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AUTOMATIC TUNING OF SIMPLE REGULATORS

K. J. Astrdm and T. Higglund

Department of Automatic Control, Lund Institute of Technology

Lund, Sweden

Abstract. This paper proposes methods for automatic tuning of simple regulators. The methods
are robust and they require little apriori knowledge about the process. The paper presents the
ideas behind the methods and analysis. Apart from being useful in themselves, the methods will
also give a solution to the longstanding problem of safe initialization of more sophisticated

adaptive controllers.

Keywords: Adaptive control, Limit cycies, PID control, Relay control.

1. INTRODUCTION

The majority of the regulators used in Industry are of
the PID) type. A large industrial plant may have
hundreds of regulators. Many instrument engineers and
plant personnel are used to select, install and operate
such regulators. Meny different methods have been
proposed for tuning PI(D) regulators. The
Zlegler-Nichols (1943) method is one of the more
popular schemes. In spite of this {t Is common
experience that many regulators are in practice poorly
tuned. One reason is that simple robust methods for
tuning the regulators have not been available. This
paper addresses the problem of {inding automatic
tuning methods. The methods proposed are simple to
implement using mlicro processors. They offer the
possibllities to provide automatic tuning tools for a
large class of common control problems.

The methods are based on a simple identification
method which gives critlcal points on the Nyquist
curve of the open loop transfer function. The key ldea
is a scheme which provides automatic excitation of the
process which is nearly optimal for estimating the
deslred process characteristics.

The methods proposed are primarily intended to tune
simple regulators of the PKD) type. In such
applications they will of course inherit the limitations
of the PI(D) algorithms. They will not work well for
problems where more complicated regulators are
required. The technique may however also be applied
to more complicated regqulators. The experiences
obtained so far from experimentation in laboratory and
industry indicate that the simple wversions of the
algorithms work very well and that they are robust. It
thus appears worthwhile to explore these algorithms
further.

The proposed algorithms may be used In several
different ways. They may be incorporated in single
loop controllers to provide an option for automatic
tuning. They may also be used to provide a solution to
the long standing problem of safe initialization of more
complicated adaptive or self-tuning schemes. When
combined with a bandwidth self-tuner like the one
discussed in Astrdm (1979) it i3 e.g. possible to obtain
an adaptive regulator which may set a suitable closed
loop bandwidth automatically.

The paper is organized as follows. The basic idea Is
presented in Section 2. The estimation is done by
introducing relay feedback which brings the system
Into a stable limit cycle. The amplitude of the limit
cycle can easily be controlled so that it is within

acceptable limits, The period and the amplitude of the
lmit cycle allows determination of the desired process
characteristics. Practical aspects on the implemen-
tatlon are also glven. The properties of the closed
loop system obtained with a linear system under relay
feedback are dlscussed in the following sections.
Simple expressions for the peried of the limit cycle
are derived In Section 3, and the results are
interpreted In the frequency domain in Section 4. In
Section 5, stability conditions for the limit cycle are
glven. The paper concludes with a discussion of
possible uses and extensions of the Proposed methods.

2. PRINCIPLES

A regulator with automatic tuning may be viewed as
composed of four subsystems, an ordinary feedback
regulator with adjustable parameters, a perturbation
generator, a parameter estimator, and a block which
performs design calculations. See Fig. 1. The
perturbation generator provides testsignals which
make It possible to estimate the relevant parameters
of the process.

The system works in the following way. The process is
excited from the perturbation generator. Relevant
process dynamics s estimated from the response of the
process to the excitatlon. The regulator parameters
are calculated from the dynamics. The perturbation
generator, the estimator and the design calculations
are then disconnected and the system operates like an
ordinary fixed gain regulator.

CONTROL
ESTIMATOR
DESIGN i~
Yeet = recuLaror i PROCESS —
PERTURBATION |
GENERATOR

Fig. 1. Block diagram of a self-tuner.



Many schemes of this type have been proposed. See
e.g. Astrém (1983). All schemes do however require
considerable apriori information. Typically it is
necessary to know the order of the magnitude of the
timeconstants. The novel schemes discussed in this
paper build upon the ideas in Astrdm (1981, 1982),
HBgglund (1981) and Astr8m and HHggiund (1983). The
characteristic feature of this approach is that it gives
a8 very simple system which does not require much
prior informatlon.’

The basic idea

The schemes are based upon design methods where the
process dynamics is described by a few features of the
Nyquist curve of the open loop transfer function.
Typlcally knowledge of the critical point, l.e. the first
point where the Nyquist curve intersects the negative
real axis, is used. See Fig.2. This point |is
characterized by the the critical gain, k_ and the
critical frequency w_ or the critical period € = 2n/6 .
The Ziegler~N1cholscmelhod is a typlcal eﬁample S(
design methods of this type but there are many related
methods. See Astrdm (1982) and Astrdm and Hagglund
(1983). To use such design methods it is necessary to
find an estimation method which determines the
critical point. In principle this can be done using
frequency analysis by sweeping over a frequency
range until a point with a phaseshift of n [s obtained.
Such an approach is however time consuming and not
easy to implement.

Zlegler-Nichols originally proposed to determine the
critical point by introducing proportional feedback
and increasing the regulator gain until an oscillation’is
obtalned. This procedure is not easy to do
automatically. It ls in particular difficult to arrange it
in such a way that the amplitude of the oscillation ls
kept at a reasonable level.

Our techniques is based on a new method for automatic
determination of the critical points. The method is
based on the observation that a system with a phase
lag of at least m at high frequencies may oscillate with
period t_ under relay control. To determine the
critical point in Flg. 2, the system is connected in a
feedback loop with a relay as is shown in Fig. 3. The
error e is then a periodic signal, and the parameters
k _and w_ can be determined approximatively from the
1iFst harmonic component of the oscillation.

im G
ke
1 N
&/ Re G
Critical point
w

Flg. 2. Nyquist curve of the process.

Process

Fig. 3. Relay control of the process,

Let d be the relay amplitude and let a be the
amplitude of the first harmonic of the error signal. A
simple Fourier series expansion of the relay output
then shows that the relay may be described by the
equivalent gain

k = — (1)

A more accurate analysis is given in the next section.

The period of the oscillation can easily be determined
by measuring the times between zero-crossings. The
amplitude may be determined by measuring the
peak-to-peak wvalues. These estimation methods are
very easy to implement because they are based on
counting and comparisons only. More elaborate
estimation schemes may also be used to determine the
amplitude and the period of the oscillation.

Notlce that the technique will automatically generate
an input signal to the process which has a significant
frequency content at w_. This ensures that the critical
point can be determined accurately.

There are many variations of the scheme. Other points
on the Nyquist curve can be estimated by introducing
known dynamics and hysteresis in the relay. See
Hégglund (1981).

Tuning algorithms

A tuning algorithm based on the ideas described above
will now be developed. The followlng example shows
how the parameters of the PID regulator can be
determined to obtaln a desired phase margin of the
system.

Example. Consider a process with the transfer
function G(s). The loop transfer function with PID
control is

Gy(s) = k(L + T

1
d + ﬁ] G(s) (2)

Assume that the Nyquist curve of G intersects the
negative real axis when © =w . Requiring that the
argument of the loop transfer finction G0 is ¢ -7 at
Qc the following condltion is obtained m

1
= tan ¢
d wc’I‘i m

w T, -
c
There are many TCl and T, which satisfy this condition.

One possibility isto chooke T, and T, so that

i d

Ti=<x'l‘d (3)

where o is a design parameter. The derivation time T
is then given by

tan ¢_+ - + tan2¢
_ m J o m

Td— 7 (4)
c

d

Simple calculations show that the loop transfer
function has unit gain at ©, if the regulator gain is
chosen as

cos om
k = TGlis T = kccos om (5.)
c
where kc is the critical gain. The design rules are thus
given by the equations (3), (4) and (S). o



Tuning algorithms of the above type have been
successfully tested on laboratory processes as well as
Industrial processes. Examples are given In Astrém
and Higglund (1983).

3. DETERMINATION OF LIMIT CYCLE PERIOD

The purpose of-this and the following sections ls to
analyse the characteristics of a linear system under
relay feedback. In particular we wish to determine the
conditiong for an oscillation to occur and the period of
the oscillation.

We will start by investigating a linear system under
relay control. In particular we will analyse the
condltions for exlistence of a periodic solution. A crude
answer was given by the describing function analysis
in Sectlon 2. More accurate results are given in this
section. Consider a system described by

%=Ax+3u
(6)
y = Cx

Let the system be controlled by a relay with
hysteresis i.e.

dl if e>e or (e>-e and u(t-)=d1)

—d2 1f e<e or (e<e and u(t-)=d2)

(7)

u(t) =

where e = -y.

Conditions for relay oscillations have been given by
Hamel (1949) and Tsypkin (1958). Equivalent results
will be given here with different derivations and
different interpretations. The key result is given by
the following theorem.

THEOREM 1, Consider the system (6) with the feedback
law (7). Assume that the matrix ¢-1 is regular. A
necessary condition for a limit cycle with period T is
then

_l - -
ClI $1] [¢2l"ld1 - I"2d2] = e
(8)
_l _
ClI $1 [-¢1r2d2 + r1d1] = e
where
_ AT _ _At A(T-T)
d = ¢1 = e ¢2 e
(9)
T T-v
r, = { e*®da B r, = e*®as 8
L o] 2 o]

Proof. Assume that a limit cycle exists, where the
relay switches twice per period. The general form of
the signals u and y are then as shown in Fig. 4.
Integration of the state equations over one period
gives

X(t2k+1) = ¢1x(t2k) + l‘lu(tZk)

(10)

x(t = ¢2x(t

2k+2) ) o+ l"2u(t'.2

2k+1 k+1’

where the matrices ¢, ¢, l"1 and ', are given by (9).
Notlce that the matricés ¢, and “$., commute. The
condition that the relay swii!ches at %lmes tk can be
expressed as

bk kel tokse2

Fiq. 4. Signals under limit cycle conditions.

y(tZk) = Cx(t_, ) = ~-e

2k

y(t2k+l) = Cx(t2k+1) = g

If a limit cycle exists then the state will be a periodic
function. Introducing

x(t2k+2) = x(t2k)
u(t2k) = dl
u(t2k+1) = -d2

into (9) then glves

-1

x(t2k) =a = [1 - 91 [¢2Fld1 - F2d2]

-1 (11)
X(t2k+1) = a, = [I - &1 [-¢1F2d2 + r1d1]
and (8) after straightforward calculatlons. o

4. FREQUENCY DOMAIN INTERPRETATIONS

It is intuitively appealing to reformulate the result In
the frequency domain. The key observation is that
under limit cycle conditions the behaviour of the
systems (6), (7) can be described as a multivariable
linear time invariant discrete time system. (The
stroboscopic transformation.) The inputs are u(t,, ) and

u(t ) and the outputs are y(t ) and y?'l." ).
1oeBbce i .

z=[X(t2k-l)] u=[u(1:2k) ] Y=[C 0]x
k X(tzk) k u(t2k+l) k O C')7k

Equation (10) can then be written as

. ) [ $ [0} 5 o I‘l ¢1l"2 ] s
k+1 k k
) $ ¢, r,
_rc 0
Ve © [0 c ) Zx

Thig is a timelnvariant discrete time system. Let the
pulse transfer functlon of the system be

ctzi-¢1 1 crzi-¢1 e, r
1 1F2

H(z) = e -y (12)
ClzI-¢1 'er  cCrzI-¢1 ',

Putting z = 1 in (12) {t follows that the condition (8)
can be written as



dl e
H(1l) [—d ] = [_E ] (13)
2

Symmetric oscillations

The case d ='d2=d is of particular Interest. It
follows from {9y that

r,B=r,=~r

& ___¢=°1/2

in this case. Equation (8) then reduces to

crr - #1741 - 9123 rd = ¢

or

crr + ¢¥/%17rg = & (14)

This condition can also be written as

T/2
AT/2)71 707 AB4a B = e/d (1)

0

F(T) = ClI+e

Repeating the derivation it is also found that it is not
necessary to assume that the matrix ¢-I is regular.

The following result can now be established.

THEOREM 2. Let H(t,z) be the pulse transfer function
for zero-order-hold sampling of the system (6). A
necessary condltion for existence of periodic Ilimit
cycles under relay control (7) with d1 =d, =dls

2
e
H(T/2, -1) = - a (16)
where T 13 the period of oscillation.
Proof. The pulse transfer function is given by
At, T _As
H(xt,z) = C(zI-e"") f{ e "de B
o]
The theorem then follows from (15). o

Remark 1. This result has a strong intuitive appeal.
The condition (16) can be written down directly by
considering the discrete time system obtained by
sampling at the times when the relay switches. The
2-transforms of the input signals u and output signals
y are given by

d [

Z{u}l = )

The propagation of the signal u is under stationary
conditions described by the gain H(t,-1). The condition
(16) then simply tells that the signals match for t =
T/2.

Remark 2. The condition (16) specializes to

H(T/2,-1) = 0O (17)
when € = 0, which also has a direct physical
interpretation.

Speclal conditions for special systems

Consider in  particular stable systems with
non-negative impulse responses. When the matrix ¢ has
all its elgenvalues inside the unit disc, the equation
(14) can be expanded in a converging series

cezse*’%17r = cr - cot/2r v cor - ... - £
This can also be written as
L]
Z: (-1)>"g(n+1) = g (18)
n=0

where {g(n)} is the impulse response of the discrete
system obtained when the system (6) and (7) Is sampled
with period T/2.

The conditlon (18) can be lillustrated graphically. The
pulse response can be read off directly from a plot of
the step response S(t) of the system as iz shown In
Fig. 5. The left hand side of (18 can then be
interpreted as the sum of the vectors shown In the
figure. Bounds on T can easily be established from this
construction. For systems with monotone step
responses, the period of oscillation T must e.g. be
smaller than the time 2- "o' where to is given by

=1 =
Sttg) = 3 [ste) + ) (19)

The deseribing function approximation

Having obtalned the exact formulas, it ls possible to
investigate the precision of the describing function
approximation. It follows from sampled data theory
that

z: -t .
g+inow
s

oo

A
N
[
1

. [.’L N e--r:(s+inus)] G(s+inus)

where &_ = 2n/t. Put sh = in and 3¥ = Z. Examine the
case z ="-1 l.e. 8 = in/T.

[
_ 4 2 (1+2n)w
Hit,-1) = 2 )" Tion Im 6 (—77F)
-
L]
- 4 n+2nm,
ol Z Tti+2n] Im G¢ = 1) (20)
o]

Approximating H(t,-1) by the first term of the series
expansion the condition (16) becomes

4 2wy _ [

s ImG(L FF) = - &
which corresponds to the describing function analysis,
The period is thus given by the point where the
imaginary part of the Nyquist curve equals -ne/4d.

S(t)

¢:::Z:::::Ij__—-_

1
772 T 3772 t

Fig. 5 A step response glving bounds on T.



Relations with the Tsypkin locus

The necessary conditions for periodic solutions under
relay control were expressed by Tsypkin in terms of
the function A(3) defined by

-]

Re Atiw) = g z: Re G(iw(2k+1))
k=0
0

1
z: 507 Im Glia(2n+1))
n=0

Im A(iw)

n

See Tsypkin (1958). Frequencies of possible limit
cycles are the points where the graph of (A(w),
0<w<w} Intersects the describing function of the relay.
It follows from (18) that

Im Atie) = H[S, -1])

Condition (16) 13 thus equivalent to Tsypkin’s
condition.

Notice that the condition based on H(t,-1) can only be
used when the nonlinearity is such that u is plecevise
constant. Tsypkin’s method applies to arbitrary
nonlinearities.

3. STABILITY OF THE LIMIT CYCLE

Conditions for local stability of the limit cycle given
by Theorem 1 will now be explored. The following
result holds.

THEOREM 3. Consider the system (6) with the feedback
(7). Assume that the matrix ¢-I is reqular and that T
and T are such that (8) is satisfied. Let the matrix

[ w2C] [ w1C]
W= |1 - 2| s |1 -2]0s (21)
sz 2 Cw-l 1
where
v, = & (Aa, + Bd)
v2 = ¢2(A32 = de)
a, = [I - 1 Yte.r.d. - r.d_1
1 219 292
a, = (I - ¢1 Y-, r.d_ + r.d, 1
2 1F292 19

have all its eigenvalues inside the unit disc. The limit
cycle iz then locally stable.

Proof. It follows from the proof of Theorem 1 that

x(tzk) = El and x(t2k+l) = 52

for the limit cycle. Compare with equation (11).
Conslder a solution to (6) and (7) where the initial

condition is perturbed from 8, to al+ 631. Hence

T+8T
x(T+dT) = eA(T+5T)(a +8a,) +

eAB
1 1 0

de Bdl

2
= <blal+ F1d1+ 016311' 01(Aal+Bd1)6‘t‘ + 008™)
(22)

where 0(52) denotes terms of second and higher order
in 8. The wvalue of &t where the control signal
switches is given by

y(T+ét) = Cx(T+bt) = ¢
Hence
2, _
C¢1631 + C*‘bl(Aal+Bd1) 6t + O(8™) = 0
or
Cé, ba Cé, éa
st = —2 1 4 0% = - 21, g5
C¢1(A31+Bdl) Cvl
Equation (22) can then be written as
w,C
= 1 2
x(t+st) = a, + [I - Z— ] ¢ 88, + 0(5%)

Repeating the same analysis for the time interval
where u(t) = -d, we find that the relay switches at
T+6T and that

_ 2
X(T+6T) = x(t2k+2) + W 581 + 0(67)

For small perturbations in the initial conditions the
changes in the state at the switching instants are thus
governed by the difference equation

532k+2 = W 6521{

The sequence (&a, } then converges to zero
exponentlally to zero since W Is a constant matrix with
eigenvalues inside the unit disc. a

Remark 1. In the symmetric case, d

= d2, the stability
condition is that the matrix

1

= (1 %) eY2 (23)
where
w=o2( a1+ el27r 4 p)
= (1+¢¥% )71 (24)
has all its eigenvalues inside the unit disk.
Remark 2. The condition that the matrix W1/2 has all

its eigenvalues inside the the unit disc can be given a
s;ﬁ&em theoretic interpretation. First observe that

can be interpreted as the dynamics matrix of the
system

1/2

z(t+l) = & Zz(t) + wu(t)
y(t) = C¢1/2z(t) (25)
1
u(t) = - Cw y(t)
172

The condition that the matrix W has all eigenvalues
inside the unit disc is then equivalent to the condition
that the closed loop system (25) {s stable.

Notice that the pulse transfer function from u to y s
given by

Hy(z) = cot/Z( 21 - #¥/2 )7L,

1 (26)



Examples

We now have the tools for exploring when there will be
a stable limit cycle. A few examples illustrate the
results. For simplicity we consider only the symmetric
case d, =d, =d.

1 2
Example 1, Consider a linear system with the transfer
function L

b -

G(a) = a,b > 0.
a+a
It follows that
-at
H(t, -1) = p(l-—e-ar—’
a(l+e )

The period of the oscillation is given by

_ - .2 bd-ae 4e
T=2%= a ™ barac © Bd

The limit cycle is stable because it follows from (21)
that W =0.

Notice that the period is proportional to € for small e.
Also notice that there will not be an oscillation for
e = 0 because H(t,-1) is always different from zero. o

Example 2. Consider a double integrator which has the
transter function

1
G(s) = ==
=}

The pulse transfer function is

2
H(t,2z) = ;— =zl

(z-l)2

Hence H(t,-1) Is zero for all t. Without hysteresis we
thus find that there may be periodic solutions for any
value of . The amplitude and the period depend on the
Initial conditions. The periodic solutlons are not
stable. o

Example 3. Consider the linear system in Example 1,
comblned with a time delay

G(g) = prey o a,b,t, > O.
The value of the pulse transfer function for z = -1 is
~-at at, _ _
Het, -1) = b e (2e 1) 1

-at
1+e

The period of the oscillation is given by

T=2t=-21n a-ac
bd(2e®“°e-1)+ac
172

It can be shown that the matrix W has all fits
eigenvalues Inside the unit disc. The limit cycle is
thus stable according to Theorem 3. a

When will there be oszcillations?

It follows from the analysis that there will be periodic
oscillations for large classes of systems. Consider e.g.
stable systems with monotone step responses. Equation
(16) will always have a solution if d+G(0) > g, where
G(0) 1s the static gain of the process. It also follows
that the period of the oscillation will increase with
increasing €. Since systems with monotone step
responses can be approximated by a first order system
with time delay for large T, It also follows from
Example 3 that the limit cycle will be stable at least if
€ ls (and thus also T is) sufficiently large. Compare
also with Flg. 5. Notlce however that there are
systems llke the double integrator in Example 2 where
there will not be a stable limit cycle.

6. CONCLUSIONS

Thls paper has attempted to develop procedures for
automatic tuning of simple regulators. These
procedures are based on a combination of analysis and
heuristics. The algorithms have been shown to be
robust and simple. They can be used directly as tuning
devices for simple regulators and as start-up
procedures for other adaptive schemes. It is stralght
forward to extract a more general pattern from the
results of the paper. Design procedures were first
developed. The design methods were then analysed to
determine the conditions when they will work and when
they will not. Next we attempt to find criteria for
those conditlons. The conditions are then
systematically explored to find heuristic rules to
govern the operation of the complete system. The
approach which can be applied to a wide varlety of
problems seems to offer interesting possibilitles to
combine analytical and heuristlcal approaches.
Experimentz with algorithms of this type have shown
them to be useful and to have Interesting properties.
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