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DIGITAL SIMULATION OF SPATIAL XENON OSCILLATIONS

Gustaf Olsson

ABSTRACT

A nonlinear model of xenon spatial oscillations in one dimension
based on one group diffussion theory and finite differences is

presented. The process has been simulated on a digital computer.

In the report is discussed the domain of linearity of the model.
The influence of different core parameters on reactor stability
and on amplitude of the oscillations is presented. The results

are compared to other models.

Influence of nonlinear terms, such as temperature feedback and
control rod, indicate that periodic solutions can appear. This
has been predicted earlier with a simple two point model. The rod
movement has a very big influence on amplitude and character of
the oscillations. It can be explained from a very simple model of

the core.

The simulations have indicated suitable approximations to get a
space independent nonlinear model of the process. Physical inter-

pretation and drawbacks of this model are discussed.
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1. INTRODUCTION

Xenon spatial instability is a problem in large power reactors.
It depends on the fission product xenon, which has a tremendously
large neutron cross section. The reactivity feedback from xenon
can cause oscillations in the power spatial distribution, which

have to be avoided.

The fundamental equations are rather complicated and it is im-
possible to treat them analytically as they stand. In an earlier
report [5] is described different mathematical models, and an
extensive study has been made of a simple two point model. This

model has given physical insight in the problem.

In this feport the equations are simulated on a digital computer.
The study includes the xenon instability problem along the core

axis. The importance of axial oscillations is discussed in [5].

The simulations were started at Swedish State Power Board, Stock-
holm, where the main part of the program TRAXEN was written. It
was necessary to know the xenon stability for the Marviken reac-

tor.

The purpose of the report is moreover:

- to study the influence of nonlinear terms and compare the re-

sult to previous linear model studies,
- to examine the influence from a control rod on stability,

- to calculate the amplitudes for the transients of different

disturbances.

In the next section the results are summed up.




SUMMARY OF THE RESULTS

The report deals with the axial problem of xenon spatial insta-
bility. In [5] is discussed the reasons for choosing the axial

direction.

The dynamical behaviour is governed by a nonlinear one group
diffussion equation for the neutron flux, which is coupled to
the ordinary nonlinear differential equations for xenon and
iodine. The equations are presented in 2.1. The solution method
is described in 2.2, Due to the nonlinear character it is neces-
sary to know time and space distribution of the disturbances.

The most probable ones are presented in 2.3. In 2.4 is the choice

of core parameters reported.

The simulations have been divided into two main fields, small and

large disturbances.

In chapter 3 is discussed the region for linearity. Inside this

domain the results from the simulations can be compared to those
of linear models. In 3.2 is discussed how stability can be deter-
mined from the trajectories. Critical height as function of dif-
ferent core parameters is presented in 3.3, The results are com-
pared to linear finite difference models and modal expansion mo-

dels with good agreement.

Of technological reasons the amplitude of the transients is im-
portant to know. It depends strongly on core height. The maximum
flux deviation as function of core height for step disturbances
is presented in 3.4, It is compared to a two point model from [5].

The agreement is rather good.

For large disturbances there are mainly two nonlinear terms,
which will affect the stability of the solutions, the absorbtion
term and the temperature-coefficient.Depending-on rod insertion
length in equilibrium rod absorbtion, amplitude and direction of
the disturbance the effect of the rod is very different. In 4.1
is discussed the rod movement from a very simple model. The re-
sults from the simulations are then compared to those of the

simple model and the agreement is surprisingly good.




The trajectories can be damped or amplified by the rod. Due to
this fact an unstable limit cycle occurs in some cases. For rod
control is shown in 4.2 that there are stable trajectories for

small disturbances but unstable ones for large disturbances.

In 4.2 is also shown that stable periodic solutions can appear.
This type of performance was predicted with a simple two point
model in [5]. In the nonlinear case the amplitude of the tran-

sients are no longer proportional to the disturbances.

In 4.3 is shown that the rod, the temperature coefficient as
well as the direction of the disturbance are very important for

the amplitude.

In chapter 5 is derived a space independent nonlinear xenon mo-
del. Similar models have been derived by other authors. It is
possible to give a nice physical interpretation of the equations.
However, it is shown that the model describes badly what happens

for big disturbances.

2. MATHEMATICAL MODEL

The xenon process is described by the coupling between the
neutron distribution equation and the radicactive decay diffe-

rential equations of xenon and iodine.

Since the xenon oscillations appear only in large thermal reac-
tors the neutron distribution is treated by one group diffussion
theory. Due to the long period of the oscillations the neutron
flux can be regarded stationary, why the flux distribution is
completely determined by the time dependent material buckling.

The control rod is simplified to have space independent absorb-

tion.
In 2.2 is briefly described the solution method.

The type of disturbances which are relevant are presented in

2.3, while the choice of core parameters are discussed in 2.4,




2.1  FUNDAMENTAL EQUATIONS OF THE XENON PROCESS
2.1.1 NEUTRON DISTRIBUTION

The fundamental equations and the conditions for the xenon pro-
cess are described in.[S]but are repeated here by convenience.
The motivation to study the axial oscillations is also found
there, why we directly describe the one group diffussion equa-

tion in one dimension:
P ] -
e [D(z,t) = @(z,t)] + (v Zf - Za) #(z,t) = 0 (1

where ¢(z,t) is the neutron thermal flux and

D(z,t) is the time and space dependent diffussion.

After division with a suitable mean value of D, called D°, equa-

tion (1) is transformed to:

O [E(z,t) & o(z,t]] + BX(z,t) o(z,t) = 0 (2)
37 Z, =7 &{z, Zy Zy =

where BQ(Z,t) is the material buckling and

E(z,t) is a normalized diffussion parameter.

The boundary conditions are:

#(z,0) = ¢°(2)

®(0,t) = ¢(H,t) = O (3)
f K(z) ¢(z,t) dz = P(t) ()
z

We approximate the space derivatives by finite differences and

get from (2):
(B ,. ~E)o . - &) +E(e  -20 +o | +h2Be =0
k+l K Tk+l k ot Tkl k k-1 k Tk

k=1, ..., N

where the subscript means space point




or

2 .2 _
q>k+1 . Ek+l - @k(Ek+l + Ek) + @k_l ‘Ek + h Bk’ q>k = 0 (5)
k=1l, ..., N

where we have defined:

The boundary conditions are described in discrete form as:

¢ (t) = 9,,.(t) =0
o :

N+1
¢, (0) = @}z k=1, .., N (6)
N

vleV . ®v(t) = P(t)

The buckling can be expanded into two parts, one equilibrium part,

B2ﬁg and one perturbed part,

2 - 2 ° o
Bk(t) = Bk + o (@k(t) - ®k> + B e <Xk(~t) - Xk> +

+ ck(t) + uk(t) (7)

The coefficients o) and B express the dependence of buckling on
changes in flux (and temperature) and xenon respectively. The
term ¢ is the influence on buckling from control rod movement

and ukis a general control term, available for the operator.




2.1.2 XENON AND JODINE EQUATIONS

Xenon concentration is built up mainly by radiocactive decay of
iodine and a smaller part by the fission. It is destroyed by
capture of neutrons and by radicactive decay. Iodine is also

got by fission and is destroyed by radicactive decay to xenon.

The xenon and iodine differential equations thus read:

aXx

K _ ,
E;w = - A, Xk(t) s Ik(ﬁ) * vy o @k(t) - o, Xk(t) ¢k(t) (8)
dI,
—= = -2y Ik(t) *v; oo, ¢k(t) k=1, ..., N (9
dt
The boundary conditions are:
Xo(t) = XN+l(t) = 0
Io(t) = IN+l(t) = 0

o (10

X,.(0) = X} k=1, ooy N
Ik(O)zI}Z k=1, vouy N

2.1.3 ABSORBTION TERM IN BUCKLING

The absorbtion or control term ¢ in the buckling (7) represents
an absorbtion which must be added or subtracted in order to main-

tain criticality of the reactor.

As shown in [5], chapter 2.7, only one parameter is necessary to
describe uniquely the absorbtion distribution o) (k =1, ..., N).

Physically we have discussed three alternatives, which we call:

- rod control with variable insertion length,
- rod control with variable absorbtion,

- homogeneous control.




(i) ROD CONTROL WITH VARIABLE INSERTION LENGTH

We assume the absorbtion constant along the rod, called cl.
The insertion length is called A, where 0 < A ¢ 1, and A de-
termines uniquely the absorbtion. Of computational reasons i
can exceed these limits in order to maintain criticality.

Then we have the two cases:

1 A< 0 0 <z < H
A. clz,t) = A(t) » ¢ if
A> 1
or in discrete form
1 A <0
ck(t) =z A(t) - ¢ k=1, ..., N (1)
X> 1
and
c1 0 <z < M
B. e(z,t) = if 0 < a(t) <1
0 AH <z < H
or in discrete form
1
c for k < [NA] + 1
o (t) = - [ e et fork= [0 +1 (12)
§ else

k=1, ..., N 0 <A(t) <1

where [&] assigns integer part of y.




(ii) ROD CONTROL WITH VARIABLE ABSORBTION

Now the insertion is assumed to be constant and the absorbtion
is variable. Physically this case can be interpreted as if many
fine control rods are inserted from top to this insertion length.
We regard all fine rods as one big rod with variable absorbtion.
The absorbtion along this rod cluster is assumed to increase or
decrease if some fine rod is moved in or out. We determine a

point K* inside the core and get:

L.

1 ifke XK eN (13)

o (t) = a(t) « ¢

ck = 0 else

The parameter ) now determines the absorbtion along the rod.

(iii) HOMOGENEOUS CONTROL

The absorbtion is constant in the whole core, and we get this

case by setting KX = N in (ii)
- 1 -
o = A(t) ¢ k=1, ..., N ()

Physically this control may be regarded as an absorbtion control

by a liquid or gaseous absorber.




2.2 SOLUTION METHOD

A Fortran program TRAXEN (TRAnsients of XENon) is written to
solve the system equations (%), (8), (9), for all types of dis-

turbances. The program is described in more detail in appendix 3.

As input data we must give geometrical data, mean flux, nuclear
constants, control configuration, time and spatial distribution
of disturbances, core parameters, such as spatial distribution
of buckling, temperature coefficient and diffussion, power con-
dition and desired accuracy. The program calculates both equili-
brium flux distribution and transients of the flux, xenon and

iodine distributions.

As the neutron diffussion equation (5) is always stationary, the
program calculates iteratively the new flux distribution in every
time step from the known value of the state in the previous time

step.

The equations are integrated with a Runge - Kutta method, corrected
with Richardson extrapolation. The numerical methods are described

in appendix 2.

In introductory simulations have been tried different time step
lengths. It was found that one hour was suitable, and regarding

the period of about 24 hours it is accurately enough.

The program is made for maximum 50 node points. As the computing
time increases as about NQ, it is necessary to compromize between
accuracy and computing time. In [5] chapter 4.2.1 we found that
the stability limit could be accurately determined with 20 space
points, and for the following simulations we have chosen N = 20

throughout .




2.3 TYPE OF DISTURBANCES

For the nonlinear analysis it is very important to know the type
of disturbances which are relevant. As we want to know the con-
ditions for xenon instability, in order to build the reactor in-
herently stable, we want to know the most serious disturbance in
order to be able to predict, if the actual reactor is stable or

not for all possible disturbances.

2.3.1 SPATTAL DISTRIBUTION OF THE DISTURBANCE

Due to the complexity of the problem we cannot analytically de-
rive the most serious disturbance. However, we can regard the
xenon problem as mainly first overtone oscillation. Therefore
it seems natural to give the flux a disturbance mainly in the
first overtone by moving reactivity from one half of the core
to the other.

The disturbance u(z,t) (7) is assumed to be separable in space

and time:

u(z,t) = r(t) « R(z) (15)

We have standardized the distribution R(z) to be constant in

every half, as in figure 1.

neutron flux—__

s
/4;52§f€§§2;f;/ core axis

Fig. 1: Space distribution of the reactivity disturbance of the

neutron flux.

The shattered areas mark the movement of reactivity. We call the

variable r(t) the amplitude of the disturbance. It can,of course,

be both positive and negative.

10.




11.

As an example of a disturbance with a distribution of this shape

we will regard a refuelling process.

We assume the total power to be constant. The refuelling process
takes place during the operation of the reactor. Before the re-

fuelling the rod (rods) may be in a position like figures 2a or 2b.

Fig. 2: Examples of rod positions before refuelling

When new fuel elements are inserted, the reactivity in the core
increases, why the rods must be inserted in order to hold the

power constant (see fig. 3: a, b)

"o

|
® I
AN

® C)

Fig. 3: Examples of position of control rod after refuelling.

The plus and minus signs stand for changes in reactivity.

Figure 3 shows the sign of the disturbances in the two halves of

the core for these two standard cases.



2.3.2 TIME DISTRIBUTION OF THE DISTURBANCE

In the linear and nonlinear stability analysis the zero solution

is disturbed during a finite time. We have chosen the time distri-

bution r(t) to be a rectangular pulse of one or two hours duration.

Except the stability analysis we want to know the amplitude of the

transient, which is caused by a reactivity disturbance.

The time function r(t) has been chosen to a step in some cases.

This disturbance may be relevant e.g. for a refuelling process.

The amplitude of the disturbances has been chosen between 10 and

1000 pcem in the simulations. The biggest disturbance may occur in

a reactor when a fuel element accidently falls down in the reactor.

During a refuelling process the movement of reactivity is likewise

considerable.

2.4 CHOICE OF REACTOR CORE PARAMETERS

All parameters and their values are found in appendix 1. The equa-
tions are valid for both heavy water and light pressurized water
reactors. In these simulations is used only heavy water reactor
datas. They are much standardized but several core parameters are
taken from the Marviken reactor, [4], which was the first object

for this study.

The most interesting parameters affecting the stability are:

- core height H

- temperature (or flux) coefficient o
- mean flux level @

- flux shape ¥, %"

~ absorbtion configuration c

- type of disturbance

The rod absorbtion cl (12) is very important, as the insertion
of the rod is dependent of o', Likewise the rod movement during
an oscillation is dependent of cl, which will have big influence

on stability, as we will discuss in section 4.2.

12.




13.

In Marviken a shim rod will hold 1000 pcm. As our rod may repre-

sent several fine rods we have chosen 500 pcm as a representative
value of the rod absorbion, when it is inserted in the whole core.
In this study we are only interested in the general behaviour for
a standard reactor, but in a case study this absorbtion should be

carefully taken into account.

Even if the TRAXEN program is prepared for hydrodynamic studies
with a variable diffussion constant we do not take the void into

account in this study. Thus:

Ek z constant = 1 for all k.

Likewise, we have incomplete information about the space distri-
bution of a (eq. (7)) and have treated o as space independent.
The mean value of the flux is calculated as:

1 N

b q>k (16)
N + 1 k=1

ol
4

When the numerical values of the parameters are not specially

mentioned, we have used the values from appendix 1.
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3. SMALL DISTURBANCES

Several previous reports on the xenon problem have treated the
linearized equations, just in order to find the stability

boundaries. An extensive reference list is found in [ﬁ].

By studying the nonlinear equations for different disturbances
from equilibrium it is possible to get a good feeling for the
domain where the linear approximation is valid with reasonable

accuracy. This is discussed in 3.1.

In 3.2 is defined stability criteria and in 3.3 is shown how

critical height depends on different core parameters.

The amplitude of the transient is an important measure of per-
formance of a reactor. We measure the maximum flux deviation from
equilibrium in the core. The amplitude depends on several core
parameters, mainly on core geometry. This relationship is dis-
cussed in 3.4, It is possible to get an estimation of the ampli-
tude as function of core height from a two point model. A compa-
rison is made between simulation results and an analytical deri-

vation of the amplitude.

3.1 THE DOMAIN OF LINEARITY

One purpose of this study was to find the importance of the non-
linear terms in different situations. It is impossible to give a
general criterion of the boundaries of the linear region. We will,
however, give some hints where reasonable accuracy of the super-

position principle is to be found.

An easy criterion to check is the rod movement. From (2:7) we

find that this is a small term. In [5] chapter 2 was found that

the control term had no influence on linear stability for a symmetric
two space point model or for a linear finite difference multipoint
model with flat flux. It is reasonable to assume that the rod move-
ment at small disturbances has small influence on stability even

for other flux forms.

In the simulations we use the rod movement as the primary indicator

to determine whether the disturbance can be called small or large.

Further, the amplitude of the transient shall be linearly related

to the amplitude of the disturbance.




The permitted domain for small disturbances depends strongly on

the core parameters, and it is,of course, larger for smaller core

sizes and more stable reactors (stability is defined in 3.3).

We show some numerical examples to illustrate the linear domain.

We have measured the first maximum of the amplitude of some tran-

sients for different disturbances and have checked the linearity

by the superposition principle. As a measure of transient ampli-

tude we use the maximum flux deviation from equilibrium in the

core. The result is described in table 1.

Table 1: Maximum amplitude of neutron flux deviation transients

related to different disturbances. The flux form is

found in fig. 1:E. The control is homogeneous.

Core height

Step disturbance

Normalized values

r(t) pom Disturbance | Ampl. of transient

7.5 m 10 1 1
20 2.00
50 S5 4,98
100 10 9.64

7.0 m 20 2 2
50 5 5.00
100 10 9.80

6.0 m 20 2 2
100 10 10.04

As table 1 shows we can regard 50 pem as a small disturbance

(within 1% accuracy) for a reactor near the stability limit,

while 100 pcm gives a rather good linear relationship for a

6 m reactor for this special flux, representative for the Mar-

viken reactor (see fig. 1:D). When studying the linear sta-

bility we have used 10 - 50 pcm as disturbances.

15.
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3.2 STABILITY IN CASE OF SMALL DISTURBANCES

We use the definition of stability in the sense of Lyapunov,
which means that a trajectory is stable (asymptoticly) when
the deviation of the state after a disturbance of the zero

solution converges to zero. Otherwise it is unstable.

The stability can be measured or calculated in several ways.
In [5] we regarded the eigenvalues of the system matrix. Here
we will study the convergence of the trajectories of every space

point.

It is sufficient to check the stability in one point. This is
realized by studying (2:5), which couples all the state vari-
ables strongly together. The system can be described by:

% = A e x

where x is the state vector and A is a 2N x 2N matrix.

Eq. (2:5) causes every state variable to be coupled to its
neighbours in A. Thus if one state variable is unstable, all
the state variables must be unstable, due to the strong coup-

ling in the system matrix.

It is even sufficient to decide convergence or divergence
near the stability limit by studying only two consecutive
extremum values of the transient. This is important, as the

computation takes much time.

If a transient seems to be at the stability limit when looking
at two peaks, one must be sure that no slowly varying unstable
oscillation is added to the dominating oscillation of 24-hours
period. In [5] sect. 4.2.2 is calculated the eigenvalues for
two standard fluxes at the stability limits, and this shows

that no unstable oscillation is added to the dominating oscilla-
tion.Only fast decaying oscillations appear beside the undamped

oscillation.

A number of simulations of about twenty periods (> 500 h) for

different fluxes have confirmed this statement.




One observation may be done. We have neglected influence from
the fission product samarium, which has a cross section about
a hundred of that of xenon and may cause small oscillations of

a periodicy of several days.

We will often express the stability in a significant core para-
meter and define the critical height as the core height where

the stability limit is reached.

3.3 CRITICAL HEIGHT AS FUNCTION OF DIFFERENT CORE PARAMETERS

As pointed out in 3.1 the rod movement can be neglected in all
the linear studies. Thus we need not distinguish between rod
control and homogeneous control in the stability analysis or

at amplitude calculations. Simulations have confirmed the state-

ment.

Generally the stability is decreasing when core size, tempera-
ture coefficient or mean flux is increasing. For very high flux
levels, however, the stability is increasing again. A slight
asymmetry in the flux shape can also make stability better com-
pared to a symmetric flux shape. Moreover, a flat flux has a
lower critical height than a sinusodial flux (see also [5],

chapter U4).

The flux shape may be described by the form factor ¥, the sym-
metry or it can be characterized by a ditch form (flux B and F
in fig. 1). Generally the critical height is bigger for a bigger

form factor. In table 2 are compared the critical heights as func-

tion of the form factors for some common flux-shapes.

18.




Table 2: Critical height H(m) for different form factors Y,
calculated with TRAXEN for 20 space points.
(3 = 1; o = -0.0514)
The flux forms are shown in figure 1.
The critical height is the same for rod control and

homogeneous control.

Yy Flux Hcrit(m)
1.0 A 5.36
1.14 B 5.15
1.28 C 7.25
1.35 D 7.3
1.35 E 7.5
1.6 F 5.05
1.u47 G 7.7
1.57 H 8.89

The table also shows that the form factor is no unique measure

of flux shape.

Fluxes B and F have a lower critical height than A, depending
on the ditch shape along the axis. As the xenon oscillations are
mainly affecting the first overtone, the loose coupling between
the two halves of the core for a ditch flux shape causes a less
stable flux. These results are compared to other models in [5],

chapter 4.3 and the accuracy is satisfactory.

The dependence of the temperature coefficient o has been calcu-
lated. For a flat flux (fig 1:A) the following values of critical
height H(m) have been computed (& = 1, homogeneous control).

o Hcrit(m)
-0.0514 5.36
0 5.02

In [6] is calculated the quotient

19.




for a two point model, where we found:
K = 0,062,

Here we find:

K = 0,063,

In [5] was proved for a two point model that the critical height
is lower for a symmetric than for an asymmetric flux shape. This
is verified by computation with the TRAXEN model. In table 2 we
see that flux D has a higher critical height than flux C (see
fig. 1). The fuel distributions in the fluxes C and D are the
same. Flux D is got from flux C only by moving absorbtion from
one half to the other in order to get an asymmetric equilibrium
flux.

We conclude, that the control rod movement does not affect the
value of the critical height. On the other hand we see, that the
rod insertion length in equilibrium may affect the stability. It
will influence the flux distribution, which in turn influences

stability.

20.




3.4 AMPLITUDE OF THE TRANSIENTS

For small disturbances the type of the input signal is irrelevant
for stability tests. We have therefore used steps as disturbances,

as they are rather common in real reactors (see 2.3).

Besides stability boundaries there are bounds on the amplitude of
transients in a power reactor. The flux deviation must not deviate
more than some 5 or 10% from equilibrium. As the amplitude of the
transient is related to stability, we use even the maximum ampli-
tude of the transient as a stability measure. In order to be able
to compare different reactors we choose a step in reactivity as a
standard disturbance. The disturbance consists of a stepwise move-

ment of 100 pem from one half to the other half of the core.

We treat only stable reactors, which means that the maximum of a

step response appears in the first overshoot.

3.4.1 SIMULATION RESULTS

Due to the nature of the oscillations the most serious point of
the core is situated around the center of one of the two core
halves, i.e. at the coordinates z = 0.75 Hor z = 0.25 H. The
simulations show, that for the standard flux shape of figure 1:C

the most serious point is z = 0.810 H or z = 0.190 H.

After a step disturbance we get a transient in every space point
like figure 2. We are now interested in the amplitude of the first

overshoot.

Table 3 shows the result of a number of simulations. Flux shape is
that of figure 1:C, the disturbance is 100 pcm and the control is

homogeneous.,

Table 3: Amplitude of first overshoot as function of core height
for the flux C of figure 1.
H = 7.25my o= -0,0514; 9 = 1

crit
Control is homogeneous. Disturbance 100 pcm.
Core height (m) Amplitude @(z = 0.81 H)(%)
5.u7
10,54
6.5 13.7
7.0 19.29
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Figure 2 shows the biggest flux transients for two of the fluxes 22.

after a 100 pcm disturbance, the 6.0 and 6.5 m cores.

¢ 0.15
0.10 A
8
A
0.05 1
0 T T T T
0 10 20 30 40 S0 tlhrs)
Fig. 2 - Neutron flux transients after a 100 pcm step distur-
bance in the most serious space point z = 0.81 H. The flux form

is shown in figure 1:C

o = 1

-0.0514

Rod control

Core height: A) 6.0 m
B) 6.5 m

o

The relationship between core height and amplitude is presented
in figure 3. We can see, that the amplitude is increasing very

fast with core height.

¢ 0.20
0.10 - %
]
B
0 T |
5 6 7 H(m)
Fig. 3 - The maximum amplitude of the flux deviation after a

100 pcm step disturbance as function of core height. Comparison
between simulations with TRAXEN (A) and analytical results with
a two point model (B). The flux form is shown in figure 1:C

= 1

o = -0.0514

Rod control (same result as homogeneous control)




3.4,2 COMPARISON WITH A SIMPLE TWO POINT MODEL

In [5] is presented a xenon model when the diffussion equation
is given in only two core points, called the two point model.
From this model is derived in appendix 4 a linear two point
model of the form:

dx _

Tt Ax + Bu

y = Cx + Du

where y = @, = flux deviation

i

u = absorbtion input.

The transfer function G(s) is of second order. It is easy to

derive the step response and its maximum values analytically.

For the case:

-0.0514

Q
11

giving Hcrit = 6,93 m
the values of maximum flux deviation are compared to the simula-

tions in figure 3. The values are also shown in table Y.

Table 4: Amplitude of the first overshoot as function of core

height for a two point reactor model.

=1 0= -0.0504; H . =6.93m
crit
Disturbance 100 pcm.
Core height (m) Amplitude @(%)
5.0 4,97
5.5 6.78
9.32
6.5 13.03
18.79
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The comparison can only be qualitative as the flux shapes and
critical heights are quite different, but the agreement bet-
ween the simulations and the two point model is all the time
within 10%. Near the stability limit the difference is only
2.6%.

4. LARGE DISTURBANCES. INFLUENCE OF NONLINEAR TERMS.

In this chapter is discussed the influence of different non-
linear terms. The most important ones are the absorbtion term
(e.g. from the rod) in the buckling, the temperature coefficient

and the quadratic term in the xenon equation.

If a rod is used for control, the influence may be very strong
of this nonlinearity. In 4.1 is discussed qualitatively the in-
fluence from a very simplified model. It is shown, that this

model can explain all the different types of rod movement, that

have appeared in the simulations.

The next important nonlinear term is the temperature coefficient
a. It has influence both on the linear stability and on the non-
linear character of the solutions, and a more negative o has a

strong stabilizing effect on the oscillations.

In 4.2 is discussed appearance of periodic solutions, limit
cycles, both with rod control and with homogeneous control. Soft
self excitation and hard self excitation have been shown. The pe-
riodic solutions were discovered with a simple two point model,

[5], chapter 5, and have been verified by simulations here.

In 4.3 is discussed influence of nonlinear terms on the ampli-
tude of the transients. As a criterion of nonlinear influence
we calculate the accuracy of the superposition principle in dif-

ferent cases.

2L,
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4.1 INFLUENCE OF ROD MOVEMENT ON STABILITY

As the absorbtion c(z,t) is completely determined by one para-
meter, one of the constants in (1:11) or (1:12) can be arbitra-
rily chosen, e.g. the "thickness" of the rod. The rod insertion
length and the movement are related to the thickness, and, as
we will show, the stability in turn is dependent of rod move-

ment.

Now, we will discuss, what causes the absorbtion to increase
or decrease, or alternatively what causes the rod to move up
and down. From some very simple examples we will demonstrate

the rod movements for different phases of the oscillations.

4.1.1 GENERAL DISCUSSION

Case 1

Regard a flux during an oscillation. We will study the special
condition when the oscillation passes a symmetric shape as in
fig. 1. For simplicity we assume the buckling to be space inde-
pendent in the two halves of the core. The buckling is called

2 2
Bl and B2.

822

core dxis

Figure 1: Symmetric flux distribution.

Assume, that the flux deviation will be as in figure 1. The

buckling B% decreases and the Bg increases.

In appendix 5 is shown, that, in order to satisfy all the bound-

ary conditions, we must have:

2

1 L

AB

>

2

e

4

where AB? is the total finite change in buckling.
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Now the change of buckling is caused by four different terms
(2:7). We assume, that the mean value of xenon and flux devia-
tions are equal but of opposite sign in the two core halves,
as the total power is constant. Thus the contribution to A82
from the xenon and temperature coupling are approximately equal.
Further we assume the disturbance u is of the same amplitude

but opposite sign in the two halves.

In order to satisfy (1) we must add absorbtion to the core,

which can be done in a couple of ways:

- in the case homogeneous control the same absorbtion is added
to both halves which directly makes (1) to be satisfied,

- in the case rod control we must either decrease Bi by in-
serting the rod in_the left part, or we can decrease Bg by
inserting it into the right part, or a combination of these

movements.

An analogous discussion is valid for the opposite flux movement
to that in fig. 1.

To sum up, absorbtion must always be added when the flux deviates
from its symmetric shape. The deviation may be caused by disturb-
ance of an equilibrium flux or a free oscillation or both these

changes.

Case II

We regard the flux during an oscillation or in equilibrium when

it is asymmetric and we assume

<
By < B

where Bi are assumed to be space independent bucklings.

[
|
2 |
B B2
| core daxis
Figure 2: Asymmetric flux
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If the deviation has a direction as in fig. 2, we get devia-

tions of the buckling called ABi and ABg. In appendix 5 is
proved that for the simple case, that Bi and Bg are space
independent

2 2
1ABl > ABQ‘

If we further assume as in case I the xenon deviations to be
almost equal in the two parts we must even here add absorbtion

to the core, e.g. insert a rod.

Case III

For the flux movement in figure 3, where B§< Bg we can distinguish

between two cases. If the deviation of the flux is so small, that

it does not reach the symmetric shape we have (see appendix 5)

2
1

2
2]

>

E

where AB? are the changes of the bucklings and absorbtion must be

subtracted, or the rod is moved out.

Figure 3: Asymmetric flux

If the deviation is so big, that the flux shape passes the sym-
metric shape (see fig. 4) the movement can be divided into two
parts. For the first part, up to the symmetric shape, fig. 4, we
have to subtract absorbtion (to draw out the rod). For the second
part of the movement, we have exactly case I and absorbtion must

be added again (the rod is inserted again).
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Figure U4: Deviation of flux from asymmetric to symmetric shape.

Simulations have shown that this reasoning is valid for a great
number of different flux forms. A contradiction has not been
shown for neither rod control nor homogeneous control during

a single simulation.

4.1.2 SIMULATION RESULTS

In a couple of numerical examples is demonstrated the variation
of the absorbtion. In the first example we have homogeneous
control, and in the second and third examples we use rod control.
For the two latter cases is demonstrated the effect of the rod

on stability, depending on direction of the disturbance.

Example 1: Homogeneous control

Figure 5 shows a flat flux oscillation (fig. 3:1:A) during 30
hours. Core height is 5.40 m, 0.04% m above the critical height.
The disturbance is a 1000 pcm pulse, moved from "left" to "right"
in the flux during 2 hours. After this time the oscillation is
free. The pulse causes the flux to deviate directly from equi-
librium and absorbtion is added (Ac < 0). We observe the flux
deviation after the pulse has finished at t=2 (B). When this
flux form is oscillating to the symmetric shape (C), absorbtion
is taken away (Ac is growing in the upper curve). In the next
phase, from C to D, we add absorbtion at the same time as the
almost symmetric flux shape C oscillates to D, and then a simi-

lar sequence takes place in the continuation of the transient.
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AC(pcm)
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C E //// -
T I 1
10 20 30 t(hrs)
..50._
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A ¢ l |ul=1000pcm
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equilibrium
z
E
P05 0.5- v
//////’— t=19

—’////// t=2 z z
-0.5- -0.5-

0.5 Fos’
t=7 /]
z / t=25 Z
0.5 ~0.5

0.5
\ £=13
\\ 2
-0‘5_
Fig. 5 - Variation of control termC during an oscillation for

a flat flux with‘homogeneous control

H= 5.40 m » = 1.0

a = -0.0514

Disturbance 1000 pcm during 2 hours with direction shown in A.
The curves B-F show the spatial distribution of flux deviation.

Coincident points of time (B-F) are marked.




Thus we observe that the absorbtion must oscillate with double

frequency compared to the flux or xenon oscillations.

Example 2 - 3: Rod control

A similar oscillation of the absorbtion as in example 1 is ob-
sepved in the rod control case. During an oscillation the rod
has to move to and fro in order to maintain constant power and
this will have a strong influence on stability and on the ampli-
tude of the transients. We will study two different disturbances

on a flat flux, the same flux as in example 1.

Figures 6 and 7 show the result of two different signs of a
disturbance on the same flux and rod configuration. The total
absorbtion varies in the same way but with different amplitudes
and is also similar to that of homogeneous control, fig. 5. It
can be explained from the general discussion of the preceeding

section exactly as example 1.

Thus the rod movement must have different influence on the tran-
sients in fig. 6 and 7. Compare the curves B in fig. 6 and 7. In
the former case the amplitude of the flux deviation is smaller
than in the latter case depending on the rod. In both cases the
rod has moved to right, into the right core half, and has caused
a damping of the first flux (fig. 6) and an amplification of the
second flux (fig. 7).

We can see from fig. 6 and 7 that every second time the rod
moves in, it causes amplification and every second time it

causes damping (curves B, D, F).

The transient in figure 7, however, are all the time bigger
than those of figure 6. This depends on what has happened
during the first two hours, when the disturbance was acting.
In both cases it was inserted, but in figure 7 it caused al-
ready here an amplification. The flux is more sensitive to
the disturbance of figure 7 than that of figure 6 for this

rod configuration.

We realize immediately, that if the rod from the beginning is
inserted only in a small part of the core, we get the same type
of variation as in figure 6 and 7, but the mean value of the

insertion is now A = < 0.5. Thus the disturbance like figure 6

30.
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can be amplified instead of damped by the rod as the absorbtion
increases in the left part only, where the flux decreases. The

opposite effect is got for the opposite disturbance. If the rod

has smaller absorbtion it must be moved a longer way in order to

maintain criticality during an oscillation. Then we intuitively

realize that the maximum influence of the rod is got for an in-

sertion variation over a whole core half.

We have from this discussion a good explanation to the strong
asymmetry of the two point model oscillations in ref. [5] chap-
ter 5.1.2. For one half period the transient is amplified

(fig. 5:3, 4 in [5]) and for the other half it is strongly
damped by the '"rod". In the two point model we have all the time
a maximum influence of the '"rod" as it all the time acts in the

whole '"core half", namely in one of the two space points.

In 4.2 and 4.3 are shown some more simulations where the rod

has influenced the trajectories considerably.
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Fig. 6 - Variation of rod insertion X during a xenon oscilla-
tion for a flat flux. Rod absorbtion = 500pcm maximum.
H=5.40m ¢ = 1.0
a = —-0.0514

Disturbance 500 pcm during 2 hours with a direction as in A.
The curves B-F show the spatial distribution of flux deviation.

Coincident points of time (B-F) are marked.
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Fig. 7 - Variation of rod insertion A during a xenon oscilla-
tion for a flat flux. Rod absorbtion = 500 pcm maximum.
H=5.40 m » = 1.0
o = -0.051k4

Disturbance 500 pem during 2 hours with a direction as in A.
The curves B-F show the spatial distribution of flux deviation.

Coincident points of time (B-T) are marked.
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4.2  STABILITY.PERIODIC SOLUTIONS
4,2.1 CRITERION OF STABRILITY IN CASE OF LARGE DISTURBANCES

In 3.2 we defined stability in case of small disturbances. When
studying the nonlinear trajectories we must care about every

single trajectory.

Let us define the amplitude of a transient to be ||x||, where

||%]]= 0 in equilibrium.

We call the trajectory stable if:

Lim | |x|] <M

tow

where M is a finite number.

If

the trajectory is asymptoticly stable.

#,2,2 ROD CONTROL

In chapter 5.1 in [5] is reported the appearance of periodic solu-
tions for a nonlinear two point model. It is shown that the tempera-
ture coefficient o has a significant influence on the character of

the solutions.

With the complex model it is even possible to show a strong influ-
ence of the flux shape. In chapter 3.3 was found that a smaller

form factor gave a less stable flux or a lower critical height.

Here is shown two cases which confirm what is shown in chapter 5.1
in [5] about periodic solutions. It is possible to get stable pe-
riodic solutions for both a = 0 and o < 0 with a core height above
the critical height. The small disturbance solutions diverge to the
limit eycle, while big disturbance trajectories converge to the

same limit cycle.




35,

In [5] was also shown the appearance of unstable limit cycles.
It has not been possible to confirm this result for flat fluxes,

but for a ditch flux we have got unstable limit cycles.

Example 1: Stable p eriodic solutions

Figure 8 shows trajectories for a flat flux reactor, bigger than
critical height. The solutions converge to a stable periodic
solution. The curves B and C show the same oscillations as in

fig. 6 and 7. The upper curve, A, shows a small disturbance tra-
jectory of a single space point. The transient in A diverges,
while B and C, which are caused by big disturbances converge to

a stable periodic solution, whose period time is about 24.1 hours.
The trajectories are rather symmetric around the time-axis, be-
cause the rod movement is not very big (see fig. 6 and 7). Com-

pare [5] chapter 5.1.

Fig. 8 - Trajectories of flux and xenon deviations in one
space point z = 0.048 H of a flat flux (fig. 3:1:A) reactor

with rod control (the same as in figures 6 and 7)

H = 5.40m (H ., = 5.36 m)
crit

o = -0.051k4

o = 1.0

The direction of the disturbance is shown in the small figures.
The amplitude 1is

A. 50 pcm Divergent trajectories

1"

B. 500 " Convergent
C. 500 A A "



£ ¢
0.025 0.05-

lul= 50 pcm

>
P4

36.

-0.025 -0.05-

E 9
0.25 0.50-

lul = 500 pcm

[
50 t{hrs)

-0.25-0.50-

g @
0.25 0.50+

ul =500pcm

—

v

i
50 t(hrs)

-0.25 -0.50-

50 t(hrs)




Ixample 2: Unstable periodic solutions

For a ditch flux, fig. 9 (the same as fig. 3:1:F), was found an
unstable limit cycle. The core height was 5.0 m, and as the cri-
tical height is found to be 5.05 m (section 3.3) it is stable for
small disturbances. The flux was disturbed by 100 pcm reactivity
moved from one side to the other, as in figure 9. Unstable tra-

jectories were found.

core axis

Figure 9: Ditch flux distribution.
H=50m

The rod at equilibrium is shown.

As mentioned earlier it has been rather difficult to verify
unstable periodic solutions. This depends very much on rod
configuration. As mentioned before, the '"rod" can cause much
bigger amplifications in the two point case. Perhaps we have
not found the most serious rod configuration in the simula-

tions.

37.
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4,2.3 HOMOGENEOUS CONTROL

With homogeneous control the nonlinear terms are still damping
large trajectories very powerful, why periodic solutions appear
even here (compare [5], chapter 5.1). The periodic solutions
exist for both positive and negative values of o. As a negative
o has a damping effect on the trajectories, the amplitude of
the periocdic solutions are smaller for negative than for posi-

tive o.

We will regard a case when o = 0. The core height is H = 5.02m,
1 em over the critical height. Thus the trajectories for small
disturbances are unstable, but those for big disturbances are
stable, as in figure 10. The period of the periodic solution is
about 24.5 hours.

|

W l equilibrum flux
e 9 >z

0.5 0.5 4 £

0
t(hrs)
-0 5-05 - ] P
0.5-0.5 ©
Fig. 10 -~ Trajectories of flux and xenon deviations in one

space point, z = 0.952 H, of a flat flux (fig 3:1:A) reactor

with homogeneous control.

H = 5.02 m (Hcrit = 5.01 m)
o = 0
& = 1.0

The direction of the disturbance 1s shown in the small figure.
The transient is convergent althought the reactor is above the

critical height.
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4.3  AMPLITUDE OF THE TRANSIENTS
4.3.1 INTRODUCTION

As mentioned before, not only the critical height but also the
amplitude of the transients are very important of technological
reasons. After a disturbance of the reactivity we want to know
when the first maximum positive deviation of the flux appears

and how big it is. In fig. 8 we can see that it appears at the
end of the pulse disturbance at t = 2. Depending on the direc-

tion of the disturbance, the most serious point will be in the

upper or lower core half.

In 2.3 we mentioned that step disturbances may also be relevant

in order to study the amplitudes.

In next section we will study the influence of the control rod
on transient amplitude. In 4.3.3 we use homogeneous control. In
this case the nonlinear character is mainly determined by tem-

perature coefficient and xenon feedback in reactivity.

4.3.2 ROD CONTROL INFLUENCE ON AMPLITUDE

In 4.2 is already studied two cases, figures 6 and 7, where the

rod has a big influence on the first maximum flux deviation.

Example

A further example is studied below. A reactor with 7.0 m core
height (figure 11) was disturbed by a step of 500 pcm reactivity.
The critical height is 7.3 m. Figure 12 shows the trajectories
at the points z = 0.81 H and z = 0.19 H respectively, where the
flux deviation is largest. In the figure is compared three dif-
ferent cases. Curves A and C are for rod control, where the rod
is inserted to about the core center at equilibrium. The direc-
tion of the disturbance is opposite in the two cases, curve C as
marked in figure 11. Curve B is the result with homogeneous
control and is shown for comparison. We can see that the rod

has a considerable influence on the amplitude.

The behaviour can be explained as in previous sections.




As shown in 4.2 we have to add absorbtion during the first part Lo
of the oscillation. With a rod we must insert it for both direc-

tions of disturbance. Therefore it will damp the movement, caused

by a disturbance as in figure 11 (curve C in fig. 12) and will

amplify the opposite step answer (curve A). With homogeneous

control we have a medium amplitude (curve B).

|u]|=500pcm

| rod
’/////1///4|
L 0.19 H lo.g1 H Figure 11: Flux distribution.
L ! e
core axis H=7.0m ¥ =1.33
1.0
? A=1.21
~
A
B
0.5 <
0
0 5 10 t(h)
Fig. 12 - Trajectories for maximum flux deviation in one

space point of the flux shown in figure 11.

H=7.0m (Hcrit = 7.3 m)
o = -0.051k4
» = 1.0

The disturbance is a 500 pcm step. The direction is as in fig.l11l
for B, C and opposite for A.

Rod insertion length A is shown for its maximum deviation.

Control Variable A(t=0) A(t=0+)
rod @ (z=0.19H) 0.54 0.56
B homogeneous @ (z=0.81H) - -

rod P(z=0.81H) 0.54 0.7h4
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0.10 1 H=6.0m

100 ' 500 | ul

Fig.13. - Maximum flux deviation at one space point z = 0.81 H.
The reactivity disturbance is a step of u pem with a direction as
in the figure.

Core height 6,7,7.5 m

o = 7.0

a = -0.0514

Homogeneous control




A similar result as that in figure 12 is got for a big number
of cases. Especially the fluxes D, F, G of fig. 3:1 have been
disturbed by a 500 pam step disturbance of both directions.
For all fluxes absorbtion had to be added during the first
6 - 8 hours of the transient. The rod caused an amplification

for one direction and damping for the other.

As mentioned in 3.4 the sensitivity of the fluxes for disturbances
increases with core height. Thus a 500 pom disturbance on an 8 m
reactor, 0.65 m over critical height in case D, fig. 3:1, causes

a much bigger rod movement than in a 7 m core.

If the rod moves mainly in "left" part during the transient it
causes the disturbance shown in figure 11 to be-amplified, while it
is damped if the rod moves mainly in "right" part. If the rod

moves through the whole core it is impossible without simulation

to predict the result.

The opposite effect of rod is got for opposite direction of the

disturbance.

4,3.3 INFLUENCE ON AMPLITUDE OF OTHER NONLINEAR TERMS.
AMPLITUDE OF DISTURBANCE.

In a linear system the superposition principle is valid. For big
disturbances in the xenon process, the nonlinear terms, besides

the rod, has a damping effect on the amplitude of the trajectories.

Figure 13 shows the sensitivity to different step disturbances
and core heights for a flux with homogeneous control. The maxi-
mum flux deviation for the most sensitive point is registrated,
and appears after 5 - 6 hours. For disturbances above 100 pcm

the linearity is bad (compare 3.1).

h2.




FLUX SHAPE

An asymmetric flux has different sensitivity depending on the

sign of disturbances.

Example  (Homogeneous control)

The flux in fig. 14 (H = 8.0 m, 0.3 m over critical height) was
disturbed by a 500 pem reactivity step as in figure 1H with maxi-
mum flux deviation:

Aez = 0,762 H) = 0.689 at t = 6 hours,

while the opposite direction of the disturbance resulted in:

A®(z = 0.238 H) = 0.938 at £t = 6 hours.

V=149

core axis

Figure 14 Flux distribution.
H=80m
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5. A SPACE INDEPENDENT NONLINEAR MODEL

Simulations have shown, that a rather simple, almost linear
relationship holds between neutron flux and xenon deviations

in every space point. This condition is made use of to get a
simpler model. The diffussion equation is replaced by a simple
linear condition, which causes the xenon process to be described

by a second order nonlinear ordinary differential equation.

This model is compared in 5.2 to a two-point model and is ana-
lysed in 5.3. It is shown that the space independent model is

only valid for small disturbances.

The result is compared to other space independent models in 5.U4.

5.1 RELATIONSHIP BETWEEN FLUX AND XENON DEVIATIONS

In the simulations of small disturbances we have observed, that
flux and xenon concentration in one core point varies approxi-
mately in opposite direction during an oscillation. Margolis [3]
showed for a two region core that the transfer function

§0(s)

G(s) = —
§X(s)

has a phase which is approximately -T, why G(s) is approximately

real and negative.

In figure 1 is shown the flux and xenon deviations for a flat
flux in the point z = 0.05 H. The variables oscillates to and
fro along the line during an oscillation. The oscillation is
caused by a small disturbance, 50 pcm, which has been moved
between the core halves during 2 hours. In other space points
we have similar lines with the same slope but other length (amp-

litude of the oscillations).

From figure 1 we state the relationship:

= =b ¢ ¢ (1)

vwhere Y = ¢ - @O, £ =X - X° and b = constant.

T
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@*103 50
@
0
-50
25 0 25  Ex103
Fig., 1 - Flux and xenon deviation at z = 0.05 H for a flat

flux (fig 3:1A)

H = 5.40 (4 cm above crit. height)

Homogeneous control. Disturbance: 50 pcm in 2 hours
= -1.78 ¢

The same constant b is valid for every space point.

Now the same good linear relationship is found in several cases
at small disturbances (< 100 pcm). A number of fluxes just around
the critical heights have been observed for small disturbances,
and the linear approximation (1) is valid with good accuracy. In

table 1 is summed up the constants b (eq. (1)) for some cases.

Table 1 Linear relationship between flux and xenon

= -bf The fluxes are shown in figure 3:1.

Case H(m) Hcrit Flux o b
1 4,95 5.01 A 0 1.73
2 5.02 5.01 A 0 1.76
3 5,40 5,36 A ~0.0514 1,767 | ®(in fig.
Iy 8.90 8.89 H ~0.0514 1.79
5 7.0 7.35 D ~0.0514 1.71
6 7.5 7.35 D ~0.0514 1.73
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We define:
£ =X - X°
n=1I-1°
V= ¢ - ¢°

and write the xenon and iodine equations in incremental form

from (2:8), (2:9) and neglect the subscript for the space point.

Thus the following equations are valid:

- o 0
ST A E A N I 9T X0 90 87 £ =T EP (2)
dn _
md‘t = 'Yio‘x (pm >\l n (3)

We insert (1) in (2) and (3) and get the dynamic system:

— —_— —

0 0 2
= A, =0 @ +b .0 (X —YX) s b %y
dx
ik = ® +
dt .
o 'YiO'Xb - )\i O
or
2
. bOXX1
X F=d
E%,_Ax-i- ()
0
where
g
¥ =




5.2 COMPARISON WITH A TWO-POINT MODEL

In [ﬁ], chapter 2, is derived a model of a two point reactor.

In the linear approximation of the symmetric flux we found

(section 2.7 in [5]) the relationship

i

UM b - x3) for rod control (2:48) and

1

9, =D, - (Xl - % xg) for homogeneous control (2:50)

where %y = El, Xgy = El + £2 and bl’ b2 are core constants. Now,

if we have a symmetric disturbance of the flux, the initial con-

ditions are:

1]
(en]

X3 38 &y

L
o

X, =1ty

and (2:49) and (2:52) in [5] show that x5 and x, are identically

zero all the time. In this case we get:

for both homogeneous and rod control, where

g 9% n? g o° HY
b. = = = b
Lo n? g6 18 - H? o ¢°

2

For the critical height for ¢° = 1, o = -0.0514

we find
o

H =z 6.93 m
b1 = -1.71 or
Y= -1.71 &

in the two point symmetric model.

(5)

(6)

b47.
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For a = 0 we have the critical height
H® = 6.498 m
for the two point model [5] which gives

b, = -1.71

1
Compare bl to the values of b in table 1 where all the fluxes
are situated around the different critical heights. We can also

see that b is very insensitive to variations in a.

Further in the two point model, the dynamic behaviour of the pro-
cess for the symmetric initial conditions above is determined
from a 2 x 2 submatrix.
Ny ¢) o]
- A, -0 @ —]ﬁgéx -y, As

A= X X X 1 (7)

(see (2:53, 54, 56) in [5])

We see directly, that the linear part of (4) is identical to (7).
The matrix A (7) is got as an approximation of the symmetric two

point model when the control term is neglected [5].
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5.3 ANALYSIS OF THE SPACE INDEPENDENT MODEL

First we find the singular points of (4), which are (0,0) and

1
O_m o] _ o] -
Xl = . {AX + o ? + b GX(l X1, as v, + ) 1
X
(8)
Y s
Xg---«i{x +06% +b o (1-X0)
AL ® X
1

Now we choose b = 1.7, which causes (0,0) to be a stable focus
and the other singular point to be a saddle point. (The choice
of b is not critical. We get one positive real eigenvalue for

all values of b in this singular point.)

Figure 2 shows the phase plane of (4). The saddle point (8) is
marked in the figure. The trajectories for large deviations from

origo show some odd details.

Trajectories near origo are stable and oscillatory. For bigger
disturbances, however, the trajectories will start outside an
unstable limit cycle. At first they are diverging in a spiral,
but later they are nonoscillatory unstable. For very big distur-
bances it is possible to get unstable solutions without any

oscillation.

These nonperiodic unstable solutions have not been verified by

any other space dependent model.

The character of the phase plane is not influenced by the value

of the temperature coefficient (see table 1) when o varies between
0 and -0.05. This contradicts the results from the two point model
in [5], chapter 5, as well as the TRAXEN simulations.

To sum up, the space independent model (4) is not sufficient to
describe what happens for large amplitudes of the state variables.
Then we must include higher order terms in the relationship bet-

ween flux and xenon.
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5.4 COMPARISON WITH OTHER SPACE INDEPENDENT MODELS

A state independent model of the same structure as presented
is proposed by Sha [8]. He assumes the relationship (1) and
gets some stability criteria out of Lyapunov theory. However,

it is not presented any trajectories.

Chernick et. al [1] have a similar model. Nonoscilla-

tory unstable solutions are got for positive temperature
coefficients and this also contradicts the result from the
nonlinear two space point model, [5], ch.5, as well as
TRAXEN simulations, ch. 4.2.
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Appendix 1

DEFINITION OF SYMBOLS AND THEIR NUMERICAL VALUES

Al:1

First def. .
. . N 1
Symbol in Explanation vmertea
equation value
Bz(z,t) 2:2 Material buckling
(szﬁ(z) 2:7 Material buckling, equilibrium
value
clz,t) 2:7 Absorbtion term
cl(z,t) 2:11 Rod absorbtion
D(z,t) 2:1 Absolute diffussion
E(z,t) 2:1 Relative diffussion
H 2:3 Extrapolated core height (m)
h 2:5 Distance between two node points;
. __H
U |
H . Critical core height
crit -
I(z,t) 2:8 TIodine concentration, measured with
the xenon equilibrium concentration
at infinite flux as basis
1°(z) 2:10 Equilibrium value of iodine concentra-
tion
n(z,t) I(z,t) - 1°(2)
K(z) 2:4 Weight function in expression for to-
tal power
K™ 2:13 Rod insertion
N 2:5 Number of node points
P(t) 2:4 Total power
r(t),R(z) 2:15 Time and space distribution of reacti-
vity disturbance
t 2:1 Time in hours
u(z,t) 2:7 Control term in buckling




Definition of symbols and their numerical values

Al:2

Contd.
First def. )
Symbol in Explanation Numerical
equation value
X(z,t) 2:8 Xenon concentration, measured with
the xenon equilibrium concentration
at infinite flux as basis
x°(z) 2:10 Equilibrium value of xenon concentra-
tion
£(z,t) X(z,t) - X(z)
Z 2:1 Space coordinate
a(z) 2:7 Temperature coefficient, expressed
as reactivity bounded in fuel tem-
perature increase above the modera-
tor at mean flux and infinite gitter.|-0.226%
Normalization to mean flux ®=5.65+
10%%, %= uuo em?, multiply with
1
0.0840 o = -0,051h
B 2:7 Xenon influence on changes in buck-
ling (-3.2% on reactivity) at satu-
ration -0.73
Yy 2:8 Fraction of xenon yield (relative to
xenon + iodine yield) 0.05
e 2:9 Fraction of iodine yield (relative to
xenon + iodine yield) 0.95
o(z,t) 2:1 Neutron flux, normalized to 5.65%1013
neutr/cmsec.
[ 2:16 Mean flux
3°(z) 2:3 Equilibrium flux
©(z,t) $(z,t) - $°(2)
A 2:8 Xenon disintegration constant 0.0756 h™t
Ay 2:8 Todine disintegration constant 0.1058 pt
Ay ot 2:11 Rod insertion length, rod absorbtion
y c¢h, 3.3 Form factor, Qmax/é
o, 2:8 Microscopic xenon cross section 2.29%10_18 cm?
normalized to & = 5.65 1043 and
time base in hours 0.0465
Le 2:1 Macroscopic fission cross area
DI 2:1 Macroscopic absorbtion cross area
v 2:1




Al:3

FLUX SHAPES AND DISTRIBUTIONS

The table shows the distribution in 20 space points of the
undisturbed buckling.
The fluxes are shown in figure 3:1.

If only 10 values are written, the flux is symmetric.

A. Flat flux
y = 1.05

h2B2 1.0 0 0 0 0 0 0 0 0 0 (symmetric)

B. Ditch flux 1
¥ =1.31 ¢min/¢max = 0.740

h2p? 0.08155 ... 0.08155, ~0.07727 ... ~0.07727, (symm)

~ —_—
(1,...7) (8,...10)

C. v = 1.289

h282 0.7979 0.01015 0.00857 0.00755 0.00666

0.00610 0.00567 0.00533 0.00512 0.00512

D. ¥=1.35

n?g?  0.8011  0.0124  0.0107  0.00933 0.00833  0.00755

0.00688 0.00633 0.00600 0.00567 0.00722 0.005622
0.0177 0.0178 0.0180 0.0184 0.0190 0.0200
0.0212 0.8088

E. Flattened sine flux

¥ = 1.35
h282 g.06u3 0.0519 0.0467 0.0439 0.0423 0.0u415
0.0411 0.0111 0.07%6 0.0796 - - - - - (symmetric)

F. Ditch flux 2
Y = 1,45  ¢min/¢max = 0.66

(1,...6) (8,...13)
22 — g N A
h“B°  0.0752 ... 0.0752  0.0790  Z0.0773 0.0773)
0.0816 ... 0.0816

(14,...20)




Al:y

G. ¥ = 1.47 (1,...7) (8,...13)
/“_‘_’—/\———"’—\ N
h2B2 0.0331 oo 0.0331 -0.0126 ce -0.0126
(14,...20)
H. Sine flux
¥y = 1,57

hZB2 0.02234  (constant)




Appendix 2

NUMERTCAL METHODS

In order to simulate the xenon process, we have to solve eq.

(2:5, 8, 9) with (2:7, 11, 12, 13) and the boundary conditions
(2:6, 10) inserted. The solution can be divided into two diffe-
rent parts, here called equilibrium flux and transient calcula-

tions.

In the equilibrium state we put the derivatives of xenon and
iodine equal to zero in (2:8, 9) and the equilibrium values are
found to be:

o_ 1
Xk = Ax (1)
1+ 5
X Qk
0 i % o
Ik = MXEE“ @k k=1, ..., N (2)

In the xenon process the xenon and iodine concentrations are
state variables and are uniquely determined by the differential

equations.

AZ:1




A2:2

A2.1 CALCULATION OF NEUTRON FLUX

We will solve the diffussion equation in every time step by

writing eq. (2:5) in matrix form:

E .o+ hiB + 4890 = 0 (3)
where
~(E; + E,) E, 0o - - - - - 0
E2 —(E2 + E3) E3 0 - - __
| ~
~
| ~
I ~
| ~ EN
| . ~
0 - - - = 0 Ey ~(ByEyy ) |
2/:,/, _ . 2** 2% 2 "
B = diag (Bl R B2 y eees BN )
26 2 2% 2 L2+
AB" = diag (B - B] » ..., By - By)
T

(b = (¢l’ C})z’ ¢33 AL | ¢N)
hl = (/N + 1)°

The symbols are explained in appendix 1. See also eq. (2:5).

The flux ¢ is solved from (3)

o= - E1(Q + Q)0 (%)
where Q = h2 BQ#
AQ = ha B2

and AQ is a function of .




In equilibrium we shall solve (4) with (1) inserted in Q, while
AQ = 0. During the transient, the xenon concentration is found

from the differential equations.

We define a new matrix:
~ -1
1= ~E7(Q + 4Q) (5)

where H is a function of ¢ and X.

Our diffussion equation is thus formulated as:
®=H-+ ¢ (6)

In order to solve (6), we use an iterative technique as it is im-
possible to get an explicit solution of 9. We regard an eigenvalue

problem:
Ho=dlo (7

If we can find a real solution for the eigenvabxaéez 1, we have

also found the solution of (6).
Now we know [2] that the eigenvalue problem for the one group dif-

fussion equation in discrete form:

Eo+un’Blo=0 (8)

has a fundamental solution ¢O for the smallest eigenvalue, u,
which is proportional to the flux distribution of the poisoned

reactor.,

We see that (8) is transformed to:

-t n? gl b = %-- ¢ or
-1
H¢«u ¢ (9

Thus, we have to find the largest eigenvalue of (7) and its eigen-

vector ¢.

A?:




As ¢ is implicitly defined in H, we must iterate. The elements

of H are unknown depending on three terms in (2:7) which are
included in Q (4) for every space point. In the equilibrium

case we have AQ = 0 and it remains to determine xenon equilibrium

concentration and absorbtion ¢ (or rod insertion *) in equilibrium.

A2.2 CALCULATION OF THE EQUILIBRIUM FLUX. Order of operations.
The computation  advances as follows:

In brackets are shown the names of Fortran subroutines, described
in app. 3:
{1} Guess a start value of ¢, e.g. (EGENV)

[&=3

¢(°) =A sin{-—I£ . z}

H
and a rod position y (o) (FLOW)
(CONT)
{2} The amplitude A of ¢(O) is normed by the power (XNORM)

condition (2:6)

is determined  (MATR)
are inserted in  (RAND)

{3} The xenon equilibrium first value X(O)

from (1) and ¢(O), and X(O) and A(°>

Q (eq. (3) - ().

{4} The first iteration (iteration parameter = i) of H =  (MATR)
= i) (i = 0) is then determined. (FFGG)

{5} With the potense method is determined the largest
&)

eigenvalueéﬂ(i) to the matrix H'"7, 1 =0, 1, 2, ...

(iteration variable = v)

G ]
v=0,1, 2, ... (XHORM)
o321

(v) _ [
(1) ~

A2:4




A2:

where we define

(Vi) | () (W) .
b1y =0 ¢¢1) (CF1)

The norms are calculated from the power condition (2:6)

N
(v) , (v)
o3Il =B% T K » ¢
(i) =1 K k
N
RO TR T o (D)
e oy = Heggy I = SRR SRR NES
why
N
o TN
YV = (XNORM)
(i) N ()
e
&%i) is accepted as an eigenvalue if
pLvtL)
(L) 1 & (XKAPPA)
O R

{6} The new eigenvector (1) is accepted as the new approximation

of ¢ for the i:th iteration. (EGENV,TEST)

{7} Points 2 -~ 5 are repeated now for the next iteration. In
points 3 and 4 we shall put in the new value O (54+1) to get
the matrix H(i+l)' In order to avoid numerical instability
it was necessary to use a relaxation method. Instead of

. e . . .
¢(i+l) we put in a valgg ¢(i+l) in the matrix H in order

e

to get H(i+l)’ where ¢ (141) is found by the formula:

,\),,',\/u: _
beien) = beaeny T A0y T feieny) (TEST)




{8}

{9}

{10}

{11}

{12}

where 0 € < 1.

The fastest computations were found for:

J= 0.2 - 0.3

We accept Pi41) 38 the right eigenvector for the eigen-

valueéﬂ(i+l) if:

|'¢(i+l> _ ¢<i)|| < (TEST)

£
e ]|

Now we have got a solution of the eigenvalue problem (7)

(o) of the insertion length of the
rod. The eigenvalued{,# 1 and now A shall be adjusted k(l),

for a certain value X

i=0,1, ..., until we have found the value d¢ = 1 and cor-
responding eigenvector ¢ which is the solution of the prob-
lem.

D) nd (FLOW)

get a new solution ¢ andéeﬂu) by proceeding through points

We guess arbitrarily a new value of A, called A

2 - 8 again (iteration parameter u).

A(“+1)

The next value of 1, , is calculated by linear (FLOW)

regula falsi from previous values:

(M§U) _ 1)[x(u) B A(u—l))

40 (u) _ detu-1)

L) )

and proceed through 2 - 8 and 10.

When EQ‘“+1) - l} < € we accept ¢ as the right flux. (FLOW)

2

From the beginning we have choosen €, and e, between 107 (FLOW)

3
and 1073, Now we make them much smaller, 107° to 107% have

been found to be acceptable and increase the accuracy of

the calculations.

A2:

6




AZ.3 CALCULATION OF THE TRANSIENT

As the flux is assumed to be stationary all the time, we have to

regsolve the diffussion equation as the xenon concentration varies.

The differential equations (2:8) and (2:9) are integrated with the
Runge - Kutta method, where the initial values are found from (1)
and (2) after the equilibrium flux calculation. Richardson extra-

polation is used in order to increase the accuracy.

The neutron flux is then calculated for every time step as

described above. The following changes are made:

{1} As initial guess of the flux and rod position we use the

values of the previous time step.

{2} The xenon concentration of previous time step is inserted.

A?:




Appendix 3

SHORT DESCRIPTION OF THE TRAXEN PROERAM

A Fortran program package called TRAXEN (TRAnsients of XENon)

has been written [6] in order to simulate the xenon process.

It was written initially for IBM 7090, but has later been changed
to CD 3300 and CD 3600. The general numerical methods are described

in appendix 2.

Figure 1 is a general chart of the subroutines. The inputs and

outputs are described briefly and in detail in [6].

The calculation time grows approximately with NG where N is num-
ber of meshpoints. Calculation of an equilibrium flux for N = 20
takes about 1 - 4 seconds on a CDC 3600, depending on the buck-
ling and flux shape.

The computing time for a transient depends much on stability or
the amplitude of the transients. For bigger deviations for every
time step we have either to decrease step length or increase the

nurber of iterations.

The computing time for time step of a transient with 20 space

points is 2 - 3 seconds.

Maximum number of meshpoints is 50.

A3:1




INPUTS

The MAIN program reads in the following datas in groups

(see appendix 1 for the therminology).

N, H
Y0 %% Mo M
B(L), ..., B(N)
A, cl, K (eq. (2:11-13) )

MVOID = 1 if hydraulics shall be calculated (not used here)
STLS = 1 if a xenon control rod should be used (not used in
the report)

P(t), r(t) in polygone chains

EQ), ..., E(ND

Q(1), ooy QM) (Q = unpoisoned buckling)
al(l), ..., a(l)

R(1), ..., R(D

stl2 = 1 for power control (eq. (2:6) )
stl2 = 2 for constant flux in one space point
K(1), ..., KD (coefficients in eq. (2:6) )

Printing instructions

Accuracy e for the iterations

Initial values for flux, xenon and iodine (arbitrarily)
STAT if equilibrium flux is to be calculated

TRAN if transient flux is to be calculated

For a new calculation it is only necessary to read in the

changed datas.

The input formats are described in detail in [6].




OQUTPUTS

There is possible to print out a number of test values in the

subroutines (see [6]).

In subroutine TRY is printed out:

time, A, V¥, 5,P,r&),u=£,
Ed
¢ (normalized to ¢max = 1),
¢ in physical units, for every space point
d
X, 1,9, $, ¢,

fourier coefficients for fundamental mode and two overtones

(sine waves),

CALCULATION OF EQUILIBRIUM FLUX

1.

The MAIN program calls subroutine STAT where a few parameters

are set.

. STAT calls subroutine RAND with the rod insertion ) as a para-

meter.

. In RAND is first calculated actual power P(t) and disturbance

u(z,t), (zero in this case) with RRPP. If a xenon control rod
is used its reactivity value is calculated (ROD). RAND calls

FLOW with the rod insertion length as argument.

. In FLOW is the iteration of rod insertion ) made. First is a

flux calculated for the rod position, which was guessed. Then
the routine iterates in A until the eigenvalue df(eq. (A2:7)) is
close to 1 (A2; points 1, 9 - 12),

. FLOW calls the function EGENV and the subroutine MATR,

In MATR is defined the matrixes E, Q, AQ and H (eq. (A2:3 - 5)),
see A? points 3 - U,
In EIGENV and its subroutine TEST is iteration made of the flux

until the flux vector has converged (A2; points 1, 6, 7, 8).

. EGENV calls the function XKAPPA. In XKAPPA is the biggest eigen-

value # of the eq. (A2:7) calculated with the potense method
(A2, point 5)., XKAPPA uses GFI to calculate the product H ¢

A3:
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and XNORM to calculate the norm (A2, point 5).
XKAPPA accepts df as an eigenvalue when the iteration has

converged.,

CALCULATION OF THE TRANSIENT FLUX

1. The MAIN program calls subroutine TRAN, where the actual
time is defined. If the power is zero TRAN calls subroutine
EFFO in order to calculate the transients analytically until

power gets positive. If the power is positive it calls RK2,

2. In RK2 is step length of the integration determined. A
Richardson extrapolation is also made. The routine calls

RK1, which is an ordinary Runge - Kutta subroutine.

3. RK1 calls DERI which defines the right hand side of the

equations.

4. DERI in turn calls RAND. The following sequences are the
same as in the equilibrium case from point 3. There are

some differences, which are pointed out in appendix 2.
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equilibrium [TRAXEN editing
flux MAIN \l/ \I/ \J/
TIDF RUBR XSIN
trarsient
steady
state
valuep P=0
STEADY STAT TRAN EFFO
Pl 0
printing
v RK?2 T
Runge
> TRY Kutiﬁ
SToWEin pERT IX/4tl R BACK
RITA i/
RAND RRPP
ROD
. . xenon control rdd
varlies rod posi
tion to get FLOW v
5}1(2,: 1 .
matrix
MATR [P{MATINV inversion
ziigzrgence | CONT control
of TEST EGENV v rod
XNORM norm of &
calculates
biggest XKAPPA CTT M)
elgenvalue
FPGG

Figure 1.

Blockdiagram of the TRAXEN subroutines
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A3:6

PROGEAM TRAXEN
AUTHOR ﬁlQTAF OLSSON, DIVISION OF AUTOMATIC CONTROL LUND
THE PROGRAN CALCULATES EQUILTBRIUM m&uramz FLUX DISTRIBUTION AND XENON

TRAMSTIENTS FOR 4 NONLINEAR FINITE DIFFERENGE XEMON MODEL

REF « G ISTAF OLSSON. DIGITAL SIMULATION OQF SPATIAL XENON OSCILLATIONS
iy oor AUTGHATIC CON ITROL LUND  REPORT 6911

THE CAL MODEL 18 DESCRIBED IN CHARTER 2

THE MOTHODS ARE DESCRIBED IN APP &

INPUT £
VAR TABLE!

'S AND FORMATS ARE DESCRIBED N
G, DLSSD

Va’ DIGITALT PROGRAM TRAXEN FOR THANﬁiFwT%LRAKNiNFAR
AV XENMONSYANGNINGAR 1 EN AxIELL REAKTORMODELL
SWEDISH STATE FOWER BOARD, STOCKHOLM 1966 HLPQBT E=53/66

DUTPUT
ALL INPUTS ARE REPEATED o
TEST VALUES CAN BE PRINTED IF THE VARIABLES NTRY ARE 1
ALL OTHER OUTPUTS ARE PRINTED IN SUBROUTINE TRY

TIHE ROD INSERTION (LAMBDA)D FORM FACTOR (F31)
POYER K o= AMPLITUDE QF DISTURBANCE

MY = FIGERNVALUE OF FUNDAMENTAL MODE  (EG, AZ,8)
[ sTLh = 4

AN EXTRA XEMON CONTROL ROD IS5 DEFINED BY RUD, 1C, 10U, T0L
THIS ROD CAN BE INSERTED IN ORDER TO0 DAMP THE OSCILLATIONS
IC = ((TPF OF THE ROD [CUs UPPER BUOUNDARY

cL = R HBOUNDARY

F1 s NEUTHON FLUX

FOR FYERY SPACE POINT 18 PRINTED
IF HTRYY = 2 IQ ONLY DELTAFT AND DELTAX 1IN EVERY SPACE POINT CALCGULATED
FioenORM) = FI/ZFIMAX
FIeAR ”} = F] IN PHYSICAL UNITS
XFE = YENON CONC, MEASURED LITH THE XE EQUILIBRIUM CONC,
AT INFINITE FLUX AS BASIS

JOBD = JODINE CONG WYTH 5 AN F HAGSTS AS XE

NELTAFT(NORMY= (FI(T)Y = FI(Q)/WF&U FLUX

IXDT = XENOM TMg UF“IVATIVE

DELTAY = VP( yoe XE(O)

FOURTER (€ %Ff FOR ;LJX ﬁ“p AENON %U% FUNGAMENT AL MOpE AND
TUO OVERTONES, THE MOBES ARE SINE WAVES

SUBROUTINES SCTTONS

TRY STEADY TRAN EFFO

RKE DERT RADK XSIN

FAND MATR RRPP EGENY

GCONT XNORM TEST FFGG

GE Tior RUHR RITA

RO YoIn (HYDRO AMD VOID ARE NUT USED (N THESE

CALCULATIONS, AS THE VOID IS NUT TAKEN
ACCOUNT FOR)
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£
G
L THE MATH PROGRAM READS IN ALL DATA AND PRINT THEM OUT
G
G IF A TREANS BE CALCULATED SUBROUTINE TRAN 18 CALLED
C IF AN FHL U¥ SHALL BE CALCULATED IT CALLS SUBROUTINE STAT
G FOR EDIT SURRDUTINES TIDF AND RUBER
G
(3 (B0, FI1LCB0,FI12¢80),xE(5 0, XFO(H0¥, JODBLSUY, Co 1
140l ERL{L00) s XKREZ(L007, xh4<iﬂﬂ); ZK (1 oniﬁ XERS(LUUY, GO 2
4T y PLe30,2y, RICS0,2y, BP0y, ALFA(D0Y, BETA (50),RR,PP, CO 3
g N, G, DAY, LAMDAT, LAMBDA,SIGMAX, Ki. FIREF, 1T,HT, GAMMAT, U 4
4 TIing 8 iTIT THMAX: Me DELTAe HNe YKL2 D(D0s503e Ge50:5Uy 0 Co 5
5 nehiy BLy, B0y, DxDT(50y,DIDT 20y, Hz,s¢150y, T¢30y, wu, Co 6
b Ax(2p [FTA Co 7
M0 1T, kURY, NSTANS, o g
i 10 [CL s FROD: DROD PARW p ABSOs STABIS0):KSTYRs Co 9
2 8 2, STL3, STL4, STL5, STL6, CU 10
3 Y0, FHTRYZ NTRY4,NTRYE NTRYS,MNTRY7, NTRYB,NTRYg, cu 11
4 57, FpS2i, EPS3, FPS31, 1TEi, 1TE2, ITE3, GO 12
o sDBEDACL9Y, XALF1 (20),MVOLD GU 13
i XSS ¢eRn) o Xn, EPSX, gPSpX, ToONT cu 14
THTEGE A
FEAL .uu; A0, LAMDAX,  LAMDATL, LAMBDA, Ki AECO  ig
TNTEGER  8TL1, STLZ2, STLS, STL4, STLS, §TL6 AECO 1P
SI0N  PEgY, RT(3p) MATN
5@l AX MATNGOOS
(hp?é? AX MATHDOD4
1000 CALL RUBR ( 1 MAINOUDS
GOTC ¢ 1, 2, 5, 4, B, 6, 7, 8, 9, 10, i1, 12, 13, 44y, i MATNOODG
1 READ ¢ 5, 400 ) N, H MATNOGDT
HZ = H / FLOAT ( me1 ) MATNOODG
MRITE € 6, 10%) Ny H, HZ MAINDOOY
GOTO 1000 MATNOUOLO
P READ (5,000) CAMMAL: SIGMAXs LAMDAX, LAMDAIL MATN 49
WRITEL _ﬁ@iﬂ?} GAMMAL » STGMAX 2 LAMDAX LAm)A] MAIN 12
WRITE em# 1003 MAINLOLZ
Ap s READ (9,dc04y  Tdop4, BEX, Ila0®, BEY, 11006, BEZ MATNLGL3
WRITP (ﬁﬁiﬂhr? 11004, BEX, 11005, HEY, 11006, BEZ MATN1D14
IF (14004, 60,(=07) 1000¢ 31 MATN
31 IF (flﬂﬂw PT§); 34, 32 MA TN
34 BETA éiiﬁﬁAy s BEX MATN
52 IF (1400%,6T,0) 3%, 33 MATHN
51 BETA {14008y = BEY MATN
33 IF C11006,0T,06) 36, 37 FA TN
56 BETA (1140063 = REZ MA TN
37 cONTIHUR MA TN
GOTO 403 MATNLOL9
3 READ(D504) S5TLE, LAMBDA, Cs Ko MVOLD MATN 14
WRITE(G, 10531STL 3, LAMBDA, O, K, MVOID MAIN 15
[F (f“ﬂiiﬁﬁaai? 838, 84 MA TN
83 CALL vOID

654 (l,\rTI )[" MATHN
READ(ID 401y STL! STYR, PART,PRQD,DROD, ICONT, A%SGEXJgPrbX@FPQMX MATN
MHIT?xhgé @) STLB, KSTYRs PART,PROD,DROD, ICONT,ABSU, XD, ERPSX, EPSDAMAIN




116

200

(

5

70
54
b1
55
52
56
# 3
57

&

60
Ak

7

c1d
71
74
70
75

GOOTO 1000

READ(S, 108) THAX, HT
WRITE (6, 410) TMAX, HT

WRITE
DO 143

{heddd)
{413 = 1230

READ 5,112 TTT, PRP
WR ITF iﬁgii”, 1119, TTT, PPP
Tera13)y = TT7

IF CTTT,.LT,0,) 200, 51
P(I113) = PpP

DONT LR

CALL TIDF (P1,P)

HRITE ¢6, 115,

DO ddo 1dlé = 1,30

READ (B, 117y TTX, RRR
WRITE (6, 1180 1116, TTX, RRE
T (1diA) ® TTX

IF (TT%,LT,0,y 201,52
CONTIRUF

IF (1417,67T,0y 62,56

FOI1L7) @ FY

1F (1215 GT, 63,57

Eelaihy f/

CONTIHUE

GOTO 70

CONTTHUE

WRITE (6, 1267 ,

READ (5, 1a8) 1128, %0,

zr (1128 gﬁwe’wiﬁi 1000,
11287 =3

All/ (1128) = YALFA

é]lfu)ﬁ VQ

RT (1416) = [RR

COMNTIHUFE

CALL  TIDF (PRI, RT3

WRITE (6,060) (1aTI(I,10,
RiCr:2) 5 15 {5 M)

GOTO 1000

WRITE (6, 121 )
READ (H, 120) 1116, EX,
WRTITE {55 122 1116, EX,
IF (1016, B0, (=1)) 100054
iFocrt nst hy 61,55
e<z11w> 2 Ex

TICT,20PT (L0 PLCIS2)

1417, EY, 1118, E7
1117, EYs 1118, FZ

AALE A, XR

65

WRTTE (6, 130y 1328, Qii28), ALFA(IL28), R¢I128)

GOTG G ” ‘

READ (5, 132) 5TL2, Ki, FIREF, KN
Eo(60134) STL2: Kl FIREF: HN
e (6, 137, o
D ¢b , 136y 14135, Bx, 1136, BY, 1137, B7
(6, 13B) 1136, BXs 11364 BY, 1137, BZ
135 ED, (=1 ): 1000271

IF (1135,07,0) 74,72

Feradhy = By

IF (1136,6T,0) 75,73

BLI436y = Ry

#

RICE, 1)

2

A3:8

MAINOOLG
MAINDDLY
MAINDODLS
MAINDOL9
MATN
MAINDDOZ21
MAINGpO22
MAINGOZ3
MATHN
FATN
MATNODZa
MAINOO27
MATNpp28
MATN
MAINDODSH
MATNOU3Y
MAINODEZ
MATN
MATN
HAINDOGOZ4
MAINGDS3S
MATNDOSS
MATNQQOS7
HAINOD3A
MATNDOZ9
MAINGQA4D
MATNGDO41
HAINgg4p
MATN
MAIN
HATHN
MATN
MA TN
MATN
MATN
MAIN
MAINGG47
WAlMHHd@
AY”UJﬂ9

AINDOS4
ATNDOBS
MATNDOS6
MaiNnos7
MATNOUES
MAINDDSO
ﬂﬁiﬁuuéj
AIM 0061
ﬁAIN
HATN
MATN
MATN
MATN

MAINGD ],
WAEM

MATN
MAINDUOBE
M

i




73 [F(T137,GT7,00 764 77
76 S 1B = gy
77 f
& %g1a0> 1T, NRIT, KURY, NTRY1L, NTRYZ, NTRY3, NTRY4, NTRY5,
1 NTRY7, NTRYB, NTRY9, NSTANS
(6,142) 17, NRIT, KURYV, NTRYL,NTRY2, NTRYS, NTRY4, NTKYS,
i NTRY7» NTRY8e NTRYZs NSTANS
0
9 :22 144) rpqw EPSP, FPS21, EPS3, FPS3l, EPS3Y,
1 TEZ, 1TES, TETA B B
60 146) EPS1, EPS2, EPSp1, =PS3, EPS31, EPS32,
1 ThEZ s I%[ﬁﬁ TETA
La00
10 (6, 152)
SEN 5, 1501 1150, XXF, YYX, 7ZJ
(6 1541

. TiB0. KKE
LB0,EQ, (a1 )y 1000, 81
A1 FICT450) = XXP
FILCraboy = prliing?
YED(TLIH0) = Yy
JODOCTAB0 Y= 72,
GoTo 3410
11 8TLi=d

YYXo Z7.)

GOTO 1000
12 STLL =2
GOTO 1000

13 CONTINUE

I THE SURRQUTINE ¥SIN CALCULATES DIFFERENT SINE FUNCTIUNS FOR
[ THE FOURTER COEFFICIENT CALCULATION IN SURROUTINE TRY
£

CALL  XSINOM)

IF zautiﬁng?; 20, 1020

1020 CALL STAT
IF (STLL,EQ,1) 21, 1021

1021 1P CEPSSELNE,0,) 1625, 20
1023 EPS31 = EPS32
20 CALL TRAN
21 COMNTINUE

aTLL = 0

GOTO (RIRAEY
14 STOP

25 (20A4)
26 (20 Aﬂ?
100 T 1@ , FLO,0 ’ _
101 FORMAT ¢ 40X, 1HN, I4, 4X, 1HH, F8,2, 4%, 2HHZ, FB,3 )
102 FﬂH?AT (dFE40.0)
103 FORMAT (10X, !ufﬁiaima Fa,2: 4%y  THSIGHMAX=» F10,22 4%,
I 7HLAMDAX s, ?*‘ 55 4X, THLAMDA]= F10,5)
10 FORMAT (110, “fﬁlgug 2110)
105 FORMAT (10X, BUSTLE=s,14, 4X, 7HLAMBDA=, F10,4,4X, 2HC=, Fi0,4,
14%, 2HK=, 14@ axg GHMVOIDS, 12 )
104 fHPHfT ( 2F10,0)
110 FORMAT (10X, 7HT(MAX)=, F10,4, 4%, 7HDELTAT=, F10,4)
L1l (unxx7 (LOX ML, 4%, 4HT(IY, 5%, OHFFFEKT)

A3:9

HAIN
MA TN
MATHN
MATNOUDGS
MAINODGT
MAINDUGE
MAINDDGY
MAINBUT70
MAINGDT7L
MAINGOO72
MAINOGT7S
MAINDOT74
MAITNOOT7S
MAINGOT76
MATNGOT7T
MATNQO78
HAINDOT79
MATN
MATN
”Ajwﬁnﬁz
MATNODBS
MAINDOBS
MAINDOUDES
MAINDOOB?
MAINDDES
MAINDOBY
MAINOUSD
MAINDOSY

AAINLDOYL
MATN
MATN
AT A
MATN
MATN
MATNODSS
MAINDO96
HAIN #95
MAINDOOST
‘AINUUQB
MATN
ﬁAIN
MAINDLOL

MATNGBL0?Z
MAIN 103
MAIN 104
MAIN 105
MAIN 106
MAIN 407

MATN 108
hAi '109
MA
b




112 FORMAT  (2FE10,0)
114 FORMAT (L0x, 14, F10,4, Fi0,4:

115 FORMAT  (13%, 1HI, 3x, A4HT(I), 3X, 10HBUKT,STORN )
117 FORMAT (2F10,0)

A3:10

MAINGLLZ2
MATNGLLSA
MAINOLLA
MAINOLLS
MAINDLLG

MAINOLLB

L1B FORMAT (d0¥, 14, Fl0,4, F{0,4 ) “ o o ! 11

160 FORV&T {/i‘;a 1HT, 559 THTT (a4 b s S¥, 7HTICI2), égg ?le(lpl)ﬁhAlNgii?
G 3Ry VHPIOT 20y 3Xe 7HRICI 1Y, 3%, 7HRICI,2)Y / (113, éFlugé))

121 ?DRMAT (LA¥, 1HI, 4Xs 4HECTI), 11X, 1HJs 4%, AHE(J) 11X, 1HK, 4X,

C AHE(KY 3

i
C 3Xs  BHHN=s FL0,4 )

120 FORMAT (140, 10,0, 110, FL10,0, 110, ELO,0) |

122 FORMAT ¢lox, ;fa Filo,4, 5%, 15, Flu,4, 5x, 12, Fig,4 )

126 FORMAT (10%, 9X, apGCI), 5%,  7HALFACIYs 33X, 4HRCI)

126  FORMAT  ([d0¢ 3FEL0,0)

130 FORMAT ¢30x, 15, 3Fi0,4

132 FORMAT (119, 3Elg,0) » |
134 FORKAT (10X, haTtgmalsﬁzxs IHELE 5 Fll,4s 3Xe 6HFIREF= 2 F10,5,

MAINDL49
MATNOLZ20
MAINDLZL
MAINOLZZ
MAINgL23
MAINGLZ4
MAINDOLZS
MAINDLZ6
MATNDLZ2T
MAINDLZS

MAING1LSg
MaATNpL131,
MATNOL32
MATNO133
MAINDL34

137 F(P'AT (14x, 1R1, 4x, AHB (DY 11X, 1HJ, 4X, 4HB(J), 11X, 1HK, 4X,H4AINDLZ9
G OIS
136 AT 140+ EL040s 1100 FL0.0¢ 110s EL0¢0 )
138 FORMAT (L0OXs 150 Fa0,4s 5Xs 152 FLOU,40 5Xe 15 F10,4 )
140 FORMAT (L1315 ) - -
142 FORMAT (10X, SHIT=, 13, 2X, BHNRIT=, 12, 2X, 5SHKURVE,12, 2X,
g,

‘ ‘”Vwk Qi'df\g ?3‘{,9 7*3\0TAN53k fé‘!’ 3

144 CaEI0,0 / 3140 Flo,0)
146 (L0Xs SHEPS E12,3: 3Xe: BHEPSZ=: EBE12,35 3Xs 6HEPSZ21=,
F?)Xa FF &:J«gzqsﬂ \SXs (i‘HFF‘)R\—S.Lﬁﬂ &12‘,»5
HERPSSZe, 8/ 10X, SHITE1Ls
, DHITER=, 14, 3%, SHITEZ=, T4, 33Xy SHTETA®, F7,2)
152 (3K, “Hfi ?&X» 2HYXE . 9%, 3HJ0D )
1540 (Zi@é SELO,
154 10y, 15, Sx, 3F1e .5 )
401 (%f% 3F5.0, 15, 2F10, 2EL0,0 )
402 (10X, ;’a}Lﬂ 2 132 8X, @%KQWYW Pijﬁéxglaﬁgﬁfnepm Sy X, BHPROD=
i3 Fmg4s X#“Hﬂ?pﬂwah@4#)XﬂéFIC ONT=21423X+5HABS0=2F7, b dXs3HXDs s
2 F7,4/ lﬂnghﬁz X, E12,4,3X, 6HEPSDX=,E12,4 )
1003 FORMAT (14X, jujpéx;#HH&TA 1A%, 1HJ, 9%, 4HPPTA 11X, LHK, 4,
i Ta
1004 FORMAT (1i0,Ei0,0, 110, E10,0, 140, E10,0)
1005 FORMAT (10X, 15, Fio.4, 5X, 15, F10,4, 5%, 19, F10,4)

EHD

MAINT 134
MAIND13S
HATNG136
MAINDL37
MHATNL1137
iﬂiﬁﬁiéa
MAINDBL39
MATNDLAD
MATNOLAL
MATN

P MATHN

MAT N

MATN

MATN 143
MATN 144
MAIN 1485
MATN 146
”Afvnléz




~3

o ey
SR

SUR

TRY I8

THE SUBROUTINE [S CALLED BY RK2, STAT, FFFg
CALLS Hiﬂnbeffi RITA IN ORDER TO PLUT THE SPATIAL DISTRIBUTION
O FLUX, ¥E, AND IQODINE
TINO = ACTUAL TIME LAMBDA = ROD SITION
FFI = FORM FACTOR SUK = MEAN PLL.
PP = POWER RR = AMPLITUDE OF DISTURBANCE
XMY = INVERTED VALUE OF THE EIGENVALUF YK1
1C = XENON CONTRQOL ROD CENTRE
IC = URPEE EOUNDARY ICL = LOWER BOUNDARY OF THE ROD
FI12 = FLUX NORMALIZED TO FI(MAX) = 1
FI = FLUY TH PHYSICAL UNITS XEU 5 XENON CONCENTRAT]ON
JODO = I0ODINF CONGENTRATON DELTFIT = FLUX DEVIATION
DXpT = TiMp pERIVATIVE Op Xg
TeARe AT aX0 X2 X3 5 FLUX AND XENON FOURIER COEFF,
TOMMON FI(BY s FI1L(B0)sF12(50)2XF(50), XEG(50), JOD(B0),
1 JWL c ﬂag XKL(L00), XK2¢L00), XKA(I00), XK(L00), XEPS(L00),
2 TI(3 C 2yp PIC30,2), RI(30,2), B(50), ALFA(S0Y, BETA (50),RR,PP,
3 MNaCuaks LAMDAX, LAMDAT, LAMBDA,SIGMAX, K1, FIREF, IT,.HT, GAMMAT,
4 TI}B& TIDs ITIDe THMAXs Mo DELTAs Hine YR, D(50:50)0 G(50:,5073,
5 050, E(B1)R(50),DXDT(50),DIDT (50), HZsS(150), TC30), W,
& AKC?ﬁ3 TETA
COMMDN  NRIT, KURV, NSTANS,
11, Imué ICL: PROD, DRODs PART , ABSO, STAB(50),KSTYR,
2 *TLJ; STLZ, STL3, STL4, STLS, STLG,
S ONTRYLeNTEY?: HTRYZsNTRY4eNT %YMJNTRVﬁﬁwivaﬁmTP¥ﬂamTRY9a
4 LPQLQ EP&S2, EPS2i, EFPS ﬁﬁ EPS31, ITEL, ITEZ, ITES,
b 3FLAf!ﬁ}gDF‘,( 3) s XALF <?U>B%vmin
COMHMON ¥S55¢Bgy, X Epgxg EFSDX. 1CONT
1 ITEGER AX
REAL JOD,  Jono, LAMDAX: LAMDAT, LAMBDA, Ki
NTEG STLA STLS, SsTL4, &TL®, sTL6

SUM
FIMAY
CUNTINUE

IF
CONTIHUE

THE

M

ROU

we
e

(s

B4

TINE TRY

A PRINT OUT SUBROUTINE

VALUE OF THE FLUX 1S CALCULATED

[2% 1,N
SUH w1
= AMAXL

s
{.1

(<
FIMAX, FI(Te))

UM, FO,0,) 647

FLUX IG5 CALCULATED

SUK/ FLOAT (N+1 )

A3:11

TRY

o0
o
Co
o
co
9]
cu
Co
co
G0
Cou
Co
Co
Go

XECO
XECO
TRY
TRY
TRY
TRY

TRY
TRY
TRY
TRY
TRY
TRY
TRY

TRY

gool

T > G I

oo~ O

10
11
12
43
14

11

T O LD
Lounl ]

G
fooe e e
T oA

poov
0008
0909
6odia

0012

G014




EXEMPEL PR PRODUXTRUNETIONSANALYS FOR DAMMSUGARE

Behovsfunktion:

Huvudfunktion:

Delfunkbtioner
nivé 1

P2

St8dfunktioners

St8da heltdckningsmatta

Avli8gsng partiklar

Prigdra partiklar

Transportera partiklar oeh luft
Separera partiklar och luft
Magasiners partiklar

Avleds luft

Astadkomms £orflytining

Ge berdringsskydd
Ge lag bullernivs
Underlitta hantering
Reducera dammlukd

Ge attraktivitet

Se funktionstrid 1 figur %4,

690901 / PFredy Olsson /Jg?




8

#

18

1?&

A3:12

FFI = FINAX / SUN TRY 0015
FFIX = 1,0/8Up
TRy G016
XKAPPA ¢ QR YK1) 15 INVERTED (SEE FLOWS
XY = 4, s YEL TRY 0018
THE MAXTMUM FLUX IS NORMALIZED T0O 1,0
DO B 158 4,4 TRY 0020
DELTET ¢15) = (FI(IB) = FI1(I5y) «FFI¥ TRY
P12 (15) = FI(I5) /F1MAX TRY 0021
CPWTINUE TRY 0022
GOTO 10 TRY 0023
F;I = 0 TRY 0024
YHY = 0 TRy (1025
po 8 18 = 1, M TRY (026
Fieelsy = 0 TRY 0027
CONTINUE TRY 0028
CONT[NUE TRY 0029
WRITE  (6,3y TIDO: LAMBDA, FFI, SUM, PP, RR, XNY TRY 0030
5TLS = 4 THE XENON CONTROL ROD 1S USED
IF (STLBEQeL) 50,51 TRY
WRITE (6,103) IC,jcu, ICL TRY
CONTIHNUR TRY
TF CTIDOGHE D, 0 AND NTRYL,EG,2) 202,201
WRITE (604) (JA, FI12(14), FICI4), XEO(I4), JODOC(IA)Y, DELTFI(I4)sTRY 34
L DADT(TI4y, 4=t , 1 ) TRY
GOTG ’“’L(‘)
WRITE (6;1“&:57} {(IE LTELCT4) 141, N }
fﬂf{!“fulj{
THE XENON DEVIATION 1S CALCULATED
Wo= 4,0 A””If 1S THAT TRANSIENT SHALL BE CALCULATED
TP CBTLE, FEC o Ly AND o W o FQ , 1,0 ) 70,72 TRY N1
po 714 171 = LN TRY N2
mrt THIC 174 3 = XE0oC 171 = XSS 171 TRY NS
RLTE 75 0 C DELTFIC 11 Ys [T ® 4,N ) TRY N4
TRY N &
FOURIER COEFFICIENTS ARE CALCULATED IF NTRYL NOT = 2
IF CNTRYiQEngﬁ 22220
CONTIHUE
IF (5TL,2,F0,2) 46:60 TRY
CONTIHUR TRY
DO 15 J15 = ig N TRY 137
FI2 CI45) = F1(145) /SUM TRY 237
GOTH L8 TRY 337
DO47 147 = 4., N TRY 437
FIZ20147) = Fl1(147)/ FIREF TRY 537
CONT I HUE
AL = D, THY 44




103
4
75

400
200

ik15

£

ﬁg
2125 e
AL o FI2(I2B) % 5(]1285)

Ad o XEG (1925) % S(1925)
A2 w FI2 (128) + S(2410R)
X2 omX2 «  XEQ (1253 % §(2%125)

>
IR
SR i

e N

b
TR on omor

AS wm AS w FI2 (125) # S5(3=125)
X3 s X3w  XEO (125) & S(3x 125)

CONTINUE

GGTO (26,36), &
WRITE (6,303 Al
HRITE (6,40% ¥,
RETURN

WRITE (6135)
WRITE (6,40,
RETURN
FOR

AT(/ /10X, 29HF QURIERKOEFF FI (FIMED =
by Xy 3HAZ=, B15,5, 5X, 3HA3m, F15,5 )
FORMAT (//40%, POHFOURIERKOEFF F1 (FIREF =
FL5,5, 5Xs 3HAR=s E15,5 5Xs 3HAZ=, E15,5 )
FORWAT (//10%, 18HFOURIERKOEFF XENON /7 10X,
BX, BHxes, 15,5, 5%, 3HX3=, E15,5 )

FORMAT ¢ //// 10X, AHTIME ,F7,3, 3X, 6HLAMBDA,F12,5,
Fydy, 4X, BHEIMED, F8,3, 4X, SHPOWER , F8,8, 4X, LHR,
4Xe  ZHNY 5 FB.4 )
FORMAT (10X, BHROD,
149

FORIAT (/7 12X, 1HI,
13X 3HJOD s 4% e 4 SHDELT
2F15,6,720 6,715 ,6))
FORMAT ¢ 10X, 6HDELTAX, LOF10,6 / (46X, 10F10,6
AT (/00X 6HDELTF I 40F10,6/ (14X, 10F10,06))

L0y //300%, SHAL=,

o003 //10Xa3HAL=S

SHXi=, E1%,5,

4%, SHFST,
Fggg &

(5‘)(;; 3“1(135 I"‘la px» ({'HIUU?-Z(Q 145 2}(; 4HTQLZ’£
2Xs BHFT(NORMY, 9%, 7HFIC(ABS), 13X: ZHXE,
AFI(NDRM)&@Xg@HQXQTf/(lOX@Eéa?iﬁgézEEU%ég

)}

A3:13

TRY
TRY
TRY
TRY
TRY
TRY
TRY
TRY
TRY
TRY
TRY
TRY
TRY

TRY 1

TRY 1

TRY
TRY
TRY
TRY
TRY
TRY
TRY @
TRY n
TRY 0
TRY
TRY
TRY 0
TRY
TRY
TRY

TRY

0155

455

54
57
54
59
159
259
031
032
D33

3301
3302

035

NG

61
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L4
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SUBROUTINE  STAT
REF, USTAF 01850 DIGITAL SIMULATION
Div oF JTT ATIC CO0 NThul LUND  REPORT 8914
THE SUE UTINE 18 CALLED BY MAIN
STAT  CALLS SUBROUTINE RAND IN ORDER TO CALCULATE
FLUX
THE STATIONARY VALUES ARE PRINTED 0OUT HBY SUBROUTI
[FOTHE HYDRAULTCS 18 T0 BE CALCULATELD MYOID = 1,
I THE VARIA“L7 STLS = 1 THE STEARY STATE VALUES

ARE ,mlFE!ATtU WITH THE SURROUTINE STEADY

THE SPATIAL DISTRIBUTION OF FLUX, XE. [NUINE ARE
o= J3;if48 THAT EQUILIBRIUM SHALL BE CALCULATE

COMMOMN FI(B0),FT14(500,F12(50),XE(50), XE0(50),
1 qﬂnwifnag Xhﬂ&l@ﬂ?g XK2(100), XK4€100), XK(100)
2 TIC30:2)s PIC30:2)s RIC30,2y, B(HB0Y, ALFA(50),
3 !’ CpE 3 i!\ ?\’A L/\HDAI,& LA"’%B”A,QAIGMAX: Rié E"ERFP"
4 TIDG; TR, ifinﬁ TMAX, M, DELTA, HiN, YK1i, D(90,
5 0¢%0), F(D13,P B0y, DXDT(B30),DINDT (20), HZ,5(15¢
6 AX(20), TMTA

COMMON KREIT, KURV, NSTANS,
1 1C, 1CU, ICL, PROD, DROD, PART ., ABSO, STAB(50)
2 STLL, STLZ, STL3, STL4, 5TLD, STL6,
3 NTRYL,HTRYD, HTRYZ,NTRY4,NTRYS,NTRY6,NTRY7,NTRY
4 EPSL, EPS2, EPS21, EPS3, EPS31, (TEl, [Tk2, ITE
5 DE Yo DBDACL9)Y s XALF1 (20) .MVOID

COMM( XSS (B0) XD, EPSX, EPSDXs ICONT

INTEGER AX

REAL JOD,  J0D0, LAMDAX s LAMDAT, LAMBDA,

INTEGE STLL, STL2, STL3, STL4, STLS, s5TLG

Wﬁlfg (6p 1P)  AX

L RAND ¢LaMBDA)
2 12 8 4, N
1{?“; 2 FILO12)
gIR) = XE(12)
JODG (12) = JODCIS)
CONTIHUR
WRITE (6: 1
no o ap 13n
DXDT(130) =
CALL TRY
TF (Mvoll,
CALL HYDRO
17 NRIT 6T, 0
TF C%T(Eﬁkaﬂié

GALL %TEAﬂ?
RETU

EQ,1) 14,15

200 16
5017

OF SPATIAL XENON

A3:14

STATO0OL

OSCILLATIONS

THE EQUILTERIUN

NE TRY

SUBR HYDRO
AFTER A

PLOTTED
]

JOD(50y,

BY

STEP

RITA

s XEPSCLO0) .

BETA (50
] I ; 2 H T £
50,

Yo T(90),
TKETYR,

By NTRY9,
S

Ki

VeRRsPE,
GAMMAT

GEs0,50),

b 4

15 CALLED

co 1
co 2
o 3
o 4
G 5
co 6
¢o 7
o 8
o 9
o 10
;a i1
Co 12
cu 13
Ca 14
XeCo 11
XeCO 12

STATDL3
’TATDUUE
STATON03
STATOUD4
STAT000S
STATOO06
STATOCO7
STATO008
STATOO09
STATO011
STATOOL2
STATOOLS
STAT
5TAT
STATO017
STAT
STAT
STAT
STAT
STAT




14

¢

4

WRITE (6,25) TIno
CALL FITA (F1, XEC, JODO, KURV, N)
GOTO 16 V
FORMAT (10X,20A4)
FORMAT (10X, 16HSTATIONART FLODE )
éS;HAT Cilix, 19HKDRVA RiTAﬂa TIME% Fl Fasé }
SUBROUTING  STEADY
THE SUBROUTINE 1S CALLED BY STAT
CALCULATES THE FQUILIE RIUM VALUES AFTER A STEP DISTURBANCE TN
CALLS RAND 1N rfz&n [0 CALCULATE FQUILIBRIUM FLUX )
THE STEADY STATE VALUES ARE PRINTED CUT BY SUBROUTINE TRY
COMMON FIE50),FI1(50),FI12(50),XE(50), XEU(50), JOD(50),
1 JUQD['Q); X1K1(100), XK2(100), XKACL00), XK(100), XEPS(100),
2 I(ausf PI(30,2), RIC30,2), B(BUY, ALFA(S0), BETA (50),RRsPP,
3 W Te LA“ AX hAHT@I@ LAMRDA, STGMAX, Ki1, FIREF, 1T:HT, ﬁAﬂHAI@
A Tind, TID, PTIDs TMAX, My DELTAs Hi, YKL, DC50,50), GE50450)
5 0(50), E(54),R(50),DX0DT(50).DINT (50), HZ,SC1500, TC30), U
6 AX(P0), TETA
COMMON  NRIT, KURY, NSTANS, I v
1 10, 10U, ICL, PROL, UROD, PART , ABSO, STAB(50),KSTYR,
2 8TL1, STLP, STL3e STL4, STy5, STL6, , -
3 NTR Yj#ﬂThY?é HTRYS s NTRY 4o NTRYSoNTRYGs NTRY72NTRYBPNTRY S
4 £PSL, EPSZ, FRS2i, EPSS, EPS3L, ITEt, ITE2, 1TES,
5 fﬁAc?Gzﬁ EWA(l@)g XALFi €20y, MV0ID
COMMON  X5S(50),XDs EPSX, EPSDXs [CONT
INTFGER AX .
REAL JOD,  JOLD, LAMDAX, LAMDAT, LAMBDA, Ki
INTEGER  STLi, STL2, STLS, STL4s, 8TL5, 5TL6

We 1,0
STL4 = 4
ITiN= M

TIDD = TICITID.1)

REDEFINITION OF XE AND IODINE BEFORE PRINTING

TID = T1Do

CALL RAND (LAMBDAD
DO 2 12 = LN
XSS5(17) = XFH(Iﬁ)
Xener2y = Xe(ie)

DIDTLIZY = JODOCTZ)
JOn0{rey = JO0DC12)}
WRITE (6, 40

ORMAT (LoX,
CALL TRY
NO 4 14 = LN
XED (14) = ¥SG(I14)
JODGECTI4Yy = DIDTCI4)
DIDTLIA) = ﬂ,n
XG5¢I4) = YFE(14)

RETURHN
ERD

03
T2HSTEADY STATE )

A8:15

STATOOZ20
STATOOZ?

STAT

STATOO16
STaToozq
STATG0Z4

REACTIVITY

Co
cu
Co
Lo
Co
Co
co
co
¢o
co
o
Go
GO
co

XECQO
XECO

STEAD
S5TEAD
BTEAD
STEAD

STEAD

BTEAD
%IFA
STEAD

U

r&.

e 3
[y

12

s
L

11
12




SUBROUT IRE

OF SPATIAL

A3:16

XENON OSCILLATIONS

TPJL LUN

UBROUTINE FOR
FOR THE JNTEGRATION
UBROUTINE EFFO

I TRANSTENT CALCULATIONS
E AGTUAL TiMa
: IT CALLS

R\nbiElT BE CALCULATED

500 aF 110500 F12(50) s XE(50) .
XK2(100),

KFEQ(B0Y,
XKELO00),
ALFA(50),

JDDQBU?&
XERS(L00) .
JETA (500 ,RR, PP,

XKi 1007,

XK4&(100),
91§3092>@ !

ENTE

%I§3@@2>;“

PR
o

LAMBDA, ST1GMAX,
- D500

G(50250)
HZ,5(150), ‘

T

F(5L), 1 (50) DANT(50).DIDT

STAB(S0)1:KE8TYR

Tpv13NT;v:§ gm§RY52N%RYéngRV7 NTRYB NTRYS,

nf;gtza>g1FWA<193; (20) s MVOTE

V%Q(Gf);XUg

CEQL 0, G AND, PICITIDGZ) EQ

R OAT

o 1
Ga Z2
G 3
co 4
Ga 5
ca 6
o 7
co ]
Co 9
GO 10
Co i1
Gu 12
Co 13
co 14

KECO 11
XECO 12
TRANDOO?
TRANODUDS
TRANDOO4
TRANDDOS
TRANDUOG
STAT

STAT

STAT

TRANODLY
TRANOULR
TRANDOLS
TRANOOLS




10

LY

4

6

SUBROU

THE

IF POWER

ANT
SURROUTINE EFFN USES
ropihg

XENON

EFFD C

SUH

TINE EFFQ
ROUTINE 15 CALLED B
g 0 IT IS POSSIBLE

TODINE
AHD

ALLS BURR

Y TRAN

TO

FROPAGATION,

THESE
TRANSTENT

CUTINE TRY

ANALYTICAL
5 UNTIL

I'N

TH

ORDER TO

ANALYTICALLY CALCULATE

EXPRESSTUNS 1IN

PRINMT QUT

THE

ORDER
E POWER [S POSITIVE AGAIN,

THE VALUES

A3:17

XENON

T

CALCULATE

COMMON FI{BOY,F 14000 F 120800, XE(50Y, XE0(B0), JOD(B0OY, ] 1,
1JOD0DEB0Y, XKLCL00), XK2(100), XK4(100), XK(L00), XEPSC(L0D0), Co 2
2 OTIC30,2) PIC30.20s RIC30,2)s BISU)s ALFA(B0), BETA (500 ,RK,PP, CU 3
3 NsCrKs LAMDAX: LAWMDAL: LAMBDASSIGMAX, KL, FIREF. TTsHTs» GAMMATs LU 4
4 TIDO, TID, 1TID, THMAX: M, DELTA: HN, YK1, D{(50,50), G(50,50), G 5
5 ,<Gﬁ>ﬁ E(BAY,P(B03,DXDTE50),DIDT (B0), HZ:S(150), T(30), Ws Co b
& A¥ TETA co 7

COMMON  NRIT, KURV, NSTANS, Co 8
116, Ifuﬁ ICL, PROD, NROD, PART , AESO, STAB(50},KSTYR, co 9
2 8TL1, STLZe STL3: S5TL4, STLS, SThﬁs cd 10
3 MTR?i»RT”“? HTRYS o NTRY4, NTRYS , NTRYG, NTRY7 , NTRYB,NTRYY, 6o 11
4 FF?? ERS 2 g F{%?lﬁ EPSﬁg EPS31, ITeEd, 1TEZ, ITES, co 12
5 “A(”O)aiﬁ IALL9), XALFL (20).MVOLD GO 13

OMMON  X55(50),X0, EPSX, EPSDX, ICONT Co 14
zMTEG&R AX

REAL JOobn, JOpg, LAMDAY, LLAMDAT, LAMBDA, Ki XECO 11

INTEGER  STLL, STL2, STLS, STL4, STL5, STLe Xeco 12

DO 82 1P B gl : EFFanooR

Fi1lie) = ¢ EFFOO00S

CUWTI UE EFFO0004

LAMBDA = 0 FFFODOOS

CALL TRY EFFO000G

YYY & AMING (TICITID.2) , TMAX ) EFFo0007

XXX = LAMDAT/ (LAHDAX= LAMDAT ) EFFooo0s

HT = MINT (HT, (YYY = TID0)) EFFO0009

DO 3 13 % 44 B EFFO0010

JOD (13) = JODO (13) % EXP (=LAMDAL % HT) EFFO0014

XEQCIOY = ( XEOCISY = JODOCI3)aXXX ) #EXR(e LAMDAX = HT) « EFFpnol?
CoXXX % g0p (13) EFFOG013

JOna (137 = JoDc13)? EFFo00L4

¥ £ 1? = XEU (138 EFFO001S

CONTIH EFFO00Le

TIDD = TI&@ + HT FFFDOGL7

IF  (ARS{YYY= TIDO ),LE, 1,E=4) A, 10 EFFun018

CALL TRY EFF00019

GOTO 4 EFFO0020

CALL TRY E%F)OLQi

RETURH EFFo0022

EXD EFFO0023




Nd

Th TR T

&

&1,

SUBROUTINE RKZ

REF GUSTAF DOLSSON, DIGITAL SIMULATION OF SPATIAL XENON
DIV OF AUTOMATIC COMTROL LUND  REPDRT 6911
APPENDIX 2
THE SURROUTINE 15 CALLED BY TRAN
MINES TIME STEP AND MAKES RICHARDSON EXTRAPOLATION (USING
S NETERMINES WHETHER T0 PRINT OR NOT RY CALLING TRY
UMGE KUTTA TIME STEP RY CALLING RRK1

FRe CaLLS THE SUBROUTINES RK1s DERI, HYDRO, VOID, TRY, BACK, RITA

COMMON FIIBRY,FIL(80),F12(80)XE(50), XEQ(S0), JOD(50),
1JOnnesny, xgixiﬂnzﬁ XKZ2(100), XKACLO00), xKCL00), XEPSCLUU).
2 OTI(3042)s PIC30,2), RICS0,2), H{B0s ALFAC(DOY, HETA (S0),RR.,PF,
3 MO LAWMDAX, LAMDAT, LAMBDA,SIGMAX, Ki, FIREF, IT,HT, GAMMAIL,
4 T1D0, ?Iﬂ; TTi0s, TMAX, Ms DELTA, HNy YKL, D(H0,500), G(50:507,
5 0(B0Y, FLR13,R(501,DXDT(50,DIDT (50, HZ:S(L50), T(S50)s Wy
6 AY(200, TETA

COMMON  NRIT, KURY, NSTANS,
i 10, 1CU, ICL, PROD, DROD, PART « ABSQ, STAB(S01,KSTYR,
2 5TL1, STLZ, GTLE, STL4, STLB, STL6,
3 MTRYLNTHYZ: HTRYZ NTRY4NTRYS  NTRYG,NTRY7 o NTRYB,NTRYS,
4 ;f%jp EPSZ, EPSPi, EPS3, EPS31i, [Tedl, [TE2, ITES,
5 ODEDACZ20)YsDRDALLOY, XALFi (203, MVOLD

LUHHDH ASS(EgY, %, EPSK, EPSDX. TCONT

[NTEGER AX

REAL Jmﬁg J0D0, LAMDAX, LAMDAT, LAMBDA, Ki

; s STL2, STL3: S5TL4, STLDS, &TLe
(500, DJanese)

hﬁx @ MINL
HT = APIHi
1P (HT BB, 0,0

60, 61
(T1 CITID » 29 4 THAX )
(HT, (XXX= TIDO )}

1000, 2

XY7 NS
Y7 1S 4 TR TION ERROR IN RUNGF=KUTTA
IF (NTRY7 . E0,1) 4,6
WRTTI <6ﬁgrna XY 7
DU 40 [10 =4,0
DKE CI1n)Y = XEOD (1109
DJAODCILnY = JoD0CIL0)
CALL TRY
IF (MVOID,EQ,1) 62, 63

A3:18

OSCILLATIUNS

BACK)

Co 1
o 2
Lo K
co 4
Co !
LD 7
GO 8
o 9
co 10
Lo 11
co 12
GO 13
Co 14
AECO 11
XECH 12
RKg

RK2

KKRg 0003
RKe 0004
RRZ

RK2

RKe

ReZ 000%
RKZ 0nné
KK2

B2

RK&

rre 0008
RFK2 0010
RiKg

RKZ

RK2

RKZ2 G013
REKZ2 p014
RKg 00415
RK2




62

2
63
~
bt
o
p

L

>
n3

(€3]

3 ope

S B

o
o

3 g
(S5 e]

27
24

64

a5

66
67
Loon
140

1060
50

R

Yx\r\r«,

INTEGRATION AS

4 BACK

T = 0,80 % HT
ALL DERI

042 1182 = 1,2

¥YZ m REL (X3

T
(HTRY7 ,Fa,1) 13,15
TE (CﬂLﬁI3 XYZ

THE DIFFERENCE

No 14 114 =

! 44N
D¥E (T14y = (¢

{ {

r

NTRYE,EO, 1) 16417
E (6,110) (DXECLY o1

INTEGRATION WyThH THE
HT

Te 1T
1

e I3 3
FEE
i
.

. )
ok ¢
7 E0, 1) 26,27
5¢Fﬂ} XYZ
ip”

BEFORE BUT WITH

FETWEEN THE

Fs(714> w1 X
JODOCI144)Y=DJon

=1.N ),

FIRST

.J“)aL.Fs«iyE“’df)

HT, (XAX =

AALE THE

CALCULATIONS WITH

Eel14))s 1,06667
(114))+1,008667

(DJODCKY, K=l,N 1}

STEP pLenNGTH cUNTINUES

30,14

110N

Xl (K3 XEG (KDY + DXk (K)

JODO (K
XxX = TIDD)LE,

COMT I e
CALL TRY
[F (MYOID,FQ,1)
CALL  HYDRD
CONTIHNUE
JEOCNRIT,E0,0) 50, 138
CALL TRY
I MvOTD p,0)  s60 67
CALL HYDROD
T HUE

Hd2 65

fﬂ(mhﬁ'__v
HT=HTY
RETURN
WRITE (6,
FORMAT (10X,
CaLL FITA (Fi1,
NRIT =  NRD
GOTO 18

ki

589 TIHO
19HK
KED

+ DJOn
lg?’“‘""q)

D, 14

URVA RITAD,
%bDﬁﬂ

(K}

%\’(‘E [Lﬂ', 'me‘q )
U

11
HTRUNKATIONSFEL /(10X 10F11,0))

TIME= , F8,%)

KURVJ My

TIME STEP LENGTH

A3:19

RR2
Rikg
RKZ

RKZ
Rr2
HRZ
RK?
RKZ
RKZ
RK2
RK?
Rue
Rgp

DIFFERENT STEP LENGTHS

RK2
RKZ
RK2
RK2
EKE
RK2
RK2
RK?

K2
RKP
RKP
RK?2
RKZ
RK2
RK2
RKZ
RK2
kK2
KK2
RK?
RK2
Rik?
RK2
RKZ
RKZ
RK?
RK2Z
RK?
RK2
HKZ
RK?
RKP
RK2

RKe
FK2
RKZ
RKQ
Ru?
RKZ2

RiK2

0016

guis
0049
00240
no21
guzz
TN
1024

Hh26

us3e

R

0037

0040

140
0041
0042

G045
0046

0048
0049

0094

pus2
nosd

54
Gghs
pos6
00s7
DOBA
059

hual
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FUNCTION RK2( X)
REF , GUSTAF CLSSON, DIGITAL SIM ‘!ATEUN OF SPATIAL XENON OSCILLAT
DIV OF AUTOHATIC CONTROL LUND %FP 691
APFENDIY »
THE FUNCTION 1S CALLED BY RK2
RK1, 15 A GENERAL RUNGE=KUTTA ROUTINE, [NTEGRATES ONE TIME STEP AT A
THE VARIABLE RK{ IS AN ERROR WHICH 18 CULATED  OUT OF THE RUNGE=
REKL CALLS SUPROLTINE DERI IN ORDER TU CALCULATE THE RIGHT HAND SIDE
COMHMON r?ifrigfIiibanFiz(fwbsﬁﬁéﬁ 1Y, XED(BOY, JODC(BO),
LoJOBC 50y, XKL(100), xK2¢L00), K4(100), XK(L100), XEPS(100),
2 TIC30.2), PL(30,2), RICS0,2), B{B0Y, ALFA(50), BETA (50):RHR,PP,
3 MaCak, LAMDAX: LAMDAL. LAM%DAg@IGMAXg Kils FIREFe ITaHT: GAMMAT,
4 Tibo, TID, YTIDg TMAX, M, DELTA, HN, Yhig DE50,503, G(50,50), -
5 mcﬁr>g ECD4 3,1 (501,DXDT(50).DIDT (20), HZ:S5€¢1B0), TC30), W,
6 AXLZDY, TETh
COMMON  NRIT, KURV, NSTANS, :
i 1C, ICuy, ICL, PROD, DRUOD, PART , ABS50, STAB(501,KSTYR,
2 8TLi, STLZ, STLS, %TL43 STLS, STL6,
3 NTRYL.NTRY2, HTRY3,h PY4sﬁTfY5@NTPY6g’WRY7aNTH¥ﬁﬁNT
4 H" 1&9 EPgigﬂ EFS21 ., F S3, EPS3E1L, 1Tel, I1TEZ, ITES,
5 COBDACLO)Y, XALFL (20),MVOID
XES(BD) XD, EPSX, EPSDX., 1CO
GER AX
REAL Jaﬂ, JOT0, LAMDAX, LAMDAT, | AMBDA, K1
INTEGER  STL1. STLZ, STL3, STL4, STLD, STLE
g) p gp w1, N
KECTEY = XEB(12)
JODCIZY = JoDp(I2)
CONTIHUE
TID = TTEQ
Ircﬂv PaER, 1Y 20,21
WRTTE tag 1003 TID, CXECIL00), JUDCILODY, 12002 1,N )
CUhTi,ﬁv :
FORMAT ¢ 10X, 3HRKY 7 104, Fi0,6 / ( 40X, 6EL6,6 ))
o4 14s1, N
KELCT4) & HT#0,33333333*DxpT(14)
NPL & Nel4d
YKLCHPTY = HT#0,33333333«DIDT(14)
XKCIA) = XK1 (14
XECHPTY = XKLINPL)
XEPS(I4)Y & XKi(14)
XEPS(NPTY = XKL(NPIL)
XECTAY = XEp(I4) #XK1(14)
JODCT4)Y = JODO(I4) + XKLINPIL)
CONTIHUE
TID = TIDO + 0,33333333«HT
IF CHNTRYZ,EG,1) 30,31
IT (6, 100)Y TID, (XECILO0), JODCIL00), 1L00= 1,N )
(Oi Ih UE
CALL DER]

RK1

JTONS

goo1

Tivk

KUTT

Co
Co
co
cu
Co
co
co
Co
Co
co
;o
Co
co
Co

XECO
XeCO
Rk
RK3,
KK
RK1
FKd
iKY,
RK1
HiKA,
RK1
K,
RK1
RK1,
RK1
REK1
RK1
RK1
R
RK1,
Rt
RiK1
RK1,
Rk,
RKL
R4
R,

A

o

11

12
pgoz
0u0a
pon4
guos
0006

N
OER
0011
puie
0013
oo14
D015
0016
0017
posag
0019
poen
0021

pn24




44
41

!)G

51

5]
14

15

ey
ot

DO 5 15 =i, N . e

xﬁ?(jﬁ; 8 HT#(,333333338%DxNT(15)

NP = kzs

RECIBY o XED (18 0 0 SaxK (1ns 0,50 XK2CI5)
JODCIS) = JODO(I5) + 0,5%xKL(NPL) + 0,5%xK2(NP])
CONT [ HUYE

IF cevaﬁ Qu1) 40541 . 90 !
WRITE(6, 100) TID, (XECIL00), JODCI100), 1100= 1,N )

CONTIHUE
CALL DERT
DO & 16 = 4, i
XK2016) 5 HT#0,33333333%DXDT(16)
NPT 2 N » 1/
XR@()jl)

\/? )m(«ié’) P

w0, 333333334D10DT(16)
5(16) = 4,54XK2(]6)
[2’1

,ff h
XfPa;i 1 = XE‘S(NFI}VQ 45Xk (NPT \ N ﬂ
Yr( £) = REDQI&) % ;"7%%XKi(fé) " 1aig5§56£§j?) |
dﬂﬁ(lﬁ) 2 o JODC(I6) & 0,375«XKL(NPL) =+ 1,125%XK2 (NP )

CONTIHNUE

TID = Tzqr w 0,5%HT

IF (N py@ s i) 50,51 | |
uﬁlTLiﬁg ixd3 TIDe (XECIL00Y, JOpCitony, 1100s 1,N
CONT ML

CALL ﬂERI
no 7 17 o= 4, K
XKACI7) = HTwi, 33333333%DXDT(17)
NPT 2 N + 17
XKA(HPTY = HT#0,33333333aN10T¢17)
XKCI7) = ¥KCI7) & 4,+XK4(17)
KKONPTY 2 XK(HPT)Y ¢ 4,#XK4(NPT)
XEPSC17) 5 XFPS(17) + 4QWXK@(I7)3EV
EPS(HPI) = XEPS(NPI) + 4,%XKd(NPT)
?gigégpi “E0 ??;)'% ;n%%KKEfI7) © 4%5%XK?€:2)‘% b v AK4L(]
JODCI7) = JODOCI7) + 1,5*XKL(NPL) = 4,5%XK2(NP]) + 6,%XK

CONTINUE
TID = TIDO+ HT
CALL DERI

DO 8 18 = 4, N
XKACI8) = HT+0,33333333+0XDT(18)

MRPT = p,@ 18

XKACNPTY = [T#0,35333533+N1NT(18)
XK(IQQ EOXKOIA) « XKA(18)

KRLNPT)Y & XKOMNPIY # XK‘%(NP’I"
XEP5(18) = XEPS(18) = D,5%XK4(18)
X(H 'H{"j) = :’fLPS(f\JPI) = Dﬂj%XK{;([Jpl)

XEn(rsy = XEOCIBY + D45%XK([R)
Jimrnilf%; 5 JOROCIB) + 0,5%XK(NPT)

ONTIH

TI”ﬁ = TI@

EPSMAY = €

NE = Z#N

D {j (} i (:} bt 1 ’ {..1i 2 |

Fp HAR = AMAXL(EPSMAX, ABSC XEPS(19)))
7“ IHye

RKL = 0,P+FPSiAX

A3:21

RK1,
KK1
RK1
KRR
RKL
RFKl
RK1,
RK3
RKL
KK,
Rk
RK1,
RKd
RK1
RK1
RK1
R4
RK1,
KK
RKYL
HK1
RK1,
RiKq
RK1
KK
RK1,
RK1
R,
RK1,
RK 1
RRi
RK4
RK1,
RK1
RKd,
REK1,
RK1
R,
RKL
RK1,
RKL
R4,
RKi
RK1
\ﬁj
KKl
RK1
RK1
RKL
RK1
RK1
RK1
RK1
RK1
KK,
HK1L

pu2s
0026
0027
0028
0029
0030
00341

0s4
0035
0034
Gu37
0038
0039
0040
D041
Guo4z
np4s
044

Go47
no4a
e
gaBy
0g%51
52
00%5%
Nos4
0055
puss
gos7
goss
gose
ogén
ga61
nge62
N063
Nu64
0065
066
00s7
no6s
6069
00740
00714
puze
D073
0074
Gu7s
0076
0a77
0078
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TID = 71ID0 RK1L 0079
no 16 Iiﬁ g 1s N RKL 0080
AECTL6Y= XEo(1416) RK1 0081
JOneriey = Jfpocite) Rki ous2
16  CONTIMUE RK1 0083
IF (NTRYE,EQ,1) 60,61 RK1
60 WRITE (6, 400) TID, (XECI100), JODCIL00), 1100= 1,N ) RK1
61, DﬁNTZﬁUE A RK1
CALL DERI RK1 086
RETURN RKY n087
EiND RK1 0088
UBROUTING DFERT PERIODDD
G
C REF GUSTAF OLSSON. DIGITAL SIMULATION OF SPATIAL XENON OSCILLATIONS
C DIV OF AUTOMATIC CONTROL LUND  REPORT 69131
» APRENDIY 2
0
G THE SUBROUTINE IS5 CALLED BY RK2 AND RKL
M
C DERT CALCULATES THE RIGHT HAND SIDE OF THF DIFFERENTIAL EOUATIUNZ (Z2.8=29)
G
¢ NERT CALLS SUBROUTINE RAND
C
Gmmmmw FICR0Y,FIa(80),FI2(50),XE(50), XFO(b0), JOD(5UY, (0 i
1 JOD0 (50, WKL(L00), XKR2(L00), XK4(100), XK(LG0), XEPS(LUU). Lo 2
?OTI(30,2y, PI(30,2), RI(30,2), B¢Duy, ALFA(D0)Y, BETA (50),KR,PP, CO 3
3 NGk LAMDAY, LAWMDAL: LAMRDA,SIGMAX, ®i, FIREF, IT,HT, GAMMAT. CO 4
4 TIDC, TiD, 1TID, TMAX, M, DELTA, Hi, ved, D(50,50), G(50,50), Lo 5
B o(bn E(ﬁi)gf€5ﬁ)§DXDI(5ﬂ3sDIﬂT (90), HZ.8¢1200, TC90), W, Y 6
6 AKL20 TETA cu 7
CUMHQH NRIT, Hquﬁ NSTANS, Go 8
1 1C, 1CU, ICL, PROD, DROD, PART , AESO, STAB(S0),KS8TYR, Co 9
2 ST, STLR, HTL5» STL4, STL5, 8TL6, Lo 1
3 ONTRYTNTRYD, MTRYZ,NTFH Y4;NTRY5@NTRV@5NTPVZ@QTPVHa“IH¥9p U 11
PP%*§ ERpSe, EpS2i, EPSE, EPS3L, I[Thi, 1TEZ, 1TES, GO 12
5 DEDAC2GY,DEDA(L9Y, %ALFL (20),MVOID Co 13
TOMMOM XEE(B0)Y XD, EPSX, EPSDXs ICONT GO 14
INTEGER AX
REAL JOD,  JODG, LAMDAX,  LAMDATL, LAMEDA, Ki XeCo 11
z'TrP“n STLY, STLZ2, STLA, STL4, STLS5s STLS6 XeCG 12
GAMMAX = 4, » GAMMAL DERTGAG2
CALL  RAND  (LAMBDA) DERIOO0S
NOo4 fi=s 1, M DERIOO04
DXOT (I4) = S106HAY «GAMMAX#* FICIL) « LAMDAT « JODUILY = DERTIOOGS
COLAMDAY = KECTL)Y = SI1GMAX = FIO11) % XECIL) DERIODGO6
DIDTEILY = GAMMAL = STGMAX * FIOTd) = LAMDAL = JOD (11} DERIOOGT7
1 CONTIMUE DeRIoo0ns
1 (NTRY2,E0,1) 10,11 DER]
16 WRITE (é,100) (OXDT (I12),DIRTCI23, [2=1,N) DERI
11 RETURH DERT
100 FORMAT ¢ 10X, 4HDERI / ( 10X, 6F10,6 )) DERTOOLO

8D DERTO012




G

210

SUBROUTINE BACK

THE SUBROUTINE 1% CALLED BY RK2

BACK RCUTINE BACKS THE PROCESS ONE TIME STEP IN ORDER TO MAKE

A

Tt

RIGHARDSCH EXTRAPGLATION,

COMMOMN FI(BO),FI1(50 JeF12(50)XE(BUY, XEQ(B0), JOD(BUI,

JODG 50y, XEL(100), XK2¢100), ¥K4(100), xK(i00}), XbPS{;UU)@
TI(30,2), PIC30,2), RICS0,2), B(5U), ALFA(S0), BETA (50),RR,PP,
NEC¥H£ Lﬁ¥pAX% LA*JAﬁ# LAMBDASIOMAX, K1, FIRFF, [T,HT, &AﬁMAj@
TIDO: TID iTIﬁa TMAXe Me DELTA2 HNy YKL D(50,503, G(50250),
0(50), h£>j> R(50),DxDT(50y,DIDT (50), HZ,5¢150y, T(30), W,
AXCEny, TETA

COMMON WRIT, KURV, NSTANS,

10, JCUs (CLe FRODe DRODs PART ¢ ABSQ2 STAB(50):KSTYR

STLL, S§TLZ, STLS, 8TL4, STLb, STL6

NTRYSL ,NTREYZ, ﬁTRVﬂ,NTﬁyaﬁNTRYQgNTxyéﬁITPY/ NTRYS, NTRYO,

FPS1, EPS9, FPS2L, EPS3, EPS31, 1TEL, 1Te2, ITES,
DEDAC20),DEDACLYY, XALF1 (20),MVOLL

COMMOR  X8S(EBpy XD, EPSX, EPSDX, 1GONT

JHTEGER AX N

REAL JODs  JOD0s LAMDAX: LAMDAL, L AMBDA, K1

[NTEGER  8TLi, STL2z, STL&, STL4, STL5, STL6

TIDO ®» TIDO = KT

no o2 12 e 4, W

NEQCI2Y = XEO(12) = XK(IZ2)® 0,5

MPT = N o+ 1P

JODOCI2y = Jop0CI2) = XK(NMPIY = 0,5
CONTIHUE

RETURH

END

SUBROUTINE XSIN(INX)

HE SUBROUTINE 1S CALLED BY MAIN

A3:23

Co i
Co 2
Co 3
cu 4
Go 5
co 6
Co 7
co 8
Co 9
Co 10
Co 11
Co 12
Lo 13
Co 14

*ECO 11
XECO 12
BACKpoQZ2
BACKOODO3
BACROUO4
BACKOD0S
BACKOUDG
BACKDOO7
BACKOUO0R
BACKOOODQ

THE SUBROQUTINE CALCULATES SINE FUNCTIONS FOR THE FOURIER CUOEFFICIENT

PR CNELVES S

o

WO DO

CALCULATICM IN SUBRQUTIME TRY

COMMON FI(BOY,F
JODOES0Y, XKL(L
TI(30, 2y, PI(3

ijibJ) FI2(50),XF(50), XEQ(50), JOD(50),

00, XK2(L100), XK4(100), XK(100), XEPS(L100),
0,27, xi(ﬁﬂ,?}@ BO0Y, ALFAL(B0), BETA (90),RR,PP,
LAMDAL, LAMBDA,SIGMAX, Ki, FIKEF, [T,HT, GAMMAL,
D TMAX, M, DFELTAs Hiv, YKL, D(50,50), G(50,50),
(501, DXDT(50).DIDT (500, HZ,SCL50), TC(30), W,

NsCokae LAMDAX,
TIDOD, TIiD, 1T
Q(50), F(O94).R
A./‘:(?“ ) P '?ZTA

COMMON  KREIT, KURV, NSTANS,

10, 1CuU, 1CL, PROD, DROD, PART , ABSO, STAB(50),KSTYH,
STL1, STLE, STL3, STL4, STLB, sTLO,

NTRYL NTRYZ, HTRY3.NTRY4,NTRYS ,NTRY6,NTRY7 s NTRYB,NTRY9,
rpgig qua FPSZig LPSﬁﬁ %W%?a, {Ted, ITEZ, 1TES,
DEDAiﬁﬂ)giFﬁﬂéjQ)g KALFL (203,MV0ID

COMMON k@¢<“u35xbﬁ EPSX, EPSDX» JCONT

IMTEGER AYX

REAL JDDA JOLG LAMDAY, LAMDAT, [LAMBDA, Ki
THTEGER  8TLi, STLZ, STL3E, 5TL4, STL®, STL6G

Bol, N3
5124 SIN (FLOATCIZ20)Y » V ) += Yii
RETURHN

END

co i
GO 7
0o 3
;o 4
Co 5
o &
Co 7
GO 8
GO 9
G4 10
Lo 11
GO 12
o 13
L0 14

ReECO 41
XECO 4192
ASIN 1
XS 1N 2
X511 x
AN 4

X& 1N 6
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SUBROUTIKE  RaAND (X)
REF GUSTAF OLSSON, DIGITAL SIMULATION OF SPATIAL XENON OSCILLATIONS
DIV OF AUTOKATIC CONTROL LUND REPORT 6911
PRPENDIX 2 POINT S

CALLS REPP TO GET MOMENT VALUES OF PUWER AND DISTURBANCE
CALLS FWD TG GET ACTUAL REACTIVITY VALUES FOR THE XENON CONTROL RO
CALLS FLOW FOR CALCULATIOM AF THE ACTUAL VALUES OF F1, XE ANU 10DINE

¥ = GUESSED VALUE OF ROD POSITION, THE VALUE IS READ IN AS DATA FIRST TIME

COMMON PS5 ﬁ)gfilibﬂ fFI2(50) XE(B0), XEQ(50), JOD(50), GO 1
1 Jobo ‘uu>g XK (L00), XK2(100), XKA4(100), XK(Li00), XEPSC(LO00}Y, €o 2
¢TI0, ), pifoﬁQPs RIC30,2), B(D0), AL%Ai5U)@ BETA (50),RRsPR, CO 3
3 NyCoKs LAMDAX, LAMDAL» LAMBDASSTGMAX, Kis FIREF, 1T,HT, GANMAT, CO 4
4 TIDO» TIDe JTIDe TMAXe Me DELTA? HNo YKL )(b(gb yo G(50050) s Cu 5
5 Ab0y, E(BLy,R(50),DXDT(50),DIDT (50), HZ.5(150), T¢30), W, Co 6
& AX(Z20), TETA co 7
COMMON  NRIT, KURY, NSTANS, co 4
1 1C, 10U, ICL, PROD, DROD, PART , ABSO, STAB(50).KSTYR, Lo 9
2 5"?‘33 STLEZ: STL3: STL4s STLDs STL6, Co 10
5 ONTRY4,NTRYZ, LTRYS,NTRY4,NTRYS,NTRYG,NTRY7,NTRYH,NTRYO, co 11
4 'PS?; ERPSE, EPS24, FRS3, EPS31, [TeEl, ITE?Z, ITE3, 00 io
B DEDACZ20),DRDACL9)s XALFL (20),MVOLD 0o 13
COMMON  XSS(50)eXDs EPSXs FEPSDXe TLONT Co 14
TNTEGER AX
REAL JOD, J0DO, LAMDAXs, LAMDAT, LAMBDA, Ki XECO 11
TNTEGER  8TLL, STL2, STL3, STL4.  STLS, STLO XECD 12
CALL RRPP RANDO U0
1M (STL5NE, 30 11,10 R AND
CALL ROD RAND 209
CALL FLUnyﬁ RAND 3
IF (3TL4,FQ,2) 20,14 RAND
DO 2 12 = 1,N RAND
SO 012y & STOMAX » FLICLZ) » GAMMAL / LAMDAL QAN”( 006
gONTITUE ANDOUD 8
RETURT HAND

END RANDDOLD
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SUBROUTINE FLOW (X

REF GUSTAF OLSSORe DIGITAL SIMULATION OF SPATIAL XENON OSCILLATIUNS
DIy OF A(T”TATT( CONTROL LUND  REPQRT 6911
APPENDIXK 2 POINT 1,9 = 17

THE SUEBRQUTINE IS CALLED BY RANE
FLOW CALLS THE SUBRGUTINE MATR AND FUNCTION EGENY

LAD = THE GLD VALUE OF THE ROD POSITION

LAL = A WNEW VALUE OF THE ROD POSITION

BY CALLING HATRE AND FGENY THE ITERATION OF KOD POSITION PROCEEDS
UMTTIL A VALUFE OF THE RQD PNSITION CAUSES THE EIGENVALUE FOR THE
FLUX TO FE CLOSE TO 1

B — Y1 = NEW EIGENVALUE
COMMON FI(B0),FI1(50),FI2(50),XE(50), XF0O(50), JOD(50), ¢o 1
, ommon FI(B0),FILLs xvﬁ(lﬂD)ﬁ XKA(100)Y, ARCL00), XEPS(L00). Ga 2
2OTIC30,2Y, PIC30,2), RIC30,2), B(50), ALFA(DS0), BETA (501 ,RR,PP, CO ;
S N, CoKo LANDAX, LANDAT LAMBDASIGHAX, KL, FIREF, IT,HT, GAMMAL, GO 4
4 TIDOs TIDs I1T1Ds TMAXs Ms DELTAs HiNe YKL D(50,50)s G(50s50)s co :
500500, E(51),RE501,DXDT(50),DIDT (50, HZeSC150), TCS0), We o b
6 AX(20), TETA GU ?
COMMON  KRTT, KURY, NSTANS, Gy 8
1 1Cs 1CU» 1CL: PRODs DRODs PART o ABSOs STAB(50)sKSTYR, o @
2 SsTLL, STLZ, STLI, @TL4s STLS, STL.6, . :
3 NTRY'gﬁTPYQ» HTRYS  NTRY 4, NTRYS, NTRY6,NTRY7, NTRYS, NTRYY, Co 11
; I%ch? E(%i'j E}W‘Qég }:f"fﬁlp lThip IT&:I,}@ ITEE@ Co 12
5 DEDAC 194 XALFi (20),MVOIL g g
COMH P XDy EPSX, EFSDXs TCONT . §
THTEGER AX
REAL JOD,  J0DO, LAMDAX, LAHDAT, LAMHDA, K1 (o 12
1 ITEGER  STL1, STL2, STL3, STL4, STLS, STLO o
FAL LAD, LAL, LA2 L
LA 4 FLOWDOOS
IF (8TL4,E0,1) 2, 3 e
CONTIHUE i
CALL MATR (LAD) Lo
VRO = EGENV (LAD) FLOWODOS
K ((&HS(YHB‘W ,;.E)QL'E;QQ Epsln ?ﬁ H FLOwW
i qvhﬁ LE,D,8,0R, YKU,GE,1,2) 10, 8 FLOW
(j O N)K E E:L” 0 H
LAL = LAG » 0,5 % (YKO = 1,3 Lol
GOTO 15 o
FLOWDOZLDO
LAMBDA 1S DECREASED OR INCREASED WITH 0,1
FlLoWwoaLe
LAL = 516K (0.1, YKO = 1,) * LAOD FLDWOQlE
Do L I1 o= 4, ITEL e
J1o= 11 | o




e
A B A

PN R el )
T DO

1
20
22
34
35
"
C
G
¢
100
102
1io

[FESTLA,FQ,4) 4, B
CALL MATR (LAL)
YKL = FGENY fLAW)
IF (ABS(YKLle 1,),LE,EPSL) 272, 9
CONTIMUE
wYZ = (1, = YELY / (YKL =YKD)
IF (ABS(XYZ)Y,GE 24 172, 16
cONT I NYE
EXTRAPOLATION T0 KAPRPPA (YKL} = 1,0
LAZ = LAL & XYZ + (LAL = LAO )
GoTo 14
THE EXTRAPCLATION IS MAXIMIZED TO THE
LAZ2 = LAL # SIGN (2,0 , XYZ) = (L A1
IF chHYPnEa@¢> 30,91
WRITELA,100) [Td,1.A2, LAL, LAQ. YKL,
CONTIHUE
YO & YKL
LAD = LAY
LAl MIA“
CONTINUYE
WRITE (6, 108
STOP
LAL = LAD
LAMBDA = | Al
[F (RTRY2,FQ,1) 34,35
WRITE (6,410) J1
CONTMNUE
AFTE ‘E oD POSTITION LAMBDA IS
LLER IN ORDER TQ GET &
ERSOSe
Fpsip
EPSS =
FPS?2 =
YKi = 1)
ERSS =
ERPS2 FFLOZ
RETURN
FORMAT (10X, OH(FLOW), 2X. 13, 2%,
C 3HLAG, Fip,4, 3HYRL, Fi2,4, 3HYKDO,
FORMAT € 10X, B2HNY hﬁmVFHF%PAP
F?HMAT (/ BX, T4, 1X, 1BHITE
EHp

FOUND THE
BETTER ACCURACY

k.

DOUBLE

= LAD)

YA

SHLAZ,

F1294)
MOT 14
FRATIONER |

VALUE

nls

OF

Fi2,4,

I FLOW
FLOW 3

TANCE BETWEEN

EPS2

IHLAY,

)

AND

A3:26

FLOW

FLOKW
FLowbaiy
FLOW
FLOW
FLOwoo19
FILO®W
FiLow
FLowoaz2i
FLowii23
FlLOoWwnog4
FLDWQU?b
FLOWDO26

THE POINTS
FLOWODZ28
FLOWOO29
FLOW
FLOW
FLOW
FLOWOn33
FLOWDOG34
FLOWOO3S
FLOWDO3s
FLOWOO37
FIL.OW |
FLOWDD4D
FLOwWOO41
FLOW |
FiOu
FLOW
FLOWOOD44

EPSS 1S MADE

FLOWDOA4G
FLOWO0O47
FLowld48
;zn40ﬂ49
FrLowdoso
FLOW0OOSB
FLOWDUBZ
FLOWDDSBS
Fi2,4, FLOWOD3Y
FLOWDO32
FLOoWdno3s
FLONQJ43
FLOWo055
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SUBRCUTINE  MATR (XD

A3:27

REF,  GUSTAF 0LSSON, DIGITAL SIMULATION OF SPATIAL XENON OSCILLATIONS

DIV OF AUTOMATIC CONTROL LUND  REPORT 6911
APPENDIX 2 POINT S » 4

THE SUPROUTINE 18 CALLED BY SURROUTINE FLOW AND FUNCTION EGENV
MATR CALLS MATIHY WHICH 18 & MATRIX INVERSION SUBROUTINE

THE ROUTINE

TN THE LAST ITERATION VALUES OF XE aND FLUX
INTO THE BLUC

COMMON FI(50),FI4(50),F12(50),XE(50), XFO(50), JOD(50),
1 J(DD(:U}, XKLEL00), XK2(100), XKA(100), XK{L100), XePSCL100).
2 T1(30,2y, PIe30,2y, RIC30,2), B(2uy, ALFA(20), BETA (90),RR,PP,
3 NG, K, LAMDAX, LAMDAT, LAMBODA,SIGMAX, Ki, FIREF, 1T,HT, GAMMATL,
4 TID0s TIDs ITIDe TMAXe Ms DELTA: Hine YKL D(5025032 G(50:50U)0
B B0y, FEBLy,Re50,DxDT(50),DIDT (50), HZ.SC1B0), T(30), W,
6 AX(Z2p0), TETA
COMMON T NRyT, KURV, NSTANS,
i 1Ce I1CUe [CLe PRODe DRODe» PART + ABS02 STAB(B0)sKSTYR:
2 STLis STLZ, STL3, &TL4, STLD, STL6, ,
3 Tf(ibqu?QQ HTRYEgNTRY4$NTNYF NTRYO,NTRY7 ,NTRYB,NTRY9,
4 FPS1, EPhg, EFS21, EPS3, %P 31, 1TkELl, 1TEZ, ITES,
5 NEDALPOYsDRNACLOY s XALFL (200 sMVOILD
COMMON  XK88(H0Y.%XDs BPSX, EPSDX. ICONT
IHTEGER AX
REAL JOD, JODO, LAMDAX, LAMDAL, LAMBDA, Ki
INTEGOR  STLL, STLZ, STL3, STL4, STLD, 8TL6
D” e £ = i@ N
i 4 10 0

CONTINUE

I <&TXV»,F0 1) 14,16

“PIToéﬁpruﬁi ((DCTadYys Jsd,Ny, fel,MN )
H"rlHUr

(&LL W&TTN (N

IF (MTRYS,Fa,iy 48 , 20

WRITE (031033 ((DCT,ddy =g Ny, T21,N )

CONTIHUE

RETURE

IRMAT (10X, 17HD BEFORE INVERTED , 6H(MATR) / (20X,10F10
FORMAT (L0%, &HDCI,d)a GH(MATRY /7 (20x, 10FL0,5))
END

D015 150 = E0I5Y & BLOIB +1) =« HZ * WZ*(CONTC(I%: X) + RUIBI*RR
1 +BETACISY « XE (15) « STAB(IS))

NML B ONTY

Do 8 18 = 14, hPl

DEIB, 18e0) = = E(18+1)

y (I&@lg 18) = &i1v$13

50

co 1
Go 2
Lo 3
cu 4
Co 5
Co &
Co 7
¢ 8
o 9
o8 10
GO 11
0o 12
GCu 13
o 14

XeCo 114
XeECO 12
MATROO03
MATROU04
MATROUDS
MATROUD06
MATROOD7
HATR
MATR 8
MATR
MATR
MATR
MATR 9
MATR

MATROUL1
MATRODLZ
MATRODL S
MATROO14
MATROULD
MATR
MATR
MATR
MATR
MATR
MATR
MATR
MATROD19

MATRUOD1S
MATRUODZ20




o~
A4

L2

O3

SUBROUTINE RREPFE

THE SURRDUTINE IS CALLED BY RAND

RRPF IHTERPOLATE N POLYGONE CHAINS FROM SUBROUTINE
MOMENTARY VALUFS UF FOWER P(T) AND DISTURRANGE U(Z,T)

COMMON FI(EG),FI11050),FT12(50),XE(50), KEGCS0),

1 JODOGCR0), XKI(100), XKZ2(100), XKACLOOD), XK(100},
POTI(30,2)s PIC30,2)y RIC30,2), B(50), ALFA(50),
5 N,C,K, LAMDAX, LAMDAIL, LAMBT A s S1GMAX, Ki, FIREF, I
4 TINt, Tih, leLp TMAK, M, ,)FLTAE Fivg YK1s D(B0.,5010,
B Q(50)s E(BAY e (502 eDXDT(S50)+NINT (50) 2 HZeS(150)
6 A(/f;ﬁ TETA

COMMON KWRIT, KURY, NSTANS,
110, 1ou, IFLF PROD, DROD, PART , ABSO, STAB(5(),
2 STLi, STLE, STL3: STL4s 5TE5, ST 6,
3 NTRYLeNTRYZ2: HTRYZaNTRYASNTRYDANTRYGNT FY7ANT€?%

4 FPS1, EPSP, FRS21, EPSE, FPS31, ITbL, [TEZ, IT
5 DEDA(20),DRDACL9)Y, XALF1 (20),HVOIL
COMMON  X3S5(50),%Xns EPSXs EPSDXe [CONT
ITHTEGER A¥
REAL JOD,  JODD, LAMDAX, LLAMDAT, | AMBDA
INTEGER >T|1 STLY, STL3, STL4, STLS, S5TL6
IF (TICITID,2) BQ,TICITID.12) 1,2
CONTIHUE

RR = RICITINs 4+ (RICITID2) = RICITID,2))*C TID
¢ oo TT{?TTJﬂf} e TICITIDS L))

PP = PLCITINA)+(PI(ITID:2) = PICITID,10)%C TID
C ¢ TICITIDS2) = TICITIDe1))

RETURN

= R CITTR 5 1)
PP = PI (ITID, 1)
RETURM

Fip

JODE50),
AEPS(LO0UY,

GE50,50),

TICITIL,1)) /

A3:28

Co
co
G
Co
)
Lo
Co
co
)]
U
Co
Co
(0
cO

XECO
XECO
RRPP
RRPP

RRFPQ(

o

10
i1
12
13
14

14
12

1035

RREPOODA
RRPPOOOS
RRPPDO0G
RRppODO7
RRPPOOOS

RRPPO

IRIRY

RRPPOOLD

RRPFpoqq




7

[¢ReNe

e la e
vaLd oA ad

—
P B ]

L

e Ve T ) —
TR0 SOy T

g
v L3

YO ey ey,
S O,

12

FUNCTION EGERY

X

REF o GUSTAF GLSSON, DIGITAL SIMULATION OF
DIV OF AUTOMATIC CONTROL LUND  REPORT 6911
APPENDIX 2 POINT 1, 6
THE FURNCTION 18 CALLED BY FLOW
EGENY CALCULATES THE INITIAL GUESS OF FLUYX
IF FLUY IM THE FIRST QPALF PGTNT 1S ZFRO (uWH
THE CALCULATION STARTS FROM EGUILIRRIUMS
TFFLUX IS NOT ZFRO THE LAST FLUX DISTRIBUTI
ITERATION VALUF
SUBROUTINE XNOFM IS CALLED TN ORDER TG NGRMA
MATR I5 CALLED TO INSERT THE VALUES [N THE B
FURCTION XKAFPA 1S CALLED TO CALCULATE THE
FOR THE PPESENT ITERATION OF THE BUCK]LIN
THE SUBROUTINE CALLS FUNCTION TEST
N T[“T IS MADE ITERATION ON FLUX IN THE RUC
THE TTERATION TH THE FLUX CONTINUES UNTIL TH
DIFFERS FROF THE FLUX PREVICUSLY CALCULA
COMMON FI(EO)Y FT11(50),F12(50),XF(50), XEUC
1oJODOCS0Y s XKL(10D), XK2(100), XKACLDU)Y, XK
COTIC3C 2y PI(B0,2), RICS0,2Y, B(50), ALFA
3 NyCak, LANDAX, LAWMDAL, LAMBDA,SIGMAX, Ki,
4 TIDG, TID, IT1D. TMAX: My DELTA: Hi, YK1,
5 @ibﬂﬁg ELRLY, RB0), DXDT(50),DINT (20), HZ,
& AK(2DY, TETA
COMMON  NRIT, KURY, NSTANS,
I 1Cs 10U, 1CL, FROD, LDROD, PART , AHSO, STA
2 5TLd, STLZ, STL3, STLY, S7L%, STLG,
T ONT pvw NTRY?, HMTRY3 gmravqmeHfa,hTﬂ JNTRY7
4 EPS1, EPS2, [PS21, ERSS, EPS31, [TEL, I1TE?
5 Dﬁ@&f%@?@ﬂF“; 160, XALFL (20),MVOID
COMMON X585 XD, EPSX, EPSDYX. T0ONT
INTEGER A%
REA JON0e LAMDAXs  LAMDAT: [ AWM
zmTza:ﬁ STLig STLg, STL3, 5TL4, STLB, &T
1r I
F‘ ,:
DQ 2 2 o= 1l
FI O {12y = SIN ((3,1416 » FLOATCIZ2))/FLOAT
CONT j\' B
CONTIMNUE
CALL %NORM (F1 +F1 )
Do 4 Jds 4,p
Fie {?4> B FT (149
CONTINU
516G = %T( AX 7/ LAMDAX

A3:29

SPATTAL XENON OSCILLATIONS

ICH IS

ON 15

LI1ZE TO THE

UCKL ING
EIGENVALUE FOR
G

KLING TERM

E FLUX IN THE

TED BY EFSZ

TAKEN AS THE

THE CASE WHERN
A SINE DISTRISBUTION

FRESCRIBED

THE FLUX

RUCKLING

(50),RR«PH,

GAMMAT »

50), JOD(50),
(1003, XEPSCL100),
(503, BETA

FIRFF, 1T,HT,
DE50,50), G(50,50),

SC1500, T(30),

s NTRYB,NTRYY,
2 IT{;S;

HDA
L6

Ki

(N+13yy

W

Is ASSUMED

FIRST

FOWER

GO i
o 2
Co 3
GO 4
Co 5
o 6
cu 7
Co g
Co Q
GCo 10
oy 11
o 1
Co 1.3
Co 14
KECO 11
XECO 42
FGEN

FLGENODDE
FGENOIDA
EGENGO 105
EGENGDO6
EGENOOOT

LFGENDODS
EGENDOOY
EGENOOLO
EGEN 110




\) ‘{Y
Ke]
36

37

10

100
162
104

DO L0 110 = 14,
IF (GTLaBrﬁgg;
IMTINUE
Ju 6 16 = 4 5 N
FiIx = SIG » FI(I6)
YECTGY = FIx / (FIX+1,)
CALL HATROX)
M-I R
ZKL = XKAPPA
2

[TED
A2l

¥ ¢
mL A

(F12, %)
F12),LE,EPS2) 3, 30
JEO,L) B1s 40
104y 110, (Fi2

IF (TESTIR]
IF (NTRY?
tii?ﬁ (é,
CONTINUE
LFTT{ (6,
«\T‘
CONTINUE
TFCNTRYO EG, 1) 34,35
WRITE (6,410 Ji

TF CNTRYEZFO, 1) 36,37
WRITE (6,100) (FI1(I12),
CONT | HUE

1087

Trd s

A
CETUR
FD\HXT (10%
FORMAT

PHFT 4 clox,
(10%, 3PHINGEN
FORMAT <1F¥g OHITERATION, 13, 2%,

(10¥%, GF10,60)
FORMAT g / B¥,s 14, 1%,
FHD

10FL0,6)1

LOHITER EGENY

KOMVERGEMNS AV F I
13HAN

}

I
Bl

EGENV
(EGENV)

)

/

A3:30

EGENOOL L
BEGEN
EGEN
EGEN 211
FGEN S$11
EGEN 411
EGEN 511
EGEN 172
fiaf NTUZL&
EGEN
EGEN
EGEN
EGENDDLS
EGENOOZD
EGEN
FGENOOR23
EGEN
EGEN
EGREN
EGEN
Eakd
~GENMOO3ES
EGENDG34
EGENOO3?
EGENOO21,
EGENOQLT
EGENGDLS
P&FV AQO
AF.N, 035
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FUMOTION CONT € 1. X3}

TAF DL5S0N DIGITAL STHMULATION OF SPATIAL XENON OSCILLATIONS
10 CONTROL LUND  REPORT 6911

L " ia [
C DIy oF Ay T 7

iDIY 2 FOI T 1
i}

C APPEN
G SEE kO,

C THE FUKCTION 15 CALLED BY SUBRQUTINE MATR ANL FFGG

C THE REACTIVITY FOR ROD CONTROL OR HOMDGENFEOUS CONTROL 1S CALCULATED
: IF S5TL3 = 4 ROD CONTROL IS USED, LAMBODA(X) DETERMINES THE REAGTIVITY
C STL3 = 2 HOKOGENEGUS GONTROL OR A FIX INSERTION LENGTH IS USED

COMMON FI(S0Y,FI1(B0),F12(500,XE(50), XFO(50),: JOR(502, co

1 FOJ{gbeap XKL (LOO), XK2¢(L00y, wK4(100), K100y, XEPS(100), co
2OTI30,2y, PI(30,2), RIC30,2), B¢DOY, ALFACS0), BETA (50),RR,PF, CO
3 Mycare Lalp é% LAMDAT: LAMRDASIGMAX, Kkis FIREF. 1T.HTs GafMaL, U
A4 TID0s TIDe (71D TMAxs Ms DELTA® HNe YKbLe D¢50050)2 G¢50050y0 Co
5 oa(biy, riﬂi; ReB0Y,DXDT(50y,DINT 20y, HZ.5¢1B0), T(30), W, GO 6
AX(eny, TETA (:0

o OMMOR &PTTg KURY, NSTANS, 0

g 10U, 10L, renjﬁ DROD, PART o ABSQ, STAB(50).KSTYR, 4] g
1, STLe, STys, STLa, STus, STpé, oy 10
o RzﬂghTRYé RTP¥§ NTRYG,NTRY7sNTRYSNTRYY, o] 11
““93@ EPSS, szi; 1Te4, 1TEZ, ITES, Co 12
19)s XALF1 (20),MVOID cu 13
:L}#XI EFSXe $P?[xﬁ TCONT Go 14

N

oy ™~

Tf‘ffﬁﬂ’ ;[xf i

AL JOD,  J0DG, LAMDAX, LAMDAT, LAMBDA, K1 AECO 11
[NTECER S8TLL, STLZ, STLS, STL4, STLS, STL6 XECQ 12
GOTD ¢ 1, 27, 8TLs CUNTopop

1 [E X LE, ;W,EF?(;X,,GEE@I!J? ds 30 CONT

10 CONTINUE CONT
11 = FLOAT(NMY = X + 1, CUNTOOD4
TN S CONTOUO05

T .

4 ONT = ¢ CONTgpos
RETURT CONTOuUD?7
B CONT = ( FLOAT(N)#X <FLOAT(T]) = 1, ) » C CONTOOOS
RETURH ConTOUDQ

5 CONT = 0, CONTDO0

RETURH CONTOULL
3 CONT = X % C CONTOO12
" CONTO013

COMT
CONT =
FETURHN
CONT = X = [
RETLRH

EMD

CONT

CONT

CONTOOLS
JONTOULA
CONTODLY
CONTOU1 6
CUNTOODL®




FUNCTION XKAPPALFIZ, X

A3:32

Go 1
M) 2
Y R
Co 4
oy 5
co &
cu 7
Co I3
20 g
Cu g 10
;o 11
o 12
(Y] 14
o 14
KKAR

XECO 11
AECH 42

XKKAFGOO4
AKKARPGODS

XKAP
AKAR
X AP
XKAPDOOQ
XKAP
XEAP
KKAPOOLY
XKARPDUL2
XRARPOOLS
KKAP
KKARPOOL7
XKAP
XKAP
KKAP
KKAPODOS

AXKARPODL4

C
C REF, GUSTAF OLSSON, DIGITAL %zvuLA TION OF SPATTAL XENON OSCILLATIONS
C DIV OF AUTOMATIC CORTROL LUND  REPORT 6911
C APPENDIX 2 POINT 5
G
" THE FUNCTION ]85 CALLED BY FUNCTION EGENVY
(W
€ KKAPPA 1S THE FIGENVALUE FOR THE FkPﬁF%alﬂh KAFPA*FT & H = FI
c KEKAPPA 1S CALCLULATED WITH A POTENSE METHOD
o
# THE FURMCTION CALLS THE SUBROUTINE FFGG AND FUNCTION GF]
C
COMHOT FICE0)FI0(50),F12(50)XE(50), XEU(B0), JUDI50),
1JOD0(D0 Y, HYKL(L00), XKE(Ll0g), XKACLO0), XK(L1003. XEFS¢10D),
poTI(S0:2)s PI(20:20, RIC3I0,2), B(S0)s ALFACS0), BETA (503 ,RR,PF,
G NeCeke LAMDAX: LAWMDAT® LAMBDA:STIOMAYs Kie FIREF2 [TeHT2 GAMMAL¢
4 TiDo, TID, 171D, TMAX, M, DELTA, Hi, YR4, D(50,503, G(50,50),
5 0iboy, Fibiny F(%ﬁ}aDXﬁT(ﬁﬂ)gniDT (50), HZ,8¢1%0), T(30), W,
b AXLRO), TETA
COMMOR  NETTs KURVs NSTANS,
LoIC, JCU, ICL; FROD, DROD, PART , ABSO, STAB(50),KS8TYR,
€ STLi, S$TLZ, 8TLS, S§TL*, STLS, §TL6,
5 NTRYLNTRY2, HTRYZ,NTRY4,NTRYS,NTRY6, NTRY7,NTRY8,NTRYg,
é E; )l ? FF’H( 2 f{ 913 Eg‘i)ég F’P‘SK‘I, IThxg’ j-TtlLJQ lTE;,'SR
5 “fDﬁf“ﬂ)JfPWA{ﬁq)@ XALFL 20),Mv0lD
b 55(50),XD, EPSX, EPSDX. TCONT
FR AX
] STok Fiz (sg)
REAL JOD, JODO, LAMDAXK,  LAMDAI, LAMBDA, K1
TNTEGER  STLhs STL2, STL3. STLde STLS: STLG
CALL FFGO (F17, %)
7EY = GFLCFI1Z)
nood4 1io= 4, 1TES
Jiowld
2 7Ke = GFI(F1I7)
IF c[T%ngrwgiz 1011
10 WRITE (6,100) 11, 7K?
i1 COMTIHUE
Z@x 2 (ZRE/IKLY = T
IF Al 5</frsq:£ Epsdy 8, 12
1. } IUE
zﬁi B ZRE
1 CONTINUE
WRITE (6, 102)
STGP
3 OXKAPPA =
COLNTR 1y 14,15
14 J1
15
100 SHIXKAPPAY, 4%, 2HTe, 13, BX, BHKAPPA(T), F1Z.,6)
102 AGHINGEN KONVERGENS wOT STORSTA RGENYsSKDET | XKAPP
e

?Hhugr ( /8%, T4:11HITER XKAPRA )
N

XKAPODLS
KKARDOLY
KRARPOQ2Y,




Oy O

1]

&

4

PUNCTION XNORM( YYV, 227 )

A3:33

FONS

(Y i
Co 2
Cu 3
530 4
Co 5
Co 6
co 7
Co 8
co 9
o 10
o i1
GO 12
co 13
co 14
ECO 11
XK=Co 12
¥NOR
XKROROODD3E
ANOROOO4

XNORpgos
ANOROOOG
XNURQCU7

KNOROOOA
“ﬂO%)Jﬂ@
XNOROO10
ANOROGL
ANOROOLZ
XNORDULS

REF, GUSTAF 0LSSON, DIGITAL SIMULATION OF SPATIAL XENON OSCiLLAT
DIy oF mu7*'ATiﬁ CGNTHQL LUND  REPORT 6911
PRENDIY 2 PLINT 2, B

THE FURCTION 1S CALLED BY THE FUNCTIONS EGENV AND GF
THE FUNCTION GALCULATES TWO DIFFERENT NORMS
IF STL 2 = 1 IT NORMALIZE THE FLUX TO THE FOWER CONDITION i
IF STL @ = 2 THE Fi;ﬂ I ONE SPACE POINT 15 NORMALIZED TO A VALUE FIREF

COMMON FI(E0),TIL(B0),FI2(B0),XE(B0), XE0(90), JOD(50),
LoJoDOESay, XKL(100), XKkZ¢lo D) XKACLOUY, XK(L00), XEPS(100),
2 MT(33sr)f PI(30,23, RI(30,2 )s B(5uy, ALFA(bQ)@ BETA (bj),HhsPH@
3ONGCoRs LAMDAX, LAMDAT . LAMBDA,SIAGMAX, K1, FIREE, TT,HT, GAMMAT,
4 TIn ¢ TIDs YTgﬂ* TMAX? M2 DELTAs Hie YK1s D(50250)0 G(50050)
S5onply, E¢5Ly,p(50),0x0DT(20),DIDT (50, Hz,5(150y, T¢$0), W,
6 AX(2 T

(M MR KURY s NSTANS,
i "ROD, QRQDQ PART + ABSU, STAB(50),KSTYK,
2 L3, 8TL4, STLS, 8TL6,
3 TRYZ,NTRY4,NTRYE NTRYS ,NTRY7 ,NTRYB,NTRYG,
4 ,21@ EFS3, EPS3t, 1TEL, [Te2., ITE3,
5 Frs XALFL (20).MVOID

YeXDa EPSX, EPSDX, TCONT
SO0, LAMDAX, LAMDAT, [ AMHDA, Ki

THTE STLY, S5TL2, STL3, STL4, STLY, §TL6

niME NooyyYyiesgy, Z722(50)

GOTO (4, 4y, STL?

SUM = g

nl o2 12 = 4, W

SUM 8 SUM +« RO12) * yyy(z}

CONTTHUE

XXX = PP*FLOATC N#i 3 / ( SUM=KL )

1009 18 = b, n

zzzcr5> = XXKEYYY(13)

f?wTi

Auu @,_ = ,ef:?(%x

RETURN

I4 = HN = FLOAT (N+1l) + 0,5

XXX = Pl
GOTO 5
END

REF/ YYY(14)

XNOROOZ 4
XNORoO1S
XNOROO16
XNORUOL7




0Oy 2O 2 10

-
N

100

FUNCTION TEST

CFIXX, FIYY)

A3:3Yy

REF , GUSTAF OLSSON, DIGITAL a;w JLATION OF SPATIAL XENON OSCILLATIONS
Div ofF mqusArz( LDiTxQL LUND  REPORT 6911
\D} JL)T}’\ 2 1? (,) o ﬁ
THE FUNCTION IS CALLED BY FUNCTION EGENVY
THE FUNCTION USFS A RELAXATION METHOL [N ORDER TO REPLACE AN OLD
VALUE OF THE FLUX IN THE BUCKLING TERM WITH A NEW 0ONE
TETA = RELAXATION CONSTANT
COMMON FICE0),F 10500 FT2(50),XEC50), XE0(50), JOD(50), co 1
LoJoDOCE0y, XKL(100), XK2(L00Y, XK4(100), XK(100), XEP (10U, 0 2
2 T1(30,2y, PL(30,2), RI(30,2Y, B(5u), ALFA(50), BETA (50),RR, PR, GO $
S ”MM,& LAMDAK: LAMDATL s fs’f\MP“A@ IQHﬂU\ﬁ Kio FIREF, 1T,HT, GAMMAT, cO 4
A4 FID0, Tif ITIDe THMAXe Me DELTA? Hpne YKL D(éﬂa%ajg GeDleBUye G 5
B (i, BEy ReB0y,DXDT(50),DIDT (50), HZ,S5(150), T¢30y, W, £o &
6 A/(?H), T{TA co 7
(MH PMON ;f“‘“é, KURY, NSTaANS, co 8
1 IC, ICU, ICL, PROU, DROD, PART , ABSO, STAB(SO I ,KSTYR, co Q
2 S5TLL, STLE: STL3, STL4s STL5, STLG, Co 10
SONTRYL,MTRYZ2, NTRYSZ,NTRY4,NTRYS, NTRY6,NTRY7,NTRYB,NTRYQ £o 11
4 EPS1, EPSZ, FPS21, EPS3, EPS31, [TE1, 1TEZ, [TES, co 12
B DEDALZOY,DEDACLY), KALPi (20, MVOLD GO 13
COMMON  X8S(50)sXDe EPSXe EPSDYe ICONT co 14
IfTF“Fh AX
Uit SMSTON FIXNK(B0), FIYY(50) TEST
AL ‘Dﬂp JOD0, LAMDAX . LAMDAL, L AMBDA, «1 XECD 11
TNTEGER STLi, STLz, STLS, STL4. STLG, §TL6 AECOD 12
;Tth%IO« XFT( 01 TEST
8 = 0 TESTOU03
SUM %0 TESTO004
SUML = 0, TESTOO0S
DO 2 12 =i,N TESTOU06
XELCIR2Y B FIYY(I2) = FIXX(12)
SUM = 8 w ADSIXF L2} TESTOUOS
SUML = SUMY « ABSCFIYY([2))
FIYY(IR) FIVYYCTIZ2Y + TETA * (FIXX(IZ2) = FIYY(I2)) TEST
Flxxei2 FIvyYole
CONTIHUE TESTOO11
SUp = SUp / SUpg TESToo12
[FO(HTRYL,LO,1) 34 TEST
WRITE (6,10¢ (XFT (13): [3z1,M) TEST
COMNTINUE TESY
FORMAT CdnX, 6H(TESTY, 2%, BHXFT 7/ (10X, 10F10,61} TESTONL4
S = AMAXL( S, SUM TESTO01S
TEST = 8§ TESTO01a
RETUR] TESTOUL7
EMR TESTOO1L8
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SUBROUTINE FFGG(FIXY, %)
i
C REF, GUSTAF QLSSON, DIGITAL STMULATION OF SPATIAL XENON OSCILLATIONS
G DIV OF AUTOMATIC CONTROGL LUND  REPORT 6911
C APPENDIX 2 POINT 4
G
¢ THE SUBRQUTINE 1S CALLED BY FUNCTION XKAPPA
¢
C THE SUBROUTINE CALCULATES PHE MATRIX G MHICH IS A PART OF THE HMATRIX
G My THIS MATRIX 15 USED IN THE ROUTINES XKAPPA AND MATR,
G W o= 0 ASSIGHNS THAT EQ blthRI M SHALL BE CALCULATED
G Wom Ly 0 ASSIONS THAT TRANSTENT SHALL BE CALCULATED
G
¢
COMHON FICBOY,FIL(50) F12(50),XE(50), XEQ(50), JOD(BQ), GO 1
1 J0Do(b0y, xKkiciooy, an(L}n>3 XKA¢100y, xK(LU0), XEPS¢L0U)y, Co 2
2 T1t30,2y, PI1(3q, P e RICS0,2), B(50Y, ALFA(S0Y, BETA (50),KR,PP, CO 3§
3N, Cake LAMDAXs LAVMDATS LAMBDA»SIGMAX, Kis FIREF, [T, HT, uAﬁPAIa co 4
4 TIJG@ TID: TTIDe TMAXe: Ma DELTA: His YRLe D(50:50)s G(50:50)0 Co 5
5 oAby, B(BL),R(50),DADT(50),0IDT 50y, HZ,5(i50), T¢30), W, Co b
& Ax¢?2 n) TETA Co 7
cOMMON NRYT, KURV, NSTANS, cu 8
L ICe ICU. ICLs PRODs DROD» PART » ABSQs STAB(50)sKSTYRs Co 9
2 STLL, 8TLE, STL3, STL4, STLS, §TL6, Co 10
S MTRYL,NTRYZ, HTRYS,NTRY4,NTRYS ,NTRYO,NTRY7 ,NTRYB,NTRYY, Cu 11
4 ﬁﬁﬁjg EPS2, EFS521, EPS3, EPS34, 1TE1l, 1TE2. [TES, cu 12
5 DEDALZD );nPnA<1@>£ XALFL €20)aMv0lD Co 13
COMMOHN B8¢O01, X0, EPSX, EPSDX, ICONT GO 14
THTEGER A,
DIMENSION FIXyY (503 FFRGG
REAL JOD, J0LO, LAMODAXs, LAMDAL, LAMBDA, Ki XECO 11
INTEGER  STL4, STL2, STL3, STL4s STLB, S5TL6 Xpcd o 12
MENSTON F(50) FEGa
é N FFGGOUO3
FFGGODO4
1 N FFGG 5
= 0,0 FFGQ 6
& FFGG0DO0S
= 4,N FFGGOGDY
H7 % HZ % (QCIL0) + WeALFACTLO) = CFIXYCI10)=FI1¢l10) ) FFGGoo40
10 i FFGGROUL2
1 CNTRY4,E0,1) 16017 Fraa
16 WRITE g@@Lno> (12 FIXY(I2)Y, FCI2), 12 = 1, N)
17 CONTIHUE FFGG
100 FORMAT (/10Xs 6HIFFGG)s 2X, 4HI» 7X, PHF1s 13Xs 1HF / FFGGOO14
C(LOX? 193 FiB,6e Filh,6)) FFGGDOLS
no 12 117 = 1N FFGaoo1e
no 44 144 = 4,N FFGGoot7
GOILE,T14) = DOIL2, 144) » Fil14)
14 COMTINUE FFGGOOLY
12 CONTINUE FFGGOoO20
TF O (NTRYS FOQ, 1) 48,19 FrGG
L& WRITE (6,102) ((GCIeddy Jal,N)s Is1,N ) FFGa
19 RETURN FFGa




Loz

FORMAT (10X, SHD » F , 6H(FFGG) / (20X, 10F10,5))
EAD

FUNCTION GFTLYYY)

THE FUNCTION 1S CALLED BY THE FUNCTIUN XRAPPA
REF, GUSTAF OLSS0N, DIGITAL SIMULATION OF SPATIAL XENON OSCILLATIONS

)

[V OF AUTOHATIC CONTROL LUND  REPORT 4911
APPENDIX 2 POINT 5

CALCULATES THE HATRIX=VECTOR PFRODUCT GsF] N _
THE PRODUCT 1% USED BY THE FUNCTIOM XKAPPA IN THE EIGENVALUE
CALCULATION WITH THE POTENSE HMETHOD B

Am@wﬁ 15 CALLED IN ORDER TO MORMALIZE THE VECTRR

COMMON %Tirﬁ,gfiﬁ(%))z?iZ(%B)gXEi%U)@ XEQ(B0Y, JOD(B0),
JODO(S0 Y, XKI(100), AK2¢100), XK4(L00), xK(100), XEPS(L00),
sic>u,f)@ PI¢30,28), RICSn,2Y, B(5U)Y, ALFA(D0), BETA (b()@HR@PPQ
NoCo Ko LA‘WARQ LAMDAT, LAMRDAgsfP“A¥ Kis FIREF, IT.HT, GAMMAT,
TIUG, Tl” 710, THAX, M, ELTAS Fﬂ\g YK, D(50,5%0), ‘».4{53(35 Uy,
0(50) cf1>»f<%ﬂ>snx3T<a)>anfnr (50)s HZeSCLIB0Ys TC(30)s Wa
quﬁﬁzﬁ TETA
COMMON  NRIT, KURV, NSTANS,
¢, 10U, 0L, PROD, DROD, PART . AHSO, STAH(50),KSTYR,
STLi, STLZ: STLS, 8TL4. STLS, STL6,
rTfYT»wa%?, uTRYBaNTRvéme%Y% NTRYO s NTRY7 sNTRYBaNTRYY s
P‘”g EpSg, BRSP4, EPS3, EPS3L, JTkL, 1TEZ, ITE3,
QA‘TQ)@”%DA{jQ)g KALF1 (20 ,MVOTL

tﬁfwh; S5(B0Y A0, EPSX, EPSDX. [TCONT
I}T GER Ax B .
[As 0D 400D, LAMOAX, LAMDAL, LAMBDA, Ki

§TL4, STLZ, STL3, STL4, STLH, §TL6
MooyyYyY(snd, PSI(50)
1o

51, = SUM a3 (12,14 + yvyY(14)
CONTIHUE
Psp (1py = SUR

CONTIHUR

IF (MTRYG,FQ,1) 6,8

WEITE (6,100 (PSI(12), [221,N}
CONTIHNUE

FOR (100, ARHG#F | /15X, T0F10,6 31}
GF T = XNORKM (PST, YYY)

RE TURE

EMD
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FEGG

22

FrGGoo24

Co
Cg
co

(0
Co
Co
Co
Co
co
;o
030
9]
0
Co

AECO
XeCo
GF I
GF 1
GE 1
GF |
GF I
GF i
GF I
GE ]
GF 1
GE Y
GF I
GV
GF I
GF 1
GF 1

AR

Lod

nuos
0004
noos

4]
non7
nanas
gune

G011
noi2
G013
0014
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SUBROUTINE  MATINY (A, N )

[

G THE SUBROUTINE 1S CALLED BY MATR

¢

r MATINY I8 A MATRIX INVERSION ROUTINE FOR A TRIDIAGONAL MATRIX

:

G
DIMENSTON  ACHD,50), B(BO), ((BO) MAT]
IF (AL, 1), B0,0,) 200, 1 MATI

1 CONTIHYE MATI
Atd,1) 5 1,/ AL, MATL 4
BOLY = A(L,2) % A(1,1) MATL 5
C(j! o A(ré"i? HATI lﬂﬁ
MM s Ne L MATT 6
Do 2 12 = 2, [M1 HaTL 7
Cer2y = Agle » 1, 12 MATT 197
ACIZ2412) = AC12,12) = CCIR=1)% B([2n1) IATT 8
IF (ALI2212),FG,0,) 200.3 MATI

3 CONTTHUE MAT]
A (12,123 = 1,7 AQ12,12) MATT 40

2 B(IZY = A(I2, I12#1) %= AC12,12) MATL 11
ACNaNY = Alpgn) = Cln=1) * Blns1) MATL 12
TF (AN, NY,FEQ,0,) 200,4 MAT |

4 CONTIHUE MATI
AN NY=L /7 ACH,M) MATT 14
Tz M MATT 15

10 A CLed) = mp (Trgel) * C(J) *ACJr ) MATL 17
Josde 4 MATL 18
I €040y 20,10 ALl
[edei MAT 22

25 Aasz s e FUI) % ACL#d,J) MATT 23
[2 lwl MATL 24
IF (I,EQ, 0y 30,25 MAT ]

=5 NENEY MATT 27
g MATY 28
A (TedY 5 = ACded) = (ACTsdet) % C(J) o 1,) MATI 29
FoOJdeEG,0) 40,40 : MAT ]

40 RETURHN MATT 33

200 WRITE (6,100 MATT 34

100 FORMAT (/7 10%, 19HSINGULAR MATRIS 3 MATL 35
STOP MATL 36

END MATT 37
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L4

[QE RO I o o as B o

10

NI

TIDF CALGU
U(? Ty =
POLYGONE

THE

SUBROUTINE

JODGCE0 Y,

TI(30,2y, PI(30,2), RICS0,2y, B(5u), ALFA(SU), BETA (51)¥HH PR,
Mook, LAMDAX, LA‘JAIg LAMPQA@ 16MAX, Kb, FIRFF, JT,HT, GAM
TIDOs TIDs ITiDe THAXe M2 DELTA? Hie YKIe D(50:5000 G(5G050) 0
G¢R0y, Fe5dy,1¢50),DxDT(50y,DIDT (20), HZ,5¢350y, T¢30), W,
AX(20), TETA ,
COMMON® KRYT, KURV, NSTANS,
iCe ICL ICLJ FROD: DRODe PART ¢ AUSOs STAB(S03 s KSTYR
>TL*; STLe, STLS, %TL4 STLS, STL6,
tT YL NT “%ﬂg HTRYS,NTRY 4, RTHYiaﬁTRfégl RY7,NTRYE,NTRYY,
PEJ EPSz, FIS21, E,P%Sa EPS31, 1Ted, IT%’;? ITE”M)@
ft%AfﬁaiﬁanA<39>s XALF1 (200, MVALL
COMMON  XSS¢bo),XIl, EPSX, EPSDX, IGCONT
INTEGER AX
REAL JOD, J0OD0, LAMDAY, LAMDAT, LAMBDA, K1
I Tfﬂ ER HTL1, STL2, STLS, S5TL4, STLS, STL6
DIMENSION  71(30,2)s  Z(30)
e 0O
Moo= 0
DO 4 1 =1, 100
TFK = [«K
IFCTOIPK #0700 10,5
TCIFK) JEO, TCIPK+L) L AND, ZCIPK) (NE.ZCIPK#1)) 2, &

SUBROUT [ HE

LA
RETY =

TIDF

TES TIME
R{Z3

FICBR)Y F11(B0YF12(5

Vtﬁ!ﬁﬁD}@

TCIFK)
{ PR+
7 OCIPED
2 {I1PK=1)
{IPR=1)
(IFK =13
TCIFK +2)
7 O (IPR+2

(721

IS CALLED BY

)

FUNCTIONS DOR
AND THE

XK2¢100),

HATN

G XELB0Y,

THE

XEACLOGY,

DIs
TOTAL PUWER
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THE SUBROUTINE 1S CALLED BY MAIM

UER T8 A EDUTING PROGRAM FOR WRITING ALL JNPUT DATAS,

DIMENSION AC2) -

COMMON /sDATA/ B(15) ok

INTEGER A, R

DATA ((RCI1Y, [1s1,14) =  3ZHGEO, 3HNUK, SHKON, 3HTID3HDIF . -

IHOUE s 3HEP SHTRY, 3HTOL, 3HREG., 3HSTA, 3HTRA, 3HEXE, SHSLU ) RUBR

FORIAT (A, 15 RUBRO0DS

FORMAT (A2, 19A4) RuBR

WRITE (6,7)

FORMAT(sdox, 4
g o= 4
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e
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E i
T
.
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no

i

X

4 RUBROU10
F, GCI31) 3, 4 RUBR
13 RUBR

By RUBROULS

TIHYE RUBROOL4
WRITE (6,10) RUBR
WAT (LOX, POHFELAKTIGT RUBRIKKORT RUBR

)P RURRODLS

: RUBROD16

SUBROUTIRE RYDRO
S
RETURN
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SUBROUTIKNE  ROD

W,  DIGITALT PROGRAM TRAXEN FOR TRANSIENTBERAKNINGAR
AV XENONSVANGNINGAR 1 EN AXTELL REAKTORMODELL
TE POWER BOARD, STOCK%DLM 1966  REPORT E=53/66

SWEDISH §

THE SUFROUTIHF 1& CALLED BY RAN

IT CALCULATES THE REACTIVITY VALUES FOR n KENOH GONTROL ROD
THE POSITION oF THE ROD IS BETEbeHEu BY

1 = ROD CENTRE  I1CU = UPPER BOUNDARY
TCL = LOWER BOUNDARY
PART = ROD LENGTH (LT 0,5)
I

COMMON FI(E0),FI4(50),F12(50),XE¢50), (E0(50), JOD(5UY, GO
1 JOD0C50), XKI(100), XK2¢100), XK4(L00), XK(100), XEPS(100), GO
7 T1(30,2), PI(30,2), RIC$0,2), B(BU), ALFACS0), BETA (50),RR, PP, CO
3N, 0K, LAMDAX, LAMDAT, LAMBDA,SIGMAX, KL, FIREF, IT,HT, GAMMAI, GO
4 TIDD, TID, ITID, THAX, M, DELT N N, VKIS BC50,500, 650,500, oy
5 0(50), ECBL),0(50),DXDT(50),DINT (500, HZ,SCL50), T(S0), My Cu
b AXL208Y TETA ¥
COMMON  REIT, KURY, NSTANS, - oY
1o1c 11, PROD, DROD, PART , ABSO, STAB(50),KSTYR, co
2 ST Wy STL?» QT(*{H STL"J"? ‘Tt(:" gy
3 ONTRYL . JTD ?’a HTRAYZ A NTRYS e NT )\ii:,FpJTP\{{‘;g TRY/ANT’{\’ ’jﬁNYRY@g Co
v ERSY : S;‘f; Ef pz‘gig g?f""./xﬁﬂ §F ’l)?,ﬁ iij [TEZ, ETL‘S'? LU
SOMMOT f%%gﬂg)zaﬂs EPSH, EPSDXs 1CONT b
MTEGER AX
FAL JOD,  J0DO. LAMDAX: LAMDAT, LAMBDA, Ki XECO
INTEGER 5711, STL2, STLS, STLA, STL5. STLO XECU
IF (STLALEO, 1) 420,14 oD
GOTO (100:200,400:500)KSTYR
§\)i(\ = 1
IFT AND IX ARE CALCULATED  (F0, 2,1 < 2,2)
XFI1 = THE INTEGRATED VALUE OF FLUX DEVIATION OVER THE FIRST HALF OF
THE CURE (2,1}
XDX1 ® JNTEGRATED vALUE OF nxnf  (2,2)
XF172 = THE SAME AS XFI1 BUT OVER SECUND CORE HALF
DX? = THE SAME AS XDXL AUT OVER SECOND CORE HALF
iy 15 DEFINED OF XDX AND XFI (2,57
NROD = ONSTANT FROD = CONSTANT

g 5 # FLOAT(NY + 0,6
g a

v FI¢12) = F1terdy
+ DXDT (1€
FLOAT (N1)

FLOAT (N1

1e

NL = 11wl
CONTIHUE
SUMR = 0,

SumM2d = 0,0

;\—y.
PN
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= BUMAT o F[( 4) @« F11 (j‘,{;g’
lﬂ‘/ FLOAT (Mﬁf\ilﬂﬂl}
XDX2 = SUMP % XX
KFZ? @ s LM
AFT = ’ <M4%QXP£1) + AHggxpgz,;
¢ = 0,5 * FL a (N+l) = FLOAT(N)*(XDX # SIGN (DROD, XDXZ2) =
070 o0

“STYR ® o2
IF] = THE COORDINATE WHERE FLUY LEVIATION 18 BIGGEST
IFI = THE VECPDi&ATE WHERE DXDT 1S BIGGEST
1018 CALCULATED OUT OF IFT AND IDX (2,9)

CONTINUE

AKDX = DXDT(L) HOD
IDx= 1 ROD

DO 24 124= 2,1

TP (DEDT(124y = Xhx) 22,22,24
X = DXDT(124)

DY = [24
CONTINUE
APt= FI(i) = F11¢10 ROD
IFT = 1 ROD

Dﬁ 28 IZ’!{“‘; = ?,ﬁf\

DELT = FI(IP8) = FI1(128) Row
I (XF] = § ) Pe, 26, 28

XFT = DELT

1IFL = 128

CONTINUE
PROD = 4,0 =DROD ROD
IC = PROD# FLOATCIFI)Y + DRODe FLOAT (10X} ROD

aoTn 200

KSTYR ® 3
1C 18 DETERHINED IN DATA INPUT
XDELX = XE DEVIATION IN POINT JC
DXDT(IC) = DXDT IN POINT 1€
THE ROD SWITCHES BETWEEN Ig AND N & 1 = 1¢ DEPENDING ON DELX AND DXDT
(2,104 §1
WHEH XLk

)
LY LT EFSYX AND DXDT(Ic) LT EPSDX THE ROD IS ®MOVED TO CURE
CENTRE (2,12-13)

XDELX = XE(L) = XS55(1) ROD
no 402 1402 =2,N

IFxBET4gey w'vﬂ%ci%u?a e XDELX )y 4p2,492, 400 ROD
XDELX = XE(l402) = X55(1402) ROp
IXE= z4na

CONTLINY

IF <ﬁfo<x ELXDY, LT EPSX, AND ,ABS(DYDTOIXEY ) LT, %@ ux; 420,408
3 (uquchE)7}>

I (KDELR BT, (=
16 = Nedns fv
GOTH 412

UXDT(TﬁF)%AH




410
412

420
500

14

b
3

i

4
A

16

ap 2
504
306

1G =1XE
CONTINUE
GOTO 300

HE €O thIxATh WHERE FLUYX DEVIATION IS BIGGEST IS CALCULATED
IF XDELX IN THIS POINT 1S RBIG ENQUGH (2,1%) THE ROD 1S5 MOVED TO DaMP
TH[ FLUX
PIC = NUMBER OF SPACE POINTS CORRESPONDING TO THE HALF ROD
THE ROD MUQT ALL THE TIME BF INSIDE 7THE SOUNDARIES OF THE CORFE
STAR = %“f«{??tw VALUE ALONG THE ROL
ABSD = MH CRBTION CONSTANT
TXE & [CONT
YDELX = XECIXE)Y = XSSCOIXE)
6oTn 4g4
IU = 0,5 % FLOAT (Neg) o+ 0,58
CONTIHUE ROD
116 = D, E#PART « FLOAT (N1}
NE 2 N2 ROD
il = 1w 110 ROD
[P ¢ic, LT, N2y 6, 14
CONT] ”UE
11?2 BN o= 1 ROD
16 = HIND (11c2 4 1) RGD
GOTO &) ROD
[0 = MAXD(TICL,1C) ROD
CONTINUE
[0U = 10+ [iC
ICL = JCe 110
DO B8 I8 5 4,
STAB (18) = 0,0
no L6 140 e 1oL, 1CU
STAB¢CI10) = ADSO
STap CiclU +13) = ABSO % (0,5 » PART #F 0aT (Neg) = £LOAT ¢]1C))
STAB (ICL =1) = STAL (ICU »1)
IF(NTRYO B0, Ly302,304
HR[TEf@ﬂ@ﬂé)
CDRjIWJF
PORMAT (L0Xs BHROD KLAR)
RETURN
EMD
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Appendix 4

DERIVATION OF A TRANSFER FUNCTION FOR A TWO POINT XENON MODEL

In order to get a simple estimation of the amplitude of the
transients we will derive a transfer function for a two point
linear xenon model, defined in [5]. From the transfer function
it is possible to analytically derive the maximum amplitude of

the output variable.

In [5] eq. (2:24 - 25) is derived an expression for the dif-

fussion equation in two space points:

2 0 -
w @) FOy[BE) oy - gy )t odyleg P L) =0 (1)
2 0 -
0,9 * O (- BEy =y * g2> + golc, +BEY) =0 (2)
.3 2# o .o
where g, = —5 - (Bi +oay ¢i) i=1, 2 (3)

h

We add one more control term u which will make it possible to

disturb the flux externally.
2 ) -

ap @) + 0y [BE) + oy tup -y )t egleg Fuy FBE) =0 ()
2 0 -

0, 01 + O (- BEy - oy -yt By) * bgley Fuy F BEY =0 (5)

where g. is defined in (3).

We linearize eq. (4) and (5) and assume:

Further we assume a symmetric e@uilibrium flux and homogeneous

control:
gl—gzzg
09 = ¢ = ¢°
0 _ 0 _ y0
X2 = XQ = X
c, =2¢, = C

Ab:1




Al 2

Then (4) and (5) are simplified to:

[¢]
—ﬁPlg‘*‘(P(C"*’U‘*‘B&l):O (7)
¢ g+ ¢%c-u+ gLy =0 (8)
For the symmetric flux we have derived in [5], eq. (2:u44):

g = 27 - o ¢° (9)

g

We subtract (8) from (7) and eliminate c:

- 29 g+ 2¢° u + B¢°(gl = £ =0 (10)
or
(o] (6]
R ChE AR (11)
2
g g

where g is defined in (9).

We introduce the state variables:

Xl = gl X2 = nl X3 = E.l + &:2 Xu = nl + n2 (12)
and rewrite (11):
) 0
9y = L (2% = x50 + by (13)
g g

The xenon and iodine equations are rewritten directly from [5],

egs. (2:37) - (2:40) and we linearize the equations:

dx
- 0 0
5;“ = (- Ay = 0y ¢ )Xl + Xi X + GX(YX - X )Wﬁ (W)




dx2

—— 2 - A, X o+ Y. O & (15)
at 2 1 x 1

dx

3. (- A, = O, ¢O)x3 oy %, (16)
dt

dxu _

I S Ai XL{. (17)
dt

where the state variables are defined in (12). Eq. (13) is in-

serted in the system equations (14) - (17).

We get directly:

g% = Ax + Bu
(18)
y = Cx + Du
where
B 0
o, B¢
_ _ [e] + (6] _ f)_ X _ XO _ }
A, = o, 0 1+ X Yx)g‘ Ay o ( y\) c
0 )
Bé 3 . Bd
Yi % g " Y3 % 2g 0
A =
0
0 0 - AX - o, b A
0 0 0 -
_ —
v, = X
0
_ P % Y5
g
0
0
L —

Al:3




Bd
C=-—1(2 0 -1 0O

2g

g

The transfer function

L ¥s)

u(s)

G(s)

is easily derived from (18). As only two states are both controll-

able and observable, the transfer function is of second order
G(s) = C(sI - AT B+ D (19)

Simple calculus of (18) inserted into (19) gives:

Albsy

0y 2 o}
¢ (v X" )(s-a,,) + v. a ¢
G(s) = Bo_|— X 22 i712 U, .
x (s~a,.)(s-a4,) - a,, a g
g 11 22 12 901 >
¢ 2 ch¢2 0 ¢ Box¢2ki o) o
- - (YX—X ) - w{a11+a22) S+ 5 AxX") + w(a11°a22—a12~a21)
_ g Lg g g 2

2
s” = (ajytagyds + @)y agy - @y, ayy
(20)

where the parameters a5 are elements in A (18).




Appendix 5

DESCRIPTION AND PROOF OF THE ROD MOVEMENT FOR A SIMPLIFIED
FLUX MODEL

The rod movement or absorbtion variation is included in the buckling
term. Here we will show the variation of the buckling of a very

simplified core model, when the flux distribution is disturbed. The
statement is shown in eg.(4:1). Out of the proof we can conclude how

rod movement will take place.
Let us assume a neutron flux which is stationary. Further we assume

one group diffussion theory. The core is divided into two parts of
equal length, normalized to 1. Buckling is space independent in the

two halves of the core in fig. 1. Then the diffussion equation

reads:

d2¢1 )

..... e 2_.+Bl 4)120 (1)
dz

d2¢2 )

— + B, ¢ =0 (2)
2 2 2

dz

with solutions:

¢l = A1 sin (Blz + 61) (3)
¢y = A2 sin (Bzz + 62) (W)
2 2
B1 32
z=0 1 2

Figure 1: Flux distribution

The unknown parameters Al’ Az’dl ,52 and one of the terms
B), B, are determined out of the boundary conditions (5) - (9).

B
(ew]

¢l(0) (5)

1]
o

9,(2) (6)

—t (7)

A5:1
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¢l(l) = ¢2(1) (8)
1 2
f ¢1(z) dz + f ¢2(z) dz = C = constant (@
0 1

The last condition means that mean flux is unaltered.

Now, let us fix B,. Ve solve (5) - (9) in order to get B, and
find:

B tg B

2.l 22 (10)

Bl tg Bl
We assume all the time, that:
0« Bl g 1/2

(10

n/2 < B, s I

For the special case:

Bl = 1/2
we have
82 = M/2

This is the symmetric sine curve.

We will prove the following statements, and assume all the time
(10) is satisfied.

If Bl decreases (increases) from Bll to B12 we have an increase

(decrease) in 82 from 821 to 822 such as:

2 2 2

2
’(Bll) - (812) > (BZl> - (BZQ) or
2 2
{A B1 > |A B2'




A5:

Thus if B1 decreases we have

2 2 2

2
(B,)" + (BZl) > (812) + (BQQ)

11

The inequality is opposite if By increases.

In order to prove (12) we must take the constraint (10) into
account. Due to the cumbersome calculations we prefer to show
the statement by numerical calculations.

The function f = Bi + Bg is monotonicly increasing with Bl’

when Bl varies between 0 and 1I/2. The function is biggest for

B, = /2 (see figure 2), i.e. the symmetric flux shape, where

12/2

3
<=

ox}
i

Out of this discussion we realize that (12) is valid all the
time when B1 varies between two values in the domain

0 < B, < 1/2.

1
To sum up, the variation in the buckling Bi is always bigger
than the variation of the buckling Bg, when the bucklings are
within the boundaries (11).

B A
50 2.5

/4

4.5 2-0 \

W,

0 T4 /2 B1

Fig. 2 - The variation of the sum of bucklings Bl2 + B2

(curve A) and of B2 (curve B) as function of Bl




