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Preface

When I was a child, my siblings and I used to spend our summers measuring the height
of the surf at the beach of Kivik and Vitemölle using two measuring-tapes nailed end-to-
end on a board. This caused some consternation among the other holiday-makers who,
not wanting to appear inquisitive, instead sent their children to ask us what on earth we
were doing. It also puzzled the shop-keeper when my brother, having already bought
one measuring-tape, came back a little later to buy one more because “the things he was
measuring where longer than 1.5 meters”. It should perhaps be noted that our statistician
father, who initiated the wave-measuring, is still interested in waves but now gets his
measurements by satellite, not measuring-tape, while two of his four children have grown
up to become statisticians ourselves, although neither of us is particularly interested in
waves.

When I grew up and started reading mathematics at the university I ran into professor
Gunnar Blom who taught both the basic and the secondary course in probability in an
inspiring way, confirming my suspicions that mathematical statistics was actually quite
fun.

I am also indebted to my supervisor, professor Jan Lanke, for valuable suggestions
and language corrections, to professor Anders Heijl at the department of Ophthalmology
in Malmö for a long cooperation and for supplying the 51 “sick normals”, and to Mike
Patella at Humphrey Instruments for support, discussions, and patience over the years.
Further, to the people at the Department of Community Medicine in Malmö, particularly
the division for Health Economics and Biostatistics, for presenting me with a number of
intriguing statistical questions.

Finally, I would like to thank Anders, Anders, Anders, Bengt, Fredrik, Hans, Hen-
rik, Lars, Magnus, and Mikael for enlivening work with extended lunches, coffee-breaks,
bruises, and feuds over whether applications are really necessary, my brother Finn for
showing me how to make my Matlab programs run faster, and anyone else at the depart-
ment with a reasonably fast computer for not complaining too much when I’ve kept my
simulations running on their machines for weeks on end.
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1 Overview

In this thesis we examine some problems arising in regression analysis when data are
censored. We will first, in Section 2, give an introduction to some variants of linear
regression, in particular quantile regression, and introduce the concept of censoring in this
context. Then, in Section 3, we introduce the medical problem that spurred this research,
namely determination of normal variability limits for glaucomatous visual fields, and in
Section 4 we present a more detailed statistical discussion than is found in the applied
Papers C, D, and E. Finally, we suggest some topics for further research in this area.

Paper A proposes a distribution-free parametric solution to the problem of estimat-
ing a quantile function when the dependent variable is censored. Paper B adresses the
problem of least squares estimation of a linear function when the covariate is censored.
A solution is proposed and some variants of it are examined. Papers C, D, and E are all
devoted to the glaucoma problem and the practical use of the quantile regression method
presented in Paper A. Paper C describes the statistical package into which the variability
limits have been incorporated, Paper D demonstrates the importance of taking the cen-
soring into account when examining the variability, and Paper E, finally, describes a more
specific use of the variability limits in practice concerning patients with both glaucoma
and cataract.

2 Regression and censoring

2.1 Regression

2.1.1 A brief history

When studying the relationship between variables one is often interested in expressing
one of the variables as a function of the others. A simple example is the linear relationshipy = �+ �x + ", where the dependent variable y is described as a linear function of the
independent variable, or covariate, x, plus some error ". The problem then lies in finding
the values of the parameters � and � that describe this relationship using n observed data
pairs (xi; yi) where yi = �+ �xi + "i.

The errors "i = yi � �� �xi, i.e. the points’ deviations from the line, are unknown
since the line itself is unknown; we want to find the line that makes these deviations
as small as possible. There are several different ways of defining “as small as possible”,
i.a. the classical method of minimizing the sum of squared deviations, but several other
methods have been, and still are, in use. For the fascinating story of the early approaches
to regression see Chapter 6 of (Hald, 1998), which has been an important source for the
following account.

The earliest method, in use before 1750, consisted of choosing the necessary number
of points, two in the case of simple linear regression, and fitting a line between them.
The result is, of course, highly dependent on the choice of points and the definition of
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Regression analysis of censored data

“as small as possible” is left entirely to the discretion of the person doing the estimation.
In fact, it seems that the general rule was to take only as many measurements as was
necessary in order to calculate the estimate.

The method of averages; see (Mayer, 1750). The German cartographer and as-
tronomer Tobias Mayer (1723–1762) found the arbitrariness of the old method unsatis-
factory and proposed the following method instead: group the n equations yi = �+�xi,
into two groups (the number of unknown parameters), take the average of the equations
within each group, and then solve the resulting system of linear equations. There is still
some subjectivity left in the grouping of the points but less so than when only choosing
certain points. The groups should be chosen with care in order to achieve as much vari-
ability as possible, and different choices lead to different estimates. Since the method is
computationally easy it was widely used even after the least squares method was invented.
In fact, it is still in use today in some medical applications where it is not uncommon
to dichotomize a covariate, at the median (which would have been Mayer’s choice) or a
tertile, before estimating its influence on the dependent variable.

The method of least absolute deviations; see (Boscovich, 1757): Roger Joseph
Boscovich (1711–1787), also unsatisfied with the subjectivity of the available methods,
instead proposed the use of an estimate satisfying the following conditions:

Pni=1 "i = 0,
which means that the line should pass through the central mass of the data, i.e. �y =� + ��x, and the estimates of � and � should be chosen to minimize the sum of abso-
lute deviations,

Pni=1 j"ij. This method is robust with respect to outliers and does not
leave any room for subjective choices on the part of the practitioner. However, since the
method is computationally difficult, lacking a closed form for the estimates, it was more
or less forgotten for two hundred years until in the 1950s the growing use of computers
and the development of programming methods managed to produce a simple solution
algorithm. By then the restriction

Pni=1 "i = 0 had been dropped. The asymptotic
theory, on the other hand, did not appear until fairly recently with (Koenker & Basset Jr.,
1978).

The idea of using absolute deviations as a rule for fitting data was not new in 1757,
although it had not been used in regression situations. It is described as early as 1632
when Galileo Galilei (1564–1642) used it to determine whether a new star appearing in
1572 was sub-lunar or a fixed star, i.e. how far away it lay; see (Galilei, 1632).

Minimizing the largest absolute residual; see e.g. (Laplace, 1805): Laplace, who
also generalized and modified the methods of Mayer and Boscovich, proposed another
estimate defined as follows: the estimates of � and � should be chosen to minimize the
largest absolute deviation, i.e. minimize maxi j"ij. This method is extremely sensitive to
outliers and Laplace used it more as a tool for testing hypotheses than as a method for
estimating relationships.

Method of least squares; see (Legendre, 1805): Adrien-Marie Legendre (1752–
1833), unhappy with the arbitrariness of the method of averages and the computational
difficulties of the method of least absolute deviations, described the following method:

2



2. Regression and censoring

the estimates of � and � should be chosen to minimize the sum of squared deviations,Pni=1 "2i . This automatically requires the line to pass through the gravitational centre
of the data, the same restriction as Boscovich imposed in the least absolute deviation
method. The least squares estimates can be given in closed form, and the method is com-
putationally easy. This, along with the probabilistic foundation developed by Gauss and
Laplace 1809–1828, leading to well-known properties for the model where the errors fol-
low a Gaussian distribution, has caused the least squares method to become the standard
estimation procedure.

One problem with the least squares method is that it is sensitive to outliers and a
number of robust regression methods have been developed to take care of this. In ad-
dition, the maximum likelihood method, first used in (Lambert, 1760) and thoroughly
investigated by Fisher in the 1920s, allows the specification of any parametric relation-
ship, as long as the type of the distribution of the measurements is known. In fact, for
a linear model with Gaussian errors the maximum likelihood estimate is the same as the
least squares estimate, and when the errors follow a Laplace distribution the maximum
likelihood estimate is the same as the least absolute deviations estimate. With the advent
of computational power there has also been a development of various non-parametric
methods.

2.1.2 Quantiles

The least squares method, L2, estimates the conditional mean of the dependent variable,y, as a function of the independent ones, x, whereas the least absolute deviations method
(without any restriction on

Pni=1 "i), L1, estimates the conditional median of y as a
function of x. While these two entities are the same when the distribution of the errors
is symmetrical they may differ if the distribution is skewed.

Sometimes it is more appropriate to look at a conditional quantile of y as a function ofx. For example, this is the case when we want to derive limits for the natural variation ofy for different values of x, such as limits for the intra-uterinal foetus growth as functions
of gestational week, telling us what can be considered an unusually small or large foetus.
Another example, examined in this thesis, is the variability of the light sensitivity in stable
glaucomatous eyes from one week to the next. The purpose of the regression is then not
to determine what the average behaviour is, i.e. finding the mean or median, but rather
where lies the limit for what is unusual behaviour, e.g. finding the lower 5% quantile; see
Figure 1. The 5% quantile is defined here as the value below which 5% of the data will
fall.

If we know the error distribution we can estimate the quantile function by estimating
the usual mean, by least squares, and then use our knowledge of the distribution to derive
the quantiles. For instance, when the errors are normally distributed we know that 5% of
the data should lie below the mean minus 1.64 standard deviations, that is, the quantile
function can be calculated as u0.05(x) = �+�x�1.64� where �+�x is the ordinary re-
gression line and � is the standard deviation of the errors. However, this method is highly
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Figure 1: Regression of the mean (solid) and regression of the lower 5% quantile (dashed)

sensitive to mis-specification of the error distribution; if the true distribution has heavier
tails than the one we use in the estimation we will underestimate the distance between
the quantile and the mean, and if the true distribution is skewed we will underestimate
the distance at one end of the distribution and overestimate it at the other.

An advantage of the L1 method is that it can easily be modified to estimate any
quantile function, and not just the median; see (Koenker & Basset Jr., 1978). Instead of
minimizing the sum of the absolute deviations we minimize the asymmetrically weighted
sum
Pni=1 j"ijp wherej"jp = � (1� p)j"j if " � 0;pj"j if " > 0:

This means that when we are estimating the 5% quantile and thus want p = 5% of the
data points to lie below the line and the other 95% of the points above the line, we should
weigh those few points that fall under the line by 1 � p = 0.95 and the many above byp = 0.05 in order to have the points below the line weigh as much as those above.

2.2 Censoring

In some practical situations it is not possible to measure the value of a variable if this value
lies above or below a certain level. For instance, the amount of a substance in the blood
may be below the minimum detection level of the measuring instrument, or a patient
may still be alive when the study of post-surgical mortality he is part of is closed two years
after he underwent surgery. The value is then said to be censored : left-censored in the case
of falling below the minimum detection level, and right-censored in the case of exceeding
the two-year follow-up period. In these two examples all censored values are censored at
the same level. In other cases the censoring limits may be different for different subjects,
e.g. patients may move abroad before the study is closed, in which case we know that they
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2. Regression and censoring

were alive when whey moved but not whether they were alive or dead when the study was
closed.

When we have censored data we need to adjust our estimation procedures to allow for
the fact that some observations should have been smaller (left-censoring) or larger (right-
censoring) than what was actually observed. If we disregard the fact that some y-values
are left-censored our estimated line will be too low; see Figure 2 and Paper D.

−3 −2 −1 0 1 2 3
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0

2
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y

Figure 2: Regression ignoring the fact that the dependent variable, y is censored: true line (solid),
estimated line (dashed), uncensored data (�), left-censored data (�), true value of censored data (�)

When the dependent variable is non-negative and right-censored there exist a number
of techniques based on estimation of the hazard function under various assumptions; see
Chapter VII of (Andersen, Borgan, Gill & Keiding, 1993). One popular method is
Cox’s proportional hazards model, which assumes that the risk, e.g. of dying, changes
proportionally with increasing covariate value, e.g. the patient’s age or the severity of the
disease, while the baseline hazard itself is allowed to vary freely over time.

In this thesis we are interested in estimating, not the risk of dying as a function of the
covariates, but rather the lower and upper 5% limits of the survival times, as functions
of the covariates. This calls for a different estimation strategy, based on the ordinary
quantile regression methods. There are a number of non-parametric techniques (see,
e.g. (Dabrowska, 1992)) but we will pursue a parametric one.

When it is the covariate that is censored we have two choices: either throw away the
censored data and use the remainder to estimate means or quantiles in the ordinary way,
or use what information there is in the censored data to help improve our estimates. As
in the case of censoring in the dependent variable, using the censored values as if they
were uncensored will cause the estimates to be biased. Throwing away the censored data
points will not cause any systematic errors of the estimates as long as the censoring limits
are independent of the actual values. However, if we are forced to throw away a lot of
data our estimates will become more uncertain. For the censored data points we have full
knowledge of the value of the dependent variable, and we know that the true covariate
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Regression analysis of censored data

value is at least as large as the observed, censored one. It is to be hoped that the use of this
information could improve the estimates and decrease the uncertainty; this is the topic of
Paper B.

An even more complicated situation occurs when both the dependent and the inde-
pendent variable are censored. We then have four types of points: uncensored, censored
in x but not in y, censored in y but not in x, and censored in both x and y. The solution
to this problem will have to wait until later; see the suggestions for further research in
Section 5.

3 Perimetry

3.1 Introduction

Quantitative examination of the visual field (perimetry) is used as a tool for diagnosis
and follow-up of many diseases affecting the eye and the central nervous system. Typ-
ical changes in the visual field occur, e.g. in glaucoma, where the optic nerve fibres in
the retina are affected and the visual ability deteriorates in growing areas of the visual
field. Computerized perimetry is an important tool in early diagnosis of glaucoma and
supervision of the development of the disease.

There are a number of automatic, computerized perimeters in use. Most of them can
determine the threshold value of the ability to detect light stimuli, for a large number of
points in the visual field. By threshold value is usually meant the light intensity needed
for the patient to detect, with 50% probability, a stimulus of a certain size and exposure
time against an evenly lighted background of constant luminosity.

In this thesis we study the results of a perimetry study performed with the instrument
Humphrey Field Analyzer (HFA), developed by Humphrey Instruments, California, in
cooperation with professor Anders Heijl at the Department of Ophthalmology at Malmö
University Hospital; see (Haley, 1986) and (Heijl, 1985). A statistical package, Statpac,
and its extension, Statpac 2, developed in cooperation between Humphrey Instruments,
the Department of Ophthalmology and the Department of Mathematical Statistics, Lund
University, is included in this instrument; see (Heijl, Lindgren & Olsson, 1987c), (1986,
Statpac User’s Guide), and (Heijl, Lindgren, Lindgren, Olsson, Åsman, Myers & Patella,
1987a).

This statistical package calculates different indices (regarding i.a. the level of sensitiv-
ity and variation), which can be used for classifying a visual field as “normal” or “diseased”.

3.2 Glaucoma and cataract

Glaucoma affects the axons in the retinal nerve fibre layer, which causes visual field de-
fects, i.e. areas of the retina with systematically deteriorated ability to detect light stimuli.

6



3. Perimetry

One problem is to separate actual defects from the variation that always occurs among
visual fields.

Detected visual defects often have a large diagnostic value and one can usually not
be certain that a patient has glaucoma until such defects have occurred. This is because
the visible changes in the retina are often too unspecific to allow a diagnosis with any
certainty. Furthermore, many patients with suspected glaucoma, e.g. with increased eye
pressure, never develop glaucoma. Hence, a patient with increased pressure is often not
treated until glaucoma has been verified. The treatment is dependent on the result of the
perimetry.

Glaucoma is more common in elderly people who also tend to have more cataracts.
Cataracts tend to cause a homogeneous loss of visual ability across the entire visual field,
rather than the localized losses often seen in connection with glaucoma. When monitor-
ing the progress of the glaucoma in a patient suffering from both glaucoma and cataract,
it is thus desirable to be able to separate these two different types of changes.

3.3 Visual field examinations

An examination of the visual field using automatic, static, perimetry is performed as
follows: luminous points are shown, one at a time, on a white hemisphere, and the
patient presses a button if he/she sees the point in question. The light intensity of the
points is changed in steps (increased or decreased) in order to find the value for the light
intensity where the patient sees the points with probability 0.5, the so called threshold
value.

The light intensity is measured in apostilbs (asb) or in logarithmic units in decibels
(dB); see Figure 3.
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Figure 3: Relationship between apostilbs and decibels

When determining the light sensitivity of a point one starts by showing light of an
intensity 2 dB stronger than what the patient is expected to see in that point. If the patient
does not see the point the intensity is increased in steps of 4 dB until the patient notices
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Regression analysis of censored data

the stimulus. Then the light is decreased in 2 dB steps until the patient again does not see
the point. The threshold value of the point is defined as as that value of the light intensity
that the patient last saw.

Within the central part of the visual field (30� from the centre) one measures, in a
partly random order, 76 points. Two of these lie in the physiological blind spot where the
patient normally does not see anything; see Figure 4.

�@�@1 2 3 4
5

76

Figure 4: The 76 points of the central visual field of the right eye, including the blind spot (�)

3.4 Normal visual fields

A normal visual field has a certain shape, so that the sensitivity (visual ability) is highest
in the middle (in fovea, the yellow spot), and decreases toward the edges, and a certain
height, i.e. a certain overall sensitivity. The visual ability, measured in dB, decreases
linearly with age in all points. The decrease is larger in some points, e.g. in the periphery
of the visual field, than in others.

Hence, what a patient should be able to see can be calculated using normal values,
adjusting for the age of the specific patient. Normal visual fields and age correction for
the HFA have been calculated using a large material consisting of 487 normal visual fields
from 239 randomly chosen people; see (Heijl, Lindgren & Olsson, 1987b).

Since the reliability of patients varies, e.g. their tendency to move their eye away
from the fixation point or to press the button despite their not seeing anything, it is
necessary to have some measurement of the reliability of the examination in order to be
able to exclude unreliable results. In the perimeter used three different reliability tests are
performed, namely False Negative answers (FN), False Positive answers (FP) and Fixation
Losses (FL). FN, FP and FL were used to discard unreliable visual fields when the normal
values were calculated.

3.5 Visual field indices

The intention behind visual field examinations is to indicate whether the patient has a
normal visual field or not, or to determine whether detected visual field defects are im-
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3. Perimetry

proving or deteriorating. In a normal visual field the threshold value in each point has
a certain variability, both between measurements and between individuals. The normal
values for different ages, as well as the variation, have been calculated using the aforemen-
tioned normal material.

A patient with glaucoma has a lower visual ability than normal and has a larger vari-
ation across the visual field. If xi is the threshold value at point i and Ni is the age
dependent normal value at point i then yi = xi � Ni is the deviation from normal at
point i, also called the total deviation.

For the study of point-wise test-retest variability it appears to be best to look at the so
called pattern deviation, rather than the total deviation; see (Bengtsson, Lindgren, Heijl,
Lindgren, Åsman & Patella, 1997). The pattern deviation is calculated by subtracting
the seventh largest observed threshold value of the 45 most central points from the total
deviations. The reason for this is to avoid influence of cataracts which affect the entire
visual field.

The general status of the field is measured by the weighted Mean Deviation (MD) of
the total deviations calculated as follows (see (Heijl et al., 1987b)):

MD = Pni=1 yi=�2iPni=1 1=�2i
where n = 73 is the number of points in the visual field used (since three points in or
close to the blind spot are excluded in the analysis), and �2i is the normal variation at
point i.
3.6 Censoring

Due to the limited light range of the perimeter used for the testing, some threshold values,
and thus the corresponding pattern deviations, are left-censored, i.e. the true deviation
exceeds the registered one by an unknown amount. In this case the censoring limit is
10 000 asb or 0 dB, which means that the threshold values are all censored at 0 while the
pattern deviations are all censored at different levels determined by point location, patient
age, and the seventh largest threshold value in the central part of the field. This is the
practical situation that inspired the development of the statistical methods in this thesis.

3.7 Variability of glacomatous eyes

One important use of perimetry on glaucoma patients is monitoring the progress of the
disease and determining if the patient is improving or deteriorating over time. To this end
it is important to know how large the normal variation is for stable glaucomatous visual
fields. Due to the nature of the disease this variation is quite large and it is not unusual for
a patient to have an almost normal visual ability in some points of the eye one week and
then to be almost blind there the next, and vice versa. In order to determine whether a
patient really has deteriorated it is therefore necessary to take this variability into account.

9



Regression analysis of censored data

In order to be able to use perimetry for following up the progress of glaucomatous
eyes it is necessary to produce limits for the normal visual ability in an individual point
in an eye, based on the results of previous examinations of that eye. The variation in
light sensitivity at a specific point in an eye with glaucoma depends on a large number
of covariates. The most important of these are the mean defect of the eye and the defect
depth at the studied point. To find the limits for the normal variability is thus a typical
quantile regression problem.

The problem is complicated since the data are affected by censoring in both the de-
pendent variable and in one of the independent ones or, strictly speaking, in both of
the independent variables since the mean deviation is itself a weighted mean of censored
values. We start to solve this problem by first solving the simpler problem of quantile
regression with censoring in the dependent variable only (see Papers A, C, D, and E),
and then proceeding to regression when only the covariate is censored (see Paper B). The
complete problem, with censoring in both the dependent and the independent variables,
is outside the scope of this thesis.

4 Test-retest variability limits

This section gives the details of the limit calculations performed in Papers C, D, and E.
The technical details of the method are described in Paper A.

4.1 Data description

We examined 51 glaucomatous eyes from 51 patients tested four times over a one-month
period. The eyes ranged from severely ill to almost normal. The light sensitivity of the
eye was measured at 74 different points (blind spot excluded) over the eye retina, giving
74 threshold values, i.e. the light that has probability 0.5 to be seen, for each eye on each
test occasion.

The threshold values were corrected for the patient’s age, giving the total deviation
at a certain point as the difference between the threshold value at that point and the
normal value for a point at that location, for a patient of that age. The total deviations
where in turn corrected for cataracts giving the pattern deviations for each point. The
mean deviation, MD, was calculated as a weighted mean of the total deviations, giving a
measure of the general status of the eye.

4.2 Problem

We are interested in finding the 5% and 95% quantile limits for the pattern deviation
at each point at a follow-up test. The limits should be functions of the observed pattern
deviation at the point at one or more baseline tests. Further, the limits should take into

10



4. Test-retest variability limits

account the overall field status and thus depend on the mean deviation at the baseline
test, or tests.

Since the test-retest variability differs over the field, being smaller in the center and
larger on the periphery, the points were divided into three zones: inner, middle, and outer;
see Figure 5. Limits were calculated separately for each zone, using all points in that zone.

Middle

Outer

Blind spot

Inner

Figure 5: The visual field divided into three eccentricity zones

With this procedure we regard neighbouring points from the same eye as independent,
given eye status. This is not actually the case since, due to the nature of the disease, visual
loss often occurs in bands along the nerve fibres; see (Heijl, Lindgren & Lindgren, 1988).

We will only deal with the censoring at the follow-up, not at the baseline tests, regard-
ing the censored baseline values as valid observations. We will also ignore the fact that
the mean deviation is a weighted average of possibly censored total deviations, and thus
itself censored. To get right-censored data rather than left-censored, we multiplied the
follow-up pattern deviations by minus one in the calculations. This also gives us (mostly)
positive data.

4.3 Solution

Variability limits are designed to contain the normal variation of data, and in the simplest
case they can therefore be based on the empirically observed variation in a homogeneous
population. In our case, the limits depend on covariates in a non-homogeneous popula-
tion, and then a more elaborate method needs to be used to calculate the limits.

A standard way to estimate quantiles in such a regression situation is to find the value
that minimizes a certain sum of weighted absolute deviations; see (Koenker & Basset Jr.,
1978). Due to the censoring, we have not observed the true pattern deviations but rather
the minimum of the true pattern deviations and the corresponding censoring limits, and
then the standard way does not work. If the censoring limits are independent of the
true deviations, we can rewrite the problem of finding the p-quantile function of the true
deviations into one of finding a q-quantile function of the observed, censored, deviations,
where q is a function of the distribution of the censoring limits; see Paper A for details.
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4.3.1 Notation

Let x1i be the mean deviation (MD) at one baseline test or the average of the mean
deviations at two or more baseline tests for eye i and let x2ij be the baseline pattern
deviation for eye i and point j (a single test or the average of several). Further, let yij
be the reversed pattern deviation at the follow-up for eye i and point j, i.e. yij is equal
to minus the pattern deviation; this reversal is done in order to have right-censored data
rather than left-censored. Also, let up(x1i; x2ij ; �) be the p-quantile limit that we want
to estimate. The quantile function, up(x1; x2; �), is a parametric function, chosen so
that its shape can model that of the data (see Figure 6), while letting the ratio p of the
true, uncensored, data fall below it.
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Figure 6: Data in the inner zone: fully observed (�), follow-up censored (�), baseline censored
(+), both baseline and follow-up censored (�)

Due to the censoring, an observed pattern deviation (with reversed sign), yij , is the
minimum of the (reversed) true pattern deviation, tij , i.e. the one we would have ob-
tained if we had had an infinite light-range, and a corresponding censoring limit, zij , i.e.
the largest possible measurement at that point, for that eye. The censoring limits can be
regarded as random with the distribution function FZ(t; x1; x2).
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4.3.2 Minimization

If we assume that the true pattern deviations and the censoring limits are independent,
which is reasonable enough, the distribution function for the observed, reversed, follow-
up deviations, given the baseline values, FY (t; x1; x2), is a simple function of the distri-
bution functions for the true deviations, FT (t; x1; x2), and the censoring limits:FY (t; x1; x2) = 1� (1� FT (t; x1; x2))(1� FZ(t; x1; x2)):
All these distributions are unknown.

Our goal is to calculate a limit for the true pattern deviations, T . Since we are fitting
parametric functions this involves estimating an unknown parameter vector, �, and then
finding the limits asup(x1; x2; �) = infft; FT (t; x1; x2) � pg
for a fixed value p. This means that for each combination of baseline values the follow-
up limit should be the smallest value that we have probability at least p to fall below.
Since the distributions are continuous in this case we simply want up(x1; x2; �) to fulfilFT (up(x1; x2; �); x1; x2) = p. Due to the independence of T and Z we can estimateup(x1; x2; �) as the q(x1; x2; �)-quantile function for Y instead of as the p-quantile
function of T , whereq(x1; x2; �) = 1� (1� p)(1� FZ(up(x1; x2; �); x1; x2)):
This involves estimating the unknown distribution function of the censoring limits, e.g.
using a local Kaplan-Meier function in the neighbourhood of x1 and x2. The neighbour-
hood of a point can be defined in many different ways, e.g. as all points within a circle
with a fixed radius.

The regression parameter � can be estimated iteratively with the estimate at the mth
step calculated as�(m) = argmin� Xij jyij � up(x1i; x2ij ; �)jq̂ij (�(m�1))
where jrjp = � jrj � (1� p) if r � 0,jrj � p if r > 0
is the asymmetric weight function andq̂ij(�) = 1� (1� p)(1� bFZ(up(x1i; x2ij ; �); x1i; x2ij))
is the estimated quantile value. We have used the MATLAB-function fmins to calculate
the iterative estimates. The p-values will be 0.05 and 0.95 to give 5% limits for significant
improvement and deterioration, respectively.
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4.4 Results

As can be seen in Figures 7 and 8, the width of the limits increases with decreasing visual
ability; a moderately depressed point varies more than a point with normal visual ability.
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Figure 7: Normal 5% and 95% variability limits for the three eccentricity zones, using one baseline
test; uncensored point (�), censored point (�)

Further, the limits become wider with growing periphericity so that a point in the outer
eccentricity zone varies more than a point with the same pattern deviation but located in
the inner zone. Also, the limits grow wider with decreasing overall status (MD) of the eye
so that we expect a healthy point in an otherwise moderately depressed field to vary more
than a healthy point in a healthy field. We can also note that when we use the average of
two baseline tests the limits become slightly more narrow. This should be expected since
we are then able to determine the baseline values more accurately, and so we have a better
estimate of the actual light sensitivity of the individual points.
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Figure 8: Normal 5% and 95% variability limits for the three eccentricity zones, using the average
of two baseline tests; uncensored point (�), censored point (�)
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5 Suggestions for further research

We started out with the problem of estimating quantile functions when both the depen-
dent and the independent variables were censored, and so far we have adressed some of
the steps toward a solution to this problem. However, there still remain quite a few things
to be done. The method of L2-regression with a censored covariate presented in Paper B
needs to be tested on real data; we cannot use the glaucoma data since it has censoring iny as well as in x. We also need to examine the behaviour of the �2-estimates closer and
the method should be generalized to handle several covariates, in particular a polynomial
in x.

Further, we should try the Redistribution technique on quantile regression rather than
L2 regression. This should present no difficulty when using the parametric method since
if we know the distribution, we also know how the quantiles are expressed in terms of
its parameters and all we need to do is estimate those parameters. The semi-parametric
method, on the other hand, relies on the regression of the conditional mean of Y givenX when redistributing the censored x-values, and so it might not be directly adaptable
to handling quantiles. It could, however, be used as a preliminary step to determine
the appropriate redistribution locations of the censored points, which could in turn, as a
second step, be used to estimate the quantile function. The non-parametric metod seems
to be easy to adapt to estimating quantiles instead of means since it does not rely on any
estimates of the mean of Y given X .

Finally, the methods for handling censoring in y and for handling censoring in x
should be combined to handle censoring in both x and y simultaneously.
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