

LUND UNIVERSITY

Error analysis of the SORP4 sorption microcalorimeter

Wadsö, Lars

1997

Link to publication

Citation for published version (APA):

Wadsö, L. (1997). *Error analysis of the SORP4 sorption microcalorimeter*. (Report TVBM (Intern 7000-rapport); Vol. 7121). Division of Building Materials, LTH, Lund University.

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study

or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00

UNIVERSITY OF LUND LUND INSTITUTE OF TECHNOLOGY Building Materials

Error analysis of the SORP4 sorption microcalorimeter

Lars Wadsö

Report TVBM-7121 October 1997

Error analysis of the SORP4 sorption microcalorimeter

Lars Wadsö Building Materials, Lund University

Box 118, 221 00 Lund, Sweden email: Lars.Wadso@byggtek.lth.se

October, 20 1997

1 Introduction

It is rather difficult to intuitively estimate the influence of different types of errors on measurements with the SORP4 and our other sorption microcalorimeters. Therefore I have made computer simulations of SORP4 measurements with different types of errors. This report gives the result of these simulations. The sorption microcalorimetric instruments and the method has been described by Wadsö and Wadsö (1996, 1997).

We have a measurement from which we would like to evaluate the true sample properties. These properties are totally independent of our way of measuring them. From our measurement we get results that may contain *measurement errors*. When we evaluate the measurements we may have got coefficients etc. wrong, so we make *evaluation errors*. In this report I assess the influence of these two types of errors on the result from SORP measurements.

2 Analytical treatment

The following nomenclature is used:

a	vapor activity $(=p/p_{sat})$	Pa/Pa
С	vapor content	g/g
e_a	error in vapor activity	Pa/Pa
e_c	error in vapor content	g/g
e_{Ps}	added error in $P_{\rm s}$	W
e_{Pv}	added error in $P_{\rm v}$	W
$e_{\Delta sh}$	error in $\Delta_{\rm s} h$	J/g
M	dry sample weight	g
$P_{\rm s}$	thermal power of sorption [*]	W
$P_{\mathbf{v}}$	thermal power of vaporization [*]	W
P_{\max}	maximal $P_{\rm v}$	W
$\Delta_{ m s}h$	sorption enthalpy [†]	J/g
$\Delta_{\mathbf{v}}h$	vaporization enthalpy*	J/g
$\delta_{ m vs}$	thermal cross-talk from vap. to sorp.	1
$\delta_{ m sv}$	thermal cross-talk from sorp. to vap	1
$\kappa_{ m s}$	error factor multiplied to $P_{\rm s}$	1
$\kappa_{ m v}$	error factor multiplied to $P_{\rm v}$	1
$\kappa_{P\max}$	error factor multiplied to P_{max}	1

The following sign conventions are used here: the parameters marked with a star (*) are always equal to or greater than zero, and the parameter marked with a dagger (†) is usually less than zero ($\Delta_v h$ is the enthalpy of the transition from liquid to vapor, and $\Delta_s h$ is the enthalpy of transition from liquid to sorbed phase, cf. Eq. 3).

If we neglect certain small corrections ('initial' and 'sorption time-lag') and assume that we have a dry sample at the start of the measurement the following equations are used for evaluating SORP measurements:

$$a = 1 - \frac{P_{\rm v}}{P_{\rm max}} \tag{1}$$

$$c = \frac{1}{M \cdot \Delta_{\rm v} h} \int_0^t P_{\rm v}(\tau) \mathrm{d}\tau \tag{2}$$

$$\Delta_{\rm s}h = \Delta_{\rm v}h \cdot (1 - \frac{P_{\rm s}}{P_{\rm v}}) \tag{3}$$

Note that we here work with a, c and $\Delta_{s}h$ as functions of time; not functions of each other.

Equation 1 may be written as follows when an error is added to the thermal power of vaporization:

$$a + e_a = 1 - \frac{P_v + e_{Pv}}{P_{\max}} \tag{4}$$

This results in the following expression for the error in the activity:

$$e_a = \frac{e_{Pv}}{P_{\max}} \tag{5}$$

This error at time t is only dependent on the values of e_{Pv} at time t.

Equation 2 may be written as follows when an error is added to the thermal power of vaporization:

$$c + e_c = \frac{1}{M \cdot \Delta_v h} \int_0^t (P_v(\tau) + e_{Pv}(\tau)) d\tau$$
(6)

The resulting expression for the vapor content error is:

$$e_c = \frac{1}{M \cdot \Delta_{\mathbf{v}} h} \int_0^t e_{Pv}(\tau) \mathrm{d}\tau \tag{7}$$

The error is dependent on the whole error-history from the start of the measurement. Errors that change sign (e.g. noise) may cancel out themselves.

Equation 3 may be written as follows when errors are added:

$$\Delta_{\rm s}h + e_{\Delta sh} = \Delta_{\rm v}h(1 - \frac{P_{\rm s} + e_{Ps}}{P_{\rm v} + e_{Pv}}) \tag{8}$$

By expanding, using Eq. 3 and neglecting an e^2 -term we get:

$$e_{\Delta sh} \approx \frac{e_{Pv}(\Delta_{\rm v}h - \Delta_{\rm s}h) - e_{Ps}\Delta_{\rm v}h}{P_{\rm v}} \tag{9}$$

It is interesting to note that $e_{\Delta sh}$ is inversely proportional to $P_{\rm v}$, but not dependent on $P_{\rm s}$.

3 The material data used in the simulations

Table 1 gives the data used for all computer simulations. The output interval of 5 s is used in our normal SORP4 measurements and the other values are also within the ranges commonly used in measurements with SORP4. I have used data for three different types of isotherms: 'linear' (an ideal case), 'sigmoid' (e.g. wood) and 'hydrate' (a stepwise salt hydrate isotherm). Table 2 and Figs 2, 3 and 4 show these three cases.

Table 1: The data used in all simulations.

sample density (ρ)	0.2 g/cm^{3}
sample height (h)	2 mm
sample weight (M)	52 mg
diffusivity ratio ¹ (δ)	0.5
simulation cells in sample (n)	5
length of simulation	48 h
output interval	5 s

¹ δ is the ratio of the diffusion coefficients for the sample and for air, respectively.

4 The computer programs

The following MATLAB 4 computer programs were used in the present study (the program codes are given in Appendix B):

- s4s.m simulates measurements with SORP4. Input are the sample properties; output are the thermal powers, the vapor activity and the vapor content (all as functions of time).
- evalsc.m; evalscf.m calculate sorption isotherms and heats of sorption from the measured (or simulated) thermal power vectors (the program ending with 'f' is a function used in the present work; evalsc is the normal program).
- master4e.m contain data needed in the evaluation (a special version of the normally used master4).
- errxx.m is a program that compares evaluated curves from input data with and without errors (xx is the number of the error simulation).
- inps4s.m inputs the data files.
- errplot.m plots the differences between the output from evaluations with and without added errors.

Table 2: The knick-points of the sorption isotherms and sorption enthalpies used in the present paper. The vapor content is in units of g/g and the sorption enthalpy has units of J/g.

linear		sigmoid			hydrate			
a	С	$\Delta_{ m s}h$	a	С	$\Delta_{ m s}h$	a	C	$\Delta_{\rm s}h$
0.00	0.0	-1000	0.00	0.0	-1107	0.00	0.0	0
1.00	0.3	0	0.05	0.02	-836	0.029	0.0001	-1222
			0.10	0.035	-669	0.031	0.0538	-1222
			0.40	0.085	-376	0.229	0.0539	-444
		1	0.70	0.15	-188	0.231	0.135	-444
			0.80	0.18	-117	0.95	0.136	389
			0.90	0.23	-54	1.00	0.200	444
			0.95	0.27	-21			
			1.00	0.37	0			

Figure 1 shows in what order the programs run.

5 The calculations

Table 3 gives an overview of all error calculations made. The procedures are described in the following sections. The result is given in a large number of figures in Appendix A. Too find the result of a certain calculation, look for the **err**-labels (these are actually the names of the MATLAB m-files generating the results).

- **NOTE 1:** All errors introduced (except noise) increase the absolute values of P_v and P_s (in the present paper).
- **NOTE 2:** In Appendix A the error is given as the difference between the evaluated parameters without any error and the eveluated errors with error added. As an example, let $a_{noe}(t)$ be the activity calculated without any error added to the simulated thermal powers and $a_{err}(t)$ the activity calculated with an error added. Then the plots give $a_{noe}(t) a_{err}(t)$ as a function of $a_{noe}(t)$. This means that if the thermal power of vaporization is increased by the error the signs of the result will be

Figure 1: The use of the programs in the present study. The program 'err1a' and the data files 'linres' and 'linnoe' are examples of data files (MATLAB mat-files); those for the sigmoid and the hydrate cases are called 'sigres' and 'hydres', and 'signoe' and 'hydnoe', respectively). The circles are data, the rectangles are computer programs, and the rounded rectangles are data files. Three different sets of material data are used: 'true' (the data entered into the simulation), 'noe' (the data evaluated withour any error), and 'err' (the data calculated with an error added).

Figure 2: The sorption isotherm and corresponding sorption enthalpy for the hypothetical linear case used in the present study.

Figure 3: The sigmoid isotherm and corresponding sorption enthaply (data for the wood *Eucalyptus regnans* taken from Chrisensen and Kelsey 1959)

Figure 4: The salt hydrate isotherm and sorption enthalpy (morphine sulphate, taken from our own measurements). Note that the enthalpy plot has vapor content on the x-axis for clarity.

as follows:

$$egin{aligned} a_{
m noe}-a_{
m err} &> 0\ c_{
m noe}-c_{
m err} &< 0\ \Delta_{
m s}h_{
m noe}-\Delta_{
m err}h_{
m err} &< 0 \end{aligned}$$

When a positive error acts on the thermal power of sorption the following result will be obtained:

$$a_{
m noe} - a_{
m err} = 0$$

 $c_{
m noe} - c_{
m err} = 0$
 $\Delta_{
m s} h_{
m noe} - \Delta_{
m err} h_{
m err} > 0$

NOTE 3: Figures 7, 8 and 9 are of the same type as the diagrams in Appendix A, but they give the difference between true values (i.e. the values entered into the simulation shown in Figs. 2, 3 and 4) and the values

Table 3: An overview over the error calcuations made. The different calculations are in this report called 'errxy', where x is the number to the left and y is the letter in the table head.

#	error	T/B†	a	h	C	unit
1	short term noise	$T+B^*$	01	0.5	mea	
2	disturbance	B	20	20	-	μW (oorly/late)
3	disturbance	Т	20	20	-	μW (early/late)
4	baseline shift	В	1	-		$\frac{\mu W}{\mu W}$
5	baseline shift	Т	1	_	-	μW
6	baseline slope	В	0.1	1		$\mu W/24 h$
7	baseline slope	Т	0.1	1	-	$\frac{\mu W/24 h}{\mu W/24 h}$
8	calibration coefficient	В		1	10	% too high
9	calibration coefficient	Т		1	10	% too high
10	P _{max}	-		1	10	% too high
11	cross-talk	T&B	0.1	1		% cross-talk
1 00	1					LA OT ODD - LUTY

† Top (sorption side) or Bottom (vaporization side)

* Random noise independently added to both T and B

calculated without any added error. For the activity they give plots of $a(t) - a_{noe}(t)$ as a function of a(t), where a(t) are the true values and $a_{noe}(t)$ are the values evaluated without any added error.

NOTE 4: In the hydrate case the slopes of the isotherm are either near zero (rapid change of activity without much change in vapor content) or very high (increase in vapor content at nearly constant activity). When the latter is the case the vapor content increase will move like a front through the sample. In the simulations in which the sample is divided into five parts, each vertical step on the isotherm will be almost completed for one cell before the next (inner) cell may start to increase its vapor content. As a result of this five small steps or peaks may be seen in some of the hydrate result (cf. Fig. 6, 9, err6a and err8b).

5.1 The case with no error

A set of sample data is entered (called 'true') are entered into the simulation. When the output from the simulation is evaluated without any error added (called 'noe') we will get a result that differs from the input data. The main reason for this difference is that the sample has a thickness and the parts at different depths of the sample will be at slightly different activities (otherwise there would be no flow into the sample) and the evaluation procedure cannot take this into account.

Figures 5 and 6 gives the 'true' and 'noe' sorption isotherms and heats of sorption. The differences seen in the high slopes of the hydrate isotherm will probably be corrected by the 'sorption time-lag' correction procedure being developed. The spikes seen in the hydrate enthalpies are artefacts from the simulation. Figures 7-9 gives the difference between the 'true' values and the 'noe' (no error) values for the three simulated cases when the assumption is made that the activities are correct¹. Note that it is the *differences* that is given on the y-axes. The plot is of the sample type as the main result that is given in Appendix A. Some of the steps and kinks seen in Figs. 8 and 9 are artefacts from the simulation (changes in the slopes of isotherms and enthalpies).

5.2 Short term noise

Figures 10 and 11 show typical short term noise from two good baselines. It is seen that the short term noise is quite low (it may be compared with the maximal thermal power P_{max} that is 975 μ W for SORP4).

Calculations have been made with normally distributed white noise with a standard deviation of 0.1 μ W (err1a) and 0.5 μ W (err1b). The measured noise from simultaneously measured good baselines (Figs. 10 and 11) were also repeated to generate a more realistic(?) short term noise (err1c).

¹Values of a, c and $\Delta_s h$ are evaluated from the simulations as functions of time. The true values are just given as a-c- $\Delta_s h$ -triplets. If there is a difference between the true and the evaluated isotherms it is not possible to state that this is caused by an a-difference or by a c-difference. To make a comparison between two sets of data one has to choose one parameter as correct, and in Figs. 7-9 I have here chosen the activity. To get the whole picture one must look at the plots of the sorption isotherms (Fig. 5) and the sorption enthalpies (Fig. 6). In Appendix A I make comparisons between data evaluated with and without added errors. As both these data sets have the same origin (the same simulation) the differences between any of them $(a, c \text{ or } \Delta_s h)$ may be ploted aginst time or (as I have done) against the values of one of the variables (I used a evaluated without added error).

Figure 5: Sorption isotherms for the three cases investigated. Solid lines are the input data for the simulations ('true') and dashed lines are the evaluated result with no error added ('noe').

Figure 6: Differential heats of sorption for the three cases investigated. Solid lines are the input data for the simulations ('true') and dashed lines are the evaluated result with no error added ('noe').

Figure 7: The difference between the true sample data (entered into the simulation) and the evaluated sample data with no error added for the linear case. Note that the differences between the values are given on the three y-axes. The activity is taken as being the same in both cases (cf. footnote on page 10).

Figure 8: The difference between the true sample data (entered into the simulation) and the evaluated sample data with no error added for the sigmoid case. Note that the differences between the values are given on the three y-axes. The activity is taken as being the same in both cases (cf. footnote on page 10).

Figure 9: The difference between the true sample data (entered into the simulation) and the evaluated sample data with no error added for the hydrate case. Note that the differences between the values are given on the three y-axes. The activity is taken as being the same in both cases (cf. footnote on page 10).

Figure 10: An example of a good basline from the bottom (vaporization) calorimeter in SORP4. This is the baseline used in the err1c calculations.

Figure 11: An example of a good basline from the top (sorption) calorimeter in SORP4. This is the baseline used in the **err1c** calculations.

16

5.3 Disturbance

The effect of a disturbance was tested by adding a half-period sinusoidal curve to the simulated thermal powers. This disturbance is shown in Fig. 12. A disturbances is characterized by its starting time (t_1) , its length (Δt , half a harmonic period) and its amplitude (P_2). Table 4 gives these parameters for the four calculations made. The disturbances only act on one part (top or bottom) a time.

All the disturbances increase the absolute values of the thermal powers. When a higher thermal power of vaporization is measured for some time this will have three effects:

- 1. The vapor activity will not be correct during the disturbance (afterwards it will be correct again).
- 2. To the vapor content will be added a small apparent vapor content increase caused by the integration of the disturbance. This vapor content shift seen in the *c*-result may be calculated by the following equation:

$$\Delta c = P_2 \frac{\Delta t}{\pi} \int_0^\pi \sin(t) dt \frac{1}{M \cdot \Delta_{\mathbf{v}} h}$$
(10)

Here the nomenclature is as follows:

Δc	vapor content shift	g/g
P_2	max thermal power of disturbance	W
Δt	time of disturbance	S
M	dry mass of sample	g
$\Delta_{ m v} h$	heat of vaporization	J/g

For err2b I calculated $6.0 \cdot 10^{-5}$ and measured $6.0 \cdot 10^{-5}$.

3. The heat of sorption will not be correct during the disturbance, but after the disturbance it will be correct again.

When a higher thermal power of sorption is measured only the evaluated enthalpy of sorption will be affected, and only as long as the disturbance is active.

Figure 12: The sinousoidal disturbance added to the thermal power curves in err2 and err3. The disturbance starts at t_1 , has a duration of Δt , and has a maximum of P_2 .

	B/T	t_1 / h	Δt / s	$P_2 / \mu W$
err2a	B	0.5	600	20
err2b	В	20	600	20
err3a	Т	0.5	600	20
err3b	Т	20	600	20

Table 4: The parameters for the disturbances.

5.4 Baseline shift

Baseline shift is the same as an error in the determination of the baseline, i.e. e_{Pv} and e_{Ps} are constant. Equations 5 and 7 may be used without any changes. For *a* the error at time *t* is only dependent on the values of e_{Pv} at time *t*. For *c* the error is dependent on the integral of the errors during the whole measurement. For $\Delta_s h$ the situation is more complex, but Eq. 9 may be rewritten as:

$$e_{\Delta sh} \approx \frac{e_{Pv}\Delta_{v}h - e_{Pv}\Delta_{s}h - e_{Ps}\Delta_{v}h}{P_{v}} = \frac{1}{P_{v}}(A - B \cdot \Delta_{s}h)$$
(11)

Here A and B are constants (because $\Delta_v h$ is constant).

In the SORP sorption microcalorimeter we first determine the baseline with only the dry sample in the calorimetric vessel. To start the measurement we then introduce liquid water into the other part of the vessel. Therefore we use the baseline measured without water to correct the measurement with water. I believe that this procedure is correct, but if the baseline was changed by the introduction of water we would have a baseline shift.

Only one calculation with 1 μ W shift was made for each of the two parts of the vessel: err4a for the bottom (sorption) and err5a for the top (vaporization). Results from other baseline shift may be found by the use of Eqs. 5, 7 and 9.

5.5 Baseline slope

Baseline slope is the same as baseline drift and its comes from the drift of some part of the instrument (e.g. the electronics). Baseline slopes may be written:

$$e_{Pv} = \sigma_{\rm v} t \tag{12}$$

$$e_{Ps} = \sigma_{\rm s} t \tag{13}$$

Here σ_s and σ_v are the slopes (in W/s) of the baselines. Equation 5, 7 and 9 may then be written as follows when the errors are included:

$$e_a(t) = \frac{\sigma_{\rm v} t}{P_{\rm max}} \tag{14}$$

$$e_c(t) = \frac{1}{M \cdot \Delta_{\mathbf{v}} h} \int_0^t \sigma_v \tau d\tau = \frac{\sigma_{\mathbf{v}} t}{2M \cdot \Delta_{\mathbf{v}} h}$$
(15)

$$e_{\Delta sh}(t) \approx \frac{\sigma_{\rm v} \Delta_{\rm v} h - \sigma_{\rm s} (\Delta_{\rm v} h - \Delta_{\rm s} h)}{P_{\rm v}} \cdot t \tag{16}$$

The Thermometric thermostated bath we are using is very stable, but we have sometimes seen quite large slopes in the baselines before the measurements, especially for the top (sorption) calorimeter. The cause of this is not yet known, but we guess that the drifts we see are caused by some process in the sorption vessel (e.g. sorption) or non-matching time-constants in the measurement and reference vessels.

Two calculations were made for each of the two parts of the vessel: err6a and err6b for the bottom (vaporization) and err7a and err7b for the top (sorption). The baseline-slopes are given in Table 3. A baseline slope greater than zero increases the absolute value of a thermal power.

5.6 Calibration coefficients

For this case Eqs. 5, 7 and 9 have to be modified as the error is not added to, but multiplied with the thermal powers. This can be done by rewriting the errors into the form previously used by first writing:

$$P_{\rm v} + e_{Pv} = \kappa_{\rm v} P_{\rm v} \tag{17}$$

$$P_{\rm s} + e_{Ps} = \kappa_{\rm s} P_{\rm s} \tag{18}$$

that gives:

$$e_{Pv} = (\kappa_v - 1)P_v \tag{19}$$

$$e_{Ps} = (\kappa_{\rm s} - 1)P_{\rm s} \tag{20}$$

Equation 5, 7 and 9 may be then written as follows:

$$e_a(t) = \frac{(\kappa_v - 1)P_v}{P_{\max}}$$
(21)

$$e_c = \frac{(\kappa_v - 1)}{M \cdot \Delta_v h} \int_0^t P_v(\tau) \mathrm{d}\tau$$
(22)

$$e_{\Delta sh} \approx \frac{\Delta_{\rm v} h(\kappa_{\rm s}-1) P_{\rm s} - (\Delta_{\rm v} h - \Delta_{\rm s} h)(\kappa_{\rm v}-1) P_{\rm v}}{P_{\rm v}} \tag{23}$$

The calibration coefficients are determined by electrical calibrations. There are some problems associated with this; mainly the introduction of heat conducting copper wires into the vessel. Two error levels were investigated for each of the two parts of the vessel: 1 and 10%. For each calculation the calibration coefficient is this much higher than it should be. The results are called err8b - err8c and err9b - err9c.

5.7 Max thermal power (P_{max})

The maximal thermal power of vaporization (P_{max}) is an important parameter in the evaluation of our measurements. It is a measure of the resistance to vapor diffusion from the vaporizing liquid to the sorbing sample. In theory at least, it may be calculated as:

$$P_{\max} = D_p \cdot p_{\text{sat}} \frac{A}{\tilde{L}} \Delta_{\text{v}} h \tag{24}$$

Here D_p (g/s/m/Pa) is the diffusion coefficient in air with vapor pressure as potential, p_{sat} (Pa) is the saturation vapor pressure, A (m²) is the cross sectional area of the tube between the chambers, \tilde{L} (m) is the effective length² of the diffusion tube, and $\Delta_v h$ (J/g) is the enthalpy of vaporization.

Equation 1 may be written as follows when P_{\max} is modified by an error factor:

$$a + e_a = 1 - \frac{P_v}{\kappa_{P_{\max}} \cdot P_{\max}} \tag{25}$$

This may be reduced to the following expression for the resulting error:

$$e_a = \frac{P_{\rm v}}{P_{\rm max}} \left(1 - \frac{1}{\kappa_{P\rm max}}\right)$$

In practice, the maximal thermal power is determined from experiments with water in the vaporization chamber and a drying agent or a saturated salt solution in the sorption chamber. Different methods yield slightly different values. The cause of this is not known. The $P_{\rm max}$ -calculations are done with two error levels: 1 and 10%. For each calculation $P_{\rm max}$ is this much higher than the true values. The results are called err10b - err10c

5.8 Cross-talk

Our double calorimeter is not perfect; one weakness is that a when a thermal signal is generated in one part of the calorimeter a small fraction of it will be measure in the other calorimeter. We call this cross-talk and it may be formally described as:

$$\hat{P}_{\rm v} = P_{\rm v} - \delta_{\rm sv} P_{\rm s} \tag{26}$$

 $^{^{2}}$ The effective length differs from the true length as it must also take into acount the diffusive resistance in the top chamber of the calorimetric vessel.

$$P_{\rm s} = P_{\rm s} - \delta_{\rm vs} P_{\rm v} \tag{27}$$

Here the *c*-coefficients are positive as the absolute values of both P_v and P_s will decrase (the endothermic and exothermic heats will be partly decreased by each other). The heat that goes from the top to the bottom need only be counted as cross-talk in the bottom (and vice-versa); we need not count it as an extra loss of heat from the top as that is taken care of by the normal calibration coefficient.

Equation 5, 7 and 9 may be then written as follows:

$$e_a = \frac{\delta_{\rm sv} P_{\rm s}}{P_{\rm max}} \tag{28}$$

$$e_c(t) = \frac{-\delta_{\rm sv}}{M \cdot \Delta_{\rm v} h} \int_0^t P_{\rm s}(\tau) \mathrm{d}\tau$$
⁽²⁹⁾

$$e_{\Delta sh} \approx \frac{P_{\rm s}}{P_{\rm v}} \delta_{\rm sv} (\Delta_{\rm v} h - \Delta_{\rm s} h) - \delta_{\rm vs} \Delta_{\rm v} h \tag{30}$$

Here symmetric cross-talks of 0.1% and 1% are tested (err11a and err11b). In practice the cross-talk does not seem to be symmetric, but the cross-talk will probably not be much different from the cases tested.

6 Discussion and conclusions

When making these conclusions I have defined the following limits of small allowable errors:

$$a < 0.005 \; {
m Pa/Pa} \ c < 0.0015 \; {
m g/g} \ |\Delta_{
m s} h| < 10 \; {
m J/g}$$

Errors less than this are allowable with the SORP4 sorption microcalorimeter.

This report shows that

Short-term noise will only disturb the measurements at the end of the measurements (at vapor activities approaching 1.00). The sorption enthalpy is most critical, but it is not difficult to see when the result starts to get wrong as the noise will start to make the curve funnel-shaped.

- **Disturbances** (of unknown shape, size and time) will of course be impossible to correct for. It is, however, known that almost all SORP4 measurement curves are perfectly smoth (except for the noise), so disturbances are rare, and as all measurements are repeated this should not be a problem.
- **Base-line shifts** is a problem (if they exist). It is very important to have a good base-line before the measurement starts. The 1 μ W base-line shift used in the calculations is a quite high base-line shift if compared with the noise and slope of the best base-lines seen during our measurements.
- **Base-line slope** is probably not a problem in the way calculated, as it is difficult to see why one should have a constant slope during 48 h. The errors are quite small, except for the sorption enthalpy at the end of the measurement.
- Calibration coefficients must of course be well-known. The 1%-case is probably quite realistic for the SORP4 today, as we have difficulties in assessing the influences from the calibration copper wires. For this case we get a higher *a*-error than the above limit during the first part of the measurement.
- Error in P_{max} will only affect the calculation of the activity. The 1%-case is probably realistic and will give higher errors than the limit. Better measurements of P_{max} are neccessary.
- Cross-talk is not a problem in the present instrument (the cross-talks are less than 1%).

7 Acknowledgements

I thank Nils and Dorthi Troëdsson Research Fundation for supporting this study.

8 References

Christensen, G.N. and Kelsey, K. (1959), Holz Roh- Werkstoff 17(5) 189-203

Wadsö, I. and Wadsö, L. (1996), Thermochim. Acta, 273 277-

Wadsö, I. and Wadsö, L. (1997), J. Thermal Anal., 49 1045-1052

Appendix A: the result

•

а.

h.,

в.

Appendix B: the computer programs used

Program err1a.m

1.55

%err1a short term noice as measured

inps4s errcase='short term noise' Pv=Pv+0.1e-6*randn(size(Pv)); Ps=Ps+0.1e-6*randn(size(Ps));

[t,Pv,Ps,as,cs,Dsh]=evalscf('master4e',t,Pv,Ps);

figure(1) clf plot(anoe,cnoe,'-r') hold on plot(as,cs,'--') hold off xlabel('vapor activity') ylabel('vapor content , g/g') title(['SORP4 error analysis: ',iso,' tested with ',errcase])

figure(2) clf plot(cnoe,Dshnoe,'-g') hold on plot(cs,Dsh,'--') hold off xlabel('vapor content, g/g') ylabel('differential heat of sorption, J/g') title(['SORP4 error analysis: ',iso,' tested with ',errcase])

Program: inps4s.m

%inps4s % linres, sigres, hydres are results from simulations % linene, sigene, hydene are the above files evaluated % with no errors added clear type=input('Which s4s simulation? (lin=1, sig=2, hyd=3)'); addpl=input('Add plot? (yes=1)'); if type==1 load linene tnoe=t;cnoe=cs;anoe=as;Dshnoe=Dsh; %Pvnoe=Pv;Psnoe=Ps; load linres iso='linear isotherm'; elseif type==2load sigene tnoe=t;cnoe=cs;anoe=as;Dshnoe=Dsh; %Pvnoe=Pv;Psnoe=Ps; load sigres iso='sigmoid isotherm'; elseif type==3 load hydene tnoe=t;cnoe=cs;anoe=as;Dshnoe=Dsh; %Pvnoe=Pv;Psnoe=Ps; load hydres iso='hydrate isotherm'; end disp(iso) disp(' ')

disp('AFTER RUN:') disp('In memory: anoe, cnoe, Dshnoe (noe=no error)') disp(' as, cs, Dsh (evaluated with error)') disp(' aiso, ciso, hhhh (start (true) data)')

Program: err.m

%err %a label for the plots should be in 'namn'

subplot(311)
plot(anoe,anoe-as);
%xlabel('vapor activity (noe)')
ylabel('vap. act. error')
title(namn)

subplot(312) plot(anoe,cnoe-cs); %xlabel('vapor activity (noe)') ylabel('vap. cont. error, g/g')

subplot(313)
plot(anoe,Dshnoe-Dsh);
xlabel('vapor activity (no error added)')
ylabel('diff. heat error , J/g')

Program: s4s.m

%	sorp4si1 - a	one-dimensional	simulation	of
	-			

- % the vapor transport and sorption in SORP4
- %
- % for the testing of the influence of errors
- %

1

/0							
% This MATLAB 4 program simulates a measurement with the sorption microcalorimeter							
% SORP4 (no	t the sorption enthalpies). The	following input is asked for by the program:					
%	h	height of the sample (mm)					
%	rho	density of the sample (mg)					
%	delta	ratio of the diff.coeffs in sample and in air					
%	n	number of calculation layers in sample					

%	tend		end of simulation	on (s)						
%	tout	1	time interval be	tween outputs (s)						
% If you give n	o input the follo	wing standard in	put will be used	:						
% h=2 mm, rho=0.15 g/cm3, delta=0.5 (M=37 mg), n=5, tend=20000, tout=200, linear isotherm.										
$\frac{\gamma_0}{\gamma_0}$										
76 It is also pos	sidie for the use	r to make other ci	nanges in the pr	ogram.						
/0 0/2	As	u j	properties of va	surface area of sample (m ²)						
%	Dwh	1.57		vanorization enthalov (I/g)						
%	aiso, ciso, hhhł	sorption isothern	n & enthalpy	(i) B						
%	C. k	berphien better		capacities & conductancies	of model					
%	a(1)			activity at vaporization surfa	ace					
% A simulation	% A simulation gives the following numerical ouput (+a number of plots):									
%	t	time (s) [a vect	or]							
%	а	activity in each o	computational c	ell (1) [a matrix]						
%	Da	the activity difference	rence over the s	ample (1)						
%	CV	apparent concent	tration in samp	le (g/g) [a vector]						
%	Pv, Ps	thermal power of	f vaporization a	and sorptin (W) [vectors]						
% The followin	g points should	be noted:								
%	- The simulatio	is by simple for	ward difference	es (Fick's law and mass						
%	balances are c	alculated in small	l time incremer	its). The time step dt is						
%	automatically	calculated as the	maximum time	step found in any part of the	5					
% 0/	model at each	time.		he automatic stand in						
70 0/	- During the sir	After the simulation	c are used and i	transformed to						
70 0/	t a and c The	thermal nowers	of vaporization	and corption are given						
∕₀ % in Pvat	i, a and c. The	e mermar powers	or vaporization	and sorphon are given						
% III V ai	- Calculations	are made with SI-	units om s F	Pa						
%	- Standard tem	nerature is 250C a	and the vapor for	ming liquid is water						
%	- For each cell only the activity (a) is saved but as equilibrium is									
%	assumed the v	apor concentratio	n can be found	with the sorption isotherm						
%		•		1						
%	Lars Wadsö 97	0522 970527 970	814 970820 97	0922 970924 970929						
0/										
%	physical dat	a								
vsat=23; % $vapc$	or content (g/m3									
psal=3100, %va	apor pressure (Pa % diffusion coeff	a) ficient of water va	mor in air (a/Pa	/m/c)						
$\Delta s = 130 - 6.000$	ross sectional at	rea of sample (m?	(\mathbf{y})	(III/S)						
$D_{yh}=2440$ %h	eat of vanorizati	(I/σ))							
$E_{max}=400e-9$	%maximal vano	r flow (g/s)								
%	user input (or standard case)-								
fdt=0.9; %time	step factor	,								
h=input('height	of sample (mm) :');if (h==0) (h==	=[]);h=2;end;h=	=h/1000; %(m)						
rho=input('dens	sity of sample (g	/cm3) :');if (rho==	=[]) (rho==0);rl	no=0.2;end;rho=rho*1e6; %	g/m3					
delta=input('Dp	(sample)/Dp(air	r) :');if (delta==0)	(delta==[]);del	ta=0.5;end;M=h*As*rho;						
disp('');disp(['Sample mass = ',num2str(M*1e3),' mg']);										
n=input('number of calculation layers in sample :'); if (n==0) (n==[]);n=5;end;										
tend=input('end of simulation (s) :'); if (tend==0) (tend==[]); tend=24*3600; end										
tout=input('time	e interval betwee	en outputs (s) :');i	f(tout==0) (tou	t==[]);tout=5;end						
%	sample data									
isotype=input('t	ype of isotherm	? (1=linear, 2=sig	gmoid, 3=hydra	(te) :');						
%also are the activity knickpoints on isotherm										
γ_{0} ciso are the concentration knickpoints on isotherm (g/g) q/ has a set the differential beats of sorption (I/q (water))										
if (isotype==0)/(isotype==1) isotype=1 end %standard case										
if isotype==1 %	linear	type 1,010 /051a								
aiso=[0 1];ciso=[0 0.3];hhhh=[-1000 0];										
and to 1,000 to 0.5, man t 1000 vi,										

elseif isotype==2 %sigmoid (wood Eucalyptys regnans, Christensen & Kelsey 1959) aiso=[0 0.05 0.10 0.40 0.70 0.80 0.90 0.95 1.00]; ciso=[0 0.02 0.035 0.085 0.15 0.18 0.23 0.27 0.37]; $hhhh=[265\ 200\ 160\ 90\ 45\ 28\ 13\ 5\ 0]*(-4.18);$ elseif isotype==3 %hydrate (Morphine sulphate) aiso=[0 0.029 0.031 0.229 0.231 0.95 1.0]; ciso=[0 0.0001 0.0538 0.0539 0.135 0.136 0.2]; hhhh=[0 -22 -22 -8 -8 7 8]*1e3/18; end xi=diff(ciso)./diff(aiso); %slope of isotherm ix=diff(aiso)./diff(ciso); %inverse xi %-----show input----figure(1);clf subplot(221) plot(aiso,ciso,'*');hold on;plot(aiso,ciso,'-');hold off xlabel('relative activity');ylabel('vapor content (g/g)') subplot(223) plot(aiso,hhhh,'*');hold on;plot(aiso,hhhh,'-');hold off xlabel('relative activity');ylabel('enthalpy (J/gw)') subplot(122) text(0,5,['sample density=',num2str(rho),' kg/m3']);text(0,4,['sample height=',num2str(h*1000),' mm']); text(0,3,['sample mass=',num2str(M*1e6),' mg']);text(0,2,['diff.ratio=',num2str(delta)]); text(0,1,[int2str(n),' simulation cells']);text(0,0,['simulation ends at ',num2str(tend),' s']); text(0,-1,['output interval: ',num2str(tout),' s']);axis([-1 10 -2 5]);set(gca,'Visible','Off') disp('Press any key to continue (Ctrl-c to abort)');pause %------simulation data (cf. report)----nn=1+5+n; %number of last active conductance in sample Va=0.72e-6;Vb=1.43e-6; asim=0.105; Ra=(1-asim)/8/Fmax;Rb=asim/2/Fmax;Rc=h/2/n/delta/Dpair/psat/As; k=zeros([1 nn]); C=zeros([1 nn]);k(1)=1/Ra;k(2:4)=ones([1 3])/2/Ra;k(5)=1/(Ra+Rb);k(6)=1/(Rb+Rc);k(7:nn-1)=ones([1 n-1])/2/Rc;k(nn)=0; C(1)=0: C(2:5)=ones([1 4])*Va*vsat; C(6)=Vb*vsat;C(7:nn) = ones([1 n])*M/n*xi(1);%------simulation initialization----a=zeros([1 nn+1]); %activities a(1)=1; %activity of water c=zeros([1 nn+1]); %concentrations q=zeros([1 nn]); %flows (kg/s) $O_{V=0}$; %O keeps track of the apparent flow since last output (g/s) dt=fdt*min(C(2:nn)./(k(1:nn-1)+k(2:nn))); %max time step tdisp=min([tend/20 3600]); plustdisp=tdisp; t=0; %time in simulation (s) amax=aiso(length(aiso)); %maximal possible activity amaxend=0; %when amaxend=1 the simulation has to be stopped toutnext=tout; %second output time (first is at t=0) leg=ones([1 n]); %part on isotherm in which each sample part is at each time out=1: %counter for outputs nout=ceil(tend/tout)+1; %approx. no of outputs

```
tt=zeros([nout 1]); %in tt the sim. time is saved
  aa=zeros([nout nn]); %in aa the activities are saved
  aa(1,1)=1; %activity of source=1 from t=0
 cc=zeros([nout nn]); %in cc the activities are saved
 da=zeros([1 nn]);dc=da;
 cv=zeros([nout 1]); %in cv the appearent concentrations are saved
 Da=zeros([nout 1]); %in Da the activity difference over the sample is saved
 Pv=zeros([nout 1]); %in Pv the thermal power of vap. are saved
 Ps=zeros([nout 1]);
 konst=1.05*dt/C(7); %to make the simulation run faster
 %------simulation-----
 tic
 disp(['simulation started with dt=',num2str(dt),' s']);
 while (t \le tend) & (amaxend == 0)
  t=t+dt; %increment time
  q(1:nn)=(a(1:nn)-a(2:nn+1)).*k(1:nn); %calculate flows
  if a(7)+konst*(q(6)-q(7))>amax;amaxend=1;disp('end of isot. reached');end %stop before going outside
 isotherm
  da(2:nn)=dt*(q(1:nn-1)-q(2:nn))./C(2:nn); %calculate differences in activities
  ind=findstr(int2str((a(7:nn)+da(7:nn))>aiso(leg+1)),'1'); %find index of sample cells that has changed leg on
 isotherm
  if ind~=[];
   t=t-dt;
   dt1=(aiso(leg(ind)+1)-a(ind+6))./(q(ind+5)-q(ind+6)).*C(ind+6);
   indx=min(find(ones(size(dt1))*min(dt1)==dt1));
   dt=dt1(indx);
   t=t+dt:
   da(2:nn)=dt*(q(1:nn-1)-q(2:nn))./C(2:nn); %calculate new differences in activities
  end
  Qv=Qv+q(1)*dt; %add flow rate from liquid
  dc(2:nn)=dt^{(1:nn-1)-q(2:nn)};
  c(2:nn)=c(2:nn)+dc(2:nn);
 a(2:6)=c(2:6)./C(2:6);
 a(7:nn)=aiso(leg)+ix(leg).*(c(7:nn)/(M/n)-ciso(leg));
 if toutnext<t %time for output?
   if tdisp<t
    tdisp=tdisp+plustdisp;
    disp(['t=',num2str(t/3600),' h with dt=',num2str(dt),' s (',num2str(t/tend*100),'%)']);
   end
   out=out+1; %index in output vectors
   tt(out)=t; %output time
  aa(out, 1:nn+1)=a(1:nn+1); Da(out)=(a(7)-a(nn))*n/(n-1);
  cc(out, 1:nn+1)=c(1:nn+1)/(M/n);
  cv(out)=cv(out-1)+Qv/M;Qv=0;
  Pv(out)=q(1)*Dvh;
  Ps(out)=-1*sum((q(6:nn-1)-q(7:nn)).*(interp1(aiso,hhhh,a(7:nn))-Dvh)');
  toutnext=toutnext+tout; %time for next output
 end
 if ind~=[] %one part entering new leg
  leg(ind(indx))=leg(ind(indx))+1;C(ind(indx)+6)=M/n*xi(leg(ind(indx)));
%disp(['C(',int2str(ind(indx)+6),')=',num2str(C(ind(indx)+6))]);
  dt=fdt*min(C(2:nn)./(k(1:nn-1)+k(2:nn)));
 end
end
toc
%-----cleaning up-----
tic
L=length(tt); %L=length of vectors
```

```
if out<L %clear the unused parts of aa, cc, Pv, tt
  aa(:,out+1:L)=[];cc(out+1:L)=[];tt(out+1:L)=[];Pv(out+1,L)=[];Ps(out+1:L)=[];
end
a=aa;c=cc;ccv=cv;PPv=Pv;PPs=Ps;t=tt; %output is in t, a, cv, Pv and Ps
tt=linspace(0,tout*(length(t)-1),length(t))';ttt=t;
for k=1:nn;disp(['Interpolating in a(:,',int2str(k),')']);a(:,k)=interpx(t,a(:,k),tt);end;
for k=1:nn;disp(['Interpolating in c(:,',int2str(k),')']);c(:,k)=interpx(t,c(:,k),tt);end;
disp('Interpolating cv, Pv, Ps, Da');
cv=interpx(t,cv,tt);
Pv=interpx(t,Pv,tt);
Ps=interpx(t,Ps,tt);
Da=interpx(t,Da,tt);
t=tt;
%clear aa cc tt %clear the simulation var. to save space
toc
%-----plot result-----
figure(2);clf
subplot(121) %plot of activities as function of time
%water=red; gas phase=green; sample=yellow
for z=1:7+n-1
 eval(['plot(t,a(:,z),',"",col(z),"",')'])
 hold on
end
xlabel('time / s')
vlabel('activity')
subplot(122)
for z=1:7+n-1
 eval(['plot(t,c(:,z),','''',col(z),'''',')'])
 hold on
end
xlabel('time / s')
ylabel('conc.')
%plot of thermal power as a function of time
%plot(t,Pv*1e6)
%xlabel('time / s')
%ylabel('Thermal power of vaporization / uW')
hold off
figure(3);clf
subplot(121)
plot(t,Da)
xlabel('time / s')
ylabel('activity difference over sample')
subplot(122)
plot(t,cv)
xlabel('time / s')
vlabel('mean concentration (kg/kg) in sample')
figure(2);subplot(121) %Ready to zoom on sample activities
%-----end-----
```

Program evalscf.m

function [t,Pv,Ps,as,cs,Dsh]=evalscf(masterfilename,t,Pv,Ps,Pmaxfact) % EVALSCF An function that evaluates measurements with the Lund

```
%
                               Sorption Calorimeter.
 %
 %
                function [t,Pv,Ps,as,cs,Dsh]=evalscf(masterfilename,t,Pv,Ps,Pmaxfaxt)
 %
 %
                Lars Wadsö January 8, 1997, 970918
 global OK GOON
 filen=masterfilename; %input('Enter name of m-file with input data (e.g. "indata") : ');
 eval(filen); %inputs neccecary data for the evaluation
 %-----Pv-evaluation-----
if Pv_source==2
  [t dt U tx]=filinaf(filev);
  U=subbl(U,1):
  if (te<0)|(te==[])
   te=findte(t,U,1,'injection');
  end
  ind=round(te/dt);
  t=t(ind:length(t))-te;
 U=U(ind:length(U));
 Pv=tian(t,U,epv,tav,TUv,TdUv);
                                              %Pv is the thermal power of vaporization
elseif Pv source==1 %t,Pv already in memory
 dt=t(2)-t(1);
end
if mean(Pv)>0 %it is assumed that endo. Pv is less than zero
 Pv=-Pv;
end
if corr1 == 1
 eval(incofile) %inital correction (tci, Pciv, tendic)
 tt=dt:dt:tendic;
 L=length(tt);
 P init saved=Pv(1:L);
 f=Pv(L)/Pciv(length(Pciv));
 Pv(1:L)=interp1(tci,Pciv,tt,'spline')*f;
end
if glycerol==0
 qv=-Pv/Dvh;
else
 [qv,av,Dvh]=corrglyc(Pv,Vgw,cgw); %correction for g-w mix
end
if corr2==0
 as=av-qv/Pmax.*Dvh; %as is the vapor pressure of the sorbing sample
 qs=qv;
else %correction for sorption time lag
 [as,qs]=corrstl(k1,k2,k3,C12,C23,t,qv,av);
end
if corr1==1 %If a initial correction has been made ....
 as(1:L)=as(L+1)*ones([1 L]);
end
cs=(m0-mdry)/mdry+cumsum(qs)*dt/mdry;
%subplot(121)
%plot(as,cs,'.')
%axis([0 1 0 1.05*max(cs)]);
%xlabel('relative vapor activity')
%vlabel('vapor concentration (g vapor/g dry sample)')
%title(filev)
var str1='t dt U Pv F as cs';
%------Ps-evaluation-----
if Ps_source~=0
if Ps_source==2
```

```
[t dt U tx]=filinaf(files);
 U=subbl(U,1);
 t=t(ind:length(t))-te;
 U=U(ind:length(U));
 Ps=tian(t,U,epss,tas,TUs,TdUs);
                                          %Ps is the thermal power of sorption
elseif Ps_source==1
 %t, Ps already in memory
end
if length(Ps)>length(Pv)
 Ps=Ps(1:length(Pv));
elseif length(Ps)<length(Pv)
 Pv=Ps(1:length(Ps));
end
t=t(1:length(Ps));
if mean(Ps)<0 %In the equations it is assumed that
                            %the exothermic Ps is greater than zero
  Ps=-Ps;
end
 Dsh=(Ps./Pv+1)*Dvh; %dsh is the sorption enthalpy liquid-->sorbed phase (<0)
% subplot(122)
% plot(as,Dsh,'.')
% %axis([0 1 0 1.05*max(cs)]);
% xlabel('relative vapor activity')
% ylabel('sorption enthalpy liquid-->sorbed phase (J/g_vapor)')
% title(files)
var_str2='Ps, Dsh';
else
 var_str2=";
end
disp('-----')
disp(['Variables ',var str1,var str2,' are left in memory']);
disp('-----')
```

Program file: master4e.m

```
%MASTER4E
%Master file for indata to EVALSC for ERROR ANALYSIS
%
%Lars Wadsö January 8, 1997, 970918, 971010
%
%
                            vaporization
              v
%
              S
                            sorption
%----FILES vaporization------
Pv source=1; %If Pv_source==1 : t, Pv are in memory
       %If Pv_source==2 : input from file ("filev")
%filev='c:\measurem\cmc\ntestb.061';
filev='error anal.';
%if Pv source==1 "filev" will be used as title in plot
%----FILES sorption-----
Ps_source=1; %If Ps_source==0 : no evaluation of sorption mea.
       %If Ps source==1 : t, Ps are in memory
       %If Ps_source==2 : input from file ("files")
```

```
%files='c:\measurem\cmc\ntestt.061';
 files='error anal.';
 %if Ps_source==1 "files" will be used as title in plot
 %----CORRECTIONS--(if corrx==1 correction x will be made)--
 corr1=1; %initial
 corr2=0; %sorption time lag
 glycerol=0; %glycerol-water mixture
 %----PARAMETERS-----
 m0=52e-3; % initial and dry weight of sample (g)
 mdry=m0;
 %>>>TEXTS<<<
 TEXT_date='8 jan 1997';
 TEXT_temp='25oC';
 TEXT_calorim='SORP4';
 TEXT_sample='Fiber board (Burch) dried over CaCl2';
 TEXT_vapor='Water (millipore)';
 TEXT extra=";
 epv=0.096529e-6;
 tav=144;
epss=0.124069e-6;
tas=131;
TUv=20;TdUv=20;TUs=20;TdUs=20;
Dvh=2440; %dhv is the enthalpy of vaporisation (J/g)
Pmax=975e-6; % Pmax is the maximal thermal power (W)
if exist('Pmaxfact')
 Pmax=Pmax*Pmaxfact
 Pmaxfact=[];
end
av=1; %activity of vapor
te=0; %time of injection (give te<0 if not known)
%-----CORRECTION: build-up of initial gradient---
                                                          this was used for the error analysis!
if corr1==1
 incofile='incos4':
end
%-----CORRECTION: correction for time-lag of sorption--- not applied for error analysis!
if corr2 == 1
 vsat=23;
 qmax=Pmax/Dvh;
 A=4.54e-5;
 V=1.43e-6;
 L=64e-3;
 act=0.885;
 k1=qmax/(act/2);
 k2=k1:
 k3=qmax/(1-act);
 C12=vsat*3/4*A*L;
 C23=vsat*(V+1/4*A*L);
end
%-----CORRECTION: glycerol-water mixture-----
                                                            not applied for error analysis!
if glycerol==1
 Vgw=1e-6; %initial volume of glycerol-water mixture (m3)
cgw=0.5; %initial concentration of glycerol-water mixture (%glyc.)
end
```