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1., INTRODUCTION

The simple PI-regulator is unquestionable the most common regulator

in industry. In spite of this there are cases where it is advantageous
to use more complex control algorithms. More complex regulators have
unfortunately often more adjustable parameters. It may thus be costly
and time consuming to tune such regulators. Self-tuning control is
one possibility to simplify the tuning.

The basic self-tuning regulator described in Astrom and Wittenmark
(1973) was designed for a situation where the control problem could

be characterized as a minimum variance control problem. This means
that the criterion is to minimize the variance of the output. The

basic self-tuning regulator was designed based on a certainty-
-equivalence argument. The appropriate model of the process and its
environment is thus estimated recursively. The control is deter-
mined as if the estimated model is equal to the true model. There
are many problems which fit this problem formulation and the basic
self-tuning regulator has also been shown to work very well in such
cases. There are, however, also stochastic control problems where
minimum variance control is not appropriate. One case is a non-minimum
phase plant. Another case is when large control signals are required
to achieve minimum variance. These cases can, however, be formulated
as linear-quadratic-gaussian (LQG) control problems. A self-tuning
regulator based on the LQG design technique was described in Astrom
and Wittenmark (1974). Other versions are given in Peterka and Astrom
(1973), Astrom et al (1977). The self-tuning regulator based on the
LQG formulation has the drawback of being more complicated than the
basic self-tuning regulator. The reason for this is that the design
calculations which are done in each step involve the solution of a
steady-state riccati equation or equivalently a spectral factoriza-
tion. A simpler algorithm was proposed by Clarke and Gawthrop (1975).
They proposed to use a LQG formulation with a one-step criterion only.
This simplifies the algorithm considerably. The algorithm can be made
to work well in many cases but it is not foolproof. Further discus-
sions of the algorithm are given in Gawthrop (1977) and Clarke and
Gawthrop (1979).



There are many problems which do not fit the stochastic control for-
mulation. Encouraged by the success of the self-tuning regulators for
stochastic control problems, it is tempting to try a similar approach
in other cases. Using the certainty equivalence argument the design

is straightforward. Start with a design method for systems with known
parameters. Substitute the parameters of the known system model by
estimates which are obtained recursively and recalculate the control
parameters in each step. Self-tuning controllers of this type which
are based on pole-placement design and Teast-squares estimation are
discussed in this paper. The controllers obtained are useful in many
situations. For instance they can be used to tune control loops when
the parameters or the controlled system is unknown or slowly time-
-varying. It is assumed that the main source of disturbances are
changes in the reference value or occasionally large disturbances

that have to be eliminated. The self-tuning regulator based on minimum
variance control is not well suited for this case. The new self-tuning
controliers can be used to solve the servo problem and can thus be
regarded as useful complements.

Self-tuning regulators based on pole-placement design have been
discussed by several other authors. A digital adaptive pole shifting
algorithm was discussed in a dissertation by Edmunds (1976). This and
similar algorithms are further discussed in Wellstead (1978), Well-
stead et al (1978), Wellstead et al (1979), E11iot and Wolovich
(1979). In these works the emphasis is, however, on the regulation
probiem and not on the servo problem. The use of feed-forward is not

discussed. Servo self-tuners have been discussed in Astrom et al
(1977), Astrom et al (1978), and Wellstead and Zanker (1979). Self-

-tuning of PID-controllers based on pole placement is discussed in
Wittenmark (1979). Wouters (1977) also proposes a stochastic pole-
-placement strategy. He also focuses on the stochastic regulation
properties of the algorithm. The self-tuning controller proposed by
Clarke can also be interpreted in a pole-placement framework. See
Gawthrop (1977). Our paper differs from the previous treatments

by focusing entirely on the servo problem. In our formulation the
Tinks to a deterministic design procedure are also emphasized. This



makes it possible to establish 1inks to MRAS. See Egardt (1978).
Another feature of this paper is that the notions of algorithms with
implicit and explicit identification are introduced. Several of the
algorithms proposed in this paper are also new.

The paper is organized as follows. Pole-placement design for systems
with known parameters is reviewed in Section 2. The suitability at

the pole-placement design as a basis for adaptive control is discussed
in Section 3. It is shown that there are some difficulties which are
inherent in the problem formulation. Adaptive pole-placement algorithms
based on estimation of the parameters in an explicit process model are
discussed in Section 4. This leads to the so called explicit schemes.
In Section 5 it is shown that some simplification of the adaptive
algorithms can be achieved by instead estimating parameters in a modi-
fied process model. This leads to the Amplicit schemes. Some simula-
tions which illustrate the behaviour of adaptive algorithms based on
the pole-placement design are given in Section 6.



2. POLE ZERO PLACEMENT DESIGN

A brief review of the pole-zero placement design method for systems
with known parameters will now be given. This material is quite well-
known. See e.g. the classic text on sampled data systems by Ragazzini
and Franklin (1958). More recent discussions on design of digital
control systems based on pole-placement design are found in Andersson
(1977), Wittenmark (1976), and Franklin (1977). Due to the algebraic
nature of the probiem there are strong similarities to the corre-
sponding design procedure for continuous systems. See Astrom (1976).
The discussion given here is limited to single input systems.

Notations

The systems and requlators are described using a polynomial represen-
tation. The following notation is used:
-1, _ -1 ~Na
A(q ') = ag +a; G t...t m:m q s 3 £ 0,

1

where q ' is the backward shift operator. If ag=1 the polynomial is

said to be monic. The degree of a polynomial >An-_v is written either

as deg A or as n,. The argument of the polynomial is dropped if there
is no ambiguity.

The input, output and command signals of the process are denoted

u(t), y(t), and u (t) respectively, and v(t) is a disturbance. Z is

a region well outside the unit disc. If the zeros of a polynomial
belong to Z this implies that the corresponding modes are sufficiently
well damped. This region is called the restricted stability region.



Formulation

Consider a process characterized by the rational operator

- -1
- B
a(a’ly =4 _Bl9 ) (2.1)
Alg )
It is assumed that A and B are coprime, that A is monic, and that the
delay in the process is such that

k1. (2.2)

It is desired to find a controller such that the closed loop is
stable and that the transfer function from the command input Ug to
the output is given by

-k -1

q " BL(a™)

1) =t (2.3)
i paﬁg-Av

where >3 and ma are coprime and >3 is monic. The zeros of >s are
assumed to be inside Z.

For simplicity it is assumed that the time delay in (2.3) is the same
as the time delay in (2.1). It is, however, sufficient to assume that
the delay in (2.3) is at least as long as the delay in (2.1).

Design procedure

A general Tlinear regulator can be described by

R(a™) u(t) = T(q71) u (t) - s(@™h) y(t). (2.4)

The closed loop transfer function relating y to u_. is given by

C
-k
gk 9 By
I—A - AN.mv
>x+-gmm >s

where the right hand side is the desired closed loop transfer func-
tion G, given by (2.3).



The design problem is thus equivalent to the algebraic problem of
finding polynomials R, S, and T such that (2.5) holds. It follows
from (2.5) that factors of B which are not also factors of By mustbe
factors of R. Since factors of B correspond to open loop zeros it
means that open loop zeros which are not desired closed loop zeros
must be canceled. Factor B as

B = BB~ (2.6)

where all the zeros of B are in the restricted stability region Z
and all zeros of B outside Z. This means that all zeros of B corre-
spond to well damped modes and all zeros of B~ correspond to unstable
or poorly damped modes.

A necessary condition for solvability of the servo problem is thus
that the specifications are such that

B =B_ B . (2.7)
Since deg A, is normally less than deg A>x¢.p-xwmv it is clear that
there are factors in (2.5) which cancel. In state space theory it can
be shown that the regulator (2.4) corresponds to a combination of an
observer and a state feedback. See Astrom (1976). It is natural to
assume that the observer is designed in such a way that changes in
command signals do not generate errors in the observer. This means
that the factor which cancels in the right hand side of (2.5) can be
interpreted as the observer polynomial Rg- Tt is assumed that all
zeros of Ay are in the restricted stability region Z.

A block diagram of the closed loop system is shown in Fig. 2.1.

Controller
——————
_ Feedforward I__ v
u . _
o T 5 | ug) 5%s Y
| _ A
| Feedback -W |
L — ||.ri..|4wuu.|.L

Fig. 2.1 - Block diagram of the closed loop system.



The regulator can be interpreted as being composed of a feedforward
path with the transfer function T/R and a feedback path with the
transfer function -S/R.

The design method can be described as follows.

Data: Given a mathematical model (2.1) of the process character-
ized by the polynomials A and B, the desired response (2.3)
characterized by the polynomials Ay and B, and the desired
observer polynomial Ag- Assume that the data satisfies the
conditions (2.2), (2.6), and (2.7) and that all zeros of A

0
are in Z,
Step 1: Solve the equation
-k .-
>xd +q BS-= >a >o (2.8)

with respect to Ry and S.

Step 2: The regulator which gives the desired closed loop response is
given by (2.4) with
R = Ry BY (2.9)
and

T=AyB (2.10)

3._.
The equation (2.8) can always be solved because it was assumed that A

and B where coprime. This implies of course that A and B~ are also
coprime.

0
1

0

Equation (2.8) has infinitely many solutions. If R® and S are solu-

tions, then

where U is an arbitrary polynomial, is also a solution. A1l solutions
will give a closed loop system with the desired closed loop transfer
function G- The different solutions will, however, give systems with



different noise rejection properties. The transfer function from
the disturbance v acting on the process output to the output, see
Fig. 2.1, is given by

AR AR

= - +°
AR + q KBS A AGB
The particular solutions used for the self-tuning regulators in this
paper are such that the transfer functions S/R and T/R are causal

with no extra delay. The following are natural choices of solutions:

deg S = deg A-1
2.11
deg x; = deg >5¢.am@ >o| deg A A v

or
deg S = deg A  +deg Ay = deg B -k

- 2.
deg x_ =deg B + k-1. (2.12)

The case (2.11) corresponds to "integral" compensation and the case
(2.12) corresponds to "derivative"compensation. There are, however,

many other possibilities.

Interpretation as model following

The regulator (2.4) can be interpreted as a model following. It
follows from (2.8), (2.9), and (2.10) that

|_A| -Kep—
T AgBn (AR +q7"B7S) By, _ >mad¢.g SB By

+ + + +
R BYR, AnB R B Ay B'RiA.

The feedback law (2.4) can thus be written as

u(t) = 4

Yo (t+k) +_m [y.(t) - y(t)] (2.13)



-k
q "B,

Ay

The signal Yc can be interpreted as the output obtained when the
command signal u. is applied to the mode] p-xma\>s. When the regu-
lator (2.4) is rewritten as (2.13) it is clear that it can be thought
of as composed of two parts, one feedforward term m.knAﬁ+xv and one
feedback term (S/R)(yc(t) - y(t)). The feedforward is a combination of
the ideal model and an inverse of the process model. The feedback term
is obtained by feeding the error Ye - ¥ through a dynamical system
characterized by the operator S/R. The linke between pole placement
and model following design is thus established. Notice, however, that

the system px>\w is not realizable although the combination AB./(BAy) is.

Ye(t) = uc(t).

Special cases

To perform the design it is necessary to have procedures for decom-
posing a polynomial B into its factors B* and B™ and for solving the
linear polynomial equation (2.8). The decomposition is essentially a
spectral factorization problem. Equation (2.8) can be solved by using
Gauss’ elimination or by using Euclid’s algorithm. In the adaptive
algorithms these calcuTations have to be repeated in each step of the
iteration. It is then of interest to see if there are some special
cases where the design calculations can be simplified. Two special
cases, where the decomposition problem is avoided, are given below.

EXAMPLE 2.1 (ARL process zenos cancelled)

Assume that al] process zeros are cancelled and that no additional
Zeros are introduced. Further assume that deg Ap=deg A and deg >o =
= deg A- 1. Equation (2.8) then reduces to

-k
ARp+q7"s = A A (2.14)

and the controller is then given by (2.4) with
R = R,B
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—
"
=
o

where K is a constant. Notice that B appears as a factor of R which
is the denominator of the regulator transfer function. Also notice
that the specifications are normally such that the desired closed
loop transfer function has unit gain at low frequencies. This means
that the polynomials Ay and By should be normalized such that
Bm(1)/AR(1) =1. Since A is monic the polynomials n-x and A are always
relatively prime. The Equation (2.14) can thus always be solved. The
solutions corresponding to

deg S = deg A-1
(2.15)

deg Ry = deg >5¢.am@ >o| deg A
or

deg S = deg A,+deg Ag-k
(2.16)
Qmm _N._ = k-1.

are chosen. In the special case of Example 2.1 the design calcula-
tions thus reduce to the solution of (2.14). Notice that (2.14) is
easy to solve for the case (2.16). The coefficients of the polynomials
Ry and S can then be obtained one at the time.

EXAMPLE 2.2 (No process zeros are cancelled)

Assume that the specifications are such that the desired closed loop
zeros are equal to the process zeros, i.e. By, = K-B, where K is a
constant. The specifications are normally such that the low frequency
gain of the desired closed loop is unity. The constant factor of the
polynomial B is then chosen so that B (1) = >3A_v. It is assumed
that this normalization is made. Equation (2.8) then gives

-k
AR + q "BS = >s>o. (2.17)
The design procedure is thus again to choose the polynomials A, and
Ag- Equation (2.17) is then solved with respect to R and S and the

controlier is then given by (2.4), where T = x>o. o
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Other alternatives

There are many possible variations on the pole-placement design
scheme presented in this section. Franklin (1977) has pointed out
that the observer poles must not necessarily be cancelled precisely.
Almost cancellations lead to an extension of the classical notion of
dipole compensation. Similarly Gawthrop (1977) has pointed out that
in the case of stable but poorly damped process zeros it is possible
to cancel them, provided that the specified closed loop transfer
function has zeros close to the process zeros.
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3, SELF-TUNING CONTROL

The basic idea when using the separation principle to design self-
-tuning regulators can be expressed as follows. Start with a design
procedure for systems with known parameters. When the parameters are
not known they are estimated recursively and the regulator is re-
designed in each step, using the estimated parameters instead of the
true ones. This means that the certainty equivalence hypothesis is
used to determine the controller. A block diagram of a general self-
-tuning regulator is shown in Fig. 3.1.

¢

u
| PROCESS

i€ CONTROLLER

iE

|
|
|
|
PARAMETER |
|
|
,
|

CALCULATION

=

PARAMETER
ESTIMATOR

Fig. 3.1 - Schematic diagram of a self-tuning regulator.

The pole-zero placement design method was discussed in Section 2.

The parameter estimation will be discussed in this section. A general
discussion of some properties of self-tuners based on pole-zero place-
ment is also given in this section. More details are given in the
following sections.

Parameter estimation

An overview of methods for recursive parameter estimation is given in
Soderstrom et al (1974). There is unfortunately no recursive para-
meter estimator which is uniformly best. Least squares, which is one
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of the simplest recursive estimation schemes will be used here. This
procedure will give biased estimates if there are stochastic disturb-
ances which are coloured noise. Since the discussion is focused on
the servo problem the major disturbances are, however, command inputs.
This is also compatible with the pole-zero placement design procedure
which is not suitable to handle trade-offs between measurement noise
and process noise quantitatively.

Recursive least squares

Consider the process model
Ay(t) = Bu(t-k) (3.1)

which can be represented explicitly as

kAﬁv¢-m_<Aﬁ-~v +o..t m:mkAﬁusmv = cocAﬂ-xv+...+ v:ccﬁﬁ-:v-xv.
Introduce a vector of parameter estimates
6= (38...8. by...5 )T (3.2)
._ o o 3@. O.... 3U .
and a vector of regressors
o(t) = (—y(t-1) oev —y(t-ng) u(t-K) ... u(t-ng-k) )1 (3.3)
The recursive least squares estimate is then given by
6(t+1) = 6(t) + P(t+1) o(t+1) g(t+1) (3.4)
where
e(t+1) = y(t+1) - o(t+1)T o(t) (3.5)
and
_ T -1 71
P(t+1) = [P(t)- P(t)o(t)[T+o (£)P(t)o(t)] 0 (t)P(t) [/ A (3.5)

There are also other possibilities to perform the least squares calcu-
lations. Square root algorithms are useful if the problem is poorly
conditioned. See e.g. Peterka (1975), Bierman (1977). Fast algorithms
can be used if computing time is critical. See e.g. Levinson (1947).
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Choice of A and modifications of the P-equation

The factor A in Equation (3.6) is introduced to discount past data
when performing the least squares. For the regulation problem the
estimator is excited by the process disturbances which normally are
reasonably uniform in time. It has been found empirically that a
value of X between 0.95 and 0.99 works well in such cases. For the
servo problem the major excitation comes from the changes in the
command signal. Such changes may be irregular and it has been found
that there may be bursts in the process output if Equation (3.6) is
used with A Tess than one. The presence of bursts can be understood
intuitively as follows. The negative term in (3.6) represents the
reduction in parameter uncertainty due to the last measurement. When
there are no changes in the set point the vector P(t)p(t) will be
zero. There will not be any changes in the parameter estimate and the
negative term in the right hand side of (3.6) will be zero. The Equa-
tion (3.6) then reduces to

P(t+1) = + P(t)

1
A
and the matrix P will thus grow exponentially if A< 1. If there are

no changes for a long time the matrix P may thus become very large. A
change in the command signal may then lead to large changes in the
parameter estimates and in the process output. The large values of the
matrix P may also lead to numerical problems. Examples which illu-
strate this behaviour are found e.g. in Fortescue et al (1979) and
Morris et al (1977).

There are many ways to eliminate bursts. Perturbation signals may be
added to ensure that the process 1is properly excited. The estimation

algorithm may be modified. One possibility is to stop the updating of
the matrix P(t) when the signal P(t)p(t) or the prediction error is

smaller than a given value. Another possibility is to subtract a term
like ngﬁﬁv from the right hand side of (3.6) to ensure that the
matrix P(t) stays bounded. A third possibility is to choose the for-
getting factor so that a function of P Tike tr P is constant.
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Self-tuners based on pole-zero placement

Before presenting specific self-tuning algorithms, it will be dis-
cussed whether the pole-placement design procedures are suitable for
design of adaptive regulators. There are several problems to be con-
sidered.

It follows from the discussion of the pole-zero assignment method in
Section 2 that it is not possible to specify the closed loop transfer

function arbitrarily. Firstly it is assumed that the timedelay in the
model G, (2.3) is at least as long as that of the process (2.1).

Secondly the specifications must be such that unstable or poorly
damped process zeros must also be zeros of the desired closed Toop
transfer function. This is formally expressed by the condition (2.7).
Notice that this does not mean that the poorly damped zeros must be
known a priori. These zeros are estimated in the self-tuner. Since the
zeros can not be cancelled it means, however, that the properties of
the closed loop system will change when the poorly damped process
zeros change. In practice it has been found that this is not of great
importance if the poorly damped zeros correspond to frequencies which
are higher than those of the dominating poles. Poorly damped process
zeros within the servo bandwidth will, however, have a very noticable
influence on the system. Hence it is not possible to ensure that
properties Tike overshoot, bandwidth, static errors etc. remain in-
variant for the adaptive system.

[t may be too restrictive to specify all closed loop poles at least

for high order systems. One possibility to avoid this difficulty for
discrete time systems is to specify only the dominant poles and require
that the remaining poles are close to the origin. In practice it is
often satisfactory to choose A, as

A(QTY) =1 - 26780 cos [ 1- g2 7T 4 en2Ewh -2 (3.7)

which corresponds to a second order continuous time system with damping
¢ and frequency w sampled with period h. It is often easy to determine
¢ and w such that the system gets desired properties. The relative
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damping i - :
. PIng 1s often chosen in the interval 0.5- 0.8. The resonance
equency w is chosen based on the demand i
S on the rise ti

solution time. SIS GE e
The pole-placement design procedure requires that the observer poles
are specified. The observer poles are not critical. Their choice
should, however, reflect the characteristics of the disturbances. If
an estimation procedure which gives the disturbance dynamics is used
e.g. in the form of a controlled ARMA model it is natural to choose
the observer polynomial proportional to the polynomial which charac-

terizes the moving average. In this paper this is not done and the
L

observer polynomial can thus be chosen arbitrarily
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iy, ALGORITHMS BASED ON EXPLICIT IDENTIFICATION

Some self-tuning algorithms based on the pole-zero placement design
method will now be discussed. The algorithms are first presented.
Their properties are then discussed briefly. Some practical aspects

are then given.

Algorithms

A self-tuning controller can be obtained by implementing the system
in Fig. 3.1 directly. The following algorithm is then obtained

ALGORITHM ET  (Basic explicit algornithm)

Data: The polynomials Ay and Ag, both with zeros in Z, and wsA are
given.

Step 1: Estimate the parameters of the model
Ay(t) = Bu(t-k)
by least squares.

Step 2: Factor

Step 2: Factor the polynomial B into B* and B~.

Step 3: Solve the linear equation
ARy+q "B S = ARo
with deg Ry and deg S chosen as in (2.11) or (2.12).

Step 4: Calculate the control signal from

Ru = Hco- Sy
with

_ +
R=RyB
T = >omad.

The steps 1, 2, 3, and 4 are repeated at each sampling period. o

An algorithm of this type is called an algorithm based on estimation
04 process parameterns or an algorithm with explicit identification,
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because the estimated parameters are the parameters of the process
model in the standard form. In the terminology of model reference
adaptive systems (MRAS) the corresponding algorithms are called
Andirect because the controller parameters are updated indirectly
via estimation of the process model and design calculations.

Notice that the closed Toop transfer function obtained with this
algorithm is

q maﬂwa
A

G

m

where B~ is the polynomial which correspond to unstable or poorly
damped process zeros. When these zeros change the closed Toop response
will also change.

One difficulty with the Algorithm E1 is that the equation to be solved
in Step 3 is poorly conditioned for parameter values such that A and
B almost have a common factor.

The factorization in Step 2 may also be difficult and timeconsuming.
There are two special cases where the factorization can be avoided.
One case is when all process zeros are well damped. It is then reason-
able to have a pole-placement design where all the process zeros are
cancelled. Under this hypothesis the pole-placement procedure can be
simplified as shown in Example 2.1. The corresponding self-tuning
pole-placement algorithm then becomes

ALGORITHM EZ  (Explicit akgornithm with all process zeros cancelled)

Data: Given specifications in the form of the desired closed Toop
poles and desired observer poles specified by the polynomials
>5 and Ay with zeros in Z. Further B, is a constant. The
polynomial By, is normalized so that Bn(1)/Ag(1) = 1. The
polynomial >o is normalized arbitrarily.

Step 1: Estimate the parameters of the model
Ay(t) = Bu(t-k)

by least squares.
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Step 2: Determine the polynomials xd and S such that
|_A|
>x_+.n S = >3>o
with deg xd and deg S chosen as (2.15) or (2.16).

Step 3: Use the control law
Wx._c = |_|C0| M;V\u
where T=AnB.

The steps 1, 2, and 3 are repeated for each sampling period. As safe-
-guards it should be tested that A and B do not have common factors
and that B is a stable polynomial. o

This algorithm cannot be expected to work well unless the correspond-
ing design procedure for systems with known parameters work well.
Since all process zeros are cancelled the regulator will not be satis-
factory for non-minimum phase systems or for systems with zeros having
poor damping. Such systems can, however, be handled using the design
procedure in Example 2.2. The corresponding self-tuning control algo-
rithm is given by

ALGORITHM E3  (Explicit algorithm with no process zeros cancelled)

Data: Given specifications in the form of the desired closed loop
poles and the desired observer poles specified by the poly-
nomials A, and >o with zeros in Z. Ag is normalized arbi-
trarily.

Step 1: Estimate the parameters of the model
Ay(t) = Bu(t-k)
by Teast squares.
Step 2: Introduce By =K-B and choose K such that Bp(1) = Ap(1). Then
determine the polynomials R and S such that
AR+ q7KBS = A Ag.

Deg S and deg R are chosen as in (2.11) or (2.12) with
deg R = deg Ry and deg B = deg B™.
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Step 3: Use the control law
Ru = q:o- Sy,
where T=K-Aj.

The steps 1, 2, and 3 are repeated for each sampling period. o

REMARK

Possible common factors of A and B should be eliminated after the
first step to ensure that the equation in Step 2 has a solution.
Notice that the polynomial Apcannot be normalized a priori because
the normalization requires knowledge of the polynomial B in the
process model. o

Notice that with Algorithm E3 the properties of the closed loop system
will change even if A, and Ay are fixed because the closed loop zeros
will change if the process zeros change.

Properties

The properties of the closed loop system obtained when the self-tuning
regulator is applied to a given process will first be discussed. It

is first assumed that the process to be controlled is described by the
difference equation

A y(t) = B u(t-k). (4.1)

It is assumed that this equation is of the form (3.1) and that deg A =
= deg A and deg B = deg Bg. The Equations (3.1) and (4.1) are then
said to be compatible.

Using the notation (3.3), the Equation (4.1) can also be written as
_al =T
y(t) = 6 w(t) = (1) 8

where the components of 65 are the coefficients of the polynomials.
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The closed Toop system obtained with the algorithm E1 can then be
described by (4.1) and the equations

ﬁ 8(t+1) = 6(t) + P(t+1) @(t+1) e(t+1)
e(t+1) = @ (t+1) [85- 6(t)]
P(t+1) = [P(£) - P(t)o(t)[T+0(t) TP(t)o(t)] Tt (£)P(t) ]/ A
LR u(t) = T ug(t) - S y(t) (4.2)
R = RyB"
T = Agdy,
AR, + q KBTS = ALA

The states of the closed loop system can be chosen as 6, P the state
of a representation of

As y = p-w Bg u

Ru=Tuc-3Sy

and possibly some additional delayed values of u and y, which are
needed to represent the vector ¢ given by (3.3). To obtain a complete
description it is also necessary to specify the command signal. The
equations describing the closed Toop system are nonlinear. Their global
properties are not yet fully explored. A difficulty of the equations

is that the mapping from the coefficients of the polynomials A, B to
those of R and S is discontinuous at those points where A and B have
common factors.

There are no proper stationary solutions to the Equations (4.1) and
(4.2) in the sense that all state variables are constant unless the
command signal is constant. There are, however, solutions such that
the parameters estimates 6(t) assume constant for arbitrary command
signals. Assuming that the matrix P(t) is positive definite for all t.
It follows from (4.2) that 6(t) is constant if @(t)e(t) is zero i.e.

y(t-1) e(t) = 0, = 1,2, .00, 0y,

<
—
ot
1
—e
~
m
—
-+
~—
]
o
s
L}

K, kt1, ..., king.

These equations imply that £(t)=0. Assume on the contrary that
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e(t) #0. Then

0, i 1,2, ..., n

<
—~
0l
-t
~—
1

mu

[
L)
T
—_.
g

I

0, i k, k+2, ..., x+=c+_.

Equation (4.1) then implies that y(t)=0. Since
e(t) = y(t) - ay(t-1)-...- a,y(t-ny)
- bou(t-k)-...- bpu(t-k-ny)

we get e(t) =0 which is a contradiction. When the parameters 6(t) are
constant it follows that

B

y v

S
u = >m<
where

(AsR+q7KBg) v = Tu_.
Hence
e(t) = Ay-Bu = (ABg - BA) v.

Under modest requirements on ug (e.g. piecewise deterministic with
arbitrary generator, Astrom (1979a)) it now follows that the condition
e(t)=0 implies that

ABg = BA,.

The correct estimates are thus the only parameter values such that the
estimates remain constant.

To investigate the local stability at the stationary solution o(t)=19

S
the equations are linearized. The Tinearized equation for o(t) is
decoupled from the rest of the equation. We get

80(t+1) = [T - P(t+1) o (t+1) o T(t+1)] s0(t), (4.2)

where the subscript "s" indicate that the quantities have been evalu-
ated at o(t)=65. The Equation (4.2) 1is stable if
t+r K

> og(k) o (k)
to
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is positive definite. A proof of local stability for a similar algo-
1Aﬂ:sﬂm@A<m=c<mooazﬂsm:am¢:Aimwmv.

A more general model than (4.1) is
Ay = Bu + C.e (4.3)

where {e(t)} is a sequence of indpendent random variables. If Cg=1
then the parameter 8, a possible convergence point, which is Tocally

stable. If nmx 1 the parameter 65 is not a possible convergence point
because

E o(t) e(t) # 0.

A pole-placement algorithm which has a self-tuning property for the
process (4.3) if the reference value is zero is described in Wellstead,
Prager and Zanker (1979).
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5. ALGORITHMS BASED ON IMPLICIT IDENTIFICATION

The design calculations for the algorithms discussed in the previous
section may be time-consuming. It is possible to obtain different
algorithms where the design calculations are simplified considerably.
The self-tuning regulator in Astrom and Wittenmark (1973) is a proto-
type for algorithms of this type. The basic idea is to rewrite the
process model 1in such a way that the design step is trivial. For
minimum variance contro] the process model can be rewritten so that
the parameters of the minimum variance regulator are the parameters
of the rewritten model. By a proper choice of model structure the
regulator parameters are thys updated directly and the design calcu-
lations are thus eliminated. With reference to Fig. 3.1 it means that
4=0 and the block marked design can be eliminated. Algorithms of
this type are called algorithms based on Amplicit Ldentification of
a process model. In the terminology of MRAS the algorithms are also
called direct methods because the parameters of the regulators are
updated directly. Implicit algorithms and some of their properties
will be discussed.

Algorithms

_—m

Consider a process described by
Ay = q~kpy. (5.1)

The regulator (2.4) gives a closed Toop system with the transfer
function

; (5.2)
Equation (2.8) gives
A AW = ARy + q Kp™s
m0 Y T a B Sy,

Combination of this with (5.1) gives
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k -kp-

Aoy = 0 R;Bu + q KB sy = q 7Kg (Ru+ 5y). (5.3)

If the control signal is chosen such that
Ru = Tu. - Sy.

where T= >omsdu then it follows from (5.3) that the closed Toop trans-
fer function (5.2) is obtained. Notice that Equation (5.3) can be
regarded as a process model. The polynomials R and S of the feedback
Taw appear directly in the model. The design problem is also trivial
for the model (5.3).

The following self-tuning algorithm is now obtained.

ALGORITHM 11 (Basic implicit algonithm)

Data: The polynomials An and Ay, both with zeros in z, and _wsA are
given.

Step 1: Estimate the parameters of the model

AnAgy = q7KB™ (Ru + Sy) (5.4)

1.e. estimate B™, R, and S.

Step 2: Calculate the control signal from
Ru = qco- Sy
where

T = >oms_.
The steps 1 and 2 are repeated at each sampling period. o

Notice that the model (5.4) is bilinear in the parameters. This means
that the estimation problem is not trivial. For example the parametri-
zation is not unique unless it is required that R and S do not have
common factors. The polynomial B~ must also be such that it has all

its zeros outside the stable region Z. A recursive estimation procedure
for (5.4) is proposed in Astrim (1979b). Because of the difficulties of
estimating the parameters of (5.4) it is of interest to consider
special cases which Tead to simpler calculations.
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The special case when all process zeros were cancelled was discussed

in Example 2.1 for the case of known parameters. In that case B~ = 1
and the self-tuning algorithm I1 reduces to

ALGORITHM
ALGORITHM 12  (Implicit algornithm with all process zernos cancelled)

Data: The polynomials Ap and Ag with zeros in Z are given. Further
W—.:._ = _AH>~=A._V.
Step 1: Estimate the parameters of the polynomials R and S in the
model
-k
AmAg ¥ = q "(Ru+ Sy) (5.5)
by least squares. The degrees of the polynomials S and R are
chosen as
deg S = deg Ay + deg Ag -k
(5.6)
deg R = deg B + k-1
or
deg S = deg A
(5.7)
deg R = deg Ay + deg >o¢.amm B - deg A.
Step 2: Compute the contro] signal from
Ru(t) =T u.(t) - S y(t) (5.8)

where T= >o_A.

The steps 1 and 2 are repeated at each sampling interval. o

This algorithm is identical to the self-tuning controller proposed
by Clarke and Gawthrop (1975). The algorithm has also been explored
by Kurz, Isermann and Schumann (1978).

A difficulty with the Algorithm I1 is that it may conceivably happen
that the estimate of the leading coefficient ro of the polynomial R
is zero. The feedback law (5.8) then is no longer causal. There are
various ways to overcome this difficulty. One possibility is to fix
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the value of the coefficient. Another possibility is to reparametrize
the polynomial as

-1
rog [T+rqq "+...]

and use special techniques to estimate ro- This is done in the MRAS

systems. See Egardt (1978). Another possibility which is often used

in practice is to increase the number k in the model.

Properties

It is assumed that the process to be controlled is described by the
difference equation (4.3). The closed Toop system obtained when the
implicit algorithms are applied to the process (4.3) is governed by

a set of nonlinear difference equations. These equations are similar
to the ones obtained for the explicit algorithms. The equations
obtained for the implicit algorithms are somewhat simpler because

the regulator parameters are updated directly. There is no complete
analysis for the general case. The special case of the Algorithm I2
is, however, reasonably well understood. The key results on stability
are due to Egardt (1978) and Goodwin et al (1978). A main result is
that the closed loop system is stable and that the output of the
system converges to the desired output. The assumptions required are
that the time-delay k is known, that upper bounds on the degrees of
the polynomials and that the system (4.3) is minimum phase. The result
is proven for the special case C.e(t)=0 and k=1 in Goodwin et al
(1978). In Egardt (1978) it is shown that the output is bounded even
if there are disturbances Cse(t) #0 provided that the disturbance is
bounded.

If C5=11in (4.3) and if B =1 it is easy to see that the process
model can be written as (compare (5.3))

Anho y(t) = Ru(t-k) + S y(t-k) + Ry e(t).

Using the method of least squares the estimates of R and S will be
unbiased if the degrees are chosen as in (5.6). The degree of Ry is
then k and the regressors will be independent of xdmﬁﬁv.
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Modifications

There are several modifications of the algorithms that are useful.
When there are stochastic disturbances in the process it is shown in
Astrom (1979b) that it is advantageous to replace the model (5.4) by

Ay =a kBT (RT+sY) (5.9)
where

u

1}
=y
w

(5.10)
Y s ye

Otherwise the parameters will not converge to the correct values even
if the observer polynomial is known. Similarly it is sometimes useful
to replace (5.5) by

A,y = KRG+ sy), (5.11)

where u and y are given by (5.10).
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6. SIMULATIONS

Some of the properties of the algorithms are illustrated through
simulations in this section. The simulations have been done using the
simulation program SIMNON, see Elmqvist (1975). The special SIMNON
system for simulation of general adaptive controllers described in
Gustavsson (1978) was used. More examples are found in Astrom, Wester-
berg and Wittenmark (1978), Westerberg (1977), and Astrom (1978).

Choice of parameters

There are several parameters which have to be selected in the algo-
rithms. Unless otherwise stated the following parameters have been
used. Initial values of the parameters are chosen as zero except for
ro=1 1in the implicit algorithm and v:wu 1 in the explicit algorithm.
The initial value of the covariance matrix is chosen as hundred times
the unit matrix and the forgetting factor was equal to one. Further
>oAD|AVu 1 has been used in the simulations. The reference signal was
a square wave with amplitude +1 and a period of 100 samples.

EXAMPLE 6.1

A continuous time system with the transfer function

_ O-._m mlochmm

s + 0.15

G(s)

sampled with a sampling time of T=1 gives the discrete time system
y(t) - 0.8607 y(t-1) = 0.0792 u(t-1) + 0.0601 u(t-2). (6.1)

Notice that the continuous time system has a time delay which is not
a multiple of the sampling time. The sampled model has a zero z =
= -0.759, which corresponds to a mode with damping ¢z = 0.087. The
solution time of the open loop system is 20-25 seconds. The specifi-
cations for the closed loop system have been chosen as a solution
time of about 10 seconds and a damping of about ¢ = 0.7. The desired
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characteristic equation has been chosen as

A =1-1.5q" +0.6q72.
The behaviour of the implicit algorithm 12 with deg R= deg S=1 (i.e.
4 estimated parameters) and with the forgetting factor A=0.95 is
shown in Fig. 6.1. The behaviour of the closed loop system is good
already in the second transient. The parameters have converged at the
fourth transient. The control signal has an oscillatory tendency. That
is due to cancellation of the zero at -0.759.

Fig. 6.2 shows the behaviour when the explicit algorithm E3 is used
with deg A = deg B = 1 (i.e. 3 estimated parameters). The behaviour of
the two algorithms is in this case very much the same.

Assume that u in (6.1) is replaced by u+ 68, where ¢ is a constant bias.
The adaptive controller does not know this bias and only u and y are
available for the controller. Figs. 6.3 and 6.4 show the behaviour of
the closed loop system when the implicit I2 and the explicit algorithms
E3 respectively are used with the same parameters as before. The im-
plicit algorithm handles the bias by introducing an integrator in the
controller. The R-polynomial after 250 steps is

-1

R(g™') = 0.116 - 0.115 q~ 1.

As seen from Fig. 6.3 the system will not converge to the desired
closed Toop transfer function. By increasing the order of the R-poly-
nomial it is possible to get the same closed loop performance as before.
The identification in the explicit algorithm is disturbed by the bias
term which explains the bad behaviour. It is, however, easy to also
estimate the bias term and take it into consideration when computing
the control signal, compare Clarke and Gawthrop (1975). This is done in
Fig. 6.5 and it is seen that it is possible to eliminate the bias. o

EXAMPLE 6.2

In this example the adaptive regulator controls a time continuous
system. The system has the transfer function
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G(s) = A , (6.5)
(T+s) (140.5s) (1+5 s)

Using a sampling interval of T=1 we get a discrete time model which
is non-minimum phase. The zeros of the model are zy= -1.798 and z, =
= -0.114. This system was not possible to control with the implicit
algorithm since this algorithm cancels all the zeros of the process.
The computation of the control signal will then be unstable. The
explicit algorithm could easily be used. Fig. 6.6 shows the behaviour
when deg A = 3 and deg B = 2 and >3An|_v = 1- n-_+.o.wm n-m. Again,
the behaviour of the closed loop system is very good already in the
second transient.
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Fig. 6.1 - The output, y, the reference, uc» and the control, u,
signals when the process (6.1) 1s controlled using the
implicit algorithm I2.
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Fig. 6.3 - The result when the process (6.1) is controlled with the
the implicit algorithm I2 with the same parameters as in
Fig. 6.1 but with a constant bias 6=1 on the input to the
process.
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Fig. 6.4 - The same as in Fig. 6.2 but when there is a constant bias
§=1 on the input.
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Fig. 6.5 - The result when using the explicit algorithms with compen-
sation for the unknown bias §=1 on the input.
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]
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Fig. 6.6 - The results when the explicit algorithm E3 is used to
control the continuous time system (6.2).
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