + Gix∗
i + gi � 0

for all t ≥ 0. Since x(t) evolves along a line, and since the cells are con-
vex, it is sufficient to check that this condition is satisfied as t→∞. This
requires that Givik � 0, and that whenever an entry of Givik is zero, the
corresponding entry of Gix∗

i + gi is non-negative. This proves the state-
ment.

A.3 Proofs for Chapter 4

Proof of Proposition 4.2

Consider the Lyapunov function candidate V(x) � xT Px. Since P is pos-
itive definite, V(x) can be bounded in the sense of Lemma 4.1, Equation
(4.2). A solution to the strict inequalities (4.8) implies the existence of a
γ > 0 such that

AT
i P + PAi + γ I ≤ 0 i � 1, . . . , L.

Now, consider the representation (4.6) of the differential inclusion (4.5).
For the suggested Lyapunov function, V(x) � xT Px, we have

d
dt

V(x(t)) �
L∑

i�1

λ i(t)x(t)T(AT
i P + PAi)x(t) ≤

≤
L∑
i

λ i(t)(−γ ttx(t)tt22) � −γ ttx(t)tt22.
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The desired result now follows from Lemma 4.1 by letting the vector norm
tt ⋅ tt be the two-norm tt ⋅ tt2 and by setting p � 2.

Proof of Lemma 4.3

Consider a cell Xi with cell identifier Ḡi, i.e.,

Xi �
{

x
∣∣∣∣ Ḡi x̄ � [ Gi gi ]

[
x

1

]
� 0

}
.

We first prove that the constructed cell boundings have the zero interpo-
lation property. It then suffices to consider i ∈ I0. Removing all rows of
Ḡi whose last entry is nonzero gives a cell bounding on the form

Ēi � [GT
i 0 ] .

Hence, matrices Ēi computed in this way have the zero interpolation prop-
erty.

To prove the second claim we proceed in two steps. First, let i ∈ I1.
Adding the suggested row to the cell identifiers is equivalent to adding
the constraint 1 ≥ 0 to the cell definitions. This constraint is satisfied for
all x, and the assertion follows. Now, let i ∈ I0. Then V(x) is quadratic,

V(x) � xT Pix for x ∈ Xi

for some Pi ∈ Rn�n. The suggested deletion process eliminates all halfs-
paces with nonzero offset terms, i.e., halfspaces

H ik � {x t aT
ikx+ bik ≥ 0}

with bik > 0 from the analysis domain. We claim that this does not change
the result of the analysis. To see this, note that the intersection of such
halfspaces always contains a neighborhood around the origin. Due to ho-
mogeneity, if

V(x0) � xT
0 Px0 > 0

for some x0, then V(t ⋅ x0) > 0 for all t 6� 0. Hence, if V(x0) > 0 for
x0 ∈ ∩kH ik, then V(x) > 0 for all x, and the constraints can be removed
without altering the analysis. This concludes the proof.

Proof of Lemma 4.7

We will first prove the following lemma.

176



A.3 Proofs for Chapter 4

LEMMA A.1
The following statements are equivalent

1. pT x > 0 for all x such that Ex � 0 and x 6� 0.

2. p ∈ Int(KE) where KE � {y t y � ETu, u � 0}
3. There exists a vector u � 0 such that p− ETu � 0.

Proof: Let K o
E denote the polar cone of KE , i.e.,

K o
E � {x t xT y ≤ 0, ∀y ∈KE}

and let B denote the ball B � {x t ttxtt � 1} Then, equivalence of Claim 1
and Claim 2 follows from

1 ? pT x > 0 ∀x ∈ −K o
E\{0}

? pT x
ttxtt ∀x ∈ −K o

E\{0}

? pT x > 0 ∀x ∈ −K o
E ∩B

? ∃ε > 0, pT x > ε ∀x ∈ −K o
E ∩B

? pT x ≥ ε ttxtt ∀x ∈ −K o
E

? pT x ≥ ε yT x ∀x ∈ −K o
E, ∀y ∈ B

? (p− ε y)T x ≥ 0 ∀x ∈ −K o
E, ∀y ∈ B

Hence, by Farkas’ lemma, p− ε y ∈KE ∀y ∈ B which implies

? p ∈ Int(KE) ? 2.

We prove equivalence of Claim 2 and Claim 3 in two steps. First

2 ? p− ε y ∈KE , ∀y ∈ B

Let 1 � [1 . . . 1 ]T . Then, the statement above implies

> p− ε ET1
ttET1tt ∈KE

? ∃u0 ≥ 0, p− ε ET1
ttET1tt � ETu0

? p � ET
(

u0 + ε
1

ttET1tt
)

:� ETu ? 3
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where u � 0. Hence Claim 2 implies Claim 3. Conversely,

3 ?p � ETu, u � 0

?∃ε > 0, u+ εv � 0 ∀v ∈ B
?∃ε > 0, p+ ε ETv ∈KE

?p+ ε ET v ∈KE

and, if E has full column rank,

>p ∈ Int(KE) ? 2

We can now proceed to prove Lemma 4.7. Note that Claim 2 implies
Claim 1 trivially, since

pT x � uT Ex ≥ 0

for u � 0 and all x with Ex 6� 0.
Consider the converse statement. If E has full column rank, then 1>

2 by Lemma A.1. When E does not have full column rank then we can,
without loss of generality, assume that E is on the form

E � [ E+ 0 ] .

where E+ has full column rank. Now, Claim 1 implies that p must be on
the form

p � [ pT
+ 0 ]T .

Let x � [ x+ x0 ]. Then, we have

pT
+x+ > 0 ∀x+ with E+x+ ≥ 0, x+ 6� 0

and, by Lemma A.1, there exists u+ � 0 such that

p+ − ET
+u+ � 0

Hence Claim 2 follows with u � [ uT+ uT
0 ]T � 0, with arbitrary but u0 � 0.
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A.4 Proofs for Chapter 8

Proof of Proposition 8.4

LEMMA A.2
Let x, z ∈ Rn and let x � T̄ z̄ � T z+ t be an affine bijective map. If

E(S̄i) � {z t z̄T S̄i z̄ ≤ 1}

is the minimal volume ellipsoid that contains the set Zi, then

E(T̄ T S̄iT̄ ) � {x t x̄TT̄ T S̄iT̄ x̄ ≤ 1}

is the minimum volume ellipsoid that contains the set

Xi � {x � T̄ z̄ t z ∈ Zi}.

Proof: Since the mapping x � T̄ z̄, is affine and bijective,

E(S̄i) ⊇ Zi ? E(T̄ T S̄iT̄ ) ⊇ Xi.

Moreover, if E(S̄i) describes an ellipsoid, it can be written as

E(S̄i) � {z t (z− z0)T P−1(z− z0) ≤ 1}

for some x0 and some P � PT > 0. The volume of E(S̄i) is then

vol(E(S̄i)) �
√

det P ⋅ Vn

where Vn denotes the volume of a unit sphere in Rn. Let

T̄ � [T τ ] .

Then, the volume of the transformed ellipsoid is

vol(E(T̄ T S̄iT̄ )) � detT
√

det P ⋅ Vn.

Hence, for a given mapping T̄ the volume is proportional to det P, and the
circumscribing ellipsoid of minimal volume can be obtained by optimizing
the volume of either E(S̄i) or E(T̄ T S̄iT̄ ).
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LEMMA A.3
The minimum volume ellipsoid containing the standard simplex,

Xi � {x ∈ Rn+1 t xk ≥ 0,
n+1∑
k�1

xk � 1}

is the ball

E∗ � {x t xT x ≤ 1,
n+1∑
k�1

xk � 1} (A.1)

Proof See [61].

Note that both Xi and E∗ are affine sets in Rn+1, i.e., they live on a
constraint hyperplane {x t ∑n+1

k�1 xk � 1}. We note that Lemma A.2 can be
applied also to affine mappings that maps points in Rn onto the affine set
in Rn+1 defined by the constraint hyperplane.

PROOF A.1—PROOF OF PROPOSITION 8.4
Proposition 8.4 now follows trivially, since the map x @→ z defined by

z � Ḡi x̄

is a bijective affine map, that transforms an arbitrary simplex in Rn into
a regular simplex in the constraint hyperplane.

∑n+1
k�1 zk � 1. By virtue

of Lemma A.3, the circumscribing ellipsoid with minimal ellipsoid is then
the ball (A.1). By virtue of Lemma A.2, the minimal ellipsoid that contains
an arbitrary simplex in Rn is given by

E∗ � {x t x̄T ḠT
i Ḡi x̄ ≤ 1

}
.

This concludes the proof.

Proof of Proposition 8.5

LEMMA A.4
The minimum volume n-dimensional ellipsoid containing the unit cube

Xi � {x ∈ Rn t ttxtt∞ ≤ 1}

is the ball {x ∈ Rn t xT x ≤ n}.
Proof: Follows trivially from the inequality ttxtt2 ≤ √

nttxtt∞∀x ∈ Rn.
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PROOF A.2—PROOF OF PROPOSITION 8.5
Follows by direct application of Lemma A.2.

Proof of Proposition 8.6

PROOF A.3
According to Proposition 8.4, the outer ellipsoidal approximation is given
by

S̄i �
[

0n�n 0

01�n 1

]
− ĒT

i Ēi

Let 0̄ � [ 01�n 1 ] and 1̄ � [11�n 1 ]. From the computation of Ēi, Equa-
tions (8.4), (8.5), we have

1̄T Ēi � 0̄T

and thus

uiS̄i � uiĒT
i (0̄0̄T − I)Ēi

This expression is on the form ĒT
i Ui Ēi with uij � ui if i 6� j and 0

otherwise. This concludes the first part of the proof.
For the second part of the proof, consider the simplex

Xi �
{

x t x ∈ co(
[

1

1

]
,
[

2

1

]
,
[

1

2

]
)
}

for which we have

Ēi �

−1 −1 3

1 0 −1

0 1 −1

 , S̄i �

 2 1 −4

1 2 −4

−4 −4 10

 .

Let

P̄i �

20 0 5

0 1 0

5 0 −25


Pre- and postmultiplying the LMI (8.8) by z̄ � [3 6 4 ]T we obtain
−64−2ui, which is negative for all admissible values of ui (ui ≥ 0). Hence,
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there is no solution to this LMI. However, for the formulation (8.9), it is
straightforward to verify that the choice

Ui �

 0 20 5

20 0 20

5 20 0


solves the LMI.
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Examples

B.1 Further Details on the Min-Max System

Let

G1(s) � C1(sI − A1)−1B1 + D1 ,

G2(s) � C2(sI − A2)−1B2 + D2 ,

C(s) � Cn(sI − An)−1Bn + Dn.

Written in state space form, the system equations then become

{
ẋ1 � A1x1 + B1u

z � C1x1{
ẋ2 � A2x2 + B2z � A2 x2 + B2C1x1

y � C2x2{
ẋn � Anxn + Bn(ysp− y) � Anxn − BnC2 x2 + Bn ysp

un � Cnxn + Dn(ysp− y) � −DnC2x2 + Cnxn + Dn ysp
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This gives the state space model for the interconnected system

d
dt

 x1

x2

xn

 �
 A1 0 0

B2C1 A2 0

0 −BnC2 An


 x1

x2

xn

+
 B1

0

0

u+

 0

0

Bn

 ysp


y

uh

un

ul

 �


0 C2 0

−KhC1 0 0

0 −DnC2 Cn

−KlC1 0 0


 x1

x2

xn

+


0 0 0

Kh 0 0

0 Dn 0

0 0 Kl


 zmax

ysp

zmin.


Denoting the state vector by x̃, we obtain

˙̃x � Ãx̃+ B̃u + B̃spũsp

ỹ � C̃ x̃+ D̃usp

where u is generated through the min−max selector strategy.
In order to reduce the number of input variables to the min-max non-

linearity, consider the outputs

vhl � uh − ul :� C̃hl x̃

vnl � un − ul :� C̃nl x̃

vll � ul − ul � 0

and note that the input u now can be written as

min(vhl, max(vnl , 0)) + ul :� ϕ (vhl, vnl) + ul .

Note that ul This implies that we can consider analysis of the system in
Figure 4.11 where G̃(s) is the transfer matrix for the system

˙̃x � (Ã+ B̃ C̃l)x̃+ B̃w

y �
[

C̃hl

C̃nl

]
x̃.

where we have defined ul � C̃l x̃.
The four regions shown in Figure 4.12(right) have cell boundings

Ẽ1 �
[−1 0

0 1

]
, Ẽ2 �

[−1 1

1 0

]
, Ẽ3 �

[
1 1

1 −1

]
, Ẽ4 �

[
0 −1

−1 −1

]
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and the continuity matrices are given by

F̃1 �


−1 0

0 1

0 0

0 0

 , F̃2 �


0 0

−1 1

1 0

0 0

 , F̃3 �


0 0

0 0

1 1

1 −1

 , F̃4 �


−1 −1

0 0

0 0

0 −1

 ,

in the vnl/vhl space. To obtain the corresponding constraint matrices in
R

n, we post-multiply the constraint matrices by

C̃ �
[

C̃nl

C̃hl

]
.

In other words, Ei � ẼiC̃ , and Fi � F̃iC̃ . Further details on the compu-
tation of constraint matrices are given in Chapter 8.
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