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1

Introduction

1.1 Motivation

One of the major driving forces in the development of new process control
systems is to raise the level of automation in the plant. The purpose of
a plant is to manufacture some product at a high production rate with
a consistent quality, while minimizing the use of resources in terms of
energy consumption, raw material and labour. With a higher automation
level, it is possible to improve all these aspects, thus increasing the profit
of the plant.

The phrase “autonomous process control” may indicate that the goal
is to create a plant without human operators. However, humans are still,
and will continue to be, needed on all levels of the system, from strategic
planning and product development, to on-line operation and equipment
maintenance. A more relevant interpretation of autonomous process con-
trol, as used in this thesis, is instead the ambition to increase the degree
of autonomy in the plant and to provide functions that assist the humans
in their tasks.

A fully autonomous controller should be able to govern the execution
and performance of its own control functions, see Antsaklis et al. (1991).
This should be done for long time periods, and with no or little human
interaction. The requirements on system hardware and software will of
course be immense if the controller is supposed to perform very complex
tasks. On the other hand, by just requiring basic set point following and
disturbance rejection, a traditional PI controller could function as an au-
tonomous controller for plants with small parameter variations and slowly
varying disturbances.

The desired degree of autonomy is of course different in different ap-
plications. Autonomous control systems discussed in the literature so far
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Chapter 1. Introduction

mostly deals with autonomous vehicles on land or in space. They are
often designed to operate in areas not easily accessible to humans, for
example the surface of Mars, see Mishkin et al. (1998), or hazardous ar-
eas such as nuclear waste drums, see Byler et al. (1995). Experimental
systems have also been running on the German autobahn, Dickmanns
and Zapp (1987). Autonomous vehicles are typically given instructions or
missions on a fairly high level, and they are supposed to take care of the
low-level subtasks themselves. The benefits from this are obvious:

• The amount of communication required to accomplish complex tasks
is kept to a minimum by using high-level instructions. This may be
important for efficiency reasons.

• The vehicle acts much better as a replacement for a human if it
knows how to perform low-level tasks, such as moving 1 meter for-
ward, rotating 90 degrees, or locating neighboring objects. A move-
ment is more likely to fail if all limbs or wheels of the vehicle must
be coordinated from the base station each time.

• Robustness to unforeseen circumstances will increase if the vehicle
is able to judge if an instruction is feasible or not. Some infeasible
instructions might even be altered locally, e.g., a scheme for obstacle
avoidance, see Arkin (1998).

• If the communication link to the base station is broken it is desired
that the vehicle is able to find out if there might be local causes
and then take appropriate actions. This might include moving out-
side radio shadow, switching to backup hardware, or even perform
hardware repair.

What is then a reasonable degree of autonomy? In other words, what
operations should be automated and what operations should require hu-
man interaction? Naturally, there is no generic answer to these questions.
There is a potential risk of setting the level of autonomy too high, since
this might lead to destruction of the vehicle or some neighboring object.
The risk comes from the fact that you can always make the system operate
under conditions which it is not programmed to handle. When designing
an autonomous system, safety must thus be the most important objective.

The primary focus in this thesis is on autonomous process control,
though some of the ideas may be used in many other applications. The
motivation for having autonomy in process control is quite different from
vehicle and space applications. Autonomous space vehicles require a high
degree of autonomy since they are intended to operate with little or no
human interaction. In process control the motivation is instead to assist
the operators and process engineers to govern very complex plants with
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1.1 Motivation

many control loops. The reason for introducing more autonomy is to make
the operators work more efficiently and to extend the region where the
plant can be operated satisfactorily without the operator’s assistance. In
other words, some of the tasks normally performed by an operator or a
process engineer, should be transfered to the control system. The transfer
should be transparent so that the operator can take over should he so
desire. The system should also do new tasks that are currently not done
by operators. It is also desirable that the control system is designed so
that the operator can increase his knowledge of the system. This thesis
will discuss what the new tasks could be, how they should be organized,
performed and supervised.

Industrial needs

The main motivation for this thesis is to highlight the need for advanced
features in industrial control systems, which are not available in today’s
systems. The goal is to provide solutions and suggestions for solving prob-
lems that do occur in practice.

Many of the ideas presented in the thesis have arisen through dis-
cussions with people facing control related problems in their particular
plant. Some problems are surprisingly common, and yet there is often no
support in the control systems to handle them. This thesis tries to help
the operator dealing with the following, rather general questions:

• How to determine the basic properties of the process? Will these
properties reduce the chance of achieving the desired control objec-
tives?

• How to use limited process knowledge to select and tune a controller
which meet the requirements on the loop?

• How to determine if the control loop performs as intended?

• What is the cause of drastically degraded control performance?

The problems above are today mostly solved by skilled operators or process
engineers. The time, effort and skill needed for doing it could be drastically
reduced if the control system provides adequate support. This will make
it possible for an operator to handle more control loops more efficiently.

Some of the proposed features of an autonomous controller may be im-
plemented in many existing industrial systems, often with large efforts,
though. This thesis suggests that the architecture of future control sys-
tems must allow new algorithms to be implemented and tested without
too much effort. The system should also provide a set of pre-defined so-
lutions to standard tasks. These should be implemented and selected in
a way that they may be used regardless of the current level of process
knowledge.

11



Chapter 1. Introduction

1.2 Contribution of the Thesis

The motivation for higher automation levels has been discussed above.
In this thesis we are presenting several tools that aid in the process of
raising the degree of automation on the local control loop level.

Modeling. In order to do systematic analysis and control design, it is
necessary to have a model of the process. A tool for assessment
of process dynamics and non-linearities has been developed. It is
based on transient response analysis of the process. The emphasis
has been on creating a user interface for graphical manipulation of
step responses in a natural way. This work has been published in

Wallén, A. (1999): “A tool for rapid system identification.” In
Proceedings of the 1999 IEEE International Conference on
Control Applications. Kohala Coast, Hawaii.

Improved controller tuning. Existing auto-tuning methods for PI and
PID controllers typically use a simple process model with a few
parameters. More advanced design methods require more detailed
models, which may be difficult to identify automatically. This the-
sis presents a method to generate a suitable excitation signal under
relay feedback, and an identification scheme which gives a process
model that can be used for advanced design of PI and PID con-
trollers. It is shown that the PI design method can be applied iter-
atively in order to obtain good PID controllers.

Fast grade changes. The PI and PID controllers are mainly suited for
regulation problems. When large set point changes are desired, pro-
cess operators often use manual control until the process output is
close to the desired value. This thesis presents an automated proce-
dure which mimics the manual control actions done by the process
operator. The method may be applied with limited process knowl-
edge.

Architecture. An autonomous controller contains different types of al-
gorithms. The execution of these algorithms must be organized in a
well structured way. This thesis present an architecture based on a
high-level graphical language for sequential control. Related publi-
cations:

Wallén, A. (1995): “Using Grafcet to structure control algorithms.” In
Proceedings of The Third European Control Conference. Rome,
Italy.
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1.3 Thesis Outline

Wallén, A. (1997): “Valve diagnostics and automatic tuning.” In
Proceedings of the American Control Conference. Albuquerque,
New Mexico.

1.3 Thesis Outline

This thesis is organized as follows.

• Chapter 2 discusses autonomous control in general, with focus on
process control. A list of desired features in an autonomous control
system is presented.

• A tool for rapid system identification from step response data is
presented in Chapter 3.

• Chapter 4 suggests a new auto-tuning procedure for PI and PID con-
trollers. It utilizes relay feedback and spectral estimation to obtain
a process model. The model is used for PI and PID design methods
based on non-convex optimization.

• Chapter 5 presents a new simple algorithm and implementation
structures for fast set point responses.

• Implementation aspects of an autonomous controller is discussed in
Chapter 6. A prototype implementation is also presented.

• Chapter 7 summarizes the conclusions in the thesis and points out
directions for future work.

• A list of references is given in Chapter 8.
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2

Autonomous Process
Control

This chapter describes the notion of autonomous process control. The back-
ground for autonomous control in general is described in Section 2.1. Sec-
tion 2.2 contains a discussion on specific issues associated with process
control, together with a description of the viewpoint of autonomy taken
in this thesis. Desired features of an autonomous controller are reviewed
in Sections 2.3 to 2.5.

2.1 Background

There is no commonly accepted formal definition of the term autonomous
control. Instead, it is used with slightly different meanings by different
authors. A synonym to the word autonomous which is often used in dictio-
naries is self-governed. The purpose of a control system is to solve specific
tasks. It is then reasonable to say that a control system is autonomous if
it is able to solve its tasks without external intervention.

If there are no uncertainties in the plant, and if the tasks are well
specified, even a simple feed-forward algorithm can be fully autonomous.
There are however always various types of uncertainties and faults in a
plant, for example:

1. Disturbances from the environment, variations in raw material etc.

2. Vaguely specified control tasks. In its simplest form, this means in-
deterministic set points of a single loop controller.

3. Measurements with bias and noise.

4. Incomplete model of the plant.

5. Failing hardware, for example sensors or actuators.

14



2.1 Background

6. Total power loss.

The last item is mainly included to illustrate that no control system is
fully autonomous under any uncertainty or fault. It is thus necessary to
define both the tasks and the admissible uncertainties when discussing
autonomous control systems. In fact, the whole field of automatic control
has always been occupied with finding methods to deal with uncertainties.
Traditionally, most attention has been paid to items 1 to 4 above.

• Classical control theory mainly considered load disturbances, set
point changes, and process uncertainties.

• The optimal control theory made it possible to formulate and solve
problems with well-defined criteria.

• The stochastic control theory presented a framework for dealing with
load disturbances and measurement noise in a systematic manner.

• Adaptive and robust control increased the tolerance to model imper-
fections.

Despite the large differences between these methodologies, they share a
fundamental property: They all seek to define a controller based on al-
gebraic, differential or difference equations. In terms of autonomy, they
are all able to solve their tasks within a certain range of uncertainties.
Robust control is the field where the focus on the uncertainties is par-
ticularly emphasized. You could thus argue that a controller designed to
handle some uncertainty ∆ using robust control methods is autonomous
with respect to ∆. This is however not the traditional way of using the
term autonomous control.

One drawback with the traditional control paradigms is that they can
only deal with quantitative representation of control tasks, systems, sig-
nals, and uncertainties. In reality, the performance and behavior of a
control system is often judged in words such as fast, oscillatory, slug-
gish, nice, bad, broken etc. These qualitative or symbolic measures are
more difficult to incorporate into the frameworks of the traditional con-
trol methods. This is the motivation for various kinds of methods, often
grouped into the term intelligent control. This group includes numerous
techniques, where the following are most frequently used:

• Expert systems are rule based systems, where the rules may rep-
resent the combined knowledge of experienced operators, plant de-
velopers, chemists etc. The rules are combined through logical rea-
soning using an inference engine to produce conclusions of various
kinds. The inputs and the outputs from an expert system may be
any combination of numerical and symbolic values. See for example
Åström and Årzén (1993).
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Chapter 2. Autonomous Process Control

• Fuzzy logic is also used for formulating and combining qualitative
rules. Instead of using logical reasoning, a fuzzy inference engine
combines the rules using some kind of interpolation. When needed,
the quantitative variables in the physical world are interfaced to the
fuzzy logic by the fuzzyfication and defuzzyfication procedures. See
for example Passino and Yurkovich (1997).

• Neural networks use previously recorded plant data in order to tune
weights in a network. The goal is to build a black box model which
is able to reproduce a behavior that may be difficult to describe in
mathematics. Both the inputs and the outputs are originally nu-
merical values. However, by using enumeration and rounding, they
may represent symbolic values as well. See for example Brown and
Harris (1994).

A fundamental property that unifies these methods is that they are not
based on equations for process models and control algorithms. Still, they
are often used as alternatives to the traditional control paradigms listed
above. They are all non-linear multi-dimensional mappings from the in-
puts to the outputs. Furthermore, since discrete decisions are natural
elements in the methods, the resulting control systems will often be hy-
brid systems. Analysis and synthesis of hybrid systems is still only done
for relatively small examples, Krogh and Chutinan (1999). All this make
them more powerful than linear controllers, but unfortunately it is almost
impossible to give any formal proof of stability, performance etc except for
very simple cases. This actually makes it difficult to show that an “in-
telligent” control system is autonomous with respect to any reasonable
uncertainties.

Despite the lack of formal capabilities, intelligent methods may be used
for describing uncertainties on any of the levels 1–6 above. In fact, it is
mostly much more natural to describe equipment faults using qualitative
terms than trying to capture the faulty behavior in a mathematical model.

Even if the term autonomous control has not been formally defined, it
is commonly used for control systems that try to adapt to new situations
automatically. The distinction mostly made between autonomous control
and traditional adaptive control is that the former should contain both al-
gorithmic/numeric methods and decision-making/symbolic methods, see
Antsaklis et al. (1991). This distinction is somewhat unclear, however,
since any adaptive controller that is supposed to work in practice must
have some kind of decision-making capabilities. For example, it should
turn off adaptation when the signals do not provide sufficient excitation.
An additional requirement that most authors put on an autonomous sys-
tem is that it should involve decisions on different hierarchical levels. The
hierarchies used in this work will be described in Section 2.2.

16



2.2 A Process Control View

An application area where the degree of autonomy is perhaps higher
than elsewhere is autonomous vehicles. These vehicles are typically pro-
grammed to perform well-defined tasks in an uncertain environment. A
nice property of a mechanical system, such as a vehicle, is that it can be
modeled accurately with a small set of equations. This is an enormous
help when programming functions into the autonomous vehicle. Unfor-
tunately, plants in the process industry do not share this nice property.
Thus, a fully autonomous plant is not likely in the foreseeable future, if
ever. For this to be true, the plant should even include automated main-
tenance, for example using autonomous vehicles. However, the degree of
autonomy may be raised on all levels in a process control system. The
view on autonomy used in this thesis will be discussed in Section 2.2.

2.2 A Process Control View

A fully autonomous process control system lies very far into the future.
Human interaction is needed today on every level of abstraction. The fun-
damental reason for this is the difficulty to describe the uncertainties so
well that they can be dealt with in a computer program without jeop-
ardizing safety. If a hazardous situation occurs which was not foreseen
when the control system was programmed, the human experience may
be needed to avoid accidents. On the other hand, if the control system
contains almost all the human knowledge of the plant, it is more likely
to make the correct decisions in a stressful situation. It thus seems rea-
sonable to believe that it will be possible in the future to replace human
experience by having better models for the uncertainties. Once the in-
formation is available, the computer is superior in handling complexity.
Creativity is a human quality which is more difficult to replace. No com-
puter program is even close to the human brain when it comes to inventing
solutions to new problems. Given a set of tools, a computer may suggest
a better combination in order to solve a problem, but it will not be able
to provide a new tool, see Boden (1998).

The goal of this thesis is not to create a fully autonomous control
system, not even on a low level. Instead, the goal is to provide functions
for an increased degree of autonomy. These functions should be parts of
the control system, and to put these into a context, a discussion about the
organization of a complex control system is required.

There are numerous suggestions on how to describe the functional
structure of a complex control system. In fact, most authors use their own
schematic of the control system. In Åström and Wittenmark (1997) the
focus is on how people on different levels of the plant interact with the con-
trol system. Antsaklis et al. (1991) proposes an hierarchical architecture
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Chapter 2. Autonomous Process Control
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Figure 2.1 Functional architecture of a complex process control system. The texts
at the vertical arrows give examples of information exchange between the layers.
Traditional control systems only contain the parts below the horizontal line.
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2.2 A Process Control View

for autonomous control where the human interaction is restricted to occur
at the top-most level. The methodology of fault tolerant control systems in
Blanke et al. (1997) suggests that issues concerning fault detection and
fault recovery should be considered already during plant design. During
execution, a three-layer architecture for feedback control, fault diagnosis,
and supervision is used.

There are also industrial standards that give guidelines to how a con-
trol system should be structured. For example, ISA (1995), includes a
functional structure for a batch control system. It is similar to the func-
tional model that will be used in this work, see Figure 2.1. The different
layers correspond to subsystems working on different levels of abstraction.
The descriptions next to the vertical arrows give examples of exchanged
information between the different layers. The purpose of the different
layers will now be explained.

1. Plant management. This is where the long-term production plan-
ning and scheduling take place. The time scales range from one or
a few days to weeks or months. The plant management layer sends
production orders to the different production units in the plant, and
receives status about the execution of the orders. This information
may be some achieved quality measure of the product, the amount
of used raw material and energy, etc. Increased autonomy on this
level could be tools for market analysis and schedule optimization in
order to run the plant more effectively. The plant should be resched-
uled dynamically, for example when a production unit fails to deliver
the desired order properly.

2. Unit operation. This layer receives production orders from the
plant management at a rate between a few hours and a few days.
These orders typically contain specifications on what to produce,
along with the desired quantity and quality. The control system on
this level should contain information on how to obtain the desired
product. This “recipe” is basically a set point profile for all the lo-
cal controllers in the production unit. The control system should
be able to recover automatically from faults resulting in production
loss. If human interaction at a fault is required, the control system
should point out necessary actions. This layer is also responsible for
improving the recipes with respect to increased production rate, re-
duced mean-time between failures and reduced use of raw material.

3. Loop Manager. This layer is responsible for the local control loop
operation, with the set point given by the unit operation layer. Its
main task is to govern the execution of the real-time control algo-
rithms. For example, new parameters to a PID controller are en-
tered on this level. It thus corresponds to an operator’s panel in a
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Chapter 2. Autonomous Process Control

traditional control system. For some plants, this is still the highest
level of automation in the control system. Increased autonomy on
this level may include better tuning methods, fault detection in the
control loop, dynamic reconfiguration of the real-time control algo-
rithms. This will be discussed in much more detail in the following
sections.

4. Real-time execution. This corresponds to the computers that are
actually running the PID controllers etc in real-time. It should con-
tain only those parts of the control algorithms that need to run in
hard real-time. This typically implies that this layer contains more
“pure” control algorithms and less analyzing functions. An algorithm
for performance monitoring may for example execute some recursive
model estimation on the real-time level, but analysis and decisions
can be made at a higher level.

The horizontal line divides the complex control system into two parts.
Traditional control systems consist only of the lower part, and the upper
part has to be done by humans, possibly supported by computers sep-
arated from the control system. There is an ongoing trend to integrate
more and more of the higher levels into the control system. However, this
integration does not in itself lead to higher autonomy. In order to achieve
this, each level must be extended with functions that increase the range
of operating conditions that can be handled by the control system.

In this thesis, only methods intended for the lower half of Figure 2.1
are considered. The main motivation for increasing the autonomy on these
levels is that the vast majority of the single loop controllers in process
industry are not performing satisfactorily, see Bialkowski (1993) and En-
der (1993). The main reason is that it would be to costly to optimize the
performance of all the control loops in a plant manually. Much work may
thus be done in order to increase the autonomy on the local control loop
level. The benefits from doing this is primarily improved control, which
hopefully pays off in terms of higher production quality and production
rate. The control system should provide a bank of algorithms for doing
various tasks on the local control loop level. It should also contain sug-
gestions for how these algorithms should be executed in different cases.
The process operator or the instrument engineer is supposed to interact
with the methods: set some limits, provide extra information, accept con-
clusions etc.

It is also desirable that the control system allows the user to define
new tailor-made algorithms. This requires an open architecture with well
specified software interfaces. It should be easy to implement, simulate and
verify the new algorithms. This must of course be done while maintain-
ing a high safety level. One framework which provides automatic safety

20



2.3 Loop Assessment

handling while testing new algorithms is the simplex architecture, see
Seto et al. (1998). If the new algorithm brings the plant into a potentially
dangerous region, a safety controller would be switched in automatically.
Another system which has very flexible procedures for on-line reconfigu-
ration is described in Eker (1999).

The following sections will discuss some functionality that is useful
in order to achieve a higher degree of autonomy at the local control loop
level. Most of the listed extra functions are not invented in this thesis.
Some are taken from classical control research areas, others from the
intelligent control field. They are all supposed to fit into the framework
outlined in the previous section. The functions are grouped into the fol-
lowing categories:

• Loop assessment for extracting knowledge about the plant, mainly
before continuous on-line operation.

• Controller selection and tuning, where knowledge from the loop
assessment and possibly additional experiments are used to find a
suitable controller for the current control task.

• Loop monitoring and diagnosis for assessing the performance of
the closed loop, and find causes for bad control.

They will now be addressed one by one.

2.3 Loop Assessment

Loop assessment is performed in order to extract basic features of the
plant to be controlled. There is no or little support for this in today’s
control systems. It is supposed to be done manually by plant operators and
instrument engineers. If they neglect to do some of the loop assessment
tasks, there is an increased risk that the on-line continuous operation will
not be satisfactory.

The main motivation for doing loop assessment is to determine if the
most fundamental prerequisites for control are fulfilled, and to find out
basic characteristics of the plant. This type of information may be useful
both in an initial phase, before tuning and running the on-line controller,
and later on, when some kind of problems has occurred. Åström (1993)
gives a list of useful information and suggested experiments to obtain this.
First, a number of qualitative measures should be known, for example:

• Does the controller output at all influence the measured value?

• Is the process self regulating (asymptotically stable), integrating, or
unstable?
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• Does the process have a monotonous, oscillatory or inverse response?

• Are the plant dynamics fairly linear over the operating range?

• Are there any local non-linearities, such as valve friction and hys-
teresis?

• What kinds of disturbances are affecting the process?

• Is the controller mainly supposed to work as a servo or a regulator?

Secondly, it is desirable to have some approximate quantitative process
knowledge, for example:

• Noise level of the measurement signal.

• Expected operating range of the control loop.

• Allowed operating range during experiments.

• Static gain kp, possibly varying over the operating range.

• Dominant time scale in terms of average residence time Tar, dead
time L and time constant T .

• Amount of friction and hysteresis in the actuator.

• Requirements on the quality of the control.

These pieces of information are important in order to make correct deci-
sions for controller selection and tuning. They will also help to understand
the behavior of an automatic tuning procedure or the performance of the
on-line control.

Information may come from different sources. The process flow-sheet
may provide estimates already in the process design phase. Instrument
and process engineers may know time constants etc from experience.
Other estimates may require plant experiments. So far the operators and
instrument engineers have been responsible for performing and drawing
conclusions from these experiments. It is however desired that the control
systems are modified to include this kind of support. There are several
reasons for this:

• The awareness and understanding of these issues varies substan-
tially among different operators.

• Standardized methods that are programmed into the control system
will be less error prone than manually performed experiments.

• When defining a collection of methods, it is possible do design them
such that the information produced by one method is compatible
with the information needed by other methods.
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As mentioned in Sections 2.1 and 2.2, it is not necessary, or even desirable,
that these experiments are performed completely autonomously by the
control system.

The loop assessment can take place at any time, but should preferably
be done already at the startup of the plant. In this way, the control loop
may be tuned optimally from the start and potential problems can be
avoided. For example, if extensive valve friction is detected already at
startup, valve maintenance may be performed before continuous on-line
operation, thus avoiding expensive production losses. Loop assessment
may be done repeatedly as soon as some new behavior of the control loop
is encountered. This situation will be further discussed in Section 2.5.

The rest of this section will give some examples of how to design ex-
periments in order to find some of the desired process knowledge. The
presented methods are all operating in open loop on the real-time exe-
cution level. Since there is no hard real-time demands except for data
logging, the analysis of the experiments may be performed by the Loop
Manager, see Figure 2.1. However, in order to increase the degree of au-
tonomy, it may be desirable to have some kind of feedback also during
the loop assessment experiments. This kind of supervisory feedback may
take place either on the real-time execution level, or on a higher level,
depending on the time criticality.

Assessment of disturbances

There are always different types of disturbances present in a control loop.
They are typically divided into two categories:

• Low frequency load disturbances, which the on-line controller is sup-
posed to compensate for.

• High frequency measurement noise, which the on-line controller ide-
ally should disregard.

The measurement noise is mainly caused by the sensor electronics, and
thus its characteristics does not change dramatically with time during
normal operation. Load disturbances, on the other hand, may be intro-
duced in many ways. For example, changes in plant configuration or other
operating conditions may cause sporadic disturbances, whereas bad per-
formance in other control loops may cause persistent oscillatory distur-
bances. This makes it harder to characterize load disturbances. In this
work, no explicit modeling of load disturbances will be done.

Information about the disturbances will be used by different methods
both for loop assessment, controller tuning and loop monitoring. These
methods will have different requirements on the level of detail. The dis-
turbances may for example be characterized by
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• The standard deviation σ e or maximum amplitude emax of the mea-
surement noise.

• The disturbance spectrum.

• A parametric noise model in terms of for example an AR, MA or
ARMA model.

This thesis only deals with methods that require only a crude estimation
of the noise characteristics in terms of the standard deviation or maximum
amplitude.

In Åström and Hägglund (1984), a simple method for estimating the
noise level is suggested. A constant control signal is applied, and when
the output has reached stationarity, a large number of data points are
recorded, and the standard deviation or the maximum noise amplitude
may be calculated. This method of course requires that the process is
stable. More detailed noise descriptions can be determined using tools
from time series analysis and system identification, see Ljung (1999),
Johansson (1993), Söderström and Stoica (1989).

Assessment of local actuator non-linearities

Bad valves is one of the most frequent sources of bad control performance
in process control, see Bialkowski (1993) and Hägglund (1995). Static
friction will for example often induce oscillations in a control loop with
integral action. Figure 2.2 shows one characteristic example taken from
a flow control loop in a paper mill. A PI controller with k = 0.2 and
Ti = 1 is used. When the valve gets stuck in some position, the flow will
assume a constant value. If this value is different from the set point, the
PI controller will integrate the error until the control signal produces a
force which overcomes the static friction. The valve then moves to a new
position corresponding to a new flow, which typically is on the other side of
the set point. This will make the control signal grow in the other direction,
and a persistent oscillation may build up. It is clear from the figure that
the oscillations need not be symmetric or even constant. However, the
shapes of the control signal and the process value are characteristic for
friction induced oscillations.

Another common non-linearity in control valves is backlash, or hys-
teresis, see Figure 2.3. This also induces oscillations in the control loop,
see for example the simulations in Figure 2.4. The simulation shows the
unit load disturbance response for the plant G(s) = e−s/(5s+ 1) with the
PI parameters k = 2.5 and Ti = 2.15. The width of the hysteresis is 0.5
for the full line and 0 for the dashed line. With less aggressive control,
the oscillation amplitude would decrease gradually until it finally became
zero. Thus, the effects caused by hysteresis are normally less severe than
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Figure 2.2 Friction induced oscillations in a flow control loop. The PI controller
parameters are k = 0.2 and Ti = 1, and the set point is 56.7.

those caused by friction. However, the transients after a set point change
or a load disturbance may be significant.

Hysteresis and friction may not only cause problems during on-line
control, but also when performing and interpreting experiments on the
plant. Thus, it is useful to assess the amount of friction and hysteresis in

d
2

−d
2 u

ū

Figure 2.3 Characteristic of the backlash non-linearity with hysteresis width d.
u is the applied control signal, and ū is the effective control signal.
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Figure 2.4 Simulation of hysteresis induced oscillations after a unit load distur-
bance. The plant is G(s) = e−s/(5s + 1), the PI controller parameters are k = 2.5
and Ti = 2.15, and the width d of the backlash is 0.5 (full line) and 0 (dashed line).

the control valve before the control loop is tuned and put in on-line oper-
ation. The assessment experiments may be carried out in many different
ways. The experiments outlined here resemble what many instrument
engineers perform manually, either at startup or when problems are sus-
pected.

Hysteresis detection The idea behind the algorithm for hysteresis is
very simple. The responses of the system with and without the hysteresis
can be compared by applying a few open-loop steps in a specific order. One
such experiment is shown in Figure 2.5.

Before the experiment is started, it is useful to have crude estimates
of the noise level, the gain and the time scale of the process. This informa-
tion is needed in order to have some apprehension about suitable input
magnitudes and necessary times to wait for the process to respond. The
required accuracy of the gain and timing estimates could be very low, say
within an order of magnitude. They may come from earlier experiments
or from user input. If they are missing, the user may still run the method
interactively.

An estimate of the amount of backlash in the valve can easily be ex-
tracted from the experiments. The first step downwards is performed in
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Figure 2.5 A sequence of step responses for detection of hysteresis.

order to find suitable step magnitudes and possibly to set the approximate
response time. The step should be large enough to make the output move
a distance corresponding to a factor N times the noise amplitude emax.
It must for example be large enough to overcome possible static friction.
However, there might also be limits on the desirable range ∆ ymax for the
experiment. An initial estimate of the required input magnitude may thus
be taken as

∆u = 1

k̂p
min(N emax , ∆ ymax) (2.1)

where k̂p is an estimate of the static gain. The step magnitude may have
to be changed if the output moves too little or too far. The second step
ensures that the possible backlash in the valve is closed when the third
step is performed. The third step will thus give a fairly reliable estimate
of the static gain of the process. When the fourth step is applied, the
output should hopefully go back to the same level as after the second
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step. However, the actuator must first travel across the backlash, and
therefore the output may exhibit hysteresis. The estimate of d may thus
be taken as

d̂ = y4 − y2

k̂p
(2.2)

where y2 and y4 are the stationary levels of the output after the second
and the fourth step, respectively.

Friction detection Many attempts have been made to find good models
for describing phenomena caused by friction. Olsson et al. (1998) and
Olsson (1996) provide a very detailed model, and the latter also includes
a survey. However, in this thesis a very simple static friction model for the
control valve will be used. It is characterized by one number only. This
number ufric is loosely defined as the minimum increment of the control
signal that is needed for the valve to move when starting from a constant
value. This is a simplistic model because:

• The amount of friction is assumed to be constant over the whole
operating range. This is however easily overcome by letting ufric

depend on the control signal.

• The size of the friction force often depends of the direction of the
movement.

• When u changes continuously, the model is more or less equivalent
to quantization. It will thus not capture the effect that the valve
stiction becomes less prominent the faster the control signal varies.

• Real friction is random in the sense that it does not stick and
slip in exactly the same manner on different occasions, see Olsson
et al. (1998). This phenomenon is clearly seen in Figure 2.2.

Even if the model is overly simple, it can be used to answer the question:
Is there any substantial static friction present, and if so, is it expected to
affect the control loop performance drastically?

The static friction ufric may be estimated by applying small steps to
the control signal. It is then possible to detect when the control valve
actually moves by looking if the process output changes. Figure 2.6 shows
a simulation using the simple friction model of such an experiment. Since
u moves in steps of 1 unit, and y moves every second or third step, it can
be concluded that ufric lies between 2 and 3 units. If higher resolution is
needed, u must be increased in smaller steps.

Since the model does not describe the true behavior, the response in
reality will not be as distinct as in Figure 2.6. Figure 2.7 shows the result
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Figure 2.6 A simulated friction detection experiment. The output moves for every
second or third step in the control signal.
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Figure 2.7 Friction detection experiment for the flow control loop from Figure 2.2.
The output moves slightly for every step in u, but seem to slip more after the steps
at 130 and 200 seconds.
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when the same type of experiment is done for the valve in the oscillating
control loop in Figure 2.2. The output moves slightly for every step in
u, but more for the steps around times 130 and 200 seconds. Since u is
changed in steps of 0.5, the estimated friction becomes 1–1.5.

Assessment of dynamics and non-linear characteristics

The purpose of the methods in the previous section was to identify local
non-linearities in the actuators. However, they will also provide some
assessment of dynamics and “global” non-linear characteristics as a side
effect. For example, in the hysteresis test, one true open-loop step response
is applied, and may thus be analyzed. Simple measures such as static gain
kp, time constant T , dead time L and average residence time Tar may be
extracted from the data. A tool for doing this is described in Chapter 3.
The tool may also produce higher order parametric models based on step
response analysis.

Apart from a dynamic model, it is also desirable to have at least a
crude estimation of the process non-linearities over the whole operating
range. The simplest, and often the most important, non-linearity to con-
sider is the static characteristics of the process. The ramp experiment for
detecting friction will actually give an estimate of the static input-output
map. However, this experiment is usually done in a small range due to
the required accuracy. Thus, the same experiment may be repeated for the
whole operating range using larger input steps. It will then be possible to
get an estimate of the static non-linearity. If this is known, the controller
gain may be gain scheduled, and the controller may need to be tuned only
for one operating point. This is further discussed in Chapter 3.

Assessment of interactions

Process control systems are complex in the sense that they are non-linear,
multivariable, and time-varying. Despite this, most of the sensors and
actuators are paired in simple, fixed single-input single-output (SISO)
control configurations. The reason for this is of course simplicity, since
the modeling and the control design become much more cumbersome if
the full problem is considered. A consequence of the single loop control
configuration of a multivariable system is that the loops are interacting
in a complex manner, and in different ways. Variations in one loop may
for example show up as load disturbances in other loops. Depending on
the magnitude and frequency content of these disturbances, they may be
easily compensated for, or they may actually constrain the performance
of the disturbed loop.

Loops that are tightly connected should also be studied jointly. In terms
of control design, this can either be done with multivariable control using
a few sensors and actuators, or with decentralized control, see Bryant and
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Yeung (1996) and Palmor et al. (1995). Another interesting issue is to ex-
plore which signals can be used for feed-forward and cascade control. One
method of assessing this is described in Johansson and Hägglund (1999).
Di-graphs are used for describing causal relationships between different
variables in the plant. Suitable control structures may be concluded au-
tomatically from these graphs.

This thesis will henceforth treat loop interactions only as load dis-
turbances acting on a SISO process. This may of course give erroneous
results in some cases where the loop interactions must be looked upon
from a multivariable perspective. However, there are still many control
loops which are readily treated as SISO loops. This motivates why it is
interesting to continue to study autonomous control of SISO processes.

2.4 Controller Selection and Tuning

PI controllers are by far the most common controllers in the process in-
dustry. The reason for this is that they are simple, yet able to solve most
control problems as long as the performance requirements are modest.
The structure of PID controllers is almost as simple, but they do require
more effort when tuning the controllers by hand. This has made auto-
tuning procedures desirable features in modern control systems.

More advanced controllers are not used very frequently yet in practice.
Adaptive controllers are used occasionally, see Åström et al. (1993), and
Model Predictive Controllers (MPC) become more and more common, see
Morari and Lee (1999). This thesis mainly deals with PI and PID control,
but the point of having an autonomous control system is that it should be
able to replace them as soon as other controller structures are believed to
solve the control problem better.

PI and PID control and tuning

Various tuning methods for PI and PID controllers exist, Åström and
Hägglund (1995). The classical empirical methods are the Ziegler-Nichols
methods. Their fundamental idea to characterize the process with a few
parameters and to determine controller parameters from a table is fre-
quently used.

One of the most frequently used methods in process industry today
is the Lambda tuning, see Rivera et al. (1986). The fundamental idea is
that it should be possible to select the time constant λ of the closed-loop
system. This is done by finding a first order delayed model of the process

G(s) = kp

sT + 1
e−sL (2.3)
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The controller parameters are chosen as

k = T
kp(λ + L)

Ti = T

The integral time is thus used for cancelling the process pole. There is
a potential danger in doing this, since the controllability or observability
of the plant is lost. This may for example cause the load disturbance
response to be unnecessarily slow. The controller gain is used for setting
the closed-loop time constant approximately to λ . The approximation is
valid only if λ is significantly greater than L. Controllers designed with
Lambda tuning in process industry mostly use λ > T + L = Tar. In other
words, the controller actually makes the closed loop slower than the open
loop. The drawback with potentially slow load disturbance response due
to cancellation is then not critical. A perhaps more serious limitation with
Lambda tuning is that it does not naturally extend to PID control.

The PI design method in Åström et al. (1998) takes a different ap-
proach. Here, robustness is of primary interest and not the response
times. The fundamental idea is to minimize the integrated error after
a step load disturbance, subject to the constraint that the sensitivity
function is always less than a specified value. To be applied exactly, this
method requires knowledge of the full process model. More precisely, it
uses knowledge of the frequency response of the plant for frequencies
with approximately −90○ to −270○ phase shift. It is thus sufficient to
have a good estimate of the frequency response in this limited frequency
range. A drawback with the method is that there is no simple table lookup
to find the parameters. Instead, a non-linear equation needs to be solved.
With computer support, this is not a severe drawback, though. Panagopou-
los (1998) extends the method to PID control. An new, alternative PID
design method based on the PI design method in Åström et al. (1998) is
presented in Section 4.4 in this thesis.

The design methods based on models with a few, easily estimated, pa-
rameters are very tractable because of their simplicity. The Kappa-Tau
method, Åström and Hägglund (1995), attempts to combine this simplic-
ity with the advanced tuning methods from Åström et al. (1998). There is
one frequency domain version and one time domain version of the Kappa-
Tau method. Both are based on three-parameter models of the plant. The
frequency domain version uses the static gain kp, the ultimate gain ku and
the ultimate period Tu. The time domain version uses the static gain kp,
the apparent lag T and the apparent dead time L. It turns out that it is
useful to let the controller parameters depend on the gain ratio κ = 1/kpku

and the normalized dead time τ = L/(L + T) = L/Tar, which explains
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the name of the method. Details on modeling issues are found in Åström
and Hägglund (1995). The Kappa-Tau method thus uses the same in-
formation as the Ziegler-Nichols methods plus the static gain, which is
easily estimated. The method was constructed by designing PI and PID
controllers using the sensitivity-based methods in Åström et al. (1998)
and Panagopoulos (2000) for a large number of plants. The controller
parameters were then plotted in diagrams as functions of the model pa-
rameters. “Average” curves were then calculated for each controller pa-
rameter. These curves thus give controller parameters that “on average”
correspond to the sensitivity-based design methods. The parameters may
be found either looking in the graphs or by the analytical expressions for
the curves.

Automatic tuning

There are two main approaches to automatic tuning in today’s commercial
control systems. One is based on open-loop step response analysis, and the
other is based on relay feedback. Åström et al. (1993) presents the basic
techniques and a survey of automatic tuning in commercial systems.

Wallén (1995) suggested an extension to the relay feedback method in
order to get an estimate of the static gain of the process. This provided
an automatic tuning procedure for Kappa-Tau design in the frequency
domain. Implementation aspects of this auto-tuning procedure is further
discussed in Section 6.2. The method has recently been implemented in
SattLine from ABB Automation Products, see Norberg (1999). An auto-
tuner for the time domain version of the Kappa-Tau method has been
implemented for the Mitsubishi PLC system at Beijer Electronics, see
Bannura (1994).

This thesis will present a new auto-tuning procedure for PI design
according to Åström et al. (1998). It is based on relay feedback using
time-varying hysteresis. The data is used for estimation of the frequency
response of the process using spectral methods. The method is described
in detail in Chapter 4.

The automatic tuning procedures typically consist of one experiment
phase, and one design calculation phase. The experiments must of course
be executed on the real-time level, but the experiment data may be sent to
the immediately higher level for design calculations. This way, the compu-
tational load on the real-time level is very modest. Normally, the design
calculations are not time-critical. Thus, rather complex design methods
may be used without disturbing the execution on the hard real-time level.

Selection of controller structure

So far, only PI and PID control have been discussed. These controller
structures are able to solve most of the SISO control problems occurring
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in process control. However, due to the simple structures, the performance
that can be achieved is limited. Åström (1997) and Åström (2000) discuss
fundamental limitations on achievable control performance given by the
dynamics of the plant. Other factors that limit the control performance
are the disturbances and possible non-linearities.

If both the desired and the maximum achievable performance is much
higher than the one obtained by PI or PID control, it may be worthwhile
to consider other structures. For example, for processes dominated by
long dead times, the PI and PID controllers will perform far from the
fundamental limitations. A few examples:

• For non-linear processes, PID controllers typically give different per-
formance in different regions. This is often successfully solved using
gain scheduling. It is very convenient to use auto-tuning to generate
the schedules automatically.

• For time-varying dynamics, some adaptive technique may be needed.
The survey in Åström et al. (1993) lists a number of commercial
products with adaptation of the parameters in a PID controller.

• For processes dominated by long dead times, some kind of dead-time
compensation may be used in order to increase the bandwidth of the
closed loop while retaining the stability margins. One example is the
Predictive PI controller in Hägglund (1992).

• Model predictive control (MPC), see is a controller structure that
can be used in many situations with, for example, non-standard
control objectives and miscellaneous limitations and constraints. See
for example Morari and Lee (1999).

Derivative action is not commonly used in PID controllers in process in-
dustry. Since the control performance may increase with the use of deriva-
tive action, it would be interesting to have some measure and assessment
of the expected improvement. Using the design criteria in Panagopou-
los (1998), the performance is always improved when derivative action
is used. However, evaluating other criteria such as integrated absolute
error and amplification of measurement noise, it is not always true that
the PID controller outperforms the PI controller. A crude classification
of processes showing most benefit of PID control when considering the
dynamics only, is when the normalized dead time τ = L/Tar lies in the
range 0.2–0.6. Derivative action is also very beneficial for processes with
integral action.

Filtering is another issue related to the controller structure. The nor-
mal use of filtering is to attenuate high frequency measurement noise. The
effects of the filtering should preferably be negligible around the closed-
loop bandwidth from the controller design. If this is not the case, the
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filters must be taken into account in the controller design, see Panagopou-
los (2000).

Filtering is also used in order to avoid aliasing effects in sampled data
systems. The cut-off frequency of the anti-aliasing filter is coupled to the
sampling interval. This implies that the filter should be altered when the
sampling interval of the controller is changed. However, this is normally
not possible, since the anti-aliasing filter is an analog filter just outside
the IO board of the computer. This can be solved by having fast sampling
of all signals with a fixed anti-aliasing filter, and then use decimation in
order to achieve sampling intervals that match each control loop.

2.5 Loop Monitoring and Fault Diagnosis

The purpose of loop monitoring is to detect degraded behavior during on-
line control. Some possible faults and types of degraded behavior that can
be detected are:

• Sensor and actuator faults.

• Increased disturbance level.

• Badly tuned controller, for example due to changed dynamics.

All methods that do loop monitoring send status signals to the Loop Man-
ager. The type of information carried by these status signals varies be-
tween different types of monitoring algorithms. It is reasonable to divide
the loop monitoring into three categories that reflect these differences:

• Low-level alarms, which simply detect crossings of levels etc.

• Performance assessment, which calculates some measure of the con-
trol performance on-line and sends alarms when this measure is not
acceptable.

• Fault diagnosis, which tries to detect faults, not only symptoms, in
the control loop.

The different categories will now be discussed briefly.

Low-level alarms

The simplest form of loop monitoring is alarm handling on the signal level.
Some possible tasks in the alarm handling are:

• Range check of the control signal and/or process value. The action
taken after a triggered alarm could be anything from a warning
presented to the operator, to an immediate production shutdown.
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• Noise level monitoring. If the noise level is increased dramatically,
or if it becomes very small, the sensor or some wiring is probably
broken.

These alarms typically use very little computing power, and operate on a
very basic level. It is up to the higher levels in the control system to decide
which alarms are actually useful, and only implement those. There should
thus be some supervisory function that uses the alarms in some way. If,
for example, the noise level has become very small, the Loop Manager
should do at least one of the following:

• Warn the operator that the sensor may be broken.

• Perform some simple experiment, for example a set point change,
to see if the sensor value changes. Before such an experiment is
performed, it might have to be accepted on the unit operation level.

• Pass the alarm to the unit operation level, which may use the alarm
to explain errors in neighboring control loops and confirm the fault
to the Loop Manager.

If an experiment or some higher level reasoning confirms that the sensor
or wiring is broken, the instrument engineer should be notified, and the
hardware should be repaired.

Performance assessment

The alarms discussed in the previous section provide low-level informa-
tion about the status of the control loop. They may for example cover the
most severe errors when the control loop has more or less stopped func-
tioning. It is, however, more difficult to have simple alarms that give a
more detailed status of the quality of the control. This is the motivation
for performance assessment methods. The normal use of these methods
is to constantly update the performance measure and compare it with
the acceptable level which is defined somehow. If bad control performance
is detected, an alarm is sent to the Loop Manager. In this respect, per-
formance assessment algorithms do not differ from the low-level alarms
discussed above. There is thus not a clear distinction between alarm gen-
eration and performance assessment.

There are different classes of methods within the performance assess-
ment category, for example:

• Variance-based methods according to Harris (1989) and numerous
followers.

• Detection of oscillations, for example Hägglund (1995).
• Methods for detecting overdamped control, see Hägglund (1997a).
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The first class is the one that has drawn most attention. The field
was started by Harris (1989), who proposed that the control performance
should be measured by comparing the current variance of the output with
the one obtained by a minimum variance control law, Åström (1967). Har-
ris also showed that this minimum variance can be estimated irrespective
of currently used control law, as long as the dead time of the process is
known. Several authors have suggested improvements and modifications
to the original algorithm. Lynch and Dumont (1996) use a Laguerre net-
work for estimating the coefficients in the noise description, and an on-line
estimation of the dead time. Tyler and Morari (1995) take the effect of
unstable poles and non-minimum phase zeros into account. Horch and
Isaksson (1999) replace the implicit dead-beat assumption in the min-
imum variance control law by a more realistic pole placement. Harris
et al. (1996) extends the measure to multivariable plants. Some of the
methods have been implemented in large-scale plants, with reported suc-
cess.

The other methods presented above are not based on stochastic con-
trol theory, but use a more pragmatic view. The oscillation detection algo-
rithm in Hägglund (1995) repeatedly calculates the integrated absolute
error (I AE) between two consecutive zero crossings of the control error.
If this sequence contains large values of the I AE during a limited time,
this is interpreted as an oscillation of the control loop. The method is
implemented in commercial controllers from ABB Automation Products.

The performance assessment methods typically have most of the cal-
culations executing in hard real-time. The variance-based methods use
recursive estimation of the noise model in order to estimate the mini-
mum achievable variance. The oscillation detection algorithm calculates
the I EA sample by sample. However, it is mostly not critical that the bad
performance is actually detected exactly when it occurs for the first time.
This is especially true since performance typically deteriorates gradually,
and there is probably a long time when the methods “almost” signal for
bad performance. It should thus mostly be sufficient to send batches of
on-line data to the Loop Manager on some regular basis and then perform
the calculations without timing constraints.

Control loop diagnosis

The performance assessment algorithms discussed above are supposed
to detect unsatisfactory control. However, none of them try to find any
causes for the bad control. This is instead a task for fault detection and
isolation (FDI) methods. When a control loop is performing badly, without
being totally out of order, it is normally caused by either of the following
reasons:
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• The controller parameters are not set properly.

• External disturbances cause large variations which cannot be taken
care of by the controller.

• Non-linearities such as valve friction induce oscillations in the con-
trol loop.

• The current controller structure is not able to control the process
with acceptable performance.

Many different approaches to FDI exist. Traditional model-based meth-
ods are mostly based on residual generation and analytical redundancy,
see Frank (1990) for a survey. This kind of methods requires a fairly ac-
curate quantitative model of the nominal plant behavior, as well as the
behavior when faults are present. This is mostly not available in a typical
control loop in process industry. Neural networks and knowledge-based
methods are other approaches that are often used, see for example Frank
and Koeppen-Seliger (1997).

In most cases, the traditional FDI methods use multiple sensor read-
ings to distinguish between different faults. Here, we would instead like
to do diagnosis on the local control loop level using only the control sig-
nal and the process value. The rather specific nature of this FDI problem
has inspired some tailored methods. For example, Thornhill and Häg-
glund (1997) use harmonics analysis in order to find a characteristic
signature of an oscillating control loop. Horch (1999) shows that corre-
lation analysis can be used to distinguish valve induced oscillations from
other ones. These methods use only the on-line data for the diagnosis. In
Wallén (1997) a sequence of off-line experiments, including renewed loop
assessment and controller tuning, is suggested in order to distinguish be-
tween different causes for the bad control. It should not be considered a
drawback to temporarily stop the PI(D) control, as long as the experi-
ments are monitored properly.

2.6 Summary

This chapter has discussed different aspects of autonomy in process con-
trol. A fully autonomous control system will not be realistic for many
years. The most important reason is that it is difficult to guarantee safe
operation in a large-scale plant. However, many things may be done in
order to increase the degree of autonomy on any level of the plant. This
thesis focuses on increased autonomy on the local control loop level. Some
desired features in order to do this have been reviewed.
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Dynamics Assessment

The purpose of loop assessment as discussed in Section 2.3 is to extract
basic process knowledge. Most of this knowledge is formulated as scat-
tered chunks of information, both quantitative and qualitative. In order
to do controller design, monitoring and diagnosis etc., it is useful to in-
stead have a process model parameterized as a transfer function or a state
space representation.

First, it is necessary to decide what kind of model is needed:

• Should it be in discrete time or continuous time?

• Should it be a white, gray, or black box model?

• What model structure and order is desired?

• Will it be necessary to include non-linearities in the model?

The identification procedure must also be determined:

• What data should be used for identification? Do we need data sets
with special input signals or can we use available on-line or off-line
data? Are we at all allowed to subject the plant to the input signals
we want?

• What optimization methods and criteria should be used for selecting
the best model?

There are of course no generic answers to the questions above. What is
best in each situation depends very much on the process and the purpose
of the process model.

System identification has found its way into master thesis programs
worldwide, with several textbooks covering the subject, e.g. Ljung (1999),
Johansson (1993), Söderström and Stoica (1989). There are also standard
commercial tools available for people with some identification knowledge
and experience, e.g. the Identification Toolbox in MATLAB. Before you can
do system identification you need to find suitable excitation signals, model
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structure, sampling interval, and so on. In order to decide these, you must
know some details about the process, for example in terms of a coarse
process model.

Normally, no “proper” system identification is ever done for most con-
trol loops in process industry. There are many reasons for this:

• Most control problems are solved with PI or PID controllers, which
may be tuned using simple models only, or no process model at all.

• It is mostly practical issues such as disturbances and measurement
noise that is important for control, rather than complex dynamics.

• The number of control loops is often so high that it would take too
much time to do a full identification procedure for all loops.

• The understanding for system identification, ARMAX modeling and
so on, is mostly not very high among operators and process engi-
neers. This hinders the use of more complex models, even where it
could be motivated.

• Processes are frequently non-linear.

Still, a simple form of system identification is often done by process en-
gineers when tuning the controllers. Typically, they estimate dead time,
time constants, and so on from open-loop step responses, or bump tests
as they are often called. Then, they follow some algorithm to find accept-
able controller parameters. Some common tuning schemes are the Ziegler-
Nichols method, the Cohen-Coon method, lambda tuning, see Åström and
Hägglund (1995) for a comprehensive listing. A slightly more advanced
method would be to fit the experimental data to a step response of a
selected model structure, and use some design method on the resulting
process model. In both approaches there is need for computer support to
facilitate the identification.

This chapter describes a tool for analyzing step responses, or sequences
of step responses. It provides a user friendly method to fit low order dy-
namic models to data. In practice, it is more important to have a crude es-
timation of process non-linearities than a very detailed dynamical model.
For this reason, the tool makes it possible to identify a static non-linearity
along with the dynamical model. This makes the tool useful in practice,
since most control problems occurring in process industry can satisfac-
torily be solved using PID control with gain scheduling. Even if more
advanced models and controllers may be needed for complex problems,
the tool may serve as a good starting point.

Section 3.1 describes the used model structures. The interactive graph-
ical user interface, GUI, is developed using MATLAB 5 graphics. The user
is allowed to shape the step response of a certain model structure to make
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it follow the real step response data. The graphical manipulation is dis-
cussed in Section 3.2. Identification of non-linear processes is discussed
in Section 3.3. Along with the interactive model manipulation, the tool
lets you perform a least squares fit of the model to the data. The graphi-
cally manipulated model will then supply the optimization procedure with
initial parameter estimates. This is described in Section 3.4.

3.1 Model Classes

It is necessary to decide what model classes to use before any identification
may take place. The model classes considered in this thesis are

• Linear continuous-time process models described as a transfer func-
tion G(s).

• Linear continuous-time process models with a static non-linear func-
tion on the input, so called Hammerstein models.

• Linear continuous-time process models with a static non-linear func-
tion on the output, so called Wiener models.

Most plants in process industry are more or less non-linear. In some
cases the process gain may differ by orders of magnitude across the oper-
ating range. Thus, it is often not useful to model the linear dynamics very
accurately unless the non-linear behavior is also described. If the process
is normally operated within a small region, it is often reasonable to use
a linearized model around the operating point. However, during startup
and shutdown, the process will probably deviate from the normal oper-
ating point and the dynamics may change drastically. This behavior may
be captured by a non-linear model. If the controller is designed to take
the non-linearity into account, the need for special solutions and fixes at
abnormal situations may be avoided.

It is very difficult to identify a general non-linear dynamical system.
Haber and Unbehauen (1990) and Patra and Unbehauen (1993) are two
survey papers discussing identification of non-linear systems with differ-
ent structures. Hammerstein and Wiener models are reasonable simplifi-
cations which cover some properties of the non-linearity, at least the gain
variations. Properties of these model structures will be discussed in more
detail in Section 3.3.
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3.2 Principles for Man-Machine Interaction

The tool is designed to analyze step responses or sequences of step re-
sponses. The goal is to have a GUI where the shape of the step response
can be edited in a natural way. This is achieved by having a number
of handles which the user may manipulate. In order to make the man-
machine interaction intuitive, it is desirable to have a one-to-one corre-
spondence between a process feature and one specific handle. For example,
the dead time is one feature of the process that should be manipulated
with a single handle. Basically, you need one handle per parameter in the
model, plus one handle for each initial condition you want to edit.

When you decide on process features to manipulate, you should try to
accomplish the following:

• The user should be familiar with the way of representing the fea-
tures.

• The features should be easy to manipulate by dragging the handles.

• The user should be able to foresee how the step response will change
when a certain handle is dragged.

• The behavior should be as consistent as possible for different model
structures, different parameter values etc.

• If possible, there should be an obvious connection between the han-
dles and the model parameters.

It is difficult to accomplish all these things at the same time. The items
above may be the more or less important, depending on what the step re-
sponse manipulation is going to be used for. The discussion in this chapter
is aimed at a tool for fitting a model to experimental data. An education
tool for understanding properties of dynamical systems should probably
have other handles.

First order process

It is by no means a trivial task how to select the most intuitive process
features and handles to manipulate. Even for a simple first order model

G(s) = K
sT + 1

e−sL (3.1)

you have many ways of selecting process features. For example, the time
constant T may be calculated from the maximum slope of the step re-
sponse, or from the time where the response has reached � 63% of its
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y0

yf

L

T63

Figure 3.1 Step response and handles for a first order system with time delay.

final value. Actually, any reasonable definition of rise time can be used to
calculate T .

One possible set of handles for the model (3.1) is:

• A level y0 to set the initial value.

• A level yf to set the final value. yf and y0 together give K in (3.1).
• A time L for editing the dead time.

• A time T63 where the step response has reached 1 − e−1 � 63% of
its final value. This gives T = T63 − L.

The step response with its corresponding handles is shown in Figure 3.1.
The handles are squares with arrows indicating the direction in which
they may be moved. The level handles y0 and yf may be dragged vertically,
and the time handles L and T63 may be dragged horizontally. When one
level handle is dragged, the other level handle remains in the same place,
and vice versa for the time handles.

Note that this choice of handles does not give a one-to-one correspon-
dence between handles and model parameters, since the time constant T
will be affected both when L and T63 are changed. The reason for using L
and T63 as handles anyway is that they are intuitive for the user. This is
considered more important than perfect decoupling in parameter space.

Figure 3.2 shows how to fit first order model to data, step by step.
First, the initial and final values are set (plot 2), next the time delay
(plot 3), and finally the rise time (plot 4).

Multiple lags

The transfer function (3.1) is the most frequently used model structure
in industrial practice. It is simple, yet it captures a few fundamental
properties of the process, and it can be used for simple controller design.
However, by using a higher order model with more parameters you will be
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Figure 3.2 Step by step manipulation of a first order system.

able to achieve better model following. At the same time you would need
more handles to shape the step response. It becomes more and more diffi-
cult to find appropriate step response features and corresponding handles
as the number of model parameter increases.

The simplest form of higher order processes is just to have multiple
lags, i.e.

G(s) = K
(sT + 1)n e−sL (3.2)

where n is a positive integer. The step response of this model is given by

y(t) = K
(

1− e−(t−L)/T
(n−1∑

k=0

1
k!

( t− L
T

)k
))

, t ≥ L (3.3)

The set of handles for first order systems above will still be possible to use,
see Figure 3.3. However, there is no longer an explicit expression for T as
a function of L and T63. It will instead be found using simple numerical
iteration with initial estimate T � (T63−L)/n. Other measures may have
given explicit formulas for T , but the 63% rise time is well established in
practice and easy to modify graphically. Furthermore, the computational
burden for finding T from T63 − L is negligible.
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y0

yf

L

T63

Figure 3.3 Step response and handles for the model (3.2).

Process zero

The next extension is to allow inverse response, or non-minimum phase
behavior. This is done by including a process zero in the model:

G(s) = K
β Ts+ 1
(sT + 1)n e−sL (3.4)

which has the unit step response

y(t) = K
(

1+ e−(t−L)/T
(

β
(n− 1)!

( t− L
T

)n−1
−

n−1∑
k=0

1
k!

( t− L
T

)k
))

, t ≥ L (3.5)

For β < 0, the process has a non-minimum phase zero. The minimum
value of the unit step response is reached at time

tmin = L + (n− 1) β T
β − 1

(3.6)

The new model parameter requires one new graphical handle. The basic
characteristic in the time domain for a non-minimum phase system is the
inverse response. It then makes sense to use the minimum value as a
measure of the non-minimum phase behavior. The set of handles for the
system (3.4) is shown in Figure 3.4. A drawback with this choice is that
neither T nor β can be calculated directly from the handles. However, they
are easily found using simple numerical iteration. Again, it is possible to
find other handles which would give algebraic expressions for β and T ,
but they would have been less intuitive for the user.
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Figure 3.4 Step response and handles for the model (3.4) when β < 0.

y0
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ymax

L
T63

Figure 3.5 Step response and handles for the model (3.4) when β > 1.

By parameterizing the process zero as −1/(β T), β alone will set the
shape of the step response, and T will just scale it in time. Thus, β can
first be calculated from n and (ymin− y0)/(yf − y0). Then, T is calculated
from β , n and T63 − L.

The tool also allows left half-plane zeros, i.e. β > 0. For β > 1, the zero
is closer to the origin than the pole is. This will cause the step response
to have an overshoot. This may be treated analogous to the non-minimum
phase case, see Figure 3.5. The model can be concluded from the handles
by first computing β from the relative size of the overshoot, and then T
from β , n and T63 − L.

When 0 < β < 1, the zero will not cause any minimum or maximum
level of the step response. Thus, there is no way of making the manip-
ulation consistent with the previous cases. In the tool, the handle for
minimum and maximum level is still used to manipulate β . This is done
by interpolating β between 0 and 1 when the handle is moved from y0 to
yf . This behavior is far from intuitive, since the user no longer directly
manipulates a fundamental property of the step response. Despite this, it
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Figure 3.6 Editing T and β using a single handle (the square mark) for the
model (3.4) with n = 2. Horizontal movement of the handle changes T and vertical
movement changes β .

was selected in order to get a smooth transition between the cases β < 0
and β > 1.

Just to give an example of alternative ways of selecting handles, we
will show how to edit T and β simultaneously using one handle only. If
the level of the point is not fixed at 63%, you can use the two degrees
of freedom to uniquely determine both T and β . A natural way of doing
this is to let T equal the horizontal coordinate of the handle minus the
time delay. If the vertical coordinate then is used as y(T), Equation (3.4)
gives β . A major advantage of this is that it works for all T > 0 and
all values of β , see Figure 3.6. One severe drawback is that the user
feels that he is no longer editing the “fundamental properties” of the step
response when there is an overshoot or undershoot. The reason is that β ,
and consequently the maximum or minimum value, is sensitive to small
vertical movements of the handle, especially with n large. The method is
therefore rejected, since the primary motivation for the model structure
(3.4) is to handle these cases.

Integrating processes

Integrating processes is another class of processes that is frequent in
process industry. The standard example is the level in a tank where the
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y0

ẏ(t0) L

yf

Figure 3.7 Step response and graphical support for the process (3.7).

inflow and outflow are controlled by pumps or valves. The simplest form
considered in this tool is a pure integrator, possibly with a time delay:

G(s) = K
s

e−sL (3.7)

which has the unit step response

y(t) = K (t− L) , t ≥ L (3.8)

We will need handles for manipulating

• The initial value y0,

• The initial slope, s0 = dy
dt

∣∣∣
t=0

,

• The time delay L, and

• The gain K , given by the difference between final and initial slope.

The set of handles in Figure 3.7 gives one possible way of manipulating
the response. The handles represented by squares with arrows behave
in the same way as before, namely translation of one point of the re-
sponse horizontally or vertically. The initial slope is edited by rotating
the thick bar marked ẏ(t0) around the initial point y0. The final slope,
and consequently the gain K , is edited by defining one point yf on the
final asymptote of the step response.

To get a smoother response than for model (3.7), you may have a lag
in series with the integrator:

G(s) = K
s(sT + 1) e−sL (3.9)
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y0
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Figure 3.8 Step response and handles for the process (3.9).

with the unit step response

y(t) = K
(

t− L − T
(

1− e−(t−L)/T
))

, t ≥ L (3.10)

In addition to the handles for (3.7), we also need a way of editing T . One
way is to rewrite (3.9) as

G(s) =
(

Ki

s
+ Kp

sT + 1

)
e−sL (3.11)

with Ki = K and Kp = −T ⋅ K . Since the second term in (3.11) is a first
order system, it makes sense to use T63 as a handle in this case too, see
Figure 3.8. It may thus be interpreted as the rise time of the first order
step that is superimposed on the true integrating response. Alternatively,
it may be viewed as the time when the slope of the step response has
changed 63%.

If you allow all parameters in (3.11) to vary independently, you may
describe other behaviors which can be found in process industry. Ki repre-
sents difference between final and initial slope, Kp represents the “jump”
between the initial and final asymptotes at t = L, and T is the time con-
stant of the proportional part. When you vary Kp by moving the handle
marked y1 in Figure 3.9, you may actually see this as moving a process
zero. With Kp < −T K you will see non-minimum phase behavior, and
with Kp > 0 you will have a left half-plane zero close to the origin.

More complex model structures

By adding more poles and zeros you would need more and more degrees
of freedom to edit the step response. It will be increasingly difficult to
find handles which mirror the visible behavior in the step response, and
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Figure 3.9 Step responses and handles for the process (3.11) with Ki > 0. Kp is
negative in the upper plot and positive in the lower.

the graphical tool would inevitably be more complex to use. A solution
would be to let the user specify a number of points that the step response
should to through. This way, the tool will resemble traditional curve fitting
programs. However, the model structure imposes very hard constraints on
possible curve forms. This implies that if the user tries to move one of the
points on the curve, the set of allowed values for this point is very limited.
It will then be difficult to drag the response into the desired shape.

Since the tool should be used for preliminary system identification only,
it does not make very much sense to add more features than necessary. If
a more complex model is needed, the user must first fit one of the model
structures above to the data. Then, least squares optimization can be used
for finding a complex model, using the simple model for initial parameter
estimates.

Additional features in the tool

Apart from the graphical manipulation of the step response of the model
described above, the tool includes some features which increase its use-
fulness.

• It is possible to obtain the process model which minimizes the mean
square error between the model output and the experimental data.
Properties of this optimization problem are further discussed in Sec-
tion 3.4.
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Figure 3.10 Fitting a second order delayed model to data from the temperature
control loop in Example 3.1. The dotted data points are not used in the optimization.

• Static input and output non-linearities may be included in the model.
This is described in Section 3.3.

• When the data series consists of several step responses, the user
may select which step response to manipulate graphically. The opti-
mization is performed on all of the selected data set, though.

• The tool includes routines for PI and PID designs for the current pro-
cess model. The design methods are taken from Åström et al. (1998)
and Panagopoulos (1998). It is also possible to get a closed-loop sim-
ulation of the current controller and process model.

• Outliers and other disturbances may be removed from the experi-
mental data interactively.

Examples

To conclude this section, a few examples will be given that demonstrates
some features of the tool.

EXAMPLE 3.1—TEMPERATURE CONTROL LOOP

This example is taken from Panagopoulos et al. (2000). Figure 3.10 shows
the graphical user interface of the tool when fitting a model to data from
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Figure 3.11 Comparison between the old PI controller (left) and the new PID
controller (right) for the temperature control loop in Example 3.1.

a temperature control loop in a Swedish paper mill. A second order model
was chosen in order to capture some of the higher order dynamics which
is often present in temperature control loops. The dotted parts of the
experimental data in the figure correspond to load disturbances during
the experiment, and have thus been deselected.

After least squares fit, the transfer function

G(s) = 1.341e−12.9s

(43.3s+ 1)2 (3.12)

was obtained. This model was used for calculating a PID controller in
order to improve the control compared to the existing PI controller with
parameters K = 0.80 and Ti = 60. Especially the large variations of
the output during regulatory control seen to the left in Figure 3.11 were
undesirable. They were caused by a combination of periodic load distur-
bances, valve hysteresis and detuned controller. The new PID controller
with parameters K = 1.35, Ti = 40 and Td = 19 reduced the variance of
the output drastically. A drawback with the new controller was that the
increased gain and the derivative action introduced more amplification
of the measurement noise. This was reduced by inserting an additional
low-pass filter of the measurement signal.

The process model and new controller parameter settings were found
with very little effort. This example clearly shows the usefulness of the
tool when designing new controllers for a process.

EXAMPLE 3.2—PRESSURE CONTROL LOOP

The data in Figure 3.12 is collected from a pressure control loop in the
same mill as in Example 3.1. Since the plant is moving fast at first and
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Figure 3.12 Fitting an integrating process model with one pole and one zero to
data from a pressure control loop in Example 3.2.
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Figure 3.13 Data from the pressure control loop and output from an integrating
process model with two poles and two zeros.
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then starts to drift, it seems reasonable to model the plant as a sum of
an integrator and a first order system. Least squares fitting of the data
to this model structure gives:

G1(s) = 0.0014 (387.7s+ 1)
s (41.6s+ 1)

The root mean square error between the data and the model output is
0.146. As seen from the figure, the model does not give a perfect fit. If the
model structure is augmented with another first order system, the least
squares fit will result in the transfer function

G2(s) = 0.0011 (573.5s+ 1) (18.4s+ 1)
s (71.9s+ 1) (6.64s+ 1)

with the root mean square error reduced to 0.048. Figure 3.13 shows the
model output from G2(s) together with the experimental data. The graph-
ical user interface does not support transfer functions with this structure,
so the optimization has been carried out using the more general method
described in Section 3.4.

EXAMPLE 3.3—NON-LINEAR PROCESS

When the process is non-linear one may still be interested in a linear
model close to the operating point. The tool lets the user define different
models in different regions by selecting and deselecting data points to
optimize over. The double tank process in Figure 3.14 has free outflow
from the tanks, which makes it proportional to the square root of the
tank level. A process model is thus given by{

ḣ1 = −α 1
√

h1 + β u

ḣ2 = α 1
√

h1 −α 2
√

h2
(3.13)

where α 1, α 2 and β are constants, u is the input flow, and h1 and h2 are
the levels of the upper and lower tank, respectively. Figures 3.15 and 3.16
show experimental data from step responses from u to h2.

In Figure 3.15 the whole data set is considered at once, with poor
result. In Figure 3.16 one step response at a time is identified. A model
of second order has been matched to each step response. Note that both
the gain and the time constant differs between the two responses. This
can be seen if Equation (3.13) is linearized.

Next section will describe how a process non-linearity can be identified
together with a linear transfer function.
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Figure 3.14 Sketch of the double tank process in Example 3.3.
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Figure 3.15 Least squares fit of both step responses for the double tank process.
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Figure 3.16 Separate least squares fit of the step responses for the double tank
process. The dotted data in each plot is discarded.
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G(p)f ( ⋅ )
yu ū

Figure 3.17 A Hammerstein non-linear model.

3.3 Identification of Process Non-linearities

A vast majority of the processes in process industry are non-linear in one
way or another. Non-linearities associated with friction and hysteresis are
discussed in Section 2.3. These should be regarded as process malfunctions
which, hopefully, may be corrected by valve maintenance. However, even
with perfect actuators and sensors, the process model usually varies over
the operating range.

Process identification of a general non-linear dynamical system is a
very complex problem. It is therefore necessary to restrict the complexity
of the model, and use tailor-made methods for the chosen model struc-
ture. A common restriction is to consider only models with linear dy-
namics with static non-linearities on the input (Hammerstein models)
and/or the output (Wiener models). Several approaches exist to identify
both the dynamics and the non-linearities, for example the iterative out-
put error method in Narendra and Gallman (1966), subspace methods
in Haverkamp et al. (1998), and correlation techniques in Billings and
Fakhouri (1979). The non-linearity is often a polynomial of fixed order,
but it may also be represented as, e.g., a neural network, see Schram
et al. (1997), or a series expansion, see Pawlak (1991).

The use of static non-linearities may seem a severe restriction. How-
ever, the most dominating non-linearity is often a non-linear static char-
acteristic from process input to process output. As an example, the steady-
state flow through a control valve is often not proportional to the control
input.

Hammerstein models

A Hammerstein model may be described by

y(t) = G (p) f (u (t)) (3.14)

where G(p) is a linear system and f (⋅) is an arbitrary non-linear function,
see Figure 3.17. In order to get a unique representation of the Hammer-
stein model, the static gain of the linear part is set to 1. The Hammerstein
model has the property that two step responses taken at different input
levels will only vary in gain, but have the same shape.
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The Hammerstein model seems reasonable to use when the dominant
non-linearity is located near the actuator end of the plant, for example
a non-linear valve characteristic. Even when this is not the case, the
Hammerstein model will at least pick up gain variations in the operating
range. The gain non-linearity is the easiest one to compensate for, and in
most cases the most important one as well. When f (⋅) has been identified,
it is possible to include its inverse in the control system. This way, the
process will be linear as seen by the controller, which may then use fixed
gains.

Another reason for considering Hammerstein models is that we are
mainly doing step response analysis. This makes it natural to represent
the non-linearity as pairs (uk, ūk), for each value uk of the input signal
in the current data set. The non-linear function f is thus just defined by

ūk = f (uk), k = 1 . . . Nu (3.15)

where Nu typically is the number of values u takes on in the data set.
This way there is no need for any functional parameterization of the non-
linearity. One drawback is that the number of parameters ūk to find in-
creases as the number of input levels increases. This should not be a
severe drawback, since typical data series do not include too many step
responses.

One might want to evaluate f (u) between the values of uk, e.g., for
doing gain scheduling. If the non-linearity is given by (3.15), this is nat-
urally done with for example linear or spline interpolation. When f (u)
is expressed using basis functions, this is not necessary, since f may be
evaluated at any point. On the other hand, with only a few levels of the
control signal in the data series, f (u) may vary a lot between the uk:s.

In the tool, you may graphically edit the non-linearity by dragging the
values of ūk, see Figure 3.18. u is on the horizontal axis and ū is on the
vertical axis. Note that the values of uk are fixed, and only the values of
ūk can be altered.

Since the static gain of the linear dynamics is fixed to 1, the values of
ūk equal the stationary levels of the process output y in the data series.
Thus, when a level ūk is dragged, the gain for all step responses taken
from or to the level uk will change, but the rest will remain the same.

The tool also allows least squares fit of a Hammerstein model to data.
The linear dynamics part is parameterized as in the previous section,
except that the gain K is now fixed to 1:

G(s) = β Ts+ 1
(sT + 1)n e−sL (3.16)
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Figure 3.18 A graphical representation of the non-linearity ū = f (u) for a Ham-
merstein model, and y = f ( ȳ) for a Wiener model. The handles may be moved in
vertical direction.

The order n must be chosen, the other parameters may vary. With the
non-linearity given by (3.15), the least squares problem will be to find
the parameter vector

[T L β ū1 . . . ūNu ]T (3.17)

which minimizes ∑
t

(y(t) − G (p) f (u (t)))2 (3.18)

Wiener models

A Wiener model may be described by

y(t) = f (G (p)u (t)) (3.19)

where G(p) is a linear system and f (⋅) is an arbitrary non-linear function,
see Figure 3.19. To get a unique representation, the static gain of the
linear part is again set to 1. As opposed to a Hammerstein model, the
Wiener model will have step responses where the shape as well as the
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G(p) f ( ⋅ )
yu ȳ

Figure 3.19 A Wiener non-linear model.

gain may vary for different input levels. To see this clearly, consider for
example the non-linearity

y = f ( ȳ) = sign( ȳ)

with a step response crossing the zero level. Since ȳ varies continuously,
the time where it changes sign depends heavily on the initial and final
levels of the input signal.

The definition of the non-linearity is analogous to the one for the Ham-
merstein model. It is defined by pairs

yk = f ( ȳk), k = 1 . . . Ny (3.20)

with linear or spline interpolation for values between the ȳk:s, see Fig-
ure 3.18. The big difference from the Hammerstein case is that there
are no obvious ways to select the values of ȳk. A simplistic approach
would then be to spread the ȳk:s evenly over the current range. There is
however no guarantee that this will give the best representation of the
non-linearity. This is further discussed in Example 3.5 below.

Other parameterizations

As pointed out in Haber and Unbehauen (1990), static non-linearities plus
linear transfer functions is just one class of non-linear dynamical system.
Wiener and Hammerstein models have been chosen here for the sake of
simplicity. By allowing the process gain to vary over the operating range,
it is possible to treat many problems that occur in practice. However, there
are of course many other cases with more complex behavior, where other
parameterizations would be required. For example, it is very common that
the dynamic behavior depends on an auxiliary signal such as the current
production level. This may be solved by letting the parameters in the
SISO transfer function depend on this auxiliary variable. An alternative
would be to use a MIMO model where all the interesting variables are
included. This would however require much more modeling effort.
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Figure 3.20 A series of step responses from a flow control loop.

Examples

To conclude this section, two examples will be given, where Hammerstein
and Wiener models have been used to describe non-linear systems.

EXAMPLE 3.4—FLOW CONTROL LOOP

The data set in Figure 3.20 is from a flow control loop in the same paper
mill as in Examples 3.1 and 3.2. u is the control signal sent to the control
valve. The valve is closed at u = 0 and fully open at u = 100. The flow
is measured by a magnetic flow transmitter. The flat part of the curve in
the lower plot is due to saturation of the flow measurements. These data
points will thus be neglected when doing the least squares fit.

The sequence of step responses indicates very large gain variations
over the operating range. However, the dynamics are fairly constant. It
is thus reasonable to use a Hammerstein model for this example. It also
makes sense to model the linear part using a delayed first order model.

The lower plot in Figure 3.21 shows the non-linear function ū = f (u)
after least squares fit of the non-linear model to data. The value of f at
u � 80 should be neglected, since it does not correspond to any data used
in the optimization. There may be large errors in f (70) as well, since only
the transients have been used.
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Figure 3.21 Identification of non-linear model to data from flow control loop. The
non-linear function ū = f (u) is shown in the lower plot. u = 80 corresponds to the
saturated data, and was not used for optimization.
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With this non-linearity and the linear model

G(s) = 1
(2.77s+ 1) e−0.20s

the RMS error becomes 1.14, see Figure 3.21. The value for the gain is
1.66, which is the slope of f at the levels corresponding to the currently
active step response. The dashed data from t � 120 s to t � 160 s have
not been used in the optimization.

In this example, there is clearly no linear model which is valid outside
a very small operating region. The process gain varies substantially across
the normal operation range. It is thus crucial to take the non-linearity
into consideration in order to achieve reasonable behavior when using a
process model for control design or process supervision.

EXAMPLE 3.5—DOUBLE TANK PROCESS

The double tank process discussed in Example 3.3 may also be identified
using the non-linear modeling tool. First, a Hammerstein model is used,
with results shown in Figure 3.22. When the tank model given in Equa-
tion (3.13) is linearized, both the gain and the time constants will be a
function of the operating point. Consequently, the double tank process can
clearly not be captured by a Hammerstein model. This causes the model
fitting less accurate than in Example 3.3 where each step was identified
separately. On the other hand, it is advantageous to be able to identify a
complete model at once. Whether the loss of model accuracy is important
or not depends on what the model will be used for.

If instead a Wiener model is used, it is possible to achieve a much
better fit, see Figure 3.23. The non-linearity used in this example consists
of five pairs ( ȳk, yk) with spline interpolation between them. In fact,
by introducing more and more complex non-linearities, it is possible to
achieve arbitrarily close fit to the model. The extreme would be to have
G(s) = 1/s, making ȳ(t) a linear function of time, and to have a non-
linear function which is exactly the data points y(t). Figure 3.24 shows
this idea, where the dynamic behavior is captured by the (static) non-
linear function instead of the linear transfer function. This is of course
not a good model, since neither the static nor the dynamic behavior would
be described well for other input signals. To avoid this kind of deteriorated
behavior, it would be desirable to have step responses in both directions
between many levels in the region of interest. The bad behavior is also
avoided if the non-linear function is simple enough. In fact, since it is
supposed to take care of the static gain variations only, the non-linear
function should not contain much more information than the steady-state
levels used in the experiments.
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Figure 3.22 Identification of a Hammerstein model for the double tank process
in Example 3.5.
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Figure 3.23 Identification of a Wiener model for the double tank process.
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Figure 3.24 Example of a deteriorated Wiener model for the double tank process
using over-parameterized non-linearity. The non-linearity does not reflect the static
characteristics of the process.
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3.4 Least Squares Fit of Step Response Data

Along with the graphical manipulation described in the previous sections,
the tool allows least squares optimization of the model to the step response
data. In order to do this we must have an analytical expression for the step
response of the selected model structure. The interactive tool described
above has a number of pre-defined model structures that can be fitted to
data. This implies that the step response for each model structure may
be calculated in advance.

Sometimes, you might want some other model parameterization which
is not supported. This may be the case when you have many poles or zeros,
or when you have a partly known model structure, for example when
a physical parameter shows up in different coefficients in the transfer
function.

The approach taken here is described by the following steps:

1. Collect data y(t) corresponding to a piecewise constant input signal
u(t) for the time points t.

2. Select a desired model structure in terms of a linear transfer func-
tion G(s, θ ), where θ is the vector of unknown parameters. The nu-
merator and denominator should be formulated as products of first
and second order polynomials. It is also possible to include a known
or unknown delay in the model. The unknown parameters may show
up non-linearly, and in any number of positions in the coefficients of
the transfer function.

3. Formulate inequality constraints on the parameters, for example to
ensure stability.

4. Calculate the step response S(t, θ ) symbolically in, e.g., Maple for
the selected G(s). This is straightforward when G(s, θ ) only contains
factors of first and second order. Some care must, however, be taken
to handle multiple poles and/or zeros.

5. Write a function for, e.g., MATLAB, which computes the step response
numerically for a specific vector θ , supplied as an input argument.
Rewrite the input signal as a sum of delayed steps: u(t) = c1 H(t −
d1)+. . .+cN H(t−dN), where H(t) is the Heaviside unit step function.
Compute the model output as ym(t, θ ) = c1S(t−d1, θ )+ . . .+ cN S(t−
dN , θ ).

6. Use standard optimization methods to obtain the least squares es-
timate of the parameters

θ̂ = arg min
θ

V (θ ) = arg min
θ

∑
t

(y(t) − ym(t, θ ))2 (3.21)
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such that the constraints in step 3 are fulfilled.

The steps 4–6 are done automatically by the optimization tool. The sta-
bility conditions in step 3 may also be obtained automatically. Computer
advice and support can be given for the remaining steps.

Remark 1: In order to solve the optimization problem (3.21) more ef-
ficiently, you may also calculate the gradient vector

VV
Vθ

= −2
∑

t

(
y(t) − ym(t, θ )

) V
Vθ

ym(t, θ ) = −2
∑

t

(
y(t) − ym(t, θ )

)
⋅(

c1
V
Vθ

S(t− d1, θ ) + . . .+ cN
V
Vθ

S(t− dN , θ )
)

in steps 4 and 5. The optimization criterion (3.21) will typically have
several local minima, since it is non-linear in the parameters θ . It is
thus necessary to supply the optimization method with reasonable initial
values in order to find the correct local minimum. These initial values
may be obtained from the GUI described in the previous section.

Remark 2: The reason for allowing only first and second order factors
in the denominator is of course that these give a simple analytic expres-
sion for the step response. Second order systems may have either real or
complex poles, which leads to different expressions for the step response.
However, this is no problem since MATLAB handles complex arguments
to the trigonometric and hyperbolic functions. Higher order denomina-
tor factors could be handled by calculating the step response numerically
upon each iteration. However, this is very time consuming, especially if
the parameter gradients should also be calculated.

Remark 3: V (θ ) can be minimized using the MATLAB function constr
from Optimization Toolbox. The skeleton of the loss function to minimize
is shown in Listing 3.1. step_fcn should contain a string with a function
name for calculating the unit step response for a certain model structure.
Any of the parameters in the vector big_theta may be assigned mini-
mum and maximum values. Additional constraints may also be added as
a string cstr that should be evaluated to a vector with negative elements.

The procedure is illustrated by a few examples.

EXAMPLE 3.6—SIMPLE EXAMPLE.
Consider again the simple model structure

G(s) = K
sT + 1

e−sL (3.22)
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function [V,constraints] = ...
loss_fcn(big_theta,y_data,u,t,step_fcn,cstr)

%
theta = big_theta(1:end-1); % model parameters
y_0 = big_theta(end); % initial output level
y_step = feval(step_fcn,theta,t);

% unit step response
y_m = stepsum(y_step,u,t) + y_0;

% sum of delayed step responses
y_diff = y_data - y_m;
V = y_diff’*y_diff; % sum of squares
constraints = eval(cstr) % additional constraints

Listing 3.1 A MATLAB function for calculating the loss function in (3.21).

function y_step = lag1d_step(theta,t)
%
K = theta(1);
T = theta(2);
L = theta(3);
y_step = K*(1-exp(-(t-L)/T));
y_step(find(t<L))=0;

Listing 3.2 A MATLAB function for calculating the step response of the model
(3.22).

Its step response is calculated by the MATLAB function in Listing 3.2. This
function can be automatically generated using e.g. Maple or the Symbolic
Toolbox in MATLAB.

EXAMPLE 3.7—PARTIALLY KNOWN MODEL STRUCTURE.
For open-loop unstable plants, it is mostly necessary to do closed-loop
identification. Suppose that the plant transfer function is parameterized
as

Gp(s) = b0

s2 + a1s+ a2

with a1 and/or a2 negative. It can be stabilized by an ideal PD controller

Gr(s) = K (1+ sTd)

giving a closed-loop transfer function

Gc(s) = b0 K (1+ sTd)
s2 + a1s+ a2 + b0 K (1+ sTd)
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from the reference value to the output. If the controller parameters K and
Td are known, you may solve for θ = [b0 a1 a2]T directly from closed-loop
step response data if the model structure Gc(s) is used.

As hinted in step 4 above, there will be problems with singularities when
you are close to multiple poles. To realize this, consider the following
example:

EXAMPLE 3.8—MULTIPLE POLE SINGULARITY

G1(s) = ab
(s+ a)(s+ b)

(a, b > 0) with the corresponding step response

y1(t) = 1− be−at

b− a
− ae−bt

a− b
.

You will run into numerical problems when b is close to a. This can happen
either when the loss function actually has a local minimum at a � b, or
accidentally during the optimization for certain initial parameter values.
One solution is simply to add a constraint, for example

(a− b)2 > ε 2

with a small ε . It is possible to use a tool like Maple to find singularities
like the one above and add the constraints automatically. ε is chosen just
below the desired parameter accuracy.

Properties of the identification procedure

The process identification tool described in this chapter is not intended to
replace the use of traditional identification tools. Instead, it offers a fast
way of obtaining a coarse process model using available step response
data. The use of a least squares output error criterion is by no means
crucial. Many other methods exist for identifying a delayed first order
model from a single step response, for example methods based on area
calculations (Åström and Hägglund (1995)) and instrumental variable
techniques (Bi et al. (1999)). The least squares output error method has
been chosen since it is intuitive to interpret the result. More advanced
system identification methods and model structures may have to be used
if the demands on control performance is high. Still, the tool may be
useful as a "pre-modeler" in order to ,e.g., get the approximate timing of
the process and to detect non-linear behavior.

The proposed method for transient response analysis differs from tra-
ditional identification using, say, an ARMAX model in a number of ways:
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• The process model is formulated in continuous time instead of dis-
crete time.

• The transfer function may contain known process model structure,
whereas ARMAX uses black box modeling. It is, for example, difficult
to force all poles of a high order process to be real using ARMAX
modeling.

• The time delay may be identified, while in ARMAX modeling, it is
assumed to be known. If it is not known, you can identify and com-
pare models with different time delays. An alternative is to identify
many numerator coefficients, where the first ones will be close to
zero.

• It is not crucial to decide suitable sampling periods, even irregular
sampling is feasible.

• The proposed method minimizes the output error, whereas ARMAX
methods minimize the prediction error. This tends to give closer
output following when the models are under-parameterized. There
exist discrete-time output error methods that can be used instead of
ARMAX, should this be a problem.

• The loss function (3.21) typically has many local minima, so reason-
able initial estimates are crucial for convergence. ARMAX identifi-
cation is much less sensitive to this.

• Minimizing (3.21) gives a constrained non-linear optimization prob-
lem, typically solved with a sequential quadratic programming al-
gorithm. The computational effort is comparable to prediction error
and output error identification of ARMAX model structure.

• It is difficult to say anything about parameter consistency with the
proposed method.

3.5 Summary and Concluding Remarks

An interactive tool for simple system identification has been presented.
The graphical user interface handles a few process parameterizations as
well as static input and output non-linearities. The main focus has been
on providing an intuitive user interface where the step response of the
process model can be edited by hand using graphical handles. This ap-
proach gives a quick way to get a simple model of process dynamics and
non-linearities. In many cases this information is sufficient for designing
a PI(D) controller, possibly with gain scheduling.
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A wisely designed tool for process analysis should be possible to use
by people with varying background. Control loops that are well described
by delayed first order models are normally understood by several people
at a plant, and may thus be examined and tuned by these people. For
loops with more complex dynamics of higher order, or with zeros and
non-linearities, it may be necessary to use external expertise. Open-loop
data may then be sent to the central office of a vendor or a process control
company with highly qualified control engineers serving as support. Many
problems may then be easily sorted out, for example

• Static, as well as dynamic non-linearities.

• Bad controller tuning.

• Time-varying dynamics.

• Unrealistic demands on control performance.

If the tool includes good interactive help functions, it could instead be used
by process operators and instrument engineers to solve more advanced
problems. The tool would then serve as a means of raising the education
level and increase the awareness of control and dynamic behavior.
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4

Frequency Domain
Identification and Design

In Chapter 3, an estimate of the transfer function of the process was
derived from step response experiments. The model may be used for con-
troller design, for example using the methods presented in Panagopou-
los (1998). The design procedure was demonstrated in an example taken
from the pulp and paper industry. There is unfortunately no guarantee
that process models derived as in Chapter 3 are very accurate at the fre-
quencies that are relevant for control. Typically, frequencies around the
ultimate frequency ω u are most important in the control design, whereas
step response experiments instead contain most of their information at
lower frequencies. It would of course be possible to apply a PRBS-like in-
put signal which excites the relevant frequencies. The response can then
be analyzed, for example using the tool in the previous chapter. To do this,
the ultimate frequency must first be identified. Furthermore, it may be
cumbersome to find a suitable model structure which captures the impor-
tant part of the frequency response. It thus seems difficult to make an
automated tuning procedure based on this approach.

An alternative method will be introduced in this chapter. The key idea
is to automatically provide excitation which is well suited for identifica-
tion for control design. The signal is produced by relay feedback, discussed
in Section 4.1. The process response may be analyzed directly using fre-
quency domain estimation. This is described in Section 4.2. Design of PI
and PID controllers based on the estimate is discussed in Sections 4.3
and 4.4, respectively.
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4.1 Relay Feedback

Relay feedback has proven to be efficient for tuning PI and PID controllers
with a minimum amount of a priori known process data. The basic idea
is to pick one point on the Nyquist curve, and use that for calculating
controller parameters. A standard relay feedback experiment gives a point
close to the ultimate frequency. When the point has been identified, tuning
formulas similar to the Ziegler-Nichols ultimate gain method are used. A
review of the methodology may be found in Åström and Hägglund (1995).

The design methods that use only one point on the Nyquist curve work
well for a large number of systems, but in many cases they are too sim-
plistic. The performance and/or robustness of the closed-loop system may
improve significantly with more process knowledge. One method aiming
at this is the Kappa-Tau method, see Åström and Hägglund (1995). In
the frequency domain version of this method, both the static gain and the
ultimate point are used.

The behavior may be improved further if the full transfer function
is known. The design methods in Åström et al. (1998) and Panagopou-
los (1998) find the PI or PID controller which minimizes the integrated
error after a step load disturbance on the plant input. In order to ensure
good performance and robustness, additional constraints are put on the
maximum value loop Ms of the sensitivity function.

The design methods typically use the frequencies where the phase lag
of the plant is between −90○ and −240○ for checking the sensitivity con-
straint. Since the transfer function is normally not known, an estimate
which is accurate at the interesting frequencies must be used. In tradi-
tional relay feedback, the process information is concentrated around the
frequency of the limit cycle, and higher harmonics. Here, we suggest a
modified relay experiment which excites more relevant frequencies.

A relay with hysteresis

Relay feedback is a common way of forcing an otherwise stable plant to
oscillate in a controlled way. Many properties of relay feedback can be
understood by describing function analysis. If the input to the relay is a
sinusoid with amplitude a, the output is a square wave. The describing
function N(a) gives the relation between the amplitudes and the phases
of the input and the first harmonic of the output. The intersection be-
tween the Nyquist curve of the process and the negative reciprocal of the
describing function for the relay will provide approximations of the ampli-
tude and frequency of possible limit cycles. Consequently, an oscillation
that occurs under relay feedback provides an estimate of one point on
the Nyquist curve of the process. It is important to remember that this
estimate is only approximate. Details on describing function analysis are
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Figure 4.1 Input e and output u for a relay with amplitude d > 0 and hysteresis
ε > 0. The automaton describes the behavior.

found in textbooks on non-linear control, see for example Atherton (1975)
and Khalil (1992).

Figure 4.1 shows the response of a relay with amplitude d > 0 and
hysteresis ε > 0 to a sinusoid. The behavior is described by the automaton
in the same figure. The describing function for the relay is given by

N(a) = 4d
π a

(√
1−

(ε
a

)2
− i

ε
a

)
(4.1)

Its negative inverse forms a straight line with negative real part and
constant imaginary part −π ε/(4d). Different values of the ratio ε/d give
rise to different intersections with the Nyquist curve of the process and
thus different frequencies and amplitudes of the limit cycles. The main
reason for introducing hysteresis in the relay is traditionally to increase
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Figure 4.2 Input e and output u for a relay with amplitude d > 0 and hysteresis
ε < 0. The automaton describes the behavior. Note that the automaton works for
ε > 0 as well.

the robustness to noise. A noisy input to the relay will cross the zero level
repeatedly, causing undesired chattering of the ideal relay output. It is
therefore usually recommended that ε is chosen larger than the amplitude
of the measurement noise. As a consequence the relay will stop switching
if the input amplitude is less than ε . An alternative method that has been
used for avoiding chattering is to neglect relay crossings for a certain time
after each switch.

Negative hysteresis

As pointed out in Holmberg (1991), it is possible to use negative values
of both d and ε . The describing function may then be located in any of
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4.1 Relay Feedback

the four quadrants. If d > 0 and ε < 0, −1/N(a) is a straight line in
the second quadrant. However, care must be taken when implementing
this kind of relay. Since ε is negative, chattering due to noise may still
occur. To overcome this, another parameter ∆ is introduced. Figure 4.2
shows the behavior for this relay, both described by a time sequence and
an automaton. Note that the automaton will describe the behavior also
for ε > 0. The extra states compared to Figure 4.1 are required to make
sure that the input is outside ±eε e before switching again. If the input is
noisy, the relay will not exhibit chattering as long as ∆ is chosen larger
than the peak-to-peak amplitude of the noise. For ε ≥ ∆/2 the behavior
of this relay is equivalent to the one in Figure 4.1.

The formula for N(a) still be given by Equation (4.1). However, since
the relay will stop switching if the input amplitude is less than amin =
max(−ε + ∆, ε ), N(a) will not be defined for a < amin. Thus, the negative
inverse of the describing function then starts in the point

− 1
N(amin) =


−i

π ε
4d

, ε ≥ ∆/2

− π
4d

(√
∆ (∆ − 2ε ) + iε

)
, ε < ∆/2

(4.2)

For the case ε < ∆/2 you may instead write

∣∣∣∣− 1
N(amin)

∣∣∣∣ = π (∆ − ε )
4d

arg
(
− 1

N(amin)
)
= −π + arcsin

ε
∆ − ε

(4.3)

The negative inverse of the describing function is plotted for a fixed value
of ∆ and different values of ε in Figure 4.3.

The benefit of using negative hysteresis will be demonstrated later
in this chapter. The implementation of the relay using the automaton in
Figure 4.2 is useful even if negative hysteresis is not needed. For example,
it makes it possible to implement a relay with zero hysteresis that works
properly also for noisy measurements.

As pointed out previously in this section, the relay with a fixed hys-
teresis provides most excitation at the fundamental frequency of the limit
cycle. The higher harmonics are also be excited, but to a much lesser
extent. This may not be sufficient for advanced control design methods,
such as the ones in Panagopoulos (1998), which require knowledge of the
frequency response over a larger interval.
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ε < ∆/2

ε = ∆/2
ε = 0

ε = −∆

Figure 4.3 The negative inverse of the describing function for fixed ∆ with differ-
ent values of ε . The imaginary part is always −π ε/(4d). The dotted line shows the
starting point for different choices of ε .

Several authors have suggested modifications to the relay feedback
method to obtain more information. Shen et al. (1996) use a biased re-
lay to obtain both the critical point and the static gain. A parasitic re-
lay can be used to estimate three points on the Nyquist curve, see Bi
et al. (1997). A filter with variable phase shift may be cascaded with
the plant to give rise to limit cycles with different frequencies, see for
example Schei (1992). With this approach you must perform individual
identification experiments for each of the interesting frequencies, since
the plant put under relay feedback will be time-varying. This restriction
is valid regardless if describing function analysis or any other method is
used. Johansson (1997) suggests two different relay experiments, the or-
dinary one plus one with an integrator in series with the plant. The relay
experiments, together with an estimate of the static gain, give the three
points on the Nyquist curve with 0, −90○ and −180○ phase shift. There
is then one third order model with one zero which matches these points
exactly. However, the frequency response using this model may deviate
substantially from the true one.

Time-varying hysteresis

A time-varying hysteresis will now be introduced as a means of achieving
excitation for a larger frequency range than a fixed relay would give.
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4.2 Frequency Domain Identification

There are two basic experimental setups that can be used:

1. Let the hysteresis level be constant until a stationary limit cycle is
obtained for each frequency point that should be estimated. This is
required if describing function analysis should be used.

2. Change the hysteresis level upon each relay switch. There will then
be no stationary limit cycle. The data series may instead be used for
traditional system identification.

The main drawback of the first method is that the time required for the
experiment will be very long if a large number of frequency points is
needed. The second method will thus be explored.

Next, the experimental conditions such as sampling rates, interval of
used hysteresis ε , and length of the experiment must be decided. This
will be further discussed later Section 4.2. For now it is necessary to
observe that the range of ε must be wide enough to provide excitation in
the frequency interval that should be used in the control design. Typically,
the plant phase shift should vary between approximately −90○ and −240○.
In order to ensure excitation at high frequencies, the relay with negative
hysteresis may be needed.

4.2 Frequency Domain Identification

The data obtained from the relay experiment in Section 4.1 is used for
identification. Two different classes of models can be used:

• Parametric models, where a model structure must be selected and
identified, e.g. using the tool in Chapter 3, or some prediction error
method. If the frequency response is needed, for example in control
design, this is of course easily computed from the model.

• Non-parametric models, where for example the frequency response
is estimated directly.

In this work, a non-parametric model of the frequency response will be
used. The reason is that it may be difficult to select an appropriate model
structure, particularly if this should be done automatically in an auto-
tuning scheme.

The model used here is based on the empirical transfer function esti-
mate, ETFE, of the process, see for example Ljung (1999). Let the Discrete
Fourier Transform (DFT) of the output vector y(k) and the input vector
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u(k) be given by

YN(ω ) = DFT(y(k)) = 1√
N

N∑
k=1

y(k)e−iω k

UN(ω ) = DFT(u(k)) = 1√
N

N∑
k=1

u(k)e−iω k

where N is the number of observations and the frequency ω is normalized
to the interval [−π , π ]. Note that the DFT is only defined at frequencies
ω = 2π k/N with k integer. Furthermore, it is periodic with period N.

The ETFE is given by

ˆ̂GN(eiω ) = YN(ω )
UN(ω ) (4.4)

The estimate has the correct expected value for each frequency point. Un-
fortunately, it is not a smooth function, regardless of the number of data
points used in the experiment. The reason for this is that the estimates
at two neighboring frequencies have approximately the same variance,
but are asymptotically uncorrelated. To overcome this, the Fourier trans-
forms can be smoothed by using a convolution window function Wγ (ω )
before forming the ETFE. The transfer function estimate is then given by

ĜN(eiω ) =
∫ π
−π Wγ (ξ −ω ) eUN(ξ )e2 ˆ̂GN(eiξ )dξ∫ π

−π Wγ (ξ −ω ) eUN(ξ )e2 dξ

=
∫ π
−π Wγ (ξ −ω )YN(ξ )UN(ξ )dξ∫ π
−π Wγ (ξ −ω ) eUN(ξ )e2 dξ

(4.5)

where γ is a shape parameter, related to the length of the window. More
precisely, γ is the length of the lag window wγ (τ ), which is the inverse
Fourier transform of Wγ (ω ). This is a form of averaging and the variance
of the estimates will be reduced. A bias is, however, also introduced since
the averaging is performed over a range of frequencies. The length of
the frequency window is a trade-off between bias and variance. Longer
windows result in lower variance but more bias. This bias is small if the
true G(iω ) is fairly constant over the window length.

The functions spa and etfe in the System Identification Toolbox for
MATLAB both do essentially the desired estimation of the frequency re-
sponse. The function spa is more suited for long frequency windows Wγ (ω )
and etfe for shorter frequency windows. Both functions use Hamming

80



4.2 Frequency Domain Identification

windows for smoothing the estimate; spa uses windows on the estimated
covariance function, etfe operates directly in frequency domain, as in
Equation (4.5).

Other authors have studied the use of DFT on relay feedback data
from a relay with fixed hysteresis, see for example Wang et al. (1999).
However, a time-varying hysteresis gives better estimation over a larger
frequency interval.

There are fundamental difficulties with identification in closed loop
under linear feedback, see for example Gustavsson et al. (1977). Relay
feedback is, however, far from linear and it only acts at the brief instants
when the output crosses the hysteresis level. We have not encountered
any difficulties, but the problem undoubtedly deserves a theoretical in-
vestigation.

Experimental conditions

When doing system identification, it is crucial that the experimental con-
ditions are appropriate. Important issues are for example:

1. How should the input signal be designed? Stated differently, between
which values should ε vary, and in what way?

2. How many data points N should be collected?

3. What sampling time h should be used?

Each question affects the result in different ways, but they are still cou-
pled to each other. The influence of different design parameters in the
identification algorithm will be explored using the plant transfer function

G(s) = 1
(s+ 1)7 (4.6)

taken from the batch of transfer functions used in Panagopoulos (1998)
for PID design. All plants in this batch and several more have been tested.
Even if only a few processes are discussed here, the results carry over to
other processes, possibly with slight modifications.

Selection of hysteresis interval When evaluating the feasibility of
the method, a simple strategy for changing the hysteresis ε has been
used. It is initially set to a large value ε max and then decreased linearly
to ε min. Finally the input is reset to its initial value until the output set-
tles. This reduces the effect of the implicit assumption of periodic signals
when computing the DFT, see for example Oppenheim and Schafer (1989).
Wang et al. (1999) solve this by decomposition of the output into a peri-
odic and a transient part. This method cannot be used for a relay with
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Figure 4.4 The Nyquist curve of G(s) = 1/(s+1)7 together with three describing
functions. They correspond to the preliminary choice of a) ε = ε min with ∆ = 0, b)
ε = ε min with ∆ = 0.4d, and c) ε = ε max .

time-varying hysteresis since the output will not reach a stationary limit
cycle.

Preliminary limits for ε min and ε max will now be assessed. The fol-
lowing discussion is not intended as a practical guideline for choosing
limits, but is included in order to provide some insight, and to relate to
the standard analysis of relay feedback systems.

The describing function analysis can either be done by looking at the
Nyquist curve or the inverse of the Nyquist curve. The latter provides
more exact results, see Khalil (1992), but the former is more commonly
used. No oscillation may be predicted using describing function arguments
if −1/N(a) does not intersect the Nyquist curve of the plant. An estimated
upper limit of ε is then given by the point where the plant has −90○ phase
shift. From Figure 4.4 it is found that this point is −0.837i for the given
G(s), and the corresponding ε max = 4d ⋅0.837/π = 1.066d. However, since
G(s) has a monotone step response and static gain 1, it is obvious that
ε must be less than d, since the output would never cross the hysteresis
level otherwise. Rather arbitrarily, ε max is initially set to 0.9d.

The estimate of ε min is obtained from the intersection between G(iω )
and the parabola described by Equation (4.2). If there is no measurement
noise, ∆ may be chosen arbitrarily close to zero, and −1/N(a) can be
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Figure 4.5 Noise-free simulation of a relay experiment with varying hysteresis.
The input power spectrum is shown in the lower plot. Note the logarithmic scales.

chosen to intersect G(iω ) close to its highest point in the third quadrant.
This corresponds to ε min = −4d ⋅ 0.228/π = −0.291d in this case, see
Figure 4.4. In the presence of white measurement noise, ∆ should be
greater than the maximum peak-to-peak value of the noise. With ∆ =
0.4d, the describing function starts at the dotted parabola in Figure 4.4.
Consequently, ε min should be higher than −4d ⋅ 0.109/π = −0.138d. Note
however that the noise occasionally makes the relay switch too early, and
thus the output amplitude may not reach the level ∆−ε which is required
for the oscillation to persist. The describing function analysis, which is
approximate anyway, should thus be used only as a guideline.

The describing function analysis indicates that different plants require
different ranges of the hysteresis. For example, plants dominated by a
long dead time has a large value of eG(iω )e while the phase is dropping
from −90○ to −270○. It will thus be possible to use approximately as large
negative as positive values of ε . On the other hand, processes which are
dominated by a first order time constant do not allow any negative values
of ε at all, particularly if noise is present.

Noise-free estimation A noise-free simulation of a relay experiment is
shown in Figure 4.5. The lower plot shows the power spectrum eUN(w)e2
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of the input signal. The following parameters are used in the experiment:
h = 0.1, ε max = 0.9, ε min = −0.29 and the number of hysteresis levels
Nε = 20. The number of data points N becomes 2175. The input is zero
long enough for the output to return close to zero.

As a comparison, a simulation of a relay with fixed hysteresis ε = 0.01
is shown in Figure 4.6. The number of switches has been increased so
the number of data points in each experiment is almost identical. It is
clear that the input power spectrum in Figure 4.6 has higher but more
narrow peaks. This shows that the excitation is more evenly spread with
a time-varying relay.

The exact and the estimated Nyquist curves are shown in Figure 4.7.
No smoothing windows are used, so the estimated frequency response
is simply obtained by dividing the Fourier transforms of the output and
the input. The estimation is perfect within the plotting accuracy. This is
actually the case also for fixed relay with no noise present.

Influence of measurement noise Now, introduce additive noise to the
process output:

y(k) = G(q)u(k) + v(k) (4.7)

where G(q) is the true pulse transfer operator of the plant. In this work,
v(k) is assumed to be white noise with zero mean and standard deviation
σ .

Figure 4.8 shows simulations with two different levels of the measure-
ment noise, σ = 0.01 and σ = 0.1, respectively. The ETFE will not be
perfect in the presence of disturbances. The amplitude curve of the ETFE
with the noise-free situation and with the two different noise sequences
is shown in Figure 4.9. For σ = 0.01 the noise does not give very much
error in the estimates up to ω = 1. However, with σ = 0.1 the estimates
for frequencies outside the interval ω = 0.2 and ω = 0.6 have substan-
tial errors. The acceptable interval is of course where the most of the
excitation is concentrated during the relay experiment. The correspond-
ing phase shift of the process falls from � −80○ to � −220○. This should
cover the interesting frequency interval in the PI and PID designs. Even
within the interesting interval, the relative error of the amplitude may
be as large as a few percents, and the phase error may be a few degrees.
Thus, the ETFE should probably not be used directly in this case.

The quality of the estimate may be assessed by plotting the coherency
spectrum κ yu(ω ) between the input and output. It is defined by

κ yu(ω ) = eΦ yu(ω )e√
Φ y(ω )Φu(ω )

(4.8)
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Figure 4.6 Noise-free simulation of a relay experiment with fixed hysteresis.
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Figure 4.7 Perfect fit of estimated and true Nyquist curves from the noise-free
simulation.
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Figure 4.8 Simulations with white measurement noise. The standard deviation
of the noise is σ = 0.01 (upper plot) and σ = 0.1 (lower plot).
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Figure 4.9 Amplitude curve of the ETFE with measurement noise. The curves
correspond to σ = 0 (solid), σ = 0.01 (dotted) and σ = 0.1 (dashed).
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Figure 4.10 Coherency spectrum between y and u for σ = 0.01 (upper plot) and
σ = 0.1 (lower plot). The curves are smoothed by averaging.

where Φ y(ω ) and Φu(ω ) are the autospectra of y and u, respectively,
and Φ yu(ω ) is the cross spectrum between u and y. The spectra can be
estimated as the Fourier transform of the corresponding covariance func-
tion multiplied by an appropriate window. The coherency spectrum is a
measure of the linear correlation between the input and output for dif-
ferent frequencies. A value close to 1 indicates that there is substantial
correlation, and a value close to 0 indicates that the signals are almost
uncorrelated. The estimated coherency spectra for two noise levels are
shown in Figure 4.10. They show that it is reasonable to use the signals
for frequencies up to 1 rad/s for σ = 0.01 and up to approximately 0.6
rad/s for σ = 0.1. For higher frequencies, the noise term v(k) in (4.7)
dominates over the term G(q)u(k).

According to Ljung (1999) the variance for each point of the ETFE is
asymptotically given by

Φv(ω )
eUN(ω )e2 (4.9)

where Φv(ω ) is the spectral density of an additive disturbance. When v(k)
is white measurement noise, Φv(ω ) is just a constant equal to the vari-
ance σ 2. The variance of the estimate is then proportional to the inverse of

87



Chapter 4. Frequency Domain Identification and Design

the input spectrum. From Figure 4.5 it can be seen that the variance will
be small in a frequency band from approximately 0.2 to 0.6 rad/s. Note
that the input spectrum will not change drastically when measurement
noise is introduced. The reason for this is that the input signal unaf-
fected except for small variations in the switching instants. The noise
typically causes the relay to switch a little earlier, making the oscillation
frequencies slightly higher and the total experiment time shorter. The in-
put spectrum is therefore shifted, and the frequency resolution is slightly
lower. The deviations from the noise-free case are, however, marginal.

Normally, the noise power spectrum is not known. As pointed out in
Ljung (1999), it may be estimated as

Φ̂v(ω ) = Φ̂ y(ω ) − eΦ̂ yu(ω )e2
Φ̂u(ω )

(4.10)

Equation (4.9) then gives an estimate of the variance of ĜN(eiω ).

Length of experiment The number of values Nε between ε max and
ε min determines how the different frequencies are excited. It will also
affect the length of the experiment. This in turn determines the frequency
resolution in the ETFE. The frequency difference between two consecutive
points of the DFT is given by

∆ω = 2π
Nh

= 2π
Tf

(4.11)

where Tf is the duration of the experiment. If Tf is increased, ∆ω becomes
smaller, and G(iω ) at neighboring frequencies become closer to each other.

Even if the frequency resolution is higher with a longer experiment,
the variance of ĜN(eiω ) at a specific frequency point will be approximately
the same. A consequence of this is that large deviations of the estimates
are more likely for long experiments. This is illustrated in Figure 4.11.

The upper plot in Figure 4.12 shows the input power spectrum for
the input signal corresponding to the case Nε = 80 in Figure 4.11. The
lower plot shows the inverse of the input power spectrum if a fixed relay
hysteresis is used, still with 80 switches in the relay and approximately
the same number of data points. Compared to the noise-free case with
Nε = 20 in Figures 4.5 and 4.6, the bands of excitation are more distinct,
but not drastically different.

Windowing The main reason for introducing a frequency window is to
reduce the variance of the points in the estimated frequency response.
This is done at the expense of a bias in the estimate. Thus, the average
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Figure 4.11 Amplitude curves of the ETFE with σ = 0.1 for different experiment
durations. The dashed curves correspond to the true amplitude curves.

errors will inevitably be larger when using a window. However, since the
estimates are smoother, there may be smaller errors in the first and second
derivatives of the estimated frequency response.

The ratio between the estimated and true amplitude curves is shown
for different choices of window lengths in Figure 4.13. The corresponding
phase error is shown in Figure 4.14. The same experiment with Nε = 20
and σ = 0.1 has been used in all cases. The effects on bias and variance
are obvious in the figure. The variance for M = 1 may cause trouble
when differentiating the frequency response. On the other hand, the bias
introduced by the longer windows will cause errors, both in the frequency
response and its derivatives. The RMS error will often be larger with a
longer window, despite the fact that variance decreases.

According to Ljung (1999), the bias is asymptotically given by

EĜN(eiω ) − G(eiω ) = M(γ ) ⋅
(

1
2

G′′(eiω ) + G′(eiω )Φ′
u(ω )

Φu(ω )
)

(4.12)

where M(γ ) is a number which depends on the shape of the window. For a
Hamming window it is proportional to the square of the length of the fre-
quency window. It is thus natural that the bias increases with the window

89



Chapter 4. Frequency Domain Identification and Design

10
−2

10
−1

10
0

10
1

10
−3

10
0

10
3

10
−2

10
−1

10
0

10
1

10
−3

10
0

10
3

Figure 4.12 Input power spectrum for time-varying (upper plot) and fixed (lower
plot) hysteresis with Nε = 80.

length. Another observation is that the second term in Equation (4.12) is
proportional to the derivative of the input spectrum. By comparing with
Figure 4.5, this can explain the large phase errors at ω = 0.2 and ω = 0.6.

One way of reducing the bias for long windows is to use longer ex-
periments. According to Equation (4.11), this increases the frequency
resolution, and thus makes the frequency response estimates closer for
neighboring frequencies.

Choice of sampling interval The PI and PID design methods that
will be used are based on continuous-time models. It is thus desired that
the effects of the sampling interval on the estimated frequency response
are minimized. The most striking effect of the sampling interval h is that it
defines the highest frequency for which the DFT is computed. Faster sam-
pling results in more data points for a given Tf , which increases the CPU
time and memory requirements in the calculations. When no disturbances
are present, the choice of h does not have any dramatic effect on the qual-
ity of the transfer function estimate. Slow sampling will introduce some
discrepancies between the frequency responses of the continuous-time pro-
cess and the sampled one. The main difference is the extra phase lag in-
troduced by the sampling. According to Åström and Wittenmark (1997),
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Nε = 20 and σ = 0.1 in all cases.
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Chapter 4. Frequency Domain Identification and Design

this is approximately given by ω h/2 radians, which can be added to the
estimated frequency response.

When there are substantial disturbances during the experiment, the
choice of sampling interval has large influence on the quality of the es-
timated frequency response. First, assume that an experiment has been
conducted with N data points using a sampling interval h. The corre-
sponding input signal is u(k) and its Fourier transform is UN(ω ). The
variance of the transfer function estimate at each frequency is then given
by Equation (4.9). When v(k) is white noise with variance σ 2, Φv(ω ) = σ 2

irrespective of the sampling interval.
Now, the sampling interval will be reduced by a factor L. This re-

sults in modified switching instants, corresponding to a new input signal
ū(k) with Fourier transform ŪLN(ω ). In order to simplify the analysis
we will however make the assumption here that the switching instants
do not change. L is then required to be an integer, but this is no serious
restriction. ū(k) then consists of LN points.

Using the assumption above, we have

u(k) = ū(Lk) = ū(Lk− 1) = . . . = ū(L(k− 1) + 1) (4.13)
The Fourier transform of ū(k) is then given by

ŪLN(ω ) = 1√
LN

LN∑
k=1

ū(k)e−iω k

= 1√
LN

( N∑
k=1

ū (Lk) e−iω Lk +
N∑

k=1

ū (Lk− 1) e−iω (Lk−1)+

. . .+
N∑

k=1

ū (L(k− 1) + 1) e−iω (L(k−1)+1)
)

(4.14)

Using (4.13) and the definition of the DFT we get

ŪLN(ω ) = 1√
L

(
1+ eiω + . . .+ ei(L−1)ω

)
⋅ UN(Lω )

= 1√
L

⋅
eiLω − 1
eiω − 1

⋅ UN(Lω ) (4.15)

Note that ω is the normalized frequency for each sequence, defined from
−π to π . ŪLN(ω ) and UN(Lω ) thus refer to the same absolute frequency.
After simplifications, the power spectrum of the new input signal can be
written as∣∣ŪLN(ω )

∣∣2 = 1
L

⋅
cos(Lω ) − 1
cos(ω ) − 1

eUN(Lω )e2 = cL(ω ) eUN(Lω )e2 (4.16)
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Figure 4.15 The scaling factor cL(ω ) of the input power spectrum with 4 times
higher sampling frequency. Note that the power spectral density is increased for all
frequencies below the original Nyquist frequency (π /4).

The scaling factor cL(ω ) between the two power spectra is plotted in Fig-
ure 4.15 for L = 4. For low frequencies we have

cL(ω ) � 1
L

⋅
1− 1

2 L2ω 2 − 1

1− 1
2ω 2 − 1

= L (4.17)

According to Equation (4.9) the variance of the transfer function estimate
for low frequencies will thus be reduced by a factor L. For higher frequen-
cies, cL(ω ) < 1, and the corresponding variance would instead increase.
On average, the variance in fact remains constant, which is reasonable,
since u(k) and ū(k) correspond to the same continuous-time signal with a
certain energy. However, for frequencies below the Nyquist frequency for
the original data, we have cL(ω ) > 1 for all L > 1. For the frequencies of
interest, we typically have cL(ω ) � L.

Even if the analysis above is done by resampling a fixed control sig-
nal u(k), the result is approximately correct for the actual ū(k) which
is produced by relay feedback using faster sampling. In the interesting
frequency interval we thus have that the variance of each point in the
transfer function estimate is approximately proportional to the sampling
interval h for a fixed length of the experiment. In theory it is then possible
to have arbitrarily good estimates by increasing the sampling rate. The
price for the benefits is increased CPU and memory requirements.
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Chapter 4. Frequency Domain Identification and Design

4.3 PI Control

The main purpose of the process identification in Section 4.2 is to design a
controller. The identification procedure was tailored to give good estimates
of the frequency response where the phase shift of the process is between
approximately −90○ and −240○. The estimated frequency response of the
process will be used in this section for designing robust PI controllers.

Design method

The design procedure for PI controllers is taken from Åström et al. (1998),
and will be discussed briefly here. The basic idea is to find the controller
which minimizes the integrated error

I E =
∫ ∞

0
(ysp(t) − y(t)) dt

after a step load disturbance on the plant input. When the plant is con-
trolled by a PI controller

Gc(s) = k
(

1+ 1
sTi

)
= k+ ki

s
(4.18)

it is straightforward to show that I E is given by

I E = 1
ki

(4.19)

The integrated error is thus minimized by maximizing the integral gain
ki. There is however no guarantee that a large ki by itself results in
good performance. On the contrary, large ki will mostly make the closed-
loop system badly damped, which leads to an oscillating load disturbance
response. The integrated error may still be small, whereas the integrated
absolute error I AE may be arbitrarily large.

The solution is to maximize ki subject to constraints on the loop trans-
fer function. For example, it is possible to limit the maximum value of the
sensitivity function to a certain value Ms, which may then be used as a
design parameter. This measure has nice robustness properties, and may
be interpreted geometrically as the inverse of the minimum distance from
the Nyquist curve of the loop gain to the point −1. A slightly more general
constraint is to force the loop gain to avoid the circle with its center in
−C and radius R. The constraint on the sensitivity function is obtained
by setting C = 1 and R = 1/Ms.

It should be noted that it is not the use of I E per se that makes it
necessary to add constraints on the loop gain. Even if I AE is minimized,
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4.3 PI Control

the resulting controller will perform badly and have bad robustness if no
additional constraints are used, see Andreas and Åström (1997).

In Åström et al. (1998) it is shown that the optimization problem
outlined above can be reduced to solving a non-linear equation. Introduce
polar coordinates for the frequency response of the process

G(iω ) = r(ω )eiϕ(ω ) (4.20)

which is assumed to be known. Define the function

h(ω ) = 2R
(
(R + C sinϕ(ω ))

(
r′(ω )
r(ω ) −

1
ω

)
− Cϕ ′(ω ) cosϕ(ω )

)
(4.21)

The frequencies ω 0 where the constraint is active are then solutions to the
equation h(ω 0) = 0. This equation may have many solutions, but Åström
et al. (1998) show that only frequencies where the plant has a phase shift
between −90○ and −180○ need to be checked. If the frequency response
is monotonous in this interval, there exists exactly one solution in this
interval. Furthermore, it should hold that

dh
dω
(ω 0) < 0 (4.22)

at the optimum. The controller gains are given by

k = − C
r(ω 0) cosϕ(ω 0), (4.23)

ki = − ω 0

r(ω 0) (C sinϕ(ω 0) + R) (4.24)

In order to improve the set point step response, a set point weight-
ing factor b on the proportional part is introduced. b is allowed to vary
between 0 and 1, and selected to obtain, if possible,

max eGsp(iω )e = 1

where Gsp(s) is the transfer function from the set point to the plant out-
put. Once the parameters k and ki are computed, it is straightforward
to calculate b, see Åström et al. (1998). A more advanced method for
obtaining nice set point responses is described in Chapter 5.

The design method outlined here is applicable to all processes with
a phase shift of −180○ or less for high frequencies. For minimum-phase
plants with relative degree one, k and ki can be increased infinitely with-
out violating the sensitivity constraint. However, since the problem is
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Figure 4.16 The function h(ω ) for a design with Ms = 2.0 for σ = 0 (full), σ = 0.1
(dashed), and σ = 0.01 (dotted). ĜN(eiω ) is taken as the raw spectral estimate.

solved by looking at a frequency interval, there may exist some local max-
imum to ki as long as the phase shift is between −90○ and −180○ in a
sufficiently large interval. This situation is probably not very common in
practice, since most plants have high frequency roll-off rather than high
frequency amplification.

Design based on estimated frequency response

In practice, it is not reasonable to assume that G(iω ) is known exactly.
The estimate ĜN(eiω ) taken from Equation (4.5) in Section 4.2 will be
used instead. The functions r(ω ) and ϕ(ω ) in Equation (4.21) are just
vectors of floating point numbers. r′(ω ) and ϕ ′(ω ) are obtained through
differentiation of these vectors. Since differentiation is a noise sensitive
operation, the differentiated vectors may have to be low-pass filtered.

The problem is then solved by forming the real-valued vector h(ω ) from
Equation (4.21) and finding zero crossings of this vector in the interval
where −π < ϕ(ω ) < −π/2. The condition (4.22) reduces to a sign check
of h(ω ) on each side of the zero crossing. ω 0 may be refined slightly by
doing linear interpolation to find a better estimate of the zero crossing.

Figure 4.16 shows the function h(ω ) for PI designs with Ms = 2.0.
The relay experiment was simulated with the parameters ε max = 0.9,
ε min = −0.1, Nε = 20 and h = 0.1, using both σ = 0, σ = 0.01 and
σ = 0.1. No window or filtering has been used in the estimation of G(iω )
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Figure 4.17 Simulations of PI control with Ms = 2 using raw spectral estimates.
20 different noise sequences with σ = 0.1 has been used in the relay experiments.

or its derivative.
The zero crossings for the full and dotted lines, corresponding to σ = 0

and σ = 0.01, are very close to each other. After linear interpolation
of the numerical vectors, the solution is given by ω 0 = 0.284 in both
cases. This corresponds to a phase shift of −111○ of the process. From
Equations (4.23) and (4.24) the controller parameters are calculated as
k = 0.47 and ki = 0.16.

Simulations with σ = 0.1 have more variance in ĜN(eiω ), which gives
a noisy h(ω ), and the solution ω 0 typically varies between 0.27 and 0.30.
Consequently, the controller parameters may vary substantially. From
Equations (4.23) and (4.24) it may be concluded that k (and Ti) will vary
more than ki in this case, since cos(ϕ(ω )) varies more than sin(ϕ(ω ))
around ω 0. The actually obtained Ms value may also vary from approxi-
mately 1.9 to 2.1. Figure 4.17 shows 20 simulations of set point and load
disturbance responses on top of each other. These simulations show that
the behavior does not change dramatically even if k and ki varies as much
as 15% and 5%, respectively.

In order to decrease the variations even further, the uncertainties in
h(ω ) must be reduced. In Section 4.2 it was found that this may be done
either by decreasing the sampling interval h, or by using a frequency
window according to Equation (4.5). In Section 4.2 it was found that the
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Figure 4.18 The nominal function h(ω ) with no windowing (full), window lengths
5 (dashed), and 9 (dotted). Bias in ĜN(eiω ) causes large errors in h(ω ).

variance of the estimated frequency response is approximately propor-
tional to the sampling interval. This is transformed in a non-trivial way
to the function h(ω ), to the solution ω 0, and to the parameters k and ki.
Simulations have shown that there is a noticeable reduction in variance of
the estimated ω 0, k, and ki when h is decreased. However, the reduction
in variance is less than proportional to the reduction in sampling interval,
whereas the memory and CPU requirements increase faster than this.

When using a frequency window, the length should be chosen at least
as M = 5, and preferably much larger, in order to achieve a noticeable
reduction of the variance in the estimate. However, the bias actually may
introduce even larger errors in h(ω ). The nominal function is plotted in
Figure 4.18 together with the distorted function for two different window
lengths. The bias will give rise to systematic errors in ω 0. These errors
happen to be almost zero for the combination of the process, the Ms value,
and the window lengths used in Figure 4.18. With longer experiments, the
systematic errors will be reduced. However, again the memory and CPU
requirements increase.

Most of the variance in h(ω ) comes from the differentiations. Low-pass
filtering of these differentiated vectors is then another way of obtaining
improved results. By using non-causal FIR filters with linear phase, it is
possible to achieve a smoother function without introducing bias in h(ω ),
see Figure 4.19. It is of course important to choose the cut-off frequency
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Figure 4.19 The function h(ω ) for σ = 0 (full), σ = 0.1 (dashed), and σ = 0.01
(dotted) after low-pass filtering of Ĝ′

N(eiω ).

high enough in order to capture the variations of the true frequency re-
sponse. It turns out that low-pass filtering is the most efficient way of
reducing the uncertainties in the control design.

The identification and design procedure outlined here works very well
for PI design of all test processes in Panagopoulos (1998), as soon as good
values for ε min and ε max are found. The test batch has been evaluated
for the noise levels σ = 0.01 and 0.1 using h = 0.1 and Nε = 20 as
default parameters. In most cases a lower Nε may be used, and some
faster processes require lower h.

4.4 PID control

Design method

The basic idea from the PI design carries over to the PID case. The PID
controller is given by

Gc(s) = k
(

1+ 1
sTi

+ sTd

)
= k+ ki

s
+ kds (4.25)

The integrated error after a step load disturbance is still minimized by
maximizing ki. By using the derivative action for lifting the phase curve
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Figure 4.20 The loop transfer function for the PID design which maximizes ki
with G = 1/(s+ 1)7, Ms = 1.4.

it is possible to obtain a higher ki compared to the PI design without
violating the sensitivity constraint. However, too much phase lead may
cause undesired shapes of the Nyquist curve of the loop gain. There may
for example be more than one point of tangency of the Ms circle, see Fig-
ure 4.20. This leads to worse robustness properties. In order to avoid too
much phase lead, some additional constraint must be used. In Panagopou-
los (1998) the following constraints are used close to the Ms circle:

• The loop transfer function should have decreasing phase curve.

• The curvature of the loop transfer should be negative.

These constraints give a nice shape of the loop gain without being overly
conservative. One drawback with is that the computation of the curvature
involves two differentiations of the frequency response of the process.
Since G(iω ) is not known exactly, the variance in ĜN(eiω ) is amplified
dramatically by the differentiations. These variations may be reduced by
windowing and low-pass filtering. It is however still difficult to obtain a
smooth and accurate estimation of the curvature for high noise levels.

Another way of putting limits on the phase lead is to use a fixed ra-
tio between Ti and Td. For example, Ziegler-Nichols tuning methods use
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4.4 PID control

Ti/Td = 4, which is the lowest ratio to avoid complex zeros of the con-
troller. The constraints on loop transfer phase and curvature result in
different ratios depending on the process and the chosen value of Ms. For
the test batch in Panagopoulos (1998), the ratio lies in the range 1.2–2.6.
This indicates that Ti/Td = 4 may be overly conservative, and there is no
fundamental reason for sticking to this ratio. However, the optimization
problem will have an elegant solution in this case. With Ti/Td = 4 the
controller may be written as

Gc = k
(

1+ 1
sTi

+ sTi

4

)
= k

(
Ti
2 s+ 1

)2

Tis
= kL

(TL
i s+ 1)2
TL

i s
(4.26)

where kL = k/2 and TL
i = Ti/2. Thus, the PID design can be solved by

doing a PI design for the modified plant

GL(s) = (Ts+ 1)G(s) (4.27)

where T should be chosen as the integral time TL
i . Since the modified

plant contains the unknown variable TL
i , the problem needs to be solved

iteratively. A straightforward algorithm is defined by:

GL
0(s) = G(s) −→ TL

i1

GL
1(s) = (TL

i1s+ 1)G(s) −→ TL
i2

GL
2(s) = (TL

i2s+ 1)G(s) −→ TL
i3

. . .

It turns out that this simple scheme mostly converges to the desired so-
lution. The iteration is illustrated for the plant G(s) = 1/(s + 1)7 in
Figure 4.21. The full line shows the optimal Ti for the modified plant
(1 + sT)G(s). The algorithm will converge if eT ′

i (T)e < 1 in a neighbor-
hood of the intersection with the straight line with unit slope. This is the
case for all plants in the test batch used in Panagopoulos (1998). Ti(T)
normally is a monotonically decreasing function, since higher T gives a
faster plant, which mostly has a lower optimal Ti. Furthermore, the curve
starts at the optimal Ti for the original plant G(s) and ends at the optimal
Ti for the differentiated plant sG(s).

As mentioned in Section 4.3, PI controllers for minimum-phase plants
with pole excess one can be made arbitrarily fast and the integral gain
can thus be made arbitrarily large. The design problem that maximizes
the integral gain is thus not well posed. Analogously, the PID design
problem is not well posed for minimum-phase plants with pole excess two.
From Åström et al. (1998) it is also known that a monotonous frequency
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Figure 4.21 Iterative PI design of modified plant. The full line shows the integra-
tion time Ti from a PI design of the plant (Ts+ 1)/(s+ 1)7.

response of the plant facilitates the PI design problem because suitable
initial values for the optimization can always be found. Since the iterative
scheme for PID design introduces phase lead, it is not obvious that the
modified plant has a monotonous frequency response in the interesting
interval. Extra care must thus be taken when solving the PI subproblems.

The different constraints will now be illustrated in an example. Fig-
ures 4.22 and 4.23 show the behavior for PID control of the process
G(s) = 1/(s+1)7 with two different values of Ms, and when using different
constraints:

A. Maximum sensitivity Ms and fixed ratio Ti/Td = 4 (full lines),
B. Maximum sensitivity Ms, decreasing phase curve and negative cur-

vature (dashed lines), and

C. Maximum sensitivity Ms only (dotted lines).
The I E and I AE after a step load disturbance is summarized in Table 4.1.
As might be expected, I E is slightly higher when a fixed ratio is used
and the corresponding time responses are overdamped for Ms = 1.4. On
the other hand, the underdamped behavior for Ms = 2.0 with the other
designs are avoided with the fixed ratio, so the I AE is actually lowest for
this design.
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Figure 4.22 Loop transfer functions and time responses for PID designs with
Ms = 1.4 using constraint combinations A. (full), B. (dashed), and C. (dotted).
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Figure 4.23 Loop transfer functions and time responses for PID designs with
Ms = 2.0 using constraint combinations A. (full), B. (dashed), and C. (dotted).

Ms = 1.4 Ms = 2.0
k Ti Td I E I AE k Ti Td I E I AE

A. 0.52 4.40 1.10 8.55 8.55 0.91 4.15 1.04 4.58 5.80

B. 0.55 3.55 1.69 6.45 7.21 0.98 3.14 1.73 3.19 5.87

C. 0.56 2.62 3.06 4.69 7.41 0.99 2.01 3.36 2.03 7.21

Table 4.1 Comparison of load disturbance errors for PID control using A. Ti = 4Td,
B. curvature and phase constraints, and C. only sensitivity constraint.
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In conclusion, the design constraint Ti = 4Td is a feasible alterna-
tive to the curvature and phase constraints in Panagopoulos (1998). Both
methods have been tested on estimated frequency response data. This is
further discussed below.

Design based on estimated frequency response

The PID design methods give stricter demands on the quality of the es-
timated frequency response than the PI design method does. First of all,
the range of interesting frequencies will be larger, since the bandwidth
generally is higher for the optimal PID controller than for the optimal PI
controller. Furthermore, if constraints on the curvature are going to be
used, two differentiations of the frequency response estimate are required.
This operation amplifies high frequency noise dramatically.

The difficulties in estimating the curvature appear already at low noise
levels. By using fast sampling, long experiments, windowing and low-pass
filtering of the differentiated vectors, it is possible to obtain feasible re-
sults for some plants. However, the computation of the curvature is ex-
tremely sensitive to correct estimation of both the first and second deriva-
tive of the frequency response. No method has been found that reproduces
the true curvature in a consistent and robust way. This design method has
therefore been abandoned here.

The iterative scheme for obtaining a PID design with Ti = 4Td is
possible to use even if the data is noisy. However, the function Ti(T)
plotted in Figure 4.21 is no longer guaranteed to be a smooth function
if the raw spectral estimates are used when calculating h(ω ). This effect
is not so severe for low noise levels, but for σ = 0.1 it becomes more
prominent. Therefore, any kind of periodic or chaotic behavior can be
expected from the iteration. One example with a 2-periodic limit cycle is
shown in Figure 4.24. The discontinuous and non-monotonic shape of the
function Ti(T) can be explained by looking at the function h(ω ) for the
modified plant. Figure 4.25 shows the function h(ω ) for the modified plant
for different values of T with the noise level σ = 0.1. The solutions ω 0,
marked with crosses in the figure, will not be spread evenly due to the
uncertainties in h(ω ). For T � 2.55 there will even be a discontinuity in
the solutions around ω 0 = 0.4 due to a non-monotonic h(ω ). The errors
in ω 0 carry over to Ti through Equations (4.23) and (4.24).

The function h(ω ) must be smoothed in order to be used iteratively.
This may for example be done by low-pass filtering of the differentiated
frequency response of the process. Using this technique, the iteration will
produce consistent results, see Figure 4.26. This is very close to the ex-
act iteration in Figure 4.21. The parameter values vary a few percents
between different simulations. Figure 4.27 shows 20 simulations of set
point and load disturbance responses on top of each other. The varia-
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Figure 4.24 Iterative PI design based on raw spectral estimates with σ = 0.1. In
this case the iteration converges to a 2-periodic limit cycle.
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Figure 4.25 The estimated function h(ω ) for the modified plant GL(s) =
(Ts+ 1)G(s), with T = 0, 0.25, 0.5, . . . 4.
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Figure 4.26 Iterative PI design based on low-pass filtered derivatives of the spec-
tral estimates.
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Figure 4.27 Simulations of PID control using iterative PI design for Ms = 2 using
filtered spectral estimates. 20 different noise sequences with σ = 0.1 has been used
in the relay experiments. The load disturbance response is fairly consistent.
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tion in the set point response is caused by the weighting factor b, which
is very sensitive both to errors in the controller parameters and the es-
timated frequency response. No effort has been spent on improving this,
since another method for fast set point changes is presented in Chapter 5.

4.5 Summary and Concluding Remarks

A design method for PI and PID control using relay feedback has been
developed. The relay uses time-varying hysteresis in order to provide ex-
citation for the interesting frequency interval. The frequency response of
the process is estimated using spectral analysis. This is used for PI design
according to Åström et al. (1998). It was shown that a PID controller can
be achieved by solving PI design problems iteratively.

The proposed method for doing controller design seems to be promis-
ing. The goal is to be able to use advanced PI and PID design methods
based on frequency domain identification of relay experiments. The cost of
using more advanced design methods is that the experiments and identifi-
cation also need to be more advanced. Ziegler-Nichols-like tuning schemes
need one relay experiment with approximately 5–10 switches. The method
proposed here will typically need more switches using the time-varying
relay. Thus, we have to pay for the improved design both in computation
requirements and in time used for experiments. The former should im-
pose no problem, but the latter may in many cases not be worth the cost
compared to the simpler design methods.

This chapter has shown that it is feasible to use relay experiments with
advanced design methods. However, there are of course many practical
considerations to take into account before it is possible to use it as a fully
automatic tuning procedure. Some of these issues will be discussed here.

Since the plant is not known in practice, the assessment of possible
ranges for the hysteresis ε must be done with some kind of trail-and-error
approach. One way could be to let the user decide. In any case, an intel-
ligent scheme for changing ε has to be developed in order to ensure that
unsuitable values are avoided. This can be done by having logic super-
vising the oscillation and take action when it stops. It will certainly not
be sufficient to use the automaton in Figure 4.2 only, together with the
simple scheme used here for changing the hysteresis. Today’s commer-
cial auto-tuners based on relay experiments already have an extensive
amount of logic supervising the tuning experiments. This is discussed in
more detail in Section 6.2.

In fact, the effects of all the experimental conditions discussed in Sec-
tion 4.2 must be investigated further in order to handle all types of plants.
When testing the feasibility of the method, different sets of parameters
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have been used for different plants, both in the experiments, in the iden-
tification, and in the control design. By using some kind of adaptive pa-
rameter settings, it might be possible to define a robust automatic tuning
procedure, similar to the standard relay auto-tuners available today.

When designing PID controllers, the constraint Ti = 4Td has been used
in order to limit the derivative action. The main obstacle for using PID
design methods based on constrained curvature of the loop transfer func-
tion is the sensitivity to noise. A parametric model would not have these
problems, since the differentiations are computed analytically. One way
of obtaining a model could be to use the interesting parts of the estimated
frequency response as input to the methods described in Lilja (1989).
However, the design methodology may then seem a little too complicated
for tuning a PID controller. It is probably better to reformulate the design
constraints not to involve computation of second order derivatives.
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Fast Set Point Response

Most of the PID controllers in process industry work as regulators most
of the time, i.e., they try to keep a variable at a constant value. However,
fast grade changes are often very important in many applications. This
may be the case when a plant switches between two different production
modes. The time and wasted material spent on these changes will reduce
the profit of the plant. It is thus interesting to make the grade changes
as fast and smooth as possible.

Unfortunately, PID control is not very well suited for handling step
set point changes. Typically, the response is unnecessarily slow and has
an overshoot. A common way of dealing with the overshoot is to ramp
the set point between the two levels. Another possible way is to introduce
set point weighting on the proportional part, see for example Åström and
Hägglund (1995). A drawback with both these approaches is that the
response is slowed down even further. Hang and Cao (1996) uses a time-
varying set point weight to achieve both faster step response and less
overshoot.

Another way to solve the problem is to split the control problem into
a servo problem and a regulation problem. A simple method which has
sometimes been used in practice, is to use only proportional control in
the transient phase and turn on the integrating control when the error
has become small. More advanced switching strategies may drastically
improve the behavior. In Malmborg (1998) it was shown that very good
results can be obtained by a hybrid strategy that combines a conventional
PID controller with a minimum-time control strategy. The minimum-time
strategy was based on a second order model. Methods for safe mixing of
the strategies were also developed. A drawback with the minimum-time
strategy used in Malmborg (1998) is that it requires a fairly accurate
process model of second order.

An alternative sub-optimal solution is proposed in this chapter. The
method tries to automate what experienced operators often do to make
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fast set point changes. They typically switch to manual control and in-
crease the control signal to a high constant value. When the output starts
to move they have to decrease the control signal again in order to catch
the process output so it approaches the new desired value in a nice way.
Finally, they set the control signal to what they think is a good level and
switch to automatic mode. Switching conditions for the proposed method
will be derived in this chapter. An advantage is that the conditions may
be adjusted to the current level of process knowledge.

5.1 Preliminaries

The solution which takes the system between two stationary levels in
minimum time is the well known bang-bang control strategy. The number
of switches between the extreme values in the optimal control law is less
or equal to n − 1, with n being the order of the system. The problem is
very easy for a first order system

dy
dt
= −ay+ bu (5.1)

We simply apply the maximum admissible control signal until the output
reaches the desired value yf . The control signal is then switched to the
value that gives the desired steady state. If u = ayf /b is applied when
y = yf , Equation (5.1) gives that y will be constant for all future times.

For a second order system the time-optimal strategy is also very intu-
itive: start by “accelerating” as fast as possible, and then “break” just in
time to make ẏ(t) = 0 when reaching the new desired stationary level. At
the new level, u(t) is set to the constant value which keeps the system at
this level. One simulated example is found in Figure 5.1. It is also reason-
ably simple to find the conditions when to switch for n = 2. For n > 2 the
time-optimal strategy consists of more switches, and the problem becomes
increasingly difficult to solve.

Intuitively, the strategy with full acceleration and full break seems
reasonable to use even for systems of higher order than two. The strategy
will in general not bring the system to stationarity at the set point level in
finite time. Still, it can be useful for set point changes in a mixed control
strategy. As long as the new set point is approached smoothly enough, a
PID controller can be switched in to achieve the desired steady state.

The underlying idea is that we could approximate the control signal
with the one in Figure 5.2. The control signal is given by

u(t) = aδ (t) + bθ (t− T) (5.2)
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Figure 5.1 Time-optimal set point response for G(s) = 1/(s+ 1)2 when u ∈ [0, 2].
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Figure 5.3 The ideal pulse-step control signal in the upper plot, and its realizable
approximation below.

where δ (t) is the Dirac impulse function, θ (t) is the Heaviside step func-
tion, and a, b and T are constants. The output then becomes

y(t) = ah(t) + bS(t− T) (5.3)
with h(t) and S(t) being the impulse response and step response, respec-
tively. Due to the shape of the control signal in Figure 5.2 we will from
now on use the name pulse-step method for the proposed algorithm. If the
parameters a, b and T are chosen optimally, the settling time is approx-
imately equal to the time where the impulse response has its maximum.
The response time is thus matched to the system dynamics. The param-
eters a, b and T may be chosen as follows:

• b should be chosen to obtain a correct steady state.

• a should be chosen such that the impulse response ah(t) has a max-
imum value close to the new set point.

• T should be chosen such that the step response and the trailing edge
of the impulse response approximately add up to the new set point.

In practice, the impulse of course has to be replaced by a pulse of finite
amplitude. The pulse width should be adjusted to give approximately the
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same area as the impulse has. The ideal pulse-step signal and the ap-
proximated, realizable, control signal are shown in Figure 5.3.

The approximation with one impulse and one step is reasonable when
the control signal has the same value immediately before and after the
impulse. The response will however be faster if the control signal is al-
lowed to go below the initial level. In the problem formulation below, we
will thus not use the approximation but a more direct approach. However,
the idea of the pulse-step method is still tractable. The impulse feeds the
system with enough energy to reach the final value. The system then re-
sponds with its “natural” speed. A minimum-time strategy may use more
pulses to inject more energy into the system. The response is faster than
the natural response time, but it will be less robust due to the additional
energy that is built up inside the system. This relates to the result that a
minimum-energy strategy may be preferred to a minimum-time strategy,
for example when swinging up pendulums, see Åström and Furuta (2000).

5.2 Problem Formulation

The problem setup for the pulse-step method will now be defined. Here,
we study self regulating, or exponentially stable, linear time-invariant
processes. Consider the set point change from y0 to y0 + ∆ y for a process
G(s). If G(0) = K , the stationary control signal will then change from u0

to u0+∆ y/K . With ∆ y and K positive the control strategy will then be as
shown in Figure 5.4. If ∆ y/K < 0, the control strategy should of course
be reversed.

By scaling the signals and removing bias levels we may consider a
normalized problem without loss of generality. The transfer function is

G0(s) = B(s)
A(s) =

b0sm + b1sm−1 + . . .+ bm−1s+ 1
a0sn + a1sn−1 + . . .+ an−1s+ 1

, (5.4)

the set point change is

ysp(t) =
{

0, t < 0

1, t ≥ 0
(5.5)

and the control signal is

u(t) =


0, t < 0

u, 0 ≤ t < T1

u, T1 ≤ t < T1 + T2

1, t ≥ T1 + T2

(5.6)
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Figure 5.4 Control strategy for fast set point response.
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Figure 5.5 Control strategy for the normalized problem setup.
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where u and u are the maximum and minimum values of the control
signal in the normalized problem, see Figure 5.5. Note that the transfer
function does not include any dead time. This is not necessary, since the
optimal switching times for a time-delayed process is the same as for the
one without delay. Also note that the problem formulation is meaningful
only if u ≥ 1, u ≤ 0, T1 ≥ 0 and T2 ≥ 0. When translating the original
problem to the normalized setup, the maximum and minimum levels of
the control signal are transformed as

u = K
∆ y
(umax − u0)

u = K
∆ y
(umin − u0)

if K/∆ y > 0. Otherwise, u and u will just change place in the formulas
above.

The chosen criterion to minimize is the integrated error

IE = min
T1,T2

∫ ∞

0

(
ysp(t) − y(t)

)
dt (5.7)

subject to the constraint

y(t) ≤ 1, ∀t (5.8)
i.e., no overshoot in the set point step response.

With S(t) being the unit step response for G0(s), the output y(t) can
be written as

y(t) = uS(t) + (u− u)S(t− T1) + (1− u)S(t− (T1 + T2)) (5.9)
If G0(s) is asymptotically stable, IE can be calculated using the final value
theorem:

IE = lim
t→∞

∫ t

0

(
ysp(τ ) − y(τ )

)
dτ = lim

s→0

(
Ysp(s) − Y(s)

)
=

= lim
s→0

(
1
s
− G0(s)U(s)

)
A series expansion for small s gives

U(s) = u
s
+ u− u

s
e−sT1 + 1− u

s
e−s(T1+T2) =

� 1
s

(
u+ (u− u) (1− sT1

)+ (1− u) (1− s (T1 + T2)
)) =

= 1
s
− (1− u)T1 − (1− u)T2
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and

G0(s) � 1+ s (bm−1 − an−1) = 1− sTar

where Tar is the average residence time of the system. Substituting this
into the expression for IE gives

IE = lim
s→0

(
1− G0(s)

s
+ G0(s)

((1− u)T1 + (1− u)T2
))

= Tar + (1− u)︸ ︷︷ ︸
<0

T1 + (1− u)︸ ︷︷ ︸
>0

T2 (5.10)

The integrated error thus consists of one part Tar which depends on the
process model, and one part (1 − u)T1 + (1 − u)T2 which depends on the
control strategy. Since (1−u) < 0 and (1−u) > 0, T1 should be large and
T2 small in order to make IE small. If T1 is made too large, though, the
zero overshoot constraint will clearly not be met. Optimal T1 and T2 may
be found numerically.

Optimality conditions

Since the objective function is linear in the parameters T1 and T2, it is
clear that the constraint must be active at the optimal solution (T1

L, T2
L).

Thus, there exists a time t = tL with y(tL) = 1. Note that tL may be infinite
in some cases, for example if u = 1. Furthermore, if deg A(s)−deg B(s) ≥
2, both y(t) and ẏ(t) will be continuous, so it will also hold that ẏ(tL) = 0.
Introducing

f1(t, T1, T2) = u S (t) + (u− u) S (t− T1) + (1− u) S (t− (T1 + T2)) − 1
(5.11)

and

f2(t, T1, T2) = u h (t) + (u− u) h (t− T1) + (1− u) h (t− (T1 + T2))
(5.12)

we thus have two conditions for optimality{
f1(tL, T1

L, T2
L) = 0

f2(tL, T1
L, T2

L) = 0
(5.13)

The pairs (T1, T2) for which max y(t) = 1 implicitly define a curve in
the (T1, T2) -plane, say F(T1, T2) = 0. F can be seen as the envelope of
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Figure 5.6 (T1, T2) on the solid line will give max y(t) = 1 for G0(s) = 1/(s+ 1)4
with u = 2 and u = −1. The dashed lines are level curves of IE.

f1 = 0 when t is varying. Thus, F(T1, T2) = f1(t̂, T1, T2) where t̂ satisfies

{
f1(t̂, T1, T2) = 0

f2(t̂, T1, T2) = 0

The optimal solution will lie on this curve at the point where IE is mini-
mized. Figure 5.6 shows one example of such a curve. Points to the left of
the curve correspond to zero overshoot responses. Notice that this region
defines a non-convex set. The value of IE decreases from the top left to the
bottom right corner. Provided that the curve F is smooth at the optimum,
it is clear that the tangent to F at the optimum will be parallel to the
level curves of IE. This will give a third condition for the optimal solution.
By setting IE constant we obtain

dT2

dT1
= u− 1

1− u

for the level curves. Using the implicit function theorem, the slope of F

117



Chapter 5. Fast Set Point Response

is given by

dT2

dT1
= −VF(T1, T2)

VT1

/VF(T1, T2)
VT2

= −V f1(t̂, T1, T2)
VT1

/V f1(t̂, T1, T2)
VT2

=

= −−(u− u) h
(
t̂− T1

)− (1− u) h
(
t̂− (T1 + T2)

)
−(1− u) h

(
t̂− (T1 + T2)

) =

= − (u− u) h
(
t̂− T1

)
(1− u) h

(
t̂− (T1 + T2)

) − 1

Equating the expressions for the slope at the optimal solution we get

u− 1
1− u

= − (u− u) h (tL − T1
L)

(1− u) h (tL − (T1
L + T2

L)) − 1

which gives the condition

h (tL − T1
L) = h (tL − (T1

L + T2
L)) (5.14)

With f3(t, T1, T2) = h (tL − T1
L) − h (tL − (T1

L + T2
L)) the optimal solu-

tion will thus satisfy 
f1(tL, T1

L, T2
L) = 0

f2(tL, T1
L, T2

L) = 0

f3(tL, T1
L, T2

L) = 0

(5.15)

If we know G0(s), we may derive analytical expressions for f1, f2 and f3.
Equation (5.15) then reduces to a system of non-linear equations.

Remark 1: A sufficient condition for the existence of an optimal solution
is that S(t) ≤ 1, ∀t. (T1, T2) = (0, 0) will then be a feasible solution with
IE = an−1 − bm−1. IE may be smaller than this by selecting T1 > 0.
However, if u > 1, there exists a time T1max such that uS(t) becomes
greater than 1 at t = T1max. This gives a lower (mostly unachievable)
bound on IE = an−1 − bm−1 + T1max (1− u). When u = 1, any (T1, T2) =
(T1, 0) will of course be optimal.

Remark 2: Alternative criteria such as the integrated absolute error
(IAE) or the integrated squared error (ISE) could of course also be used.
A drawback is that it is harder to obtain explicit formulas for these. A
solution strategy could then be to start with a large vector S contain-
ing the unit step response, and then find optimal T1 and T2 by shifting
and superposing S. This will typically require more operations than the
proposed method for a given accuracy of the solution.

118



5.2 Problem Formulation

0

1

r(T1 − T2)
0

1

rT1

0

0

T1

T1

T1+T2

T1+T2

2T2+1/r

2T2+1/r

Figure 5.7 Control strategy with rate limitations on the control signal.

Rate limitations

So far, only limitations on the size of the control signal have been dis-
cussed. It is also common to have limitations on the maximum slope of
the control signal. The pulse-step method may be modified in order to
handle these rate limitations.

First, we consider the case where the control signal is limited by rate
constraints only. Assume that the control signal should satisfy the con-
straint

eu̇(t)e ≤ r (5.16)

for all values of t, but there is no constraint on the size of the control
signal. A natural modification of the pulse-step method is then to use the
control strategy in Figure 5.7. The expression for u(t) is given by

u(t) =



0, t < 0

rt, 0 ≤ t < T1

r(2T1 − t), T1 ≤ t < T1 + T2

r(1− 2T2 − 1/r + t), T1 + T2 ≤ t < 2T2 + 1/r
1, t ≥ 2T2 + 1/r

(5.17)
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Figure 5.8 (T1, T2) on the solid line give maxt y(t) = 1 under the rate constraint
eu̇(t)e ≤ 2 for G(s) = 1/(s+ 1)4. The dashed lines are level curves of IE.

There is an implicit requirement T2 ≥ T1− 1/r in order to have the ramp
in the negative direction to pass the final value. Similar to the pulse-
step strategy presented before, this strategy tries to achieve maximum
acceleration followed by maximum retardation. Furthermore, the strat-
egy coincides with the time-optimal strategy under rate limitations for a
second order system. This can be seen by rewriting the problem such that
u̇(t) is the control signal and G(s)/s is the process.

It is possible to solve for T1 and T2 in a similar way as for the pulse-
step method. The optimality conditions will however be different since the
expressions for the output y(t) and IE are different. The output is given
by

y(t) = r (R(t) − 2R(t− T1) + 2R(t− T1 + T2) − R(t− 2T2 − 1/r))
(5.18)

where R(t) is the unit ramp response of the process. Using the final value
theorem it is straightforward to calculate the integrated error as

IE = rT2
2 − 2rT2T1 + 2T2 − b1 + a1 + 1

2r
(5.19)
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Figure 5.9 Control strategy with the rate constraint eu̇(t)e ≤ 2 for the process
G(s) = 1/(s+ 1)4. T1 = 1.48 and T2 = 1.55.

Since IE is not linear in T1 and T2, the level curves will not be straight
lines, as was the case for the pulse-step method. However, it is still possi-
ble to form and solve the system of three equations representing the zero
overshoot constraint, the zero derivative condition and the tangency con-
dition, respectively. The envelope of the zero overshoot constraint together
with level curves of IE are shown in Figure 5.8 for G = 1/(s + 1)4 and
r = 2. The pair (T1, T2)marked by a star fulfills the optimality conditions.
The corresponding optimal control strategy is shown in Figure 5.9.

The above strategy takes only rate limitations into consideration. This
may cause the control signal to become very large. To overcome this, it
may be necessary to combine the rate and level constraints on the control
signal. When this is done, the shape of the control signal will be different,
depending on which constraints are actually dominant, see Figure 5.10. It
is possible to find the optimality conditions for all of the different shapes,
but this is not shown here. The strategy in the upper left plot corresponds
to the case where the original pulse-step method is modified by a moderate
rate constraint. If the control signal is allowed to change fast compared to
the time scale of the process, the rate constraints may be neglected, and
the result from the pulse-step method may be applied directly. A minor
modification can be made by applying the ramps in advance such that
they reach half of the ramp interval just in time when the steps computed
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Figure 5.10 Different shapes of the control signal when rate and level constraints
are combined.

by the pulse-step method should have been applied. However, if the rate
limitations are more dominant, they should be taken into account when
calculating the control strategy.

5.3 Evaluation

In this section the feasibility of the pulse-step method will be explored.
The proposed method may be applied to many types of transfer functions,
particularly those where PID control is normally used. Especially higher
order systems are of interest, including applications involving heating.
The method will first be compared with both true time-optimal control,
and to PID control using set point weighting. A few examples where the
method does not perform very good will also be given.

Comparison with time-optimal control

Since the control signal generated by the pulse-step method is similar to
time-optimal control, it is interesting to compare the two methods. For
a system with two real poles and no zeros, the proposed method will
actually result in a time-optimal strategy. To see this, first note that the
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time-optimal strategy is a valid control strategy, since it has no overshoot.
Furthermore, it reaches its final value exactly at the last switching point,
i.e., tL = T1 + T2. The only way to reduce IE further would be to increase
T1 and/or decrease T2. However, both these actions would inevitably vio-
late the zero overshoot constraint.

For higher order systems without zeros, the time-optimal strategy will
perform better than the sub-optimal strategy, both with respect to the
time measure and to the IE measure. For systems with equal lags, the
difference between the methods increases with the order of the system.
Just to give an example, we will compare the two strategies for the process

G(s) = 1
(s+ 1)4

Since it is a fourth order system, the time-optimal strategy will have two
more switches than the pulse-step strategy.

Figure 5.11 shows comparisons with time-optimal control. Each group
of three plots shows the behavior for one pair (u, u). The upper plot in each
group shows the output for the time-optimal strategy (full) and the pulse-
step method (dashed). The middle plot shows the time-optimal control
signal, and the lower plot shows the pulse-step control signal. The figure
indicates that the relative merit of the time-optimal strategy increases as
the size of u and u increase. The reason for this is that much more energy
is injected into the system, see for example the case with u = −u = 16.
As one might expect, Figure 5.11 also shows that u is the more important
parameter. Not very much is gained from a large negative u, especially
not with u small.

The rise time, here defined as the first time when y(t) = 1 and ẏ(t) = 0,
as a function of u is shown in Figures 5.12 and 5.13. Figure 5.12 shows
the rise time when the input range is [−u, u]. Asymptotically, the rise
time goes to zero for the time-optimal strategy, but to positive constant
value for the pulse-step strategy. If the input range is instead [0, u], the
rise time converges to a positive constant for both strategies as seen in
Figure 5.13. The integrated error depends on the sizes of the control signal
in a similar way.

These asymptotic comparisons are, however, of no or little practical
relevance, since you should probably not use all the available input range
for a relatively small set point change. In practice one would instead
limit the used input range in some way. This will be further discussed on
page 132.

Comparison with PID control

In this section we will compare the proposed method with the set point
step response using PID control. Since the main task for a PID controller
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Figure 5.11 Comparison between the time-optimal controller (solid lines) and
pulse-step strategy (dashed lines) for G(s) = 1/(s+1)4. The benefit of large negative
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Figure 5.12 Rise time as a function of the magnitude of the control signal (u =
−u) with time-optimal controller (solid line) and the pulse-step strategy (dashed
line) for G(s) = 1/(s+ 1)4.
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Figure 5.13 Rise time as a function of the magnitude of the control signal (u = 0)
with time-optimal controller (solid line) and the pulse-step strategy (dashed line)
for G(s) = 1/(s+ 1)4.
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Figure 5.14 Comparison between the fast set point response strategy (full) and
PI control with Ms = 1.4 (dashed) and Ms = 2.0 (dotted) for G(s) = 1/(s+ 1)4.

is regulation, its parameters K , Ti and Td are typically tuned to give nice
response to load disturbances, see for example Åström et al. (1998) and
Ho et al. (1992). Generally, the PID controller will produce a slow set
point step response, often also with an overshoot. If set point weighting is
introduced, the overshoot may be reduced, at the expense of even slower
response. In Åström et al. (1998), the set point weighting factor b is chosen
to set the maximum gain from set point to output close to 1, with the
constraint 0 ≤ b ≤ 1.

Figure 5.14 shows a comparison between the fast set point response
method and two different PI settings. The fast set point response has been
computed with u = 4 and u = −4, and the resulting rise time and set-
tling time are approximately 4 time units. The two PI designs have been
designed according to the method in Åström et al. (1998) with maximum
sensitivity Ms = 1.4 and Ms = 2.0, respectively. The corresponding con-
troller parameters are K = 0.43, Ti = 2.25 and b = 1 for Ms = 1.4, and
K = 0.78, Ti = 2.05 and b = 0.23 for Ms = 2.0. Both PI designs are clearly
outperformed by the pulse-step method. The rise times are a factor 2–3
higher and the settling times approximately 3 times higher. The reason
is of course that much less of the available control authority is used. If b
and/or Ms is increased, the size of the control signal will increase. This
leads to a faster rise time, but at the expense of larger overshoot, so the
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Figure 5.15 Comparison between the fast set point response strategy (dashed)
and PID control with Ms = 1.4 (full) and Ms = 2.0 (dotted) for G(s) = 1/(s+ 1)4.

settling time may actually be even higher.
As shown in Panagopoulos (1998), this example uses one of the types of

processes where you get a noticeable improvement of the load disturbance
response by introducing derivative action. However, the set point response
is not improved. Figure 5.15 shows the step responses with PID design
according to Panagopoulos (2000). The parameters are K = 1.14, Ti =
2.23, Td = 1.00 and b = 0 for Ms = 1.4 and K = 2.29, Ti = 1.92, Td = 0.98
and b = 0 for Ms = 2.0. Both responses have higher overshoot and longer
settling times than the corresponding PI designs. The relative benefits of
using the fast set point response is thus even larger for the PID case.

Comparisons done for other processes show similar results. They all
indicate that you may actually gain much in performance if you would
combine the PI(D) regulatory control with a strategy for fast set point
changes. Possible implementation structures for this are discussed later.

Infeasible transfer functions

The pulse-step method is applicable for many processes, but unfortunately
not for all. The method is inspired by the time-optimal control strategy.
When that is not performing well, neither will the pulse-step method. A
few examples of systems where the method performs badly will now be
given.
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Figure 5.16 Performance of the pulse-step method for the non-minimum phase
process in Example 5.1.

EXAMPLE 5.1—NON-MINIMUM PHASE PROCESS

Consider the non-minimum phase transfer function

G(s) = 1− s
(s+ 1)3

with u = 10 and u = −10. The resulting response of the pulse-step method
is shown in Figure 5.16. The large undershoot, −0.77, is of course not
desirable. The reason for the bad performance is the non-minimum phase
behavior combined with the large input signal. If the control signal is
limited to a lower value, the response will be nicer but also slower.

EXAMPLE 5.2—PROCESS WITH STABLE ZERO

Consider a system with the transfer function

G(s) = 2s+ 1
(s+ 1)2 =

1
s+ 1

⋅
2s+ 1
s+ 1

with stable zeros and pole excess 1. The transfer function can be factored
as seen above where the second factor containing the zero can be inverted.
The system is essentially of first order. The optimal strategy for a first
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Figure 5.17 Alternative fast set point response strategy used in for the plant with
overshoot in Example 5.2.

order system may thus be used, with a slight modification because of the
need to invert the transfer function (2s+1)/(s+1). This strategy is shown
in Figure 5.17.

An attempt to apply the pulse-step method directly on the second order
system G(s) results in responses with overshoot. From Equation (5.9), we
may write the output and its derivative as

y(t) = u S (t) + (u− u) S (t− T1) + (1− u) S (t− (T1 + T2))
ẏ(t) = u h (t) + (u− u) h (t− T1) + (1− u) h (t− (T1 + T2))

where the step and impulse responses are

S(t) = 1+ (t− 1) e−t

h(t) = (2− t) e−t

for t ≥ 0. It is clear that the step response will be greater than 1 for t > 1.
We will now show that there is no way to choose u, u, T1 and T2 such that
y does not have an overshoot.

If y(t) should not have an overshoot, it must approach 1 from below,
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i.e. ẏ(t) must be positive as t goes to infinity. Thus we examine

lim
t→∞

(
ẏ(t) et

t

)
= −u− (u− u) eT1 − (1− u) eT1+T2 =

= −u− eT1
(−u+ u+ eT2 (1− u))

For this expression to be positive, the factor multiplied by eT1 must be
negative and T1 must be sufficiently large. This leads to the conditions

T2 < ln
u− u
1− u

T1 > ln
u

u− u− eT2 (1− u)

However, choosing T1 too large will make y(T1) > 1. T1 will be as low as
possible for T2 = 0, which gives

T1 > ln
u

u− 1
� T1min

This gives after simplifications

y(T1min) = uS(T1min) = 1+ ln
(

u
u− 1

)
(u− 1)

which is greater than 1 for all u > 1. Thus there exists no feasible solution
to the optimization problem for this process.

One way to deal with this could be to relax the zero overshoot con-
straint. This is easily done by replacing the condition y ≤ 1 with y ≤ ymax

in the derivations in Section 5.2. For ymax close to 1, it will still give good
results, but it is less obvious that it is good idea to minimize IE.

EXAMPLE 5.3—SLUGGISH STEP RESPONSE

Heat conduction in an infinite rod where one endpoint is heated and the
temperature at a fixed distance is measured can be modeled by a partial
differential equation, see for example Åström (1969). It corresponds to
the non-rational transfer function

G(s) = e−
√

s
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Figure 5.18 Open-loop step response (dashed) and pulse-step set point response
(full) for the process in Example 5.3.

where all coefficients have been normalized. The impulse and step re-
sponses of G(s) for t ≥ 0 are given by

h(t) = e−1/(4t)

2
√

π t3/2

S(t) = 1− erf
(

1
2
√

t

)
= 1− 2√

π

∫ 1/(2√t)

0
e−τ 2

dτ

The step response is the dashed curve in Figure 5.18. The initial slope
is rather steep, but it approaches 1 extremely slowly. The sluggish step
response carries over to the response for the pulse-step method, see the
full lines in Figure 5.18. The fast initial slope of the step response forces
T1 to be comparatively small, approximately 1.05 for u = 2 and u = 0. The
step in the negative direction will then make the output go away from the
set point and approach the open-loop step response.

A similar strategy to the one proposed in the previous example could
be used here as well. A finite-dimensional approximation of G(s) gives
a transfer function with interlaced zeros and poles on the negative real
axis. By having u(t) governed by these zero dynamics, it is possible to
get both fast initial response and immediately close following of the set
point.
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It seems that the process zeros impose the most severe limitations, at
least when they are closer to the origin than the dominant poles are.
For such processes much better performance may be achieved by letting
u be generated by some (approximate) inverse of the zero dynamics. As
pointed out in Section 5.2, systems with monotonous step responses will at
least have a feasible solution to the pulse-step method. In most cases the
optimal solution performs reasonable, with the heat conduction example
above being one exception.

Selection of input range

The full range of the control signal should probably not be used for each
set point change. In the comparison with time-optimal control it was noted
that the benefits from increasing the size of the control signal magnitude
was marginal. The essential thing is to “accelerate” the system using a
constant value of the control signal. It was further shown that the benefit
from having u < 0 is hardly noticeable unless u is large. Therefore we
will recommend in the following that u = 0, and that a fixed value of u is
used.

An advantage with having fixed values of u and u for the normalized
setup is that all set point changes will have the same shape. The cor-
responding switching times need also be computed only once. Close to
the limits of the operating range it may be necessary to use a smaller
u due to the physical limitations of the actuators. However, this occurs
less frequently the lower the default value of u is.

Numerical solution

Equation (5.15) may be written as


u S (tL) + (u− u) S (tL − T1

L) + (1− u) S (tL − (T1
L + T2

L)) − 1 = 0

u h (tL) + (u− u) h (tL − T1
L) + (1− u) h (tL − (T1

L + T2
L)) = 0

h (tL − T1
L) − h (tL − (T1

L + T2
L)) = 0

(5.20)

This non-linear system of equations can be solved using some Newton-
Raphson-like method. Initial guesses for the unknowns may be derived
from the impulse and step approximation. The height of the impulse
should be 1/maxt h(t) = 1/hmax to make it reach y = 1. This implies
that the area of the pulse equals that of the impulse if T1 is chosen as

T1 = 1
hmaxu
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The effect of having a finite pulse is that the impulse response is “spread
out” so that the peak of the response is somewhat smaller, and delayed
approximately T1/2 compared to the impulse response. If the impulse
response has its maximum at t = tmax, the pulse response will thus have
its maximum at t � tmax + T1/2.

Next, T2 should be chosen such that the step response and the trailing
edge of the impulse response approximately add up to 1. An initial guess
may be to apply the step between the end of the pulse and the maximum
of the pulse response. This gives T2 � 0.5tmax−0.25T1. An initial guess for
tL may then be obtained either by simulating the process using the initial
values for T1 and T2, or by using f3(tL, T1, T2) = 0 from Equation (5.15).

The suggested initial values has worked for all tested processes. How-
ever, they must be modified if u is large negative, since the pulse-step
approximation is not very good in that case. This will not be treated here,
since the recommendation in the previous section was to use u = 0.

5.4 Implementation Structure

The pulse-step method is a simple strategy expressed by two time instants
where the control signal should change its value. In other words, it leads to
a feed-forward strategy, where the shape of the control signal u(t) depends
on the current set point change and the available input range. There
following questions must then be addressed:

• How can we make sure that the feed-forward strategy performs rea-
sonably well despite disturbances and modeling errors?

• How should we switch from the transient set point change strat-
egy to the stationary regulatory control, typically solved with PID
control?

The sensitivity to disturbances and modeling errors is inherent to all
feed-forward strategies. A common way to deal with this is to reformulate
the feed-forward strategy as a feedback control law. In the time-optimal
“bang-bang” control, this is often solved by finding switching curves or
switching surfaces, which will tell what is the optimal control signal for
all points in the state space. In practice, the measured (or estimated)
state variables will never follow the pre-computed trajectories exactly.
The effect of this is that the control signal will have many more switches
than the theoretical value n− 1. Another drawback with the approach is
that it is mostly difficult to find expressions for the switching surfaces.
A solution is to use Model Predictive Control (MPC) instead, see for ex-
ample Camacho and Bordons (1995). However, this imposes high on-line
computational demands.
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Ff. gen.

PID Σ G(s)

Ĝ(s)

uff

u y

ysp

ȳsp

Figure 5.19 Suggested implementation structure.

The other question is typically solved simply by switching to PID con-
trol when the output, and possibly some of the state variables, are close
enough to the desired set point. As pointed out in Malmborg (1998), this
hybrid controller may cause undesired behavior such as limit cycling,
if the switching strategy is not carefully formulated. To overcome this,
Malmborg (1998) suggests a safe Lyapunov-based switching between dif-
ferent controllers.

Here, we will suggest another controller structure as shown in Fig-
ure 5.19. This structure will actually address both problems above at once.
The top left block generates the feed-forward control signal uff identical
to the pulse-step control signal. The system Ĝ(s) contains the process
model that was used when computing uff . The output ȳsp of this block
will then be the desired output trajectory. If we have a perfect model and
no disturbances, we get ȳsp � ysp, which makes uPI D = 0 1. Hence, the
pre-computed feed-forward signal alone will take care of the set point
change, and no feedback action is used. However, when the output does
not follow the desired trajectory, the PID block will try to compensate by
adding a component to the control signal.

The proposed controller structure will behave as follows:

• Load disturbances and set point changes are completely separated.
This makes sense, since the PID controller typically is tuned for
optimal load disturbance response. Whenever a load disturbance oc-
curs, the output signal will be a superposition of an optimal set
point response and an optimal load disturbance response. This is in

1In order to achieve this, the simplified controller structure in Figure 5.19 must be ex-
tended with some anti-windup mechanism. Furthermore, the PID block must operate on the
error ȳsp− y only. This causes no problem in this case since ȳsp is a smooth signal, and may
thus be differentiated.
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contrast to implementation structures using switching surfaces for
the optimal set point response. In this case, a disturbance will affect
the states, and consequently the switching times. Load disturbances
and set point changes will thus interfere with each other.

• Modeling errors may cause a deviation between the desired and the
actual output. Since these deviations are taken care of by the PID
block, it may be natural to treat them as effects of a load disturbance
instead. In fact, you may rewrite the effects of modeling errors as
an equivalent input load disturbance v = Gvuff , where

Gv = G − Ĝ
G

(1+ GGPI D) (5.21)

The two features above rely on the fact that the control signal may actually
move in both directions around the constant levels used in the set point
strategy. This is one good reason why not all the available control signal
should be used when designing the fast step response.

Figure 5.20 shows an example with G(s) = 1/(s+ 1)4 where an input
step load disturbance is applied at the same time as the set point change.
The full line shows the behavior without the load disturbance, the dashed
and dotted curves have load disturbance steps of size 0.5 in positive and
negative direction, respectively. u = 4 and u = −4 have been used in the
fast step response design, and the PID controller has been designed to
give Ms = 1.4, see page 127. Due to the load disturbance, the maximum
magnitude of the control signal is 4.09 instead of 4. The actual deviation
from the nominal value will of course depend on the relative size of the
load disturbance, as well as the timing.

Next, we will examine what happens if G(s) and Ĝ(s) differ. It is
reasonable to assume that the same model is used for design of both the set
point response and the PID controller. We assume that the process model
used in the calculations is the same as before, namely Ĝ(s) = 1/(s+ 1)4.
The following true processes are then examined:

G1(s) = 1
(s+ 1)4 e−sL, L = {0.5, 1}

G2(s) = 1
(4/n s+ 1)n , n = {3, 5}

G3(s) = K
(s+ 1)4 , K = {0.8, 1.2}

The resulting responses are compared with the nominal response in Fig-
ures 5.21–5.23.
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Figure 5.20 Fast step response (full line) with positive (dashed) and negative
(dotted) load response at time 0.
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Figure 5.21 Nominal set point response (full line) with unmodeled delay of 0.5
(dashed) and 1 (dotted) time units.
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Figure 5.22 Nominal set point response (full line) with third (dashed) and fifth
(dotted) order process.

G1(s) contains an unmodeled time delay. This implies that the nomi-
nal feed-forward signal is still optimal, but the optimal response will be
delayed. The responses shown in Figure 5.21 are obviously delayed, but
there is also an overshoot. The deterioration mainly comes from the fact
that y is delayed, whereas ȳsp is not. The PID controller then tries to com-
pensate for the difference instead of just awaiting the delayed response.
The behavior is also slightly affected by the additional phase lag which
is not accounted for in the PID design. This results in a higher value of
Ms (1.7 and 2.1 for a delay of 0.5 and 1 time units, respectively), and
consequently less well-damped behavior. The deviation from the nomi-
nal response will actually be approximately the same regardless of which
u and u is used for the fast set point response.

Figure 5.22 shows the response for G2(s) where the order of the process
is wrong. The time constants in G2(s) have been changed such that the
step response of the process has the correct average residence time and
(approximately) the correct rise time, defined as the time when it reaches
1 − e−1 � 0.63. Compared to G1 there is an additional sources of the
deviation from the nominal response. Here, the pre-computed uff is no
longer optimal. For example, the large control signal should have been
applied for a longer time when n = 3. This is the main reason for the
sluggish response of the dashed curve in Figure 5.22.
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Figure 5.23 Nominal set point response (full line) with decreased (dashed) and
increased (dotted) process gain.

Figure 5.23 shows the response when the process gain is incorrect. uff

will not be correct in this case either. When K = 0.8, the magnitude of
u and u should have been decreased when solving the normalized problem
setup. Thus, the switching times T1 and T2 should have been larger. The
resulting response will thus be too slow.

To summarize the robustness evaluations in this section, the proposed
controller structure behaves reasonably well for the rather large distur-
bances and model errors simulated here. It has nice stability properties,
since the PID controller has been designed with robustness in mind, and
the switching scheme is not part of the feedback loop. In all the simula-
tions above, it outperforms the PID controller with set point weighting.

To achieve closer following of the nominal response, a higher order
robust controller could be designed, but that is outside the scope of this
thesis. Furthermore, a strategy where the switching times are allowed to
change may be better at compensating for deviations, but such a strategy
would inevitably be more complicated. The proposed structure is tractable
in its simplicity. A nice property is that it has very low demands on real-
time computing power, as opposed to for example Model Predictive Con-
trol, which can used to solve similar problems.

A drawback with the proposed controller structure is when the set
point change causes the control signal to saturate. There is then no room
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for adjustments to compensate for disturbances or model mismatch. A
strategy based on switching curves and feedback from the states may be
truly optimal in all cases.

5.5 Summary and Concluding Remarks

A method for fast set point changes has been developed. The basic idea is
to use a pulse in the control signal to make the process move fast in the
desired direction. The pulse width is adjusted to make the output reach
the desired value. A step is then applied at a suitable time in order to catch
the output before it would return towards the initial level. This control
strategy mimics what is often done manually by a process operator. The
strategy has been compared with time-optimal control and PID control.

An advantage with the method is that it can be used with different
levels of process knowledge:

1. Initial guesses for the switching times were given in this chapter
using only the maximum slope of the step response, and the time
when this maximum occurs. These guesses can be used as initial pa-
rameters which may be adjusted manually when testing the method
on the real plant.

2. If a recorded step response of the process is available, it can be used
for finding optimal switching conditions by solving a constrained
optimization problem.

3. Conditions have been derived in this chapter for the case where ana-
lytical expressions for the step and impulse responses of the process
are available. This leads to a non-linear system of equations.

The method has only been developed for asymptotically stable pro-
cesses. The problem may be solved for integrating processes in a similar
way by having an initial positive pulse and a final negative pulse. This
corresponds to what is often done in motor control. For unstable processes,
the approach with open-loop steps is less tractable. It would still be possi-
ble to use the same control strategy as long as it is done using a feedback
control structure. However, the switching times must be calculated in a
different way.
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6

System Architecture

In Chapter 2, autonomous control was discussed from a user’s point of
view. Since this thesis focuses on process control, the typical user is a
process engineer or a plant operator. This chapter discusses implemen-
tation aspects of an autonomous control system. System architecture for
autonomous control is a subject for a thesis on its own. A few proto-
type implementations have been made in order to get some insight into
the difficulties involved. This chapter summarizes the experiences gained.
Section 6.1 points out some of the basic requirements on a control system
that should be able to provide the functionality described in the previ-
ous chapters. Section 6.2 describes how the graphical language Grafchart
can be used for structuring the execution of an autonomous single loop
controller.

6.1 Architectural Requirements

The discussion in Chapter 2 outlined some of the desired functionality
on the local control loop level in an autonomous control system. In order
to accomplish all this, the control system consists of algorithms that use
different formalisms. Using a coarse classification, they contain elements
from the following computational domains:

• Signal processing, which contains numerical algorithms described
using differential, difference and algebraic equations.

• Symbolic processing, which contains logic, sequencing, planning
and reasoning.

Since methods from both these domains are mixed in a complex control
system, this inevitably results in a hybrid system. Systematic analysis and
design of hybrid systems can still be done only on small examples, see for
example Krogh and Chutinan (1999). It is therefore not realistic to apply
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the theory for hybrid systems on a full control system. However, it can
be applied on small sub-problems. One such example is found in Malm-
borg (1998) and Eker and Malmborg (1999), where the switching between
an time-optimal controller and a PID controller is studied. Another exam-
ple is systems which are piecewise linear, see Johansson (1999). For more
complex cases, the interactions between the processing domains must
be carried out with care using ad hoc methods and “common sense”. As
an example, on-line controllers should be implemented with anti-windup
schemes, and mechanisms for bumpless parameter and mode changes.
The supervisory logic should be implemented such that a new control al-
gorithm is not switched in until a safe transfer is expected. These mutual
design criteria are intended to avoid undesired influences from the super-
visory logic on the control loop. A well-behaving control loop will in turn
give less alarms for the supervisory logic to handle.

Another important issue concerning the interactions between the sig-
nal and the symbolic processing domains is how the signal-to-symbol and
symbol-to-signal conversions are carried out. Whereas the former deals
with numerical measures such as 75○C and 0.4%, the latter instead uses
symbols like hot and negligible. It is then reasonable to represent dif-
ferent symbolic measures with intervals of the corresponding continuous
variables. These intervals, which of course may vary substantially in dif-
ferent cases, must then be set using engineering decisions. Fuzzy logic is
often used to make these choices less decisive, but still it may be neces-
sary to spend much effort on tuning the membership functions in order to
achieve the desired behavior. In this thesis, only crisp logic will be used
in the conversions between the domains.

So far, the different methods have been characterized based on what
processing domain they belong to. They may also be characterized by the
time-criticality of the execution of the methods:

• Time-critical filtering and control, where it is important that the
computational delay from the input to the output is minimized, and
that all calculations are performed in time each sample.

• Less time-critical on-line computations, such as recursive identifi-
cation, controller parameter calculations, performance assessment
and monitoring. Here, it is less severe if the calculations are de-
layed temporarily due to heavy load on the computer.

• Computations with only moderate timing constraints, for example
off-line calculations for identification, analysis of experiments and
planning. These calculations should not use resources needed by the
hard real-time algorithms, and they should preferably be performed
on different computers.
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All levels contain algorithms from both the signal processing domain and
the symbolic processing domain. The time-critical algorithms are typically
dominated by numerical algorithms, with a few discrete events interact-
ing with them. Conversely, the off-line calculations are typically governed
by algorithms for planning and sequencing, which may be supported by
numerical algorithms. On the intermediate level there is typically a mix
of sequencing, logic and numerical algorithms.

In order to handle this broad spectrum of methods and methodologies
there must be some intelligent way of controlling the execution of the
algorithms. There are some major challenges involved with this:

• Choosing a suitable software architecture which allows a flexible
representation of the different types of algorithms.

• Defining the structure of the logic controller which plans, runs and
monitors the different algorithms. This is the core of the autonomous
controller.

• Representing the process and control knowledge in a good way.

This chapter will focus on the second topic.
In early computer control systems the logic was mixed with the con-

trol algorithms in a rather unstructured way. As the complexity of the
control system grows, the logic tends to hide the actual control algorithm.
Even if the pure algorithm may be written in just a few lines, the final
computer code will be very complex and unclear. More complex control
systems require more structured ways of implementing the control logic
and sequencing is.

There are numerous ways of describing sequences and logic. The canon-
ical concept is the Finite State Machine (FSM), see Mealy (1955) and
Moore (1956). The FSM describes a discrete event dynamical system
(DEDS), which is characterized by a set of discrete states, a set of discrete
input signals which causes changes in the states, and a set of discrete out-
put signals generated by the current state and/or input signals. A discrete
variable is one which can have a countable number of values, for example
a boolean variable. Most of the work concerning analysis and synthesis of
DEDS uses the FSM model due to its generic nature.

An FSM suffers from exponential growth, i.e., if the state space con-
tains n discrete variables, the number of combinations of these variables
grows as cn, where c is the size of the symbol set. Each combination repre-
sents one state of the FSM. The FSM can thus be represented by a graph
containing all states, where the current state is indicated by a boolean
flag. As a system becomes more complex, the FSM model thus becomes
very large.
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Petri nets is a way of condensing a large state space into a more com-
pact representation, see David and Alla (1992). This is done by having so
called places, which may contain an integer number of tokens. In addi-
tion, more than one place is allowed to contain tokens at the same time.
If the number of tokens are bounded, each combination of possible token
markings corresponds to one state in an FSM model. However, it is easy
to construct a Petri net where the number of tokens is not guaranteed to
be bounded. In this case, the Petri net may no longer be transformed into
a finite state machine. Many analysis methods have been developed for
Petri nets in order to check for example this boundedness property.

Standards play a significant role in industrial process control. Sys-
tems that build upon established standards are much easier to imple-
ment, commission and maintain. The standard IEC 1131 specifies how to
implement control systems in programmable logic controllers, PLCs, see
IEC (1993). The standard covers many parts of the implementation, for
example technical details such as hardware configuration, multi-processor
architectures and network communication, but also more general topics
such as service, storage, transportation etc. The part that is most inter-
esting from the perspective of this thesis is IEC 1131-3, which specifies
programming languages in PLC systems.

The standard includes four different languages, namely structured text
(ST), ladder diagrams (LD), function block diagrams (FBD) and instruc-
tion lists (IL). These languages can be used for implementing basic al-
gorithms and functions, for example PID controllers, relays, analog and
digital IO etc. It is possible to use abstract data types along with a handful
standard primitive data types. There is however no support for object ori-
entation. Furthermore, a fifth language, sequential function charts (SFC),
can be used for logic and sequential control. More importantly, it can be
used to structure and govern the execution of functions written in the
other languages. Sequential function charts are closely related to Grafcet
and Petri Nets, see IEC (1988) and David and Alla (1992).

The lack of object orientation and the limited support for hierarchical
abstraction in IEC 1131-3 may seem as a severe restriction from a soft-
ware engineering point of view. Furthermore, some methodologies, such
as expert systems, are not readily programmed using the languages pro-
vided by the standard. On the other hand, it is desirable to use estab-
lished industrial standards. One solution is then to use layers on top of
the standard, where the high-level representations can be translated or
compiled into valid code in the different languages in IEC 1131-3. This
chapter will make use of one such tool for structuring algorithms, namely
Grafchart, see Årzén (1994). It is a high-level graphical sequential lan-
guage based on Grafcet with influences from object oriented programming
and Coloured Petri Nets, see Jensen (1992). Johnsson (1999) also shows
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that a Grafchart diagram can be automatically transformed into a Grafcet,
and thus into an FSM model. Therefore it is relevant to explore how it
can be used for structuring an autonomous control system. Grafcet and
Grafchart are briefly described in Appendix A.

Software architectures

There are several architectures discussed in the literature that can be
used for complex control systems. Some are specialized to a certain ap-
plication such as robot control, see for example Nilsson (1996) and Al-
bus et al. (1989). Others, like Moore et al. (1999), IEC (1993) and Ob-
ject Management Group (1995), are much more general in their setting.
The methodology in fault tolerant control systems also uses an architec-
ture that can be used in various applications, see for example Blanke
et al. (1997). Architectures focusing on the real-time execution are de-
scribed in Seto et al. (1998) and Eker (1999). More references on software
requirements on complex controllers can be found in Åström et al. (2000).

In this thesis, a simple object oriented architecture has been used in
a prototype implementation. This is briefly described in Section 6.2.

6.2 A Prototype Implementation

A prototype implementation of an autonomous controller will now be de-
scribed. It is implemented in G2, which has evolved from an object ori-
ented expert system shell in the start, to a general programming envi-
ronment in later versions. The data structures are built using classes
and objects (instances of classes). The objects may have attributes of a
number of more or less simple data types. They may also have other
objects as attributes. Objects may have a graphical representation, and
different objects can be connected to each other graphically. A G2 pro-
gram, or knowledge-base, consists of rules (if <logical-expression>
then <action>) and procedures in a pascal-like notation. There are many
ways of establishing relations between different objects, and reasoning
about these relations. There are for example language constructs to reason
directly about the graphical representations and interconnections between
objects. Furthermore, there is a simple built-in dynamical simulator for
difference and differential equations. All these factors make G2 a rather
fast prototyping environment, where you relatively easy can build graphi-
cal user interfaces. One drawback is that G2 is not efficient for numerical
computations. To overcome this, a bridge has been implemented between
G2 as a client and the MATLAB Engine as a compute server. Apart from
the increased efficiency, another advantage is that it is possible to use the
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extensive amount of existing MATLAB code for, e.g., system identification
from G2.

The implementation is based on a Grafchart toolbox implemented in
G2, Årzén (1994). Grafchart admits a high-level description of the se-
quential logic. It is also a reasonably realistic approach, since Grafchart
can be automatically translated into the sequential function charts of the
industrial standard IEC 1131. Grafcet and Grafchart is briefly described
in Appendix A.

The prototype is intended to operate only on the local control loop level.
As pointed out in Section 2.2, some of the functionality is executed in the
hard real-time environment, and some may be executed in a supervisory
control system, i.e. the Loop Manager level in Figure 2.1. This partition-
ing is partly reflected in the prototype implementation, but not completely.
The different layers for example have separate data structures, but the
communication channel between the layers is not modeled at all. Fur-
thermore, the Loop Manager and the real-time execution as well as the
process simulation run in the same G2 knowledge-base.

Data structures on the real-time level

The real-time level and the Loop Manager level will have different data
structures. On the real-time level there are various numerical process-
ing blocks such as analog to digital conversion, filters, PID blocks, lim-
iters etc. These blocks are naturally modeled as objects. A base class
signal-flow-object has been defined, and the different block types are
sub-classes derived from this base class. Parameters such as controller
gain, sampling time etc. are defined as attributes of the objects. The sam-
pling time h is a generic attribute which is defined for the base class, and
therefore is inherited by all sub-classes. Parameters that are specific for
each block type are defined as attributes of the corresponding sub-class.

Each object should have at least these methods:

• init for initialization of internal data structures.

• calculate-output for computing the outputs of the block given the
inputs and the current internal state.

• update-state for updating the internal state of the block.

• set for assigning new values to parameter attributes in the block.

• get for obtaining parameter values from a block.

The methods are all defined for the signal-flow-object class, but they
may be empty. Normally, the methods are specialized for the derived
classes, otherwise the method belonging to the base class is used.
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Input
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Figure 6.1 A simple controller configuration. The blocks should be executed in an
order which minimizes the time delay from the input to the output.

The instances of the sub-classes of signal-flow-object are passive
components, i.e. they do not perform any calculations spontaneously, as
opposed to more data-driven architectures. Instead, the methods must
be invoked by a real-time-execution object. Its main task is to make
sure that the methods for real-time execution are called in the correct
order corresponding to the signal flow of the controller. Each sample, the
calculate-output methods should be executed in a way that minimizes
the computation time from sampling in an AD-in block to actuation in a
DA-out block. Then, the calculate-output methods for objects that lie
outside the control loop should be executed, for example loop monitoring
blocks. Controllers that are not currently in the loop, but are intended to
be so later, should also be included here in order to facilitate bumpless
mode changes. Finally, the update-state methods should be executed in
the reverse order. This is to ensure that limitations are propagated back-
wards in the controller in order to provide anti-windup mechanisms. This
is a sort of internal feedback in the controller which may be necessary
when the continuous feedback loop has been cut due to actuator limita-
tions. Each block may decide if it should compensate for the whole limita-
tion on its output, or back-calculate an equivalent limitation on its input,
or a combination of the two.

Figure 6.1 shows a simple example which can be used to illustrate the
scheduling principle. The blocks that are currently in the feedback loop
are the input block, the relay, the switch, the limiter and the output block.
Upon each new sampling instant, the calculate-output methods of these
blocks should be executed in the given order. After that, the PID block and
the oscillation supervisor can be executed in any order. Finally, the signals
should be back-propagated in reversed order by calling the update-state
methods, which may use modified input signals to succeeding blocks. For
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example, the updated value of all input signals to the switch should be
back-propagated all the way from output block. If an anti-windup scheme
is implemented in the PID block, it should use the updated value at the
output of the block. This way, the control signal will not make large bumps
when switching to PID mode. Since the relay does not have any internal
states that can be unbounded, it is not necessary to implement any anti-
windup feature for this block.

Structure of the Loop Manager

The core of the autonomous controller is the Loop Manager, which is re-
sponsible for the supervisory control of the local control loop. It is repre-
sented by an object of the class loop-manager. This object typically resides
in a different computer than the hard real-time execution. It commu-
nicates with the real-time-execution object over a computer network.
The Loop Manager sends set points, parameters and reconfiguration com-
mands to the real-time system. The real-time system sends on-line data
and alarms to the Loop Manager.

The main task for the loop-manager object task is to govern the execu-
tion of the different algorithms described in Chapter 2. In the prototype,
this is done using Grafchart, see Appendix A. The algorithms are repre-
sented using Grafchart procedures. The process information and results
from performed experiments are stored in a central process data-base.

In this prototype, the execution strategy is defined by a fixed logic
structure in Grafchart. This structure makes extensive use of Grafchart
procedures and procedure steps, which actually make the system flexible,
since the procedures may be exchanged to achieve different behaviors. In
the following, one example of an execution sequence will be described. It
consists of two main steps: loop initialization and continuous operation,
see Figure 6.2. The loop initialization is naturally described as a sequence
of steps that are performed before starting regulatory control. It is less
obvious that the continuous operation is sequential in its nature. However,
it is possible to define a fixed execution strategy which determines what
to do when the regulatory control does not perform satisfactorily. Both
the initialization and continuous operation strategies my be exchanged;
either fully, or by changing some of the internal procedure calls.

A simple execution sequence for loop initialization could for example
look like this:

1. Before startup, ask the user for some information, typically the type
of control loop, actuator and sensor information, scaling of the sig-
nals, constraints on input and output, desired control objectives,
known process characteristics such as crude classifications, approx-
imate time delays and time constants etc.
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2. Loop assessment experiments: Find out basic characteristics of the
process (non-linearities etc), verify and use the user-supplied infor-
mation. This could possibly be done for different operating points.

3. Tune a controller, for example by using relay feedback.

4. Switch to on-line control.

The Grafchart implementation of the suggested execution structure
above is shown in Figure 6.3. Each of the procedure steps calls a spe-
cific Grafchart procedure in order to obtain the desired information by
performing some experiment. The first four steps all belong to the loop
assessment procedure. The step labeled Setup experiment will for exam-
ple launch a dialog window, where the operator is supposed to enter some
data, and to move the process manually to the operating point for the
experiments. An example of the dialog window is shown in Figure 6.4.
The system will be able to do a crude analysis of the data produced while
going to the operating point. This can be used if the user does not enter
any information. If the user enters information which has large discrep-
ancies compared to the observed data, a dialog will appear where the user
is asked to confirm either of the approximate sets of process information.

Loop assessment The noise listening phase consists of a call to the
Grafchart procedure noise-listen. This procedure follows the descrip-
tion in Section 2.3 and will not be discussed further here. However, the
hysteresis test may deserve some more attention. The hysteresis test con-
sists of a number of open-loop step responses. In Section 2.3 an initial
guess of a suitable input step size was given as

∆u = 1

k̂p
min(N emax, ∆ ymax)

where k̂p is the crude estimate of the static gain, emax is the noise ampli-
tude, ∆ ymax is the maximum allowed deviation from the operating point
during the experiments, and N is the desired ratio between the ampli-
tudes of the output and the noise. Typical values of N could be 5–15.

Figure 6.5 shows a part of the Grafchart procedure step-test that
performs the experiment for the hysteresis test. Each of the steps is per-
formed by a call to the Grafchart procedure single-step, shown in Fig-
ure 6.6. The single-step procedure applies a step of a size which is passed
as an input argument. After a wait corresponding to the crude estimate
of the time scales of the process, the procedure noise-listen is called.
If the output variation during this listening phase is not dramatically
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Loop initialization

Continuous operation

Figure 6.2 The main Grafchart procedure consisting of loop initialization and
continuous operation.

Setup experiment

Noise listening

Step tests

Ramp test

Auto tuning

Figure 6.3 A loop initialization sequence for a simple controller.
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Figure 6.4 A dialog window for experiment setup. The user may provide crude
estimates of the time scale and gain of the process.

larger than the recorded noise level during previous noise tests, it is as-
sumed that stationarity is reached, and the single-step procedure may
finish. Otherwise, new listening phases are repeated until stationarity is
reached.

When the single-step procedure has finished, the execution returns
to the step-test procedure in Figure 6.5. If the output moved significantly
during the step, the execution will proceed to the next call to single-step,
otherwise the first step has to be repeated with a larger input amplitude.
The other possible failure is that the output moves outside the allowed
region during the step. This should however be handled directly when
it is detected, and not after the step response is completed. This is a
typical situation where exception transitions should be used. The abnor-
mal behavior will interrupt the execution of single-step regardless of
its current state. The exception handling is a call to single-step again,
now with the initial level of the control signal as input argument. The
single-step procedure also records the maximum and minimum value of
the output, which may be useful when calculating new amplitudes for the
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Figure 6.5 A part of the Grafchart procedure step-test for the hysteresis test.
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Figure 6.6 The contents of the Grafchart procedure single-step.
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Figure 6.7 The Grafchart procedure kappa-tau.

step tests. When the output has returned to stationarity, the step test is
repeated, now with lower amplitudes.

This fairly detailed example indicates the kind of supervisory logic
that is needed even for a comparatively simple experiment. The use of
exception transitions proved very useful here, as it does in many cases.

Automatic tuning The automatic tuning procedure will also be out-
lined briefly. It is based on the Kappa-Tau method described in Section 2.4.
The necessary input data is obtained by a relay experiment followed by a
step response in closed loop. The Grafchart procedure kappa-tau is shown
in Figure 6.7. It consists of a relay feedback experiment to obtain the ul-
timate gain and frequency of the process. Using this information, a pre-
liminary PI or PID controller tuning is calculated. Then, a closed-loop
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step response test is performed with this preliminary PID setting in or-
der to find a good estimate of the static gain of the process. When this
information is obtained, a Kappa-Tau PID tuning can be calculated, and
the tuning procedure has finished. If something goes wrong during the
relay experiment, the controller is forced into manual control, and the
user may enter some controller parameters, or restart the installation
procedure at some stage. This mechanism is not discussed here. If some-
thing goes wrong during the closed-loop step response experiment, the
preliminary parameters are kept, and the tuning procedure is finished.

The Grafchart procedure relay-experiment is shown in Figure 6.8.
The upper part consists of initializations and a wait for the first switch.
The lower part consists of the loop that is run through every time the relay
switches. After a switch has occurred, there are two major decisions that
need to be made. During the first oscillation cycles, the relay amplitude
may be adjusted in order to achieve an acceptable oscillation amplitude
on the output. When the amplitudes will not be adjusted any more, it will
instead be decided if a steady limit cycle has been built up. If this is the
case, execution exits the loop, and the ultimate point may be computed.
There are two different situations that may cause the relay experiment
to fail. First, the oscillations may stop, or never start, even if the relay
amplitude is set to its maximum value. The reason for this is either large
input non-linearities or gross sensor faults. Secondly, the oscillations may
never come sufficiently close to a stable limit cycle. This means that the
ultimate point cannot be computed, and the relay experiment must be
aborted after a certain number of switches.

Continuous operation When the initial loop assessment and tuning
have been completed, the sequence in Figure 6.2 will start the Grafchart
procedure for continuous operation. An example of one such procedure
is shown in Figure 6.9. Initially it starts a Grafchart procedure for loop
monitoring in a process step. By using a process step, it is possible, but
not necessary, to have some part of the monitoring algorithm running on
the supervisory level. Advanced monitoring algorithms may for example
use both on-line data and historical data for reasoning. Simple monitor-
ing algorithms will typically execute only on the real-time system. The
procedure that is invoked by the process step will then only start the
monitoring algorithm, and then terminate. In this example we assume
that the monitoring algorithm is the oscillation detection algorithm de-
scribed in Hägglund (1995).

When the loop monitoring algorithm has started, a PID controller
based on the Kappa-Tau design method is switched in. This is done in the
step labeled Normal operation in Figure 6.9. The PID controller is now
supposed to work on-line until an operator or some supervisory control
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Figure 6.8 The Grafchart procedure relay-experiment.
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function decides otherwise. When bad control performance is detected, in
this case a persistent oscillation, the loop is switched to manual control.
The manual control signal should be set to some average of the control
during closed-loop control.

The purpose of the manual control is to determine if the oscillations
are caused by feedback, or by external disturbances. If the oscillations
have not disappeared after some time, it is assumed that the oscillations
are caused by external disturbances. The tolerance of the monitoring al-
gorithm is adjusted in order not to trigger for the same disturbance again.
Normal operation is then resumed, and the incident is reported to the op-
erator, and to possible superior levels of the control system. The time to
wait for the oscillations to disappear can be determined using knowledge
of the time scale of the closed-loop system.

If the oscillations disappear during manual control, it is assumed that
the bad performance is caused either by friction in the actuator or a badly
tuned controller. Thus, a method for friction detection is started, for ex-
ample the one outlined in Section 2.3. If no friction is detected, a new
auto-tuning procedure is performed, and normal operation is resumed. If,
on the other hand, experiments show that there is friction present, the
user is notified and recommended to maintain the valve. While waiting
for this to happen, some kind of friction compensation can be activated
before returning to PID control using the old parameters. One method
that is frequently used to avoid limit cycling due to friction is to add a
dead-band in the controller such that the integration of the control error
is stopped if it is small enough. This will however allow the control error
to be either positive or negative for very long time periods. This may be
undesired if the control loop is used for, e.g., consistency control. Another
friction compensation is presented in Hägglund (1997b). It is based on
injections of short pulses in order to avoid the stick-slip motion.

Comments on the execution sequence The execution scheme pre-
sented above is simple, and resembles what operators sometimes are rec-
ommended to do when they face bad control performance, see Åström and
Hägglund (1995). The description of the sequence is by no means com-
plete. However, it gives some hints to how the logic in an autonomous
single-loop controller can be implemented. The sequence has a seemingly
fixed structure, but it is still flexible since any Grafchart procedure may
be exchanged for other methods. It is for example possible to let the sys-
tem use new tuning schemes, and even new controller structures, each
time the controller is found to work unsatisfactorily. This can for example
be achieved by having an expert system select the controller structure
that seems most appropriate in the current situation.

If fixed supervisory logic is still desired, the described execution se-
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quence may be changed in several ways.

• For simplicity the proposed sequence has very little exception han-
dling. In order to increase the robustness, each Grafchart procedure
should have some kind of error handling.

• The recovery from bad control performance may by performed in
many different ways. For example, it is possible to start a fric-
tion compensation method as soon as bad control performance is
detected. If the performance is improved, friction is the likely rea-
son for the problems. If the performance is not improved, it may be
interesting to find other causes for the bad performance.

• When external disturbances is the likely reason for bad performance,
it would be interesting to investigate if some signal could be used
for feed-forward control.

• Loop interactions are not at all considered in the described sequence.

• In a real system, the recovery sequence must be approved, either
by an operator or by some function at the unit operation level, see
Figure 2.1.

6.3 Summary

This chapter has discussed implementation issues for an autonomous con-
troller. The use of a high-level graphical language for structuring the con-
trol algorithms has been motivated. A prototype implementation in G2 us-
ing the Grafchart toolbox has been presented. Grafchart is tractable since
it is a high-level sequential description language that can be automati-
cally translated into an industrial standard. Some examples of detailed
supervisory logic have been shown.
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Figure 6.9 The interior of the Grafchart procedure for continuous operation.
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7

Conclusions

This thesis has treated different aspects of autonomous process control.
The topics can roughly be divided into two parts: one part dealing with
desired functionality and implementation of an autonomous single loop
controller, the other part describing a set of new tools and algorithms in
more detail.

The viewpoint taken on autonomy in the thesis is based on the as-
sumption that human operators are active parts of the control system.
The purpose of introducing more autonomy is to extend the region where
the control system can run the plant without human interaction and to
provide assistance to the operator. A fully autonomous control system
would impose extremely high demands on safety, that are not possible to
meet today. Instead, the level of autonomy should be increased gradually
as improved algorithms are developed.

The thesis has presented a list of desirable features and algorithms
that could be parts of an autonomous control system. These algorithms
must be executed and analyzed in a structured way. It is shown that this
can be successfully done using Grafchart, a high-level graphical language
for sequential and logic control which can be automatically translated to
sequential function charts.

Detailed descriptions of new tools and algorithms have been given.
These components fit into the general framework outlined above. They
deal with identification and control design; issues that belong to the clas-
sical control field.

The tool for step response analysis provides a simple environment for
process identification. Since step response data is very commonly used by
operators, it is relevant to provide a tool for analyzing the experiments.
The tool actually permits any type of piecewise constant input signal. It
should not be regarded as an alternative to advanced process identification
tools, but rather as a tool for preliminary assessment of process dynamics.
The possibility to manipulate the output from the process model graphi-
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cally makes it easy to obtain a crude dynamical model of the process. The
parameters of the chosen model structure may also be computed from a
least squares fit of the model output to the experimental data. The tool
may be used as an integrated part of an autonomous control system, or
as a stand-alone application for off-line analysis.

The inclusion of simple process non-linearities in the identification tool
is also very useful, since the static characteristics of a plant may be just
as important as the dynamical behavior. With a static non-linearity on the
input or the output of the system, it is possible to linearize the process by
inverting the non-linearity. The combination of a simple dynamical model
of the system, a static process non-linearity, good PI(D) tuning rules and
gain scheduling gives a simple way of obtaining a non-linear controller.
With good computer tools, this may be an alternative to other simple
non-linear controllers, for example fuzzy controllers.

A new automatic tuning procedure for PI and PID control has been
presented. The use of a time-varying hysteresis during relay feedback
gives better excitation over the frequencies relevant for PI and PID con-
trol, than relay feedback using fixed hysteresis does. It has been shown
that the spectral estimate from this experiment can be used for PI design.
It has also been shown that a PID design can be obtained by iterative PI
design.

A simple strategy for fast set point response has been developed. It
mimics what experienced process operators often do manually to obtain
fast and set point step responses with no overshoot. The strategy is to
do a short sequence of steps in the control signal. First, a large step
is taken to make the process output move fast in the correct direction.
After some time, the control signal should return to the original value,
or even below it, in order for the process output to approach the new set
point smoothly. Finally, a step corresponding to the correct steady-state
value of the control signal should be applied in time to “catch” the process
output before it moves away from the new set point again. The sizes and
lengths of the steps should be adjusted in order to get a fast and smooth
set point response. Methods for finding good values for the step sizes and
the switching times has been given. The method may be applied with
varying degrees of process knowledge, though with different qualities of
the resulting response.

Future work

Higher autonomy at every level of a control system will continue to be
a subject for further research for years to come. Concerning the specific
problems treated in this thesis, there are also a large number of future
research directions.

The list of desired functionality can be made much longer. The thesis
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only deals with problems related to SISO processes. Some of the ideas
carry over to simple multivariable structures such as cascade control. It
would be useful to have a similar set of tools for multivariable processes.

The experiments presented here for assessment of local non-linearities
such as friction and hysteresis may take unduly long time to perform. It
should be possible to do a combined experiment which finds out both
friction and hysteresis using a minimum experiment duration.

The scheduling of algorithms is currently done in a flexible, but static
manner. A desirable feature is to plan the experiments dynamically in
order to do exactly the right experiment in every instant. One way of ap-
proaching this is to use the concepts of pre-conditions and post-conditions
from expert system technology, and use planning algorithms for schedul-
ing the experiments.

The step response analysis tool may be improved in several ways.
One interesting feature would be to include other representations of non-
linearities, for example non-linearities that depend on exogenous signals.
A good experiment strategy for that kind of system should also be devel-
oped.

The auto-tuning scheme based on relay feedback has to be made more
robust before it is possible to apply on all kinds of practical systems. The
selection of suitable hysteresis levels should be done automatically during
the experiment.

The implementation structure for the fast set point response method
should perhaps be modified. For example, it would be nice to have an im-
plementation where the switching times can be calculated using feedback.
It would also be interesting to choose the switching times based on simple
observations that gives more consistent results than the current method
does.
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A

Graphical Languages for
Sequential Control

The purpose of this appendix is to give a short description of the graphical
language Grafchart that was used in Section 6.2. Grafchart is an exten-
sion of Grafcet, and therefore Grafcet is also described briefly. For more
detailed descriptions of the syntax and semantics of Grafcet, refer to David
and Alla (1992) and IEC (1988). Grafchart is described in Årzén (1994)
and Johnsson (1999).

A.1 Grafcet

Grafcet, or sequential function charts (SFC), can be viewed as a special-
ization of Petri Nets. The specialization lies in the fact that each place,
called step in Grafcet, is allowed to contain only one marker. This means
that a Grafcet is easily transformed into a Petri net. Thus, the existing
formal methods for analyzing Petri Nets may be applied to Grafcet and
SFC. Since a Grafcet contains a bounded number of markers it is also
possible to transform it to a Finite State Machine.

An example containing the basic Grafcet building blocks is shown in
Figure A.1.

The Grafcet consists of interconnected steps and transitions. The steps
represent the states of the Grafcet. A filled marker indicates that a step
is currently active. Steps drawn with double squares are called initial
steps, implying that they are initially active. Associated with each step
is a number of actions to be performed while the step is active. The box
containing A in Figure A.1 represents an action.

The steps are connected via transitions, each having a boolean con-
dition, an event, or both. A condition (C in Figure A.1) is tested while
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Alternative paths

Parallel activities

Transition

Step

Marker

Initial step

C

A

E

Figure A.1 Basic Grafcet building blocks. A is an action, C is a condition, and ↑E
is an event.

I

O

Figure A.2 A Grafcet macro step with its internal structure.

the transition is enabled, i.e., when the preceding step is active. If the
condition is true, the transition fires, making succeeding steps active,
and preceding steps inactive. An event (↑E in Figure A.1) does the same
thing, except that it is required to become true while the transition is en-
abled for the transition to fire. Grafcet is only specified for simple boolean
conditions and actions, whereas SFC allows complex language elements.
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Figure A.3 A Grafchart macro step with its internal structure to the right. The
transition connected to the left side of the macro step is an exception transition.
Enabled transitions are filled.

Grafcet supports alternative and parallel paths. The syntax for these
is shown in Figure A.1. In order to structure the Grafcet hierarchically,
it is possible to use macro steps, see Figure A.2. A macro step is a way
of condensing an arbitrary number of steps and transitions into just one
step. It has one enter step (I) and one exit step (O), and general Grafcet
structures in between. The enter step is activated as soon as the macro
step becomes active. The transitions following the macro step may not be
fired until the exit step is active.

A.2 Grafchart

When building complex control systems, the Petri net or Grafcet models
of it soon become big and difficult to get an overview of. Various high-level
nets have been suggested in order to cope with this, see for example the
brief survey in Johnsson (1999). In this work, Grafchart has been used
for structuring control algorithms. Grafchart is an extension of Grafcet,
and has been implemented in the real-time expert system environment
G2. We will now give a brief description of the elements of Grafchart that
has been used here. For a more complete description, see Årzén (1994)
and Johnsson (1999), where a formal definition with complete syntax and
semantics is also presented.

The basic components in Grafchart are the same as in Grafcet, with
slight differences in notation. Figure A.3 shows the graphical notation in
Grafchart, along with a new language element called exception transition.
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The exception transition is connected to a macro step via a wide line. It is
enabled the whole time when the macro step is active. Other transitions
connected to the macro step are only enabled when the exit step of the
macro step is active. This makes the exception transition suitable for
handling failures, abortion and other types of exception handling. The
macro step has an internal structure shown to the right in Figure A.3
with an enter step at the top, an exit step at the bottom, and general
Grafchart structures in between. In the G2 implementation, the internal
structure of a macro step resides on its subworkspace.

There are several other language elements introduced in Grafchart.
A procedure step is similar to a macro step, though it does not have
a fixed internal structure. Instead, it invokes the Grafchart procedure
named by the procedure attribute. A Grafchart procedure is an object
with an associated Grafchart sequence, which has the same syntax as the
internal structure of a macro step. Similarly, this Grafchart sequence re-
sides on the subworkspace of the Grafchart procedure. When a procedure
step becomes active, the corresponding Grafchart procedure is instanti-
ated and activated. It then executes similar to a macro step. Since the
procedure attribute may contain different procedure names at different
times, this becomes a more flexible way of organizing sequential logic in
a compact manner. It is also possible to define input and output parame-
ters of a Grafchart procedure. These are passed to the procedure via the
parameters attribute, which is used to set attributes of the Grafchart pro-
cedure. In the example in Figure A.4, the attribute n of proc-1 is set to
5 when the Grafchart procedure is invoked.

Inside the procedure, the notation sup.<attribute-name> is used to
access the parameters in actions, conditions and attributes to steps. With
the notation sup.<attribute-name>^ it is possible to have reference pa-
rameters. The expression refers to the object that is named by the con-
tents of the attribute <attribute-name> of the Grafchart procedure. At-
tributes of this object may in turn be referred to by expressions like
sup.attr1^.attr2 etc. This is illustrated in Figure A.5.

In addition to the procedure step, Grafchart also provides a process
step, see Figure A.6. Both call a Grafchart procedure, possibly with pa-
rameters. When a procedure step becomes active, the invoked Grafchart
procedure must finish before any transitions after the procedure step be-
come enabled. Conversely, the transitions after a process step become
enabled as soon as the Grafchart procedure has been invoked. Thus, the
sequence is split into two parallel execution threads, one in the original
sequence, and another inside the invoked procedure.

A condition in the G2 implementation of Grafchart is an attribute of
its corresponding transition. It is allowed to contain any boolean-valued
G2 expression, with the possibility to use dot notation and sup references,
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Parameters "n 5"
Procedure "proc-1"

PROC-1

N 5

Figure A.4 A procedure step which calls the Grafchart procedure proc-1 with the
attribute n set to 5. The parameter may be used within the internal structure of the
procedure to the right. Note that the syntax is case insensitive.

Event ""
Condition "sup.attr1^.attr2 >= 2.0"

Attr2 2.1

OBJECT-2

Attr1 object-2

PROC-2

Figure A.5 An example of reference notation. The condition of the enabled transi-
tion evaluates the attr2 attribute of the object that is named by the attr1 attribute
of the Grafchart procedure.
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Parameters "n 10"
Procedure "proc-1"

Figure A.6 A process step which calls the Grafchart procedure proc-1 with the
attribute n set to 10. The transition after the process step is enabled as soon as
proc-1 has been invoked.

as in Figure A.5. Furthermore, a transition has an attribute event which
may contain a reference to a variable. The transition may fire whenever
this variable receives a new value, and the condition is satisfied.

There are five types of actions in Grafchart:

• Initially actions, which are executed once when the step becomes
active.

• Always actions, which are executed periodically when the step is
active.

• Finally actions, which are executed once just before the step be-
comes inactive.

• Abortive actions, which are executed once when an exception tran-
sition is making the step inactive. This type of action is thus only
possible in macro steps and Grafchart procedures.

• Finally, abortive actions, which is a combination of the last two
types.

The syntax of an action in the G2 implementation is one of the action
categories above, followed by a general G2 action, possibly extended with
the dot notation used above. The actions associated with a step reside
on its subworkspace. Before the Grafchart sequence containing the step
becomes active, the actions must be compiled into valid G2 rules. This may
be done statically when the Grafchart sequence has been constructed,
or dynamically at runtime, when for example a Grafchart procedure is
invoked. The same applies to the events and conditions of transitions as
well.

Grafchart has been used in several application areas both in industry
and universities, for example batch control (Johnsson (1999)) and hydro-
gen balance advisory control (Årzén (1994)).
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