LUND UNIVERSITY

Some SISO Transfer Function Facilities in CTRL-C

Lilja, Mats

1986

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Lilja, M. (1986). Some SISO Transfer Function Facilities in CTRL-C. (Technical Reports TFRT-7325).
Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/7fb36291-f3cf-4dd9-8051-80d78959c26a

CODEN: LUTFD2/(TFRT-7325)/1-019/(1986)

Some SISO Transfer Function
Facilities in CTRL-C

Mats Lilja

Department of Automatic Control
Lund Institute of Technology
August 1986

Department of Automatic Control

Lund Institute of Technology
P.O. Box 118
S-221 00 Lund Sweden

Document name

Report

Date of issue

August 6, 1986

Document Number
CODEN: LUTFD2/(TFRT-7325)/1-019/(1986)

Author(s)
Mats Lilja

Supervisor

Sponsoring organisation

Title and subtitle

Some SISO Transfer Function Facilities in CTRL-C

Abstract

In the matrix manipulation language CTRL-C there exist some functions for analysis of linear systems.
These operates however only on state space representations. This report presents some functions that
use (SISO) transfer function representations instead. Nyquist curve plotting of systems with time
delay, pole placement design and root locus plotting are covered.

Key words

Classification system and/or index terms (if any)

Supplementasy bibliographical information

ISSN and key titie

ISBN

Language Number of pages
English 19

Secunity classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,

S-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

Some SISO transfer function facilities in CTRL-C

Background

The matrix manipulation language CTRL-C contains some functions for han-
dling polynomials. Polynomials are represented as row vectors and polynomial
multiplication is implemented as convolution of vectors. There are however
presently no control system tools that use a transfer function representation.
In this report some CTRL-C-functions are listed, which are useful for SISO
systems given on transfer function form. This includes functions for calculation
and plotting of frequency response, solving of DAB (Diophantine- Aryabhatta-
Bezout) equations and plotting of root loci.

Frequency response plotting

The predefined library SYSLIB in CTRL-C contains some functions for calculat-
ing the frequency response of a system given on state space form (A, B, C, D).
The function NYQU calculates the real and imaginary parts of G(tw) = C(fwI —
A)~'B + D for a given vector of frequencies w and the function BODE gives
the magnitude and phase of G(iw). The slightly more general function FREQ
gives G(s) = C(sI — A)~'B + D as a vector of complex numbers where s is a
vector of arbitrary complex numbers. If the system instead is represented by its
transfer function, it is possible to convert it to state space representation and
then use the already existing functions mentioned above. However it is more
tempting to take a shortcut and directly calculate the frequency response from
the polynomials of the transfer function. A time delay could also be included
in the transfer function. The resulting values of G(iw) are stored either in the
‘Nyquist’ way (real and imaginary parts) or in the ‘Bode’ way (magnitude and
phase). The ‘Bode’ representation is often to be preferred, at least when the
time delay is large. The ‘Nyquist’ representation looses in this case information
about the phase. One drawback with the ‘Bode’ alternative is however that
the phase has to be checked and corrected when passing odd multiples of
(in case the principal branch of the logarithm is preferred). This checking may
cause unnecessary long computation times at least if you just want to plot the
Nyquist curve.

The data are stored in a 100 x 3 matrix with frequencies in the first column
and the corresponding values of the transfer function in the second and third
columns (in either of the representations above). Different plot functions, which
operate on such matrices, are availible. The transfer function is assumed to be
of the form

_ B(s) s
G(s) = A(s)e

and the calculation of the frequency response (in ‘Nyquist’ form) is performed
by the following function call

[> fri = frny(a,b,tau,lgwl,klgw2);

where a and b are row vectors representing the polynomials A and B. The time
delay is tau and the lower and upper limit for the 100 logarithmically spread
frequencies are 10**1gwl and 10*¥*1gw2 respectively. The resulting frequency
response can now be plotted by the function call

[> npli(fri)

which plots the Nyquist curve in a fresh diagram. For each tenth frequency,
the corresponding point on the Nyquist curve is marked. These frequencies are
easily displayed:

[> fr1(10:10:100,1)
If £r2 is defined then the call
[> npl(fr2)

plots the Nyquist curve corresponding to £r2 in the same diagram as fri. The
command

[> npl2(fri,fr2)

clears the screen and plots the Nyquist curves corresponding to fri and fr2
in a fresh diagram. The functions APL, APL1 and APL2 work in a similar way
but giving the amplitude curve instead and the functions PPL, PPL1 and PPL2
gives the phase curves (with the sorting mentioned above). Sometimes it is of
interest in stability theory to plot the Popov curve

(Re G(iw),wIm G(iw))
This is done by using the functions POP, POP1 and POP2. As a special feature
there is a possibility to compute the frequency response for arbitrary transfer

functions. This is done by using the ‘text macro’ facility in CTRL-C. The
commands

[> g = 'exp(-sqrt(s));°:

[> fr = frfu(g,-2,2);

[> npli(fr)

plots the Nyquist curve of G(s) = e~V* for frequencies w ranging from 0.01
to 100 rad/s. By using the convention to let the complex variable name in the
transfer function be s, it is possible to pass over the transfer function as the
string g to the function FRFU where it is evaluated for 8 = sw and stored in the
output matrix:

for j=1:nw,..

s = sqrt(-1)*w(j);..

lgl;..

fr(j,:)=[w(j) real(ans) imag(ans)];..
end;

The evaluation of the text string g is done by the reversed square brackets, 1gl
and the result is stored in the default variable ans.

Solving DAB equations

Many control problems involves solving of DAB equations
AX+BY =C

where A, B and C are known polynomials and X and Y are unknown polyno-
mials. The polynomials A and X are assumed to be monic. Let
A(s)=s"+a;s" '+ +ay,
B(3) =bys" 1 4 b3s" 2 ... 4 b,
C)=s+cs+ -+
where n > m. The unique solution for which degY = degA — 1 is chosen

(deg A + deg X = degC). The coefficents ¢;, 7 = 1,2,...,l are found by
solving the equations

f l L
[1 0 0 0 3 .
ay 1 0 O .1 1
: : S ; c1
Z—
Gl—on42 Al—2n41 o0 bl o ... ;0” = C2
A—2n+4+3 H—2n+2 -+ by by ... :
. 5)1
. b ’ : . Cl
\ 0 an . 0 0 ...) g1 |

(for the special case | < 3n — 2). The matrix in the left member is nonsingular
iff A and B have no common root. The function DIOP solves the DAB equation
above by solving this system of equations. This is done by the command

[> [x,y] = diop(a,b,c)

Consider the pole-placement problem: Choose polynomials R, S and T s.t. the
control law

R(p)u = -S(p)y + T(p)r
(p:= é%) applied to the system
A(p)y = B(p)u
gives the closed loop system
Am(p)y = Bm(p)r

This is equivalent to solving the DAB equation

AR, + B~ S = A A,
where B = B~ B*. The regulator is then given by

R=R,B*

S=8§

T =ty A, B!,
B, =B B~

The constant # is chosen s.t. that the closed loop system has a stationary
gain of 1. The function RSTC uses DIOP to perform this:

(> [r,s,t] = rstc(a,bplu,bmin,am,bmp,a0,1)

with obvious notation. In case integral action is wanted in the regulator, the
function call should be modified to

[> [r,s,t] = rstc(a,bplu,bmin,am,bmp,ao,[1 0])
A simpler version of RSTC is CRST, which keeps the old B-polynomial:
(> I[r,s,t] = crst(a,b,am,20,1)

A simple simulation can be made by calling the function YUCL, which uses
the CTRL-C-function SIMU. The input consists of a unit step in the reference
signal at time £ = 0 and a negative unit step in the load disturbance at half the
simulation time. The result is stored in a 100 X 3 matrix with the time ¢,the
process output y and the controller output u in the three columns respectively.
The signals can be plotted by either YUPL (new diagram) or YUP (old diagram).
YUP uses the global variables USCA and YSCA to remember the scalings for the
old u- and y-plots. The command

[> clo = yucl(a,b,r,s,t,40);

[> yupl(clo);

simulates the closed loop system in 40 seconds, with a step in the reference at
t = 0 and a negative step in the load disturbance at ¢ = 20, and then plots u
and y.

Root locus plots

A typical problem that arises in control is to display the roots of the equation
f(s,k) := A(s) + kB(s) =0

as a function of the real, positive variable k. The common way to do this is to
just plot the roots for equidistant values of k. This gives however a very sparse
look of the root locus near multiple roots. A way to avoid this is to detect
closeness to multiple roots and decrease the increment in k. This can be done
by applying the implicit function theorem to f (let prime denote derivation
w.r.t. 8):

af
ds __Ok ____ B(s)
dk af A'(s) + kB'(s)
3s

for those values of s and k for which the partial derivative of f w.r.t. 3 does not

vanish (this derivative vanishes precisely when A(s)+ kB(s) = 0 has a multiple

root). If a maximum step length in s, say As, is specified, the step length in &k

can be chosen as

A'(s;) + kB'(s;)
B(s:)

where the minimum is taken w.r.t. the roots for the present value of k. This
gives a decent step length near multiple roots but, of course, the maximum
step length As cannot be guaranteed since this is just a linear extrapolation.
The command

|As]

|Ak| = min
t

[> rl = rloc([1 3320],[1321],0,2,0.1);

plots the root locus for
A(s) + kB(3) = s* +3s®> +3s® + 25+ k(s® + 35 +25+1) =0

for 0 < k < 2 and with a prespecified maximum distance As < 0.1 (fig.1). The
zeros of B (the finite end points of the root locus) are marked as ‘octagons’

6

and multiple roots are, if any, plotted as ‘star bursts’ (CTRL-C terminology).

1.0

0.8 o *
0.6 - x °

0.4 !x x Xgexg?
x
x x

0.2 x <

0.0
=
-0.2 x '
X x

x

x
0.4 . " “’Xs.%

»®

-0.6 M |

-0.8 - "

-1.0
-2.5 -2.0 -1.5 -1.0 +0.5 0.0

Fig.1 Root locus for s + 363 4+ 362 + 20 + k(23 + 342+ 2 +1) =0

The multiple roots are found by considering the identity
A(s) B(s) (l]_[O]
A'(s) B'(s) k) (o
The non-trivial solutions to this equation are found by solving A(s)B'(s) —

A'(s)B(s) = 0. Selecting the roots s;, for which k = —%}:—:} is real, gives all
multiple roots of A(s) + kB(s) =0.

An example
Consider the system with transfer function

_ -8+ 2
" (s+1)(s? + 25 + 10)

G(s)
For convenience we store the coefficients in a and b:
[b=1[-12]; a = conv([t 1].[1 2 10]);

The Nyquist curve for the systems is obtained for frequencies 102 < w < 10?
by the commands

[> fr1 = frny(a,b,0,-2,2);

[> npli(fri)

Fig.2 Nyquist curve for the open loop system

A pole placement design for which the closed loop poles are placed at
—4, —2 + 21 is done by entering the following commands

[> i = sqrt(-1);
[> am = real(poly([-3 -2+2*%1 -2-2%i]))"*;
[> ao = poly(-6*ones(1,2))’;

[> [r,s,t] = crst(a,b,am,a0,1)

The two observer poles are placed in —10. Since no pole-zero cancellation is
recommendable in this case, the simpler pole-placer CRST is used. The step
response for the closed loop system can now be plotted:

[> cl1 = yucl(a,b,r,s,t,20);

[> yupl(cll)

Fig.3 Simulation of closed loop system (without integration)

The step response for the first 20 seconds will now appear in the upper
diagram and the lower diagram will show the output from the controller. Notice
that a load disturbance is introduced at ¢ = 10. A new design, for which the
regulator dynamics contains an integrator, is easily obtained:

[> ao = poly(-6*ones(1,3))";

[> [r.,s,t] = crst(a,b,am,ao0,[1 0]);

where the degree of the observer polynomial had to be increased by one (all
observer poles still in —10). To check the correctness of this design one can for
example calculate the poles of the closed loop system:

[> clp="ar=conv(a,r);bs=conv(b,s);..
arbs=ar+[0*ones(1,max(size(ar)-size(bs))) bsl;..
bt=conv(b,t) ;clpo=root(arbs),’;

[> Jclpl

where the CTRL-C ‘text macro’ facility is demonstrated. The string variable
clp can be evaluated by enclosing it with reversed square brackets (1clp[),
which from now on is a convenient way to display the closed loop poles. To get
some idea of how robust this design is you can plot the Nyquist curve for the
loop transfer function:

[> frloop = frany(conv(a,r),conv(b,s),0,0,2);

[> npli(frloop)

Fig.4 Nyquist curve of loop transfer function

Another possibility to check the robustness is to plot a root locus w.r.t. the
loop gain (solving A(s)R(s) + kB(s)S(s) =0):

[> rl = rloc(conv(a,r),conv(b,s),0,2,0.5);

=25, -20. -15, -10.

]
4
o

Fig.6 Root locus for A(s)R(s) + kB(2)S(s) =0

The ‘loop gain’ k varies from 0 to 2 (a loop gain of one corresponds here
to the actual design) and the maximum ‘step length’ in the s-plane is specified
to be 0.5 (this may not be satisfied near multiple roots).

10

Summary of functions

Frequency response

FRNY Computes the frequency response of a system with time delay
FRFU Computes the frequency response for arbitrary transfer functions
NPL1 Plots one Nyquist curve in a new diagram

NPL2 Plots two Nyquist curves in a new diagram

NPL Plots one Nyquist curve in an old diagram

APL1 Plots one amplitude curve in a new diagram

PPL1 Plots one phase curve in a new diagram

POP1 Plots one Popov curve in a new diagram

DAB equations

DIOP Solves the DAB equation AX + BY =C

RSTC Solves the pole placement problem

CRST Simple version of RSTC

YUCL Calculates the step response of the closed loop system
YUPL Plots one step response in a new diagram

YUP Plots one step response in an old diagram

Root locus plots
RLOC Calculates and plots root locus

Summary of function calls

fr = frny(a,b,tau,lgwl,lgw2)
Computes the frequency response of the system with transfer function

A(s)

for 100 logarithmically spread frequencies. 1gwl and 1gw2 are the base 10 log-
arithms of the lower and upper limit for the frequencies. The output matrix
fr contains the frequencies in the first column and real and imaginary part of
G(iw) in the second and third columns.

G(s) =

fr = frfu(g,lgwl,1gw2)

Works similar to FRNY but the transfer function is specified as a string (e.g. g
= "1/(1+sqrt(s)) *) using the name convention s for the complex variable.

npli(fr)
Plots the Nyquist curve (in a fresh diagram) from the data in the matrix fr.

11

npl2(fr1,fr2)

Similar to NPL1 but for two Nyquist curves.
npl(fri, fr2)

Similar to NPL1 but without erasing the old diagram.
apli(fr)

Plots the amplitude curve from data in fr.

ppli(fr)
Plots the phase curve from data in fr.

popl(fr)

Plots the Popov curve from data in fr.

[x,y] = diop(a,b,c)

Solves the DAB equation AX + BY = C. The solution corresponding to mini-
mal degree of Y is chosen.

[r,s,t] = rstc(a,bplus,bminus,am,bmprim,ao,ar)

Solves the pole placement problem

A(8)Ry(s) + B (s)S(s) = Am(38)Ao(3)
T(s) = toB},(s)Ao(3)
R(s) = B™(s)Ar(s)R1(s)

where the minimal-degree-of-S solution is chosen.

[r,s,t] = crst(a,b,am,a0,ar)

Simplified version of RSTC, with B*(s) = B(s), B—(s) =1 and B;,(s) = 1.
clo = yucl(a,b,r,s,t,time)

Simulates the closed loop system

A(p)y = B(p)(u + d)
R(p)u = T(p)r — S(p)y

with a unit step in r at time ¢ = 0 and a negative unit step in d at £ = time/2 up
to time time. The 100 x 3 matrix clo contains ¢, y and u in its three columns.
yupl(clo)

Plots the process output y in the upper diagram and the control signal u in the
lower diagram with the data from clo. The screen is erased before plotting.
yup(clo2)

Same as yupl but the screen is not erased and the old scales are used. Two
global variables must be defined — uscale and yscale (by using the glob com-
mand). Their start values must be a 3 x 2 matrices (take simply O*ones(3,2)).

12

rl = rloc(a,b,k1,k2,dsmax)
Calculates and plots the root locus for

A(s) + kB(s)

The start value for & is k1 and the maximal k-value is k2. An attempt is done
to keep the modulus of the increment As less than dsmax by choosing the
increment Ak according to

A'(s) + kB'(s)
Ak = m._m B() Asiian
(linear extrapolation in k). The open loop zeros are marked by “octagons” and
the open loop poles by “fancy diagonal crosses”. Multiple poles are computed
as the zeros of A'(s)B(s) — A(8)B'(s). The k:s are stored in the first column
of rl and the corresponding roots in the other columns. The open loop zeros,
open loop poles and multiple poles are not stored.

Appendix: Listing of the functions
[fr]=frny(Apoly,Bpoly,Tdelay,lgwl,1lguw2);

// Computes the frequency response for the transfer function

//

// Bpoly(s) -Tdelay s
// G(8) = --------- e

// Apoly(s)

//

// for frequencies (w) logarithmically spaced between 10%**(lgwl)
// and 10%x(1gw2). The values are stored in columns as
//
// [w ReG(w) Im G(iw)]
//

na = size(Apoly)*[0;1];

nb = size(Bpoly)*[0;1];

i = sqrt(-1);

1n10 = log(10);

w = exp((1gwl: ((1gw2-1gw1)/99) :1gw2)*1n10);

iw = ixw;

nvw = size(iw)*[0;1];

one = ones(1i,nw);

avec = Apoly(1)+one;

for j=2:na,..

avec = iwkx.avec + Apoly(j)*one;..
end;

13

bvec = Bpoly(1)+*one;

for j=2:mb,..
bvec = iwk.bvec + Bpoly(j)*one;..
end;

G = bvec/.avec;

Gd = exp(-Tdelay*iw)*.G;
Re = real(Gd);
Im = imag(Gd);

fr = [w* Re’ Im’];
L1111111777717717111111111111171111117777111717
[fr] = frfunc(func,lgwl,lgw2);
// Computes the frequency response for a system with transfer
// function specified by the string ‘func’ as in the following
// example:
//
// [> func = 'exp(-sqrt(s))’;
//
// [> fr = frfunc(func,-2,2);
//
// The resulting 100 x 3 matrix ‘fr’ will in this case look like
//

// [w Re (exp(-sqrt 8)) Im (exp(-sqrt s)) 1]
//
// vwhere 1e-2 <= w <= 1le2.
//
i = sqrt(-1);
w = logspace(lgwl,lgw2);
iw = i*w;
for j=1:100,..
g8 = iw(j): £ = [func *;'); 1£[; G(1,j) = ams;..
end;
Re = real(G);
Im = imag(G);

fr = [w’ Re’ Im'];
[117171777777171777171771777111771717717711111771117717
[(J=npli(frf);

eras;

plot(’'scale’);

nw = size(frf)*[1;0];

110 = min([10,nw])*(1:round (max([10,nw])/10 - 0.5));

plot(frf(:,2),frf(:,3));

PPP = plot(’peek’); plot(ppp,’'scale’);

plot (frf(i10,2),frf(i10,3), 'point=1");

plot(’scale’);

14

111717111771717711177177777117111117717177171771711717117
[1=npl2(frf1,frf2);
eras;
plot(’scale’);
nwl = size(frf1)*[1;0];
1101 = min([10,nw1])*(1:round (max([10,nw1])/10 - 0.5));
nw2 = size(fr£2)*[1;0]:
1102 = min([10,nw2])*(1:round (max([10,nw2])/10 - 0.6));
plot(frfi(:,2),frf1(:,3),frf2(:,2),frf2(:,3));
PPP = plot(’peek’'); plot(ppp,’'scale’);
plot (frf1(i101,2) ,frf1(1101,3), 'point=1",...
fr£2(1102,2) ,fr£2(i102,3), "point=9’);
plot(’scale’);

JI11111017007770777707777777171111171177111111111117
[J=npl(frf);

PPP = plot(’peek’);

plot (ppp.‘'scale’);

nw = size(frf)*[1;0];

i10 = 10*(1:round(nw/10 - 0.5));

plot(frf(:,2) ,frf(:,3));

plot (frf(i10,2),frf(110,3), 'point=2");

plot(‘scale’);
II117701717711177771777771777111177177111111111177177
[(1=apli(frf);

eras;

plot(‘scale’);

w=frf(:,1);

1n10 = log(10);

lgw = log(w)/1n10;

lga = 0.6*log(frf(:,2)*.frf(:,2)+frf(:,3)*.frf(:,3))/1n10;

plot(lgw,lga);
LI1111111770000717717717777171118771171111177117711/
[1=ppli(frt);

eras;

plot(’scale’);

i = sqrt(-1);

w=frf(:,1);

n = size(w);

1n10 = log(10);

lgw = log(w)/1n10;

phase = imag(log(frf(:,2)+ixfrf(:,3)))*180/pi;

k=1;

while k<n;..

k=k+1;..
if phase(k)-phase(k-1)>180;..
phase(k:n) = phase(k:n) - 360*ones(k:n,1)’;..
end;..
if phase(k)-phase(k-1)<-180;..
phase(k:n) = phase(k:n) + 360*ones(k:n,1)°;..
end;..
end;
plot (1gw,phase);
II117117777077077777707101771771111111711717777711177
[1=pop1(frf);
eras;
plot(’scale’);
w=frf(:,1);
nw = size(w)*[1;0];
110 = 10*(1:round(nw/10 - 0.5));
plot(frf(:,2) ,wx.frf(:,3));
pPPP = plot(‘'peek’); plot(ppp,’scale’);
plot (frf(i10,2),w(i10)*.frf(i10,3), point=1');
plot(°scale’);
11111 1700000770007007707007771171777717711111111717
[x,y] = Diophantine(a,b,c);
// Solves the Diophantine equation
//
// AX + BY = C
//
// where A,B,C,X and Y are polynomials with deg Y = deg A - 1
//

na = max(size(a));
nb = max(size(b));
nc = max(size(c));

ny = na - 1;
test = ny + nb - nc - 1;
if test > O then,..
¢ = [0O*ones(1,test) cl;..
nc = nc + test;..
end;
nx = nc - ny;
ex = eye(nx);
ey = eye(ny);
for j=1:nx, mx(j,:)=conv(a,ex(j,:));
for j=1:ny, my(j,:)=conv(b,ey(j.:));
m = [mx ; [0O*eye(ny,nx-nb+1) myll;
xy = c/m;

16

x = xy(1:nx);

y = xy(nx+i:nc);
II11171700000727720777001111117117711111111177117717
[r,s,t]l=rstc(a,bplus,bminus,am,bmi,20,ar);

// Solves the pole placement problem

//

// + -

// B B T s

// y = ----u , T = ---y - ---y

// A R r R

//

// -

// B B

// mi

// y = ----- y . T = tA

// A r 0o

// m

//

// where t0 is a normalization constant such that

//

// lim y(t) =y

// t->00 r

//

// when the reference signal yr is a step (continuous time).
// The polynomial Ar consists of factors to be forced into R
// (e.g. Ar(s) = 8 introduces integration in the controller)
//

al = conv(a,ar);

c = conv(am,a0);

bm = conv(bminus,bmi);

nam = size(am)*[0;1];

nbm = size(bm)*[0;1];

t0 = am(nam)/bm(nbm) ;

t = tO*conv(ao,bml);

[r1,s]=diophant(al,bminus,c);

r = conv(conv(rl,ar),bplus);

s = 8/r(1);

t =t/r(1);

r =r/r(1);
LI17117170777777707772777171171010771711177117771177
[r,s,t]=crst(a,b,am,a0,ar);

al = conv(a,ar);

c = conv(am,ao);
nam = size(am)*[0;1];

17

nb = size(b)*[0;1];

t0 = am(nam)/b(nb);

t = tO*ao;
[r1,s]=diophant(al,b,c);

r = conv(ri,ar);
s = 8/r(1);
t =t/r(1);

r =r/r(1);
LITIITIIT0IT0007077777000000107171711171111177¢147717
[tyu]l = yucl(apol,bpol,rpol,spol,tpol,time);
// Computes the step response from reference signal and
// load disturbance to controller output and measured
// output
//
[a,b,c,d] = tf2ss(bpol,apol);
[£f.gg.hh,kk] = tf2ss([-spol ; tpol],rpol);
f=f1’;g=hh’ ;h=gg’ ;k=kk";
if (size(g)-size(k))*[0;1]=0,..
gr = g(:,2);..
g =g(.1);..
else,..
gr = 0;..
g=20;..
end;
kr = kk(2);
k = kk(1);
if abs(1-d*k) < 1e-15 then disp(°Ill conditioned problem’);return;[j
dki = 1/(1-d*k);
aa = [a+b*c*¥k*dkl bxh*dkl ; gkcxdkl f+grh*d+dki];
bb = [dki*b dki*kr*b ; dkixd*g gr+dki*xd*krxgl;
cc = [kxdki*c h*dkl ; dki*c d*xdki*h];
dd = [k*dki*d kr*dkl ; dki*d d*dkixkr];
t = (0:0.01:1)*time;
ref = ones(0:100);
dist = [0*ones(0:49) -ones(50:100)];
uy = simu(aa,bb,cc,dd,[dist ; ref],t);
u=uy(l,:);
y = uy(2,:);
tyu = [t" y* u’l;
III717177000077007707200007007170007772717771711717
[1=yupl(yu);
eras;
plot(’'scale’);
window(’211°);

plot(yu(:,1),yu(:,2));

ylabel('y',"1%);

yscale = plot(’peek’);

plot(’scale’);

window(’212°);

plot(yu(:,1),yu(:,3));

uscale = plot(’'peek’);

ylabel(’u’,’1*);
1117117717171771771117711177117171771171111111111711177
[(1=yup(yuw) ;

window(’211°);

plot(yscale, *scale’);

plot(yu(:,1),yu(:,2));

window(’212°);

plot(uscale, ‘scale’);

plot(yu(:,1),yu(:,3));

plot(’scale’);
J117777077177171777717777711717777711171777711771177
[Locus] = rloc(Apol,Bpol,K1,K2,dsmax);
[11111717707077771107117177777717777771117717111771717
// Special root locus routine, which calculates //
// the increment in K such that abs(ds) < dsmax. //
// K1 and K2 are lower and upper limit for K resp.//
// The roots are stored and the corresponding //
// K-values are stored in Locus. The root locus, //
// the zeros and the open loop poles are plotted. //
// Other CTRLC-functions that must be included //
// are EVAL and DERI. //
LI117177771717717777717177771171717771111111771117777

d = (size(apol) - size(bpol))*[0;1];
a = apol;
b = [0%(1:d) bpoll;

da = deri(a);

db = deri(b);

k = ki;

epsi = 1e-10;

i=1;

while k<=k2 ;..
kvec(i) = k;..
ri = root(a+k*b)’;..
rvec(i,:) =ri;..
fs = eval(da+k+*db,ri);..
fk = eval(b,ri);..

18

19

dk = dsmax*min(abs(fs/.fk))+epsi;..
k= k + dk;..
i=1i+1;..

end;

locus = [kvec rvec];

poles = root(a);

rl = rvec(:);

dab = conv(da,b);

adb = conv(a,db);

if max(size(b))>1, mpol = dab - adb; else, mpol = dab;
multroot = root(mpol);
kmult = -eval(a,multroot’)’/.eval(b,multroot’)’;
mroot = 0;
for j=1:max(size(lkmult)),..
if abs(imag(kmult(j)))<le-9, mroot=[mroot;multroot(j)];..
end;
eras;
if max(size(d))>1,..
zeros = root(b);..
plot(real(rl),imag(rl),’point=1’,..
real(poles),imag(poles), 'point=7",..
real(zeros) ,imag(zeros), 'point=9');..
else,..
plot(real(rl),imag(rl), point=1°,..
real(poles) ,imag(poles), 'point=7");..
end;
if max(size(mroot))<2, return;
mroot = mroot(2:max(size(mroot)));
plot(plot(’peek’),’scale’);
plot(real(mroot),imag(mroot), ‘point=8");
plot(’scale’);
[1117177770177711177107717711177777171771171711111717
[value] = eval(Pol,svec);
n = size(pol)*[0;1]-1;
ns = size(svec)*[0;1]; one = ones(1:ns);
value = pol(1)*one;
for i=2:n+1; value = value*.svec + pol(i)+*one;
[117110777777117771107711777717177171771771117111777¢7
[(Prim] = deri(Pol);
n = size(pol)*[0;1]-1; D = n:-1:0;
prim = D*.pol;
prim = prim(1:max([1,n]));

