LUND UNIVERSITY

Real Time Computing Il Minimal Variance Control on Process Computer

Borisson, Ulf; Holst, Jan

1971

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Borisson, U., & Holst, J. (1971). Real Time Computing Il Minimal Variance Control on Process Computer.
(Research Reports TFRT-3032). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/2bc99baf-75b7-436e-a948-605c44f13aa8

REAL TIME COMPUTING I
MINIMAL VARIANCE CONTROL
ON PROCESS COMPUTER.

U. BORISSON
J. HOLST

REPORT 7108(B) SEPTEMBER 1971
LUND INSTITUTE OF TECHNOLOGY
DIVISION OF AUTOMATIC CONTROL




REAL TIME ‘COMPUTING TIT

- MINIMAL VARIANCE CONTROL ON PROCESS COMPUTER.

U. Borisson - J. Holst

ABSTRACT.

In this report a regulator using a minimal variance
strategy is discussed and a FORTRAN algorithm for on-
line control on process computer has been worked out.
The optimal regulator adapts itself to a suboptimal
strategy if its sensitivity to variations in the pro-
cess parameters is great. A program for off-line com-
putation of minimal variance strategies is also given.
If the process parameters are constant, the regulator
is designed by means of the off-line program. Dead-
beat strategies can also be computed by the given al-

gorithms.
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1. INTRODUCTION.

Consider a discrete system given by

as
Py

2% Dy = o KB (@™ Hut) + act g elt)
where

u(t) is the input to the system at the time t,
y(t) is the output from the system at the time t,
e(t) (t = 0, 1, *2, ...) are equally distributed,

independent, normal N(0,1) random variables,

q—1 is the backward shift operator,

Ax, Bx and Cx are polynomials of degree N,
K is the time delay in the system,

A is a constant.

The purpose of the regulator is to minimize the va-

riance of the system output.

If the polynomial B(qg) = qNB"(q_q) has all zeroes in-
side the unit circle the minimal variance strategy

is given by

% -1
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where F"(q—1) and Gx(q—1)are defined by the identity
cFig™h = FYaha @™ ¢ 76T @™h (2)

If the B polynomial has any zero outside the unit
cirele the above strategy is extremely sensitive to

variations in the process parameters and it cannot




be used in practice. In this case it is necessary

to use a modified, suboptimal regulator. Consequent-
ly a minimal variance control algorithm must include
a test which examines if all the zeroces of the B po-

lynomial are inside the unit circle.

Introduce the polynomial partitioning

B"(q—1) = B1"(q_1) B2"(q—j)

where the degrees of B1 and B2 are N1 and N2. The po-

N1B1"(q_1) is to have all zeroes inside the

N2

lynomial q
unit circle and q BQ"(q—q) all zeroes outside or on
the unit circle. The minimal variance control law now

becomes

b4 _1
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where the polynomials F"(q_T) and Gx(q_1) are given
by the identity
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Cx(q
This strategy is suboptimal, but it is realizable in
practice. It should be observed that the system of
equations (4) cannot be solved recursively. However,
this is possible to do with the system of equations
(2). By putting Cx(q—1) = 1 in the above equations a
dead-beat strategy is achieved. A detailed discussion

of the above strategies is given in [1].

It is evident that it is more complicated to imple-
ment a suboptimal regulator than an optimal one. In
the first case the zeroes of the B polynomial must be
determined and that may demand long computing time.

However, in Chapter 3 some methods to make this pro-




cedure less time demanding will be discussed.

If the zeroes of the B polynomial lie inside the unit
circle but close to it, the optimal regulator may
still be rather sensitive to variations in the pro-
cess parameters. Therefore the on~line algorithm

MIVRE has been carried out in such a way that a sub-
optimal strategy is computed if there is any zero of
the B polynomial outside a circle with radius 0.9.

In the off-line program MIVCO the radius of the circle

is optional.




2, THE MINIMAL VARIANCE ALGORITHM.

Transferring of data between subprograms can be done
either via parameters in the subprogram call or via
a COMMON area shared by the calling and the called
program. In the subprograms presented here the for-
mer method is used. The purpose for this is that it
is easy to use the regulator algorithm in governing
more than one process by storing the relevant para-

meters for each process in a superior program.

In most of the programs it has been assumed that po-
lynomials may have an arbitrary coefficient in the

highest degree term. Especially, for a system of or-
der n, this means that n+1 coefficients must be spe-

cified in each of the A, B and C polynomials.

The programs do not allow system order and system de-
lay to be greater than 10. Further, the sum of the
system order and the number of zeroes of the B poly-
nomial outside the critical circle must not be grea-
ter than 14. However, it is easy to modify those li-
mits in accordance with the amount of storage avail-
able.

The critical circle has the radius 0.9 in MIVRE. The
reason for not using the unit circle in this case is
that the closed system is sensitive to variations in
the system parameters when the B polynomial has ze-
roes inside but close to the unit circle. In MIVCO
the radius of the critical circle must be specified

by user.




2.1, ADMINISTRATIVE ROUTINLES.

MIVRE (MInimal Variance REgulator) and MIVCO (MInimal
!ariance'ggefficients) are the two administrative rou-
tines. MIVRE is used in on-line and MIVCO in off-line
calculations of minimal variance and dead-beat strate-
gies. A block diagram for these programs is found in

Appendix I.

2.1.1, MIVRE,

The regulator call is
CALL MIVRE (A,B,C,H,G0,ZR,2I,U,Y,N,K,NH,N®,IL,IT,EPS)

A, B and C are polynomials describing the system to
be regulated. They are represented as one-

dimensional vectors.

H and GO are the denominator and the numerator po-
lynomials of the old regulator. They are

one-dimensional vectors.

7ZR and ZI are vectors containing the real and the
imaginary parts of the zeroces of the old

B polynomial.

U and Y are vectors containing the latest process

inputs and outputs.

N is the order of the system.

K is the time delay in the system.

NH is the degree of the H polynomial.
N@ is the degree of the G@ polynomial.

IL,IT.EPS are indicators for the calculations. IL is
used in MIVRE. IT and EPS are transferred

to the subroutine for root calculations.




Information about the system to be regulated is gi-
ven to MIVRE by the parameters A, B, C, N and K. The
latest process inputs and outputs are gathered in the
U and Y vectors. The subroutine then produces the new
input as the first element in the input vector. The
vector C must be dimensioned 20 because of the calcu-

lations in EQ (see 2.3.2).

In the subroutine the value of IL is tested. If IL=2
the old regulator, saved in H, G@, NH and N@, is used
in computing the new input to the process. When IL=1
the B polynomial is partitioned into two parts, B

and B2, with zeroes inside resp. outside a circle with
radius 0.9 (see 2.2). The B2 polynomial is used in the
calculation of the F and G polynomials (see 1 and
2.3).

The computation of the F and G polynomials fails if
the system of equations for the coefficients is not
possible to solve. In this case the parameter IS is
returned greater than zero from the subroutine DECOM.
This causes the old regulator to be used in the com-
putations of the new input. If IS is returned zero a

new regulator is calculated.

2.17.2. MIVCO.

MIVCO is written as a conversational program. It asks
for information about system order, system delay and
the A, B and C polynomials describing the process. In
order to facilitate the input of polynomials the sub-
routine POLIN is used (see 2.1.2.1). User must also
specify the radius of the critical circle which is
required in the partitioning of the B polynomial as

was described above.




On the lineprinter the program prints out the input
data and the partitioned B polynomial as well as the
F and G polynomials and the resulting regulator. The
program gives an error message if it was not possible
to solve the system of equations for the F and G po-

lynomials. There are two possible error messages,
ROW ZERO IN DECOM

and

PIVOT TOO SMALL IN DECOM

corresponding to IS=1 and IS=2 in DECOM (see 2.3.1).

At the end of the program user is asked whether an-
other regulator is to be calculated or not. The ans-
wer (YES or NO) is interpreted by the subroutine
QUI (see 2.1.2.2).

In both MIVRE and MIVCO the coefficient of the high-
est degree term in the B polynomial is transferred '
to the G polynomial. Therefore the coefficient of the
highest degree term in the product B“F" in the regula-

tor denominator always is 1.0,

User may return to the start of the program by typing
CTRL P if, for example, any parameter has been incor-

rectly specified.

In 2.2 the polynomial partitioning is discussed. The
solution of the minimal variance identity for I and
G is treated in 2.3 and in 2.4 the calculation of the

new input is discussed.




2.1.2.,1., POLIN,

POLIN is a subroutine which reads a specified number
of polynomial coefficients written on the teletype in

free format. The call is

CALL POLINC(A,N,T)

A is the polynomial which is to be read in,
N is the number of coefficients,
T 1is a Hollerith constant containing the name of the

polynomial.

If T has the value 'A', the subroutine prints the
text ENTER A-POLYNOMIAL before user is to type the

coefficients.

2.1.2.2., OUI,

This is a subroutine which prints out the two possible
answers of a question proposed just before the subrou-
tine call. Then it interprets the given answer. The

call is

CALL OUI(T,L)

T is a vector of dimension 2,

L is a logical variable.

T contains the possible answers as two Hollerith cons-
tants of not more than five letters. L is returned
.TRUE. if the answer is T(1) and .FALSE. if it is T(2).
The subroutine is not left until the given answer

equals T(1) or T(2).




2.2. ROUTINES FOR POLYNOMIAL PARTITIONING.

For reasons

mentioned in Chapter 1, it may be necessary

to partition the B polynomial into two polynomials

B1 and B2, where B1 has its zeroes inside and B2 out-

side or on t

(POLynomial

The followin

0 INPOL -
0 FAMU -
) POLNO -
o ROT -

he critical circle. This is done in POLPA

PArtitioning).

g subroutines are required in POLPA:

a modified Schur-Cohn test (see 2.2.2)
to multiply complex factors (see 2.2.3)
to normalize a polynomial (see 2.2.4)

to find the zeroes of the B polynomial,

[2].

2.2.1. POLPA,.

POLPA is the
The call is

CALL POLPA(B

B1 and B2

ZR and 721

N1 and N2

IN

main routine for polynomial partitioning.

,B1,B2,Z2R,ZI,N,N1,N2 ,IN,R,IT,EPS)

is a vector containing the coefficients

of the polynomial to be partitioned,

are vectors containing the two parts of

the B polynomial,

are vectors containing the real and the
imaginary parts of the zeroes of the old

B polynomial,
is the degree of B,
are the degrees of B1 and B2,

is a switch for the calculations in MIVAR
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(see 2.3.1). IN is returned =1 if all ze-
roes lie inside the critical circle and
=2 if not,

R is the radius of the critical circle,

IT and EPS are indicators for the calculation of the

zeroes.,

First the subroutine tests if all zeroes lie inside
the circle. This is done by the integer function IN-
POL (see 2.2.2). If all zeroes lie inside the circle,
the coefficient of the highest degree term is trans-
ferred to B2 and the coefficients of the normalized
B polynomial to the vector B1. Further, N1 is set to

N and N2 to zero.

If any zero lies outside or on the circle the expli-
cit values of the zeroes must be calculated. The sub-
routine ROT demands that the coefficient of the high-
est degree term is 1.0 and that the vector containing
the coefficients has as many elements as the degree

of the polynomial. Therefore the B polynomial first
must be normalized. This is done in POLNO (see 2.2.4),
When computing the zeroes it is possible to use the
old values of the zeroces as initial values. This is
done by putting IT=1. EPS is the error in the compu-

ted zeroes.

The complex valued zeroes are sorted with regard to
their position relatively the critical circle. They
are stored in two pairs of vectors. Then they are

multiplied in FAMU to form the B1 and B2 polynomials.

The coefficient of the term in B with the highest deg-
ree is transferred to B2. In B1 the corresponding co-

efficient is 1.0.
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This is an integer function which performs a modified
Schur-Cohn test to decide whether or not all zeroes
of a given polynomial lie inside a specified circle.
The call is

IN = INPOL(A,N,R)

A is a vector containing the coefficients of the po-
lynomial,
N 1is the degree of the polynomial,

R is the radius of the critical circle.

In order to take account of the arbitrary radius R,

the polynomial is written
N N-1
a1y « &Y. {%} s A2y« ’RVT [%} boae. 4 AQIHD)

Then an ordinary Schur-Cohn test is done on this poly-
nomial. INPOL is returned =1 if all zeroes lie inside
the circle and =2 if any zero lies outside or on the

circle,

2.2.3. FAMU.

FAMU (FActor MUltiplication) multiplies complex fac-
tors of the type (s-a-ib) to form a complex polynomial.
The call is

CALL FAMU(BR,BI,ZR,ZI,N)

BR and BI are vectors of dimension N containing the

real and the imaginary parts of the coeffi-
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cients in the resulting polynomial,

ZR and ZI are vectors of dimension N containing the
real and the imaginary parts of the fac-

tors,

N is the number of factors to be multiplied.

As the routine works on factors of the type (s-a-ib),
the coefficient of the highest degree term is 1.0 and
BR(1)+BI(1)+i is the coefficient of the term with deg-

ree N-=1,

2.2.4, POLNO.

POLNO (POLynomial NOrmalization) is used for normali-

zation of a given polynomial. The call is
CALL POLNO(B,NB,B®)

B is a vector containing the coefficients of the

polynomial,
NB is the degree of the polynomial,

B is returned as the old value of the coefficient

of the highest degree term.

It is assumed that the coefficient of the highest deg-
ree term in the input polynomial is specified in B(1).
The coefficients of the resulting polynomial are cal-
culated according to B(I)=B(I+1)/BJ where B@# is the
old value of B(1). Observe that the input value of the

B polynomial is destroyed.
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2.3. ROUTINES FOR SOLVING THE MINIMAL VARIANCE
IDENTITY.

In Chapter 1 the regulator was discussed. It was sta-
ted that the computed regulator would be optimal or
suboptimal depending on the position of the zeroes

of the B polynomial. The calculation of the F and G
polynomials, upon which the regulator is based, is

done in MIVAR (see 2.3.1). The system of equations

for the minimal variance coefficients is shown in Fig.1.
In order <+to shorten the code a special subroutine

EQ has been written (see 2.3.2).

If the B polynomial has any zero outside or on the

critical circle, it is necessary to solve a non-re-
cursive system of equations. For this purpose DECOM
and SOLVB are used.

2.3.1. MIVAR.

MIVAR (MInimal VARiance) is a routine for calculation
of the F and G polynomials according to an optimal or
suboptimal strategy as was outlined above. The call

is

CALL MIVAR(A,B2,C,F,G,N,N2,K,IN,IS)

A and C are vectors containing the coefficients of
the A and C polynomials describing the sys-

tem,

B2 is a vector containing the coefficients of
the part of the B polynomial which has all

its zeroes outside or on the critical circle,

F and @ are vectors containing the coefficients of
the resulting polynomials for the regulator

building,
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N is the order of the system,

N2 is the degree of the B2 polynomial,

K is the time delay in the system,

IN is a switch from POLPA;
IN=1 if all zeroes of the B polynomial lie
inside the circle, =2 if not,

IS is an indicator from DECOM;

IS is returned =0 if it was possible to solve
the identity for F and G. Otherwise IS is re-

turned greater than zero.

The first X-1 unknown elements of the F polynomial

may be calculated recursively. If the B polynomial

has all zeroes inside the critical circle there are

no more unknown elements in the F polynomial. In this
case it 1s also possible to calculate the coeffici-
ents of the G polynomial recursively. The calcula-
tions are carried out in the subroutine EQ (see 2.3.2).
The problems caused by the need for polynomial multi-
plication are solved with the same technique as will

be described in POLMU (see 2.4.71).

However, it is not possible to calculate all elements
of the F and G polynomials recursively if the strate-
gy is suboptimal. In this case the result of the re-
cursive equations, which when n2=0 gives the G poly-
nomial, may be used as a part of the right-hand side
vector in the system of equations for the remaining
n? elements in the F polynomial and the whole G poly-
nomial. The resulting system of equations is shown in
Fig. 2.
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The system of equations is solved by DECOM and SOLVB.

An error termination is used in DECOM if the coeffi-
cient matrix is singular. The singularity bound is
EP=10E-6.

2.3.2. EQ.

The subroutine EQ (EQuation) carries out the recursive
calculations in MIVAR. The call is

CALL EQ(C,F,AL,K,NG,NP,IND)

C is a vector containing the coefficients of the

C polynomial,

F is a vector containing the coefficients of the

F polynomial,
AL is a vector containing the resulting polynomial,
K is the time delay in the system,
NG is the number of coefficients to be calculated,
NP is the starting index value in the C vector,

IND is a switch for the number of multiplications
needed in the calculation of the resulting coef-

ficients.

In this subroutine the C vector has been extended with
extra zeroes in order to decrease the code needed,

This makes the computation of the G polynomial simpler.
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2.4, REGULATOR REPRESENTATION.

The regulator is based upon the F and G polynomials
from MIVAR and the B1 polynomial from POLPA. It may
be represented both as a weighted sum of old inputs
and old outputs (see 2.4,2) and, after a slight modi-
fication, as a dynamical system on canonical form
(see 2.4.3).

The calculation involves polynomial multiplication

which is carried out in POLMU,.

2.4.1. POLMU,

POLMU (POLynomial MUltiplication) is a subroutine for
multiplication of two real polynomials. It is not as-
sumed that the coefficient of the term with the high-
est degree is 1.0, neither in the input nor in the

output polynomial. The call is
CALL POLMU(P1,P2,NP1,NP2,P)

P1 and P2 are vectors containing the coefficients

of the input polynomials,
NP1 and NP2 are the degrees of P1 and P2,

P is a vector containing the coefficients

of the output polynomial.

This subroutine uses SCAPRO, [2], to multiply real num-

bers. As SCAPRO does not allow negative steps, one of
the polynomials must be rearranged. This is done by
forming a polynomial of NP1 leading zeroes followed
by the polynomial P2 in reverse order. The multipli-
cations necessary when calculating the i:th coeffici-

ent can now be carried out by starting on the first
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element in P1 and on the (NP1 + NP2 + 2 - i):th ele-
ment in the extended polynomial. The number of multip-

lications needed is min(i,NP1+1). Thus the polynomial

gNP2P2(1) + ... + P2(NP2+1)

will be stored in the vector

» NP1 zeroes

°
°

0 )
P2(NP2+1)
P2 (NP2)

. ¥ P2 in reverse order

P2(2)
P2(1) )

The technique is also used when doing the multiplica-

tions in EQ (see 2.3.2).

2.4.2. Regulator Based upon Pulse Transfer Function.

The regulator is formed as

(see 1). The coefficient of the highest degree term
in H is always 1.0, since the coefficient of the high-

est degree term in the B polynomial is transferred to
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the B2 polynomial.

In MIVRE this representation is used when calculating
the new process input. A state space representation
is not used because of the difficulties arising in
finding initial values of the state vector, when the

system order has changed.

In MIVCO the F, G and H polynomials are printed out.

2.4.3. Regulator Based upon State Space Equations.

When the regulator is to be represented as a dynami-
cal system on canonical form, the coefficients of the
H polynomial must be moved one step downwards in in-
dex to give the coefficients of the characteristic
polynomial of the regulator. The direct term in the
regulator must also be separated. The following for-

mulas are obtained:

direct term:

D = = o

("),

coefficients of the characteristic polynomial:

(H")i = (H")i+1

elements of the C matrix:

(cc™y). = = (7). ., + (H ). D
i i+1 1
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In MIVCO this regulator is printed out together with
the BB vector, col(1,0,...,0), which thus completes
the system S(H,BB,CC,D) on controllable canonical

form.
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3. APPLICATTONS.

The subroutines described above can be used in on-
line control of processes or in off-line computation

of minimal variance and dead-beat strategies.

3.17. ON-LINE CONTROL.

If the process parameters are changing, MIVRE can be
used for adaptive control. Then MIVRE should be used
together with a subroutine for process identification

giving current values of the parameters

A, B, C, N, K, IL and IT.

In [2] subroutines for process identification are gi-
ven (RTLSID, KALID).

If the B polynomial has all zeroes inside the unit
circle, it is possible to solve the minimal variance
coefficients recursively. This leads to short compu-
ting times. When the B polynomial has zeroes outside
the unit circle the computing times get considerably
longer, because the zeroes of the B polynomial must
be computed explicitly and the coefficients can no

longer be solved recursively.

If the process parameters sometimes vary so slowly
that they may be regarded as constant, the computing
time can be decreased considerably. This depends on
the fact that the regulator system does not change
between the calls on MIVRE. When the new process out-
put is available, the control signal can immediately
be calculated by the already existing regulator. This

is done by putting IL=2,
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The subroutine ROT is able to use the zeroes calcula-
ted the time before as initial values for the follow-
ing iterations. If the process parameters vary slowly
the computing time can be decreased by letting ROT
start the new iterations using the zeroes of the old
B polynomial as initial values. This is done by put-
ting IT=1. It must not be used if the system order N

has changed since last call.

The parameter EPS is the error in the result of ROT.
There is a possibility to speed up the calculations
by allowing lower accuracy. Thus a greater value of

EPS will give shorter computing times,

It is possible to let MIVRE control several processes

by storing

H, 6@, ZR, ZI, U, Y, NH and N@

for each process. The stored values of H, G#, U, Y,
NH and N® make it possible to use the old regulator,
if the process parameters have not changed since last
call. By storing ZR and ZI the new iterations in ROT
can start from the zeroes of the old B polynomial, if

a new regulator must be computed.

3.2, OFF-LINE COMPUTATION OF MINIMAL VARIANCE AND
DEAD-BEAT STRATEGIES,

If the process parameters are constant, it is enough
to compute the regulator system once. This can be

done off-line. The regulator can then be implemented
as a pulse transfer function or as state space equa-
tions on canonical form. In the latter case it is not
necessary to store the old values of the process in-

put and output, because the state vector of the regu-
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lator will contain all relevant information.

The off-line program MIVCO is of conversational type.
It is built up as an executable file. User starts the
execution and is then guided by outprints from the
program. User is asked about required information,
and then the desired strategy is computed by MIVCO.
In Appendix IV there is given an example showing how

the program is used.




APPENDIX T ' I.1.

BLOCK DIAGRAM FOR MIVRE AND MIVCO

MIVRE :
MIVCO : == s o oo e o s
IN
MIVCO
]
¥
Read input data
POLIN
|
|
¥
]

1f B has zeroes outside a circle with
radius 0.9, partition B to Bt and B2

POLPA / FAMU , ROT, INPOL, POLNO

¥
|
W v
I

Solve the minimum variance identity
for F and G

MIVAR / EGQ, DECOM, SOLVB

K]
|
v ¥
|

e e D e e s o e e o i e e e e

Calculate the regulator

POLMU

v

Calculate the new input to the process

Printout from MIVCO: 1. Input data
2. Partitioned
polynomials
3. Resulting
regulator

Printout fromMIVRE: None
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APPENDIX IT

Programs.
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-~ 1T 1S ALSO ASSUMED THAT THE SYSTEM HAS ONLY 0NE~

IT.2.

SUBROUTINE MIVRE(A»B:C.H;GO.ZR,ZI,U,Y.N.K.NH,NO;IL,IT.EPS)

GIVEN THE POLYNOMIALS A,B,C DESCRIBING A DYNAMICAL
SYSTEM AND AN OUTPUT Y FROM THIS SYSTEM THIS
SUBROUTINE CALCULATES A MINIMUM VARIANCE [NPUT U

-TO THE SYSTEM

. AUTHORS: ULF BORISSON AND JAN HOLST 1971-03-09

REFERENCE: K.J.ASTRGM INTRODUCTION TO STOCHASTIC
' CONTROL THEORY; CHAP. 6

A~VECTOR OF DIMENSION N+1

B-VECTOR OF DIMENSION N+1

C-VECTOR OF DIMENSION N+K (FOR COMPUTATIONAL REASONS)

ZR,Z1-VECTORS OF DIMENSION N CONTAINING THE REAL AND
THE IMAGINARY PARTS OF THE ZEROES oF THE oLD
B-POLYNOMIAL.

N-ORDER OF THE SYSTEM (MAX 10)

K-SYSTEM DELAY (MAX 10) -

IT 1S ASSUMED THAT N+N2<15 WHERE N2 IS THE

NUMBER OF ZEROES OF THE POLYNOMIAL B WHICH LIE

OUTSIDE A CIRCLE WITH RADIUS 0.9.

INPUT -AND ONE OUTPUT.

THE REGULATOR IS REPRESENTED BY ITS PULSE‘TRANSFER'

FUNCTION OF ORDER NH.

Y —VECTOR OF DIMENSION N CONTAINING THE LATEST OUTPUTS
FROM THE PROCESS, WHERE Y(1)=Y(T),...,Y(N)=Y(T=N+1).

U -VECTOR OF DIMENSION NH+1 CONTAINING THE LATEST INPUTS
TO THE PROCESS, WHERE U(1) IS THE NEW INPUT TO THE PROCESS.
ue2),...,U(NH+1) ARE THE OLD VALUES OF U(1),...,U(NH).

H ~CHARACTERISTIC POLYNOMIAL FOR THE REGULATOR SYSTEM
VECTOR OF DIMENSION NH. ,

GO-NUMERATOR OF THE REGULATOR SYSTEM

. VECTOR OF DIMENSION NO.

IL:IT-INDICATORS FOR THE CALCULATIONS .

PUT IL=1 IF A,B,C ARE CHANGED SINCE THE LAST CALL

- =2 OTHERWISE '
PUT IT=0-IF ROT IS NOT TO USE THE OLD ZEROES OF THE
7 B-POLYNOMIAL AS INITIAL VALUES

L]

: =1 OTHERWISE
EPS -ACCURACY IN THE COMPUTATION OF THE ZEROES OF B
(EPS = 1.0E-8 GIVES HIGHEST POSSIBLE ACCURACY)

THE WHOLE COMMON BLOCK /SLASK/ 1S USED.

SUBROUT INES REQUIRED

POLPA(FAMU, INPOL,POLNO,ROT) 4

_ MIVAR(DECOM,SOLVB,EQ) -
POLMU o
P

DIMENSION A(1),B(1), C(i) Y(1), u€i), H(l).GO(l),ZR(i) Z21(1)
DIMENSION B1(11),B2(11),F(20),G(20)

<
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PROGRAM MIVCO

GIVEN THF POLYNOMIALS AyB AND C DESCRIBING A DYNAMICAL
SYSTEM THIS PROGRAM CALCULATES THE MINIHMUM
VARIANCE REGULATOR FOR THE SYSTEM,

AUTHORS: JAN HOLST AND ULF BORISSON 1971-03-09
REFERENCE: K.J.ASTRGM INTRODUCTION TO STOCHASTIC
CONTROL THEORY; CHAP.6

A-VECTOR OF DIMENSION N+1
B-VECTOR OF DIMENSION N+1

C-VECTOR OF DIMENSION N+K (FOR COMPUTATIONAL REASONS)
N-ORDER OF THE SYSTEM (MAX 10) -

"K~SYSTEM DELAY (MaX 10)

IT 1S ASSUMED THAT N+N2<15 WHERE N2 1S THE NUMBER
OF ZEROES OF THE POLYNOMIAL B WHICH LIE OUTSIDE
A CIRCLE WITH RADIUS R,

THE SYSTEM HAS ONE [INPUT AND ONE QUTPUT.

THE REGULATOR IS GIVEN BOTH AS A WEIGHTED SUM OF OLD
INPUTS TO AND OUTPUTS FROM THE SYSTEM AND AS A SYSTEM
ON CANONICAL FORM WITH ONE INPUT AND ONE QUTPUT,

THE WHOLE COMMON BLOCK:-/SLASK/ |S USED,
ASSIGN TTAO 6 BEFORE STARTING.

SUBROUTINES REQUIRED
POLPACFAMU, INPOL,POLNO,ROT)
MIVAR(DECOM, SOLVB,EQ)
POLMU
POLIN
oui
RTTFF
ATTLPG

LOGICAL L
DIMENSTON A(11),B(11),C(20),T(2)
DIMENSTON B1(11),B2(11),F(20),6(20),H(20),2R(10),21(10)
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SUBROUTINES REQUIRED

IT.u,

SUBROUTINE POLINCASN,T)

THIS SUBROUTINE REEDS A POLYNOM|AL FROM THE TELETYPE
ASSUMING THAT THE POLYNOMIAL IS WRITTEN IN FREE FORMAT,

AUTHORS: JAN HOLST AND ULF BORISSON 1971-03-09
A -POLYNOMIAL TO BE READ,

N -NUMBER OF COEFFICIENTS,

T -HOLLERITH CONSTANT CONTAINING THE NAME OF THE POLYNOMIAL
(MAX TWO LETTERS).

RTTFF

DIMENSION AC(1)

-
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SUBROUTINE QUICTEXTIN,LOGIC)

TO PRINT QUT THE TWO POSSIBLE ANSWERS T0O A QUESTION
PROPOSED JUST BEFORE THE CALL.

AUTHORS: JAN HOLST AND ULF BORISSON 1971-03-09

TEXTIN-A VECTOR WITH TWO ELEMENTS CONTAINING THE
TWO POSSIBLE ANSWERS.,
EACH ELEMENT MUST BE A HOLLERITH CONSTANT
OF MAX S LETTERS,

LOGIC ~A LOGICAL VARIABLE WHICH 1S RETURNED .TRUE. |F. THE

ANSWER IS TEXTIN(1L), : -
AND .FALSE. IF THE ANSWER IS TEXTIN(Z).

OBSERVE THAT'THE ROUTINE IS NOT LEFT UNTIL THE GIVEN

TANSWER EQUALS TEXTIN(1) OR TEXTIN(2).

SURBROUTINES REQUIRED -
NONE ~ :
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II.6.

SUBRROUT INE POLPA(B,B1,B2,2R,21,N>N1,N2, IN,R, I T,EPS)

PARTITIONS THE REAL POLYNOMIAL
BCOL)#S#xN + B(2)#S#x(N-1)+,,.+B(N+1)

TO ONE REAL POLYNOMIAL WITH ALL ZFROES INSIDE A CIRCLE WITH
RADIUS R:

Ri(1)%S##N1 + B1(2)#S#x(N{i~-1)+.,..+BL(N1+1)

WHERE B1(1)=1.0

AND ANOTHER REAL POLYNOMIAL WITH ALL ZEROES OUTSIDE OR ON A
CIRCLE WITH RADIUS R:
B2(1)#S##N2 + B2(2)#S##(N2~-1)+,. ., +B2(N2+1)
WHERE B2(1)=B(1) -

AUTHORS: ULF BORISSON AND JAN HOLST 1971-03-09

B -VECTOR OF DIMENSION N+1

R1-VECTOR OF DIMENSION Ni+1

B2~VECTOR OF DIMENSION N2+1

ZR,Z1-VECTORS OF DIMENSION N CONTAINING THE REAL AND IMAGINARY

PARTS OF THE ZEROES OF THE OLD B-POLYNOMIAL,

N -DEGREE OF THE POLYNOMIAL B (MAX 10)

N1-DEGREE OF THE POLYNOMIAL Bi

N2-DEGREFE OF THE POLYNOMIAL B2 '

IN-IS RETURNED IN=1 IF ALL ZEROES OF THE POLYNOM|AL B ARE
INSIDE THE CIRCLE

IN=2 |F THERE IS AT LEAST ONE ZERO OUTSIDE OR ON

THE CIRCLE

IT ~INDICATOR FOR THE CALCULATIONS
PUT I1T=0 IF ROT IS NOT TO USF THE OLD VALUES OF THE
B~POLYNOMIAL AS INITIAL VALUES :
=1 OTHERWISE ,
EPS-ACCURACY IN THE COMPUTATION OF THE ZEROES OF B
(EPS=1.0E-8 GIVES HIGHEST POSSIBLE ACCURACY)

THE FIELDS DUM7-DUM8 OF THE COMMON BLOCK /SLASK/ ARE USED,

SUBROUTINES AND FUNCTIONS REQUIRED
FAMU
INPOL
POLNO
ROT

DIMENSION R(1),B1(1),B2(1),ZR(1),21(1)

COMMUN/SLASK/DUM16(384),DUMY(Z),RS(li).DUM(ll),ZlR(lO),Zll(10)»
#22R€10),221(10),DUMM(64)
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FUNCTION [NPOL (A,N,R) | |
TESTS IF ALL ZEROES OF THE REAL POLYNOMIAL
ACL)#S#EN + A(2)#Sx%(N=1)+. .. +A(N+1)

LIE INSIDE A CIRCLE WITH RADIUS R

AUTHORS.> ULF BORTSSON AND JAN HOLST 1971 03 09

_REFERENCE: K.J.ASTRGM INTRODUCTION TO STOCHASTIC

CONTROL THEORY; CHAP.S

OR ON THE CIRCLE

INPOL—TS RETURNED INPOL=1 IF ALL ZEROES LIE INSIDE THE CIRCLE
' - INPOL=2 IF THERE IS AT LEAST ONE ZERO OUTSIDE

A -VECTOR OF DIMENSION N+1 CONTAINING THE COEFFICIENTS OF

_ THE POLYNOMIAL

N- -DEGREE OF THE POLYNOMIAL (MAX 10) o

R —RAD!US OF THE CIRCLE : L
~

OF THE BINARY REPRESENTATION.

SUBROUTINES REQUIRED o L
NONE A R R
DIMENSION A(1)

-

'COMMON/SLASK/DUM17(448) ,DUM(42),A11(11),A12(11).

‘ ATTENTION. A ZERO ON THE CIRCLE MAY RETURN INP0L51 BECAUSE

| THE FIELD DUM8 oF THE COMMON BLOCK /SLASK/ 1S USED.

- .
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SUBROUTINE FAMUCBR,BI,ZR,21,N)

MULTIPLIES THE COMPLEX FACTORS

(S—ZR(1)~|*ZI(1))*(S-ZR(2)~(*Z|(2))*...*(S—ZR(N)*I%ZI(N5)

AND GIVES THE RESULTING PRODUCT AS THE COMPLEX POLYNOMIAL

Sw#uN + (BROL)+1#B1 (1)) #S*x(N=1)+,, . +BR(NY+[#BI(N)

AUTHORS: ULF BORISSON AND JAN HOLST 1971-03-09

BR,BI-VECTORS OF DIMENSION N CONTAINING THE REAL PARTS RESP,
IMAGINARY PARTS OF THE POLYNOMIAL -

ZR,241-VECTORS OF DIMENSION N CONTAINING THE REAL PARTS RESP.
IMAGINARY PARTS OF THE FACTORS

N ~NUMBER OF FACTORS (MAX 10)

THE FIELD DUM8 OF THE COMMON BLOCK /SLASK/ IS USED,

SUBROUTINES REQUIRED
NONE

DIMENSION Z2R(1),21(1),BR(1),BI(1)

COMMON /SLASK/ DUM17(448),DUM(44),SR(10),S1(10)
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SURROUT INE POLNO(B,NB,B0)

GIVEN THE POLYNOMIAL ;
BO1)#Ss#aN3+B3(2)#S#x(NB~1)+...+B(NB+1)

THIS SUBROUTINE FORMS THE POLYNOMIAL
SxNB+B(1)#S#t(NB~1)+, ., +B(NR)

HERE. B(1)=R(1+1)/B0 AND BO IS THE OLD VALUE OF B(1).
AUTHORS: ULF BORISSON AND JAN HOLST 1971-03-09

B -VECTOR OF DIMENSION NB+1
NBE~-DEGREE 0OF POLYNOMIAL B.

SUBROUTINES REQUIRED

NONE

/

DIMENSION B(1)




noonaooonnoonooooooaooooonnondoooooonoonno

(o}

IT.10.

SUBROUTINE MIVARCA,B2,C,FsG,N,N2,K,IN,1S)

3 * +*
GIVEN THE POLYNOMIALS 4 B2 ,C

N N2 N
THIS SUBRQUTINE CALCULATES THE MINIMUM VARIANCE
POLYNOMIALS F AND G FROM THE IDENTITY

*ox 8 ~K % s

C =A F +*Q B2 G

N N K+N2-1 N2 N-1

AUTHORS: JAN HOLST AND ULF BORISSON 1971-03-09

REFERENCE: K.J.ASTRGM INTRODUCTION TO STOCHASTIC
» CONTROL THEORY; CHAP.6

A -VECTOR OF DIMENSION N+1
R2-VECTOR OF DIMENSION N2+1
C -VECTOR OF DIMENSION N+K (FOR COMPUTATIONAL REASONS)
F~VECTOR OF DIMENSION K+N2 '
G -VECTOR OF DIMENSION N+1
N -DEGREF OF THE POLYNOMIALS A AND C (MAX 10)
N2-DEGREE OF THE POLYNOMIAL B2
K -SYSTEM DELAY (MAX 10)
IN-=INDICATOR FROM POLPA

PUT IN=1 IF N2=0

=2 |F N2>0

IS=INDICATOR FROM DECOM

IS RETURNED =0 IF IT WAS POSSIBLE T0O SOLVE THE

EQ.-SYSTEM FOR F AND G
IS RETURNED >0 IF NOT

IT IS ASSUMED THAT N+N2<15.

THE WHOLE COMMON BLOCK /SLASK/ IS USED.
SUBROUT INES REQUIRED

: DECOM

SOLVB
EQ

DIMENSION AC1),B82(1),C(1),F(1),G(1)

COMMON/SLLASK/ AM(14,14),DREST(4),X(14,1),BA(14,1),DUM(28),
1DUMS7(192), IDUM(85), 11, 12,NPK, AA(2D)
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SUBROUTINE EQ(C,F,AL,K,NG,NP, IND)

GIVEN THE POLYNOMIALS A AND C THIS SUBROUTINE SOLVS THE
MINIMUM VARIANCE COEFFICIENTS F -F AND THE KNOWN PART N
0 K-1
EQ.-SYSTEM FOR F -F AND G =G
’ K K+N2-1 0 N-1
(IF N2=0 THEN THIS IS G).

AUTHORS : ULF BORISSON AND JAN HOLST 1971-03-09

C -~VECTOR OF DIMENSION N+K (FOR COMPUTATIONAL REASONS)

F =VECTOR OF DIMENSION K+N2 ’

AL -RESULTING VECTOR OF DIMENSION NG+1

K =SYSTEM DELAY

NG -NUMBER OF COEFFICIENTS TO BE CALCULATED.

NP -STARTING VALUE IN C-VECTOR

IND=INDICATOR FOR THE NUMBER OF MULTIPLICATIONS IN SCAPRO.

THE FIELD DUM8 OF THE COMMON BLOCK /SLASK/ 1S USED.

SUBROUTINES REQUIRED
NONE

DIMENSION CC1),F(1),AL(L)

COMMON /SLASK/ DUM17(448),DUM(42),11,12,13,NPK,AA(20)
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SURROUTINE POLMU(PL,P2,NP1,NP2,P)

MULTIPLIES THE TWO REAL POLYNOM|ALS

P1(1)%S%*NP1+P1(2)*8**(NP1*1)+...+P1(NP1+1)
P2(1)*S*%NP2+P2(2)%S%*(NP2—1)+...+P2(NP2+1)

TO FORM THE POLYNOM|AL

P(1)%S**NP+P(2)*S**(NP—1)+...+P(NP+1)

AUTHORS:

NP1~-DEGREE
NP2-DEGREE

NP -DEGRFE
P1 -VECTOR
P2 -VECTOR
P =-VECTOR

JAN HOLST AND ULF BORISSON 1971-03-09

OF
OF
OF
OF
OF
OF

THE POLYNOMIAL P1

THE POLYNOMIAL P2 .
THE RESULTING POLYNOMIAL P
DIMENSION NP1i+1

DIMENSTON NP2+1

DIMENSION NP+1

NP1+NP2 MUST NOT BE GREATER THAN 20

THE FIELD DUM8 OF THE COMMON BLOCK /SLASK/ IS USED,

SUBROUTINES REQUIRED
NONE

DIMENSION P1(1),P2(1),P(1)
COMMON /SLASK/ DUM17(448),DUM(43),PL(21)
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APPENDIX III

Storage Requirements and Execution Times.

Storage requirements for the routines:

Administration MIVRE 418
MIVCO 1565
Polynomial handling POLPA 435
INPOL 236
FAMU 373
POLNO 97
POLMU 150
ROT 1464
Solution of the minimal MIVAR 408
variance identity EQ 93
DECOM u20
SOLVB 265
Input-Output POLIN 57
ouUl 91
COMMON /SLASK/ 1024

This means that when using MIVRE for adaptive regula-
tion 5383 cells are needed for these routines. Then
code, almost all data and COMMON areas are included.
The vectors that are brought into MIVRE as parameters
in the subroutine call are not taken into account.
MIVCO needs 6678 cells.

However, both MIVRE and MIVCO are well suited for
overlay structures, since POLPA (FAMU, INPOL, POLNO,
ROT), MIVAR (EQ, DECOM, SOLVB) and POLMU form subprog-
ram blocks. Of the three links mentioned, POLPA will
be the largest requiring 2605 cells for the mentioned

subprograms.

Average execution times for the subroutines are lis-
ted in the table below.

FAMU

Number of factors: 2 Y 8
Time in ms: 3.7 14,8 54,1
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INPOL

Degree of the polynomial: 2 4 8

Time in ms: 2.6 10.4 30.4

POLMU

Order of the polynomials: 2 L4 8

Time in ms: 4.3 8.9 22.9

MIVAR

System order: 3 3 10 3 3 10

Time delay: 2 10 2 2 10 2

Degree of B2: 0 0 0 2 2 b

Time in ms: L.6 12,7 11.3 72.1 81.2 784,

ROT Real roots Compl.conj.roots

Log (EPS) -7 -5 -3 -7 -5 -3

Degree of the 2 .0 0.0 0.0 0.1 0.1 0.0

polynomial 4 0.9 0.7 0.6 0.8 0.6 0.5

(time in sec.) 8 4,0 3.5 3.0 3.4 2.9 2.5
10 7.9 6.6 5.7 5.5 4.5 3.8

The last table is obtained from the program library

[21.

Thus, when not all zeroes of the B polynomial lie in-
side the critical circle, execution time to a very
great extent depends on ROT. In this case the calcu-
lation of the new process input takes about one se-
cond when the system order is four and about five se-

conds when the system order is eight.

However, when the B polynomial has all zeroes inside
the critical circle the time needed for computing a
new process input is considerably diminished. In the
table below the average execution time for some dif-

ferent cases is listed.
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MIVRE (no zeroces outside the critical circle)

n - system order
k - time delay
time in ms

;\}i\ 2 4 8

W E N
g NCR
OMN W
[ézdo Nds)
[R%]
[Sa]
o

With IL=2, i.e. the old regulator is used for compu-
ting a new process input, the computing time is 2.8

ms for a system of the order 8 with the time delay 4.
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APPENDIX IV

An Example Showing an Off-Line Computation of a Mini-
mal Variance Regulator.

Consider the system

y(t) = 1.5y(t=1) + 0.75y(t=2) - 0.125y(t-3) =

= 2u(t=-2) + 13u(t-3) + 22u(t-y4) + 8ul(t-5) +
+ e(t) - 1.2e(t-1) + 0.48e(t-2) - 0.06Le(t=3)

A minimal variance regulator is to be computed. On
the teletype is written:

Kii5 VoA
$h TTAR 6
3%

MIVCOo

EXECUTE V4A

THIS 1S THE CONVERSATIONAL PROGRANM MIVCO -
A CTRL P WILL ALWAYS TAKE YOU BACK TO THIS POSITION
0 START PLE&SE STRIKE THEL RETURS KEY.

3

ENTER SYSTEM ORDER AND SYSTEW DELAY.
#3 2 . | , -
ENTER & -PCLYNOWIAL

4l -1.5 B.75 -0.125

FNTER B ~PCLYNCHIAL :
#2 13 22 8 ‘ . -

ENTER C ~POLYEONIAL

# -1.2 0.48 -2,064

SHTER RADIUS OF CRITICAL CIRCLE.

#1

*0UTPUT O LP*

*OUTPUT OR TTx -
ANY MORE REGULATOR TO BE CALCULATED ?
LNSWER YES  OR NO HO

STCP 002220

s

KIS V5a




On the lineprinter is written: Iv.2.
INPUT TO MIVCO:

TR E S E

SYSTEM ORDER 3 SYSTEM DELAY 2

A ~POLYNOMIAL

A C 1)= 0.1000000E+01
A ( 2)= ~0.1500000F+01
A C3)= 0.7500000E+00
A C 4)= -0.1250000E400
\
B ~POLYNOMIAL
B ( 1)z 0.2000000E+01
R ( 2)= 0.1300000E+02
B ( 3)= 0.2200000F+02
B ( 4)= 0.8000000E+01
C -POLYNOMIAL |
C ( 1)z 0.1000000E+01
C ( 2)= ~0.1200000F+01
C ( 3)= 0.4800000F+00
"C ( 4)= ~0.6400000E-01

] THE CRITICAL CIRCLE HAS RADIUS  0.1000000E+01
 ZEROES INSIDE THE GRITICAL CIRCLE '

© B1( 1)F 0.1000000F+«01 4 B
' B1( 2)= 0.5000000E+00

ZEROES OUTSIDE THE CRITICAL CIRCLE

. - B2C 1)= 0.2000000E+01
| B2( 2)= 0.1200000F+02
B2( 3)= 0.1600000E+02

~

~
~~—

OUTPUT FROM MIVCO:

GREHABEREREERERERY

-
—

REGULATOR ASIA HEIGHTED SUM OF OLD INPUTS TO AND OLD OUTPUTS FROM THE SYST

! F -POLYNOMIAL

. F (1)= 0.1000000FE+01
F ( 2)= 0.3000000E+00
F C 3)= 0.1747789E+00 -
F o«

4)z. 0.7166982E-01 o R

. 6 -POLYNOMIAL

( 1)= 0.2610546FE-02
( 2)= -0.2414003E-02
A 3)= 0.5599205E-03

[ Pl ep)
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DENOMINATOR POLYNOMIAL

H € 4)= 0.1000000E+01
H ¢ 2)= 0.8000000F+00
H ( 3)= 0.3247789F+00
H € 4)= 0.1590593F+00
H (5)= ¢

«3583491F-01

REGULATOR AS A DYNAMICAL SYSTEM ON CANONICAL FORM S(H,BB,CC,D)

-

H -VECTOR

H C1)= 0.8000000F+00

H ( 2)= 0.3247789E+00

H ( 3)= 0.1590593F+00

H ( 4)= 0.3583491E-01

BB-VECTOR' .
RB( 1)= 0.1000000E+01

BB( 2)= 0.000N000E+00

BBC 3)= 0.0000000FE+00

BB( 4)=  0.0000000E+00

CC-VECTOR (TRANSPOSED)
CCC 1)=  0.4502440FE-02
CC( 2)= 0.2879299E-03
CCC 3)=  (.4152316E-03 ‘ .
CC( 4)= 0.9354869E-04 o !
DIRECT TERM ot T

D ( 1)= -0.2610546E-02

# OUTPUT Td'.DAT+6 REROUTED TO ALTERNATE DEVICE =*

-~
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The polynomial

B = qSBx(q-1) = 2q3 + 13q2

+ 22q + 8

has the zeroes

= - 1/2
a = -2
q= -

Thus, there are two zeroes outside the unit circle.

A partitioning gives

s

B" - B’I ' . BQ"

B¥(q™ "y = 2 + 13q7" + 22q97% + 8q

B1x(q-1) 1

1+ 0.5q

1 1 2

B2"(q" ") = 2 + 12¢7" + 16q”
In this case MIVCO computes a suboptimal regulator,
because all zeroes of the B polynomial are not inside
the unit circle. The regulator is given both as a
weighted sum of inputs and outputs and as a dynamic
system on controllable form. The following results

are received from the lineprinter:

2% =1 - 15977 + 0.75q7% - 0.125¢73
Bx(q~1) = 2 + 13q—1 + 22q_2 + 8q
c:(q'j) = 1 - 1.2q’1 + 0.u8q"% - 0.064q"°
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B1 (q"1) =1 + 0.5q
B2"(q—1) = 2 + 12q_1 + 16q—2
b4 -1 _ -1 i
F'(q” ') = 1 + 0.3q° + 0.1747789q ° +
+ 0.7166982 « 107 1 q"°
6 (q™") = 0.2610546 + 1072 - 0.2414008 - 107 2q"" +
+ 0.5599205 - 107 3q?

The regulator written as a weighted sum of old inputs

and outputs:

u(t) = - 0.8u(t-1) - 0.3247789u(t-2) - 0.1590593u(t-3) -

- 0.3583491 « 107 u(t-4) - 0.2610546 « 10” 2y(t) +

+0.2414003 « 10 %y(t-1) - 0.5599205 « 10 Sy(t-2)

The regulator written as a dynamic system on control-
lable form:

x(t+1) =
-0.8 =-0.3247789 -0.1590593 ~-0.358349710 "
-1 0 0 0 x(t) +
0 1 0 0
0 0 1 0
1
+ |0 y(t)
0
0
u(t) = [0.4502440:10" %2 0.2879299+40"3
3 4

0.4152316+10
»x(t) = 0.2610546+10"

0.9354869°10 ' J°

2y('t:)
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