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MODEL VALTIDATION FROM ESTIMATED CLGSED LOOP PERFORMANCE

Bjdrn Wittenmark

Department of Automatic Control, Lund Institute of Technology, Lund, Sweden

Yaakov Bar—Shalom

Department of Electrical Engineering, University of Connecticut, Storrs, CT, USA

Abstract. One reason to make identification experiments is to obtain models
which can be used to design controllers. Structures, for instance model orders,
can be determined using statistical tests on the error between the model output
and the output of the system. However, these tests do not determine how well
the system can be controlled. One interesting problem is to predict the per-
formance of the closed loop system, when a controller has been designed based
on the identified model. The purpose of this paper is to show a way to test

the sensitivity of the identified models. The uncertainties of the parameter
estimates are used to give a prediction of the closed loop system performance.
This is done without making any further experiments on the system. An algo-
rithm is described which evaluates the increase in the expected cost due to
parameter uncertainties. The new test is compared with other tests and nume-—
rical results from simulated data are given. The paper shows that the new test
can be a useful complement for model validation.

Keywords. Modelling; identification; stochastic systems; structure testing;

model validation.

1. INTRODUCTION

The area of identification contains many
different and interesting problems. One im-
portant problem is model validation, i.e.

how to choose the most appropriate structure
of the model. Most identification methods are
based on a given structure. The user has to
test different structures and determine which
one fits the data best. There are many tests
described in the literature, see e.g. Astrém
(1967), Akaike (1974), Woodside (1971), and
Bohlin (1978). Comparisons of different tests
can be found in Gustavsson (1972), Unbehauen
and GBhring (1974), van den Boom and van den
Enden (1974), and Séderstrém (1977).

Many identification methods are so called
prediction error methods. The prediction
errors, the residuals, are often used to make
statistical tests of different kinds, e.g.
tests of whiteness and normality and F-tests.
The results of these tests are, at least for
real data, quite often inconsistent. The
choice of the model structure will thus be
subjective. The choice of model and model
structure should be related to the ultimate
use of the model. For instance one-step-ahead
prediction error methods might give a model
which is suitable for one-step-ahead predic-
tions. The model may, however, be less suited
for control purposes where it is necessary to
have a good estimate of the static gain. In
such cases it might be bhetter to use a multi-
—step—-ahead prediction method, see Astrdm and

Kdllstrom (1979).

One goal for the identification of an unknown
process can be to design a controller. How-
ever, most tests for model validation do not
say anything about how well the process can
be controlled. Further when making structure
tests generally the parameter estimates only
are used and not the uncertainties of the
estimates. It is thus interesting to evaluate
the performance of the closed loop system
when the estimated model is used to design a
controller. The straightforward way to test
the derived controllers is to make experi-
ments on the process. These experiments may
be quite time consuming and only a limited
number of controllers can be tested. Another
way to test the performance of the closed
loop system is through simulations. The con-
troller can be based on the estimated model.
The controller can then be tested by changing
the "process" in the simulation. The process
models can be obtained by generating diffe-
rent sets of parameters with the same mean
values and covariance matrix as the estimated
model. This is, however, a rather expensive
simulation approach since many trials must be
done.

The purpose of this paper is to show an
approximate way to predict the behaviour of
the closed loop system. This can be done
without making any additional experiments on
the real process or by making extensive simu-
lations. The performance and the influence of
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the parameter estimates are estimated using
results from Bar—-Shalom (1978). The different
structures are evaluated with respect to the
predicted loss for the closed loop system.
The underlying idea is that one should choose

a model structure which gives a desired behav-—

ior and which is also as insensitive as pos-
sible to errors in the parameters.

The paper is organized as follows: The prob-
lem is formally stated in Section 2. Section
3 contains a brief review of the theory. Sec-—
tion 4 discusses how the results can be used
to determine structures of identified models.
Numerical examples using simulated data are
given in Section 5. Section 6 contains con-
clusions.

2. STATEMENT OF THE PROBLEM

The class of processes discussed in this
paper consists of single input single output
systems described by

y(t)-Faly(t—l) tooota y(t-na) =

= blu(t—k-1)+,,_+bnbu(t-k—nb)-+e(t). (2.1)

The noise, e(t), is assumed to be white with
zero mean and the standard deviation ¢. The
generalization to more general noise struc-
tures is discussed in Section 6.

It is assumed that a set of input-output
values are given. These data points are used
to estimate the parameters aj, bij, and 0 in
(2.1) for different values of na, nb, and k.
It is assumed that the identification method
used gives estimates of the parameters to-
gether with the parameter uncertainties. The
problem is now to determine the model which
is most suitable for control. It is assumed
that the purpose of the identification is to
design a controller which minimizes the loss
function

3 =28 {a-y,m)? +

N-1
+ I [y O-ye(0)? +
£=0
v r(0) (u(e)-u (0) 21} (2.2)
The variables y,(t) and u,(t) are the desired
trajectories of the output and the control
respectively and r(t) is a weighting factor.
The problem that will be discussed is to eva-
luate the loss function (2.2). An approximate
calculation can be done for different esti-
mated models. Also we will determine how the
loss function is affected by the uncertain-

ties of the parameter estimates in each model.

The model validation will then be done by

considering the estimated closed loop perform

ance and the sensitivity of the closed loop
performance with respect to the uncertainties
of the parameter estimates.

and Bar-Shalom Y.

3. THE EFFECT OF RANDOM
PARAMETERS ON THE CONTROL
PERFORMANCE

This section treats the problem of evaluating
a loss function when the system contains ran-
dom parameters.

Consider the system
x(t+1) = A(B)x(t) +B(O)u(t) +De(t+l) (3.1)

where A(6) and B(8) are linear in unknown
elements, 0, modelled as random parameters,
independent from period to period but with
known mean and variance. The process noise,
e(t) is white with zero mean and variance O.
This is called rhe "white'" parameter case.
(In this section the system may have several
inputs.) Consider the loss functiom

N
5= 35 3 [x (o017 QO x(Ox (0]
t=0

N-1
f 5 [u(®-u ()17 R [u() -
t£=0
- ur(t)]} (3-2)
where xr(t) and ur(t) are the desired trajec-
tories of the state and the input respective-
ly. The minimization of (3.2) leads to the
following optimal stochastic control, see
e.g. Aoki (1967),

u¥(t) = L(t)x(t) +m(t) (3.3)
where
L(e) = -[R(t) + BTK(t+1) B] "+
- BTR(e+1) A (3.4)
m(t) = -[R(t) + BTR(e+1) B] "+
[BTp(e+1) - R(t)up(t) ] (3.5)

and the bar over A and B denotes expectations
over the unknown parameters, e.g.

BIK(t+1)B = E[BTR(t+1)B]. (3.6)

The matrix K, the vector p, and the scalar g
are given by the following backward recur-
sions

K(t) = Q(t) + ATK(t+1)A + ATR(t+1)B L(t)
(3.7)
p(t) = -Q(t)x,(t) +Alp(t+l) +
ATR (£+1)B m(t) (3.8)
g(t) = % xz(t)Q(t)xr(t) +% U¥(t)R(t)ur(t)+

+ 2 [BTp(t+D)-R(D)u ()] m(e) +

+ g(t+1) (3.9)

with the terminal conditions
K(N) = QW) (3.10)
p(N) = -Q(NIx,(N) (3.11)
gN) = 3 x (MAWx, (V). (3.12)



Model Validation from Estimated Closed Loop Performance

Note that the expectation of the type (3.6)
leads to an expression containing the means
and covariances of the random parameters 0.
The resulting control is optimal for the case
of "white" parameters and suboptimal other-
wise. It is known under the name of open-loop
feedback (OLF), see e.g. Bar-Shalom (1978)
for further discussion.

The optimized cost of the problem with stoch—
astic parameters is
JS S S

=J;+J

1795 (3.13)

where, with K, p and g obtained from (3.7) -
(3.12),

S

7

1
= 5 x (0)K(0)x(0) +p" (0)x(0) +g(0)
(3.14)
is the cost without the process noise. The

part due to the noise is

S

Jo = tr (K(t)D02 pT).

N =
| M=

(3.15)
t=

The optimized cost for the same problem with
known (deterministic) parameters will be
denoted as

D D D

J =J7 +J

1 2 (3.16)

and its two components are given by (3.14)
and (3.15) respectively with the following
change: iterations (3.7) - (3.12) have no
expectations over the parameters.

The sensitivity to parameter uncertainties of
a system with uncertain parameters can be
judged by comparing the costs of (3.13) and
(3.16). Another concept that can be used in
assessing the goodness of a model for control
purpose is the trajectory confidence tube.
This is a sequence of confidence regions
about the predicted values of a component of
the state vector in which the corresponding
true value will lie with a certain probabili-

ty.
I1f one uses the feedback law

Wiy = L0)xee) +ml(e) (3.17)

then the predicted trajectory for the closed
loop system is

L) = G +BL0w) L) +2m0(e) (3.18)
.o N-1; x9(0) = x(0).

The mean square value of the deviation of the
f—-th komponent of x(N) from the predicted
value 1is

p, 2 () = %E [Gany=x000)" @, gy -

t =0,

< (x(N)-x0)) } (3.19)

where the elements of the maltrix in the above
quadratic form are all zero except

0 _
QM(N,Q) = 1. (3.20)

The 1/2 in (3.19) was used for the conven-
ience of programming. The result will be that

the standard deviation of the £-th component
of the state at time N is V2 pl(N). This
result is exact for the case of white para-
meters, otherwise it is the OLF approxima-—
tion which is quite attractive due to its
simplicity of implementation.

The evaluation of (3.19) is done with recur-
sions obtained similarly to the OLF control
presented above. For details, see Bar-Shalom
(1978). The result is

oyt = = %" K%x0(0) +
+ 020" x(0) +£°(0) (3.21)

where KO, pO, and go (which for simplicity
are not indexed by £ and N) are obtained from
the following linear backward recursions:

kK9¢t) = ATk ¢er)a + LO)TBTRO (t+1)B LO(t)+
+ ATKO(t+1)B LO(t) +

+ 0o 8Tk e+1)a (3.22)

p%¢t) = ATRO(e+1)B nO(t) +
0 T 71,0 0
+L7°(t) -E_K (t+1)B m (t) + (3.23)
190 BT pO(re1) +AT pO(r+1)

1 0

£u>=5muﬂ

BTKO(t+1)B mo(t) +
+ %tr (Ko(t+1) D o2 pT) +
+ p0e+ )T B ey + g0Ce+1) (3.24)

t = N-1, N-2, ..., O

with terminal conditions

KOy = 9w, 9 (3.25)
P = Q0,8 KO (3.26)
) =2 x0T 0,0 0. (3.27)

4, MODEL VALIDATION USING
ESTIMATED CLOSED LOOP
PERFORMANCE

In the previous section it was shown how the
parameter uncertainties will affect the
closed loop performance of a system with ran-—
dom parameters. In this section we will dis-—
cuss how these results can be used for model
validation.

The model (2.1) can be written in the state
space form (3.1) with
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R o[ 0
o i -
= {
| 0
-a .
nal I Dl
A(e) = 0 | » B(B) = bE =
: ] nb
0 | o)
—————— .
| O | 0 ...0 | 0 J
(4.1)

and DT = (1 o...oJ,

and where y(t) = xl(t). The dimension of the
state is n=max(na,nb+k). All the states can
be expressed in old inputs and outputs, i.e.
all the states can be regarded as directly
measurable. The results from Section 3 can
now be used to determine the loss function
(2.2). The loss functions JS and JP can be
evaluated for different identified models.
The loss JD =40 + 3D can pe compared for the
different models.” J? is due to the devia-
tion in the trajectory and JB is due to the
additive noise, e(t). A model with good fit
Lo the data should give a low loss compared
with a model which badly fits the data.
There is one problem by only comparing JP
for different structures. The problem is
that the controllers are tested on different
models, i.e. the control law derived for one
structure is tested on the same structure
and the cross coupling between the different
losses comes only from the fact that the
same data set has been used in the identifi-
cation. This might have the consequence that
a too simple model can give a low loss since
this model might be easy to control. This
problem can be avoided by making the model
validation in two steps. In the first step
the models that are obviously too simple are
eliminated using a conventional statistical
test, for instance the F-test, Astrom (1967),
or AIC, Akaike (1974). In the second step
one can use the estimated closed loop per-
formance for the final decision.

When comparing different models it is also
interesting to look at the sensitivity with
respect to the parameter uncertainties. The
standard deviations of the parameter esti-
mates are usually not used in the standard
statistical tests. The standard deviations
are sometimes qualitatively compared for dif-
ferent model structures. A too complex struc-
ture usually gives larger standard deviations.
The difference AJ=J5-JD between the stoch-
astic loss and the deterministic loss is a
measure of the increase in the expected loss
due to the parameter uncertainties. It is
thus interesting to look at both JP and AJ.
Also the confidence tubes can be used to test
the sensitivity of the models. The uncertain-
ty radius around the predicted trajectory is
another measure of the influence of the para-
meter uncertainties. An illustrative example
with two econometric models is given in
Bar-Shalom (1978).

and Bar-Shalom Y.

The derivation in Section 3 is done for the
extreme so called "white" parameter case.

The unknown parameters are at each step of
time drawn from a given distribution. The
other extreme case is when the parameters of
the process are assumed to be fixed during
one realization, but for each realization
drawn from the same distribution. In practice
the situation is probably in between. The
white parameter case is an "optimistic" eva-
luation of the effect of the parameter errors.
When computing the lossfunction (3.2) we

have to evaluate expressions of the type
E(0i85)™. From Jensen’s inequality for convex
functions it follows that

E(eiej)“ > (E(eiej))n.

The right hand side of the inequality corre-
sponds to the white parameter case and the
left hand side to the single realization
case.

To summarize the advantages of the new test
are:

* Tt takes the parameter uncertainties
into account.

* It calculates an approximate expected
loss of the closed loop performance.
(The calculations are exact in the
white parameter case.)

* Time consuming on-line tests are
avoided.

* Extensive Monte Carlo simulations are
avoided.

The drawbacks are:

* The solution is exact only for the
white parameter case.

* The computations are nontrivial but not
too time consuming. (Equations (3.7) -
(3.9) have to be iterated and expecta-
tions of the type (3.6) have to be
evaluated.)

In the evaluation of different models one
should not use one test but weight different
tests against each other. The new test is
then a good complement to standard tests as
it gives an estimate of the closed Loop
performance.

5. NUMERICAL EXAMPLES

Two numerical examples will be given which
show how the expected closed loop perform—
ance can be used for model validation.

Example 5.1

The system is described by
y(t) = 1.5y(t-1) +0.7y(t=2) =
= u(t-1) +0.7u(t-2) +e(t) (5.1)

The variance of e(t) is 02 =1. The data were
generated by letting u(t) be a PRBS-signal
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with period 127 and the amplitude £0.14. The
basic period of the PRBS signal was 1, i.e.
the shortest time between changes in the
signal is 1 timeunit. This gives a signal to
noise ratio of about 1/25 (in power). The
parameters were identified using the method
of least squares with n=na=nb and k =0,
Table 5.1 shows the lossfunction

NO .

T oe(r)?

1

vV =

for different number of data points, Np, and
different orders n. The variable €(t) is the
difference between the output from the system
and the model output.

TABLE 5.1 The lossfunction from

the least squares identification for
different numbers of data points,
NO’ and different orders of the
model, n, for the system (5.1).

r__ n Lossfunction
Yo 1 2 3
100 168.63 87.82 87.26
500 994.29 486.40 485,12
1000 1952.78 981.28 976.33

There is a significant decrease in the loss—
function when the order of the model is in-
creased from 1 to 2 or 3. The F-test when
comparing model orders 2 and 3 gives the
following test quantities:

Ng Test quantity
100 0.30

500 0.67

1000 2.52

The test quantity for the F-test at the 57
level is about 3. It is only for Ng = 1000

that one would consider that the process
might be of third order.

The lossfunctions JS and JD were calculated
for different orders and different number of
data points. The results are summarized in
Table 5.2. It is assumed that the reference
trajectory for the output 1is

_ [t 0gtgs
yr(t)'{s 5¢t<15

and that u,(t) =0 for 0<t<15. Further r(t)
= 0.001. For Np = 100 it is seen that the
stochastic loss J° is smallest for n=1, but
this model crder has already been eliminated
by the F-test. The deterministic loss is
smallest for n=2 for Np =100 and 500. The
second order model gives a smaller increase
than for n=3 in the loss when the parameter
uncertainties are taken into account, i.e.
A =J8-JD ig smaller. The radius of the con-
fidence tube for the output at the final
point is also given in Table 5.2. The radius
is about the same for n=2 and 3 when N =500
or 1000. This indicates that the model is of
second order.

Example 5.2

The following nonminimum phase system was
simulated

v(t) - 0.9y(t-1) =

with 02 =1. The input signal was a PRBS sig-
nal with period 127 and a basic period of 10
samples. The amplitude of the input was 0.34.
The signal to noise ratio is about 1.

u(t-2) +2u(t-3) +e(t)

The system was identified using the least
squares method (Ng=1000) using the model

Y(t) + 31}’(1:—1) +32y(t_2) =

blu(t—l) +b2u(t-2) +b2u(t—3) +e(t) (5.2)

with the parameters identified according to
the structures shown in Table 5.3.

TABLE 5.2
N n Stochastic cost Deterministic cost
° g8 73 as) | J3° JP p_(15)
1 2 Py 1 2 y
100 1 2.9268 15.6328 1.0615 0.5013 12.9082 =
2 32.1177 24,4080 2.1503 0.5097 6.8728 0.6763
3 16.0822 25.8780 1.7199 ] 0.5032 6.9784 0.6813
|
I 500 1 1.4179 15.4216 1.0298 | 0.5039 14.2269 =
2 ! 1.0555 8.6166 0.7833 | 0.5030 7.3670 0.7002
3 1.1564 8.7490 0.7958 f 0.5027 7.3775 0.7007
1000 1 0.8599 15.1908 1.0076 F 0.5031 14.6800 -
2 0.8017 8§.2512 0.7440 0.5042 7.4064 0.7018
3 0.8522 8.3688 0.7508 0.5036 7.3852 0.7008
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TABLE 5.3 The table shows which
parameters in (5.2) that were
identified for the different
models. The other parameters were

and Bar—Shalom Y.

TABLE 5.4 Lossfunctions and test quantities when
going from model structure my to model structure myp.

fixed to 0. Model No. V(ml) Test quantity from my to m,
Model Identified parameters b m)
No. 4 5 6
a1 3 by by By _
|
1 : B : 1 1264.60 = - 67.87 ]
' !
3 ) : | 2 1142.60 | 86.95 43.46 29.32 |
3 X « 3 1067.69 : 15.80 7.92 5.62 ;
7 y . 4 1050.94 | - 0.06 0.54 |
5 | " . « 5 1050.88 i - = 1.02 |
6 i « M « « « 6 1049.80 | - = -

Model 4 is the model with correct structure,
Models 5 and 6 are more complex structures.
Model 3 can be regarded as an approximation
where the nonminimum phase part is approxi-
mated with a pure time delay.

Table 5.4 shows the lossfunctions and the
F-test quantities for different changes in
the model. The test quantity should be
greater than about 3 if the more complex
model should be preferred on a 5 7 confi-
dence level.

Table 5.5 shows J?, JB, AJ, and p(15) when
the reference trajectory is

0 1<t<6
y.(€) =13 t=6 6<t< 10
5 11<t< 15

ur(t) = 0 lgtg 15

and with r(t) = 0.001.

The models can be divided into two groups,

1 -3 and 4 -6 respectively. In the first
group AJ is small but we can eliminate these
models by using the result of the F-test
shown in Table 5.4. The models 4 and 5 have
about the same performance and it can be
preferable to use the simpler model, i.e.

TABLE 5.5 Deterministic loss, increase in
the loss due to parameter uncertainties and
radius of the confidence tube for the system

in Example 5.2.

Model J? Jg AJ p(15)

1 0.000678  9.486 0.0309 0.7952
2 0.000557 15.383 0.0210 1.0286
3 0.000498 18.623 0.0168 1.1476
4 0.000597 15.375 0.4135 0.9768
5 0.000594 15.271 0.4815 0.9735
6 0.000552 13.610 1.2173 0.7257

model 4. Comparing models 4 and 6 we see
that model 6 has lower deterministic loss
but on the other hand the increase in the
loss due to the parameter uncertainties are
2-3 times larger. This in combination with
Table 5.4 indicate that model 4 should be
preferable.

6. CONCLUSIONS

A new test for model validation has been dis-
cussed. The test is based on an approximate
closed loop performance, where the controller
is based on the estimated model. The test

has the advantage that it considers the para-
meter estimates as well as the parameter un-—
certainties.

The theory described in this paper is done
only for the model structure (2.1), i.e. the
least squares structure. If we have a more
general noise structure with

e(t) =e(t) +cl€(t-1)+...+cnce(t—nc)
e(t) € N(0,0)

some modifications have to be done. The state
space model will then also contain uncertain
parameters in the D-vector in (3.1) i.e.

T

D” = [ 1 CyeeeC 0... 0].

e (6.1)

In Section 3 this only affects the loss Jg
if we still assume that all the states are
measured. The optimal control law will still
be the same linear feedback from all the
states. If the system has A and B matrices
according to (4.1) and a D-vector as (6.1),
then we can not directly write the state as
a linear combination of a finite set of the
inputs and outputs. Further approximations
must be done. It could be assumed that the
states are reconstructed using a Kalman
filter. The reconstruction errors will then
increase the loss functions JS and JD. The
state estimator has to be based on the mean
values of the parameter estimates. If we
consider the white parameter case there will
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then be an additional increase in the loss
due to the mismatch between the process and
the model. If we disregard these extra losses
due to the state estimation we will still
quite easily be able to compute the estimated
closed loop performance according to the
equations given in Section 3. Only smaller
changes are needed. To summarize, the pre—
sented test makes it possible to estimate the
performance of the closed loop system. This
can be done without further experiments or
Monte Carlo simulations. The new test is a
good complement to standard tests for model
validation.
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