LUND UNIVERSITY

Design and Implementation of a Graphical Front-End

Bruck, Dag M.

1987

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Briick, D. M. (1987). Design and Implementation of a Graphical Front-End. (Technical Reports TFRT-7367).
Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/264d93af-b995-4f72-9929-3e00c448eab3

CODEN: LUTFD2/(TFRT-7367)/1-023/(1987)

Design and Implementation
of a Graphical Front-End

Dag M. Bruck

Department of Automatic Control
Lund Institute of Technology
August 1987

Department of Automatic Control
Lund Institute of Technology

P.O. Box 118

S5-221 00 Lund Sweden

Document name

INTERNAL REPORT

Date of issue

August 1987

Document Number

CODEN: LUTFD2/(TFRT-7367)/1-023/(1987)

Author(s)
Dag M. Brick

Supervisor

Sponsoring organisation
The National Swedish Board of Technical
Development (STU)

Title and subtitle
Design and Implementation of a Graphical Front-End

Abstract

to be general and easily portable.

available operations is given.

This report describes the design and implementation of a graphical front-end, i.e., a program that handles all
input and output operations associated with the user for an application program. The front-end was designed

In the report, special attention is paid to the design of segment handling, picking, rubberband shapes and
menus. The front-end was implemented on a Silicon Graphics IRIS 2400 workstation, and problems with
the window manager, the input queue and process communication are discussed. Lastly, a full description of

Key words

Computer graphics, Graphics standards, Window management, Segment handling, Picking, IRIS workstation

Classification system and /or index terms (if any)

Supplementary bibliographical information

ISSN and key title

ISBN

Language Number of pages
English 23

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,

S-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

1. Introduction

This report describes the design and implementation of a graphical front-end
for computer aided control engineering (CACE). The current version runs on
an IRIS 2400 workstation from Silicon Graphics, Inc. The implementation is
machine specific, but the design is supposed to be general and easily portable.

There are four major sections. Firstly, an overview of the system and the
objectives is given. Secondly, some of the basic concepts and operations for
man-machine interaction are discussed in some depth. Thirdly, the problems
and requirements of window management are discussed. Fourthly, the result-
ing system decomposition and the actual implementation is described. There
is also a summary and an appendix describing available operations in detail.

Related work at the Department of Automatic Control has been reported
by Briick [1986] and Mattsson et al. [1986]. The reader is assumed to have
a working knowledge of computer graphics; otherwise a good textbook is rec-
ommended, for example, Hearn and Baker [1986].

2. Overview

The man-machine interface should be well-defined and easy to comprehend. In
the current version, there are 34 operations divided into eight groups: drawing
primitives, text, coordinate systems, segment handling, window management,
picking, rubberband shapes and menu handling; input from the user can be
presented to the application in four different ways.

Most operations are rather low-level; complex operations have been in-
cluded only when the graphical manipulation could be implemented without
any knowledge of the meaning in the application.

Portability and implementation speed was a major concern during the
design. Existing software packages have been used as much as possible; on the
IRIS this includes the window manager (mex) and the IRIS Graphics Library.

Output operations

A minimum of two output devices should be supported: the workstation screen
and PostScript printers for hardcopy output. Only very simple shapes such
as lines, rectangles and circles are used for drawing block diagrams. Simple
graphics operations are usually portable from one computer to another, but
for example segment handling can be difficult to implement.

Key features are color, highlighting (visual feedback), multiple local co-
ordinate systems which may be nested inside each other, and hierarchical
segments with simple editing. Multiple overlapping windows are provided
through the existing window manager.

Input operations

Two forms of input are handled. Keyboard input of text strings and com-
mands, and a pointing device (mouse). The mouse is used for many high-level
operations, such as menu selection, picking graphical objects on the screen,
drawing rubberband shapes and reshaping windows. Input from stored files is
also required in the future in order to repeat complex sequences. This implies
that each input operation must have a textual equivalent.

3. Basic operations

This section describes a number of important operations. The problems are
often implementation dependent, but the operations are fundamental for in-
teractive graphics software. Issues related to window management are covered
in the next section.

Coordinate systems

Multiple local coordinate systems may be used. Transformation matrices are
pushed and popped on a stack by the user; scaling and translation may be
applied to the top element of the stack only.

Transformation changes are local to a segment. The stack is automaticly
pushed before the first scale or translate (unless the user has done so explic-
itly), and popped to its original state when the segment is left. This is done
by counting the number of push/pop operations and making sure that every
push is matched with a corresponding pop, even if the user has made an error.

Transformation changes are of course effective when other segments are
called, i.e., at “lower” levels in the segment tree.

Segments

Hierarchical segments, in combination with hierarchical coordinate systems
were considered essential for our application, in particular when building ob-
jects from smaller components, or when presenting multiple views of an object.

The current design has hierarchical segments, which are supported by
PHIGS [Brown, 1985] and the IRIS Graphics Library [Silicon Graphics, 1986],
but not by GKS [Hopgood et al., 1983]. Implementing hierarchical segments
without support from the graphics package requires a separate data-structure,
and a mapping from the user’s segment identity to multiple segments stored in
the graphics package. Hierarchical coordinate systems may also become more
difficult to implement.

Another problem area is segment editing. Editing can be very useful,
but may be difficult and very inefficient to implement without support from
the graphics package; this design only supports appending of new graphics
primitives to existing segments, which should be fairly easy to implement
on any computer. A typical example is plotting of a trend curve, where a
complete segment regeneration for each displayed point would be extremely
time-consuming.

Segment attributes

It is natural to associate some attributes with a segment, for example, current
color, or if segment should be highlighted. The possible scope of an attribute
change can be described with three different models: Firstly, attributes can
be viewed as global states. In this case, a change of color will effect any seg-
ment which is executed after the current one, including segments at “higher”
levels. This model is easy to implement, but not very predicatable because
the execution order of the segments is not user-specified.

Secondly, attributes may be strictly local to a segment, affecting no other
segments. This model is safe and easily comprehendable, but requires a large
number of possibly redundant attribute settings in each segment. This model
unnecessarily restricts highlighting (see below).

Thirdly, downward propagation can be specified, i.e., attribute changes
apply to the current segment and all segment called by this segment, directly
or indirectly. In this case, changes affect all segments at “lower” levels in the
tree, so the execution order is insignificant.

This model also has the property that the internal structure of a segment
is insignificant. For example, if a segment is highlighted, it may call several
“component” segments, all of which will be highlighted as well. This is not
possible when attributes are strictly local. One drawback is that some redun-
dant segments are needed. Structurally equivalent but conceptually different
objects must be represented by separate segments, so that highlighting can be
performed individually.

The last model has been chosen in the current design. It offers the best
compromise between flexibility and safety; it is also very similar to the way
the transformation stack in handled. A common problem arises if the under-
lying graphics library does not support a stack of attributes or transformation
matrices: then it will be necessary to split a single segment (as seen by the
user) into several smaller parts, and to save the attributes/matrices by some
other means. Apart from execution speed, program complexity and memory
requirements may be severely affected.

Picking

By picking, the user tells the application program that he/she is interested
in a particular object on the screen. This is done by placing the cursor over
the object and then pressing one of the mouse buttons. The problem is to
make the “backward translation” from the graphical shape on the screen to
an internal representation in the program.

The first problem is to determine what the user has picked. To make
picking easier, a hot-zone (or picking region) of about 10 x 10 pixels is defined
around the cursor tip; any object inside the hot-zone yields a hit. There is
a risk that many objects may cause a hit, for example, near a terminal the
system box, the terminal box and the connection may all cause hits; it is not
clear what the user really intended. This design specifies that every object in
the hot-zone causes a hit; it is left to the application to resolve any conflicts.

It is common to associate picking with segments, i.e., a hit returns a
segment identity. The second problem arises when two conceptually different
objects are represented using a common set of segments because they are
graphically similar. If only a segment identity was returned, the different
objects could not be distinguished.

In order to solve this problem, the path to an object must be traced, i.e.,
every enclosing ob ject must be listed in addition to the segment that caused the
hit. If there is more than one occurrence of a segment in the enclosing object,
every occurrence must be counted. This process can of course be automated,
but the mapping back to the internal data structures in the program is not
much easier.

An alternative approach, which has been chosen here, is to put the result
of a pick operation under direct program control. The application program
can push and pop so called pick markers on a special-purpose stack. The
push/pop operations can be put anywhere in a segment, interspersed with
ordinary drawing primitives. When a hit occurs, the complete stack is returned
to the program for interpretation. The only action performed automatically
is to empty the stack before picking starts.

The push marker stack is very flexible and can easily emulate the two
other strategies: single-segment hit and segment-path hit. More powerful
encodings of the stack contents are also possible. Regrettably, it is not yet
clear if the stack can be readily implemented on other workstations than the
IRIS, or using graphics packages like PHIGS or GKS. A complete redesign
may be called for, with subsequent changes in the application program.

Rubberband shapes

The rubberband line is a convenient but resource consuming way of interacting
with the user. A rubberband line has one fixed end-point, while the other end-
point is tied to the cursor. The line is redrawn as quickly as possible when the
user moves the cursor, giving almost instant feedback. A common extension
is to be able to draw a rectangle between two end-points, as well as a line.

In the current design, the rubberband line has been generalized to a poly-
line, i.e., a number of points connected with straight line segments. The
following shapes can be formed:

Variable length polyline. The first and intermediate points are marked by
pressing the middle mouse button; the last point is marked by pressing the
right mouse button.

Straight line. The application program requests input of a polyline with only
one line segment. Input of the line is automaticly finished when two points
have been marked.

Rectangle. Similar to the straight line, but rather than drawing a line, a
rectangle is formed between the two end-points. The cursor glyph can be
changed to emphasize the rectangle. A polyrectangle is theoretically possible,
but would probably look funny.

Single point. A degenerate polyline with only one point. Used for example
to mark the position of an input or an output.

Window indentity. Input of a rubberband shape also carries a window iden-
tity that tells which coordinate system the points refer to. Requesting a poly-
line with zero points returns the window identity of the currently attached
window, without any user action.

The rubberband shape is controlled by three parameters. Firstly, the
maximum number of points; for a “variable length” polyline, any large num-
ber will do. Secondly, a flag that indicates that a polyline can be finished
prematurely; otherwise, all points specified above must be marked. Thirdly, a
graphical shape, i.e., whether a line or a rectangle should be drawn between
two points.

Menus

Menu selection is the principal way to give commands to the system. The
IRIS Graphics Library has a simple but flexible menu handler; the following
basic interaction ideas have been used:

e There is always one main menu which pops up when the right mouse
button is pressed.

e Menus pop up at the current cursor position. The first alternative is under
the cursor.

e Menus may roll over to either side, displaying any number of submenus.

Features that for simplicity reasons have been left out are icons (menu alter-
natives represented by pictures, not by text strings) and forms (input of text
in the menus). The menus are programmable by the application program, and
any text string can be returned for a menu selection, but it is not possible to
parameterize selections.

Text editor

Some sort of text editing facility is required, for example, to edit equations.
This can be done in three ways: Firstly, an existing editor can be executed
separately (taken off the shelf, so to speak). The main advantages are the
simple implementation, and that the user is allowed to use his/her favorite
editor. The main disadvantage is the lack of integration; start-up will be rather
slow, and the user must manually read and write files containing equations.

Secondly, a well-known standard editor (such as Emacs) can be adapted
to our particular needs. For example, Emacs can be programmed with a
special “equation-mode,” or to understand program-generated error messages.
Another advantage is that start-up of the editor can be done automaticly, and
relevant files transferred without the user’s help. The disadvantages are the
increase in implementation effort, and that the user is tied to a single (albeit
programmable) editor.

The third approach is to write a special-purpose editor which can be
completely integrated with the CACE package. In addition, start-up will
be fast, and more important, graphics can be used to advantage. On the
other hand, the user will be confined to yet another, rather restricted, text
editor, and much work must be devoted to ordinary program development.
An alternative is to turn the problem outside-in, and implement the CACE
system in Emacs.

The current opinion advocates approach number two, the adapted stan-
dard editor. Some sort of integration is preferable, but the required effort
should be kept to a minimum. It should be possible to begin with a minimum
of integration, e.g., automatic start-up and equation-text transfer.

4. Window manager interaction

Window management is one of the least developed and standardized areas
of man-machine interaction. A good discussion is presented by Hopgood et
al. [1986].

The window manager on the IRIS, called mex (multiple exposure), is
quite simple and easy to use, but does not provide any high-level operations
except menus. All input from keyboard and mouse goes to mex, and is then
redistributed to the process that owns the currently attached window (the user
attaches himself to the window he/she is interested in). Moving, reshaping and
selecting windows is done by the user and mex, with only a limited cooperation
from the affected processes.

There is always at least one text window on the screen, which is associated
with “standard input,” “standard output” and “error output” (i.e., used by
read and write in Pascal). In addition, processes that use graphics normally
have one or more graphics windows. Regrettably, it is not possible to print
directly to a graphics window. Each process can have multiple graphics win-
dows, but each graphics window can only be owned by one process; the text

6

window is normally shared by all processes. A process can only use windows
it owns.

Mex is different from many other window managers because it cannot
redraw a window by itself, for example, when a window has been moved;
instead, mex will request every process to redraw those windows that have
been affected. This strategy has probably been adopted because the IRIS is
often used to display very complex images, which may not be efficiently stored
in an application-independent format.

The input queue

The IRIS Graphics Library manages an input queue where events such as
mouse movements and key presses are recorded. A typical program enables
specific events and then spends it time reading the input queue, performing
some action on every event.

The window manager uses this queue too; when mex detects that a window
must be redrawn, a REDRAW token is put on the input queue, together with
an indication of which window must be redrawn. The program must then
redraw its window completely, taking into account possible changes in window
size, aspect ratio, etc. The INPUTCHANGE token informs that that the user
has attached or detached a window.

This strategy for screen regeneration has two implications. Firstly, the
program must run in an endless loop, reading tokens off the input queue and
redrawing windows on request. In order to get acceptable interaction with the
user, this must be done quite fast (no absolute measures can be given yet). It
should be noted that the windows must be redrawn in a certain order because
of window overlap, so several processes may be affected.

Secondly, the REDRAW token is an asynchronous event over which the
program has no control. This means that the program must be prepared to
redraw any of its windows at any time, i.e., there must always exist a valid
representation of the window contents. For this reason, there is always a
segment associated with each window. This is the root in a tree of segments
which defines the window contents. The program may of course ignore the
REDRAW token or delay any actions, but the effect on user interaction is
hardly acceptable.

Double buffering

A simple way to get subjectively faster graphics is to use two buffers; one
is displayed and the other updated. Because the buffers can be instantly
swapped, the user does not have to watch the image being drawn. In practice,
two buffers are slightly mode complicated to handle than one, in particular
when doing incremental updates.

Mex can handle programs that use both single buffered mode and dou-
ble buffered mode. All processes share one display memory, so some sort of
synchronization is needed. The User’s Guide says:

“Each double buffered program is blocked until all other double buffered
programs are ready to swap. Then all programs running in double buffered
mode swap at the same time.”
For double buffered programs, this means that every program must wait for
the slowest program to finish drawing. There is no possibility to do anything
useful while the program hangs, and it is not possible to detect that the
program will hang. Single buffered programs are not directly affected; they

7

are requested to redraw for each swap, so the total amount of redrawing may
increase considerably.

5. Realization

This section covers three topics: the decomposition of the system into func-
tionally different parts, the implementation of the front-end, and a discussion
of future developments and the use of PHIGS.

System decomposition

In the current design, the complete system has been decomposed into three
functionally different parts:

o An application written in Common Lisp which understands system rep-
resentation and operates on systems.

o A command decoder which reads user input, either directly or from a
command file; it also creates command files and log files. A future expert
system can be associated with the command decoder.

e A front-end which handles physical devices and interaction with window
manager.

The implementation uses two Unix processes: one process that runs the appli-
cation and the command decoder, and one process for the graphical front-end.
The front-end is written in C, the rest in Common Lisp.

The main reasons for using two separate processes are the requirements
imposed by the window manager. Writing a program that gracefully interacts
with mex (e.g., frequently reads the input queue) requires a program struc-
ture which makes non-graphical parts more difficult to write. Although double
buffering is not yet used, future use of double buffering would make this prob-
lem even more difficult. There are also some operations, such as rubberband
shapes, that require maximum performance; this is easier to achieve in C. In
addition, some window manager commands have no Common Lisp bindings.

The last reason is portability. The current front-end is quite IRIS specific
with close ties to the IRIS Graphics Library; a separate program (process)
is easier to rewrite and port to other computers. Decomposition into sep-
arate processes requires a well-defined protocol. This puts am emphasis on
specification and documentation of the front-end.

Process communication

Communication between the application and the front-end is done with Unix
messages. There is one message for every graphical operation (output), and
one message for every form of input. Messages are fully asynchronous, and
the application cannot assume that a certain type of input will be made by
the user.

Output messages are binary, but input messages are sent as textlines (any
numbers are converted to textual form). Binary messages are more efficient
by a factor of 4-5, but this doesn’t matter for input. Input messages are
constructed to look like lists in Lisp; consequently, text messages are normally
evaluated by the Lisp system, so the full power of Lisp is still directly available.
Binary input messages would have required the construction of an internal Lisp
object, which would have been difficult in C.

Transmitting a message requires two system calls and copying, but this is
not unreasonable; Unix messages are as efficient as sockets or pipes. On the
other hand, using two processes causes some competition for CPU resources
and additional context switches.

Front-end implementation

The front-end runs in an endless loop, responding to stimuli from two sources:
messages from the application and tokens on the input queue from the user
(or mex). It is not possible to wait for input from two sources simultaneously.
The first version of the front-end used busy-wait, i.e., continuously polled both
sources. Regrettably, this consumed about 20% of the CPU resources when
the front-end was “idle.” The current version normally hangs on the input
queue; a timer puts tokens on the queue ten times per second, causing the
front-end to poll the message queue. It uses approximately 3% of the CPU
when idle, and 30-35% when driven by a fast Lisp program.

All operations are regarded as atomic, which is almost true. All opera-
tions are allowed to finish before any other input is honored. This means, for
example, that it is impossible to move or reshape a window when picking or
rubberband drawing has been requested.

Another problem arises when the program is constructing a segment, i.e.,
storing graphics primitives in an internal datastructure. If a REDRAW token
forces a redraw of a window using the segment under construction, the segment
must be saved temporarily and whatever there is used for drawing. What will
really be drawn, and if the image is consistent, is not clear. The current
implementation has a serious bug though. The REDRAW token will not
redraw the window, but the operations to redraw a window will be inserted
into the currently open segment; disaster is inevitable. The combination of
segment editing and window changes is luckily not so common.

An exception handling package for C is used to handle bad messages, to
start polling the messages queue after a time-out, and to abort execution when
the BREAK key has been pressed. It is powerful and easy to use.

Future developments

The front-end is in its present state not fully robust. Illegal operations (e.g.,
bad message parameters), and perhaps some legal operations, may cause the
front-end to crash. Diagnostics are bad; illegal messages are ignored, unless
tracing is turned on.

The most serious problem is the misuse of the REDRAW token when a
segment is open for editing (see above). There are operations which are not
meaningful when editing segments (e.g., requesting a rubberband shape), and
operations which are meaningful only when editing a segment (e.g., closing
a segment). Every operation should be categorized and tests made appropri-
ately. It is possible to draw directly to the screen without using a segment, but
the application cannot control which window will be used, or what coordinate
system applies. This feature would be valuable for testing purposes.

Windows are at present shaped by the user. In some cases the application
could preset the size, and perhaps even the position, of a newly created win-
dow. In many window management systems it is possible to shrink a window
to an icon; when the window is expanded again, it assumes its original size
and position.

Two additional types of input are immediately useful: forms and dragging.

9

A form can be regarded as a more general menu facility; the user can type
text into one or more predefined slots. The completed form is then sent to the
application.

Dragging means that you have an existing shape and want to move it
around the screen, for example, to position an icon. The application program
could define a segment, which is tied to the cursor. After the final position
has been marked, the new coordinates are returned. It would also be possible
to change an existing shape. One point of the shape is tied to the cursor, and
the shape changes as the user moves the mouse. Final position of the point
is returned to the application. Two-button stretching in Hibliz [Mattsson et
al., 1986] is a combination where the user can move a shape or change the
position of two points individually.

Some features of the front-end which today are welded-in should be con-
trolled from the application. Examples are: tracing of messages, window
background color, use of a grid to make rubberband shapes easier to draw,
and color definitions. An initialization file could provide default parameters.

Highlevel plotting routines for drawing nicely scaled axes in Simnon have
been converted to C. Axes generation should be handled by the application
program, not the front-end.

Implementation using PHIGS

The proposed graphics standard PHIGS (Programmers Hierarchical Interac-
tive Graphics Standard) is specificly aimed at high-speed interactive modelling
of 3D objects [SIS, 1985]. One of the key concepts is the centralized segment
storage; multiple segment trees can be maintained simultaneously, and indi-
vidually tied to views, the windows in PHIGS.

Segments (called structures in PHIGS) have a number of attributes, such
as the ability to be picked, highlighted or invisible. With respect to pick-
ing, any segment can be uniquely identified, including all enclosing segments.
Picking in PHIGS is not as flexible as the scheme outlined in section 2, but
fully adequate for our purposes.

The graphical front-end can probably be easily implemented using PHIGS,
but no practical tests have been conducted. It would also be interesting to see
if windowing can be implemented using multiple views in PHIGS, and if this
would remove some of the restrictions imposed by the window manager. There
exists today a single implementation of PHIGS for the IRIS workstation, and
more may become available in the near future.

6. Summary

Key features

The man-machine interface should
o Be well-defined.
e Handle input from keyboard, pointing device (mouse) and stored files.

e Handle multiple graphical output devices; minimum is the IRIS screen,
Postscript devices, and some sort of logging facility.

o Use existing software packages as much as possible, e.g., the window man-
ager (mex) and the graphics library on the IRIS.

10

Basic output operations include

Draw simple shapes like lines, rectangles and circles. Fill areas using
multiple colors.

Multiple local (hierarchical) coordinate systems.
Highlighting, or some other visual feedback.
Multiple overlapping windows.

Segment handling in order to improve efficiency and aid structuring of
graphical information.

Basic input operations include

Text input.

Menu selection, with equivalent textual command forms.
Picking of graphical objects.

Rubberband shapes, e.g., lines, rectangles and polylines.

Reshaping and moving windows.

Some operations are quite powerful, for example, there are hierarchical co-
ordinate systems and hierarchical segments. Segment editing is limited to
appending graphics primitives to an existing segment, and picking conflicts
must be resolved by the application. The rubberband concept has been gen-
eralized; parameters controlling a rubberband polyline provide points, lines,
rectangles and polylines.

System decomposition

The current design suggests a system decomposed into three separate parts:

An application written in Common Lisp which understands system rep-
resentation, and operates on systems.

A command decoder which reads user input, either directly or from a
command file. Command files are generated by the command decoder.
A future expert system interface will be associated with the command
decoder.

A front-end which handles physical devices and interaction with the win-
dow manager.

The following issues influenced the design

The window manager imposes certain requirements on all processes us-
ing windows. Any process owning a window must be able to redraw its
windows on demand, for example, when a window is reshaped.

The window manager puts a special REDRAW token on the same input
queue which is used for mouse input. This means that the program must
run in an endless loop, reading the input queue as quickly as possible.

In doublebuffered mode, all processes owning windows are blocked until
every process has redrawn its windows.

Future extensions in the area of expert system interfaces tie naturally
into the command decoder, i.e., after the physical input, but before the
application.

A quick implementation of the man-machine interface has lead to a pro-
gram which has close ties with the IRIS Graphics Library. A separate
program (process) is easier to redesign and port to other computers.

11

¢ Decomposition into separate processes requires well-defined protocols us-
ing some sort of message passing. This puts an emphasis on specification
and documentation of the man-machine interface.

Portability can be a problem, in particular with the chosen strategy for picking.
Other problem areas are segment editing, segment attributes and hierarchical
coordinate systems. It is probably quite easy to implement the front-end using
PHIGS, but quite difficult using GKS.

7. Acknowledgements

The author is grateful for the feedback and suggestions from Mats Andersson,
who used the front-end during its most unstable time. Dr. Sven Erik Mattsson
provided helpful comments and suggestions, as usual.

This work was supported by The National Swedish Board of Technichal
Development (STU), as part of the Computer Aided Control Engineering
project conducted at the Department of Automatic Control, Lund.

8. References

Brown, M. D. (1985): Understanding PHIGS, Template, 9645 Scranton
Road, San Diego, CA 92191, USA.

Brick, D. M. (1986): “Implementation of Graphics for HIBLIZ,” CODEN:
LUTFD2/TFRT-7328, Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

HEARN, D. and P. BAKER (1986): Computer Graphics, Prentice-Hall Inter-
national, ISBN 0-13-165598-9.

Horgoop, F. R. A., D. A. Ducg, J. R. GaLLoP and D. C. SUTCLIFFE
(1983): Introduction to the Graphical Kernel Standard (GKS), Academic
Press.

Horcoop, F. R. A., D. A. Ducg, E. V. C. FieLpiNGg, K. ROBINSON and
A. S. WiLriams (Eds.) (1986): Methodology of Window Management,
Proceedings of an Alvey Workshop at Cosener’s House, Abingdon, UK, April
1985, Springer-Verlag.

MatTsson, S. E., H. ELMQvisT and D. M. Briick (1986): “New Forms of
Man-Machine Interaction,” CODEN: LUTFD2/TFRT-3181, Department
of Automatic Control, Lund Institute of Technology, Lund, Sweden.

SiLicoN Graruics (1986): IRIS User’s Guide, Version 2.1, Update 2.4,
Silicon Graphics Inc., 2021 Stierlin Road, Mountain View, CA 94043, USA.

SIS (1985): “Datorgrafi—PHIGS, Programmers Hierarchical Interactive
Graphics Standard,” Technical report no. 306, SIS—Standardiseringskom-
misionen i Sverige.

12

Appendix — Front-End Operations

1. Low-level output interface

This section describes the output operations of the interface between the front-
end and the command decoder. These operations are issued by the application
and executed by the front-end.

Because the window manager (mex) may ask the front-end to redraw a
window at any time, everything on the screen must be stored in segments.
The general procedure for creating graphics in as follows: Firstly, a set of
basic segments is created; these contain shapes that need no changes in the
future. Secondly, a set of higher-level segments is created; these also call other
segments to produce more complicated shapes. Lastly, one or more windows
are defined, each of which call one segment to draw the image in the window.

Drawing primitives

Used to draw graphical objects (shapes) and save or restore local attributes.
These operations are 2D only.

move(x, y : coord)

Sets current position to (z,y).

draw(x, y : coord)

Draws a line from current position to (z,y), which then becomes the current
position.

rectangle(xl, y1, x2, y2 : coord)
fillrectangle(xl, y1, x2, y2 : coord)

Draws a rectangle or a filled rectangle from (z1,y1) to (22,y2). Current
position becomes (z1,y1).

circle(x, y : coord; radius : real)
fillcircle(x, y : coord; radius : real)

Draws a circle or a filled circle with center point in (z,y) and specified radius.
Current position becomes (z,y).

setcolor(col : integer)

Shapes will be drawn with the specified color from the color map. The color
map is defined by a special file. The default color, when no color has been
specified, is blue.

setlinewidth(w : integer)

Shapes will be drawn with w pixels wide lines. Minimum is one pixel.

13

Text

Textual output is restricted to simple strings. Formatting of numerical data
must be done by the application. Raster or graphical fonts may be supported.

drawstring(height : integer; s : string)
Draws a string starting at the current position. The height is specified in local
user coordinates.

requeststring

Asks the user to type a string, which is returned to the application. See Text
in Section 2.

Coordinate systems

There may be multiple, hierarchically organized coordinate systems. The coor-
dinate system is represented by a transformation matrix, which is manipulated
by scaling and translation.

scale(x, y : real)

Changes horizontal and vertical scale by multiplying the current transforma-
tion matrix. For ¢ € {z,y} we have

le] >1 expands objects,
0<|e|] <1 shrinks objects,

¢ < 0 mirrors objects.

translate(x, y : coord)

Moves the origin of the coordinate system relative its current position in the
enclosing coordinate system.

pushmatrix
popmatrix

Saves and restores the current transformation matrix using a stack.

Segment handling

A segment may contain drawing primitives, operations to manipulate the
transformation matrix, calls to other segments, and operations to set the pick
marker. These are collectively called graphics commands.

It is possible to call a segment, almost like subroutines are called in a
programming language. When a segment is called, the current state of the
caller is saved, and later restored on return. In particular, the transformation
matrix and attributes, such as color and linewidth, are saved.

open(name : segmentid)

Opens a segment which will be ready to accept graphics commands. If the
segment did not exist, a new segment is created; otherwise, the graphics com-
mands will be appended to the existing segment. Only one segment may be
open at a time.

14

close

Closes the currently open segment. No action is taken if no segment is open.

delete(name : segmentid)

Deletes the specified segment. No action is taken if the segment does not exist.
It is possible to delete the open segment.

call(name : segmentid)

The specified segment will be invoked when the call is executed. Saves and
restores transformation matrix and attributes. Calling an undefined segment
(either not yet defined, or deleted) is a no-op.

highlight(name : segmentid; on : boolean)

The specified segment, and all segments that are called by this segment, will
be highlighted.

Window management

Windows are rectangular areas on the screen. There is always a single segment
associated with each window; this segment is the root of a tree of segments,
which will draw an image in the window. The tree may be used at any time
to redraw the contents of a window, for example, when the user has resized or
moved a window.

When the front-end starts, the user is asked to shape an initial window;
this window has identity 0 (zero). The application cannot use more than ten
windows simultaneously.

create(win : windowid)

The user is asked to shape a window on the screen. The window is initially
empty.

title{win: windowid; t : string);

Assigns a title to the specified window. An empty string (*”) removes any
existing title from the window.

bind(win : windowid; seg : segmentid)

Binds a segment to a window in order to draw an image in the window. The
segment is called every time the window must be redrawn.

limits(win : windowid; x1, yil, x2, y2 : coord)

Defines the window limits, i.e., a local coordinate system from (z1,yl1) to
(22,y2) which will fill the window. The initial values when creating a window
are (0,0) to (1,1).

erase(win : windowid)

Removes the specified window from the screen. The associated segment is not
destroyed.

15

redrawwindow(win : windowid)
redrawall

Forces redraw of a window/all windows. Updating a segment does not update
the window automaticly.

Picking

Picking is a form of input, but the application controls the result of picking a
certain object, and can also ask the user to pick an object.

The front-end maintains a stack of so-called pick markers. Interspersed
with other graphics commands, the application pushes and pops markers on
the stack. Normally the markers on the stack are not used for drawing, but
when a pick-hit occurs, the contents of the stack is returned to the application.
The application may then interpret the contents of the stack in any way.

pushmarker(m : pickmarker)
popmarker

Saves and removes a user specified marker on a stack. The contents of the
stack is returned when a pick-hit occurs.

requestpick

Asks the user to pick an object on the screen. See Picking in Section 2.

Rubberband shapes

Rubberbanding is a form of input, but the application has the possibility to
prompt the user for a shape. See Rubberband shapes in Section 2.

requestline
requestrectangle

Asks the user to define a line or rectangle using rubberbands.

requestshape(n : integer)

Asks the user to define a polyline with at most n points, i.e. » — 1 archs.
Certain values of n have special meaning:

n =0 Returns the window identity, but no points.
n =1 Returns a point.
n =2 Returns a line (or possibly a point).

n > 2 Returns a polyline.

Defining menus

The application can define menus which are then handled locally in the front-
end. There may be multiple menus, each with a variable number of choices.
A menu choice may also “roll over” to a submenu. Menus are numbered freely
by the application, with the following exception:

Menu 0 Reserved, meaning no menu at all. Normally used in addtomenu to
indicate that roll-over menu option is not desired.

16

The application associates a string with every menu choice. This string is sent
to the application when the user selects something. If the user pops a menu
but does not select anything, the string *NULL* is sent to the application.

newmenu(m : menuid; heading : string)

Starts the definition of a new menu. Any existing menu with the same identity
will be destroyed.

addtomenu(m : menuid; ch, answer : string; rover : menuid)

Adds a choice to the specified menu. If this choice is selected, the string
answer will be sent to the application. If rover is non-zero, the menu choice
may roll-over to a previously defined menu.

requestmenu(m : menuid)
Presents the specified menu to the user and awaits selection.

mainmenu(m : menuid)

Makes m the main menu, i.e., the menu the user gets when he presses the
right mouse button.

2. Low-level input interface

This section describes the input operations of the interface between the front-
end and the command decoder. These operations are issued by the front-end
and interpreted by the command decoder; most operations are forwarded to
the application without changes.

Many input operations are initiated by the application, i.e., the application
sends a request, forcing the user to do some input operation. In the general
case however, the user is free to perform any operation, so the application
must be able to accept (or reject!) any input at any time. A summary of the
proposed user interface:

e Typed input is sent as strings to the application.

o Pressing the right mouse button invokes the main menu of the application.
It is sometimes used to draw rubberband shapes.

¢ Pressing the middle button picks an object on the screen. Tt is also used
to draw rubberband shapes.

o The left button is used to select a window.
e Pressing NO SCRL stops output from the front-end.
¢ Pressing SET UP directs input to the window manager (mex).

Text

Keyboard input is sent line-by-line to the application. Exceptions are some
keys which will send a Unix signal to the application.

text(s : string)

Sends the string typed by the user (excluding the final new-line character)
to the application. Double quote (") is preceded by a backslash (\). Every
character is echoed to the console window as it is typed. Pressing DELETE
erases the last character.

17

Rubberband lines and rectangles

Rubberband shapes are normally requested by the application. The user po-
sitions the cursor at the starting point and presses the middle mouse button.
He/she then moves the cursor to the ending point and presses the middle
button a second time.

The returned coordinates are window coordinates, i.e., expressed in terms
of the window limits. The coordinates may specify a point outside the window.
Because lines and rectangles are specializations of the more general polyline,
a count of the number of coordinate pairs is sent to the application (the count
is of course 2).

rubberline(w : windowid; 2; x1, yi, x2, y2 : coord)

Sends the window identity and the end-points of a line drawn by the user.

rubberrectangle(w : windowid; 2; x1, y1, x2, y2 : coord)

Sends the window identity and two opposing corners of a rectangle drawn by
the user.

Rubberband polyline

This is a generalization of the rubberband line. The user defines a number of
points by pressing the middle mouse, up to a maximum specified in request-
shape. The last point is defined by pressing the right mouse button.

rubberline(w : windowid; n : integer; a : array of coord)

Sends the window identity and an array of coordinate pairs (z;,y;) for a poly-
line drawn by the user. The count n is number of pairs. The coordinate pairs
are stored in the order they were defined by the user.

Picking
To pick an object, the user points at a shape on the screen and presses the
middle mouse button. The front-end will redraw every window and simulta-

neously maintain a stack of pick markers (see Picking in Section 1). When a
pick-hit occurs, the contents of the stack is sent to the application.

pick(w : windowid; n : integer; hits : array of pickhit)
Sends the window identity, the number of pick hits and an array of pick-hits
to the application. Each pick-hit is represented by a count m and the stack of
m pick markers at the time of the hit.

If no pick-hit occurs, pick(0, 0) is sent to the application. This is also
the case if the user picks outside the windows belonging to the front-end, in
which case the window identity is meaningless.

Menu selection

The main menu is presented when the user presses the right mouse button.
He can then select one of the choices, or roll over to another menu. When the
user releases the button, the string associated with the choice (see addtomenu)
is sent to the application. If the user does not select any of the choices (selects
outside the menu), the string *NULL* is sent to the application.

18

menu(s : string)

Sends the string associated with a menu choice to the application.

Unix signals

A TUnix signal is an asynchronous interrupt, which may be caught by the
receiving process. Two signals have been bound to keys:

ESC Sends SIGINT to the application, which will put the user
at the Common Lisp top-level. The application can later be
resumed.

BREAK Sends SIGKILL to the application, which will be killed.

These signals can probably be caught by some mechanism in the Common
Lisp system, but God knows what...

3. Examples

EXAMPLE 1 — Simple segment
This is a very simple segment which defines a diagonal line.
open(1)
move(l, 1)
draw(9, 9)
close

EXAMPLE 2 — A more complex segment
This segment will draw a box and then call the previous segment to draw a
diagonal line inside the box.

open(2)

rectangle(0, 0, 10, 10)

call(1)

close

EXAMPLE 3 — System segment
This is a segment representing a system. It consists of a surrounding box and
two of the boxes above, representing sub-systems.

open(3)

rectangle(0, 0, 10, 10)

pushmatrix
translate(2, 4)
scale(0.2, 0.2)
call(2)
popmatrix

pushmatrix
translate(6, 4)
scale(0.2, 0.2)
call(2)
popmatrix
close

19

EXAMPLE 4 — Simple window

Here we create a simple window in order to display a system.
create(100)
limits(100, -1, -1, 11, 11)
bind (100, 3)
redrawwindow(100)

EXAMPLE 5 — Zooming closer
By changing the window limits, we zoom in on the lower-left corner of the

system.
limits(100, 0, 0, 5, 5)
redrawwindow(100)

EXAMPLE 6 — Information zooming
Here we open a new window and zoom in one of the sub-systems. We do not
change the representation though.

create(101)

limits(101, 1, 3, 5, 7)

bind (101, 3)

redrawwindow(101)

ExaMPLE 7 — Picking an object
In order to illustrate picking, we must adopt some conventions: Firstly, every
segment will begin with a push of a marker indicating the type of the segment.
Secondly, to distinguish between multiple calls of a segment, a sequence num-
ber will be pushed in front of every call.

First we create a sub-system box and a system with two sub-systems. This
is very similar to Example 3.

open(1)

pushmarker(SS)

rectangle(0, 0, 10, 10)

popmarker

close

open(2)
pushmarker(S)
rectangle(0, 0, 10, 10)

pushmatrix
translate(2, 4)
scale(0.2, 0.2)
pushmarker(C1)
call(1)
popmarker
popmatrix

pushmatrix
translate(6, 4)
scale(0.2, 0.2)
pushmarker(C2)
call(1)
popmarker
popmatrix

20

popmarker
close

The application can now send a requestpick to the front-end. If the user
doesn’t pick any object at all, no (zero) pick markers are returned. If the user
picks the system above, but not one of the sub-systems, one pick marker is
returned:

1 s

If the user picks the left sub-system, three pick markers are returned, indicating
a system, the first call to another segment, and the sub-system:
3 8 C1 ss

EXAMPLE 8 — Another picking scheme
A segment will return the same pick markers every time it is called. It is not
possible to tell which call (instance) of a certain segment caused a pick-hit
without more information. In the example above, we could separate the two
calls of the sub-system becaused we traced every call in the enclosing system.

Not every segment must use pick markers. It is convenient to use some
segments simply as a library of geometrical shapes, glued together with seg-
ments that push and pop pick markers. We can probably afford to create a
unique segment for every object we want to be able to pick. In this case, the
pick markers can be encoded to uniquely identify objects in the application.

open(1)

pushmarker(SS1)

rectangle(0, 0, 10, 10)

popmarker

close

open(2)

pushmarker(SS2)
rectangle(0, 0, 10, 10)
popmarker

close

open(3)
pushmarker(S)
rectangle(0, 0, 10, 10)

pushmatrix
translate(2, 4)
scale(0.2, 0.2)
call(1)
popmatrix

pushmatrix
translate(6, 4)
scale(0.2, 0.2)
call(2)
popmatrix

popmarker
close

21

If the user picks the left sub-system, only two pick markers are returned, one
for the system and one for the sub-system.
2 S sSsi

22

